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Charge and Heat Control in Nanoelectronic Devices
A study of thermoelectric properties of quantum dots and their relation to charge and heat
currents with respect to coupling strength, interaction energy, number of reservoirs and other
system factors
Erik Johansson, Jakob Max, Hampus Renberg Nilsson, Selma Tabakovic
Department of Microtechnology and Nanoscience – MC2
Chalmers University of Technology

Abstract
This study examines thermoelectric properties in nanoelectronic devices, specifically setups
known as quantum dots. Thermoelectric effects, the relation between voltage gradients and
temperature biases, are investigated. Some useful thermoelectric properties of quantum dots
include the ability to extract electrical power from a temperature gradient or transport heat
from a cooler region to a warmer, i.e. work as a heat engine or as a heat pump. A quantum dot
interacts with its environment through different terminals, e.g. a gate terminal and reservoirs.
Quantum dots are an interesting setup for thermoelectric applications due to their ability to
change transport properties when exposed to a gate voltage or a change in characteristics
of adjoining reservoirs. The aim of this study is to find how the characteristic parameters
of a quantum dot can be used to control thermoelectric effects. This is essential knowledge
when designing systems where quantum dots are wanted to, for example, extract work from
a heat flow. The thermoelectric effects are studied using two different methods, namely the
master equation and scattering theory. Heat to work conversion and its efficiency is analysed
for a set of quantum dot systems. We find the relations between parameters that makes it
possible to use quantum dots to either extract electrical work from a heat bath or cool a part
of the system. Furthermore, charge and heat separation is studied in a system consisting of a
quantum dot, two reservoirs and a voltage probe. This is useful for managing temperatures
in circuits doing electrical work. We find it is possible to separate heat and work, but that it
requires a certain asymmetry in the system.

Keywords: Quantum Dot, Thermoelectric Effect, Seebeck Coefficient, Onsager Matrix, Carnot
Efficiency, Master Equation, Scattering Theory, Heat to Work Conversion.
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α ≡ −Ṅα Number of particles going out of reservoir α.

Iα ≡ −eIN
α Charge current going out of reservoir α.

IE
α ≡ −∂t

〈
Ĥα

〉 Total energy current going out of reservoir α, where Ĥα is the
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1 Introduction
This study examines the thermoelectric properties of multi-terminal nanoscale devices, in
particular quantum dots. The thermoelectric properties of a system is defined by the relation
between heat flow and charge current through that system. To analyse these properties, it
is therefore necessary to understand how the currents that give rise to them behave. By
deriving expressions for heat and electric currents, and analysing their relation to each other,
the thermoelectric properties of the studied systems are examined. This is done by studying
the impact of various quantum system characteristics, e.g. coupling strength and Coulomb
interaction.

1.1 Background
The ongoing technical advancements in nanotechnology leads to an ever decreasing size of
electronic circuits. This will eventually lead to components of a size where quantum mechan-
ical effects will have to be considered [1]. A possible future application where this might be
of interest is quantum circuits, where these quantum phenomena may be utilised to gener-
ate thermoelectric effects [2]. Quantum effects also allow for new types of functionality, for
example heat to work conversion on the nanoscale [3]. In order to theoretically understand
thermoelectric effects on a quantum scale, thermodynamics is no longer sufficient since it is
derived by assuming macroscopic systems. To understand how systems on the smaller scale
behave, new theoretical descriptions are needed [4], [5]. This opens up for many interesting
research areas, as a lot of these effects are still to be analysed and understood. If this is
carried out successfully, it might lead to a new era of nanoelectronic devices that can operate
more quickly and efficiently than the ones we have today.

In most electric circuits, heat is an unwanted side effect that has to be dealt with. However,
with knowledge of thermoelectric effects, it could also be utilised in several ways. Perhaps
most important of these potential applications is conversion of waste heat into electrical work.
Because of this, thermoelectric properties are interesting from an technological point of view.
In components where quantum effects apply, the interaction between heat flows and charge
currents are properties of significance. Efficiency of heat to work conversion is a parameter
which is important to assess the usefulness of quantum thermoelectrics. In order to analyse
this, one has to study how gradients of temperature and voltage influence charge and heat
flow. This is essential for building optimal quantum thermoelectrics. Of particular interest is
how the process efficiency relates to power output, and how these relations depend on device
parameters.

1.2 Quantum Dot Systems
A so-called quantum dot is a quantum device prototype, ideal for theoretical studies. The
name stems from the device being ’almost zero-dimensional’, and is used to describe an elec-
tron occupied system, small enough that the energy levels of the electrons are quantized. The
quantum dot is an open quantum system, meaning that the it is interacting with its reservoir
environment. Quantum dots can be realized experimentally in many different ways [6], and
can be used as basic building blocks for complex setups. An example of an experimental
realization can be seen in figure 1b. This is a scanning electron microscope (SEM) image of
a quantum dot made of GaAs and fabricated by electron-beam lithography [7].

A schematic describing a quantum dot is shown in figure 1. The potential in the dot is
regulated by an applied gate voltage, and the dot can be connected to multiple reservoirs.
These reservoirs are each characterized by a temperature and an electrochemical potential.
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(a) (b)

Figure 1: Quantum dots, in (a) a theoretical sketch with numerous reservoirs
and a gate terminal and in (b) a SEM image of a real quantum dot of GaAs
fabricated by electron-beam lithography with terminals labeled T, R, L and P
[7].

Electrons can tunnel between the dot and the reservoirs. If there is a temperature gradient
∆T or a potential gradient ∆µ, the electrons are more likely to tunnel in one direction, which
yields a current through the quantum dot. The probability of tunneling is often referred to
as the coupling, Γ. A stronger coupling means a higher ability for the electrons to tunnel.
Electrons with anti-parallel spin occupying the same energy level repel each other, and in
some cases it might be interesting to investigate how this Coulomb interaction influences the
behaviour of the system.

The discrete energy spectrum combined with the tunability of the energy level makes
the quantum dot an interesting prototype for thermoelectric applications. By regulating the
position of the energy level that can be occupied within the quantum dot, it is possible
to control whether the quantum dot does heat to work conversion, cooling or work to heat
conversion, which are three essential different thermoelectric effects.

1.3 Thermoelectric Effects and Linear Coefficients
The thermoelectric properties of a system characterises the relation between voltage and
temperature gradients within it. These properties determine the relation between charge
current and heat flow. Classical thermoelectrics usually consist of materials that have intrinsic
thermoelectric properties, for example metal alloys such as constantan. On the contrary, the
quantum dot is a device that is constructed in such a way that the quantum mechanics
dictating its behaviour gives rise to thermoelectric effects, and is not a thermoelectric by its
material alone. To compare the quantum dot to classical systems, we use the same quantities
to describe the system, but use a quantum mechanical approach to obtain them.

Through a quantum dot there can flow a charge current I, and a heat flow J , induced by
voltage and temperature gradients. The expressions for I and J are in general complicated,
and difficult or impossible to calculate analytically. In section 4 we show some cases where it
can be done, however these results are sometimes impractical to work with. Linear response
theory can be used to simplify the charge current and heat flow to get an understanding of
the thermoelectric effects for small voltage and temperature gradients. The thermoelectric
effects in the linear response regime, i.e. small ∆T and ∆V (∆µ = −e∆V ) on the scale of
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Γ, can be described by the four coefficients G,L,M and Θ. This is also referred to as the
Onsager matrix [8], [

I
J

]
=
[
G L
M Θ

][
∆V
∆T

]
. (1)

This matrix gives us all information about what charge currents and heat flows are induced by
voltage and temperature gradients, which is what we need to characterize the system. The
coefficients G and Θ are the electrical conductance and thermal conductance respectively.
They characterize the usual thermal and electric properties of the system.

The coefficients L and M are related through the Onsager relation

M = LT, (2)

and describe thermoelectric effects. L gives the charge current in response to a temperature
gradient, and M gives the heat flow caused by a voltage gradient. In equation (1) we see
that when L = 0, M = 0, i.e. no thermoelectric effects are present, we have I = G∆V and
J = Θ∆T , as one would expect. If L and M are non-zero, then the electric current will
depend on the temperature gradient and the heat flow depends on the voltage gradient. To
investigate these dependencies we introduce a few more coefficients.

The relation in equation (1) can be rewritten as[
∆V
J

]
=
[
R −S
ΠP K

][
I

∆T

]
. (3)

In this matrix R is the regular ohmic resistance. S = L
G

is called the Seebeck coefficient,
and can be interpreted as the average energy per unit charge transferred at the temperature
T [3]. If we set I = 0, i.e. no electronic transfer, then S describes the relation between
voltage and temperature gradient, ∆V = −S∆T . This is then the condition for electric
and thermal equilibrium in a thermoelectric, valid for small ∆V and ∆T . Analogously, the
Peltier coefficient ΠP = M

G
represents the average heat carried by a unit charge. The size of

S and ΠP describes how pronounced the thermoelectric effects are in a material or device.
For example, in a thermocouple, a large Seebeck coefficient would mean that the voltage
has a strong response to a temperature gradient, which is typically the desired behaviour for
thermometer applications.

The coefficient K = Θ− LM
G

is called the Fourier heat coefficient. It represents the thermal
transport that occurs without an electron current. In the quantum dot electron tunneling is
the only exchange between reservoirs that we consider, so it would seem that K = 0 at all
times. It is, however, shown in section 3 that this is not always the case.

1.4 Efficiency of a Power Producing Quantum Dot System
Depending on the system setup, quantum dots can be used to convert heat to electrical work,
i.e. work as a heat engine [8]. By reversing the power production process, turning electrical
power into waste heat is also a possible outcome. This is however a process that normally
occurs in most systems, and is therefore not very interesting. In addition, the quantum dot
can be used for cooling, moving heat from a cold reservoir into a hotter one, by extracting
work from a voltage gradient. The efficiency of heat to work conversion is given by the
produced power divided by the heat absorbed from the hot reservoir, i.e.

η = −I∆V
JH

. (4)
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This expression is, as familiar, equivalent with the one for a heat engine [9]. In the setups
studied here, the efficiency can also be expressed in terms of heat flows only, with −I∆V =
JH +JC, since all heat currents are defined as positive going out of each reservoir and into the
system. Thus, heat to work conversion can be achieved when more heat is flowing out of the
hotter reservoir than into the colder reservoir. This efficiency should not exceed the Carnot
efficiency,

ηCarnot = 1− TC

TH
. (5)

Using equation (1), the efficiency in the linear regime is given by [8]

η = −G∆V 2 + L∆T∆V
M∆V + Θ∆T . (6)

This relations is necessary to analyse how the relations between the different thermoelectric
coefficients affect the efficiency of heat to work conversion.

2 Methods, Models and Properties of Quantum Dots
Transport properties of the quantum dot are analysed with two different methods, namely
the master equation and scattering theory. The transport properties determine the electric
current and heat flow through the system, and the relation between them. The particle
current IN

α is defined as the flow of particles out of reservoir α into the quantum dot, while
the energy current IE

α is the total energy current with the same sign convention. In a similar
manner, the electrochemical energy current is defined as µαIN

α . Due to the system being at
low temperature, we assume that we have no energy transport via phonons. Therefore all
energy lost from the electrochemical energy current will turn into heat, i.e. the heat current
Jα equals the difference of the total energy current and the electrochemical energy current

Jα ≡ IE
α − µαIN

α . (7)

Figure 2: A Fermi function and its
derivative. The width of the derivative
is proportional to kBT .

The main objective for both methods is
to derive an expression for the heat flow and
electric current through the studied system,
and hence examine its thermoelectric proper-
ties by studying the relation between these
two. The efficiency of the thermoelectric phe-
nomena heat to work conversion is also stud-
ied. Each used method is suited for a dif-
ferent regime, and thus using two different
methods allows for analysing a wider range
of possible situations. The master equation
allows the Coulomb interaction to be taken
into account, but assumes weak coupling. The
scattering theory assumes systems with non-
interacting or weakly interacting particles.
However, when using this method, the sys-
tems can otherwise be complex and have ar-
bitrary coupling.

4



2.1 Open Quantum Systems
As mentioned in section 1.2, the quantum dot is connected to its environment in the form of
reservoirs. These are in equilibrium, which means that each reservoir α has a fix temperature
Tα as well as an electrochemical potential µα, also called Fermi energy.

Given that each reservoir contains a large number of fermions, they will follow Fermi-
Dirac statistics, described by a Fermi function fα(ε) [3]. The reservoirs are in this case solely
described by their respective Fermi function. These functions describes the probability of a
state at energy ε in the reservoir to be occupied by an electron and is defined as

fα(ε) ≡ 1
1 + exp

(
ε−µα

kBTα

) . (8)

For compactness we will use the notation f−α (ε) ≡ 1− fα(ε). A example of a Fermi function
and its derivative can be seen in figure 2. The Fermi function has the shape of a step function
at T = 0, and gets flatter for higher temperatures, as seen in equation (8). The width of the
derivative is proportional to kBT , which means that it will converge towards a delta function
for low temperatures. This is a useful property in calculations where approximations are used,
and is therefore worth noticing.

2.2 Master Equation
This method is valid for a quantum dot that is weakly coupled to its environment. The
system is described by a Hamiltonian Ĥ, whose eigenstates are denoted s. These are the
different states of the quantum dot, and represent different occupations of its energy levels.
The master equation describes the change in the occupation probabilities Ps over time and
reads [10]

d
dtPs(t) =

∑
s′

(Wss′Ps′(t)−Ws′sPs(t)). (9)

Wss′ describes a generalized transition rate between a state s′ and a state s. Transitions occur
due to tunneling of electrons into or out of the system. Wss′ is defined as

Ws,s′ =
∑
α

Wα
s,s′ =

∑
α

(
Wα+
s,s′ +Wα−

s,s′

)
, (10)

where Wα+
s,s′ is the part for electrons tunneling into the quantum dot, while Wα−

s,s′ is the part
for electrons tunneling out of the quantum dot into reservoir α. For s 6= s′ these elements are
given by

Wα+
s,s′ = 1

~
Γα|〈s|c†1|s′〉|2fα(Es − Es′) (11)

Wα−
s′,s = 1

~
Γα|〈s|c†1|s′〉|2(1− fα(Es − Es′)), (12)

where Γα is the coupling strength with respect to reservoir α, c†1 is the creation operator and
Es is the energy for the system when in state s. These equations can be obtained from Fermi’s
golden rule. For s′ = s the Ws,s is given by the Stückelberg condition,

Wα
s,s = −

∑
s′ 6=s

Wα
s′,s. (13)

The entire matrix is shown is appendix B.
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We consider the system to be in steady state, i.e. Ṗs(t) = 0. Then the left hand side of
equation (9) is reduced to 0. After solving this homogeneous version of equation (9) for Ps
the relations for particle and energy current are given by [10],

IN
α =

∑
s,s′

(Ns′ −Ns)Wα
s′sPs and (14)

IE
α =

∑
s,s′

(Es′ − Es)Wα
s′sPs, (15)

where IN
α and IE

α are the electron and energy current respectively.

2.3 Scattering Theory

Figure 3: Sketch of the basic idea of
scattering theory; aα, aβ are incom-
ing and bα, bβ are outgoing scattering
states.

An alternative method for performing calcula-
tions on quantum systems, such as the quan-
tum dot, is scattering theory [8]. This method
estimates the currents from incoming and out-
going scattering states in the reservoirs, as il-
lustrated in figure 3. It treats the system as
a ’black box’ where all properties are incor-
porated in reflection and transmission prop-
erties. This is a powerful tool for describ-
ing transport through quantum systems. Here
it is particularly important that it allows for
treating quantum dot systems with arbitrary
coupling strengths. However, interaction be-
tween particles inside the system cannot be in-
cluded in calculations with this method, since
it is based on single-particle states in the reservoirs.

The core of the theory is the scattering matrix, whose elements describe the reflection and
transmission properties of a given system. In general, the scattering matrix is obtained by
relating a vector of the incoming wave functions for all possible states, ~a, to the corresponding
vector for transmitted or reflected states, ~b, see figure 3. This relation is written as

~b = S~a, (16)

where the scattering matrix is denoted with S.
The current operator in reservoir α, in terms of the incoming and outgoing scattering

states, ÎN
α is defined as

ÎN
α = e

h

∫∫
e−i(E−E

′)t
[
â†α(E ′)âα(E)− b̂†α(E ′)b̂α(E)

]
dE ′ dE, (17)

where â†α, âα, b̂†α and b̂α are the creation and annihilation operators for the α-elements of ~a
and ~b [11]. Ĵα is obtained by inserting a factor E+E′

2 into the integrand. By calculating the
expectation value of the current operators for a specific system one gets the particle and heat
current expressions

IN
α = − e

h

∫ ∑
β

|Sαβ(E)|2(fβ(E)− fα(E)) dE, (18)

Jα = 1
h

∫
(E − µα)

∑
β

|Sαβ(E)|2(fβ(E)− fα(E)) dE, (19)
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(a) (b)

Figure 4: Visualization of a quantum dot with two reservoirs and interacting
electrons. In both figures the left reservoir has a higher temperature and higher
electrochemical potential than the right reservoir. In (a) the energy level ε is
inside the bias window, which allows a current to flow, while in (b) not ε nor
ε+ U is inside the bias window which leads to Coulomb blockade.

where Sαβ(E) contains the system properties, while fα/β describes the reservoir properties.
The integrals corresponds to a sum over all contributing scattering states, each carrying unit
flux, and energy E−µα. These currents will be used to derive the linear coefficients mentioned
in section 1.3.

2.4 Models
The quantum dot can, as mentioned in section 2.2, be described by a Hamiltonian. The
most relevant eigenstates of this Hamiltonian describes the occupation of one spin-degenerate
energy level, since we normally have only one energy level that contributes to transport.
These states are |0〉, |↑〉, |↓〉 and |2〉, for unoccupied, single spin up and down occupied, and
double occupied (one spin up and one spin down) respectively [8]. In this section we present
the model used for the quantum dot, and discuss its properties.

2.4.1 General Properties

The occupancy of the different states is affected by the quantum dots connection to adjacent
reservoirs. This connection is caused by the overlap between wave functions of electrons in
the quantum dot and in the reservoirs, and is described by the coupling strength Γ = ∑

α Γα.
The size of Γ is typically compared to kBT , and describes the likelihood of electrons tunneling
between the dot and the reservoirs, but also the line thickness of the energy level. We consider
both strong couplings Γ� kBT , and weak couplings Γ� kBT .

Figure 4a shows a sketch of a quantum dot connected to two reservoirs. In section 2.1,
we describe how the electron occupancy of the reservoirs is given by a Fermi function, as
illustrated by the figure. The likelihood of electron tunneling occuring at an energy depends
on the occupancy at that energy. For example, if a reservoir is highly occupied at a certain
energy, electrons will tend to tunnel out of that reservoir more than into it, and vice versa
for low occupancies. Only electrons which have an energy corresponding to the energy level
can tunnel into the dot. In figure 4a this is indicated by a green arrow. Now assume that
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(a) (b)

Figure 5: A Coulomb diamond and particle the particle current for a quantum
dot with two reservoirs with the electrochemical potentials µL = µ0 + ∆µ/2,
µR = µ0 − ∆µ/2, the temperatures kBTL = kBTR = 30Γ and the Coulomb
interaction energy U = 500Γ. In figure 5a we see the conductance, ∂I/∂∆V ,
expressed in g0 ≡ e2(Γ1 +Γ2)/(~ΓkBT ). In figure 5b we see the absolute particle
current, which is proportional to the number of possible states at the same time
Nε.

an electron tunnels into the dot and occupies the energy level ε. If a second electron would
tunnel into the dot, it would have to pay the the extra interaction energy U , due to Coulomb
interaction between the electrons. This is illustrated with a dashed line in figure 4. Note that
in this case, the energy ε+U is located above the reservoirs’ Fermi energies µα, which means
that no tunneling at the present temperature and bias is possible.

When quantum dots with interacting electrons are exposed to a magnetic field, B, the
Zeeman effect has to be accounted for. The energy needed for each electron to occupy the
energy level is then split into two separate branches, one for each spin. This leads to more
complicated behaviour of quantum dot systems, because of more states being available for
occupation. In our analysis we mainly stick to the case of B = 0, but some results for B 6= 0
are presented in appendix A.

2.4.2 Currents and Coulomb Blockade Effect

In order to allow a current between the reservoirs, a bias voltage ∆V or a temperature
gradient ∆T has to be applied [8]. In addition, at least one of the energies ε or ε+ U has to
be inside, or at least close to, the bias window ∆µ. How close depends on the temperature of
the reservoir; at higher temperatures the Fermi function becomes stretched out and electrons
with energies higher (and lower) than the chemical potential can tunnel into, or out of the
dot. An example of current flowing through a quantum dot can be seen in figure 4a. The
energy level ε is inside the bias window, and the electrons have enough energy to tunnel from
the left reservoir into the dot since µL is larger than ε. Similarly, because µR is lower than ε,
the electron can tunnel out of the dot, and hence a current can flow through it.

Now consider the situation in figure 4b. Here the gate voltage has adjusted the energy
level so that it is no longer inside the bias window. Then, if the quantum dot is zero-occupied,
one electron can tunnel into it from reservoir L but cannot continue since there are no holes in
reservoir R at the energy ε. A second electron cannot tunnel into the dot since it would also
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(a) (b)

Figure 6: Probabilities for different quantum dot systems. In (a) the bias
is greater than the interaction energy, i.e. ∆µ > U . In contrast in (b) the
interaction energy is greater than the bias, i.e. U > ∆µ.

have to pay the interaction energy U , and reservoir L has no electrons at the energy ε + U .
Therefore the quantum dot is stuck in a single state, and now current can flow through it.
This blockade effect of the current is known as a Coulomb blockade.

The effect of Coulomb blockade can also be illustrated through a so-called Coulomb di-
amond [4]. This is a surface plot of the conductance as a function of the bias voltage and
gate voltage. An example of a Coulomb diamond can be seen in figure 5a. The black areas
represent zero, while the non-black stripes represent finite positive values. Notice that the
conductance reaches its maximum when ∆µ = 0 and ε ≈ µ0−U or ε ≈ µ0 in figure 5b. This
means that either ε or ε + U is aligned with the chemical potential. We will discuss this in
more detail in section 4.3. The black diamond shaped areas in the middle of the plot is due
to the Coulomb blockade, i.e. when both ε and ε + U is outside the bias window. In these
regions, a small change in the bias or gate voltage will not result in a change in the current,
and thus the conductance is zero. This agrees with figure 5b, which shows the absolute value
of the particle current in the Vgate–∆µ plane. There we have a similar black diamond shaped
areas corresponding to the quantum dot having just one possible state, either unoccupied
(|0〉), single-occupied (|1〉) or double-occupied (|2〉). The single-occupied state can be either
|↓〉 or |↑〉, but will typically remain in the same state. When there is only one state possible,
the current will be zero since the quantum dot has to be able to change states for a current
to flow.

Another important aspect of a quantum dot is the occupation probabilities. In figure 6
we see the occupation probabilities for an interacting two-reservoir quantum dot system,
for different Coulomb interaction energies U . In both cases the reservoirs have different
electrochemical potentials µL 6= µR but the same temperature TL = TR. The difference
between the cases is that in figure 6a the bias is greater than the interaction energy, which
allows both energies ε and ε + U to be inside the bias window at the same time. Since the
particle current is proportional to the amount of states the system can be in at the same
time, this figure is approximately a cross section of figure 5b for ∆µ > U . On the contrary, in
figure 6b the bias is smaller than the interaction energy, in this case only one of the energies
can be inside the bias window at the time. The probability graphs in figure 6 is approximately
a cross section of figure 5b along a constant ∆µ.
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2.4.3 Modeling a Quantum Dot Using a Double Delta Barrier

Figure 7: Electrons scattered at a dou-
ble delta barrier.

In order to calculate the transmission with
scattering theory the quantum dot is approx-
imated with a double delta barrier with the
coupling strengths ΓL and ΓR. See figure 7
for an illustration of electrons scattered at the
double barrier. Then the scattering matrix is
unitary and can be written

S =
[
r t
t r

]
, (20)

where r and t are the reflection and transmis-
sion coefficients and r, t their complex conju-
gates [8]. For a two-reservoir system we set
α = L, β = R and ∑β |Sαβ(E)|2 = T (E) in
equation (18) and (19), where T (E) ≡ |t(E)|2
is the transmission at energy E. If the res-
onance energy for the double delta barrier is
Eres and the coupling strengths are ΓL and ΓR the transmission can be approximated as

T (E) = ΓLΓR

(E − Eres)2 + 1
4(ΓL + ΓR)2 . (21)

When studying systems of n energy levels (resonance energies), the transmission becomes
a sum of transmissions on a form similar to equation (21). The general expression for trans-
mission can then be written as

Tαβ(E) =
n∑
i=1

ΓαΓβ
(E − E(i)

res)2 + 1
4Γ2

, (22)

where the resonance energy for energy level i is denoted as E(i)
res and Γ = ∑

α Γα.

3 Thermoelectric Properties in the Linear Regime
In this chapter, thermoelectric properties in the linear regime are presented, valid for small
∆T and ∆V on the scale of Γ. We investigate the effects that different coupling strengths
and Coulomb interaction between electrons in the quantum dot have on the presented linear
coefficients. The linear coefficients are then used to derive an expression for the Seebeck
coefficient, which reveals the thermoelectric properties of the studied systems. In addition,
an efficiency based on the linear Onsager coefficients is calculated.

3.1 Single Energy Level with Spinless Particles
First we examine a simple case with spinless particles. The system used is a single energy-
level quantum dot connected to two reservoirs and a gate, similar to figure 4, with the only
difference being that we only consider spinless particles. For weak coupling, i.e. kBT � Γ,
the linear response coefficients become

G = −e
2

~
ΓLΓR

Γ

(
∂f

∂ε

)
, L = − e

~T0

ΓLΓR

Γ

(
∂f

∂ε

)
(ε− µ0),

M = − e
~

ΓLΓR

Γ

(
∂f

∂ε

)
(ε− µ0), Θ = − 1

~T0

ΓLΓR

Γ

(
∂f

∂ε

)
(ε− µ0)2.

(23)
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These expressions help to get an intuitive understanding of how transport through a weakly
coupled quantum dot is carried out. The coefficients L and M are proportional to ε − µ0,
which is the amount of heat that an electron with energy ε carries when leaving or entering
a reservoir at potential µ0. This quantity can be both positive and negative, depending on
ε, so we can have heat transport either with or against the direction of the particle current.
Furthermore, when ε = µ0, there can be no heat transport. The driver of electronic transport
is the bias, ∆V and ∆T , as described by the Onsager matrix in equation (1). The coefficients
G,L,M and Θ each describe a different type of transport, listed in section 1.3, and tell us
how the respective transport depends on the corresponding bias. As seen in equation (23),
all the coefficients are proportional to ΓRΓL

Γ

(
∂f
∂ε

)
, which describes the scale of the interaction

between the reservoirs and the dot. Since the width of ∂f
∂ε

is proportional to 1
kBT0

, so are the
widths of the coefficients. This explains why the quantum dot requires very low temperatures
in order to exhibit its characteristic properties; for large kBT0, ∂f∂ε is widened to a point where
it is almost constant with respect to ε, and the system properties will no longer depend on
the position of the energy level. At high temperatures, the Fermi levels in the reservoirs are
not distinct, and there are electrons and holes available in a large range of energies.

Here we have a Seebeck coefficient that is linear in ε− µ0, given by

S = ε− µ0

eT0
. (24)

The Seebeck coefficient describes the potential difference induced by a temperature gradient,
in units of volts per kelvin. Here we see that the Seebeck effect can be modulated by changing
the system temperature or ε. We stated in section 1.3 that S can be interpreted as the
average energy per unit charge transferred at the temperature T0. This holds up in the light
of equation (24), since ∆µ ≈ 0 so there will be no transfer of electrochemical energy. The
only energy that is transferred will be heat, and as before the heat transferred per unit charge
is ε− µ0.

The Fourier heat coefficient, K, is zero for this system. As previously mentioned, it
describes heat flow without charge current, which is apparently impossible in this system.
This is explained by the assumption of weak coupling, Γ � kBT0, and thereby that we only
have electron tunneling at a single energy ε. The only way that K can become non-zero is if
there is zero total charge current, due to currents with opposite direction but the same size,
that carries more heat in one direction than the other. However, here all electrons that tunnel
carry the same heat, ε − µ0, meaning that there will never be a net heat transfer without a
non-zero charge current.

As discussed in section 1.4, the quantum dot can work as a heat engine. The setup where
this is done is detailed in figure 10a. Worth noting is that the hot reservoir also has the higher
µ, but despite this the particle current is moving against the bias. Heat is transferred from
the hot reservoir to the cold, while performing electrical work by moving electrons from the
cold reservoir to the hot reservoir. The efficiency η, given by equation (6), then becomes

η = − ∆µ
ε− µ0

. (25)

Since this is an approximation for small ∆V and ∆T , high efficiency can only be obtained by
a small ε−µ0. However, the heat flow through the system is proportional to ε−µ0, and thus
increasing the efficiency leads to a process with lower power. A more extensive discussion of
the upper limit of the efficiency is provided in section 4.2.1. It is important to note however
that while this expression might seem to provide values both negative and larger than one
for some values of ε, this occurs in a region where the quantum dot is not converting heat to
work and η is thus not defined in these regimes.
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(a) (b)

Figure 8: Conductance G and L-coefficient as functions of the position of the
energy level ε, for both an interacting two-reservoir system (GU , LU) and a
non-interacting two-reservoir system (G0, L0).

3.2 Single Energy Level with Interacting Electrons
Let us now consider the effects of Coulomb interaction on the thermoelectric properties. Here
we use the same system as in the previous section, but with electrons with spin instead of
spinless electrons. In our single energy level there is now room for two electrons with different
spin, but to add the second electron the extra energy U is required due to the Coulomb
interaction. In this system we can no longer only transfer electrons with energy ε through
the system, but also electrons with energy ε+U . This makes the linear transport coefficients
more complicated, so we introduce a couple of notations:

f ≡ f(ε), fU ≡ f(ε+ U), σ ≡ 2
kBT0

ΓRΓL

Γ
ff−U
f + f−U

. (26)

With these abbreviations the linear coefficients become

G = e2σ

~
(f− + fU ), L = σe

~T0

[
(ε− µ0)f− + (ε+ U − µ0)fU

]
,

M = σe

~
[
(ε− µ0)f− + (ε+ U − µ0)fU

]
, Θ = σ

~T0

[
(ε− µ0)2f− + (ε+ U − µ0)2fU

]
.

(27)

By setting U = 0 these coefficients simplify to equation (23), as one would expect. This
means that the most transport for a given Γ is obtained when ΓL = ΓR. The main effect of
the Coulomb interaction on the conductance G is that it now has two peaks instead of one,
with the distance U between them. The effect on the other coefficients is similar, in that it
adds a second set of the same features. A comparison of G and L for U = 0 and U 6= 0 can
be found in figure 8.

The Fourier heat coefficient, K = Θ − LM
G

, exhibits an interesting behaviour in this
system. In section 1.2, we mentioned that K represents heat flow without charge current,
and in section 3.1 we showed that K = 0 for U = 0. However, in this case K is non-zero in
a region between ε = µ0 and ε + U = µ0, as shown in figure 9a. This has some interesting
implications. In this system electrons can travel through the quantum dot at two discrete
energies, with an average direction described by the difference between Fermi functions of the
two reservoirs. For some situations, this difference can, however, take different signs at ε and
ε + U , meaning that the particle currents on the two energies will take different directions.
The two currents can have opposite directions but equal sizes, which leads to a total current
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(a) (b)

Figure 9: Fourier heat coefficient K and Seebeck coefficient S as functions of
the position of the energy level ε, both in the case of an interacting two-reservoir
system (KU , SU) and a non-interacting two-reservoir system (K0, S0).

I = 0. For particle transport on a single energy, this would inevitably lead to J = 0. However,
here the particles can carry different amounts of heat. The electrons traveling on the lower
energy carry a heat of ε − µ0, while those on the upper energy carry a heat of ε + U − µ0.
So, for every couple of electrons that exchange places, heat equal to the Coulomb interaction
energy U is transferred. For this system we have a Seebeck coefficient given by

S = L

G
= 1
eT0

[
ε− µ0 + UfU

f− + fU

]
. (28)

Apparently the first term is exactly the same as in the non-interacting case, see equation (24).
The second term then is due to the Coulomb interaction, and gives rise to the non-linearity
seen in figure 9b. This deviation is located in the same region where K 6= 0, for ε between
µ0 and µ0 −U . A closer look at equation (28) reveals that when ε is located far below µ0, so
that f(ε) ≈ 1, the Seebeck coefficient becomes

S = ε+ U − µ0

eT0
. (29)

This is when most of the electron tunneling occurs on energy ε+U , and is consistent with the
interpretation of S as average energy carried per particle. The region where S has a negative
slope, as discussed earlier, is where transport is occurring both on energy ε and ε+U . From
equation (29) we can also see that the distance between the two intersections with the x-axis
is U , and that the distance in y-direction between the Seebeck coefficients in equations (24)
and (29) is U

eT0
.

The efficiency for this system becomes

η = − ∆µ
ε− µ0

− UfU∆µ
(ε− µ0)((ε− µ0)f− + (ε+ U − µ0)fU) . (30)

Similar to the Seebeck coefficient, the efficiency consists of two terms; one which is equivalent
to the η in the non-interacting case in equation (25), and another which takes the interaction
energy U into account. In a situation similar to the one showed in figure 10a, and discussed
in section 3.1, this second term would have a negative impact on the efficiency. This is due
to the same effect that causes K to be non-zero, namely counterflowing currents causing heat
flow without charge current. This heat flow cannot be converted to work, and will thus lower
the efficiency of the process.
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3.3 Non-interacting System and Strong Coupling
Finally we investigate a strongly coupled system, kBT � Γ. To do this we use the scattering
integrals from equations (18) and (19). This allows us to obtain linear response coefficients
that are valid for any number of reservoirs and energy levels, as long as the transmission for
the given situation is known. These coefficients are

G = e2

h
T (µ0), L = eπ2k2

BT0

3h
∂T

∂E

∣∣∣∣∣
µ0

,

M = eπ2k2
B

3h
∂T

∂E

∣∣∣∣∣
µ0

, Θ = π2k2
BT0

3h T (µ0).
(31)

The coefficients are dependent on the transmission T at the Fermi energy µ0. To model the
quantum dot we use a Lorentzian shape for T , as described by equation (21), and a sum of
Lorentzians for more than one energy level. The resonance energy Eres represents the position
of the energy level, so for T (µ0) Eres becomes ε − µ0. If ε is close to the Fermi energy, the
dependence of Γ is linear in all the coefficients, similar to the case of weak coupling. However,
if ε−µ0 is large, then the dependence is quadratic, T ∝ ΓLΓR. Of course, in this region there
is almost no transport in the considered systems.

By using the transmission for a single resonance and two reservoirs, i.e. equation (21),
the Seebeck coefficient becomes

S = π2k2
BT0

3e
2(ε− µ0)

(ε− µ0)2 + 1
4Γ2 . (32)

In some respects this is very different from the case of weak coupling, see equation (24).
However, if (ε − µ0) � Γ, which is reasonable since this is the region of strong coupling, S
becomes linear in ε. Perhaps the most noteworthy irregularity is the difference in temperature
dependence. For weak coupling, S ∝ 1

T0
, but for strong coupling, S ∝ T0.

With scattering theory we can illustrate the interpretation of S as and average energy
by looking at the origin of L and G. The linear coefficients are derived from the scattering
integrals for I and J . With the approximations used earlier for linear response, we receive
for the Seebeck coefficient

S = 1
T0

∫
(E − µ0)T (E) [fL(E)− fR(E)] dE∫

T (E) [fL(E)− fR(E)] dE . (33)

This looks like an average, or expectation value, of the energy (E − µ) with respect to the
distribution T (E)(fL(E) − fR(E)). Since this distribution describes the amount of parti-
cle transfer for each energy, equation (33) becomes the average energy transfered particle,
weighted by transfer amount for that energy.

The Fourier heat coefficient,K = Θ−LM
G

, becomes non-zero in this system. This is because
of the assumption of large Γ, which implies that the energy level is subject to line widening.
For the same reasons as in the previous section, it is now possible to have counterflowing
currents at different energies, which cause a non-zero heat flow. As before, K 6= 0 negatively
affects the efficiency of heat to work conversion. In conclusion, strong coupling allows for
larger currents i.e. more power, however lowers the efficiency of power production.

4 Thermoelectric Properties in the Non-Linear Regime
In this section we consider the case of arbitrary ∆T and ∆V , but weak coupling, i.e. Γ� kBT .
The reason for limiting the analysis to the regime of weak coupling is that equations (18)
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and (19) are treatable with the master equation under this assumption. This analysis can be
extended to general coupling strengths if equations (18) and (19) are treated with numerical
methods, which is not done here. Instead, this section is limited to weak coupling expressions
for particle and heat currents are derived using probabilities given by the master equation.

4.1 Single Energy Level with Spinless Electrons
For a single-level quantum dot adjoining an arbitrary amount of reservoirs, we start by con-
sidering the case of spinless electrons. The occupation probabilities in this case become

P0 = 1
Γ
∑
α

Γαf−α and P1 = 1
Γ
∑
α

Γαfα, (34)

and the particle current becomes

IN
α = 1

~
Γα
Γ
∑
β 6=α

Γβ(fα − fβ). (35)

By definition of the energy current and heat current we obtain

IE
α = εIN

α and Jα = (ε− µα)IN
α . (36)

This shows that the heat transport for a non-zero particle current is proportional to the energy
difference between the energy level and the electrochemical potential of the studied reservoir.
A non-zero heat current is only possible when the energy level and the electrochemical po-
tential does not align with each other. This is true for a arbitrary setup of electrochemical
potentials, and hence also in the large bias regime. Moreover, this result shows that the
heat transported in a given quantum dot system is solely determined by the energy of each
individual particle.

4.2 Heat to Work Conversion
It is interesting to study the possibility to extract work from heat. To be able carry out these
studies, the measure for system produced power, P , is needed. For this analysis, consider a
single-energy level, non-interacting, system connected to two reservoirs denoted cold and hot
respectively. Two systems of this kind are shown in figures 10a and 10b. As can be seen in
these figures, there are three possible regimes for the energy level to be in. When located
under εCarnot , the system performs heat to work conversion, when located between εCarnot and
εcool, heat is moved from the colder reservoir to the warmer, and for energies above εcool the
system produces heat from work. As we are interested in the ability to convert heat into
work, let us consider the regime where ε is lower than εCarnot . The work converted from heat
is then given by

P = JH + JC, (37)
where JH and JC denote the heat flow out of the reservoirs. Due to the fact that we are
studying a two reservoir system, particle conservation gives us that IN

H = −IN
C . Using the

general definitions of these heat currents and setting U = 0 leaves us with a power given by

P = (ε− µH)IH + (ε− µC)IC = ΓHΓC

Γ
µC − µH

~
(
fH − fC

)
. (38)

Each of the two Fermi functions is a function of the energy level ε as well as the reservoir
parameters µ and T . Thus, the total power depends on the parameters ε, µ, T and Γ of both
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(a) (b)

Figure 10: A quantum dot with two reservoirs which have a temperature gra-
dient, TH > TC and an electrochemical gradient µH > µC. In (a) we have
ε < εCarnot which leads to heat to work conversion. In (b) we have ε between
εCarnot and εcool, which leads to cooling of the colder reservoir.

the cold and hot reservoir. In order to understand how these parameters influence the change
in P , it is sensible to differentiate with respect to them. The desirable case would be to find
a maximum. In order to obtain this, the derivatives with respect to all the parameters would
have to be equal to 0 at the same time. By differentiating with respect to them we find that
in order to have a non-zero power output, the condition for an extrema is

∂P

∂ε
= ∂P

∂µH
= ∂P

∂µC
= 0 when ∂fH

∂ε
= ∂fC

∂ε
. (39)

In conclusion; to be able to convert the maximum amount of heat into work, two terminal sys-
tems should therefore be designed in such a way that the Fermi functions fulfill equation (39).
An important note, however, is to also check that the used properties yield a maximum and
not a minimum, as both are possible outcomes from using this equation.

4.2.1 Efficiency of the Conversion

A system’s potential for heat to work conversion is however not only dependent on the total
heat that can be extracted, but also on how effective this transfer can be. In the two reservoir
case, the energy source is the hot reservoir, and thus a logical definition of efficiency is

η ≡ P

JH
= 1− ε− µC

ε− µH
. (40)

This can be proven to have an upper limit defined by the Carnot efficiency, as expected.
To do this, let us study the point where the efficiency of heat to work conversion would be
maximized. To have heat to work conversion, in the first place, the sign of P would have to
be non-negative. In the case of a negative sign, it would no longer be heat to work conversion,
and is hence of no interest in this analysis. As seen in equation (38), the sign of P depends
on the difference between the Fermi functions, i.e. fH − fC. Maximum efficiency will be
obtained when there is no heat to work conversion at all, and hence the energy of maximum
efficiency, εCarnot , is obtained in the point where the Fermi functions align, fH = fC. This
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is schematically shown in figure 10. The restriction that εCarnot is placed in such a way that
fH = fC yields

εCarnot − µH

TH
= εCarnot − µC

TC
⇔ εCarnot = µHTC − µCTH

TC − TH
. (41)

When plugged into equation (40), this gives an efficiency η = ηCarnot ≡ 1− TC
TH

, and hence the
efficiency is bounded by the classical Carnot efficiency.

4.2.2 Maximize Power or Efficiency

In conclusion, section 4.2 and section 4.2.1 tells us that heat to work conversion is lim-
ited by two factors, namely power production and efficiency. However, these two quan-
tities are heavily correlated, and maximizing the efficiency was in section 4.2.1 shown to
reduce the available power to zero. Because of this, there is no general answer to what
the optimal combination of efficiency and power production is, as it is system dependent.

Figure 11: Produced power P and
the efficiency η. The system reaches
its maximum power with the efficiency
ηMP output when ε = εMP. It reaches
the Carnot efficiency ηCarnot when ε =
εCarnot . Note that the power output at
the Carnot efficiency is zero.

For example; a system with limited power
supply would benefit from a high conversion
efficiency, as the amount of ’wasted’ energy
then would be minimal. In many applications,
power supply is not a problem. In these cases,
it is often more relevant to look at the prop-
erty efficiency at maximum power, ηMP. As
the name suggests, this is a measure of how
efficient the heat to work conversion is when
the maximum amount of work is produced. A
relation between power output and efficiency
is show in figure 11. It is clear from this that
the efficiency at maximum power is different
from the maximum efficiency, ηCarnot .

4.3 Spin Degenerate Energy
Level with Interacting Electrons
Now let us consider a system similar to the
one in section 4.1, with the only difference
being that we now have electrons with spin.
This means that due to the Pauli principle, it
is possible for two electrons to occupy the energy level at the same time as long as they have
different spin.

To increase readability, we introduce the following definitions,

fα = fα(ε), fUα = fα(ε+ U),
fΣ =

∑
α

Γαfα, fUΣ =
∑
α

ΓαfUα. (42)

With these definitions we get the particle current

IN
L = 2ΓLΓR

~
fL − fR + fRfUL − fLfUR

f−Σ + f−UΣ
, (43)
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where indices L and R refer to the left and right hand side reservoir respectively. This particle
current yields a heat flow of the form

JL = −2ΓLΓR

~Γ
(ε− µL)f−UΣ(fL − fR) + (ε+ U − µL)fΣ(fUL − fUR)

f−Σ + f−UΣ
. (44)

One key difference between the currents in equations (43) and (44) with the ones in section 4.1,
is that it is now possible to have a heat current without a charge current. An example of
this is illustrated in figure 12. In this situation, each electron heats and cools the colder and
the warmer reservoir respectively with U/2, i.e. the warmer reservoir transfers heat to the
colder reservoir. Since an equal amount of electrons tunnel in both directions, the net particle
current is zero.

5 Charge and Heat Separation

Figure 12: A weakly coupled inter-
acting quantum dot without a bias,
∆µ = 0, but a temperature gradient,
∆T > 0. ε is at µ0 − U/2 and ε + U
at µ0 + U/2. The particle currents
cancel out but the electrons still carry
heat from the warmer reservoir to the
cooler.

For some thermoelectrical setups, it might be
desirable to have charge and heat currents
splitting up into different parts of the system.
In this section we consider a three-terminal
system like the one in figure 13. The goal is
to have charge current and heat flow going
out of one reservoir, and then have the charge
current go into the second terminal while the
third is heated. Whether this is possible or
not is investigated in this section.

5.1 Spinless Particles
For the system with spinless particles, and
tunneling on a single energy ε, the heat flow
Jα out of reservoir α is always directly pro-
portional to the particle current out of that
reservoir, as per equation (36). Since the heat
flow is tied to the particle current it is impos-
sible to completely separate charge and heat
in this system.

5.2 Coulomb Interacting Elec-
trons
In section 3.2 we showed that in the Coulomb interacting system the Fourier heat coefficient
can be non-zero. This means that it is possible to have a heat flow without a particle current.
In the three-terminal setup, we will use one of the terminals as a voltage probe, see figure 13.
The voltage probe has infinitely high resistance and is therefore described by the condition
Iprobe = 0. In the linear regime, the current out of a reservoir in a three terminal system is
given by

I1 = G12∆V12 + L12∆T12 +G13∆V13 + L13∆T13. (45)

If we for example set Iprobe ≡ I2 = 0, then having J2 6= 0 would require thermoelectric effects
in the transport between reservoirs 1 and 3. Since M is proportional to L, L = 0 tells us that
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there is no thermoelectric effect present. Applying the probe condition, we find after some
calculation that

L13 = L12G21 + L12G23 − L21G12 − L23G12

G32 +G32

L31 = L32G21 + L21G32 − L32G23 − L32G23

G32 +G32
.

(46)

Apparently the condition for having I2 = 0 while J2 6= 0, i.e. L13 6= 0 and L31 6= 0,
is GαβLβα 6= GβαLαβ. While the linear coefficients describing this situation have not been
presented explicitly, they are similar to equation (27) but with Γ = Γ1+Γ2+Γ3. Note however
that these coefficients where derived under the assumption of energy independent couplings,
and thus will always fulfil GαβLβα = GβαLαβ.

From this we see that the only thing that could cause an asymmetry in the coefficients
would be the coupling. However it is not enough to have an asymmetric coupling Γ1 6= Γ3,
which would still lead to symmetric Onsager coefficients, since they would still be given by
the same expressions. The couplings would have to be asymmetrically energy dependent, i.e.

∂Γ1

∂ε
6= A

∂Γ3

∂ε
, (47)

for any constant A. If this is the case we can have L13 6= 0, L31 6= 0, which would allow for
separation of heat and charge, in the sense that I2 = 0 while J2 6= 0.

6 Conclusions

Figure 13: Quantum Dot with three
reservoirs, where reservoir 2 is a voltage
probe.

In this project, we have studied the ability
of a quantum dot to act as a heat engine, or
a heat pump, i.e. convert heat to work or
extract heat from a cold reservoir. This was
done by investigating the effects of different
system characteristics on the thermoelectric
properties of the system. Below we provide a
brief summary of the results, as well as some
discussion on possible applications.

For a quantum dot with a single non-spin
degenerate energy level in a weakly coupled
system, we have found that the heat flow Jα
for each reservoir α is proportional to its par-
ticle flow IN

α . This means that for this kind of
system, there cannot be a heat flow without
a particle current. We have studied the effi-
ciency of heat to work conversion, and found
that its upper limit is the Carnot efficiency
when considering non-linear effects, but it is
only reached in a zero power output process. The difference between the Carnot efficiency
and the efficiency at maximum power depends on the reservoirs’ characteristics.

In contrast, for a quantum dot with a spin degenerate energy level in a weakly coupled
system, we have found that the particle current and heat flow depends on the interaction
energy U between the electrons in the system, since the Coulomb interaction is a means to
store energy in the dot. In this system, counterflowing charge currents can lead to a heat flow
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without a charge current. This negatively impacts the efficiency of heat to work conversion,
since this heat flow cannot be converted to work.

For a system with an interacting quantum dot connected to two reservoirs and a voltage
probe, we have shown that with asymmetrically energy dependent coupling strengths we can
separate heat flow and charge current. This means that while doing electric work between
the reservoirs due to a voltage gradient, the heat for this process is extracted from the probe.
However, we also have shown that this process is not possible with symmetrically energy
dependent coupling strengths.

For a strongly coupled non-interacting system in the linear regime, the Fourier heat was
shown to be non-zero. This means that heat can flow without a charge current, which
negatively affects the efficiency in a process of heat to work conversion.

It is important to note that the quantum dot operates in very low temperatures. That
being said, there still seems to be potential for several useful applications of this kind of
system. We have shown how a quantum dot connected to two or more reservoirs can be
used for cooling, converting heat to work, selectively eliminating temperature and voltage
gradients, and separating heat flow from charge current. All of these processes could have
uses in low-temperature microscopic circuitry, but would require further investigation.

20



References
[1] S. B. Desai, S. R. Madhvapathy, A. B. Sachid, J. P. Llinas, Q. Wang, G. H. Ahn, G.

Pitner, M. J. Kim, J. Bokor, C. Hu, H.-S. P. Wong, and A. Javey, “MoS2 transistors
with 1-nanometer gate lengths”, Science, no. 354, pp. 99–102, Oct. 2016.

[2] J. Vanherck, “Time-dependent particle and energy currents through interacting quan-
tum dots”, 88, Master’s thesis, 2016.

[3] S. Jürgens, “Thermoelectric performance of quantum dots driven by time-dependent
fields”, Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTHAachen,
2012.

[4] T. Ihn, Semiconductor Nanostructures. Oxford University Press, 2010.
[5] J. Was, Fundamentals of Nanoelectronics, Single-electron devices, S. Blügel, M. Luys-

berg, K. Urban, and R. Waser, Eds. Forschungszentrum, Zentralbibliothek, 2003, isbn:
389336319X.

[6] C. Volk, S. Engels, C. Neumann, and C. Stampfer, “Back action of graphene charge
detectors on graphene and carbon nanotube quantum dots”, physica status solidi (b),
vol. 252, no. 11, Sep. 2015.

[7] R. Scheibner, M. König, D. Reuter, A. Wieck, C. Gould, H. Buhmann, and L. Molenkamp,
“Quantum dot as thermal rectifier”, New Journal of Physics, vol. 10, no. 8, Aug. 2008,
Article ID: 083016.

[8] G. Benenti, G. Casati, K. Saito, and R. S. Whitney, “Fundamental aspects of steady-
state conversion of heat to work at the nanoscale”, [Online]. Available: https://arxiv.
org/abs/1608.05595.

[9] R. P. Feynman, The Feynman Lectures on Physics. New York: Basic Books, 2003,
vol. 1-2, isbn: 9780738209241.

[10] J. Splettstößer, “Weakly coupled quantum dots with strong onsite interaction”, pri-
vate notes, Chalmers University of Technology Department of Microtechnology and
Nanoscience, 2017.

[11] Janine Splettstößer, Scattering theory, Private lecture, Feb. 2017.

https://arxiv.org/abs/1608.05595
https://arxiv.org/abs/1608.05595


A Probabilities and Currents in a Magnetic Field
For a single-level quantum dot in a magnetic field the energy level ε is split up in two,
depending on the magnetic field B according to

ε↑ = ε+ B

2 and ε↓ = ε− B

2 . (48)

In order to present the expression for the occupation probabilities in a somewhat compact
form, we introduce the following notations for the Fermi functions

fα↑ = fα(ε↑), fα↑U = fα(ε↑ + U),
fα↓ = fα(ε↓), fα↓U = fα(ε↓ + U),

(49)

and the sum of the Fermi function multiplied with the coupling for respective reservoir

f↑Σ =
∑
α

Γαfα(ε↑), f↓Σ =
∑
α

Γαfα(ε↓),

f↑UΣ =
∑
α

Γαfα(ε↑ + U), f↓UΣ =
∑
α

Γαfα(ε↓ + U).
(50)

To further increase the readability we will separate the nominator and denominator

P0 = P0N

D
, P↑ = P↑N

D
, P↓ = P↓N

D
, P1 = P↑ + P↓, P2 = P2N

D
, (51)

where P0, P1 and P2 denotes zero, one respective two particles occupying the energy level,
and P↑ and P↓ denotes an electron with spin up respective down occupying the energy level.
The denominator D is defined as

D = 2Γ
(
Γ2 − f↑f↓ + f↑f↓U + f↓f↑U − f↑Uf↓U

)
. (52)

Since the probabilities contain a recurring term, denoted G, we will also define this before
dealing with the nominators;

G = f↑f↓(f↑U + f↓U)− f↑Uf↓U(f↑ + f↓). (53)

With these definitions we can now present the probabilities

P0N = 2Γ3 − 2Γ2 (f↑Σ + f↓Σ) + Γ (2f↑Σf↓Σ + f↑Σf↓UΣ + f↓Σf↑UΣ − 2f↑UΣf↓UΣ)−G,
P↑N = 2Γ2f↑Σ + Γ (f↓Σf↑UΣ − f↑Σf↓UΣ − 2f↑Σf↓Σ) +G,

P↓N = 2Γ2f↓Σ + Γ (f↑Σf↓UΣ − f↓Σf↑UΣ − 2f↑Σf↓Σ) +G,

P2N = Γ (f↑Σf↓UΣ + f↓Σf↑UΣ)−G.

(54)

When setting the magnetic field to zero, i.e. B = 0, we get the occupation probabilities

P0 = 1
Γ

f−Σ f
−
UΣ

f−Σ + f−UΣ
, P1 = 1

Γ
2fΣf

−
UΣ

f−Σ + f−UΣ
, P2 = 1

Γ
fΣfUΣ

f−Σ + f−UΣ
. (55)

These are shown in figure 6, and are easily understood by inspecting the different numerators.
For example, P0 is large when both f−Σ and f−UΣ are large, i.e. the reservoirs are mostly
unoccupied at both energies ε and ε+U . This causes the energy level to be mostly unoccupied,
which is equivalent to a large P0.
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The probabilities for B 6= 0, listed in equation (54), we can express particle current IN
α

and energy current IE
α as

IN
α = Γα

~

[ (
fα↑ + fα↓

)
P0 +

(
fα↓U + fα↑ − 1

)
P↑

+
(
fα↑U + fα↓ − 1

)
P↓ +

(
fα↑U − 1 + fα↓U − 1

)
P2

]
,

IE
α = Γα

~

[ (
ε↑f

α
↑ + ε↓f

α
↓

)
P0 +

(
(ε↓ + U)fα↓U + ε↑(fα↑ − 1)

)
P↑

+
(
(ε↑ + U)fα↑U + ε↓(fα↓ − 1)

)
P↓

+
(
(ε↑ + U)(fα↑U − 1) + (ε↓ + U)(fα↓U − 1)

)
P2

]
.

(56)
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B The Transition Matrix
The transition matrix for eigenstates in the quantum dot is given by W = ∑

αWα, where Wα

is the transistion matrix for the reservoir α. Wα is a combination of the matrices for particles
tunneling into and out of the dot, Wα = Wα+ +Wα−, and is given by

Wα =


Wα

0,0 Wα
0,↑ Wα

0,↓ Wα
0,2

Wα
↑,0 Wα

↑,↑ Wα
↑,↓ Wα

↑,2
Wα
↓,0 Wα

↓,↑ Wα
↓,↓ Wα

↓,2
Wα

2,0 Wα
2,↑ Wα

2,↓ Wα
2,2



=


−fα↑ − fα↓ 1− fα↑ 1− fα↓ 0

fα↑ fα↑ − fα↓U − 1 0 1− fα↓U
fα↓ 0 fα↓ − fα↑U − 1 1− fα↑U
0 fα↓U fα↑U fα↑U + fα↓U − 2

 ,
(57)

with notations from equation (49).

III


	List of Figures
	Table of Definitions
	Introduction
	Background
	Quantum Dot Systems
	Thermoelectric Effects and Linear Coefficients
	Efficiency of a Power Producing Quantum Dot System

	Methods, Models and Properties of Quantum Dots
	Open Quantum Systems
	Master Equation
	Scattering Theory
	Models
	General Properties
	Currents and Coulomb Blockade Effect
	Modeling a Quantum Dot Using a Double Delta Barrier


	Thermoelectric Properties in the Linear Regime
	Single Energy Level with Spinless Particles
	Single Energy Level with Interacting Electrons
	Non-interacting System and Strong Coupling

	Thermoelectric Properties in the Non-Linear Regime
	Single Energy Level with Spinless Electrons
	Heat to Work Conversion
	Efficiency of the Conversion
	Maximize Power or Efficiency

	Spin Degenerate Energy Level with Interacting Electrons

	Charge and Heat Separation
	Spinless Particles
	Coulomb Interacting Electrons

	Conclusions
	Bibliography
	Probabilities and Currents in a Magnetic Field
	The Transition Matrix

