

Using Classification Algorithms for
Smart Suggestions in Accounting
Systems

Master of Science Thesis in
Computer Science: Algorithms, Languages and Logic

HAMPUS BENGTSSON

JOHANNES JANSSON

Department of Computer Science & Engineering
Chalmers University of Technology
Gothenburg, Sweden 2015

The Author grants to Chalmers University of Technology and University
of Gothenburg the non-exclusive right to publish the Work electronically
and in a non-commercial purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants
that the Work does not contain text, pictures or other material that
violates copyright law.

The Author shall, when transferring the rights of the Work to a third
party (for example a publisher or a company), acknowledge the third party
about this agreement. If the Author has signed a copyright agreement
with a third party regarding the Work, the Author warrants hereby that
he/she has obtained any necessary permission from this third party to let
Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Using Classification Algorithms for Smart Suggestions in Accounting Sys-
tems
Hampus Bengtsson & Johannes Jansson

©Hampus Bengtsson & Johannes Jansson, June 2015.

Examiner: Graham Kemp
Supervisor: Olof Mogren

Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Gothenburg
Sweden
Telephone: +46 (0)31-772 1000

Cover art: A ledger detailing all work commissioned externally by Holmes
McDougall from 1941 to 1983. Adapted from picture by Flickr user Edin-
burgh City of Print, https://www.flickr.com/photos/30239838@N04/
4268190563, licenced under CC BY 2.0.

Department of Computer Science and Engineering
Gothenburg, Sweden. June 2015.

https://www.flickr.com/photos/30239838@N04/4268190563
https://www.flickr.com/photos/30239838@N04/4268190563

Abstract

Accounting is a repetitive task and is mainly done manually. The repet-
itiveness makes it a suitable target for automation, however not much
research has been done in the area yet.

This thesis investigates how two different classification algorithms, Support
Vector Machine with Stochastic Gradient Descent training and a Feed-
Forward Neural Network, perform at classifying financial transactions
based on historical data in an accounting context.

The classification algorithms show promising results but still does not
outperform the existing implementation which is simple and deterministic.
However, classification itself very much relies on the labels, i.e. how
different users have accounted the transactions. As a response to this,
we finally give a suggestion on how clustering might be used for the
automation of accounting instead.

Keywords: machine learning, multiclass classification, accounting, online
learning

Acknowledgements

We would like to thank our both supervisors: our academic supervisor, Olof
Mogren, and our advisor at SpeedLedger, Per Brendelökken. Furthermore
we want to thank everyone at SpeedLedger for a rewarding and exciting
spring!

Hampus Bengtsson & Johannes Jansson, Göteborg 2015-06-04

Contents

1 Introduction 1
1.1 SpeedLedger . 1
1.2 Aim . 2
1.3 Problem formulation . 2

1.3.1 Collecting attributes 2
1.3.2 Choosing appropriate classification methods 3
1.3.3 Measuring accuracy 3

1.4 Limitations . 3
1.5 Outline . 4

2 Theory 5
2.1 Preprocessing . 5

2.1.1 Feature normalisation and boolean representation 5
2.1.2 One-hot encoding 6
2.1.3 Bag of words . 6
2.1.4 Feature hashing . 7

2.2 Classification methods . 8
2.2.1 Linear classification using Stochastic Gradient Descent 8
2.2.2 Feed forward neural networks 10

2.3 Evaluation . 14
2.3.1 Performance measures and confusion matrices . . . 14
2.3.2 Cross-validation 16
2.3.3 McNemar’s test . 16
2.3.4 Welch’s t-test . 17

3 Implementation 18
3.1 Selecting and processing the attributes to a high-level rep-

resentation . 19
3.2 Vector representation . 19
3.3 Classification . 20

3.3.1 Neural networks 20

3.3.2 Support vector machines with stochastic gradient
descent . 21

3.4 Interpreting classifications 21
3.5 Adapting to single organisations 22

4 Experimental setup 23
4.1 Available data . 23

4.1.1 Raw data in database 23
4.1.2 High-level features 24

4.2 Computational resources 25
4.3 Parameters used . 25

5 Experimental results 28
5.1 Suggestion rate tradeoff 30
5.2 Accuracy over time . 32
5.3 Suggesting multiple accounting codes 33
5.4 Other notable results . 35

5.4.1 Accuracy on predefined vs user defined accounting
codes . 35

5.4.2 Impact of presence of bank transaction info 35

6 Discussion 37
6.1 Limiting factors . 38
6.2 Promising outlooks . 39
6.3 Results commentary . 39
6.4 Future work . 40

6.4.1 Unsupervised or semi-supervised learning 40
6.4.2 General improvements 41

7 Conclusion 43

A Explanation of accounting terms 44

Bibliography 46

1 Introduction

Accounting is still largely a manual labour, though for small companies and
associations it is mainly monotonous work. The company SpeedLedger,
whom this master thesis is performed in collaboration with, has a service
that tries to minimise the manual labour in accounting to make it easier
and more efficient.

Giving smart suggestions is an important part of automating the account-
ing process. Accounting in general and classification of transactions in
particular is a mixture of monotonous work and making intelligent deci-
sions. Even though this sounds like a fitting task for machine learning,
not much research has been done in this area of accounting [1].

1.1 SpeedLedger

In the system of SpeedLedger, the procedure of classifying transactions
works as follows: SpeedLedger has access to the organisations’ bank
records as well as accounting records1 and gives a proposal on how to
assign accounting codes to new transactions, which is accepted (or rejected,
which is done by selecting a different accounting code1) by the user2 as
the last step of the process.

SpeedLedger currently has a näıve classifier. When a new transaction is
retrieved from the bank, the accounting code of the latest transaction
from the same organisation with the same recipient is suggested. If no
recipient is found, the accounting code of the latest transaction with
identical text is suggested. In the case where no such transaction exists
either, no suggestion is made. The focus of this thesis is to evaluate how

1For an explaination of accounting terms, see Appendix A.
2The terms user and organisation are largely synonymous. When a distinction is

made, the user preforms the interaction with the system and the organisation owns the
actual accounting.

1

(and which) classification methods can be used to improve the suggestions
given and how they perform.

Because of the large amount of data, a requirement for the classifier used
is that it can handle incremental learning well as it would be infeasible to
keep all of the training data in memory. Incremental learning, in contrast
to batch learning, is when a classifier can learn continually from a stream
of samples instead of learning on a group of samples at once [2].

1.2 Aim

The aim of the thesis is to compare the performance of different classi-
fication algorithms and the näıve approach in the setting of classifying
financial transaction with regard to how they should be accounted. This
includes measurements of the accuracy of implemented algorithms.

1.3 Problem formulation

The problem is formulated as follows: given the data points, possibly
deliver a suggestion. Based on the suggestions given, the goal is to max-
imise the quality and overall precision (the terms are described in chap-
ter 5).

To reach our aims, several tasks must be completed. To some extent, the
latter tasks build on the earlier.

1.3.1 Collecting attributes

Finding relevant attributes is obviously imperative for succeeding in clas-
sification. To begin with, there are attributes straight from the database
which are useful: transaction date, transaction amount, transaction text,
transaction recipient etc. However, with some preprocessing the possibil-
ities increase, especially when it comes to gathering information about
the organisation: relation to the other party, what the line of business is,
yearly spending per accounting code, how often each accounting code is
used, turnover etc.

2

1.3.2 Choosing appropriate classification methods

A lot of different classification methods with different properties ex-
ist [3][4][5]. They all come with a set of advantages and drawbacks,
which make them suitable in different situations – of course with some
overlap. Many algorithms were evaluated initially; two were found that ful-
filled the requirement of handling incremental learning, and are described
in this thesis.

1.3.3 Measuring accuracy

To compare different classification algorithms fairly, one must consider
several different aspects of measuring accuracy.

The first aspect is how to make the measurements. There are several
possible ways of measuring the accuracy of a classifier. The theory behind
the methods for evaluation of classifiers used in this thesis are described
in section 2.3.

The next aspect is what to measure. There are several use cases to
consider: scores for existing organisations as well as new ones, how the
accuracy differs when using some of the data available but not other data
et cetera.

Furthermore, there is the aspect of taking into account the possible sources
of errors: the existing näıve implementation has an advantage in users
possibly accepting suboptimal proposals.

It may also be found valuable to evaluate the accuracy of ranked sug-
gestions, where up to n suggestions are presented to the user in order
of likelihood. Instead of just measuring the percentage of correct vs.
incorrect answers, one could measure the percentage of the first, second,
third or none of the suggestions being correct.

1.4 Limitations

In accounting many special cases exist that can complicate the process
of automating tedious tasks. This section lists the limitations of what is
included in the thesis.

• BAS chart of accounts only. Every organisation may choose to
deviate from the most widespread chart of accounts (BAS, see Ap-
pendix A). We primarily target BAS users as we believe this reduces

3

a lot of complexity. Furthermore, a general solution is believed to
give only a marginal improvement.

• Single assignment of accounting code only. We disregard cases
where a user needs to assign several accounting codes to a single
transaction. Without the accounting records, this is in general not
possible even for a human.

• No dynamic suggestions of VAT codes. One could imagine
cases where different VAT codes (see Appendix A) are desired for a
single given accounting code; however this is not the main use case
and is not taken into account. Indeed, in the current implementation
of the system, VAT codes are statically linked to accounting codes.

1.5 Outline

Chapter 2 describes the theory behind the different parts of the classifi-
cation process including preprocessing and evaluation. In chapter 3 the
implementation phase is described, e.g. the libraries used and how the
different steps of preprocessing was done. Chapter 4 shows the setup for
the experimental results. Chapter 5 presents the experimental results of
the classifiers used. Chapter 6 discusses the results and the work in the
thesis and presents possible future improvements. In chapter 7 the thesis
is concluded.

4

2 Theory

This chapter introduces the theory behind different techniques regarding
preprocessing of data (for use in machine learning classification algorithms),
the classification algorithms, and methods used for evaluation of the
performance of classification.

2.1 Preprocessing

It is generally agreed that data preprocessing and preparation is one of
the most important and difficult (and also most time-consuming) part of
a project in data mining [6].

This section describes different techniques for preprocessing data to make
it usable for machine learning classification algorithms.

2.1.1 Feature normalisation and boolean representation

In machine learning, feature normalisation is often applied as a prepro-
cessing step in order to increase the precision [7].

Normalisation to standard score is done using

x̂ =
x− µ
σ

, (2.1)

where µ is the mean and σ is the standard deviation of the samples [8].

A boolean variable can be represented in multiple ways, {−1, 1} and {0, 1}
are two of them. The method of normalisation to use depends on how
booleans are represented, as many machine learning algorithms perform
better with an equal distribution for all of the variables in the feature
vector.

5

2.1.2 One-hot encoding

In classification of input data where the value of a certain feature can
be any of K categories (categorical features), the feature is commonly
represented with a vector of length K where each of the values in the
vector can be either 0 or 1. Only the value to be encoded is marked with
1, leaving the others 0 [6][9]. If only a single variable was used and set to
an index instead, it would be implicitly and incorrectly implied that there
is a relationship between indices that are close to each other.

An example of this is having a feature representing a color where the value
could be any of Red, Green or Blue. A possible representation for each
of the colors can be seen in Table 2.1. If they were instead encoded as a
single variable with the values 1, 2, 3, red and blue would be less similar
than red and green.

Color v0 v1 v2
Red 1 0 0

Green 0 1 0

Blue 0 0 1

Table 2.1: A one-hot representation for colors.

This way of encoding categorical features is used in e.g. [10], where 32
different algorithms are compared on multiple datasets.

2.1.3 Bag of words

A convenient way to represent text in classification is the bag of words
approach [11]. Each word is represented by a distinct entry in the feature
vector to describe e.g. the number of occurrences of that specific word in
the text to be classified. An example of the bag of words representation
can be seen in Figure 2.1 where only the presence or absence of a word
is shown in the example on the left, and the number of occurrences of a
certain word is shown in the example to the right.

6

“one by one”

by

one

tree

1
1
0

by

one

tree

1
2
0

Figure 2.1: Example of binary (left) and regular (right) bag of words represen-
tation of a string. Note the difference for the word “one”, which occurs twice.
The vector length is equal to the dictionary size.

This encoding well represents the fact that the strings in the transaction
and payment texts (described in section 4.1) are short – only a few words
– and that most words are essentially labels describing a transaction. By
definition, the main drawback is that the dictionary of possible words
to represent must be known in advance (something that is not always
the case in online learning). Another drawback is that the length of the
feature vector grows linearly with the number of distinct words in text
corpuses, and thus it may grow to infeasible sizes.

2.1.4 Feature hashing

A way to handle the problems with the bag of words representation is to
utilise hashing of the attribute words [12][13]. In its basic form it works
much like a hash table, where a modulo operation decides the appropriate
entry for the hash.

The advantage of this representation is that any text can be represented
with a fixed number of variables. The drawback is that some information
is lost due to hash collisions, as in Figure 2.2 where a hashing function
has calculated the hash value for the different strings and the hashing of
the words by and one create a hash collision.

“one by one”

by, one, cat, ...

tree, dog, ...

1
0

Figure 2.2: An example of feature hashing. The vector is shorter than the
dictionary size, so the words may clash.

7

2.2 Classification methods

In machine learning, classification is a kind of supervised learning, where
the machine learning algorithm is trained on n samples (x1, y1), (x2, y2), ...,
(xn, yn), where xi is a vector containing the different features and yi the
class of the vector. The class is often defined as yi ∈ {−1, 1} for binary
classification and yi ∈ {1, ...,K} for multiclass classification [9][11].

During classification, the algorithm is given a sample represented by a
feature vector x and should return the class y of that sample based on
what it has learnt from training.

In this section we describe the theory behind the classification algorithms
used in this master thesis and why they are relevant to the thesis.

2.2.1 Linear classification using Stochastic Gradient De-
scent

In linear (binary) classification, such as when using Support Vector Ma-
chines (SVM) [14], samples can be classified using a so called decision
function [15]:

fw(x) = wT · x+ b, (2.2)

where w is the weight vector which decides how much each feature weighs
in during classification, x is the sample to be classified, and b is a bias. In
the following section it will be presented how the decision function can be
optimised using stochastic gradient descent.

Gradient descent

In statistical learning theory, gradient descent is a method that can be
used for minimising the empirical risk Remp [16]:

Remp(fw) =
1

n

n∑
i=1

`(fw(xi), yi) (2.3)

Here, n is the number of samples and `(ŷ, y) is the loss function, which
is used to estimate the error of predicting the class ŷ when the class

8

really was y. Some of the commonly used loss functions described in [17]
are

Hinge loss: `(ŷ, y) = max(0, 1− yŷ) (2.4a)

Logistic loss: `(ŷ, y) = ln(1 + exp(−yŷ)) (2.4b)

Modified huber loss: `(ŷ, y) =

{
max(0, 1− yŷ)2 for yŷ ≥ −1

−4yŷ otherwise
(2.4c)

Using gradient descent the weight vector of the decision function is updated
according to Equation 2.5 during training.

wt+1 = wt − ηt
1

n

n∑
i=1

∇wt`(fwt(xi), yi) (2.5)

ηt is the learning rate which decides to what extent the weight vector
should be affected by the gradient of the empirical risk.

Stochastic gradient descent

Stochastic gradient descent (SGD) is a simplification of the gradient
descent where, instead of averaging the gradients of the loss function
applied to multiple samples, a single sample (xt, yt) is selected randomly
and the weight vector is updated [18]:

wt+1 = wt − ηt∇wt`(fwt(xt), yt) (2.6)

This method of approximating the empirical risk was suggested in the
1950s [19] and in later years it has been shown that this method performs
well for large scale machine learning tasks [20].

The process of randomly selecting the next sample to use for updating
the weight vector makes SGD appropriate for online learning; as the task
of classifying transactions involves datasets containing millions of samples,
SGD is a good candidate for handling the task at hand.

9

During training the weight vector is updated according to Equation 2.6
but often a regularization term R(w) is added to penalise overly complex
models (to avoid overfitting) [21]:

wt+1 = wt − ηt(∇wt`(fwt(xt), yt) + α∇wtR(wt)), (2.7)

where α is a positive hyperparameter. The bias b is updated in a similar
manner.

Classification is done using the decision function (Equation 2.2) by looking
at the sign of the result [15]. Multiclass classification can be done in
multiple ways; e.g. One-versus-Rest classification, which is a way to
reduce the multiclass problem into several binary class problems using
one classifier per class. The class of a new sample is then predicted by
using the class of the classifier scoring highest [15].

This classifier requires a weight matrix with the dimensions C × F where
C is the number of classes and F the number of features.

In the rest of the thesis, this classifier will be denoted as SVM-SGD.

2.2.2 Feed forward neural networks

A feed forward neural network (FFNN) consists of several artificial neurons,
constrained by how they are interconnected. The general information
in this section is taken from [22]. There are several models of neurons,
and the model we refer to in this section derives from the perceptron
described by Rosenblatt in 1958 [23], which in turn derives from the
1943 McCulloch-Pitts neuron [24] (MPN). Models of artificial neurons
resemble their biological counterparts in that they both have weighted
inputs and perform a simple computation in order to form a single output
signal.

An artificial neuron has n inputs x1 . . . xn, n weights w1 . . . wn, a bias b
and one output y. The output is computed as

y = φ

(
n∑
i=1

xiwi − b

)
,

where φ is the activation function. The bias may be implemented by adding

10

a fixed input x0 = 1 and a weight w0 = b. This gives the function

y = φ

(
n∑
i=0

xiwi

)
, (2.8)

making the implementation of bias more transparent.

The early models use the Heaviside step function as an activation function,
and the MPN has a fixed threshold rather than a variable bias. MPN also
has other constraints, such as discrete positive1 weights. The perceptron
was the first model with a learning rule; the weights and thresholds for
the MPN were chosen manually.

Today, artificial neurons are used more flexibly. Any activation function
is valid, but it must be differentiable in order to use backpropagation (as
we will see in the following sections). One important class is sigmoidal
functions which have upper and lower bounds, and transition smoothly
between them. There is also rectified linear activation [25] and variants
such as the smooth approximation called softplus [26]; these are (approxi-
mately) zero for negative input and (approximately) linear for positive
input.

Topology

Neurons can in general be connected to each other in any way. A network
in which the neurons make up a directed acyclic graph is a feed forward
neural network. In contrast, if any cycles exist in the network graph,
it is called a recurrent neural network (RNN). In a layered FFNN, the
neurons are arranged in several layers: an input layer, an output layer and
optionally one or more hidden layers. Subsequently, we will be speaking
about layered FFNNs unless otherwise noted.

Shallow neural networks with one or two hidden layers are typically
used for standard classification; at least one, with a non-linear activation
function, is needed in order to implement output functions that are not
linearly separable. There are also deep neural networks (DNN) [27] for
learning complex patterns, where each layer is supposed to raise the level of
abstraction one step. For example: an image may be represented as pixels;
these pixels may form edges and lines, which in turn may compose shapes,
finally allowing object recognition. The techniques for training DNNs
differ somewhat from training shallow networks because of the higher

1Inhibitory input is allowed as well, and overrides any other input, forcing negative
output.

11

number of layers. We will focus on shallow networks in the following
sections about training.

Each layer is fully connected to the next, and there are no other connections
between neurons. See Figure 2.3 for an example of an FFNN with a single
hidden layer; each arrow between neurons represents a weighted input (i.e.
xiwi in Equation 2.8). The number of weights necessary for a network
with k layers, where the number of neurons in each layer is L1 . . . Lk, is
thus given by

k−1∑
i=1

LiLi+1, (2.9)

which equals Lhidden ·(Linput+Loutput) for a network with one hidden layer.
When Lhidden � Linput and Lhidden � Loutput, the memory requirement
for a FFNN is much less than that of an SVM.

Figure 2.3: A feed forward neural network with one hidden layer. Image by
Wikimedia user Chrislb, licenced under CC BY-SA.

Under these conditions, feeding a sample to the neural network can be
implemented as a series of matrix multiplications (and of course calling
the activation functions). Note that the process of feeding an input vector
is completely separate from training.

Training as an optimisation problem

Training a feed forward neural network is an optimisation problem; the
goal is to find the weight matrices W that minimise the error rate EW of
the classifier. Classical optimisation methods are infeasible because of two
main problems. The first problem is the curse of dimensionality, since the
number of weights grows linearly with the number of inputs and outputs.
The second is that EW cannot be expressed analytically, nor is it convex,

12

http://commons.wikimedia.org/wiki/File:MultiLayerNeuralNetworkBigger_english.png

and so must be approximated by classifying a number of samples, which
is resource intensive if a good approximation is sought.

The number of hidden layers, and the number of neurons in each layer,
are hyperparameters that are important for the FFNN performance re-
gardless of how the weights themselves are computed. There are several
ways to find a good topology, out of which genetic algorithms is one
possibility [28].

Training with backpropagation

Backpropagation is a method made specifically for training neural networks.
It is done by computing the output error and feeding it backwards through
the network (hence the name, backwards propagation of errors) in order
to compute the gradient of the activation function (hence the requirement
of a differentiable function). This is coupled with an optimisation method
to actually improve the weights.

There are many ways to use the gradient, for example gradient descent
and stochastic gradient descent. With gradient descent, the whole test set
is first backpropagated without changing any weights. The gradients are
then weighted together, and a small step is then taken in this direction
by updating the network weights. This approximates the gradient well,
but is computationally expensive. Stochastic gradient descent is a small
variation where the weights are instead updated after each backpropagation
of the samples in random order. This means some steps may be taken
uphill on the error function surface, which may be beneficial for avoiding
local minima. Compare this way of using stochastic gradient descent to
subsection 2.2.1.

There are variations of backpropagation. One is to add momentum; in
each update, a fraction of the last step in the search space is added to
the current position, η(Wt − Wt−1), in order to increase the speed of
convergence, especially when the gradient is small. The magnitude of the
step is denoted η. Another variation is weight decay; in each update, all
weights are decreased with a factor d. This makes weights that are seldom
used decrease over time.

Since the optimisation is only guided by the gradient, backpropagation
is sensitive to local minima but relatively fast if initiated near a good
solution. How well the weight updates follow the gradient depends on the
choice of optimisation method, however. Note that the error rate EW is
not measured directly but rather the activation function of the output
layer is used.

13

Training with particle swarm optimisation

Backpropagation avoids both the dimensionality problem and expensive
approximation problem by using the greedy (stochastic) gradient descent
algorithm. There are, however, other stochastic optimisation methods suit-
able for tackling the problem. In this section, particle swarm optimisation
(PSO) is described.

PSO has a number of particles, each of which has a position and velocity
in the search space. Unlike backpropagation, it does not rely on the
objective function being differentiable. Rather, for each sampled point
in the search space, EW has to be estimated by classifying a sufficient
number of samples. The particles are systematically directed towards
the global and local best found so far. Since the particles are guided
by their velocities rather than a local gradient, it is easy to guide the
tradeoff between exploration and exploitation (i.e. wide searching in hope
of finding more global minima and local searching in order to improve the
current best solution, respectively).

These properties make PSO good at finding globally favourable solutions,
but slower towards the end of the search. There are also other pleasant
properties: it has few parameters compared to backpropagation, and it is
trivially parallel. It is also less sensitive to the exact value of bias value
x0, for example.

PSO has been shown to train FFNN faster than backpropagation [29],
however under somewhat different circumstances. The examined network
had around a dozen weights, while we have over a million; it evaluates a one-
dimensional function, while our dimensionality is in the tens of thousands;
it is tested with 21 and 201 samples, while we use thousands or millions.
Furthermore, the measure used was the number of operations until a
specific training error was achieved, not the minimum error achieved.

2.3 Evaluation

This section presents an introduction to relevant theory regarding different
ways for evaluating and measuring the accuracy of classifiers and how to
compare different classifiers.

2.3.1 Performance measures and confusion matrices

The results of a classification algorithm can be shown in a confusion ma-
trix [30] (see Table 2.2). In the matrix the distribution of the classifications

14

Predicted
C1 C2 · · · Ck

A
ct

u
al

C1 n11 n12 · · · n1k
C2 n21 n22 · · · n2k
...

...
...

. . .
...

Ck nk1 nk2 · · · nkk

Table 2.2: Confusion matrix for multiclass classification.

is shown by the class predicted by the classifier on one axis and the actual
class on the other. Using the values from Table 2.2, different values used
when measuring the performance of a classifier can be found:

TPc = ncc (2.10a)

FPc =

k∑
i=1

nic − TP c (2.10b)

FNc =
k∑
i=1

nci − TP c (2.10c)

TNc =
k∑
i=1

k∑
j=1

nij − TP c − FP c − FN c (2.10d)

where TPc is the true positive for the class c, FNc the false negative, FPc
the false positive and TNc the true negative.

Some of the measures for multiclass classification are [30]:

Average accuracy:

∑k
c=1

TPc+TNc
TPc+FNc+FPc+TNc

k
(2.11a)

Error rate:

∑k
c=1

FPc+FNc
TPc+FNc+FPc+TNc

k
(2.11b)

Precisionµ:

∑k
c=1 TPc∑k

c=1(TPc + FPc)
(2.11c)

Recallµ:

∑k
c=1 TPc∑k

c=1(TPc + FNc)
(2.11d)

For a classification problem where each sample only has one label each (the
common version of multiclass classification), precisionµ = recallµ [31].

15

2.3.2 Cross-validation

A common way to measure the accuracy of a classifier is using cross-
validation. In cross-validation [32][33][34], the data set is divided into k
different groups of samples. The classifier algorithm is then trained on
all but one of the k subsets and tested on the last subset. The procedure
is then done over again using each of the k subsets as a testing set once.
The accuracy of the classifier is estimated as the average of the accuracies
for the different subsets.

In Figure 2.4 the partitioning of the sample set in 3-fold cross-validation
is shown.

Training

Test

Figure 2.4: 3-fold cross validation.

2.3.3 McNemar’s test

In McNemar’s test [32][35], two classifiers are compared by dividing the
classified samples into two categories per classifier: correctly classified and
incorrectly classified samples. The contingency table seen in Table 2.3 is
then constructed from the four different combinations of outcomes the
two classifiers can have combined.

CA correct CA incorrect

CB correct a b

CB incorrect c d

Table 2.3: Contingency table for McNemar’s test between classifiers CA and
CB.

Using the values from the filled table the McNemar’s statistic is ac-
quired:

χ2 =
(b− c)2

b+ c
(2.12)

16

To be able to reject the null hypothesis that both classifiers have the same
error rate (b = c), χ2 has to be statistically significant and if it is, it is
possible to say that one of the classifiers CA or CB performs better than
the other.

2.3.4 Welch’s t-test

The Welch’s t-test [36] is a test for comparing the means of two populations
which may have different variance (unlike the Student’s t-test where both
populations have to have the same variance [37]). The test statistic is
described in Equation 2.13.

t =
x̄1 − x̄1√
s21
n1

+
s22
n2

(2.13)

Here x̄1 and x̄2 are the sample means, s21 and s22 the sample variances and
n1 and n2 the sample sizes.

17

3 Implementation

A classifier takes a data point as input and gives a classification as
output. In fact, in our case, the classifier returns several classes, ranked
by confidence. Thus, the flow of classification is as follows: create data
points, feed them to the classification algorithm, and choose one of the
returned classes.

A data point, in this thesis, is all information about a transaction and
the organisation at the point in time when the user chooses an accounting
code (i.e. provides the correct classification for that transaction) together
with the label. As we will see in sections 3.1 and 3.2, a single data point
can be represented in different ways.

The process of creating data points, feeding it to classifiers and interpreting
the results is depicted in Figure 3.1 and Figure 3.2.

Float

String

Category

x1
x2
x3
x4
x5
x6
x7
x8

Raw data High level data Vector representation

Figure 3.1: The process of creating the data points (in the form of a vector
representation) from the data in the database. First the raw data is converted to
high level attributes (described in section 3.1) and then further transformed into
the vector representation (see section 3.2).

18

Classi�er

x1
x2
x3
x4
x5
x6
x7
x8

y1
y2
y3
y4
y5
y6

ysuggestion

Fe
as

ib
le

 a
cc

ou
nt

s
�l

te
r

Co
n�

de
nc

e
�l

te
r

Figure 3.2: Feeding the vector representation to the classifier (section 3.3) and
possibly selecting a label to suggest based on how the results from the classifier
were filtered (section 3.4). The y vector contains the confidence for each output
class.

This chapter describes how the theory seen in chapter 2 is used in order
to implement this process. Finally, in section 3.5, a method for online
adaption to single organisations is presented. A closer look on the actual
data and machine learning parameters is made in chapter 4.

3.1 Selecting and processing the attributes to a
high-level representation

From the database, useful data were extracted to a number of high-level
features suited for further processing. Features such as turnover, part
of financial year (when the transaction was made) and proportion of
usage for different account numbers which were not stored directly in the
database were calculated from the raw data (presented in subsection 4.1.1)
to a high-level representation. The final high-level features are described
in subsection 4.1.2.

3.2 Vector representation

Many classification algorithms require that the input is in numeric form,
and several attributes of seemingly high importance were strings or cat-
egories (such as the transaction text and the recipient number). There
are multiple ways to represent this high-level data as a low-level vector of
floating numbers (as described in section 2.1). In this section it is described
how the vector representations of such data in this project was done. The
different variables were all normalised according to subsection 2.1.1.

19

Text features and categorical features

Different categorical features were preprocessed in different ways. The
organisation form (corporation, trading company etc) was represented
using the one hot technique (described in subsection 2.1.2) as the possible
values for that feature were limited to a pre-known number of different
categories (extracted from the name of the BAS chart of accounts version
used by the company). Other categorical features and text was represented
using feature hashing (described in subsection 2.1.4) since the size of the
category and dictionary, respectively, is not known in advance.

Missing values

Most data points lack values for some attributes. The easiest approach of
handling such data points is to simply omit them, though this would lead
to a loss of the majority of the data points and was not considered.

Another simple approach to represent this is to add a binary variable
to indicate that data is missing (as done in [38]). The other variables
related to the attribute are set to static, low information values (typically
zeroes).

Other, more elaborate ways to handle missing values exist [39][40][41], but
because of the time limit it was decided to go with the approach of adding
an extra variable.

3.3 Classification

Many machine learning algorithms are easily available in different li-
braries [4][42]. As the focus of this master thesis was not to re-invent
the wheel by implementing existing classification algorithms, but to eval-
uate how different algorithms would perform in the problem at hand,
more attention was given to find libraries that were easy and efficient to
use.

This section describes how the different machine learning techniques were
used in the thesis and the libraries in which they are implemented.

3.3.1 Neural networks

One of the classifiers is a feed forward neural network trained with back-
propagation, described in subsection 2.2.2. Both the neural network itself

20

and the backpropagation is implemented in PyBrain.

PyBrain is an easy-to-use Python library for using different types of neural
networks. We chose this library because it works out of the box. It allows
for expressing many types of networks; one may for example add arbitrary
connections between neurons. The essential hyperparameters are easy to
configure.

There are, however, drawbacks as well. The documentation is subpar, and
there has not been any development of new features for the last few years.
It is also not very fast: pure math operations use NumPy, but much of
the code is pure Python. There are forks such as cybrain and ARAC
that aim to make the implementation faster, but we have not evaluated
these.

3.3.2 Support vector machines with stochastic gradient de-
scent

As described in subsection 2.2.1, the use of a linear model with Stochastic
Gradient Descent (SGD) learning has been shown to give good performance
in settings with many samples and high dimensional feature vectors.

In this thesis, the implementation of the linear model (in our case an
SVM [14]) using SGD called SGDClassifier in the library Scikit-learn [4]
was used. The implementation allows for tuning of the different hyperpa-
rameters needed: the loss function, the α-value, the regularisation term
etc. The softmax function [15] was applied to the score for different classes
to get the output in the range (0, 1) to represent the confidence of the
classifier.

Scikit-learn is a widely used machine learning library for Python with
easy to use documentation and a lot of examples. It has continuous
development and a large community of developers contributing1.

3.4 Interpreting classifications

To simulate the behaviour of the live system of SpeedLedger and for
improved precision, a so called feasible accounts filter was used. Each
user has its own chart of accounts, meaning only a subset of all possible
accounts are valid; the feasible accounts filter simply removes the invalid
accounts from the list of suggestions.

1See https://github.com/scikit-learn/scikit-learn

21

https://github.com/scikit-learn/scikit-learn

To further improve the suggestions from the classifier another filter was
added: to only give suggestions when the confidence of the classifier for
the sample was above a given limit. This would improve the accuracy of
suggestions actually given, which is good in the system of SpeedLedger
where bad suggestions might decrease the credibility of the classifier.

Another post-processing step made was to find the top N classes given
from the classifier and compare them against the actual class of the
corresponding sample. It would be possible for SpeedLedger to adapt
the software to be able to give several suggestions, and as such it was
interesting to get measurements for different values of N .

3.5 Adapting to single organisations

As different organisations do their accounting differently, a process of
adapting a classifier to single organisations was developed. This process
was used to improve the precision of the classifiers when a new organisation
is encountered. The process works as follows:

First select k different organisations that will simulate new ones. Then
train the classifier continuously on samples (drawn randomly) from all
organisations except the k ones mentioned above. When a certain limit is
reached (e.g. based on time or number of epochs) the training is stopped
and a copy for each of the k organisations is created.

Each of the k classifiers specialises on a certain organisation by performing
online learning, i.e. testing one sample at the time from that organisation
(with the samples ordered chronologically) and then training on the sample
just tested on. To be able to learn more from each sample the classifier
is allowed to train on N samples back in time from the current sample
(in section 4.3, the choice of training on previous samples is denoted as
batchlearning and N as size of batch).

22

4 Experimental setup

This chapter describes the raw data available at SpeedLedger, the resources
with which the experiments were run and which parameters were used in
the classification algorithms.

4.1 Available data

In SpeedLedger’s system, two kinds of entities describing financial transac-
tions exist: bank transactions and payments. A bank transaction describes
an event that has occurred on the organisation’s bank account, e.g. when
money for an outgoing invoice has been received or when a customer has
paid an invoice. A payment describes the purchase itself, and as such is
possibly created before any exchange of money has occurred.

Payments are only created for organisations that use the accrual method
(see Appendix A), because separate records are created for when an invoice
is received and when it is paid [43][44]. A payment will thus eventually
have a connection to a bank transaction, unless it is cancelled, as the bank
transaction describes the event of actually transferring the money.

4.1.1 Raw data in database

In the database of SpeedLedger, the following columns exist for bank
transactions and payments (note that only columns relevant for this
project are shown):

Bank transaction

• transaction date

• transaction amount

• transaction text

23

• journal entry id

Payment

• payment amount

• recipient id

• payment date

• payment note

• payment category

• journal entry id

In addition to the information about the actual transaction or payment,
there is information about the organisation making them. This could
provide context for the transactions, possibly making them easier to
classify for the classifiers:

Organisation

• organisation id

• organisation form (corporation, trading company etc)

• addresses of customers to the organisation

• start and end of financial years

In the database, the entire accounting records of the different organisa-
tions exist, which allows for features describing historic properties of the
organisations or properties that change over time, e.g. turnover or how
the usage is distributed between accounting codes.

4.1.2 High-level features

The features that were processed (according to section 3.1) from the raw
data in the database together with the type of the feature can be seen
in Table 4.1.

Many features describe the current state of the organisation. While
running on historical data, this had to be stored for every data point (i.e.
every relevant point in time); however, when used in the live system, only
the current state of the organisation needs to be maintained.

24

Description Type

Which part of the month Float

Which part of the financial year Float

Amount Float

Transaction text String

Payment category String

Recipient number Categorical

Turnover Float

Organisation id Categorical

Organisation form (corporation, trading
company etc)

Categorical

How large portion of the customers are
international customers

Float

How frequently each accounting code is
used

Floats

The amount of money accounted on each
accounting code

Floats

In which extent the customer uses group
accounts versus detailed accounts (see Ap-
pendix A for explanations of the terms)

Float

Table 4.1: The high-level features used

4.2 Computational resources

The classification algorithms were run on laptops with mid-range hardware.
The hardware on the laptops were:

Laptop 1: Intel® Core™ i5-3317U CPU @ 1.70GHz, 8 GB RAM

Laptop 2: Intel® Core™ i3-2367M CPU @ 1.40GHz, 6 GB RAM

During the thesis it was discussed to use more computationally capable
hardware, but because of time constraints this was not done.

4.3 Parameters used

The parameters used in the different classification algorithms were found
using randomised parameter optimisation [45]. For both of the classifiers,
the parameters searched are listed and the ones chosen are highlighted.
The parameters for SVM-SGD are shown in Table 4.2 and 4.3 and for
FFNN in Table 4.4 and 4.5. Training on many/single organisations refer

25

to the process described in section 3.5.

Description Values

Loss function {hinge, modified huber}
Regularisation term (penalty) {None, L1, L2, Elastic net1}
α2 {10−5, 10−4, 10−3, 10−2, 10−1, 10−0}
Learning rate3 {constant, optimal, inverse scaling}
η0

4 {0.25, 0.5, 0.75}
powert

4 {0.1, 0.3, 0.5, 0.7, 0.9}

Table 4.2: SVM-SGD: When training on many organisations.

Description Values

Alpha value {10−5, 10−4, 10−3, 10−2, 10−1, 10−0}
Learning rate {constant, optimal, inverse scaling}
η0 {0.25, 0.5, 0.75}
t 5 6 {1, 10, 100, 1000}
Batchlearning {True, False}
Size of batch {3, 5, 7}

Table 4.3: SVM-SGD: When training on a single organisation (the parameters
not listed are the same as in Table 4.2).

The learning rates listed in Table 4.2 and 4.3 are defined as in Equation 4.1
in the implementation in Scikit-learn used in this thesis7.

Constant: ηt = η0, (4.1a)

Optimal: ηt =
1

t+ t0
, (4.1b)

Inverse scaling: ηt =
η0

tpowert
, (4.1c)

1Elastic net is a combination of L1- and L2-regularisation
2See Equation 2.7
3ηt in Equation 2.5
4Used only when learning rate is constant or inverse scaling, thus no value was

selected
5Used only when learning rate is optimal or inverse scaling, thus no value was

selected
6A counter for the number of samples trained on so far. For the learning rates

optimal and inverse scaling, a higher t value gives a lower learning rate, see Equation 4.1.
Setting it to a lower value when starting to train on a single organisation thus increases
the learning rate.

7See http://scikit-learn.org/stable/modules/sgd.html

26

http://scikit-learn.org/stable/modules/sgd.html

Description Values

Learning rate {0.025, 0.05, 0.1, 0.15, 0.2}
Decay of learning rate {0.99, 0.999, 0.9999}
Momentum {0.0, 0.05, 0.1, 0.2, 0.35}
Weight decay {0.0, 0.01, 0.05, 0.1}
Minimum learning rate limit {0.0005, 0.001, 0.005, 0.01, 0.05}
Topology (neurons in first hidden layer) {55, 65, 75, 85, 95}
Topology (neurons in second hidden layer) {0, 35, 70, 120, 300}
Activation function for output layer {softmax [15], sigmoid}

Table 4.4: FFNN: When training on many organisations.

Description Values

Learning rate {0.005, 0.01, 0.025, 0.05, 0.08}
Decay of learning rate {0.99, 0.999, 1.0}
Momentum {0.0, 0.02, 0.05, 0.1}
Weight decay {0.0, 0.02, 0.05, 0.08}
Minimum learning rate limit {0.0005, 0.001, 0.005, 0.01, 0.05}
Batchlearning {True, False}
Size of batch {3, 5, 7}

Table 4.5: FFNN: When training on a single organisation (the parameters not
listed are the same as in Table 4.4).

27

5 Experimental results

In this chapter graphs and measurements of the applied algorithms are
shown, together with results of the different implementation choices de-
scribed in chapter 3. The notation overall precision and quality will
be used, where overall precision refers to the precisionµ (as described
in subsection 2.3.1) for all samples, and quality refers to the precisionµ
for only the samples where a suggestion was actually given1.

Cross-validation (described in subsection 2.3.2) is a common way to
measure accuracy in classification. It was not used because it assumes
that all samples are equivalent and unordered, though in our setting the
samples are ordered which required other ways of measurement.

Together with the prediction for a data point, a classifier returns the
confidence for how certain it is that the given prediction is the correct
one, as described in Figure 3.2. When the suggestions given by a classifier
are ordered by confidence, it can be seen (as in Figure 5.1) that a higher
confidence gives higher precision. In sections 5.1 and 5.2 this is used to
give suggestions in only a limited amount of times, suggestions which are
more probable to be correct than if all suggestions where given.

1Recall that the classifier may choose not to give a suggestion.

28

0 20 40 60 80 100

20 %

40 %

60 %

80 %

Percentile

P
re

ci
si

o
n

Precision at different percentiles in sample distribution

SGD-SVM
FFNN

Figure 5.1: The overall precision for different percentiles in sample distribution
when samples are sorted on confidence.

The confidence given by the classifiers lies on an arbitrary scale from 0 to
1, inclusive. Limiting the suggestions given based on the confidence yields
different suggestion rates for the different classifiers, which can be seen
in Figure 5.2 (where it is clear that a higher confidence limit gives a lower
suggestion rate). Because of how the confidence values differ between the
classifiers we will present the suggestion rate on the x axises instead of
the confidence limits, even though the actual choice of confidence limit
will differ between classifiers.

29

0 0.2 0.4 0.6 0.8 1

0 %

20 %

40 %

60 %

80 %

100 %

Confidence limit

S
u

gg
es

ti
on

ra
te

Suggestion rate for different confidence limits

FFNN
SGD-SVM

Figure 5.2: Suggestion rate as a function of confidence limit for the two classi-
fiers.

5.1 Suggestion rate tradeoff

In Figure 5.3 the tradeoff between a high suggestion rate (which gives
a lower quality) against a higher overall precision is shown. With a low
suggestion rate there is more statistical noise, which can be seen in the
quality for both SVM-SGD and FFNN. The quality and overall precision
for the näıve classifier are shown as marks instead of lines as the suggestion
rate for it is an effect of the current implementation and is thus fixed.

30

0 % 20 % 40 % 60 % 80 % 100 %
0 %

20 %

40 %

60 %

80 %

Suggestion rate

Tradeoff (SVM-SGD)

Quality
Overall precision

Naive Quality
Naive Overall Precision

0 % 20 % 40 % 60 % 80 % 100 %
0 %

20 %

40 %

60 %

80 %

Suggestion rate

Tradeoff (FFNN)

Quality
Overall precision

Naive Quality
Naive Overall Precision

Figure 5.3: The tradeoff between quality and overall accuracy. The accuracy
is measured as the average of the journal entries at positions 280 to 300, using
the data from when adapting the classifiers to single organisations, as described
in section 3.5.

31

5.2 Accuracy over time

In the system of SpeedLedger, the ability to immediately give suggestions
to a new customer is currently missing because of how the näıve classifier
gives suggestions based on earlier journal entries from the same organisa-
tion. A possible advantage of a machine learning classifier would be that
suggestions could be given based on knowledge about other organisations,
even when the current organisation is not previously encountered.

In Figure 5.4, the overall precision for new organisations when using
only suggestions with a confidence level above a certain limit is shown
and in Figure 5.5 the quality is shown. The confidence limits are chosen
such that they give a suggestion rate of 70 % for the SVM-SGD and
65 % for the FFNN. The limits are based on the tradeoffs described
in section 5.1. The process of training and testing used for this graph is
described in section 3.5 with k = 300.

0 50 100 150 200 250 300

20 %

30 %

40 %

50 %

60 %

Number of journal entries trained for a single organisation

O
ve

ra
ll

p
re

ci
si

on

Online learning

Näıve implementation
SVM-SGD

FFNN

Figure 5.4: Graph illustrating how different classifiers perform and evolve for
organisations it has not encountered before. Every point on the x-axis represents
the ith journal entry for 300 different organisations. The y-axis shows the overall
precision of the classifiers for the different entries. Every classifier trains on an
entry immediately after classifying it.

32

0 50 100 150 200 250 300

50 %

60 %

70 %

80 %

Number of journal entries trained for a single organisation

Q
u

al
it

y

Online learning

Näıve implementation
SVM-SGD

FFNN

Figure 5.5: Same as Figure 5.4 but showing quality, i.e. the proportion of
correct suggestions when a suggestion is actually given.

5.3 Suggesting multiple accounting codes

As described in section 3.4, a possible post-processing step is to give
multiple suggestions based on the confidence of the classifier. Figure 5.6
corresponds to the graphs in Figure 5.3, but shows the quality when giving
1, 3 or 5 suggestions. The confidence of giving N different suggestions
together was calculated as the sum of the confidences of the individual
suggestions.

33

0 % 20 % 40 % 60 % 80 % 100 %

60 %

70 %

80 %

90 %

Suggestion rate

Q
u

al
it

y

Multiple suggestions (SVM-SGD)

N=5
N=3
N=1

0 % 20 % 40 % 60 % 80 % 100 %

60 %

70 %

80 %

90 %

Suggestion rate

Q
u

al
it

y

Multiple suggestions (FFNN)

N=5
N=3
N=1

Figure 5.6: The quality as a function of the suggestion rate when giving N
suggestions.

34

5.4 Other notable results

5.4.1 Accuracy on predefined vs user defined accounting
codes

In the BAS chart of accounts, there are both predefined accounting codes
and accounting codes which are up to the organisation to decide how to use.
This means that each organisation might use the user defined accounting
codes very differently. Using Welch’s t-test (described in subsection 2.3.4),
the classification accuracy of samples with labels among the user defined
accounting codes compared to ones with labels belonging to the predefined
accounting codes were measured.

The test was run on the SVM (which has been shown to give more accurate
suggestions than the FFNN) using the classifier with the same base training
as in section 5.2. 10 000 random samples were split into two sets based on
if the sample had a label among the user defined accounting codes or not.
In the sets, the samples were then split into chunks of 100 samples each
and the precisionµ of each chunk was calculated. The means, variances
and sizes of the two sets were then used to calculate the t statistic defined
in Equation 2.13.

Using the t-distribution, the hypothesis that the means of the two sets
are equal were rejected with statistical significance (p < 0.01 ‰). The
mean of the chunks in the set of samples with user defined accounting
codes was 36.38 % and the mean of the chunks in the set of samples with
predefined accounting codes was 23.26 %.

5.4.2 Impact of presence of bank transaction info

In practice, payments are known before the transaction has actually
occurred (as described in section 4.1). More information is available if
doing a suggestion when the money is transferred (i.e. a bank transaction
is made and thus occur in the system of SpeedLedger). The additional
data made available is the text of the transaction, though in as many
as 82 % of all journal entries the transaction text is exactly the same as
the payment text. Thus an interesting result to look at is if there is a
significant increase in accuracy when using information about both the
payment and the bank transaction when evaluating a classifier.

A McNemar’s test (described in subsection 2.3.3) was run on the same
base classifier as in subsection 5.4.1. Testing was run on 10 000 randomly

35

drawn samples, first using only the payment information and then also
the bank transaction information.

Comparing both runs showed that using bank transaction information gave
a statistically significant improvement. However, the improvement was
only approximately 0.6 percentage points: with transaction information
the accuracy was 24.46%, while not using the transaction information the
accuracy was 23.86%.

36

6 Discussion

The aim of this thesis was to compare the performance of different clas-
sification algorithms to the näıve approach, in the setting of classifying
financial transaction with regard to how they should be accounted. Com-
paring the classifiers used in this thesis, Support Vector Machines with
Stochastic Gradient Descent learning and Feed Forward Neural Networks,
the former shows better performance in the experimental results. However,
the näıve classifier still performs on par with, or even better than, the
more sophisticated classification algorithms. The different graphs and
results are discussed more thoroughly in section 6.3.

The algorithms were used as they showed potential when running prelimi-
nary tests on small amounts of data and as they are known to be able to
handle large data sets. Some of the limiting factors for the performance
of automatic classification are described in section 6.1.

The extraction of data from the database and converting it to a format
suitable for machine learning was one of the most time consuming parts
of the thesis. If even more work had been put into the preprocessing, e.g.
if a more thorough feature selection or text preprocessing had been done,
we might have obtained better precision and the time needed for training
would probably have been lower [46].

The process of adapting the classifier to single organisations could likely be
improved. By splitting the user’s data points known thus far into training
and test sets, and continuously train until convergence rather than just
training on each sample once as they come along, the classifier could
possibly achieve higher precision (at the cost of increased demand for com-
putational resources). However, we believe that even bigger improvements
are possible by changing the attention to other machine learning methods
altogether, as we will see in section 6.4.

37

6.1 Limiting factors

As briefly mentioned in subsection 1.3.3, there is likely a bias in the labels
of the training and test data as a result of users being influenced by the
suggestions given by the näıve classifier. To some extent, the classifiers
train on what the näıve suggestion was rather than what the user really
wanted; this way the score of the näıve classifier is higher relative to the
other classifiers than it would otherwise have been.

This was identified as a potential issue early on, and the idea was to train
and test only on data points where the näıve classifier did not give a
suggestion. This would introduce a new bias that seems to be even worse
though: the samples with no näıve suggestion are in fact much harder to
classify since they are more likely to be special or irregular in some way.
Therefore, the training and test data was kept as is; future measurements,
however, ought to be done with independent data (i.e. accounting done
without the suggestions from SpeedLedger).

Another, perhaps more important, bias is that the näıve classifier runs
in an interactive setting while our testing is done on historical data. In
practice, several suggestion might be acceptable. In an interactive setting,
this means that any of the acceptable accounting codes may be presented
in order to score. In contrast, running on historical data means that only
a single suggestion is correct – the one finally chosen by the user. In our
results, this favours the näıve classifier, but we do not know by how much
since we have not performed interactive testing.

Furthermore, modest computational resources were used for all training
(and testing) as seen in section 4.2. There are plenty of possibilities for
parallelisms (GPU and/or distributed), but this was excluded from the
thesis in order to focus the time on other tasks. The libraries used are also
primarily made for ease of use rather than computational heavy lifting,
much like other Python libraries. If the concepts of this thesis were to
be adapted to a commercial setting, one could expect better results as a
result of the classifiers being trained more thoroughly. Note that none of
our classifiers ever overfitted.

Last but not least; a premise of using classification is to effectively split all
data points into different chunks according to their label, then make each
output to be attracted to one chunk and repel all others. This may be
counterproductive in our setting where the labels are not always reliable.
A different approach will be discussed in section 6.4.

38

6.2 Promising outlooks

Despite the aforementioned limiting factors, we observe similar precision as
the näıve classifier. The maximum possible overall precision is far higher
and the maximum possible quality is somewhat higher than that of the
näıve classifier, though they are not achievable at the same time because
of the confidence tradeoff described in section 5.1. However, this still
suggests the potential of further research into the problem; the extracted
features coupled with the vector representation is clearly able to encode
the necessary information, which could be reused in the future. We have
so far only been able to scratch the surface of what machine learning
offers.

6.3 Results commentary

In Figure 5.1 the results are expected; a higher confidence gives a better
accuracy, which gives us the ability to use the confidence value as a cutoff
in order to increase the quality of suggestions. Note in Figure 5.2 that the
curves differ a lot, but they both describe a one-to-one relationship between
confidence limit and suggestion rate. This difference is the rationale for
comparing the classifiers with suggestion rate on the x axis rather than
confidence limit.

Figure 5.3 shows the tradeoff between giving only the few best suggestions
which gives higher quality but with a lower overall precision, or giving
many suggestions which gives the opposite result. Since the näıve classifier
is a simple deterministic algorithm and does not give varying confidence
values, it does not give the option of varying the suggestion rate (and
hence the quality and overall precision). For the suggestion rate it actually
gets, both values correlate remarkably well with the SVM-SGD; however,
thanks to the tradeoff, the SVM-SGD may give a higher overall precision
by increasing the suggestion rate. It should be noted that the graph
depicts the average for when the curves have settled, i.e. far to the right
in Figure 5.4.

As seen in Figure 5.4, the SVM-SGD performs better than both the näıve
classifier and the FFNN regarding overall precision (with the confidence
limits chosen), though in Figure 5.5 we can see that the quality is still
better for the näıve implementation. There is no value for the confidence
limit that gives both better overall precision and quality than the näıve
classifier, mostly because the quality remains at slightly lower levels.

Continuing to Figure 5.6, it can be seen that suggesting multiple accounting

39

codes for each sample would possibly be a good idea; a top three list
yields significantly higher results for both the SVM-SGD and the FFNN.
It is possible to adapt the näıve algorithm to give several suggestions with
relative ease, which ought to prove beneficial if the behaviour is similar to
our results.

It is seen in subsection 5.4.1 that the precision is higher for classifying
user defined accounting codes rather than the predefined accounting codes,
contrary to intuition. We expected the best results for the predefined
accounting codes, since each accounting code has the same meaning for
every organisation.

Regarding using only information about payment compared to using also
bank transaction information as described in subsection 5.4.2, the re-
sults are what was expected. Though the accuracy when using also the
additional information was not much higher, the difference was statisti-
cally significant. The low improvement in accuracy shows that it is not
worthwhile waiting for the extra information given by the transaction
note.

6.4 Future work

There are many ways and directions that future work in the area can take.
In this section we present some of them.

6.4.1 Unsupervised or semi-supervised learning

The label (i.e. accounting code) of a data point depends on which user
labelled it, and as such is always going to differ between organisations.
Furthermore, labelling done by the users of SpeedLedger’s system is biased
by the näıve classifier. Because of this, we suggest to look at unsupervised
or semi-supervised learning as follows.

Use a clustering algorithm to group data points without their labels.
When a user labels a data point, a connection is made between the cluster
containing said data point and the corresponding accounting code of the
organisation. This connection is unique to the organisation, and is used to
suggest the same accounting code to this organisation upon future similar
data points that fall into the same cluster. Note that several clusters may
point to the same accounting code. Finally, the clustering algorithm may
train on the data point, allowing it to improve over time.

The explicit connection between cluster and accounting would likely be

40

robust, but it would not allow for any initial suggestions. We suggest two
main mechanisms for creating preliminary suggestions, i.e. before there is
any explicit connection between a cluster and an accounting code for the
organisation.

The first is to look at other organisations’ explicitly mapped accounting
codes for the cluster matching the data point, i.e. accounting code
frequency. If most organisations agree on an accounting code for that
cluster, it is delivered as a suggestion.

Secondly, the accounting code frequency could be extended with collab-
orative filtering [47]. Each organisation is characterised by its set of
connections between clusters and accounting codes. Organisations that
have previously used labels similarly might benefit more from each others’
cluster-to-accounting-code-mappings, which is where collaborative filtering
comes in handy. Other properties could be used as well, e.g. the industry
code used in the Swedish official company registry1.

There are three predicted advantages to this approach. Firstly, the impact
of inter-organisation heterogeneous labelling is minimised. Indeed, it
would only be used for the preliminary suggestions. Secondly, adaption to
single organisations would be much more efficient in terms of storage and
computational needs. Lastly, collaborative filtering is made possible by
the explicit representation of connections between clusters and accounting
codes. For these reasons, we believe that this is a viable approach for
continued research.

6.4.2 General improvements

There are possible actions to take that would improve accuracy regardless
of whether classification or the suggested method above is used.

The importance of proper preprocessing of text is thoroughly examined
in [48]. One example is stemming which is “a procedure to reduce all
words with the same stem to a common form, [and] is useful in many
areas of computational linguistics and information-retrieval work” [49].
In practice, it means that different variations of the same word would
be encoded by the same variable in the vector representation seen in
section 2.1. One could also expand this by considering e.g. personal names
to be equal.

Both supervised and unsupervised learning requires a powerful model for
mapping input to output. The only kind of neural network used in this

1See http://www.sni2007.scb.se/snisokeng.asp

41

http://www.sni2007.scb.se/snisokeng.asp

thesis is a shallow feed forward neural network trained with backpropa-
gation. There are however many other well studied variations of neural
networks, such as deep neural networks. There are different ways to train
them as well, as seen in subsection 2.2.2, and other ways of initialisation
than random [50][51].

If suggestions based on machine learning would be implemented in the live
system, we believe that the learning algorithm would profit from having
a high suggestion rate in the beginning. Rather to have a short period
when a customer is new when the suggestions may have lower quality to
more rapidly increase the accuracy, than to have a low suggestion rate.
Also, because of the possibility that a user just accepts the suggestion
given, it is possible to get a high accuracy of the suggestions as long as
the suggestions are “good enough”. This is however hard to give evidence
for unless testing in a live environment.

42

7 Conclusion

During this thesis, the possibility of using classification algorithms in
accounting has been looked at. Relevant data from the database of
Speedledger was transformed in multiple steps into a vector representation
fit for the algorithms. The classifiers were then trained and tested on the
preprocessed data to evaluate how they would perform when applied to
the live system.

The results from running the algorithms on historical data in the thesis
indicates that there is potential for machine learning in the area. For more
elaborate results, testing the algorithms in the live system would be needed.
There is probably more than one sufficiently good suggestion for each
sample which is not possible to test without interactive feedback.

Because of the uncertainty of the labels (as different organisations use
the accounting codes in different ways), we believe that other kinds of
machine learning such as unsupervised or semi-supervised learning might
be a better approach to reach a fully automated accounting process.

43

A Explanation of accounting
terms

This appendix is aimed at people with computer science background but
with little or no experience of accounting.

Business transaction Sw. affärshändelse. A single atomic economic
event; any flow of value within a business (e.g. a transfer of money from
a cash register to the bank account) or between parties (e.g. selling a
sandwich to a customer). Note the word flow ; money always has at least
one source and at least one destination. Furthermore, the flow from all
sources equals the flow to all destinations.

Journal entry Sw. verifikation. A structured description of a business
transaction, including accounting records and a complete assignment of
accounting codes (e.g. “from food sales to cash register”). It also contains
some metadata such as the date. A journal entry is the smallest building
block in accounting.

Accounting code Sw. kontonummer (inom bokföring). A four digit
number identifying an account. An account is used for describing a specific
source or destination of money. Some accounts are generally used as either
source or destination (e.g. buying food is a destination) while others are
used as both (e.g. the bank account is used both for sending and receiving
money).

Accounting records Sw. underlag till verifikat. Evidence for a business
transaction, e.g. a receipt.

44

Assignment of accounting code Sw. kontera. Determining the cor-
rect accounting codes for a journal entry. In general this includes several
accounting codes, but in the context of this thesis, all accounting codes
are implicit except one. The bank account involved is known before the
classification, and the VAT code is given by the accounting code chosen
by the user. The classification task is to determine the single missing
accounting code. Classifying several missing accounting codes is out of
scope for this thesis. This is described in-depth in section 1.4.

Accrual method Sw. fakturametoden. Separation of date of purchase
versus the exchange of money. With the accrual method, one journal
entry is created when something is bought or sold without exchanging
money yet, i.e. a debt is created. Another journal entry is created upon
the exchange of money, i.e. the debt is being paid off.

With the opposite, cash flow accounting (Sw. kontantmetoden), no
debt is ever created; rather, an item is considered bought or sold the day
it is paid.

Chart of accounts Sw. kontoplan. A list of accounting codes and
a policy for how they are supposed to be used. The BAS chart of
accounts is widespread in Sweden. It is, however, a template rather
than a complete chart of accounts: organisations may deviate from it.
Indeed, some ranges are explicitly available for organisations to customise
according to their needs, so called user defined accounting codes.

VAT code Sw. momskod. A unique number identifying a specific use
of VAT as well as the VAT percentage. Each accounting code is statically
assigned at most one VAT code. When an account is used, a VAT account
is per default also used according to this VAT code.

Group accounts and detailed accounts Sw. gruppkonton och de-
taljkonton. A group account is an accounting code which gives a more
general description of a journal entry while a detailed account gives more
information about it. An example in the BAS chart of accounts is the
group account 5610 Car costs with some of its detailed accounts 5611
Fuel, 5612 Insurance and tax and 5613 Repairs and maintenance.

45

Bibliography

[1] S. M. Ul-Huq, “The role of artificial intelligence in the development
of accounting systems: A review”, The IUP Journal of Accounting
Research & Audit Practices, vol. 13, no. 2, pp. 7–19, 2014.

[2] J. Daintith and E. Wright, A dictionary of computing. Oxford Uni-
versity Press, Inc., 2008.

[3] P. D. Robles-Granda and V. Belik, “A comparison of machine
learning classifiers applied to financial datasets”, in Proceedings of
the World Congress on Engineering and Computer Science, vol. 1,
2010.

[4] F. Pedregosa et al., “Scikit-learn: Machine learning in python”, The
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[5] X. Wu et al., “Top 10 algorithms in data mining”, Knowledge and
Information Systems, vol. 14, no. 1, pp. 1–37, 2008.

[6] D. Pyle, Data preparation for data mining. Morgan Kaufmann, 1999,
vol. 1.

[7] A. K. Jain, R. C. Dubes, et al., Algorithms for clustering data.
Prentice hall Englewood Cliffs, 1988, vol. 6.

[8] S. Aksoy and R. M. Haralick, “Feature normalization and likelihood-
based similarity measures for image retrieval”, Pattern Recognition
Letters, vol. 22, no. 5, pp. 563–582, 2001.

[9] T. Hastie et al., The elements of statistical learning, 1. Springer,
2009, vol. 2.

[10] T.-S. Lim et al., “A comparison of prediction accuracy, complex-
ity, and training time of thirty-three old and new classification
algorithms”, Machine learning, vol. 40, no. 3, pp. 203–228, 2000.

[11] T. Joachims, Learning to classify text using support vector machines:
Methods, theory and algorithms. Kluwer Academic Publishers, 2002.

[12] K. Weinberger et al., “Feature hashing for large scale multitask learn-
ing”, in Proceedings of the 26th Annual International Conference on
Machine Learning, ACM, 2009, pp. 1113–1120.

46

[13] K. Ganchev and M. Dredze, “Small statistical models by random
feature mixing”, in Proceedings of the ACL08 HLT Workshop on
Mobile Language Processing, 2008, pp. 19–20.

[14] C. Cortes and V. Vapnik, “Support-vector networks”, Machine
learning, vol. 20, no. 3, pp. 273–297, 1995.

[15] C. M. Bishop et al., Pattern recognition and machine learning, 4.
springer New York, 2006, vol. 4.

[16] V. Vapnik, The nature of statistical learning theory. Springer Science
& Business Media, 2000.

[17] T. Zhang, “Solving large scale linear prediction problems using
stochastic gradient descent algorithms”, in Proceedings of the twenty-
first international conference on Machine learning, ACM, 2004,
p. 116.

[18] L. Bottou and Y. Le Cun, “On-line learning for very large data
sets”, Applied stochastic models in business and industry, vol. 21,
no. 2, pp. 137–151, 2005.

[19] H. Robbins and S. Monro, “A stochastic approximation method”,
The annals of mathematical statistics, pp. 400–407, 1951.

[20] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent”, in Proceedings of COMPSTAT’2010, Springer, 2010, pp. 177–
186.

[21] Y. Tsuruoka et al., “Stochastic gradient descent training for l1-
regularized log-linear models with cumulative penalty”, in Proceed-
ings of the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP: Volume 1-Volume 1, Association
for Computational Linguistics, 2009, pp. 477–485.

[22] M. Wahde, Biologically inspired optimization methods: An introduc-
tion. WIT press, 2008.

[23] F. Rosenblatt, “The perceptron: A probabilistic model for informa-
tion storage and organization in the brain.”, Psychological review,
vol. 65, no. 6, p. 386, 1958.

[24] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas im-
manent in nervous activity”, The bulletin of mathematical biophysics,
vol. 5, no. 4, pp. 115–133, 1943.

[25] X. Glorot et al., “Deep sparse rectifier networks”, in Proceedings
of the 14th International Conference on Artificial Intelligence and
Statistics. JMLR W&CP Volume, vol. 15, 2011, pp. 315–323.

[26] C. Dugas et al., “Incorporating second-order functional knowledge for
better option pricing”, Advances in Neural Information Processing
Systems, pp. 472–478, 2001.

47

[27] J. Schmidhuber, “Deep learning in neural networks: An overview”,
CoRR, vol. abs/1404.7828, 2014. [Online]. Available: http://arxiv.
org/abs/1404.7828.

[28] D. Stathakis, “How many hidden layers and nodes?”, International
Journal of Remote Sensing, vol. 30, no. 8, pp. 2133–2147, 2009.

[29] V. G. Gudise and G. K. Venayagamoorthy, “Comparison of particle
swarm optimization and backpropagation as training algorithms for
neural networks”, in Swarm Intelligence Symposium, 2003. SIS’03.
Proceedings of the 2003 IEEE, IEEE, 2003, pp. 110–117.

[30] M. Sokolova and G. Lapalme, “A systematic analysis of perfor-
mance measures for classification tasks”, Information Processing &
Management, vol. 45, no. 4, pp. 427–437, 2009.

[31] V. Van Asch, “Macro-and micro-averaged evaluation measures [[basic
draft]]”, 2013.

[32] T. G. Dietterich, “Approximate statistical tests for comparing su-
pervised classification learning algorithms”, Neural computation, vol.
10, no. 7, pp. 1895–1923, 1998.

[33] S. L. Salzberg, “On comparing classifiers: Pitfalls to avoid and a
recommended approach”, Data mining and knowledge discovery, vol.
1, no. 3, pp. 317–328, 1997.

[34] R. Kohavi et al., “A study of cross-validation and bootstrap for
accuracy estimation and model selection”, in Ijcai, vol. 14, 1995,
pp. 1137–1145.

[35] Q. McNemar, “Note on the sampling error of the difference between
correlated proportions or percentages”, Psychometrika, vol. 12, no.
2, pp. 153–157, 1947.

[36] B. L. Welch, “The generalization ofstudent’s’ problem when several
different population variances are involved”, Biometrika, pp. 28–35,
1947.

[37] K. K. Yuen, “The two-sample trimmed t for unequal population
variances”, Biometrika, vol. 61, no. 1, pp. 165–170, 1974.

[38] Microsoft. (2015). Microsoft neural network algorithm technical ref-
erence, [Online]. Available: https://technet.microsoft.com/en-
us/library/cc645901(v=sql.110).aspx (visited on 06/02/2015).

[39] S. Garćıa et al., Data Preprocessing in Data Mining. Springer, 2015.
[40] P. K. Sharpe and R. Solly, “Dealing with missing values in neural

network-based diagnostic systems”, Neural Computing & Applica-
tions, vol. 3, no. 2, pp. 73–77, 1995.

[41] E. Pesonen et al., “Treatment of missing data values in a neural
network based decision support system for acute abdominal pain”,
Artificial Intelligence in Medicine, vol. 13, no. 3, pp. 139–146, 1998.

[42] T. Schaul et al., “Pybrain”, The Journal of Machine Learning
Research, vol. 11, pp. 743–746, 2010.

48

http://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1404.7828
https://technet.microsoft.com/en-us/library/cc645901(v=sql.110).aspx
https://technet.microsoft.com/en-us/library/cc645901(v=sql.110).aspx

[43] E. J. McMillar, Not-for-Profit Budgeting and Financial Management,
4th. John Wiley & Sons, Jun. 2010.

[44] S. A. McCrary, Mastering Financial Accounting Essentials: The
Critical Nuts and Bolts. John Wiley & Sons, 2010.

[45] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization”, The Journal of Machine Learning Research, vol. 13,
no. 1, pp. 281–305, 2012.

[46] I. Guyon and A. Elisseeff, “An introduction to variable and fea-
ture selection”, The Journal of Machine Learning Research, vol. 3,
pp. 1157–1182, 2003.

[47] F. Ricci et al., Recommender systems handbook. Springer, 2011,
vol. 1.

[48] A. K. Uysal and S. Gunal, “The impact of preprocessing on text
classification”, Information Processing & Management, vol. 50, no.
1, pp. 104–112, 2014.

[49] J. B. Lovins, Development of a stemming algorithm. MIT Information
Processing Group, Electronic Systems Laboratory, 1968.

[50] D. Nguyen and B. Widrow, “Improving the learning speed of 2-
layer neural networks by choosing initial values of the adaptive
weights”, in Neural Networks, 1990., 1990 IJCNN International
Joint Conference on, IEEE, 1990, pp. 21–26.

[51] J. Y. Yam and T. W. Chow, “A weight initialization method for
improving training speed in feedforward neural network”, Neuro-
computing, vol. 30, no. 1, pp. 219–232, 2000.

49

	Introduction
	SpeedLedger
	Aim
	Problem formulation
	Collecting attributes
	Choosing appropriate classification methods
	Measuring accuracy

	Limitations
	Outline

	Theory
	Preprocessing
	Feature normalisation and boolean representation
	One-hot encoding
	Bag of words
	Feature hashing

	Classification methods
	Linear classification using Stochastic Gradient Descent
	Feed forward neural networks

	Evaluation
	Performance measures and confusion matrices
	Cross-validation
	McNemar's test
	Welch's t-test

	Implementation
	Selecting and processing the attributes to a high-level representation
	Vector representation
	Classification
	Neural networks
	Support vector machines with stochastic gradient descent

	Interpreting classifications
	Adapting to single organisations

	Experimental setup
	Available data
	Raw data in database
	High-level features

	Computational resources
	Parameters used

	Experimental results
	Suggestion rate tradeoff
	Accuracy over time
	Suggesting multiple accounting codes
	Other notable results
	Accuracy on predefined vs user defined accounting codes
	Impact of presence of bank transaction info

	Discussion
	Limiting factors
	Promising outlooks
	Results commentary
	Future work
	Unsupervised or semi-supervised learning
	General improvements

	Conclusion
	Explanation of accounting terms
	Bibliography

