
Brain Tumor Segmentation
Using Deep Learning
Master’s thesis in Biomedical Engineering

Linus Lagergren and Carl Rosengren

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Master’s thesis 2020

Brain Tumor Segmentation
Using Deep Learning

Using deep neural networks to perform semantic segmentation of
brain tumors in multi modal Magnetic Resonance Images

Linus Lagergren & Carl Rosengren

Supervisor and Examiner: Prof. Irene Yu-Hua Gu,
Dept. of Electrical Engineering, Chalmers Univ. of Technology

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2020

Brain Tumor Segmentation Using Deep Learning
Using deep neural networks to perform semantic segmentation of brain tumors in
multi modal Magnetic Resonance Images
Linus Lagergren Carl Rosengren

© Linus Lagergren Carl Rosengren, 2020.

Supervisor Examiner: Prof. Irene Yu-Hua Gu, Dept. of Electrical Engineering,
Chalmers Univ. of Technology

Master’s Thesis 2020
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: MRI images I are given as input to the artificial neural network denoted f
with weights w and biases θ which outputs a brain tumor segmentation.

Typeset in LATEX
Printed by Tecknolog Tryck
Gothenburg, Sweden 2020

iv

Brain Tumor Segmentation Using Deep Learning
Using deep neural networks to perform semantic segmentation of brain tumors in
multi-modal Magnetic Resonance Images
Linus Lagergren Carl Rosengren
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Brain cancer, in particular Glioma, is a disease with a very low survival rate. The
five-year relative survival rate for patients diagnosed with high grade Glioma is 3.6%.
An important procedure for the medical clinician when diagnosing and planning
treatment for patients is the segmentation of brain tumors into different classes.
Magnetic resonance imaging is the imaging modality mainly used during clinical
work with brain tumors. Deep learning methods have shown great results for brain
tumor segmentation and other biomedical applications. This thesis compares two
different deep learning architectures for semantic segmentation of brain tumors us-
ing fully convolutional networks. The architectures take inspiration from the well
renowned U-Net structure, first used for semantic segmentation of cells. The first
architecture takes a multimodal MRI-image as input in a Single-stream approach
and the other architecture processes each modality separately in a Multi-stream
approach. A number of experiments are conducted for testing and optimizing dif-
ferent regularization methods and hyperparameters. In the Multi-stream approach
training is implemented in two ways. First in an end-to-end manner and secondly
in a sequential manner. From the segmentation results the volume is estimated
and visualized in 3D. The results of the experiments in this thesis suggests that
the Multi-stream approach trained in an end-to-end manner outperforms the other
approaches.

Keywords: deep learning, brain tumors, MRI, U-Net, convolutional neural networks

v

Acknowledgements
First of all we would like to thank our examiner Irene Gu for all the support during
the project. It has been a treat to work with this project on brain tumors and we
hope see this work continued in the future so that it in a not so distant future can
be implemented into the clinical work.

Secondly we would like to thank MedTech West for providing us with an office space
and being very inclusive and inviting us to different seminars and lectures.

Thirdly we would like to thank Asgeir Jakkola and Tomáz Gómez Vecchio for pro-
viding us with clinical insights and data from Sahlgrenska. Even though the project
did not go as far as using this data for training any models.

Lastly thanks to family and friends for providing support during hard times in this
project and also in general through out the not so short time here at Chalmers.
Without your support we would probably not have made it this far.

Linus Lagergren, Carl Rosengren, Gothenburg, January 2020

vii

Contents

Abbreviations xiii

List of Figures xv

List of Tables xix

1 Introduction 1
1.1 Background . 1
1.2 Aim and scope . 2
1.3 Limitations . 2
1.4 Outline of thesis . 3

2 Theory 5
2.1 Semantic segmentation . 5

2.1.1 Segmentation of brain tumors 5
2.1.2 Brain tumor classes . 5

2.2 Deep learning . 6
2.2.1 Supervised learning . 6
2.2.2 Artificial neurons . 7
2.2.3 Multi layer perceptron . 8
2.2.4 Activation functions . 9
2.2.5 Loss function . 10
2.2.6 Backpropagation . 11
2.2.7 Vanishing gradients . 11
2.2.8 Weight initialisation . 12
2.2.9 Convolutional neural network 13
2.2.10 Z-score normalization . 13

2.3 Regularization . 14
2.3.1 Early stopping . 15
2.3.2 L2 regularization . 15
2.3.3 Dropout . 16
2.3.4 Data augmentation . 16

2.4 Optimizer . 17
2.5 Evaluation metrics . 18

2.5.1 Accuracy . 18
2.5.2 Dice coefficient . 18
2.5.3 Confusion Matrix . 20

ix

Contents

2.6 Previous works . 20
2.6.1 Sliding window approach . 20
2.6.2 Fully convolutional network 21
2.6.3 U-Net . 21

3 Methods and data 23
3.1 Dataset . 23

3.1.1 MICCAI BraTS data . 23
3.1.2 Training, testing, validation 25
3.1.3 Imbalanced data . 25

3.2 Software and libraries . 26
3.2.1 TensorFlow . 26
3.2.2 Keras . 27
3.2.3 3D Slicer . 27

3.3 Data pre-processing . 27
3.3.1 Skull stripping . 27
3.3.2 Registration and co-registration 29
3.3.3 Spatial resolution . 30
3.3.4 Normalizing pixel-values . 30

3.4 Volume estimation and 3D visualization 30
3.5 Research question . 31
3.6 Single stream U-Net . 33
3.7 Multi-stream U-Net . 33
3.8 Experimental design . 34

3.8.1 Single-stream U-Net experiments 34
3.8.2 Multi-stream U-Net experiment 36
3.8.3 Performance evaluation . 36
3.8.4 Volume estimation and 3D visualization 36

4 Results 39
4.1 Single-stream U-Net . 39
4.2 Multi-stream U-Net . 50

4.2.1 End-to-end training . 50
4.2.2 Sequential training . 53

4.3 Performance evaluation . 58
4.3.1 Confusion matrices . 58
4.3.2 Dice scores . 58
4.3.3 Predictions of models . 59
4.3.4 Volume estimation and visualization 65

5 Discussion 69
5.1 Experimental design . 69
5.2 Results . 70
5.3 Future work . 71

6 Conclusion 73

x

Contents

References 75

A Appendix I
A.1 Code and models . I
A.2 Predictions of the different network architectures I

xi

Contents

xii

Abbreviations

Artificial Intelligence - AI

Artificial Neural Network - ANN

Rectified Linear Unit - ReLU

Convolutional Neural Networks - CNN

Fully Convolutional Network - FCN

Magnetic Resonance Imaging - MRI

Multi Layer Perceptron - MLP

Computed Tomography - CT

Gray Matter - GM

White Matter - WM

Cerebrospinal Fluid - CSF

Dice Score - DSC

xiii

Contents

xiv

List of Figures

2.1 Picture of Deep Learning in the context of AI 7
2.2 Figure depicting the biological and mathematical neuron 7
2.3 Picture of a fully connected feed forward MLP 9
2.4 A schematic picture of a simple ANN used to illustrate how the prob-

lem of vanishing gradients appear . 11
2.5 Conceptual picture of a CNN by Will Whitney licensed under CC

BY-SA 4.0 [22] . 14
2.6 An illustration of how the number of parameters can influence the

robustness of fit. From left to right there is a first degree polynomial
fitted to the data then a second degree polynomial and finally a ninth
degree polynomial . 15

2.7 Figure depicting the archetypical behavior of training and validation
loss. When validation loss starts increasing this usually means that
the model has started to overfit . 15

2.8 In this figure one can see how using dropout makes the network take
on a different topological structure 16

2.9 An example of data augmentation on a picture of a brain from the
MICCAI BraTS dataset [8] . 17

2.10 This figure visualises the different classes that are used for evaluating
the performance of the network. Picture of the brain is from the
BraTS dataset [8] . 19

2.11 Picture of an architecture using a sliding window approached from
the paper by Havaei et al [5] . 20

2.12 Picture of architecture introduced by Long et al [25] 21
2.13 Picture of the architecture from introduced by Ronneberger et al[7] . 22

3.1 Depicts the different MRI modalities, segmentation and overlay of
the segmentation on the flair modality. In Figure e) and f) the colors
yellow, blue and green corresponds to the edema, enhancing tumor
and necrosis respectively . 24

3.2 Boxplots to showcase the imbalance of the data. The class label is
denoted on the x-axis and the number of voxels are represented by
the y-axis. 26

3.3 Images depicting the difference before and after cropping of the MR
images . 26

xv

List of Figures

3.4 The dataset IXI was used together with the ROBEX skull stripping
module in 3DSlicer. http://brain-development.org/ixi-dataset/
under CC-BY-SA 3.0 license . 29

3.5 A schematic chart of the basic U-Net used for this project. A convolu-
tional block in this image represents two convolutional layers following
each other . 32

3.6 A schematic chart of the Single-stream U-Net used for this project. . 33
3.7 A flowchart of the Multi-stream U-Net. Where each of the four modal-

ities are feed through a reduced U-Net before being merged via con-
catenation and fed through a final convolutional block. 34

4.1 Loss Error for the learning rate search 40
4.2 Accuracy Error for the learning rate search 40
4.3 Training and Validation Loss for learning rate 10−4 41
4.4 Training and Validation Accuracy for learning rate 10−4 42
4.5 Training and Validation Loss for he-norm weight initialization 43
4.6 Training and Validation Accuracy for he-norm weight initialization . 43
4.7 Training and Validation Loss when L2 regularization is added 44
4.8 Training and Validation Accuracy when L2 regularization is added . 45
4.9 Training and Validation Loss when Dropout is added 46
4.10 Training and Validation Accuracy when Dropout is added 46
4.11 Training and Validation Loss when Data augmentation is added . . . 47
4.12 Training and Validation Accuracy when Data augmentation is added 48
4.13 Boxplot of patient wise dice scores for Single-stream U-Net 49
4.14 Histogram of patient wise dice scores for Single-stream U-Net 49
4.15 Training and Validation Loss for Multi-stream U-Net trained end-to-end 50
4.16 Training and Validation Accuracy for Multi-stream U-Net trained

end-to-end . 51
4.17 Boxplot of patient wise dice scores for Multi-stream U-Net trained

end-to-end . 52
4.18 Histogram of patient wise dice scores for Multi-stream U-Net trained

end-to-end . 52
4.19 Training and Validation Loss Error for the paths in the Multi-stream

U-Net trained sequentially . 53
4.20 Training and Validation Accuracy Error for the paths in the Multi-

stream U-Net trained sequentially 54
4.21 Training and Validation Loss for the pretrained Flair path 54
4.22 Training and Validation Accuracy the pretrained Flair path 55
4.23 Training and Validation Loss when training with final convolutional

block in the Multi-stream U-Net trained sequentially 55
4.24 Training and Validation Accuracy when training with final convolu-

tional block in the Multi-stream U-Net trained sequentially 56
4.25 Boxplot of patient wise dice scores for Multi-stream U-Net trained

sequentially . 57
4.26 Histogram of patient wise dice scores for Multi-stream U-Net trained

sequentially . 57

xvi

http://brain-development.org/ixi-dataset/

List of Figures

4.27 Ground truth and segmentation results for all networks for Patient 50 60
4.28 Ground truth and segmentation results for all networks for Patient 52 61
4.29 Ground truth and segmentation results for all networks for Patient 329 62
4.30 Ground truth and segmentation results for all networks for Patient 322 63
4.31 Ground truth and segmentation results for all networks for Patient 273 64
4.32 Ground truth and segmentation results for all networks for Patient 270 65
4.33 Volume difference between prediction and ground truth for Single-

stream U-Net . 66
4.34 Volume difference between prediction and ground truth for Multi-

stream U-Net trained end-to-end . 66
4.35 Volume difference between prediction and ground truth for Multi-

stream U-Net trained sequentially . 67
4.36 Segmentation results of the Multi-stream U-Net on patient 52 de-

picted in 3D from different angles . 68

xvii

List of Figures

xviii

List of Tables

2.1 Example of a confusion matrix . 20

3.1 Table showing intensity for different brain tissue in respective modal-
ity [27] . 24

3.2 Table with explanation of data split and the chosen split sizes 25
3.3 Table enumerating the number of filters in each convolutional block

of the U-Nets . 32
3.4 Table enumerating the number of filters in each transposed convolu-

tion of the U-Nets . 32
3.5 Learning rates in experiment one . 35

4.1 Confusion matrix from predictions on the test dataset for Single-
stream U-Net, all entries in the table have been divided by 104 to
give a cleaner view . 48

4.2 Mean dice scores for Single-stream U-Net on enhancing tumor, tumor
core and whole tumor . 48

4.3 Confusion matrix from predictions on the test dataset for Multi-
stream U-Net trained end-to-end, all entries in the table have been
divided by 104 to give a cleaner view 51

4.4 Mean dice scores for Multi-stream U-Net trained end-to-end on en-
hancing tumor, tumor core and whole tumor 51

4.5 Confusion matrix from predictions on the test dataset for Multi-
stream U-Net trained sequentially, all entries in the table have been
divided by 104 to give a cleaner view 56

4.6 Mean dice scores for Multi-stream U-Net trained sequentially on en-
hancing tumor, tumor core and whole tumor 56

xix

List of Tables

xx

1
Introduction

1.1 Background

Cancer is a disease that each year accounts for 9 million deaths globally which is 22%
of all the chronic diseases and is second largest after cardiovascular which accounts
for 17.9 million deaths each year according the World Health Organization [1]. The
uncontrollable division of cells called cancer forms a tumor which is a mass of cells
in the body that is abnormal, a tumor can be either benign or malignant. Benign
tumors grow slowly and rarely spread to surrounding tissue, they can however grow
to push on tissue or nerves hence causing problem. Malignant tumors vary in growth
rate and are capable of invading healthy tissue.

In the United States 1.4% of all new cancer diagnosis each year are primary malig-
nant brain tumors. Brain tumors do however account for 2.7% of all cancer deaths
in the United States [2]. Malignant primary brain tumors rarely spread beyond
the brain and spinal cord [3]. A Primary brain tumor is a tumor that originates
in the brain, the most common primary malignant brain tumor is named glioma.
There are also secondary brain tumors, a secondary brain tumor starts somewhere
else in the body and travels to the brain. Secondary brain tumors are more com-
mon and often spread from other tissues such as lung, skin, breast, kidney and colon.

In the diagnosis of cancer there are different imaging modalities that are used, the
one most commonly used in brain tumor diagnosis is Magnetic resonance imag-
ing(MRI) which provides detailed images of the brain. In MRI different radio fre-
quency sequences are used to flip the hydrogen nuclei which emits a radio frequency
when misaligned with the magnetic field. The emitted radio frequency are measured
and transformed into an image. The rate at which the hydrogen nuclei returns to
equilibrium is different in different tissues and this gives rise to contrast differences
in the produced image. There are often multiple radio frequency sequences used
for diagnosis to produce different contrast weighted images to get a better basis
for diagnosis, this however generates data that the doctor needs to examine for a
diagnose. Unlike x-ray and computed tomography(CT) the voxel values of the MR
image is not standardized meaning that different acquisition protocols leads to the
same cells and tissues having different gray scale intensities when pictured.

A healthy brain commonly contain three types of tissues namely gray matter(GM),
white matter(WM) and cerebrospinal fluid(CSF). A brain tumor is tissue that is

1

1. Introduction

abnormal to that of the healthy brain, the location, size and texture has a large
variance which makes the localisation of a brain tumor a complex task. In the ex-
amination of MR images doctors segment out the tumor to compare it to the results
of a segmentation done at another time instance or another doctor, the segmenta-
tion can contain multiple tumor classes. The manual segmentation of brain tumors
is a time consuming task and a variance in segmentation’s of the same tumor can
be seen between doctors. Research is being conducted to automate the process of
brain tumor segmentation to reduce the time for segmentation and lessen the bias
and variance introduced by different doctors performing manual segmentations [4],
[5]. An automated process would yield faster segmentation results and results would
not differ as much between hospitals with different resources and would hence lead
to a more consistent diagnosis of brain tumors.

Artificial neural networks(ANN) and in particular convolutional neural networks has
been proven to outperform humans in the task of image classification and segmen-
tation, an example is in the classification of melanoma [6]. In 2015 Ronneberger
et.al published a network for segmentation of biomedical images named U-Net[7].
This method showed outstanding results in the ISBI challenge out performing all
other competing network structures. The U-Net structure has since then been imple-
mented in many different fields for segmentation one being brain tumor segmentation
where it has shown promising results increasing the performance each year in the
BraTS challenge [8], [9], [10].

1.2 Aim and scope

The aim of this thesis will be to develop and implement an Artificial Neural Net-
work which performs automatic segmentation of brain tumors. Experiments will be
conducted to observe the performance of different network architectures. To achieve
this the fundamental building blocks of the U-Net structure will be unraveled and
implemented.

1.3 Limitations

No attempts will made to complete a fully functional application with a graphical
user interface. The project will rather focus on writing code for training an artifi-
cial neural network to perform the task of brain tumor segmentation. There is a
wide variety of segmentation networks to narrow the scope we will look at a U-Net
structure using 2D convolutions. The computational resources are limited for this
project and focus will hence be to implement a working solution for the computa-
tional resources available to us. The datasets on brain tumors used is in this project
are limited to the semi public MICCAI BraTS dataset.

2

1. Introduction

1.4 Outline of thesis
Chapter 2 Introduces the theory needed to understand the methods used in the
project. The chapter looks at labeling and segmentation of brain tumors and the
fundamental building blocks of a convolutional neural network. It then moves on to
study the U-Net structure and how these building blocks are combined for segmen-
tation purposes.

Chapter 3 describes the methods used. Firstly it looks the dataset that was used
and the image preprocessing steps on MRI brain scans for deep learning. Different
software and python libraries that are used in the project to implement the segmen-
tation network are then looked upon. It then moves on to describe the the network
architecture and experimental design.

Chapter 4 presents the results from the experiments presented in the methods
chapter. A comparison between the Single-stream U-Net and the Multi-stream U-
Net trained in two different ways is done one the test dataset. Volume estimation
and 3D vizualisation will also be shown for the network architectures

In Chapter 5 the methods and results are discussed together with with future work
that can be done to gain further knowledge and improve results. Issues that were
stumbled upon during the thesis are also discussed.

Chapter 6 summarizes the findings of the work accomplished in a conclusion.

3

1. Introduction

4

2
Theory

This chapter aims to give the necessary theoretical knowledge to understand the
content of the report. The task of segmentation is introduced together with the
fundamental building blocks of a segmentation network. This chapter also presents
metrics for evaluating the networks and previous work in the field.

2.1 Semantic segmentation
Semantic segmentation is the task of assigning a class label to each pixel in an image.
Formally the task of semantic segmentation could be stated as finding the mapping
between a real valued tensor with integer valued dimensions H, W and C to a non-
negative integer valued tensor with integer valued dimensions H and W where the
integer corresponds to a finite space of classes of the segmentation problem at hand.
This can be mathematically formulated as in equation 2.1

RH×W×C → Z+
H×W 2.1

2.1.1 Segmentation of brain tumors
In segmentation of brain tumors labels are assigned to tissue that share same char-
acteristics. It can coarsely be divided into tumor and non-tumor parts of the brain.
Tissue within the tumor that share the same characteristics can then be further
divided in to subcategories where each subcategory is given its own label. The la-
bels are assigned to each MRI slice and are used for training and evaluation of the
network. It is therefore of importance that these labels are correctly assigned to
yield a good segmentation network. Often multiple experts are used in the labeling
of data to ensure the quality of the labeling.

2.1.2 Brain tumor classes
The most frequent primary brain tumor is glioma which account for 30 percent
of all brain tumors and 80 percent of all malignant brain tumors [11]. Glioma is
a tumor that arises from the glial cells, two types of glioma are Astrocytoma and
Oligondendroglioma. A primary brain tumor is a tumor that has started in the brain,
whereas a secondary brain tumor is a tumor that has originated somewhere else and
spread to the brain. Tumors are graded on a scale I to IV where grade I tumors
are slow-growing tumors and grade IV are fast-growing tumors. A grade I tumor

5

2. Theory

is considered benign and a grade IV tumor as malignant. The tumor classification
system was developed by the World Health Organization in 2007 and updated in
2016 [12]. In a clinical setting a more coarse scale is sometimes used for gliomas
where grade I to II is refered to as Low Grade Glioma(LGG) and gliomas graded
III to IV is refered to as High Grade Gliomas(HGG). The survival rate for people
with glioma is about 33% according to the National Cancer Institute [13]. This is
one of the lowest survival rates for cancer. But this type of tumor is classified into
three different categories in the BraTS-dataset [8], which is the dataset used in this
thesis and is described further in Section 3.1.1. Some tumor tissue types that are
are often segmented are necrosis, edema and enhancing tumor, which are further
described next.

Enhancing tumor

The enhancing tumor class is assigned to the part of the tumor where cell division
is active. This part of the tumor is where the growth of the tumor takes place, the
pace of growth determines whether the tumor is benign or malignant. A faster rate
of cell division yields a faster rate of growth and is considered more malignant.

Necrosis

The necrosis class is assigned to the part of the tumor where the cells are dead.
This part of the tumor has undergone uncontrolled cell death. This part of the
tumor is most commonly at the center of the tumor.

Edema

The edema class is assigned to the part of the tumor where fluid has been built up.
Edema is also known as fluid retention or swelling and is most commonly observed
in the vicinity of the enhancing tumor and necrosis.

2.2 Deep learning
Deep learning is a sub field of machine learning which itself is a sub field of Artificial
Intelligence(AI), a graphical representation is presented in Figure 2.1. Deep learning
takes inspiration from how biological processing of information works. Biological
brains can perform very complex tasks with ease and therefore building systems
that try to mimic their behaviour is reasonable. More concretely deep learning
is performing many layers of non-linear information processing in order to learn
multiple levels of representation and abstraction. The goal of deep learning is to
make sense of data such as images, sound, and text. Deep learning is also sometimes
referred to as Artificial Neural Networks.

2.2.1 Supervised learning
The most common learning scheme in the field of machine learning is called super-
vised learning where one wants to learn the mapping from x to y in equation 2.2 by

6

2. Theory

Figure 2.1: Picture of Deep Learning in the context of AI

tuning the parameters w.
f(x; w) = y 2.2

Where x in this thesis is a picture and y is the segmented picture where each pixel
has been classified as belonging to a class and f is the neural network with weights
and biases w.

2.2.2 Artificial neurons
Artificial Neural Networks(ANN) basic building block is theArtificial Neuron
which takes loose inspiration from how the biological neuron works. The biologi-
cal neuron takes multiple inputs from the dendrites and outputs a single electrical
impulse to the axon. This is however not a linear process. There is no output
from the neuron until the input signals reaches the threshold and when the thresh-
old is reached there is a relatively strong electrical impulse. This is known as an
activation of the neuron.

(a) Illustration of a biological neuron li-
censed under CC BY-SA 4.0 [14] (b) Illustration of mathematical neuron

Figure 2.2: Figure depicting the biological and mathematical neuron

This behaviour of the neuron can be modelled mathematically as

7

2. Theory

O = σ(
n∑
i=1

wixi − θ) 2.3

Where O denotes the output of the artificial neuron, wi is how much input xi should
contribute to the output and θ is the threshold, which is also often referred to as the
bias, and σ is a non-linear activation function. Visualizations of the biological
and mathematical neurons are depicted in Figure 2.2.

2.2.3 Multi layer perceptron

The natural extension of modelling a single neuron is to model a neural network. The
simplest kind of ANN is called a Multi Layer Perceptron(MLP). Which consists
of many connected artificial neurons. This can be formulated mathematically as in
equation 2.4

V
(l)
i = σ(b(l)

i), b
(l)
i =

N∑
j=1

w
(l)
ij V

(l−1)
j − θ(l)

i 2.4

Where V (l)
i denotes the value of neuron i in layer l, σ is the non-linear activation

function, b(l)
i is the local field of neuron i, w(l)

ij is the weight that connects neuron
i to neuron V (l)

j in the previous layer, l − 1 and θi is the bias or threshold.

In this simple case the neurons are fully connected and feed forward meaning
that a given neuron in layer l have connections to all neurons in layer l − 1 and
symmetrically each neuron in layer l is connected to all neurons in layer l + 1, as
an example in Figure 2.4 "Input layer" is l = 1, "Hidden layer" is l = 2 and "Output
layer" is l = 3. An illustration of this can be seen in Figure 2.3. All layers that are
not input or output layers are called hidden layers. That is because they are hidden
from the interface of the network, i.e. one can only actively influence the data or
the loss function.

8

2. Theory

Figure 2.3: Picture of a fully connected feed forward MLP

2.2.4 Activation functions
An activation function is what adds non-linearity to the ANN. Without the non-
linearity’s an ANN could be reduced to a single affine transformation. So the acti-
vation function is where the modelling power of a ANN comes from.

Rectified linear unit

A commonly used activation function is the Rectified Linear Unit(ReLU). This
activation function was proposed by Glorot et al [15] with motivation that it is
qualitatively similar to modelling the dynamics of current through the cell membrane
of the neuron cell. The formula for ReLU can be seen in equation 2.5. Where bi
denotes the local field seen in equation 2.4.

σ(bi) = max(0, bi) 2.5

The choice of ReLU is due to the substantial empirical evidence of its learning en-
hancing effect [16]. The intuition for it being more effective is that it does not
suffer saturation when feeding forward which the classical sigmoid and tanh acti-
vation functions does. ReLU also helps with the vanishing gradient problem when
performing backpropagation which can be seen if one differentiates the expression
in equation 2.5 which can be seen in equation 2.6. This is assuming that we can
neglect the discontinuity in zero during numerical calculations. Since the gradient
will be unity or zero everywhere it will be more stable during updates, this will be
explained more in depth in Section 2.2.7 on vanishing gradients.

9

2. Theory

σ′ =

1 if bi > 0
0 if bi < 0

2.6

Softmax layer

Softmax is a special type of activation function which often is used as the last layer
of ANNs for classification tasks. As the name implies softmax is a soft version of
the maximum function, i.e. the largest element in the real valued input vector of
the function should tend to unity and all other elements to zero. But this should
happen smoothly with non-discrete values. The mathematical formulation for this
activation function can be seen in equation 2.7.

Oi = eαbi∑
j e

αbj
2.7

Where bi denotes the local field seen in equation 2.4. The parameter α determines
how strong the maximisation effect of the function and is often set equal to unity.
If α→∞ one can see that softmax(bi)→ max(bi).
Softmax has three preferable properties:

1. 0 < softmax(bi) < 1, meaning that each element can be interpreted as a
probability.

2. ∑
i softmax(bi) = 1 which means that the output vector can be interpreted as

a probability distribution.
3. softmax(bi) grows monotonously with bi.

Property 1 and 2 is what makes softmax so popular for classification tasks since the
output of a certain neuron can be interpreted as a probability of the class belonging
to that neuron.

2.2.5 Loss function
A loss function is how one measures the error of an ANN and subsequently what the
gradient will be when updating the parameters of the ANN. A loss function should
be non-negative. Different problems require different loss functions, depending on
whether the task is regression or classification etc. A mathematical definition of
a loss function can be seen in equation 2.8, where y denotes ground truth and ŷ
denotes predictions of the model.

L(y, ŷ) ∈ R+
0 2.8

Categorical Crossentropy Loss

Categorical cross-entropy is a loss function used for classification tasks. The loss
function is presented in equation 2.9.

L = −
N∑
i=1

C∑
j=1

yij log(ŷij) 2.9

10

2. Theory

y denotes ground truth and ŷ denotes the prediction. N represents the number
of voxels and C the number of classes. Indices i and j denotes pixels and classes
respectively. Since ŷij ∈ (0, 1), equation 2.9 is a well defined loss function but it
also demands that it is used in conjunction with a softmax layer so that the output
values can be interpreted as probabilities.

2.2.6 Backpropagation
Backpropagation is an algorithm which is used to tune the parameters of ANNs,
it computes the gradient of the loss function with respect to the parameters, w of
the network. The method is based on the classical optimization method gradient
descent where one takes incremental steps in the opposite direction of the largest
gradient of the loss function for a given number of training examples.
A schematic version of the update of parameters w can be seen in equations 2.10,
2.11

wt+1 := wt + ∆wt 2.10

∆wt = −η ∂L
∂wt

2.11

t denotes the current iteration of updates, η denotes the learning rate and L is the
loss function. An example of a loss function can be seen in Section 2.2.5. The value
of the loss function can give an indication of how good or bad the predictions of the
model are.
Often one computes the error δ seen in equation 2.12 which then is used to compute
the parameter updates in equation 2.13, where i and j denotes indices in a matrix
and l denotes the current layer of the L layers in the network.

l ∈ {L, ..., 2}, b
(l)
j =

∑
k

w
(l)
jkV

(l−1)
k − θ(l)

j

δLi ← σ′(b(L)
i)L(y, ŷ)

δl−1
j ←

∑
i

δliw
(l)
ij σ

′(b(l−1)
j)

2.12

w
(l)
ij ← w

(l)
ij + ηδ

(l)
i V

(l)
j ,

θ
(l)
i ← θ

(l)
i − ηδ

(l)
i

2.13

A more rigorous derivation of backpropagation can be found in Goodfellow et al [17]
or in the original paper by Rumelhart et al [18].

2.2.7 Vanishing gradients

Figure 2.4: A schematic picture of a simple ANN used to illustrate how the problem
of vanishing gradients appear

11

2. Theory

One major problem when training deep artificial neural networks is that long se-
ries of numbers are multiplied together when feeding data to a network and when
propagating the error backwards. If these numbers aren’t equal to unity the values
will either explode or vanish. This is schematically illustrated by Mehlig [19] with
a simple neural network, an equivalent network can be seen in Figure 2.4.
The feedforward procedure of this simple network is defined in equation 2.14

V (L) = σ(w(L)V (L−1) − θ(L)),
V (L−1) = σ(w(L−1)V (L−2) − θ(L−1)),

...
V (1) = σ(w(1)x− θ(1))

2.14

When one starts to differentiate these expressions with regards to the neurons the
last expression in equation 2.15 appears. This is closely related to the update rule
of the weights.

∂V (L)

∂V (L−1) = σ′(w(L)V (L−1) − θ(L))w(L),

∂V (L)

∂V (L−2) = σ′(w(L−1)V (L−2) − θ(L−1))σ′(w(L)V (L−1) − θ(L))w(L),

...
∂V (L)

∂V (l) =
l+1∏
i=L

[σ′(w(i)V i − θ(i))w(i)]

2.15

Noticing that there is some similarity between the product in equation 2.15 and in
the weight updates in 2.13 one can end up with the expression.

δl = L(y, ŷ)σ′(b(L))
l+1∏
i=L

[wiσ′(bi−1)] 2.16

And from equation 2.16 we can clearly see that if the terms in the product are
smaller than unity as the number of layers, L, gets large the updates will tend to
zero and symmetrically if the weights are large than unity the updates will tend to
∞.

2.2.8 Weight initialisation
One way to minimize the problem of vanishing gradients is to initialize weights in
a structured manner. When using ReLU as an activation function He et al [20] has
shown that it is theoretically justifiable to initialize weights according to equation
2.17. This method will here on be refereed to as he-normal.

wl ∼ N (0, σwl
) 2.17

σl denotes the variance of the initial weights wl in layer l of the ANN and nl denotes
the number of weights in layer l. σl is defined in equation 2.18

12

2. Theory

σwl
=

√
2
nl

2.18

The intuition behind doing this weight initialization is that if the weights are initial-
ized with constant variance the expected value in each neuron will depend on how
many neurons there were in the previous layer. So if there were a lot of weights in
the previous layer the variance will be small and the expected value of a local field
in a given neuron will be closer to zero.

2.2.9 Convolutional neural network
A Convolutional Neural Network(CNN) introduced in 1999 by LeCun et al [21], is
an ANN which is designed to make use of spatial information in input data. The
conceptual idea is that the earlier layers recognize simple shapes and features and
later layers can put together these simpler features and construct more complex rep-
resentations. This idea is used to complete complex tasks in fields of computer vision
and natural language processing for the task of image classification or speech-to-text.

The main idea behind a CNN is that one incrementally moves a filter over the input
data. The filter is usually a square matrix. Each element in the filter contains a
real number. During the convolution each element in the filter is multiplied with
the corresponding element in a subset of the input. The output from a convolution
is known as a feature map. A visualization of this procedure can be seen in Figure
2.5. The step size of the filter is called stride which controls the size of the output
from the convolution. This can be expressed as the mathematical expression in
equation 2.19. If one considers the case of images then Vijk is the feature map where
i and j can be thought of as enumerating the height and width of the feature map
and k enumerates the number of filters in the convolutional layer. p and q denotes
the rows and columns of the filter and r is the number of channels in the input.
This expression assumes a stride of 1 in both spatial dimensions.

Vijk = σ(
∑
pqr

wpqkrxp+i−1,q+j−1,r − θk) 2.19

Depending on what output size is needed from the convolution a padding can be
used to shape the output by adding empty entries on the edges of the input to the
convolution.
To further simplify the feature maps one can use pooling to filter the values in
the feature map so that a down sampled feature map containing only the maximum
values from a n× n neighbourhood in each pixel in the pooled feature map.

2.2.10 Z-score normalization
A common practice when working with ANNs is to center the values of the input
around zero and make them have unit variance. This is done by using equation 2.20

Z = X − µ
σ

2.20

13

2. Theory

Figure 2.5: Conceptual picture of a CNN by Will Whitney licensed under CC
BY-SA 4.0 [22]

X denotes a random variable, µ is the mean value of the random variable and σ is
the standard deviation of X. Z is the standardized random variable.

2.3 Regularization

One big problem when training deep learning models is overfitting. Overfitting is
when a model starts memorizing the training data instead of generalising. Memoriz-
ing the training data will make the model perform worse when making inference on
out-of-sample data. A simple example of what overfitting is can be seen in Figure
2.7. The data generated by adding a noise to a second degree polynomial, then three
different polynomials were fit to the data. From left to right there is a first degree
polynomial, then a second degree polynomial and finally a ninth degree polynomial.
One can see that the first and last polynomial underfits and overfits the data re-
spectively. This poses a problem when evaluating models since the right model will
have a better score in terms of for example Mean Squared Error, but it will probably
perform worse on an out of sample data point.
Regularization is the general term for methods that aim to make models overfit less.
Some of these methods will be briefly described in the next Section.

14

2. Theory

Figure 2.6: An illustration of how the number of parameters can influence the
robustness of fit. From left to right there is a first degree polynomial fitted to the
data then a second degree polynomial and finally a ninth degree polynomial

2.3.1 Early stopping
Early stopping is a method where training is stopped due to an increase in the
loss function on the validation data set over a predefined number of epochs, this
predefined number of epochs is referred to as patience in the software library Keras
[23]. This method works because an increase in the loss function evaluated on
the validation data hints at that the model has stopped generalizing and started
memorizing the training data. At this point it is recommended to stop training the
model. A visualisation of the typical behavior when training a model can be seen
in fig 2.3

Figure 2.7: Figure depicting the archetypical behavior of training and validation
loss. When validation loss starts increasing this usually means that the model has
started to overfit

2.3.2 L2 regularization
L2 regularization, also known as weight decay in deep learning, is a general regulari-
sation method where the model is penalized by the squared norm of the parameters.
This is realized adding a penalization term to the loss function L yielding the new
loss function L̃ in equation 2.21 where w denotes the the weights and biases.

15

2. Theory

L̃ = L+ λ||w||2 2.21

The intuition for this is that one wants to minimize the cost function and the square
of the norm of the weights will favor smaller weights. A more rigorous derivation
can be found in the book by Goodfellow et al [17]

2.3.3 Dropout
Dropout is a method where each neuron is dropped randomly with a certain prob-
ability p at each forward pass through the network during training. This can be
viewed as training an ensemble of network architectures, see Figure 2.8. This forces
the network to learn different pathways through the network in which information
can flow. Dropout often makes the network less prone to overfit because neurons
cannot co-adapt as much since there is no guarantee that a given neuron will be in
the network at a given forward pass.

(a) Illustration of network with
no dropout implemented

(b) Illustration of network where dropout
has been implemented

Figure 2.8: In this figure one can see how using dropout makes the network take
on a different topological structure

2.3.4 Data augmentation
Data augmentation is a regularisation method where the input data of the network
is transformed in different ways. This is done to enlarge the number of training
example and reduce overfitting. An example of data augmentation can be seen in
Figure 2.9 where a skull stripped MR image of the brain has been translated, flipped
and rotated in various different combinations.

A short list of examples of data augmentation
• Adding noise to data
• Shearing transformations
• Rotational transformations
• Horizontal and vertical flips
• Zooming

16

2. Theory

The main idea is that one in a synthetic manner generates more data. So that the
effective size of the dataset gets larger thereby reducing the risk of overfitting.

(a) Original image (b) Augmented image

(c) Augmented image (d) Augmented image

Figure 2.9: An example of data augmentation on a picture of a brain from the
MICCAI BraTS dataset [8]

2.4 Optimizer
A popular optimizer which is widely used is ADAM which is short for adaptive
learning rate optimization algorithm which was proposed in a paper by Kingma
and Ba in 2014 [24]. This algorithm is a flavor of stochastic gradient descent. But
it uses moving averages of the first 2 moments of the gradients in the parameter
updates to make the updates more stable. The equations for these updates and
their approximations can be seen in equation 2.22 through 2.26.

mt = β1mt−1 + (1− β1)gt 2.22
vt = β2vt−1 + (1− β2)g2

t 2.23

m̂t = mt

1− βt1
2.24

v̂t = vt
1− βt2

2.25

17

2. Theory

wt = wt−1 − η
m̂t√
v̂t + ε

2.26

mt and vt denotes the moving averages of the first and second moment of the gra-
dients respectively. β1 and β2 are hyper parameters which decide how much the
gradients in the previous time step should influence the gradient updates in the
current time step. To estimate these statistics one uses the formula for the unbiased
estimators m̂t and v̂t which then can be used to update the weights of the ANN. η
denotes the learning rate and ε is a small constant used to ensure that one never
divides by zero.

2.5 Evaluation metrics
Evaluation of the segmentation network is an essential part in finding a network
that performs the task of segmentation well. The performance can be measured
with different metrics but is essentially a measure of how well the output of the
network corresponds ground truth. Evaluation metrics that are commonly used
in the task of segmentation are the accuracy and the dice coefficient. These are
introduced below together with the adaptions of the dice coefficient to fit the task
of brain tumor segmentation.

2.5.1 Accuracy
One of the simplest evaluation metrics for classification tasks is accuracy, which is
simply the ratio of correctly classified samples and total number of samples. This is
formulated mathematically in equation 2.27.

Accuracy = Correctly classified samples
Total number of samples 2.27

But this metric can however be hard to interpret how well the model is performing
in cases where there is class imbalance. Which is the case in this thesis, which will
be covered in Section 3.1.3.

2.5.2 Dice coefficient
The Dice Coefficient is a measure of spatial overlap that has a value between 0 and 1
were a result of 1 means total overlap between the prediction and ground truth and
a value of 0 meaning no overlap. The metric is calculated by equation 2.28 where
ŷi and yi is the class prediction and ground truth of pixel i respectively.

D = 2×∑N
i ŷiyi∑N

i ŷ
2
i + ∑N

i y
2
i

2.28

In the evaluation of the MICCAI BraTS dataset a few problem specific dice coeffi-
cients are introduced to evaluate how well the network performs. This is done by
computing dice scores between a few combined classes. The combined classes are
enhancing tumor, tumor core and whole tumor, which are described further below

18

2. Theory

Enhancing tumor dice coefficient The dice coefficient of the predictions of the
enhancing tumor class. An example of this can be seen in the upper right plot in
Figure 2.10

Tumor core dice coefficient The tumor core is the combination of enhancing
tumor and necrosis. An example of this can be seen in the bottom left plot in
Figure 2.10

Whole tumor dice coefficient Whole tumor is specified as everything that is not
labeled as background, i.e. enhancing tumor, necrosis and edema. An example of
this can be seen in the bottom right Figure 2.10

Figure 2.10: This figure visualises the different classes that are used for evaluating
the performance of the network. Picture of the brain is from the BraTS dataset [8]

19

2. Theory

2.5.3 Confusion Matrix

A confusion matrix is a way to present the predictions of a model on a data set in a
way that shows the performance of the model with regards to false positives and false
negatives. An example of a confusion matrix can be seen in Table 2.1. Presenting
the predictions in this way is useful to analyse the performance of the model. It
also provides quantities to calculate other metrics such as F-score, sensitivity and
specificity etc.

True

Pr
ed
ic
te
d Positive Negative

Positive True positive False positive
Negative False negative True negative

Table 2.1: Example of a confusion matrix

2.6 Previous works

2.6.1 Sliding window approach

The earlist ANN approaches to segmentation tasks was performed using regular
CNNs where each pixel was its own classification task. So one would have a sliding
window where a patch of the full input image was given as input and the central
pixel of this patch was predicted. Then in the next step the sliding window was
moved one pixel and then a new patch was fed to the network. An example of this
type of architecture was suggested by Havaei et al [5]. The architecture can be seen
in Figure 2.11. The input to the network is a 4× 33× 33 tensor where a number of
convolutions are performed and then the feature maps are flattened and a softmax
layer is used to perform classification for the central pixel of the given input patch.

Figure 2.11: Picture of an architecture using a sliding window approached from
the paper by Havaei et al [5]

20

2. Theory

Figure 2.12: Picture of architecture introduced by Long et al [25]

2.6.2 Fully convolutional network
In contrast to a MLP or a classical CNN for classification tasks a fully convolutional
neural network (FCN) contains only convolutional layers. The upsides of a CNN
compared to a Multi Layer Perceptron is that it is less rigid when it comes to the
size of the input, since the number of weights in the first layer of a multi layer
perceptron is a direct function of the input size, where as the filters of a CNN has
the same size and is independent to the size of the input.
The advantage of a FCN compared to a classical CNN is that the feature maps never
have to be flattened and that fully connected layers are present which means that a
FCN generally have less weights then a CNN. FCNs also makes it possible to output
full images instead of just outputting a single pixel at a time. In the example of
images this type of network can take any image size as input. The first FCN was
introduced by Long et al[25]. The task was sematic segmentation where inputs of
the network was a full picture and the target was the mask of the given picture.

2.6.3 U-Net
U-Net is a fully convolutional neural network (FCN) introduced by Ronneberger
et al[7]. The network acts as a encoder-decoder. Which means that it takes an
input and outputs an object of approximately the same shape as the input. In
terms of semantic segmentation U-Net takes an H ×W ×Cin input and outputs an
H ×W × Cout. If the input is an image then H is height, W is width, Cin is the
number of channels of the input and Cout is the number of channels of the output.
In the problem of semantic segmentation the Cout is equal to the number of unique
classes among the labels.
The segmentation starts by 2 layers of convolutions followed by down sampling
via max-pooling. This procedure is done 4 times and then followed by another
set of convolutions. Then up sampling via transposed convolutions is performed
on the last feature maps. These up-sampled feature maps are then concatenated
with the feature maps of the convolutions before the last down sampling, these
concatenations are represented by the gray lines in Figure 2.13. This concatenation
is what made the U-Net-architecture novel compared to earlier works. This re-use of

21

2. Theory

earlier outputs helps with restoring the fine detail when up-sampling since without
the skip connections "over" the down-sampling blocks this information might be lost
in the smaller feature maps.

Figure 2.13: Picture of the architecture from introduced by Ronneberger et al[7]

22

3
Methods and data

This Section describes the methods used for brain tumor segmentation using deep
learning. The chapter will look at preprocessing of the MR images, the dataset and
software used, the different segmentation networks and their architecture. Lastly
the chapter will look at the how the experiments for the different networks and
regularization techniques is to be conducted.

3.1 Dataset
This Sections looks at the dataset that was used during the training, validation and
testing of the brain tumor segmentation CNN.

3.1.1 MICCAI BraTS data
The MICCAI BraTS training dataset from 2019 contains 335 patients with 4 dif-
ferent modalities which are T1, T2, T1CE and Flair. In table ?? it can be seen
how different tissues are depicted in different modalities. All scans are in a NIfTI
format [26] and have been acquired with different clinical protocols and with various
scanners from 19 institutions. All images have been segmented manually by one to
four raters all following the same annotation protocol and the annotations have been
approved by experienced neuro-radiologists. The notations are of the enhancing tu-
mor(label 4), the peritumoral edema(label 2), the necrotic and non-enhancing tumor
core(label 1) and the 0 label is for everything else in the image. The data has been
pre-processed with co-registration to the same anatomical template, interpolated to
the same resolution(1mm3) and skull-stripped [8], [9], [10]. Each patient consists of
155 pictures here called slices of each modality.

The data set consists of both low grade glioma(LGG) and high grade glioma(HGG)
patients, the distinction of the different tumor classifiactions have been made by
experts in the field. In the data set there are 76 LGG and 259 HGG patients which
together make up the whole data set of 335 patients.

23

3. Methods and data

Tissue T1 T2 Flair
CSF Dark Bright Dark
White Matter Light Dark Gray Dark Gray
Cortex Gray Light Gray Light Gray
Fat(within bone marrow) Bright Light Light
Inflammation(infection, demyelination) Dark Bright Bright

Table 3.1: Table showing intensity for different brain tissue in respective modality
[27]

(a) T1 (b) T1CE

(c) T2 (d) Flair

(e) Segmentation (f) Segmentation overlayed on Flair

Figure 3.1: Depicts the different MRI modalities, segmentation and overlay of the
segmentation on the flair modality. In Figure e) and f) the colors yellow, blue and
green corresponds to the edema, enhancing tumor and necrosis respectively

24

3. Methods and data

3.1.2 Training, testing, validation
The 335 patients are shuffled to mix the LGG and HGG patients. The shuffled data
is then split into three groups according to Table 3.2, where the training, validation
and test sets consists of 235, 50 and 50 patients respectively.

Data portion Explanation Chosen
split

of pa-
tients

Training data The portion of the
data which the model
is trained with

70% 235

Validation data A portion of the data
which is used to peak
at general perfor-
mance during testing
and can also be used
for hyper-parameter
optimization

15% 50

Test data A portion of the
data which is used to
evaluate the model
after training and
hyper-parameter
optimization

15% 50

Table 3.2: Table with explanation of data split and the chosen split sizes

3.1.3 Imbalanced data
The training data is quite imbalanced as can be seen by inspecting equation 3.1 and
3.2

of slices in training set = 155× 235 = 36425, 3.1

of slices in training set containing tumor tissue = 15539 3.2

About 43% of the MR images in the training set contain pixels with tumor tissue.
These MR images will be used for training. This reduces class imbalance and will
help the network converge. In this subset of images containing tumor tissue, all
pictures can be cropped from the original size of 240 × 240 to 176 × 176 without
removing any brain pixels, an example of this cropping can be seen in Figure 3.3.
This cropping is motivated by a brute force algorithm checking where the first and
last pixel containing brain tissue is positioned for every sample in both horizontal
and vertical direction of the brain image. The reduction in number of voxels is 46%
and does not lead to any loss in information since all relevant information lies within
the brain pixels. This filtering and cropping is beneficial for both class imbalance
and computational time during training due to reduced image size.
To visualize the class imbalance further one can see the boxplots in Figure 3.2. From
these boxplots it can be seen that the number of voxels with no tumor is in order 106

25

3. Methods and data

where as the pixels containing tumor related classes are of order 104. Even though
all slices that contain no tumor class are removed and the images are cropped there
still remains a quite large class imbalance.

Figure 3.2: Boxplots to showcase the imbalance of the data. The class label is
denoted on the x-axis and the number of voxels are represented by the y-axis.

(a) Image before cropping (b) Image after cropping

Figure 3.3: Images depicting the difference before and after cropping of the MR
images

3.2 Software and libraries

3.2.1 TensorFlow
TensorFlow [28] was first made public by the google brain team in 2015 and is an
open-source software library created for expressing machine learning algorithms and
for execution of the algorithms. It was built to be able to scale, enabling running
the computations on multiple CPUs and GPUs for faster calculations. TensorFlow
is fast at computing matrix operations due to it being implemented in C++, it can

26

3. Methods and data

however be accessed and controlled by other languages such as python and Java. It
has become one of the most used machine learning libraries due to its accessibility,
ease of use and speed. There are other libraries that are capable of running on top
of TensorFlow, one such program is Keras which will be introduced next.

3.2.2 Keras
Keras [23] is a high-level neural networks API which is written in python and capable
of running on top of TensorFlow. It allows for easy and fast prototyping through
user friendliness, modularity and extensibility. Keras runs on top of TensorFlow and
is able to also run on multiple CPUs and GPUs allowing for scalability and speed.

3.2.3 3D Slicer
3D Slicer is an open source software that can be used for visualization and ma-
nipulation of medical images. The 3D slicer platform provides a large number of
applications that are used for image pre- and postprocessing with different medical
fields. The applications provided within 3D Slicer are maintained and developed by
the user community. In this work we used 3D slicer for image preprocessing and for
2D and 3D visualizations of the tumor and brain structure.

3.3 Data pre-processing
There are several preprocessing steps that are required before a brain image can
be further explored. The studies of MR brain images often require processing to
isolate the brain from the extra-cranial or non-brain tissue which is often referred
to as skull stripping. With skull stripping information is removed that does not
add value when inspecting MR brain images for tumors and is irrelevant from an
machine learning perspective. The brain regions should be skull-stripped before the
application of other image processing algorithms such as co-registration to the same
anatomicaltemplate and interpolation to the same resolution [29].

3.3.1 Skull stripping
When investigating skull stripping methods it is of importance to find methods with
good accuracy to get the best data possible for further analysis. Moreover it is also
important to find methods with speed since there is much data acquired from MR
scans and processing should be made as efficient as possible to save both money
and time which can lead to faster diagnosis and thereby also higher survival rates.
There are broadly five different methods which are presented in literature, each skull
striping method has its limitations and merits which together will be presented next.

Morphology-Based Methods, are methods that use the morphological erosion and
dilation operations to separate the brain region from the skull. Such methods use the
combination of edge detection and thresholding to find the region of interest(ROI).
The limitations of these methods are that they depend on parameters such as size

27

3. Methods and data

and structural element shape and the values of these parameters directly influences
the output of the method [29].

Intensity-Based Methods, use the pixel value intensities in the image to separate
the non-brain and brain region. These methods rely on modeling the intensity dis-
tribution function to find the ROI. The drawbacks of these methods are that they
are sensitive to intensity biases which are introduced by the MRI by nature such as
noise, contrast variations and imaging artifacts [29].

Deformable Surface-Based Methods, the basic idea behind these methods are an ac-
tive contour that moves under the influence of energy functional towards the desired
object boundaries. An active contour model starts with an initial closed curve which
is iteratively shrunk or expanded with respect to the boundary of the object which
is in this case the brain. This expansion or shrinking of the boundary is referred
to as the curve evolution. The deformable surface-based methods have in general a
higher potential to produce robust and accurate results then the previous discussed
methods [29].

Atlas or Template-Based Methods tries to fit an atlas or template on the MR brain
image to extract the brain. The merits of this method is that it is able to extract the
brain when the relation between pixel intensities and regions are not well defined
in the brain image. These models differ from each other in how many templates or
atlases are used to distinguish the brain regions and also in how they are applied to
the MR brain image.

Hybrid Methods, are methods which combines earlier mentioned methods to in-
crease accuracy by using merits from one or more methods to account for flaws in
other methods.

As mentioned there are many different skull stripping methods, one method to
extract the brain from an MR image is the ROBEX skull stripping which is a
module that can be used in 3DSlicer to easily remove the skull in MRI images.
The method is based on the non-parametric algorithm proposed by Iglesias et. al.
[30]. The algorithm is automatic, runs fast and yields especially good results in T1
weighted images which can be seen in Figure 3.4. The automatic skull stripping is
a practical alternative to manual skull stripping since it is more time efficient, it
must how ever be noted that the results needs to be reviewed to ensure an accurate
extraction of the brain. In subjects with lesions close to the non-brain tissue skull
stripping methods are known to be less efficient due to smaller gradient differences
between non-brain tissue and brain tissue therefore extra care should be taken when
extracting the brain in these cases.

28

3. Methods and data

(a) Clinical MRI scan (b) Skull stripped MRI scan

Figure 3.4: The dataset IXI was used together with the ROBEX skull stripping
module in 3DSlicer. http://brain-development.org/ixi-dataset/ under CC-
BY-SA 3.0 license

3.3.2 Registration and co-registration

Registration is the process in which two or more images taken at different times, dif-
ferent viewpoints and by different sensors can be overlaid. In the diagnosis of brain
related diseases the scan time is usually somewhere between 30 and 60 minutes it
is common that the patient moves during the examination and this yields shifts in
the acquired MRI images. With registration in the preprocessing step of the data
this shift can be corrected for with manual or automatic registration methods. The
automatic registration algorithms usually do a better job than manual registration
but the result should be inspected upon execution.

Image registration can in general be divided into four main groups where the most
common ones used in medical imaging is multitemporal analysis and multimodal
analysis. Multitemporal analysis is where images of the same scene are acquired
at different times. The aim of the registration in this case is to align images to
evaluate changes in the scene which appear between acquisitions of the images, this
can be used to observe changes in a disease over time. Multimodal analysis is where
images are taken of the same scene by different sensors. The aim of this registration
is to align information from multiple sources to gain a more detailed view of the
scene. In the case of MRI different modalities are often used on the same subject
and alignment of these imaging modalities yield a more detailed view of the subject.

There is not one universal registration method that is applicable on all registration
tasks due to diversity and degradation of the images. There are however four steps
broadly that the majority of registration methods follow. The first step is feature
detection wherein which the algorithm finds features that are present in the images
to be overlaid. The second step is feature matching where the previous detected fea-
tures are matched. Third step is transform model estimation which is the process

29

http://brain-development.org/ixi-dataset/

3. Methods and data

where the registration algorithm finds a mapping function that can be used to align
one image to the other. The last step is image resampling and transformation, this
is where the mapping function is applied to one of the images to align it with the
other image.

Two main approaches has been formed for the automation of image registration
namely area-based and feature-based methods. The feature-based method extracts
structures in the in the images such as lines or points. For this method to work well
the structures should be distinct and spread over the whole image. The method
does not work directly with the intensity variations in the image, in such cases the
area-based method is a better approach. In medical images there is sometimes a
lack in distinctive objects therefore an area-based method would then be the choice
of registration method [31].

3.3.3 Spatial resolution
In the analysis of images in machine learning it is necessary to have the same image
sizes of the images being used in the network for training, validation and testing.
In case of MR images different machines and clinical protocols give rise to different
sized images and it is hence necessary to resample the images in to the same size.
The resizing of an image is a scaling operation which belongs under image registra-
tion and is done by interpolation methods. There are many different interpolation
methods but they all aim at adding information by observing surrounding values
to compute an informed guess. In a paper on medical image interpolation [32] that
studies different interpolation methods show that when comparing the gray-value
errors of the 84 filters evaluated the linear interpolation works best for 2 grid points
and cubic convolution filter for 4 grid points. The cubic convolution shows a 28% -
75% reduction in grey-value errors. For larger filters using Welch, Cosine, Lanczos
and Kaiser windowed sinc filters even better results where obtain with a reduction of
44% - 95% these methods do however yield heavier computations there by increasing
computational time.

3.3.4 Normalizing pixel-values
In the specific case of the MICCAI BraTS dataset all pixels which has value 0 is
ignored due to it not being brain tissue and using equation 2.20 all other pixel values
are standardized.

3.4 Volume estimation and 3D visualization
By estimating the volume of the brain tumor at two different points in time a con-
clusion regarding the growth of the tumor can be made and a treatment plan can
be set in place. A pixel in one of the images from the MICCAI BraTS dataset has
the volume 1mm3 and is known as a voxel. All the images in the MICCAI BraTS
dataset has been interpolated to have this resolution so by adding all the segmented

30

3. Methods and data

pixels together the volume can be calculated. Using 3D slicer the tumor volume can
be depicted in 3D giving a good overview of the whole segmentation. Two or more
tumor scans at different time instances could in practise be overlayed and in 3D
slicer and the volumes could be compared to observe how the tumor has changed
between the acquired scans. This will however not be observed in this thesis since
the datset consist of data from one point in time.

3.5 Research question
The main question of this thesis will be comparing a conventional U-Net architecture,
hereafter referred to as Single-stream U-Net, to a Multi-stream U-Net trained in
two different ways. Both of which will be described in the next Section. The U-Net
architecture by Ronneberger et. al [7], described in Section 2.6.3, will be used as
a stepping stone for the architecture design. The Single-stream U-Net will firstly
be evaluated then different techniques known to improve a generalization of the
network will be implemented and tested. Thereafter the Multi-stream U-Net will
be trained in two different ways. The performance between the two ways of training
the Multi-sream U-Net and the Single-stream U-Net will be evaluated.

Design and hyper parameters

Activation function

ReLU described in equation 2.5 is used as activation function.

Convolutional block

A convolutional block in Figure 3.6 represents two convolutional layers following
each other. The number of filters and transposed convolutions for each convolutional
block is presented in table 3.3 and 3.4.

Padding

A small difference from the original U-Net is that padding is used to make the
outputs from the convolutional blocks have the same height and width as the input.

Dropout

When dropout is used it is used on the two deepest convolutional blocks in the
downsampling part of the network. A small dropout rate of 0.1 has been chosen.

Number of filters
Each convolutional layer in the convolutional blocks has a certain number of filters
associated with them. These are specified in Table 3.3. The upsampling procedure

31

3. Methods and data

called transposed convolutions [33] also has a number of filters associated with them
which are specified in Table 3.4.

Convolutional
block

of filters
Single-stream U-Net

of filters
Multi-stream U-Net

1 64 32
2 128 64
3 256 128
4 512 256
5 1024 512
6 512 256
7 256 128
8 128 64
9 64 32

Table 3.3: Table enumerating the number of filters in each convolutional block of
the U-Nets

Transposed
convolution

of filters
Single-stream U-Net

of filters
Multi-stream U-Net

1 256 256
2 128 128
3 64 64
4 32 32

Table 3.4: Table enumerating the number of filters in each transposed convolution
of the U-Nets

Figure 3.5: A schematic chart of the basic U-Net used for this project. A con-
volutional block in this image represents two convolutional layers following each
other

32

3. Methods and data

3.6 Single stream U-Net
The Single-stream U-Net has been implemented as described in Figure 3.5 and 3.6.
The network takes all modalities combined in 4 channels as inputs and outputs 4
channels each containing the probability of a pixel belonging to a class. The number
of filters and transposed convolutions used in each convolutional block can be seen
in Table 3.3 and 3.4 respectively. The part described as U-Net in Figure 3.6 is the
U-Net depicted in Figure 3.5.

Figure 3.6: A schematic chart of the Single-stream U-Net used for this project.

3.7 Multi-stream U-Net
The novel architecture presented in this thesis is a Multi-stream U-Net. Which
processes each modality separately before fusing the results of each modality. This
is done using the U-Net architecture presented in Figure 3.5 with the number of
filters and transposed convolutions presented in Table 3.3 and 3.4 respectively. This
architecture differs to that of the Single-stream U-Net in the last 1× 1 convolution
and the softmax layer is omitted and the four 176×176×32 outputs of the U-Nets are
concatenated and then fed through a final convolutional block. An illustration of this
can be seen in figure 3.7. The hypothesis is that as much independent information
processing is done before merging the layers. All other hyperparameters are the
same as in the Single-stream U-Net.

33

3. Methods and data

Figure 3.7: A flowchart of the Multi-stream U-Net. Where each of the four modal-
ities are feed through a reduced U-Net before being merged via concatenation and
fed through a final convolutional block.

3.8 Experimental design

Training setup

• The network architectures that will be experimented with are as described in
Section 3.5

• The dataset used is the BraTS training dataset with cropping and tumor slice
selection as described in Section 3.1.1 and 3.1.3

• Early stopping is used as described in Section 2.3.1 with a patience of ten
• The maximum number of epochs is set to 100
• The batch size is set to 16
• The loss function used is the categorical-crossentropy loss which is described

in Section 2.2.5
• Accuracy is used as a measure of performance and implemented as described

in Section 2.5.1

3.8.1 Single-stream U-Net experiments

The Single-stream U-Net as described in Section 3.6 is implemented and trained
with a number of experiments observing regularization methods, learning rates and
weight initialization which are described in this section. The training and validation
loss and accuracy as a function of epochs will be presented for each of the Single-
stream U-Net experiments. An evaluation on the test dataset will be presented
in terms of a confusion matrix and the problem specific dice scores for the best
performing experiment.

34

3. Methods and data

Learning rate

The first experiment will look at the effects of using different learning rates. The
weight initialization used is described by the normal distribution in equation 3.3
where µ = 0 and σ = 0.01 The learning rates that are investigated are presented in
the Table 3.5.

wij ∈ N (µ, σ) 3.3

Learning rates (η) 10−6 10−5 10−4 10−3 10−2 10−1

Table 3.5: Learning rates in experiment one

Weight initialization

In this experiment the weight initialization scheme using he-normal, described in
Section 2.2.8, is used to look at the effects it has on the training of the network.
The learning rate used is determined by the first experiment.

L2 regularization

L2 regularization is added to the previous experiment to look at how the training
process is effected. It is implemented as described in Section 2.3.2 and initialized
with a λ of 0.001

Dropout

This experiment looks at the effects off adding dropout to experiment on L2 regu-
larization. The dropout is set to 10% at the end of the contracting path as described
in the original U-Net paper by Ronneberger et. al [7].

Data augmentation

Data augmentation is implemented in this experiment to look at the effects it has
on adding it on top of dropout. The data augmentation is used to vary existing
data in order increase the effective dataset since there is a limited amount of data.
The augmentations made to the dataset is as follows:

• Rotation with a variation of ±20 degrees from the original image
• Horizontal and vertical flip
• Shear transformation with a variation of shear angle of 0.2 degrees
• Zoom with a range variation of 10%

35

3. Methods and data

3.8.2 Multi-stream U-Net experiment

End-to-end training

The Multi-stream U-Net described in Section 3.7 will be implemented and trained
with the regularization methods, learning rate and weight initialization which shows
best performance in terms of training and validation loss and accuracy in the Single-
stream U-Net case. The training will be conducted by training the whole network
at once hence naming it end-to-end training. The training and validation loss and
accuracy will be presented. An evaluation on the test dataset will also be made
showing the confusion matrix and problem specific dice scores.

Sequential training experiment

The Multi-stream U-Net described in Section 3.7 will be implemented and trained
with the same regularization methods, learning rate and weight initialization as used
in the Multi-stream U-Net experiment trained end-to-end.

Four networks with the architecture described in Figure 3.5 are trained with one
modality each until early stopping stops the training process. The weights of all the
trained networks are then set as constant and a second training cycle with the addi-
tion of concatenation and convolutions as seen in the right hand side of Figure 3.7
is performed. Where the weights of the final convolutional block is further trained
until early stopping.

The training and validation loss error and accuracy error from training each net-
work on a modality will be presented. The modality that shows the smallest loss
and accuracy error will be depicted together with the results from concatenating
and training the last convolutional blocks, these graphs will show the training and
validation loss and accuracy. This is done so that a fair comparison can be made
between training one path and training the sensor fusion. An evaluation on the test
dataset will also be made showing the confusion matrix and problem specific dice
scores.

3.8.3 Performance evaluation
The test dataset which is described in Section 3.1.1 is used for a final evaluation
of the three networks. The performance will be looked upon by comparing the
confusion matrices, dice scores of whole tumor, tumor core and enhancing tumor.
The final part of the performance evaluation will look at qualitative results of the
networks segmentation’s. In this part the segmentation results of the three networks
will be depicted together with the ground truth.

3.8.4 Volume estimation and 3D visualization
The volume that has been chosen to investigate is the volume of the tumor core.
The volume of the ground truth and the volume estimation made by each network

36

3. Methods and data

will be compared. A comparison will be made by observing the volume error which
is the difference between the ground truth and and network estimated volumes.
The volume error will be presented in histograms to observe if the networks over or
under predicts the tumor volumes. To show the whole segmentation performance a
3D visualization will be made of one tumor for the best performing network. The
3D visualization will be shown from multiple different angles.

37

3. Methods and data

38

4
Results

This chapter presents the results obtained from the experiments described in meth-
ods chapter. The results are presented with graphs of the training and validation
loss and accuracy for learning rate, weight initialization and regularization tech-
niques in the Single-stream U-Net cased. For the Multi-stream U-Nets the learning
rates regularization techniques used in the last experiment of Single-stream U-Net
are implemented and the training and validation loss and accuracy is presented.
A comparison of the performance of the networks is also presented as described in
Section 3.8.3 performance comparison. The graphs depicted for the training of the
networks are a function of epochs.

4.1 Single-stream U-Net

Learning rate
In Figure 4.1 and 4.2 the results from training the network with different learning
rates are presented. Figure 4.1 present the difference between training and valida-
tion loss called loss error. In Figure 4.2 the accuracy error is presented which is the
difference between training and validation accuracy.

39

4. Results

Figure 4.1: Loss Error for the learning rate search

Figure 4.2: Accuracy Error for the learning rate search

From Figure 4.1 it can be seen that all learning rates achieve similar loss error.

40

4. Results

The primary objective is to have a loss curve that is decaying with the number of
epochs for both training and validation. This is of primary objective because the loss
function is a direct function of the networks learning process and should hence be
valued above all other metrics during training. Since the loss curves show marginal
difference a choice was made to consult a paper by Dong et al. [4] that had a similar
architecture and showed competitive results on the MICCAI BraTS dataset. This
paper had used a learning rate of 10−4. Since only one training session was done
for each of the learning rate and the loss error curves showed similar results it was
decided to continue with the same learning rate of 10−4 as Dong et al. [4]. The loss
and accuracy for the training and validation for the learning rate of 10−4 can be
seen in Figure 4.3 and 4.4.

Figure 4.3: Training and Validation Loss for learning rate 10−4

41

4. Results

Figure 4.4: Training and Validation Accuracy for learning rate 10−4

Weight initialization
A learning rate of 10−4 was chosen for training the network with he-normal as
weight initialization method instead of using a normal distribution as described
in equation 3.3. In Figure 4.5 and 4.6 are the results from training this network
with the he-normal weight initialization as described in Section 2.2.8. In Figure 4.5
the training and validation loss are presented and in Figure 4.6 the training and
validation accuracy can be seen. Comparing the loss in Figure 4.5 with the loss in
Figure 4.3 it can be seen that the validation loss has dropped, this indicates a better
performance of the network. The difference between the training and validation loss
is still however substantial.

42

4. Results

Figure 4.5: Training and Validation Loss for he-norm weight initialization

Figure 4.6: Training and Validation Accuracy for he-norm weight initialization

43

4. Results

L2 regularization
In this experiment L2 regularization is added to the experiment on weight initial-
ization, the results of training this network can be seen in Figure 4.7 and 4.8. The
training and validation loss and accuracy is presented in Figure 4.7 and 4.8 respec-
tively. Comparing Figure 4.7 with 4.5 it can be seen that the difference in training
and validation loss has been improved which should make the network complete the
task of segmentation more similar on the test dataset than the previous network.

Figure 4.7: Training and Validation Loss when L2 regularization is added

44

4. Results

Figure 4.8: Training and Validation Accuracy when L2 regularization is added

Dropout
Dropout is added to the experiment with L2 regularization and the results are
presented in Figure 4.9 and 4.10 . The training and validation loss of this experiment
is presented in Figure 4.9. In Figure 4.10 the training and validation accuracy
can be observed. In the comparison of the loss graphs in Figure 4.7 and 4.9 no
major difference can be seen. Observing Figure 4.8 and 4.10 it can be seen that
the difference in training and validation accuracy is smaller in 4.10 therefore this
network should perform more similar on training and validation data, this indicates
that performance on test dataset would be similar.

45

4. Results

Figure 4.9: Training and Validation Loss when Dropout is added

Figure 4.10: Training and Validation Accuracy when Dropout is added

46

4. Results

Data augmentation
In this experiment data augmentation is added to the previous experiment when
dropout was used, the results can be seen in Figure 4.11 and 4.12. The training
and validation loss is presented in Figure 4.11 and in Figure 4.12 the training and
validation accuracy can be observed. Also in this case the loss function looks fairly
similar between Figure 4.9 and 4.11. In Figure 4.12 a smaller deviation between the
training and validation accuracy is achieved than in Figure 4.10. The smaller devi-
ation in Figure 4.12 indicate that this network would perform even more similarly
on the test dataset than previous networks.

Figure 4.11: Training and Validation Loss when Data augmentation is added

47

4. Results

Figure 4.12: Training and Validation Accuracy when Data augmentation is added

Evaluation on test dataset
In this section the confusion matrix and dice scores are presented for the Single-
stream U-Net trained in accordance with the data augmentation experiment. The
problem specific dice scores are presented in three ways; as an average of all patient,
in a boxplot and in a histogram.

True

Pr
ed
ic
te
d Background Necrosis Edema Enhancing

Background 23490 3.604 50.21 6.801
Necrosis 7.387 52.56 49.16 6.768
Edema 54.01 8.511 192.1 4.376
Enhancing 5.895 9.062 8.993 59.75

Table 4.1: Confusion matrix from predictions on the test dataset for Single-stream
U-Net, all entries in the table have been divided by 104 to give a cleaner view

Mean dice Scores for Single-stream U-Net
Enhancing Tumor core Whole tumor

0.586 0.710 0.817

Table 4.2: Mean dice scores for Single-stream U-Net on enhancing tumor, tumor
core and whole tumor

48

4. Results

Figure 4.13: Boxplot of patient wise dice scores for Single-stream U-Net

Figure 4.14: Histogram of patient wise dice scores for Single-stream U-Net

49

4. Results

4.2 Multi-stream U-Net

4.2.1 End-to-end training
The learning rate and regularization methods used in Single-stream experiment
"data augmentation" was chosen to implement on the Multi-stream U-Net trained
end-to-end described in Section 3.7. The training and validation loss and accuracy
results from training the Multi-stream U-Net end-to-end can be seen in Figure 4.23
and 4.24 respectively.

Figure 4.15: Training and Validation Loss for Multi-stream U-Net trained end-to-
end

50

4. Results

Figure 4.16: Training and Validation Accuracy for Multi-stream U-Net trained
end-to-end

Evaluation on test dataset

In this section the confusion matrix and dice scores are presented for the Multi-
stream U-Net trained end-to-end. The problem specific dice scores are presented in
three ways; as an average of all patient, in a boxplot and in a histogram.

True

Pr
ed
ic
te
d Background Necrosis Edema Enhancing

Background 23510 5.458 29.01 2.698
Necrosis 7.472 83.96 19.21 5.236
Edema 48.45 12.82 194.5 3.260
Enhancing 4.730 6.531 5.026 67.42

Table 4.3: Confusion matrix from predictions on the test dataset for Multi-stream
U-Net trained end-to-end, all entries in the table have been divided by 104 to give
a cleaner view

Mean dice Scores for Multi-stream U-Net trained end-to-end
Enhancing Tumor core Whole tumor

0.691 0.822 0.856

Table 4.4: Mean dice scores for Multi-stream U-Net trained end-to-end on enhanc-
ing tumor, tumor core and whole tumor

51

4. Results

Figure 4.17: Boxplot of patient wise dice scores for Multi-stream U-Net trained
end-to-end

Figure 4.18: Histogram of patient wise dice scores for Multi-stream U-Net trained
end-to-end

52

4. Results

4.2.2 Sequential training
The same learning rate and regularization methods were used as in the training of
the Multi-stream U-Net trained end-to-end. Training was conducted in two steps,
first each path was trained with one modality each, the training and validation loss
error and accuracy error of each path can be seen in Figure 4.19 and 4.20. The Flair
modality yields smallest error when inspecting training and validation loss errors
and accuracy errors in Figures 4.19 and 4.20. The Flair training and validation loss
and accuracy is depicted in Figure 4.19 and 4.20 respectively to easier be able to see
the difference between this result and the Multi-stream U-Net trained sequentially
result. The weights of each path were then locked and training was proceeded after
adding the concatenation and convolutional blocks. The results from the second
cycle of training can be viewed by inspecting the training and validation loss and
accuracy seen in Figure 4.19 and 4.20. Comparing the training results of training
one path with Flair and the Multi-stream U-Net trained sequentially it can be seen
that the loss curves look very similar. From inspecting the accuracy it can however
be seen that the training is less volatile in the pretraiend Multi-stream U-Net trained
end-to-end and that the accuracy is increased to roughly 97%.

Figure 4.19: Training and Validation Loss Error for the paths in the Multi-stream
U-Net trained sequentially

53

4. Results

Figure 4.20: Training and Validation Accuracy Error for the paths in the Multi-
stream U-Net trained sequentially

Figure 4.21: Training and Validation Loss for the pretrained Flair path

54

4. Results

Figure 4.22: Training and Validation Accuracy the pretrained Flair path

Figure 4.23: Training and Validation Loss when training with final convolutional
block in the Multi-stream U-Net trained sequentially

55

4. Results

Figure 4.24: Training and Validation Accuracy when training with final convolu-
tional block in the Multi-stream U-Net trained sequentially

Evaluation on test dataset

In this section the confusion matrix and dice scores are presented for the Multi-
stream U-Net trained sequentially. The problem specific dice scores are presented
in three ways; as an average of all patient, in a boxplot and in a histogram.

True

Pr
ed
ic
te
d Background Necrosis Edema Enhancing

Background 23500 0.7107 50.35 0.04760
Necrosis 11.66 28.70 75.43 0.08970
Edema 60.75 5.598 192.6 0.09520
Enhancing 11.15 5.671 66.72 0.1580

Table 4.5: Confusion matrix from predictions on the test dataset for Multi-stream
U-Net trained sequentially, all entries in the table have been divided by 104 to give
a cleaner view

Mean dice Scores for Multi-stream U-Net trained sequentially
Enhancing Tumor core Whole tumor

0.042 0.199 0.796

Table 4.6: Mean dice scores for Multi-stream U-Net trained sequentially on en-
hancing tumor, tumor core and whole tumor

56

4. Results

Figure 4.25: Boxplot of patient wise dice scores for Multi-stream U-Net trained
sequentially

Figure 4.26: Histogram of patient wise dice scores for Multi-stream U-Net trained
sequentially

57

4. Results

4.3 Performance evaluation
This section compares the performance of the three networks on the test dataset.
The confusion matrices, and dice scores are compared to observe the quantitative
results.

4.3.1 Confusion matrices
The confusion matrices are presented for the three networks in Table 4.1, 4.3 and
4.5. Observing the diagonals of the confusion matrices it can be seen the the same
order of magnitude of correctly classified pixels are achieved for all networks when
looking at Background, Necorsis and Edema. The Multi-stream U-Net trained se-
quentially does however not perform as well on classifying enhancing tumor where it
has two orders of magnitude lower correctly classified pixels. The Multi-stream U-
Net trained end-to-end is predicting more necrosis as edema than the Single-stream
U-Net, on the other hand more enhancing tumor is predicted as background by the
Single-stream U-Net. By inspecting the confusion matrix of the Multi-stream U-Net
trained sequentially it can be seen that the performance is worse than for both the
Multi-stream U-Net trained end-to-end and the Single-stream U-Net. Observation
of the Multi-stream U-Net trained sequentially reveals that it incorrectly predicts
more background pixels as edema, necrosis and enhancing tumor than the other
networks. The opposite can be seen for pixels which are enhancing tumor, in these
cases it predicts less pixels to belong to other classes than enhancing tumor than
the other two networks. From observing the confusion matrix of the Multi-stream
U-Net trained end-to-end it can be seen that it is out performing both the other
networks.

4.3.2 Dice scores
The mean dice scores on the test dataset for the three networks of the enhancing
tumor, tumor core and whole tumor are presented in Figure 4.2, 4.4 and 4.6. An
observation of the mean dice scores clearly show that the Multi-stream U-Net trained
end-to-end achieves better results than both the other architectures. A more detailed
view of the dice scores for the network architectures can be obtained by observing
the boxplots and histograms for Single-stream and Multi-stream trained U-Nets
in Figure 4.13, 4.17, 4.25 and 4.14, 4.18, 4.26 respectively. From observing the
boxplots it can be seen that for enhancing tumor and tumor core the interval for the
first through fourth quartile is smaller in the Multi-stream U-Net trained end-to-
end than for the other networks. The median is higher in the Multi-stream U-Net
trained end-to-end for both the enhancing and tumor core metrics. In the case of
whole tumor the box plots look quite similar for the Single-stream U-Net and Multi-
stream U-Net trained end-to-end architectures but a slightly higher median can be
seen for the dice scores of the Multi-stream U-Net trained end-to-end. The Multi-
stream U-Net trained sequentially performs worse than the other two networks on
all tumor classes, the dice score for whole tumor can however compete with the

58

4. Results

Single-stream U-Net and Multi-stream U-Net trained end-to-end architectures. By
observing the histogram it can be seen that the Multi-stream U-Net trained end-to-
end has higher concentration of dice scores closer to 1.0 and a shorter tail than the
Single-stream U-Net. Inspecting the histogram of the Multi-stream U-Net trained
sequentially, previous observations of the performance of this architecture can be
further strengthened.

4.3.3 Predictions of models
In Figures 4.27 to 4.32, the ground truth and predictions of the three networks are
compared for six patients. From inspecting the segmentation’s of the networks it can
be seen that the Multi-stream U-Net trained end-to-end has most similar results to
that of the ground truth. These results are consistent with those of the quantitative
results. It should however be noted that in some cases the Multi-stream U-Net
trained sequentially seems to out perform the other networks for example when
mainly necrosis is present. From inspecting segmentation results in patient 273 and
270 such a behavior can be seen. It can be observed that the Multi-stream U-Net
trained sequentially and the Single-stream U-Net architectures are missing some of
the finer details from the ground truth.

59

4. Results

Figure 4.27: Ground truth and segmentation results for all networks for Patient
50

60

4. Results

Figure 4.28: Ground truth and segmentation results for all networks for Patient
52

61

4. Results

Figure 4.29: Ground truth and segmentation results for all networks for Patient
329

62

4. Results

Figure 4.30: Ground truth and segmentation results for all networks for Patient
322

63

4. Results

Figure 4.31: Ground truth and segmentation results for all networks for Patient
273

64

4. Results

Figure 4.32: Ground truth and segmentation results for all networks for Patient
270

4.3.4 Volume estimation and visualization

Volume estimation

In Figure 4.33, 4.34 and 4.35 the volume differences between the ground truth and
predicted tumor segmentation’s can be seen for the tumor core. An inspection
of these plots show that the Multi-stream U-Net trained end-to-end has a higher
concentration around zero than the Single-stream U-Net. There are about as many
over as under predictions for the Multi-stream U-Net trained end-to-end whereas the
Single-stream U-Net seams more biased towards under estimating the tumor volume.
Inspecting the volume difference of the Multi-stream U-Net trained sequentially it
can be seen that the network heavily under estimates the tumor volume.

65

4. Results

Figure 4.33: Volume difference between prediction and ground truth for Single-
stream U-Net

Figure 4.34: Volume difference between prediction and ground truth for Multi-
stream U-Net trained end-to-end

66

4. Results

Figure 4.35: Volume difference between prediction and ground truth for Multi-
stream U-Net trained sequentially

67

4. Results

Volume visualization

The tumor of patient 52 is shown from different angles in 3D to visualize the whole
performance of the Multi-stream U-Net trained end-to-end. The volume of the
tumor is depicted in Figure 4.36 and the colors, navy blue, purple, yellow corresponds
to edema, necrosis and enhancing tumor respectively.

Figure 4.36: Segmentation results of the Multi-stream U-Net on patient 52 de-
picted in 3D from different angles

68

5
Discussion

5.1 Experimental design

This thesis compares two different types of network architectures and how different
regularization techniques influences the training process of the Single-stream U-Net.
It also looks at how training the Multi-stream U-Net in two different ways affects
performance. The Multi-stream U-Net trained end-to-end has the best performance.

A challenging and time consuming part of the thesis was to acquire the computa-
tional resources needed for training of the networks. Due to little prior experience
in training ANNs on large datasets a flexible solution was needed to be able to
test run the experiments at any time hence time bookings on clusters was not a
viable option. If less time had been spent on computational solutions for training a
deeper analysis of the regularization techniques and hyperparameter tuning for the
networks could have been performed.

The experimental setup for the Single-stream U-Net was to add each regularization
technique on top of the other. It is not known how the networks would perform if
the regularization techniques would have been implemented independently. Another
way of setting up the experiment could have been to try each regularization tech-
nique separately and then combine the best performing techniques in the training
of a network and observe the results. When working with ANNs there are many
factors that affect the performance of the network which is why the trial and error
approach is most commonly used when it comes to regularization techniques and
hyperparamter tuning.

When training these networks there are many regularization techniques and hyper-
paramters that can be tested and tuned. For each new regularization technique
and hyperparameter a new network needs to be trained. A more rigorous approach
would be to try all combinations of regularization techniques and hyperparamters,
this however quickly becomes unfeasible due to the time consuming task of training
a network and the combinatorial explosion of combinations of hyperparameters and
regularisation techniques.

Due to patient integrity the datasets are relatively small when it comes to medical
images in general and specifically in the brain tumor case. A larger dataset means
more examples to learn from which increases the performance of the network. The

69

5. Discussion

MICCAI BraTS dataset is one of the bigger brain tumor dataset but is still a quite
small dataset when it comes to deep learning. The dataset is a bench mark dataset
for the task of brain tumor segmentation. By including other brain tumor dataset a
larger dataset could have been obtained for training the network which would most
probably increase the performance of the network.

The batch size used in this project was 16, this was set by trial and error hence when
using a larger batch size we ran into computational problems. Different results might
have been obtained by having a larger batch size. If more computational resources
could be obtained then experiments could be done on how the batch size affect the
training and performance of the networks.

5.2 Results
Adding the regularization techniques on top of one another did not lead to an in-
creased performance in all of the Single-stream U-Net experiments. The performance
difference from one regularization technique to the other is in some cases quite small.
Looking at the difference in performance after adding L2 regularization the accuracy
is decreased by 0.5%. This decrease could have been from the stochastic proper-
ties of the ANN. If the L2 regularization technique would have been removed it is
possible that the network would have performed better. Running the experiment
multiple times would have increased the reliability and reproducibility of our results.

When acquiring the T1ce MR images a contrast fluid containing Gadolinium is in-
jected into the patient which gives increased contrast to the tumor and among others
also blood vessels. From the predicted segmentations it can be seen that the net-
works segments these high contrast blood vessels as tumors in some cases. Hence it
seems like the networks learns that high contrast areas are associated with tumors.
To deal with the issue of segmenting high contrast non tumor tissue as tumor tis-
sue, one might be able to do image preprocessing in the areas of the vessels. These
areas are located in the same location in the head which makes this preprocessing
theoretically feasible. By lowering the image contrast in these areas in the images
better segmentation results might be achieved.

Further the networks struggles with finer details in tumor borders, this could be
overcome by adding extra weight to the border pixels of the different classes in the
ground truth. Adding extra weight to the boarder pixels would penalize the network
more for wrongly classifying border pixels which could hopefully drive it towards
completing this task more successfully.

There is a big variety in brain tumor’s location and shape. Having a bigger dataset
means that the network would see more cases hence becoming better at predicting
similar cases which it has not seen before. To deal with problem of data scarcity
data augmentation was used, this increased the variety in the data and seems to
have a good impact on the training process. Even better results would probably be
obtained if the dataset was even bigger and data augmentation was used.

70

5. Discussion

Inspecting the predicted segmentation results it can be seen that there are one or
just a few pixels that are classified as tumor in some cases when there is no tumor
in the ground truth. These false positives do in some cases also appear scattered.
A few pixels scattered over the brain is very rare in the case of brain tumors. By
using image postprocessing these false positives could be removed. This could be
achieved by setting a threshold for the number of pixels that need to be present
and have boundaries with each other. A simple postprocessing step like this would
increase the segmentation performance even further.

The volume estimation indicated that the Single-stream U-Net was biased towards
under estimating the tumor whereas the Multi-stream U-Net trained end-to-end
had about the same number of over and under estimations. The sequentially trained
Multi-stream U-Net was heavily under estimating the tumor volumes and performed
a lot worse than both the other networks. In a clinical setting the volume of the
tumor is an important parameter for treatment planning. By using deep learning for
segmentation the human bias can be minimized. With an increased consistency in
segmentation’s a better estimation of volume difference between two time instances
can be obtained. In today’s healthcare many decisions are based on a combination
of fact and experience. With the help of AI and deep learning decisions can be more
data driven which lessens the room for human error.

If one compares the results between the two different ways of training the Multi-
stream U-Net it is clear that the end-to-end approach is advantageous. A qualitative
argument for why this might be the case is that some classes are really hard to see
in certain modalities, for example edema in T1. This makes the task of identifying
all four classes too complex to be performed using only a single modality. A more
nuanced approach could be to only try to segment the classes which are clearly
visible in a given modality, something that the authors does not have enough domain
knowledge about and is therefore not done.

5.3 Future work

In this thesis we used the categorical crossentropy loss function which does not take
the class imbalance in to consideration. An investigation on how different loss func-
tions such as weighted categorical cross entropy and dice loss affects the performance
of the segmentation network would be interesting.

When working with MR images the intensity scales differs between scanners and
intensity does not map directly to a tissue. There are many different ways that the
MR images could be normalized and it is not know how the normalization of the
MR images effect the training and performance of the network. An investigation
looking at how different normalization techniques influences training and segmenta-
tion performance would be interesting to gain further understanding.

71

5. Discussion

In the encoder path of the network the data is downsampled with the pooling oper-
ation at each layer. In this thesis we used four downsamplings. It is not known how
the performance of the network would change if the number of downsamplings was
reduced or increased. An investigation of how the number of downsamplings affect
the training and performance of the segmentation network would be interesting to
conduct.

The application created in this thesis requires an understanding of python program-
ming and has not been designed to be used in a clinical setting. The segmentation
results obtained are promising but not at the level of an experienced radiologist.
From a meeting with an experienced neurosurgeon at Sahlgrenska University hospi-
tal an application that could be used for pre-segmentation of brain tumors by the
doctors would decrease the time for segmentation. A next step for our program
could be to implement a user interface where doctors can process MR images, get
segmentation predictions by the network and the edit the segmentations. A pro-
gram used today by the doctors at Sahlgrenska is 3D slicer, this program is open
source and an automatic segmentation module could hence be created to include
the features described.

A further complication for clinical use of the proposed architectures, is that when
patients are screened only one or two of the four modalities used in this thesis are
captured. Which means that the architectures presented in this thesis cannot be
used without some sort of data synthesis or retraining of the network on a certain
modality.

In healthcare today much of the decisions taken are based on a combination of fact
and experience. With the healthcare becoming more digitized a shift can be made
to have even more data driven decisions rather then decisions made on experience.
For the healthcare to become more data driven in their decisions it is believed that
nation wide guidelines should be setup with in the healthcare sector on how medical
information should be saved so that it can be used for machine learning tasks. Doing
this would make it easier to use the data for machine learning tasks hence excelling
this field within healthcare. There are multiple things that need to be discussed,
some examples are; how the data should be anonymized, what file format should be
used and what resolution it should be interpolated to. By having a more data driven
decision process the human error can be minimized, increasing the chance of survival.

72

6
Conclusion

In brain tumor segmentation it is of great importance to segment out the brain
tumor with high precision if it is to be used in a clinical setting. If a high precision
can be ensured deep learning segmentation could at this time be used as a second
rater in the task of segmentation. A long term goal of deep learning segmentation of
medical images is to relieve the doctors fully from this time consuming task. From
the research conducted in this thesis the following conclusions can be made.

1. The cropping of the MR images decrease the amount of pixels thereby increasing
the speed of training while maintaining competitive segmentation results.

2. The novel Multi-stream U-Net architecture trained end-to-end outperformed the
conventional approach.

3. Using deep learning decreases the variance in segmentations. A more consistent
estimation of the tumor volume can be made, yielding a better understanding of
tumor progression.

From this thesis there are a number of ideas for future work.

1. Development of a user interface that is adapted for clinical use where healthcare
personnel can process MR images to get segmentation’s from the network and edit
the segmentation results.

2. Further investigation on neural network architectures for example how the num-
ber of downsamplings in the contracting path of the U-Net affects performance.
Looking at different loss functions such as weighted categorical cross-entropy and
dice loss. Pre-processing of MR images with for example intensity normalization.
Investigating algorithms for giving extra weight to pixels at the border between dif-
ferent tumor classes to better predict the finer details of segmentations.

Using deep learning for segmentation of medical images has been pushing forward
fast thanks to a growing body of publicly available resources. It is believed that
segmentation of medical images with deep learning will continue to increase in per-
formance and in a not so distant future become a natural part of the clinical work.

73

6. Conclusion

74

References

[1] World Health Organization. Global Health Observatory. Geneva: World Health
Organization. url: https : / / apps . who . int / iris / bitstream / handle /
10665/272596/9789241565585-eng.pdf?ua=1. (accessed: 03.09.2019).

[2] Rebecca Leece et al. “Global incidence of malignant brain and other central
nervous system tumors by histology, 2003–2007”. In: Neuro-Oncology 19.11
(May 2017), pp. 1553–1564. issn: 1522-8517. doi: 10.1093/neuonc/nox091.
eprint: http://oup.prod.sis.lan/neuro-oncology/article-pdf/19/11/
1553/22934243/nox091.pdf. url: https://doi.org/10.1093/neuonc/
nox091.

[3] Laura J. Martin MD. Types of Brain Cancer. url: https://www.webmd.com/
cancer/brain-cancer/brain-tumor-types#1. (accessed: 04.09.2019).

[4] Hao Dong et al. “Automatic brain tumor detection and segmentation using
U-Net based fully convolutional networks”. In: annual conference on medical
image understanding and analysis. Springer. 2017, pp. 506–517.

[5] Mohammad Havaei et al. “Brain tumor segmentation with deep neural net-
works”. In: Medical image analysis 35 (2017), pp. 18–31.

[6] H A Haenssle et al. “Man against machine: diagnostic performance of a deep
learning convolutional neural network for dermoscopic melanoma recognition
in comparison to 58 dermatologists”. In: Annals of Oncology 29.8 (May 2018),
pp. 1836–1842. issn: 0923-7534. doi: 10.1093/annonc/mdy166. eprint: http:
//oup.prod.sis.lan/annonc/article-pdf/29/8/1836/25682281/mdy166.
pdf. url: https://doi.org/10.1093/annonc/mdy166.

[7] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional
networks for biomedical image segmentation”. In: International Conference on
Medical image computing and computer-assisted intervention. Springer. 2015,
pp. 234–241.

[8] B. H. Menze A. Jakab S. Bauer J. Kalpathy-Cramer K. Farahani J. Kirby et al.
“The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)”.
In: IEEE Transactions on Medical Imaging 34.10 (2015), pp. 1993–2024. doi:
10.1109/TMI.2014.2377694.

[9] S. Bakas H. Akbari A. Sotiras M. Bilello M. Rozycki J.S. Kirby et al. “Ad-
vancing The Cancer Genome Atlas glioma MRI collections with expert seg-
mentation labels and radiomic features”. In: Nature Scientific Data 4.170117
(2017). doi: 10.1038/sdata.2017.117.

[10] S. Bakas M. Reyes A. Jakab S. Bauer M. Rempfler A. Crimi et al. “Identi-
fying the Best Machine Learning Algorithms for Brain Tumor Segmentation,

75

https://apps.who.int/iris/bitstream/handle/10665/272596/9789241565585-eng.pdf?ua=1
https://apps.who.int/iris/bitstream/handle/10665/272596/9789241565585-eng.pdf?ua=1
https://doi.org/10.1093/neuonc/nox091
http://oup.prod.sis.lan/neuro-oncology/article-pdf/19/11/1553/22934243/nox091.pdf
http://oup.prod.sis.lan/neuro-oncology/article-pdf/19/11/1553/22934243/nox091.pdf
https://doi.org/10.1093/neuonc/nox091
https://doi.org/10.1093/neuonc/nox091
https://www.webmd.com/cancer/brain-cancer/brain-tumor-types#1
https://www.webmd.com/cancer/brain-cancer/brain-tumor-types#1
https://doi.org/10.1093/annonc/mdy166
http://oup.prod.sis.lan/annonc/article-pdf/29/8/1836/25682281/mdy166.pdf
http://oup.prod.sis.lan/annonc/article-pdf/29/8/1836/25682281/mdy166.pdf
http://oup.prod.sis.lan/annonc/article-pdf/29/8/1836/25682281/mdy166.pdf
https://doi.org/10.1093/annonc/mdy166
https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1038/sdata.2017.117

References

Progression Assessment, and Overall Survival Prediction in the BRATS Chal-
lenge”. In: arXiv preprint (2018).

[11] McKinsey L.GoodenbergerRobert B.Jenkins. Genetics of adult glioma. url:
https://doi.org/10.1016/j.cancergen.2012.10.009. (accesed: 04.09.2019).

[12] David N. Louis et al. “The 2016 World Health Organization Classification of
Tumors of the Central Nervous System: a summary”. In: Springer (2016). doi:
10.1007/s00401-016-1545-1.

[13] Cancer of the Brain and Other Nervous System - Cancer Stat Facts. url:
https://seer.cancer.gov/statfacts/html/brain.html.

[14] Wikimedia Commons. Annotated Neuron. 2008. url: https : / / commons .
wikimedia.org/wiki/File:Neuron_-_annotated.svg.

[15] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier
neural networks”. In: Proceedings of the fourteenth international conference
on artificial intelligence and statistics. 2011, pp. 315–323.

[16] Bing Xu et al. “Empirical evaluation of rectified activations in convolutional
network”. In: arXiv preprint arXiv:1505.00853 (2015).

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The
MIT Press, 2016. isbn: 0262035618, 9780262035613.

[18] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. “Learning
representations by back-propagating errors”. In: Cognitive modeling 5.3 (1988),
p. 1.

[19] B. Mehlig. Artificial Neural Networks. 2019. arXiv: 1901.05639 [cs.LG].
[20] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1026–1034.

[21] Yann LeCun et al. “Object recognition with gradient-based learning”. In:
Shape, contour and grouping in computer vision. Springer, 1999, pp. 319–345.

[22] Wikimedia Commons. Convolutional Neural Network. 2014. url: https://
commons.wikimedia.org/wiki/File:Convolutional_Network.png.

[23] François Chollet et al. Keras. https://keras.io. 2015.
[24] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-

tion”. In: arXiv preprint arXiv:1412.6980 (2014).
[25] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully Convolutional

Networks for Semantic Segmentation”. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). June 2015.

[26] Murino L. Larobina M. “Medical Image File Formats”. In: J Digit Imaging 27
(2014), pp. 200–206. doi: 10.1007/s10278-013-9657-9.

[27] Case Western Reserve University. MRI Basics. 2006.
[28] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heteroge-

neous Distributed Systems. url: https://arxiv.org/pdf/1603.04467.pdf.
(accesed: 13.12.2019).

[29] Kalavathi Palanisamy and Surya Prasath. “Methods on Skull Stripping of MRI
Head Scan Images—a Review”. In: Journal of Digital Imaging 29 (Dec. 2015).
doi: 10.1007/s10278-015-9847-8.

76

https://doi.org/10.1016/j.cancergen.2012.10.009
https://doi.org/10.1007/s00401-016-1545-1
https://seer.cancer.gov/statfacts/html/brain.html
https://commons.wikimedia.org/wiki/File:Neuron_-_annotated.svg
https://commons.wikimedia.org/wiki/File:Neuron_-_annotated.svg
http://arxiv.org/abs/1901.05639
https://commons.wikimedia.org/wiki/File:Convolutional_Network.png
https://commons.wikimedia.org/wiki/File:Convolutional_Network.png
https://keras.io
https://doi.org/10.1007/s10278-013-9657-9
https://arxiv.org/pdf/1603.04467.pdf
https://doi.org/10.1007/s10278-015-9847-8

References

[30] Iglesias JE. Liu CY. Thompson P. Tu Z. “Robust Brain Extraction Across
Datasets and Comparison with Publicly Available Methods”. In: IEEE Trans-
actions on MedicalImaging 30(9) (2011), pp. 1617–1634.

[31] Barbara Zitová and Jan Flusser. “Image registration methods: a survey”. In:
IMAGE AND VISION COMPUTING 21 (2003), pp. 977–1000.

[32] Erik H. W. Meijering et al. “Quantitative Comparison of Sinc-Approximating
Kernels for Medical Image Interpolation”. In: Medical Image Computing and
Computer-Assisted Intervention – MICCAI’99. Ed. by Chris Taylor and Alain
Colchester. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 210–217.
isbn: 978-3-540-48232-1.

[33] Vincent Dumoulin and Francesco Visin. “A guide to convolution arithmetic
for deep learning”. In: arXiv preprint arXiv:1603.07285 (2016).

77

References

78

A
Appendix

A.1 Code and models
Link to github repository:
https://github.com/Laaggan/Master_thesis

Link to trained Keras models:
https://drive.google.com/drive/folders/1_bwPKMN2R7OXwfuVn8ThqN8VnUDTffEG

A.2 Predictions of the different network architec-
tures

The segmentation results from the network architectures experimented with and the
ground truth are depicted. The slices shown are from the test dataset and consists
of slice 70 from all the patients.

I

https://github.com/Laaggan/Master_thesis
https://drive.google.com/drive/folders/1_bwPKMN2R7OXwfuVn8ThqN8VnUDTffEG

A. Appendix

(a) Patient 102 (b) Patient 106

(c) Patient 121 (d) Patient 13

(e) Patient 130 (f) Patient 134

II

A. Appendix

(a) Patient 149 (b) Patient 151

(c) Patient 160 (d) Patient 166

(e) Patient 169 (f) Patient 174

III

A. Appendix

(a) Patient 187 (b) Patient 188

(c) Patient 189 (d) Patient 191

(e) Patient 20 (f) Patient 205

IV

A. Appendix

(a) Patient 21 (b) Patient 214

(c) Patient 235 (d) Patient 241

(e) Patient 243 (f) Patient 252

V

A. Appendix

(a) Patient 257 (b) Patient 263

(c) Patient 264 (d) Patient 34

(e) Patient 48 (f) Patient 49

VI

A. Appendix

(a) Patient 50 (b) Patient 52

(c) Patient 54 (d) Patient 58

(e) Patient 71 (f) Patient 80

VII

A. Appendix

(a) Patient 87 (b) Patient 88

(c) Patient 91 (d) Patient 99

(e) Patient 334 (f) Patient 333

VIII

A. Appendix

(a) Patient 329 (b) Patient 322

(c) Patient 313 (d) Patient 308

(e) Patient 293 (f) Patient 276

IX

A. Appendix

(a) Patient 273 (b) Patient 270

X

	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Background
	Aim and scope
	Limitations
	Outline of thesis

	Theory
	Semantic segmentation
	Segmentation of brain tumors
	Brain tumor classes

	Deep learning
	Supervised learning
	Artificial neurons
	Multi layer perceptron
	Activation functions
	Loss function
	Backpropagation
	Vanishing gradients
	Weight initialisation
	Convolutional neural network
	Z-score normalization

	Regularization
	Early stopping
	L2 regularization
	Dropout
	Data augmentation

	Optimizer
	Evaluation metrics
	Accuracy
	Dice coefficient
	Confusion Matrix

	Previous works
	Sliding window approach
	Fully convolutional network
	U-Net

	Methods and data
	Dataset
	MICCAI BraTS data
	Training, testing, validation
	Imbalanced data

	Software and libraries
	TensorFlow
	Keras
	3D Slicer

	Data pre-processing
	Skull stripping
	Registration and co-registration
	Spatial resolution
	Normalizing pixel-values

	Volume estimation and 3D visualization
	Research question
	Single stream U-Net
	Multi-stream U-Net
	Experimental design
	Single-stream U-Net experiments
	Multi-stream U-Net experiment
	Performance evaluation
	Volume estimation and 3D visualization

	Results
	Single-stream U-Net
	Multi-stream U-Net
	End-to-end training
	Sequential training

	Performance evaluation
	Confusion matrices
	Dice scores
	Predictions of models
	Volume estimation and visualization

	Discussion
	Experimental design
	Results
	Future work

	Conclusion
	References
	Appendix
	Code and models
	Predictions of the different network architectures

