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Calibration of IMUs using Neural Networks and Adaptive Techniques
-Targeting a Self-Calibrated IMU
ELLINOR CLAESSON
SARA MARKLUND
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
This thesis presents an investigation of different sensor models for calibrations of
IMUs and suggests an approach for adaptive calibration which is intended to be
utilized during use of the sensor. The results show that using a neural network as
sensor model can reduce the calibration error compared to if a linear sensor model
is used. The results also show that the suggested adaptive algorithm can be used to
approximate the sensor model but is not sufficiently accurate.

An IMU is a set of inertial sensors that can, among other applications, be used
to estimate position and orientation of a body. An accurate calibration of the IMU
improves the performance of the estimations and is hence an essential operation.
The most commonly used calibration algorithms today use linear sensor models
although the characteristics of the sensor are often argued to be nonlinear.

The thesis contains an investigation of whether neural networks efficiently can
be used for nonlinear sensor model approximation. It was found that, for offline
calibration, neural networks can approximate the sensor model accurately but needs
more data than the linear model. More precisely, using a neural network trained on
400 data points, the calibration error was halved compared to a calibration using a
linear model.

A problem with MEMS gyroscopes and accelerometers is that their character-
istics change over time and are affected by parameters in their surroundings. To
maintain an accurate approximation of the sensor model, the sensor would need to
be re-calibrated. Most commonly used calibration methods today are time consum-
ing and require expensive hardware, which make them complicated to perform in
field.

An algorithm for adaptive online calibration of IMU sensors has been intro-
duced. This method is designed to be used continuously to update the calibration
and thereby adapt the sensor model to changes in the sensor’s characteristics. The
algorithm is iterative and alternates between calibrating the accelerometer using
the gyroscope as reference and calibrating the gyroscope using the accelerometer as
reference. To approximate the sensor model, neural networks are used. The result
from evaluation of the developed adaptive algorithm shows that it can be used to
approximate the sensor model but does not obtain as high accuracy as the offline
algorithms. Hence it needs further development to be useful in practice.
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1
Introduction

In many applications it is desirable to know the position, orientation and motion
of a body. To obtain such information inertial sensors are widely used. An inertial
measurement unit (IMU) is a combination of inertial sensors. A common config-
uration of the IMU contains three orthogonally mounted accelerometers and three
orthogonally mounted gyroscopes [1]. The accelerometers measure the specific force,
in g, acting on the body and the gyroscopes measure the angular rate, in rad/s, of
the body [2]. The IMU is often used in Inertial Navigation Systems (INS) [3], which
utilize the raw IMU measurements and convert the data into information about
position, velocity and attitude. The IMUs are also commonly used as orientation
sensors in consumer products, such as smart phones and gaming remote controls [2].

Rotate
Subtract

gravity

Angular

velocity

Specific

force

Orientation

Acceleration

Position

Figure 1.1: Process of estimating position and orientation from IMU. Integration of
the angular velocity, given by the gyroscope, yields the orientation. The orientation
is used to rotate the accelerometer and subtract the gravity before integrating the
acceleration twice into a position.

When using an IMU for the purpose of navigation, information about position
and orientation is desired, which can be estimated by fusing the accelerometer and
gyroscope measurements. In the process of estimating position and orientation,
the registered angular rates are integrated into information about orientation of the
body. When the orientation is known, the gravitational acceleration can be deducted
from the registered acceleration. The remaining acceleration is in turn integrated
twice into information about position. A schema of the process, often called dead-
reckoning, is shown in Figure 1.1. If the sensors provide the true angular velocity
and the true acceleration, and if position and orientation were known at the initial
state, perfect new estimates would be obtained from dead-reckoning.

In practice, the sensors are not perfect and the measurements are altered by
noise. Due to integration of the measurements, errors will accumulate and grow
over time. This means that even a small disparity between the interpretation of

1



1. Introduction

the measurements and the true acceleration/angular rate will, over time, cause a
significant error in position, orientation and velocity [2].

Calibration aims to find a sensor model that maps the sensor output to ground
truth. The sensor model is assumed to have the property

qt = f(qm) + n, (1.1)

where qt is the true quantity, f is a static, deterministic and bijective function of
the measured quantity qm and n is stochastic noise. The noise cannot be predicted
and is thus impossible to compensate for. However, if f could be estimated, then
the function could be applied to all measurements. In a statistical sense, applying
the function, f , could improve the performance of the applications that utilize the
best known sensor data.

1.1 Background
There are a wide variety of approaches for collection of calibration data and iden-
tification of the sensor model. Algorithms that are said to operate offline have
disjointed processes for sampling data and performing the calibration, i.e the cali-
bration is performed on data that is collected in the past. Offline calibration results
in a sensor model which is used to process the sensor output in future use. Algo-
rithms that are said to operate online perform the calibration based on the data that
is being sampled at real-time. Online calibration can hence be adaptive to changes
in the sensor’s behaviour.

A common approach of offline calibration, as seen in [3]–[6], is to predefine
a sensor model and then use some optimization method to find the parameters
in the chosen model. To identify the values of the parameters the sensor output
is measured under known conditions. A different approach could be to train an
artificial neural network to approximate the sensor model. Neural networks are
known to perform well when used for function approximation and are capable of
approximating functions with highly nonlinear behaviour [7]. Calibration of IMU
sensors using neural networks have successfully been tested by [8]–[10]. Using a
neural network as sensor model enables the optimizer to find other properties and
nonlinearities than if a predefined sensor model, with e.g. a given order of polynomial
and a given set of parameters, is used.

Regardless of whether the sensor model is predefined or if a neural network is
used to approximate it, the calibration algorithm requires labeled data, i.e. data
that has been collected under known conditions. The amount of data needed to
find the parameters in the sensor model depends on the choice of model and the
choice of optimization algorithm. However, the process of collecting raw data from
the sensors, that is to be used in the calibration algorithms, involves sampling the
sensor under known conditions. Accelerometer data is usually gathered by placing
the sensor in a number of static positions where the expected output of each sensor
axis is known. How accurate the sensor is positioned has impact on the result of the
calibration and hence, external equipment, like a robot and a rig, is widely used.
Gathering of gyroscope data often includes the use of a rate table. With a rate table,

2



1. Introduction

the IMU can be rotated with a specified angular velocity and hence the expected
output of the gyroscope is known [3], [6], [10].

The mentioned methods have proven to accurately map measured quantity
into true quantity at the time of calibration. Yet, it is known that the sensor
characteristics tend to change over time and are highly dependent on temperature
changes [11]–[15]. To maintain accurate interpretations of the sensor measurements,
the IMU needs to be re-calibrated in course of time. Since most calibration methods
require equipment with high precision, as a robot and a rate table, re-calibration
is, if even possible, demanding and time consuming to perform in field. It would
therefore be desirable if the calibration of the IMU could be performed in field and
be adaptive to changes in the sensors nature and local environment.

1.2 Purpose
The purpose of this thesis is to construct a calibration algorithm for the sensors in an
IMU which, by itself, can find a sensor model using neural networks and investigate
how accurate a neural network can approximate the sensor characteristics compared
to a linear model. The project also aims to extend the algorithm to circumvent the
need for labeled sensor data, and hence make the IMU self-calibrated in the sense
that it only needs information from itself to perform the calibration.

1.3 Scope
This thesis focuses on calibration of microelectromechanical systems (MEMS) sen-
sors. The project will make use of simulated data and already existing IMU-data.
The simulated measurements, qmeasurements, will be modeled as

qmeasured = sqtrue + b (1.2)

where qtrue is the true signal, s is a scale factor and b is bias. Throughout the project
the IMU is not subjected to linear accelerations while measurements are collected,
and is hence only affected by gravitational acceleration. In addition the temperature
is kept constant.

1.4 Outline of the Thesis
The workflow in this thesis can mainly be divided into the development of three
separate algorithms. The theoretical framework used for the development of all
three algorithms is presented in chapter 2. It contains a description of common
characteristics of sensor models and introduces theory behind neural networks and
machine learning algorithms.

Chapter 3 presents two algorithms for offline calibration of an accelerometer
based on data collected with external equipment. One is based on well known the-
ories about sensor calibration, which utilizes a linear sensor model, and one utilizes
a nonlinear sensor model approximated by a neural network. The derivation and

3



1. Introduction

implementation of the algorithms are introduced separately, followed by a joint eval-
uation where the the linear sensor model is used as a benchmark. The performance
of the two algorithms are shortly discussed in order to chose what model to use for
the development of an adaptive calibration algorithm.

In chapter 4 an approach for simultaneous online calibration of an accelerom-
eter and a gyroscope, that does not require any external equipment, is introduced.
The algorithm is evaluated on simulated data. Interpretations of the result from
evaluation of the algorithm are discussed and ideas for future work are presented.
Conclusions from the project, including both offline and online calibration, are found
in chapter 5.

4



2
Theoretical Framework

This chapter presents theory that has been essential for research and development
of the algorithms introduced in this thesis. The chapter comprises two main topics.
The first part explains some characteristics of the sensors that entails the need of
calibration and how these characteristics can be modeled linearly. The second part
describes theory about neural networks and how they are trained.

2.1 Sensor Modeling
The two main properties of the sensor model, that are the most essential to compen-
sate for, are scale and bias. The bias is a constant offset between the true and the
measured quantity and the scale is the ratio between true and measured quantity
[1]. Scale and bias can be described by looking at a linear function

y = kx+m, (2.1)

and is illustrated in Figure 2.1. Here y represents the measured specific force/
angular rate on the vertical axis, x represents the true specific force/angular rate on
the horizontal axis, k represents the scale and m represents the bias.
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Figure 2.1: Explanation of scale and bias. The linear function is the relation
between the measured output of the sensor and the true specific force/angular rate.
The bias is where the line cuts the y-axis and the scale is the inclination of the line.
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2. Theoretical Framework

A three-axis accelerometer or gyroscope consists of three individual sensors in
total, one for each orthogonal axis represented in the three dimensional euclidean
space (x, y, z). The precision of the mounting of the three sensors is of great
importance, and if the axes are not mounted perfectly orthogonal, the sensor model
will be affected. Figure 2.2 shows an illustration of two coordinate frames. The
dashed grey frame is orthogonal while the black frame is non-orthogonal as α 6= 90°,
β 6= 90°, γ 6= 90°. If the black frame represents the sensor frame, it will introduce
cross-talk between the sensor’s axes, i.e the output of one axis will impact the other
axes. To compensate for non-orthogonality, the measurements, taken in the sensor’s
coordinate frame, need to be mapped into an euclidean coordinate frame [1].

Misalignment is another property that has impact on the sensor model. It
occurs if the sensor is not mounted such that the coordinate frame of the sensor’s
sensitivity axes coincide with the coordinate frame of the body that the sensor is
mounted on. [1].

xo

 

z

 

y

 

x

 

zo

 

yo

 

β

 

γ

α

Figure 2.2: Illustration of the error caused by non-orthogonal sensitivity axes of
the sensors. The grey dashed axes xo, yo and zo builds an orthogonal coordinate
system, i.e there is 90 degrees between all axes. The axes of the sensor x, y and z
(in black) are not orthogonal since the angles α 6= 90°, β 6= 90°, γ 6= 90°.

2.1.1 Linear Sensor Models
For an accelerometer, one of the simplest models that can be used for calibration is
described in [4] as q̃x

q̃y

q̃z


︸ ︷︷ ︸
q̃

=

sx 0 0
0 sy 0
0 0 sz


︸ ︷︷ ︸

S

qx

qy

qz


︸ ︷︷ ︸
q

+

bx

by

bz


︸ ︷︷ ︸
b

, (2.2)

where q̃ represents the true quantity, q is the measured quantity, S is a matrix
containing the sensor scaling errors and b is the sensor bias. In [4], the true and
measured quantity is acceleration such that q̃ is true acceleration and q is measured
acceleration. Gyroscopes in general have similar characteristics as the accelerometer
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2. Theoretical Framework

and thus equation (2.2) can be used to describe the sensor model for a gyroscope,
such that q̃ is true angular velocity and q is measured angular velocity.

The sensor models introduced by [5] and [6] compensate, apart from scale and
bias, for non-orthogonality and misalignment. The equation that describes the sen-
sor model is expressed as

qx

qy

qz


︸ ︷︷ ︸
q

=

 sx mxy mxz

myx sy myz

mzx mzy sz


︸ ︷︷ ︸

S

q̃x

q̃y

q̃z


︸ ︷︷ ︸
q̃

+

bx

by

bz


︸ ︷︷ ︸
b

, (2.3)

where q̃ represents the true quantity (acceleration or angular velocity), q is the
measured quantity (acceleration or angular velocity), b is the sensor bias and S is a
matrix containing the scale factor (diagonal elements) and multiplicative errors due
to non-orthogonality within the sensor axes and misalignment caused by mounting
of the sensors (non-diagonal elements).

2.1.2 Nonlinear Sensor Models
It has been argued that the mapping between measured quantity and true quantity
for IMU sensors is not completely linear and hence a nonlinear sensor model could
be a more accurate approximation. For this purpose a polynomial of second order
or higher can be used to predefine the sensor model. Another tested approach to
nonlinear modeling of the sensor is to use neural networks (NN). Among those who
have presented calibration methods using NN the usage of feed forward NN is widely
adopted. Studied approaches for training such NNs include backpropagation [9], [10]
or extended versions of backpropagation that also use the Levenberg–Marquardt
algorithm for optimization of the networks weights [8]. The NN suggested in [8]–
[10] all use one single hidden layer but what sets the methods apart is what activation
function that is used in the hidden layer and what algorithm is used for updating
the weights in the network.

2.2 Artificial Neural Networks

Artificial neural networks, usually referred to as simply neural networks (NN), are
computational structures that are inspired by the architecture of the biological brain
[16]. The networks are collections of units called neurons with weighted connections.
The neurons are gathered together in layers, where the first layer is called the input
layer and the last layer is called the output layer. Layers between the input and the
output layer are called hidden layers.

Neural networks have been commonly used in applications including function
approximations, pattern recognition, classification and control [16]. The process of
calibrating a inertial sensor involves approximation of a sensor model, i.e function
approximation. In function approximation the neural network is trained to represent
an arbitrary function, f(x) for any x in the domain of f . Normally, the network is
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2. Theoretical Framework

trained using training data that only covers a subset of the domain and then it is up
to the network to predict the output for the rest of the points in the domain [16].

As the theory of neural networks has been adopted to solve a wide variety
of tasks, numerous types of network structures have been introduced including feed
forward neural network (FFNN), recurrent neural network (RNN) and convolutional
neural network (CNN). CNNs are often used in image analysis. RNNs have internal
memory and are often used in applications where the context is important, such as
speech recognition or translation. FFNNs are less complex than CNNs and RNNs,
and are sufficient for approximation of one-to-one mapping functions [17].

2.2.1 Structure of the Feed Forward Neural Network
The FFNN has an input layer and an output layer and in between there can be any
number of hidden layers. The more hidden layers the network has, the deeper it is
said to be [18]. The information in the FFNN transfers in one direction, forward,
from input layer to output layer. All the nodes in the network are fully connected
which means that each neuron in one layer is connected to all neurons in the next
layer [17], as depicted in Figure 2.3.

x1

x2

x3

xn

y1

y2

Input layer Hidden layer Output layer

w
(1)

1,1

w
(1)

2,1

w
(1)

3,1

w
(1)

n,1

= σ( + b)y ̂  ∑
i

n

w
(1)

i,1
x ̂ 

i

Figure 2.3: Structure of a feed forward neural network. In each neuron the
weighted sum of the output from the previous layers is calculated. The sum is
given as input to an activation function which determines the final output of the
neuron. The equation in the image is utilized by the highlighted neuron which takes
the connections marked with red into account.

Figure 2.3 shows an example of the structure in a FFNN. This neural network
has n inputs, one hidden layer with three neurons and two outputs. In the figure,
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2. Theoretical Framework

x is the input to the network and y is the output of the network. Each neuron of
the network is influenced by an activation function. The activation function, which
often is a nonlinear function, decides whether the neuron should be activated or not.
The output, ŷ(k)

j , of each neuron, is calculated as

ŷ
(k)
j = σ

(
n∑
i

w
(k)
i,j x̂i + bj

)
, (2.4)

where σ(.), is the activation function, w(k)
i,j is the weight for the i-th connection to

the j-th neuron in the k-th layer, x̂i is the output from neuron i in the previous
layer and b is the bias.

One commonly used activation function, due to its simplicity to train and its
good performance [19], is the rectified linear unit function, ReLU

σ(x) = max(0, x), (2.5)

which maps the input, x, to the output if the input is positive and outputs zero
otherwise. Figure 2.4a shows the behaviour of the ReLU function. If the ReLU is
used on ill conditioned data, an issue called the ”dying ReLU problem” can occur.
The phenomena appears when the output of the majority of the neurons have zero
output, causing the gradients to also be zero. It results in the weights corresponding
to the zero gradient not being updated. To overcome this problem a number of
different versions of the ReLU function have been introduced. One such variant is
the Leaky ReLU function [20],

σ(x) =
{
αx for x < 0
x for x > 0 , (2.6)

where α is a small constant which makes the horizontal line to be slightly inclined
as shown in Figure 2.4b.
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(a) The standard ReLU function
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(b) The variant Leaky ReLU function

Figure 2.4: Visualization of two non-linear activation functions, in a) the standard
ReLU function and in b) a variant of the ReLU function called Leaky ReLU.
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2. Theoretical Framework

2.2.2 Supervised Learning
Supervised learning is an iterative process that is often used as training approach
when applied to a dataset that contains labels. The labels denote the expected
output of the network for the given input. In image classification the labels might
indicate whether a photo contains a cat or a dog. In the case of this report the
labels are the true acceleration and angular rate of the IMU.

The labels are given to the network as targets and the training process aims to
adjust the network into an accurate mapping between the input data and the cor-
responding targets [21]. Inside the network the training data is propagated through
every neuron, which results in a forward cascade of computations, using the current
set of parameters [22]. The predicted output of the network is compared to the in-
tended target output in a loss function. A commonly used loss function for function
approximation is the mean squared error (MSE) function [21],

L = MSE(y, ŷ) = 1
JK

J∑
j=1

K∑
k=1

(yj,k − ŷj,k)2, (2.7)

where J is the total number of samples, K is the total number of neurons in the
output layer, y is the target and ŷ is the predicted output of the network.

The objective of the training process is to minimize the loss function, which
is done by backpropagation. In backpropagation, the gradient of the loss function
with respect to the parameters is calculated. The parameters are then updated in
the steepest descent direction according to

θ = θ − η∇L(θ), (2.8)

where θ represents the parameters, η represents the learning rate which determines
how much the parameters are adjusted and ∇L(θ) is the gradient of the loss func-
tion [23].

Finding the optimal set of parameters can be a costly process that takes a lot of
time and computational power. To speed up the process different algorithms called
optimizers have been developed, which all are based on gradient descent. One of
the most used optimizer is the stochastic gradient descent (SGD) algorithm, where
a minibatch of m samples are drawn from the training set in each iteration and
the parameters are updated using the average gradient of the minibatch [24]. One
problem with the SGD algorithm is the choice of learning rate. Another frequently
used optimizer is the Adam algorithm, which is an extension to the SGD algorithm.
The method uses individual learning rates for different parameters that are adap-
tive and changes during the training process to efficiently find the optimal set of
parameters [25]. One repetition of forward propagation and backpropagation of all
minibatches is called an epoch and the training continues until a certain termination
condition is fulfilled [21].

2.2.3 Validation of the Networks Performance
If the training continues too long, there is a risk that the network learns the training
data too detailed and the network will not be able to perform well on unseen data.

10



2. Theoretical Framework

This is called overfitting. The opposite to overfitting is called underfitting and
means that the network is not able to learn the training data good enough. To
explain the concept of over- and underfitting Figure 2.5 illustrates a set of data
points in three different plots. The red line illustrates a function that maps input
to output, approximated by a neural network. In the left plot, the function is both
sufficiently detailed and generalizing. In the middle plot, the function has overfitted
to the data, while in the right plot, the function is underfitted [26].
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t

O
ut
pu
t

Good Fit Overfit Underfit

Figure 2.5: Illustration of the concept of overfitting and underfitting.

To be able to monitor the network’s performance and prevent the problem with
overfitting and underfitting, the data is often split into a training set, a validation
set and test set. It is common to use 70-80% of all available data for training, 10-
15% for validation and 10-15% for test [21]. The training set is then used during
the training and the validation set is used as unseen data after each epoch in the
training to continuously validate how the network perform on unseen data. The test
set is used to evaluate the network after training.

Having a training loss that is significantly smaller than the validation loss is an
indication of an overfitted NN. To avoid overfitting a network, the training can be
executed until the validation loss stops improving. If the validation loss is still much
worse than the training loss, the network is overfitted. The problem can be solved
by either using more training data or change the structure of the network. If the
training loss does not reach the desired degree it is an indication of an underfitted
NN, which can be solved by either train for a longer time or change the structure of
the network [21].
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3
Offline Calibration of

Accelerometer

This chapter describes the development and implementation of two calibration algo-
rithms for offline calibration. One is based on a commonly used linear sensor model
and is therefore used as benchmark in this thesis. The other algorithm uses neural
networks to approximate a nonlinear sensor model. The two algorithms are then
used to calibrate measurements with the purpose to investigate whether the linear
or the nonlinear model provides the best calibration.

The algorithms run on labeled datasets, i.e datasets that consist of pairs of
measurements and corresponding ground truth. Such data is obtained by sampling
the sensors under known conditions. For accelerometers, labeled data was provided
at the beginning of the project. In addition, a robot for accurate positioning has been
available. Corresponding data has not been available for gyroscopes and neither
has a rate table been available. Therefore, the gyroscope is not studied in this
chapter and it is considered sufficient to evaluate the algorithms’ performance on an
accelerometer only. Since neural networks are known to perform well when trained
on a large set of data, the two models are evaluated on datasets of different sizes.

3.1 Calibration Assumptions

The robot, which is used to collect stationary accelerometer data, positions the ac-
celerometer in the requested orientations with exact precision. When the accelerom-
eter is stationary, the only acceleration affecting it is the gravitational acceleration.
The ground truth can hence be calculated as the gravitational acceleration measured
in the sensors local coordinate frame given by the robot.

3.2 Implementation of Linear Sensor Model
Algorithm

The linear sensor model algorithm uses the sensor model presented in equation (2.3),
which is constructed to compensate for scale, bias, non-orthogonality and misalign-
ment. Equation (2.3) was rewritten into

13



3. Offline Calibration of Accelerometer

ax

ay

az


︸ ︷︷ ︸
a

=

 sx mxy mxz bx

myx sy myz by

mzx mzy sz bz


︸ ︷︷ ︸

M


ãx

ãy

ãz

1


︸ ︷︷ ︸
ã

, (3.1)

where a represents measured acceleration, ã represents true acceleration,M repre-
sents scale, misalignment, non-orthogonality and bias terms.

To solve equation (3.1), i.e to find the calibration parameters in M , the algo-
rithm needs accelerometer measurements, al, and the associated ground truth, agt,l,
where l ∈ [1, L] and L is the number of labeled data pairs. Finding the optimal set
of parameters in the sensor model is an optimization problem and in this case the
least squares method [27] has been used. The calibration was done with the sensor
set in L known stationary orientations, which yields the system

a1x a2x . . . aLx

a1y a2y . . . aLy

a1z a2z . . . aLz


︸ ︷︷ ︸

U

=

 sx mxy mxz bx

myx sy myz by

mzx mzy sz bz


︸ ︷︷ ︸

M


agt,1x agt,2x . . . agt,Lx

agt,1y agt,2y . . . agt,Ly

agt,1z agt,2z . . . agt,Lz

1 1 . . . 1


︸ ︷︷ ︸

A

, (3.2)

where U is a 3×L matrix containing the measured acceleration in x-axis, y-axis and
z-axis in L stationary orientations, M is a 3 × 4 matrix containing the calibration
parameters and A is a 4×L matrix representing the ground truth. The parameters
in M are then isolated using the method of least squares as

M = UAT (ATA)−1. (3.3)
The matrix M can be separated into one matrix representing the scale, mis-

alignment and non-orthogonality, S, and one vector representing the bias, b,

S =

 sx mxy mxz

myx sy myz

mzx mzy sz

 , b =

bx

by

bz

 . (3.4)

Now S and b can be used to calibrate the accelerometer measurements, al by

ac,l = S−1 (al − b) , (3.5)

where ac,l are the calibrated accelerometer measurements.

3.3 Implementation of Nonlinear Neural Network
Algorithm

The approach presented in this section approximates the sensor model with a neural
network. Using a neural network to find the sensor model, enables the algorithm to
find other properties than those that are stated in equation (3.4). Also the neural
network can e.g. model nonlinearities.
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3. Offline Calibration of Accelerometer

An overview of the structure of the developed algorithm using a neural network
is shown in Figure 3.1. The idea is to collect sensor data and preprocess it using
normalization. The neural network is then fed with the preprocessed measurements
in x-axis, y-axis and z-axis as input, and trained to output the corrected sensor
values in each axis. The training stops when some termination criterion is fulfilled
at which the network should be ready to be used for calibration of new sensor data.

The training process 
Run until termination criterion is fulfilled

Collect static
calibration data

Preprocess
measurements

Propagate data
forward through

the NN

Compare
predictions with
ground truth and

calculate loss

Update weights
of the NN by

backpropagation 

Use the trained
NN for

calibration

Figure 3.1: Illustration of the offline algorithm used for calibrating an accelerom-
eter with a neural network using known orientations as target.

3.3.1 Preprocessing of Accelerometer Measurements
Normalizing the input data, i.e. manipulating the accelerometer measurements, al,
such that they are scaled into a standardized interval, can help the neural network
to converge to a solution more quickly [28]. In this algorithm the accelerometer
measurements, al, have been scaled into the interval [−1, 1]. The accelerometer
measures no more than ±2g. Using the accelerometer scale, sa, and bias, ba, the
maximum and minimum accelerometer readings amax and amin are obtained using

amax = 2sa + ba,

amin = −2sa + ba.
(3.6)

Every accelerometer measurement, al, is then scaled into the interval [−1, 1] using

anorm,l = 2 · al − amin

amax − amin

− 1, (3.7)

where anorm,l are the normalized measurements [28].

3.3.2 Structure and Training Parameters
To find a suitable architecture of the network a wide variety of structures were tested,
from shallow to very deep networks, and using only a few neurons to many neurons
in each layer. The architecture that achieved the best result had one hidden layer
with 7500 neurons, which can be seen in Figure 3.2. Inputs to the network are the
normalized accelerometer measurements, anorm,l, the targets during training are the
ground truth accelerations agt,l and the outputs of the network are the calibrated
accelerometer measurements, ac,l. Each neuron in the hidden layer is activated by
the Leaky ReLU function with α = 0.1.
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3. Offline Calibration of Accelerometer

In the training process the loss is calculated as the MSE(agt,l,ac,l) and to update
the weights of the network the optimizer Adam is used. The training is executed
until the training loss stops improving.

�����,��

�����,��

�����,��

��,��

��,��

��,��

Figure 3.2: Architecture of the neural network used to calibrate the accelerometer.
The input, anorm,l, to the network is fed into the input layer displayed in red. The
blue neurons represents the hidden layer and the green neurons are the output layer.
The output of the network is the calibrated accelerometer measurements, ac,l.

3.3.3 Using the Neural Network for Calibration
Once the training has terminated the network should have learned the characteristics
of the sensor model and can hence be used to calibrate new measurements. Figure 3.3
shows an illustration of how the accelerometer measurements, al, are preprocessed
according to equation (3.7) and propagated through the network which outputs the
calibrated measurements, ac,l.

Preprocess
measurements

Calibrate
measurements using

NN
Accelerometer output Calibrated

accelerometer output

Figure 3.3: Illustration of how the neural network is used for calibrating new
accelerometer measurements after training.

3.4 Evaluation of Offline Calibration Algorithms
For validation of the developed offline calibration methods Dataset 1 was used. The
dataset contains pairs of accelerometer measurement, al, in Least Significant Bit
(LSB) and true acceleration, agt,l, in g for l = 1, 2, ..., L and L = 1386, sampled
from an accelerometer. All of the samples, l, represents a stationary orientation of
the IMU. For each orientation the sensor has oversampled measurements and al is
set to the average of the samples. The 1368 data points are divided into a training
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set of 1000 samples, a validation set of 184 samples and a test set of 184 samples.
The ground truth, agt,l, in the training set, i.e. the calibration orientations, are
distributed as shown in Figure 3.4.

Figure 3.4: Distribution of the 1000 training samples. Each training sample gen-
erates a calibration orientation.

3.4.1 Result from Calibration using 18 Orientations
An accelerometer was calibrated by applying both of the offline algorithms to 18
training samples, taken from Dataset 1. In Figure 3.5, the distribution of the 18
calibration orientations are shown.

Figure 3.5: Distribution of the 18 training samples. Each training sample generates
a calibration orientation.

After the calibration, the algorithms were evaluated on the test set, which
contains 184 samples. A comparison of the calibrated measurements in the test set
and corresponding ground truth is shown in Figure 3.6. In the figure ground truth
is shown as red circles and the calibrated measurements as blue points. The left
plot is the result after calibration using the linear sensor model algorithm and the
one to the right is the result after calibration using the nonlinear neural network
algorithm. The blue dots are centered inside the red circles to a greater extent for
the linear sensor model.
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Figure 3.6: Plots of calibrated measurements, ac,l, and ground truth, agt,l, in the
test set. The plot to the left represents the linear sensor model algorithm and the
one to the right represents the nonlinear neural network algorithm.

The error, el, between the ground truth, agt,l = [agt,lx, agt,ly, agt,lz], and the
calibrated measurements, ac,l = [ac,lx, ac,ly, ac,lz], is for each sample of the test set
calculated as the euclidean distance

el =
√

(agt,lx − ac,lx)2 + (agt,ly − ac,ly)2 + (agt,lz − ac,lz)2. (3.8)

A histogram containing the errors, el, is shown in Figure 3.7. In the upper his-
togram of the figure, which illustrates the result from using the linear sensor model
algorithm, the distribution of the errors has both smaller mean and spread than the
distribution of the errors in the lower histogram, which is the result of using the
nonlinear neural network algorithm.

Figure 3.7: Distribution of el when evaluating in 184 test samples. The upper
histogram is the result after calibration using linear sensor model algorithm and the
lower is the result after calibration using the nonlinear neural network algorithm.
The red dashed line represents the mean error.
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3.4.2 Result from Calibration using 1000 Orientations
An accelerometer was also calibrated by applying both of the offline algorithms to
all of the 1000 training samples in Dataset 1. After the calibration the algorithms
were evaluated on the test set of 184 orientations. A comparison of the calibrated
measurements in the test set and corresponding ground truth is shown in Figure 3.8.
The left plot is the result after calibration using the linear sensor model algorithm
and the one to the right is the result after calibration using the nonlinear neural
network algorithm. The blue dots are centered inside the red circles for both models.
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Figure 3.8: Plots of calibrated measurement, ac,l, and ground truth, agt,l, in the
test set. The plot to the left represents the linear sensor model algorithm and the
one to the right represents the nonlinear neural network algorithm.

The errors, el, was again calculated according to equation (3.8). The distribu-
tion of el is visualized in Figure 3.9. In the upper histogram of the figure, which
shows the error after the linear sensor model calibration, the mean error is larger
relative the mean error in the lower histogram, which shows the error after the
nonlinear neural network calibration.

Figure 3.9: Distribution of el when evaluating in 184 test samples. The upper
histogram is the result after calibration using the linear sensor model algorithm and
the lower is the result after calibration using the nonlinear neural network algorithm.
The red dashed line represents the mean error.
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3.4.3 Result from Calibration using 18-1000 Orientations

To investigate the relation between the algorithms’ performance and number of data
points available for calibration, the algorithms were tested on different numbers of
calibration samples between 18 and 1000, taken from the training set in Dataset 1.
After calibration, the algorithms were tested on the test set of Dataset 1. The mean
of the errors, el, calculated according to equation (3.8), is visualized as a function
of the number of calibration samples in Figure 3.10.
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Figure 3.10: Mean error as a function of number of calibration samples, l.

The figure shows that the linear model has a constant mean error of about
2.2 mg, while the nonlinear model converges to a mean error of about 1.1 mg. Us-
ing more than 100 calibration orientations, the nonlinear neural network algorithm
perform better than the linear sensor model algorithm. Table 3.1 summarises the
mean error and error standard deviation after calibration with l samples. It can be
seen from the table that the error standard deviation is smaller for the nonlinear
model when calibration is performed using 400 data points or more.

Table 3.1: Mean error and error standard deviation after calibration with l samples.

Mean [mg] Standard deviation [mg]
Calibration samples, l Linear Nonlinear Linear Nonlinear

18 2.226 7.304 1.175 3.832
50 2.157 4.332 0.933 2.561
100 2.155 2.204 0.897 1.063
200 2.152 1.707 0.911 1.032
400 2.153 1.095 0.905 0.880
600 2.154 1.224 0.901 0.860
800 2.153 1.083 0.905 0.839
1000 2.153 1.153 0.904 0.829
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3.5 Discussion
Two different approaches for sensor model estimation have been implemented, one
linear model and one nonlinear model approximated by a neural network. The
result from the performed tests shows that the linear sensor model performs a better
calibration when only a few data points are available. However, the neural network
performs a better calibration when a sufficiently large amount of data points is
available. As seen in Table 3.1 and Figure 3.10, 400 samples have proved to be
sufficient in order for the neural network to generate a sensor model that halves the
mean error against the benchmark model. Since the neural network has significantly
more parameters than the linear model, it can fit better to the variations in the data.
This seems to be beneficial when the algorithm is exposed to dense data. On the
other hand, when only a few data samples are available, a thorough fit to the data
might be disadvantageous and may result in overfitting. For a small dataset it is
important that the model can interpolate between samples, which the linear model
seems to be better at.

The result shows that the neural network can perform a better calibration than
the linear model when a large dataset with a wide spread is available. Using a
robot to position the accelerometer in 400 different stationary orientations or, if the
algorithm is applied to a gyroscope, using a rate table to collect data for 400 angular
rates, is expensive in the sense that it is time consuming. It also requires that the
robot and rate table have high precision.
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4
Online Calibration of

Accelerometer and Gyroscope

This chapter describes the development and implementation of an online calibra-
tion method of both an accelerometer and a gyroscope. The algorithm is intended
to calibrate both of the sensors simultaneously in field without use of any external
equipment. The fact that the calibration can be utilized in field, enables the cali-
bration to be continuously updated and to compensate for changes in the sensors’
nature and the local environment. For implementation and evaluation of the online
algorithm, a simulated dataset of accelerometer and gyroscope samples was created.

The idea behind the algorithm is to utilize the fact that, if an accelerometer
and a gyroscope is calibrated perfectly, the measurements from the two sensors will
be coherent with each other. Starting with a set of sensors which generates measure-
ments that are not coherent, the algorithm alternately calibrates the gyroscope to fit
the accelerometer data, assuming that the accelerometer is perfect, and calibrates
the accelerometer to fit the gyroscope data, assuming that the gyroscope is perfect.

During evaluation of the offline calibration algorithms, the results showed that
neural networks can accurately approximate the sensor model but at the cost of the
need of a sufficiently large dataset. Using a large dataset is expensive since it is
time consuming to collect and demand accurate precision of the external equipment
used. Taken into account that the IMUs’ characteristics change over time, which
require a re-calibration or update of the current calibration, the gained accuracy
from using neural networks in offline calibration may not be significantly valuable
in a practical sense. However, if no external equipment or information are needed,
and the data does not have to be collected in advance but can be collected during
use, the disadvantages of using a neural network can be turned into advantages.

For the algorithm introduced in this chapter, neural networks are used to repre-
sent the sensor models and hence two neural networks are needed, one for calibration
of the gyroscope (NNϕ) and one for calibration of the accelerometer (NNa). The
two networks are trained alternately until their outputs are coherent. Designing a
proper loss function for the problem at hand is a crucial part of structuring a neural
network. To be able to calibrate the sensors without any labeled training data,
the loss can be based on how well the calibrated gyroscope and accelerometer esti-
mates match each other. The developed loss functions are used to train the NNa to
compensate for the characteristics in the accelerometer measurements using the gy-
roscope as target, and to train the NNϕ to compensate for the characteristics in the
gyroscope measurements using the accelerometer as target. An illustration of the
introduced calibration algorithm, with a few steps explaining the overall structure,
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is shown in Figure 4.1.

Collect gyroscope and accelerometer
measurements for initial training

Initial training of  and 
using the specification as ground truth

��� ���

Sample a sequence of gyroscope and
accelerometer measurements

Train  using the
accelerometer as ground truth

��� Train  using the
gyroscope as ground truth

���

Figure 4.1: Overview of the structure of the online adaptive calibration algorithm.

4.1 Calibration Assumptions

The gyroscope has characteristics that are known to be dependent of time and
temperature. However, for short periods of time, such as 1-2s, the time-variant and
temperature-variant drift can be neglected. During calibration, the IMU is only
rotated around its own center and hence the accelerometer will not measure any
linear acceleration except for the gravitational acceleration. Between two samples,
n and n + 1, the angular velocity is constant. The IMUs’ orientation of sample
n+ 1 can hence be estimated from the orientation of sample n using Euler forward
method.

Each sample of gyroscope measurements contains an angular rate in x, y and
z, i.e. at time sample n the gyroscope outputs the vector ϕn = [ϕnx, ϕny, ϕnz]T .
The sensors operate at a frequency f and the sample period between two consec-
utive discrete samples is dt = 1/f . The infinitesimal rotation of the sensor can be
calculated as

θn = ϕn · dt, (4.1)

where ϕn is the angular rate measured by the gyroscope at sample n and θn is the
angle of which the sensor has rotated between sample n and sample n+ 1.

The rotation matrix, Rn = R(ϕn, dt), that represents the rotation θn, can
be expressed through the axis-angle representation which states that any 3D ro-
tation can be represented by an axis, vn, and an angle, Θn [29]. The axis-angle
representation is calculated as

vn =

vnx

vny

vnz

 = 1√
θ2

nx + θ2
ny + θ2

nz

θnx

θny

θnz

 ,
Θn =

√
θ2

nx + θ2
ny + θ2

nz,

(4.2)
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and yields the rotation matrix

Rn =

 c+ v2
nx(1− c) vnxvny(1− c)− vnzs vnxvnz(1− c) + vnys

vnxvny(1− c) + vnzs c+ v2
ny(1− c) vnyvnz(1− c)− vnxs

vnxvnz(1− c)− vnys vnzvny(1− c) + vnxs c+ v2
nz(1− c)

 (4.3)

where c = cos (Θn) and s = sin (Θn) [30].

4.2 Dataset 2 - Simulated Dataset
When simulating this dataset the concept of sequences was introduced. One se-
quence is defined as the measurements sampled by an IMU that is rotated contin-
uously between two stationary orientations. The dataset contains a training set of
500 sequences and a validation set of 100 sequences with starting and finish point
distributed over the whole sphere. Each sequence consists of 101 samples, where the
first and last sample represent stationary conditions. The accelerometer and gyro-
scope measurements are sampled simultaneously at a frequency of 100 Hz. Figure
4.2 shows the distribution of the 500 training sequences of accelerometer samples.
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Figure 4.2: Distribution of the 500 training sequences used in calibration. The
blue points represent the static orientations at the start and end of the sequence
and the red points are the rotating orientations.

The true angular velocity and the true acceleration is denoted ϕm
gt,n and am

gt,n

respectively, where the subscript gt is ground truth, m ∈ [1,M ], M is the number of
sequences in the dataset, n ∈ [1, N ] and N is the number of samples in one sequence.
To simulate a sequence of accelerometer and gyroscope measurements, the ϕm

gt,n, are
modeled as a quadratic function

ϕk(t) = 4ϕmax(−t2 + t), t ∈ [0, 1], (4.4)
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where the subscript k = {x, y, z} and ϕmax represents the highest angular velocity
reached in each sequence. For each axis, ϕmax was randomly chosen in the interval
[−0.35, 0.35] rad/s. In Figure 4.3 the true angular velocity is visualized. If ϕmax is
negative the curve in the figure will be inverted.

φmax

φ

t

Figure 4.3: Quadratic function representing the true angular velocity, ϕm
gt,n, in

each rotation. If ϕmax is a negative value the curve will be inverted.

From ϕm
gt,n a rotation matrix, Rm

n = R(ϕm
gt,n, dt), is calculated according to

equation (4.1)-(4.3). Starting with an initial orientation the following true acceler-
ations, am

gt,n, are created using

am
gt,n+1 = Rm

n a
m
gt,n, (4.5)

where the current acceleration frame, am
gt,n is rotated with Rm

n into the next accel-
eration frame, am

gt,n+1.
From the true angular rate, ϕm

gt,n, in rad/s and the true specific force, am
gt,n,

in g, measurements, ϕm
n and am

n , in LSB values are constructed by element-wise
multiplication of scale, s, and addition of bias, b,

ϕm
n = S �ϕm

gt,n + b,
am

n = S � am
gt,n + b,

(4.6)

where � denotes the element-wise multiplication. To resemble the output in LSB
of a real sensor, the measurements, ϕm

n and am
n , are rounded to integers.

A test set was also created, containing one set for the accelerometer, and an-
other set for the gyroscope. The test set for the accelerometer consists of ground
truth, atest

gt,n, in g and accelerometer measurements, atest
n , in LSB in 500 stationary

orientations. The ground truth samples are distributed over the whole sphere and
the measurements are then created according to equation (4.6). In the test set for
the gyroscope, which consists of 500 samples of ground truth, ϕtest

gt,n in rad/s and
gyroscope measurements, ϕtest

n in LSB, the ground truth is simulated as

ϕk(t) = 0.35 sin (t), t ∈ [0, 2π], (4.7)

where k = {x, y, z}. Figure 4.4 shows the true angular velocity simulated in the
test set. The gyroscope measurements, ϕtest

n , are then created according to equation
(4.6).
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0.35

φ

t

−0.35

0

Figure 4.4: Sinusoidal function representing the true angular velocity, ϕtest
gt,n, in the

test set.

4.3 Initial Training
In the first part of the algorithm, an initial training of both the (NNa) and the
(NNϕ) is executed. The purpose of the initial training is to help the networks
converge in a later stage of the algorithm. In the initial training phase the measure-
ments, ϕm

n and am
n , are converted from LSB values to angular rates and accelerations

using the scale and bias specified in the sensors’ specification. The measurements
according to the specification are denoted ϕm

s,n and am
s,n. Knowing the scale, s, and

bias, b, ϕm
n and am

n is converted using

ϕm
s,n = ϕm

n − bg

sg

,

am
s,n = am

n − ba

sa

,

(4.8)

where the sub indices g and a denote the gyroscope and the accelerometer respec-
tively. In the initial training, ϕm

s,n and am
s,n are used as targets.
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Figure 4.5: Structure of the NNϕ and the NNa in the online adaptive calibration
algorithm. The vector q represents a or ϕ.
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Both the NNa and the NNϕ use the architecture shown in Figure 4.5. In the
figure q is used to denote the considered quantity, i.e can be replaced with a or ϕ.
The network has three hidden layers with five neurons in the first and third hidden
layer and ten neurons in the second hidden layer. The activation function used is
the Leaky ReLU function with α set to 0.1. In the training process, the loss is
calculated as the MSE(qm

s,n,qm
c,n) and the weights of the network are updated using

the optimizer Adam.

4.4 Adaptive Gyroscope Calibration
The adaptive calibration of the gyroscope is designed to adjust the gyroscope mea-
surements to fit the accelerometer data. The part of the adaptive calibration al-
gorithm that adjusts the sensor model for the gyroscope is illustrated in a block
diagram in Figure 4.6, where the first block represents the initial training. After
the initial training the algorithm loops between collecting a new sequence of data
and using the data to update the calibration model. Each new sequence, m, of data
consists of gyroscope measurements, ϕm

n , and accelerometer measurements, am
n .

Calibration of gyroscope

Calculate
rotation matrix, 

Update weights of 
 by

backpropagation

Loss function for 
Preprocess  and propagate

through  into 

Collect a new sequence of gyroscope measurements, , 
and accelerometer measurements, 

Initial training 
of 

Preprocess and calibrate  
using   and use the vector

,  as target for
training of 

Rotate  
with 

 into 
Calculate loss as 

MSE( , )

Figure 4.6: Structure of the adaptive gyroscope calibration where the accelerom-
eter is assumed to be perfect.

The gyroscope measurement, ϕm
n , is normalized using equation (3.7) intoϕm

norm,n

and is given as input to the NNϕ during training. The corresponding accelerometer
measurement, am

n , and the next accelerometer measurement, am
n+1, is calibrated us-

ing the NNa into am
c,n and am

c,n+1 respectively. The vector [am
c,n,a

m
c,n+1]T is given as

target to the NNϕ. After propagation of ϕm
norm,n through the NNϕ, the calibrated

angular rates, ϕm
c,n, are obtained. From ϕm

c,n the rotation matrix, Rm
n = R(ϕm

c,n, dt),
is obtained using equation (4.1)-(4.3). The rotation matrix is used to rotate am

c,n

into am
ϕ,n+1 as

am
ϕ,n+1 = Rm

n a
m
c,n. (4.9)

The loss, L, is calculated as the mean squared error

L = 1
3

∑
k={x,y,z}

(am
c,(n+1)k − am

ϕ,(n+1)k)2. (4.10)

An example in R2 of how am
ϕ,n+1 and am

c,n+1 could be related is shown in Fig-
ure 4.7. The figure shows three different coordinate frames, {T}, in which the
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gravitational acceleration, a, is measured. The subscript of T denotes to which
measurement each coordinate frame belongs. The blue frame, {Tm

ϕ,n+1}, is the result
from rotation of {Tm

c,n} using Rm
n , i.e the orientation of the sensor coordinate frame

at sample n + 1 according to the gyroscope. The dashed black frame, {Tm
c,n+1} is

the orientation of the sensor coordinate frame at sample n + 1 according to the
accelerometer.

�
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�,�

{ }�
�

�,�+1

{ }�
�

�,�+1

Figure 4.7: The gravitational acceleration, a, measured in three coordinate frames,
{Tm

c,n}, {Tm
c,n+1} and {Tm

ϕ,n+1}.

In Figure 4.8, the coordinate frames have been separated and aligned with
each other and the direction of the gravitational acceleration is illustrated for each
separate frame. From the image, the loss can be seen as the MSE(am

c,n+1,a
m
ϕ,n+1)

according to equation (4.10).

Figure 4.8: The three coordinate frames {Tm
c,n}, {Tm

c,n+1} and {Tm
ϕ,n+1} separated.

4.5 Adaptive Accelerometer Calibration
The adaptive calibration of the accelerometer is designed to adjust the accelerometer
measurements to fit the gyroscope data. The part of the adaptive calibration algo-
rithm that adjusts the sensor model for the accelerometer is illustrated in a block
diagram in Figure 4.9, where the first block represents the initial training. After the
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initial training the algorithm loops between collecting a new sequence of data and
using the data to update the NNa.

Calibration of accelerometer

Calculate 
 

as a partial loss

Calibrate  
using  

into 

Loss function for 

Collect a new sequence of gyroscope measurements, ,
and accelerometer measurements, 

Initial training 
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Preprocess first 
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 of  into  
and  Calculate the

total loss as
a weighted
sum of the

partial losses

Update weights of
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backpropagation 
Rotate  with 
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training of 
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Calculate
rotation matrix, 

Calculate 
MSE( , )
as a partial all

Figure 4.9: Structure of the adaptive accelerometer calibration where the gyro-
scope is assumed to be perfect.

When training the NNa to perform a calibration of the accelerometer the loss
is similar as for the NNϕ but, instead of feeding the network with all measurements,
only the first and last sample of every sequence of accelerometer measurements are
considered. The first and last measurement represent stationary orientations.

The two stationary accelerometer measurements of a sequence, m, are called am
1

and am
N . Using NNa, am

norm,1 is calibrated and called am
c,1. The associated sequence

of calibrated gyroscope measurements, ϕm
c,n, are used to obtain a sequence of in-

finitesimal angles θm
n using equation (4.1). For each angle, θm

n , the rotation matrix,
Rm

n , is calculated according to equation (4.3). A rotation matrix, Rm
tot, representing

the accumulated rotations from the sequence, is obtained by multiplication of all
Rm

n as

Rm
tot =

N∏
n=1
Rm

n . (4.11)

The first calibrated stationary orientation, am
c,1, is then rotated with Rm

tot into am
ϕ,N

as
am

ϕ,N = Rtota
m
c,1. (4.12)

During training of the NNa, am
N is normalized using (3.7) into am

norm,N and
given as input to the network NNa. As target am

ϕ,N is given. The loss is then
calculated partly from the mean squared error between the predicted input, am

c,N ,
and the target, am

ϕ,N , and partly from the magnitude of the predicted input vector,
am

c,N , as

L1 = 1
3

∑
k={x,y,z}

(am
ϕ,Nk − am

c,Nk)2,

L2 = abs
(
1− ||am

c,N ||
)
,

L = w · L1 + (1− w) · L2,

(4.13)

where w is a term deciding on how the two partial losses will be weighted. Different
weightings were tested but best performance was obtained using w = 0.90.
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An example in R2 of how the predicted input, am
c,N , and the target, am

ϕ,N , can be
related is shown in Figure 4.10. The figure shows three different coordinate frames
in which the gravitational acceleration, a, is measured. The blue frame {Tm

ϕ,N}
is the result from rotation of {Tm

c,1} using Rm
tot, i.e the orientation of the sensor

coordinate frame at sample N according to the gyroscope. The dashed black frame
Tm

c,N is the orientation of the sensor coordinate frame at sample N according to the
accelerometer.
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�

�,�

{ }�
�

�,�

Figure 4.10: Three coordinate frames, {Tm
c,1}, {Tm

c,N} and {Tm
ϕ,N} in which the

gravitational acceleration, a, is measured.

4.6 Evaluation of Online Calibration Algorithm

For validation of the online calibration method, the simulated dataset, Dataset 2,
was used. The algorithm was evaluated both during and after the calibration.

4.6.1 Result During Calibration

Every tenth sequence in the training set was translated according to the sensor
specification and used for initial training of NNϕ and NNa. All 500 sequences were
then, one at a time, processed by the algorithm to update the calibration. After the
initial training, the model was evaluated on the test set both for the accelerometer
and the gyroscope. The result for the accelerometer is shown in Figure 4.11, where
the red circles represent the ground truth, atest

gt,n, and the blue points represent the
calibrated measurements, atest

c,n . In the figure, all of the samples are outside the red
circles.
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Figure 4.11: Plot of the ground truth, atest
gt,n, and the calibrated accelerometer

measurements, atest
c,n , in the test set after initial training.

The result for the gyroscope is shown in Figure 4.12, where the blue line repre-
sents the ground truth, ϕtest

gt,n, and the red line represents the calibrated gyroscope
measurements, ϕtest

c,n .
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Figure 4.12: Plot of the ground truth, ϕtest
gt,n, and the calibrated gyroscope mea-

surements, ϕtest
c,n , in the test set after initial training.

To show how the result changes during the training the model was also evalu-
ated after each iteration of the calibration loop on theM = 100 validation sequences,
each containingN = 101 samples. During each evaluation, i, the calibrated measure-
ments were compared to ground truth and the errors, eg,i and ea,i, were calculated
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according to

eg,i = 1
MN

M∑
m=1

N∑
n=1

√
(ϕm

c,nx − ϕm
gt,nx)2 + (ϕm

c,ny − ϕm
gt,ny)2 + (ϕm

c,nz − ϕm
gt,nz)2

and

ea,i = 1
M

M∑
m=1

√
(am

c,Nx − am
gt,Nx)2 + (am

c,Ny − am
gt,Ny)2 + (am

c,Nz − am
gt,Nz)2,

(4.14)

where ϕm
c,n and am

c,N are the calibrated measurements, ϕm
gt,n and am

gt,N are the ground
truth.

Figure 4.13 presents the result from evaluation of the algorithm on the valida-
tion set during training. In the left plot of the figure eg,i is presented and in the
right plot of the figure ea,i is presented. The x-axis represents evaluation, i, where
i = 0 denotes the algorithm’s state after the initial training and i ∈ [1, 500] denotes
the algorithm’s state in the loop phase.
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Figure 4.13: Error during training when evaluating both of the sensors on the
validation set. The left plot represents the gyroscope and the right plot represents
the accelerometer.

In Figure 4.14, eg,i and ea,i are compared to each other. The plots shows faster
and more stable convergence of the accelerometer. The accelerometer converges to
an error of about 10 mg while the gyroscope continues improving over all iterations
and has an error of about 6 mrad/s after the last evaluation.
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Figure 4.14: Comparison of the gyroscope and the accelerometer convergence when
calibrating with 500 sequences.

4.6.2 Result After Calibration
After the calibration process the performance of the gyroscope and the accelerometer
were evaluated on the test sets. In Figure 4.15 the red circles represent the ground
truth, atest

gt,n, of the accelerometer and the blue points represent the calibrated mea-
surements, atest

c,n . In the figure, apart from a few exceptions, most calibrated mea-
surements fit the ground truth.

Figure 4.15: Plot of the ground truth, atest
gt,n, and the calibrated accelerometer

measurements, atest
c,n , in the test set.

The errors, ea,n, between atest
gt,n and atest

c,n , were in each sample of the test set
calculated according to equation (3.8). Figure 4.16 shows the distribution of ea,n

and the mean error and error standard deviation are shown in Table 4.1. In the
figure most residuals are smaller than 12 mg.
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Figure 4.16: Distribution of ea,n when evaluating the accelerometer on the test
set.

Table 4.1: Mean error and error standard deviation when evaluating the accelerom-
eter on the test set.

Mean [mg] Standard deviation [mg]
9.283 7.133

Evaluating the gyroscope on the test set gives the result in Figure 4.17, where
the blue line represents the ground truth, ϕtest

gt,n, and the red line is the calibrated
gyroscope measurements, ϕtest

c,n . The calibrated measurements of sample 80 − 160,
highlighted with a black box, has lower accuracy than the remaining measurements.
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Figure 4.17: Plot of the ground truth, ϕtest
gt,n, and the calibrated gyroscope mea-

surements, ϕtest
c,n , in the test set.

The errors, eg,n, between ϕtest
gt,n and ϕtest

c,n were again, in each sample of the test
set, calculated according to the method in equation (3.8), but with atest

gt,n shifted to
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ϕtest
gt,n and atest

c,n shifted to ϕtest
c,n . Figure 4.18 shows the distribution of the eg,n and the

mean error and error standard deviation are shown in Table 4.2. The figure shows
that most residuals are smaller than 10 mrad/s but the mean is significantly larger.

Table 4.2: Mean error and error standard deviation when evaluating the gyroscope
on the test set.

Mean [mrad/s] Standard deviation [mrad/s]
13.62 19.55

Figure 4.18: Distribution of eg,n when evaluating the gyroscope on the test set.

4.7 Discussion
In this section the introduced adaptive calibration algorithm is discussed. The
discussion includes an analysis of the result from the evaluation of the algorithm,
and possible underlying reasons for the outcome. Also the practical usefulness of
the algorithm is considered.

4.7.1 Convergence of Adaptive Algorithm
When applied to the simulated data, the adaptive algorithm can perform a calibra-
tion of the accelerometer and the gyroscope, only using information retrieved from
the IMU considered. The result displayed in Figure 4.14 shows that the calibration
error for the accelerometer improves in a smoother way than the gyroscope cali-
bration, which to a greater extent tend to fluctuate. One reason for this disparity
between the characteristics of the convergence curves could be related to the loss
functions. The loss function for the calibration of the accelerometer has one more
constraint than the one for calibration of the gyroscope, namely that the norm of
the output must be 1 g. It is also possible that a smoother convergence could be
obtained by further tuning of the training parameters of the neural network.

For the gyroscope calibration, the error initially drops more rapidly. This could
be derived to the fact that, for each generated sequence of measurements from
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a motion, there are 101 different gyroscope measurements available while the ac-
celerometer calibration only utilizes two measurements from each motion. For the
accelerometer to discover a sufficiently large fraction of the set of possible states, it
will hence require more motions than the gyroscope.

4.7.2 Accuracy of Adaptive Algorithm
Although the results show that the calibration error produced by the current sensor
model decreases during the training, the calibration does not reach an accuracy that
is satisfying. Why the accuracy of the algorithm does not continue to improve but
stagnates at a mean euclidean error that is relatively high can be caused by the
choice of network and training parameters. It is also possible that the developed
loss functions are designed in a way that makes it difficult or impossible for the
neural network to produce a model with higher accuracy.

During the offline calibration with neural network sensor models, from chap-
ter 3, the networks are trained on all available data points at the same time. During
the adaptive algorithm, the networks are trained on a large amount of data but
the network only have access to one sequence at a time. Since one sequence only
represents a small subset of all training data, the design of the training process may
induce overfitting.

As mentioned in the theoretical framework, overfitting makes the model per-
form very well on data that is represented in the training set but poor on unseen
data. From the histograms in Figure 4.16 and Figure 4.18, it can be seen that
the sensor model does not calibrate all measurements successfully. Especially for
the gyroscope the spread of the residuals causes the mean error to increase signif-
icantly. In Figure 4.17, the disparity between calibrated measurements and true
angular rate is noticeable larger between samples 80 − 160 than for the remaining
samples. For the accelerometer it can be seen in Figure 4.15 that most calibrated
measurements, but not all, quite accurately fit to the true acceleration. Figure 4.11
and 4.12 show that after the initial training all calibrated measurements are located
at a significant distance from ground truth. Comparing these figures with Figure
4.15 and 4.17 indicates that the adaptive calibration adjusts the sensor model such
that the improvement of the calibration is not consistent for all measurements. The
inconsistent behaviour is probably due to overfitting.

Evaluation of the adaptive calibration algorithm on the test set resulted in
an average error of about 9 mg for the accelerometer. For offline calibration of
the accelerometer the average error was about 1 mg. This comparison shows that
the adaptive calibration algorithm does not perform as well when trained on ideal
simulated data as the offline does when trained on real data.

4.7.3 Practical Aspects
The algorithm is designed with the assumption that the center of the sensor frame
is also the center of rotation. In most applications where IMUs are used, they are
mounted such that rotations that do not cause any linear acceleration, is either
difficult or impossible to perform. To be considered for implementation in a real
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system, the algorithm needs to work without this assumption.

4.8 Further Development
The developed adaptive algorithm can be considered for further development in
several aspects. There are changes that can be made in order to increase the practical
usefulness of the algorithm and adjustments that could improve its accuracy.

4.8.1 Finer Tuning of Training Parameters
The accuracy of a neural network and the speed of the training process can be
improved by accurate tuning of parameters such as learning rate, choice of opti-
mizer and activation functions, and the structure of the network. In this project,
parameters have been tuned as far as time has allowed. Further development of the
algorithm could though include a more thorough tuning, perhaps extending param-
eters to be adaptive. For instance the learning rate could be modeled as a function
of the current loss such that, as the loss decreases the adjustments of the model
becomes finer.

4.8.2 Eliminate Assumptions
When the accelerometer is subjected to linear acceleration, it is not possible, by only
looking at the measurements, to distinguish how much of the measured acceleration
is due to gravitational force. To avoid this problem the constraint that the IMU
only rotates around its own center during calibration was introduced. However,
the constraint limits the algorithm’s possibility to be useful in practice. A possible
improvement is hence to extend the model such that fewer assumptions and sim-
plifications are needed. In dead-reckoning, the gyroscope is used to estimate the
orientation of the IMU such that the gravitational acceleration can be cancelled. It
could be investigated if it is possible to integrate the calibration algorithm with a
filter that performs pose and orientation estimation and hence take advantage of the
information obtained from filtering to circumvent the assumptions.

4.8.3 Alternative Sensor Model
Based on the discussion regarding overfitting, the algorithm may benefit from ap-
plying another method for sensor model approximation than neural networks. For
instance the sensor model could be a predefined polynomial function. The parame-
ters could then be updated using an iterative optimizer, like gradient descent, but
keeping the general concept of the algorithm and the calculations of the loss. This
could be beneficial since it would be easier to observe, constrain and guide the iter-
ative process of the algorithm. Choosing a sensor model that is known to be good
at interpolating between samples would reduce the risk of overfitting.
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Conclusions

In this thesis two approaches for sensor modeling have been investigated and eval-
uated. More specifically, it was investigated how useful neural networks are for
sensor model approximation. It was found that there is a trade off between the
accuracy and the amount of data used by the algorithm. Using 400 data points, the
neural network performs a calibration that halves the errors compared to a linear
calibration model.

The thesis has also included the development of an adaptive calibration algo-
rithm. For the adaptive online calibration method, the approach has been to iterate
between calibrating the accelerometer, using the gyroscope as reference, and cali-
brating the gyroscope, using the accelerometer as reference. The purpose was to
make the IMU self-calibrated and the results indicate that the introduced concept
can be used to approximate the sensor model without any external information.
The developed algorithm is adaptive in the sense that it continuously take new
measurements into account and can update the calibration accordingly. In this the-
sis, temperature has not been considered as a parameter in the sensor modeling. It
can though be argued that, since the adaptive algorithm update the sensor model
continuously, it will be able to compensate for changes in the sensor’s characteris-
tics due to temperature. This argument also holds for other changes in the sensor’s
nature or in the local environment.

The results from validation show that the implemented adaptive calibration
does not perform as well as the offline calibration. A further reason that complicates
implementation in a real system is that the algorithm is constrained to use data from
an IMU that only rotates around its own center. There are though some future work
that could improve the accuracy of the algorithm and increase its value in a practical
point of view.

Analysis of the calibration error, after termination of the online algorithm,
shows that the calibration is accurate for some measurements but the spread of
the residuals is wide which degrade the algorithm’s overall performance. The wide
spread is probably produced due to overfitting. Overfitting is hard to prevent since,
although a lot of data is used in total, the algorithm only processes one measurement
at a time. The developed algorithm could hence benefit from a less complex sensor
model which interpolates between samples in the data.

The final conclusion of this thesis is that the introduced approach for adaptive
calibration can update the sensor model in the right direction. It though needs some
further investigations to see whether a higher accuracy can be achieved and if the
limitations on the algorithm can be neglected. The mentioned improvements would
increase the possibility of practical implementation of the algorithm.
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