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Map-based localization using LiDAR and deep neural networks
SABINA LINDEROTH
ANNIKA LUNDQVIST
Department of Electrical Engineering
Chalmers University of Technology

Abstract
The research on autonomous driving is expanding, and self-driving technology has
the potential of transforming not only the transportation system, but our whole
society. The ability to localize a vehicle in a map is an important piece of the puzzle
in the development of self-driving vehicles. Different kinds of sensors can be used to
detect the world around the vehicle. A suitable sensor in this case can be a LiDAR,
which measures distances to objects using lasers. With this information we can
create a map of the vehicle’s surroundings that can be compared to a known map
to find the vehicle’s position.

This thesis investigates methods of localizing a vehicle in an a priori known
map using a LiDAR sensor and neural networks. The LiDAR sensor yields a point
cloud representation of the vehicle’s surroundings and the data used in this project
is collected from the simulation environment CARLA. The neural networks use the
point clouds to predict how much we need to adjust an initial guess of the vehicle’s
position in the map to get closer to the true position. The thesis investigates two
different network approaches using regression; one type of network that uses 2D
LiDAR Bird’s Eye View images as input, and another type of network that uses
LiDAR point clouds as input.

The results show that pure translation can be found using regression by
both types of neural networks, while rotation errors are more difficult to predict
correctly. While none of the networks can compete with state-of-the-art methods,
this thesis shows that neural network regression might have the potential to solve
the localization task on its own.

Keywords: Localization, Map-Based Localization, Deep Learning, LiDAR, CARLA
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1
Introduction

The research field of autonomous driving, ranging from computer vision to control
theory, is of significant interest worldwide. Apart from the advantage of spending
time in the car doing something else than driving, traffic accidents would most likely
decrease dramatically if vehicles were automated. According to National Highway
Traffic Safety Administration, 94% of all serious motor vehicle crashes are due to
human errors [2]. It is a long leap from a standard vehicle driven and controlled by
a human, to a fully autonomous vehicle that does not need any human interaction.
The Society of Automotive Engineers International (SAE) describes six levels of
automation that are widely used today to describe the level of automation of on-
road vehicles [3]. Localization is an important piece of the puzzle, in order to reach
the sixth and last level of automation.

1.1 Background
A fundamental problem in autonomous driving is the ability to localize the ego
vehicle relative to its surroundings in real time. This is a key factor for autonomous
driving systems such as Advanced Driver-Assistance Systems (ADAS), Advanced
Emergency Braking System (AEBS) and Adaptive Cruise Control (ACC), which all
rely on information of the ego vehicle’s position relatively to other objects in order
to give the ego vehicle correct control signals. Localization is therefore a field of
active research where improvements lead directly to better self-driving vehicles.

Computer vision approaches are often used to perform localization. Great
advances in image processing with help of deep learning have been a foundation
for the perception systems where RGB-images can be used for object detection,
ego motion estimation and localization. These system can however be vulnerable
to different weather and lightning conditions, since an image of a scenery changes
dramatically between day and night, at least if interpreted by a computer. Other
sensors, such as Light Detection And Ranging (LiDAR) sensors, can be used as a
complementary sensor, or on its own, to perform the same tasks. A LiDAR sensor
measures distances to objects in the surrounding using lasers, with little sensitivity
to weather or light conditions [4]. LiDARs can be used to construct high-resolution
environment maps with which localization can be performed, for example by using
filtering techniques as in [5] or by iterative methods of aligning point clouds as in [6].
With the introduction of deep neural networks, localization can now be performed
using deep learning, as will be the case in this thesis.

1



1. Introduction

This thesis proposes a method of localizing a vehicle using a LiDAR sensor,
which creates a point cloud representation of the vehicle’s surroundings. This point
cloud is used as an input to a Deep Neural Network (DNN) with an ultimate goal of
localizing the ego vehicle in an a priori known map. This kind of method using an a
priori known map reduces the complexity of the localization task, from a perception
problem (extracting lane markings etc.) to a localization problem matching current
sensor data with a map. An additional usage of this kind of localization is to detect
loop closure, which could further improve existing Simultaneous Localization And
Mapping (SLAM) algorithms.

1.2 Related work
Despite decades of active research, localization still remains an area where there is
room for improvement which is crucial for the development of autonomous driving.
For a vehicle to get from point A to point B, precision of a few meters given by a
GPS can be sufficient, but for safe motion planning in complicated environments,
centimetre precision is desired. Geometric methods are often utilized to achieve high-
precision localization, such as Iterative Closest Point (ICP) which can be used for
point set registration [5]. These methods are vulnerable to repetitive environments,
such as bridges and tunnels, if the environment is geometrically non-distinctive.
Image-based methods can also be used for localization [7], but are often less accu-
rate in outdoor environments compared to the geometric methods and require that
season changes and daylight conditions are taken into consideration. Simultaneous
Localization and Mapping (SLAM) is another method that is widely used for nav-
igation of autonomous vehicles. The method serves, as the name indicate, to build
a map of an unknown surrounding of a vehicle or update a current map, and at the
same time localize the vehicle in the map. To succeed with this task SLAM uses
Bayesian statistics, often with Kalman filters and in combination with at least one
LiDAR sensor [8].

LiDAR point clouds can be used as input to neural networks for many pur-
poses, ranging from object detection, semantic segmentation to localization. One
way of localizing using LiDAR data is to create an intensity map in a grid-like struc-
ture, where each pixel represents the intensity in the corresponding area in the world
as Barsan et al. suggest [9]. In this paper, they process the pre-built map with a
neural network into an online embedding, and compare it in real time with LiDAR
sweeps that are processed in the same way. Among the networks considered in [9],
the neural network that performs best is inspired by LinkNet [1]. The comparison is
done by computing the cross-correlation between the map and the sweep to find the
position in the map that yields the highest activation. Rotation is handled by ro-
tating the sweep and performing cross-correlation for different rotation angles. The
method is fast and accurate, but requires a good initial guess of the vehicle’s position
in the map, and the output can not achieve a higher precision than the resolution
of the grids or the rotation angles that are investigated in the cross-correlations.

When creating 2D images of LiDAR data, information like height is lost.
Another way to handle LiDAR data without altering the detections is to use the
point cloud coordinates directly as an input to a neural network. This also avoids
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rendering unnecessary voluminous data where grids in the 2D-picture would contain
no detections, which is often the case with LiDAR data. The pioneers in the area
of processing un-ordered sets of point clouds with neural networks are Qi et al.
which introduced the network PointNet [10]. Their network succeeds in performing
classification, part segmentation and semantic segmentation, but has not been used
to perform localization. Zhou et al. applied this idea on LiDAR data with VoxelNet
[11] to perform 3D-detection. The input point cloud is divided into voxels where each
voxel is processed separately by stacked voxel feature encoding (VFE) layers to later
be used in a region proposal network. The performance is strong, but the network
is too slow to deploy in real time. A continuation on VoxelNet is provided by Lang
et al. with their network PointPillars [12]. The goal is still to perform 3D object
detection, but by using pillars instead of voxels, time-consuming 3D-convolutions
can be replaced by 2D-convolutions which makes the network faster. PointPillars
outperformed all state-of-the-art 3D detection networks when it was published, on
KITTI benchmark data sets.

There are other types of neural networks developed whose purpose are not
localization using LiDAR, but are still closely related to our problem formulation in
this thesis. Flownet [13] has been successful in using 2D convolutions to estimate
optical flow in image pairs. This indicates that neural networks have the capability
to compare two images and estimate movement between them. Other networks, such
as DeMoN [14], prove that camera motion can also be estimated from an image pair.
Even more interestingly, iteration of the network has been shown to further improve
these estimations. Although convolution neural networks (CNN) are very successful
in a variety of computer vision tasks, there are some seemingly easy tasks that are
surprisingly difficult for the CNN to solve. Liu et al. [15] show that CNNs perform
poorly when ask to render an image and mark a specific pixel, given the pixel’s
coordinate as input. The problem is that convolutions are equivariant, indicating
that the convolutional kernels don’t know where in the image they are performing
their operations. The solution is as simple as the task - introduce extra information
in the image in the form of layers with pixel coordinates. This idea could also be
used in this thesis, for the network to identify the same structure in two images and
find the movement between them.

While localization using LiDAR data is not a new idea, many methods men-
tioned so far suggest transforming the data into a 2D representation, thus loosing
information about height and limiting the accuracy to the resolution of the grids. We
propose networks that instead utilize regression to estimate a rigid transformation,
with the potential of yielding a more accurate result independently of the magni-
tude of the rigid transformation. Further more, we plan on using the main ideas of
PointPillars to directly use a LiDAR point cloud as input, thus not loosing valuable
information in the point cloud coordinates. The learned features of the pillars can
then be processed with 2D convolutions and again use regression to estimate the
final rigid transformation. We plan on getting inspiration for network architectures
from the mentioned network that estimate camera motion and optical flow, as well
as the networks that successfully performs 3D object detection. If the task proves to
be difficult for the networks, we will implement inputs with extra pixel coordinate
layers as suggested by Liu et al. [15].
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1.3 Problem formulation
The localization task is performed by a DNN where the input consists of the current
surroundings of the ego vehicle and a cut-out from the map at an initial guess of
the vehicle’s position and heading. The output of the DNN is a vector containing
the rigid transformation which corrects the initial guess of the vehicle’s position and
heading in the map. A DNN of this kind can be designed using many different
kinds of inputs. In this thesis project, we have focused on using either the point
cloud generated by the LiDAR directly as input, or projecting the point cloud onto
a surface creating a 2D image.

The project started with gathering LiDAR sensor data from a simulated ur-
ban environment called CARLA [16], which will be further introduced in Section
1.3.3. The sensor data is used to create a point cloud map of all the roads and
surroundings in the environment. Training data is created from the sensor data as
well, mainly by rotating and translating the LiDAR-measurements arbitrarily. The
networks developed in this thesis are divided into two different kinds, depending
on which input that is used. Firstly, we focus on developing networks that use 2D
images as input, and after that on networks that use point clouds as input. The net-
works have in common that they use regression to estimate the rigid transformation
between the sweep and map cut-out.

1.3.1 Aim
The aim of this thesis project is to develop a DNN that can localize an ego vehicle in
an a priori known map, by matching current LiDAR measurements with the map.
The goal is to develop a network that will localize the vehicle with a centimetre
level accuracy using neural network regression. We will develop two different types
of networks. One type that takes 2D top-view LiDAR images as input and one type
that uses the 3D point cloud generated from the LiDAR as input.

1.3.2 Scope and limitations
The scope of this thesis is to implement the last step of a localization process, where
ideally multiple sensors have been involved to give an initial prediction of the ego
vehicle’s position and heading in the map. We will not delve deeper into the sensor
fusion behind this process, but focus only on the localization task using a LiDAR
and a predicted position and heading of the vehicle.

The training and testing of the DNNs are performed using data from diverse
urban environments in the simulation environment CARLA, i.e we will not collect
and use data from real environments. Situations where the surroundings are similar
over time such as monotonous highways, long tunnels and bridges are not of interest
in this thesis since it is considered to be out of scope of the problem. Since dynamic
object removal is not in the scope of this thesis, the data used in this project will
only contain static objects.

A limiting factor in this thesis work is the amount of time needed to train
the neural networks.
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1.3.3 Tools and equipment
This section describes the tools and equipment that were used, starting with the
hardware and continuing with the simulation environment CARLA and finally the
open source deep learning platform Pytorch.

Hardware

Training neural networks seems to always need more time and computational power
than expected. In this project a Google Cloud instance was used when collecting
data in the simulation environment and when training the networks. The instance
was equipped with a SSD of 25 GB, 4 NVIDIA Tesla K80 GPU with 12 GB memory
each and 8 virtual CPUs with 30 GB memory.

CARLA

CARLA is an open-source simulator for autonomous driving research [16]. The simu-
lation environment can be customized freely and contains features such as different
weather conditions and urban environments where other vehicles and pedestrians
can be present. The software contains a Python API that allows the user to control
the simulation environment and its actors, eg. a vehicle, in the simulation. There is
also a built in autopilot, which allows the actor to drive randomly while respecting
traffic rules and other vehicles and pedestrians. The actor in the simulation can be
equipped with other actors such as different kind of sensors, eg. a LiDAR sensor,
which has been used in this project. CARLA provides information about the actors
such as the global position of the LiDAR sensor and the point cloud coordinates
in each time frame generated by the LiDAR. Information about the actors such as
velocity and global position can also be collected. The CARLA version 0.9.2 was
used in this project.

PyTorch

PyTorch is an open-source deep learning framework developed primarily by Face-
book’s artificial-intelligence research group. The PyTorch framework is a Python-
based scientific computing package which has two main features; a NumPy substi-
tute to be able to use the power of GPUs and a platform for deep learning research
that provide maximum flexibility and speed.

1.4 Contribution
The contributions from this thesis are the deep learning network architectures, that
can solve the localization task in novel ways using LiDAR data. The networks can
use different kind of inputs created from the LiDAR data, and the localization is
solved using regression. The results can not compete with state-of-the-art meth-
ods used today, however the methods in this thesis could be promising with more
research.
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1.5 Report outline
Following this introduction chapter, the theory behind this thesis is presented. Key
concepts of deep learning will be introduced, both regarding the theory behind neural
networks and how to train them. Chapter 3 describes the methods that have been
used in this thesis project, e.g. how data was gathered and pre-processed and which
networks that have been developed. Chapter 4 presents the results, along with some
brief interpretations and comparisons of the outcomes. The results are discussed in
more detail in Chapter 6, and the thesis is finally concluded in Chapter 7.

6



2
Theory

In this chapter, the theoretical background for this project will be described. First
the function of a LiDAR sensor will be presented in Section 2.1 followed by the
Sections 2.2-2.3 that cover the theoretical basics of artificial neural networks and
how to train them.

2.1 LiDAR sensor

LiDAR sensors, Light Detection and Range, are built on the simple fact that light
which hits an object will reflect back to the light source. A LiDAR sensor utilizes
this fact by sending out laser beams and measure how long it takes for the beams
to get back to the sensor. Since the speed of light has a known value the distance
to an object can be calculated with high accuracy as,

Distance = (Speed of light)× (Time of flight)
2

where Time of flight is the time it takes for the laser beam to travel back and forth.
There are three different kinds of LiDAR sensors; 1D-, 2D- and 3D-LiDAR. The
1D-LiDAR sensor only measures the distance, while a 2D sensor also register the
scanning angle of the beam in the xy−plane to find the x and y coordinates of a
reflective object. A 3D-LiDAR consists of a set of 2D-LiDAR sensors, arranged in
different heights which allows the sensor to also find the z-coordinate of an object.
The number of lasers that the 3D sensor uses is called the number of channels.
Something in common for most of the LiDAR sensors is that they rotate continuously
around their center in the horizontal plane and generates a 3D point cloud of its
surroundings. The scanning angle, both in the horizontal and vertical plane, is often
denoted as the field of view (FOV). Since a LiDAR also detects the intensity of the
reflected light it can be used to get information of the structure of the surface that
is hit by the beam [17].

A LiDAR can be mounted on an autonomous vehicle, e.g on the roof of a
car, which makes it possible for the vehicle to use the information generated by the
sensor to navigate itself. The maximum distance that can be detected is called the
sensor’s range which typically is about 100 m [17].
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2.2 Artificial Neural Networks
Artificial neural networks (ANNs) are inspired by the brains of mammals as humans
and higher animals, which are known to be very complex objects. The computa-
tional capability in today’s computers are much smaller than the one in a typical
brain, however they share some common properties. Similar to a brain, an ANN
consists of neurons which are components that interconnect in order to solve tasks
such as function approximation or classification. Function approximation has as
goal to find a representation of a function y = f(x) for x in the domain of f . To find
f(x) the network needs to be trained and this is often done using either supervised
or unsupervised training. When using supervised training, one normally uses train-
ing samples that cover a subset of the domain of interest. For every input to the
network there must exist a desired output. By comparing the desired output with
the prediction that is given from the network, an error signal can be generated and
used when training the network to perform better. A typical example of supervised
learning is the classification problem, where the network’s task is to classify an in-
put among a set of pre-defined categories. A famous data set for classification is the
data set MNIST which contains images of hand-written digits between 0-9 with a
label describing the digit in the image. A neural network should in this case learn
to categories the input images in to 10 different classes, one class for each digit in
the numerical system. This simple data set is often used as a test in deep learning
research [18]. Another example of supervised learning are regression tasks, where
the network predicts a numerical value. A typical task can be to predict future
prices of real estate, based on past labeled data.

Unsupervised training is used when an error signal can not be created. The
goal with the training is that the ANN should be able to provide an output that
consists of the correct prediction of the intermediate points [19]. Since the training
data is not labeled, the goal is often to let the network group similar data points
together.

The neural networks in this thesis project are examples of feed-forward neural
networks (FFNN). The name stems from the fact that the input x flows through
the network to create the output ŷ, which is compared to the label y assigned to x
[18]. Basic theory of neural networks will be presented in this section, specifically
fully connected layers, convolutional layers and activation functions, that are the
foundations of the networks in this project. How to train neural networks is described
in Section 2.3.

2.2.1 Fully connected layers
A simple feed-forward neural network can consist of fully connected layers, where
each neuron in every layer is connected to all the neurons in the following layer. A
network usually consists of multiple of these fully connected layers, yielding a deep
neural network that is capable of learning complex functions. See Figure 2.1 for a
simple representation of a fully connected neural network.

Each neuron calculates a linear combination of all the inputs and this sum is
passed through an activation function as output. The weights are the learnable pa-
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Figure 2.1: A simple fully connected neural network with one hidden layer. The
blue circles represent the input layer, the green circles the hidden layer and the
red circle is the output layer. x1 and x2 are the inputs to the network with the
corresponding output ŷ w1-w9 are the learnable weights and ŷ. The calculation from
Equation (2.1) is performed in each neuron. The weights and activation function
are highlighted in one of the neurons in the hidden layer in the Figure.

rameters that are updated during the training of the neural network. The operation
in a neuron with N inputs can be described with the following expression,

yj = a

(
w0 +

N∑
i=1

wixi

)
(2.1)

where xi is the ith input, yj is the output from the jth neuron and wi are the
learnable weights where w0 is a learnable bias. The activation function a(·) and
its role will be described in more detail in Section 2.2.3. All neurons perform these
calculations each forward pass when the input propagate through the neural network
to calculate the final output. What makes the network so powerful is that each and
every weight learns its value by being exposed to training where the correct output
is known.

2.2.2 Convolutional Neural Networks
Another layer that can be used in a FFNN is the convolutional layer. A FFNN that
consists of at least one convolutional layer is called a Convolutional neural network
(CNN). CNNs are often used when the input to the network can be represented
as a 2D grid, making them very useful when working with 2D images. The specific
filtering operation of a convolutional layer is discrete convolution without flipping the
kernel, which is a function called cross-correlation. The cross-correlation function is
defined as,

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.2)
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where I is the input image, K the kernel and i, j the size of the 2D input and kernel.
The kernel can also be called filter and S is the output feature map. The input is
usually a multidimensional array of data and the kernel a multidimensional array of
trainable parameters that are learned by the network [18].

Figure 2.2: A schematic of the operation performed on the input in a convolutional
layer. The 6×6 sized matrix to the left is the input image and the 4×4 matrix to
the right is the output feature map. The filter (blue box) is applied two times. First
it operates on the 3×3 sized box in the upper left corner (green box) and then on
the red box. The stride length in this example is 1. The filter will sweep over the
input one stride at the time and continue to fill the output feature map in the same
way.

The filtering can be seen as extraction of important features from the input.
The trainable parameters in the filters will during training of the network learn
to extract specific features that are used in later layers to assemble more abstract
features.Examples of features that a filter can extract in the shallow parts of the
network, are sharp edges in the image and gradient shapes of different signals. The
deeper the network is, the more abstract are the features that the filter tries to
extract [18]. One can use several filters on one input which will result in that the
output from that layer will have the same number of channels as the number of
filters applied. The filter is applied on the input with a given stride length, i.e
if having stride one the filter moves with one pixel increments. The output from
the convolutional layer is given by the dot product between the filter and a local
neighborhood of entries in the input. The output can be seen as a feature map which
consist of valuable information where specific features are located in the input image.
The receptive field of the network is how much of the input that is visible to each
filter. The receptive field increases linearly with each layer, and depends on the size
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of the filters and the number of convolutional layers. The convolutional operation is
schematically shown in Figure 2.2. As seen in the figure the output is of smaller size
compared to the input. This is because the filter can not operate outside the input
image’s grid unless zero adding is applied. Zero padding is performed by adding an
appropriate amount of rows and columns with zeros around the input image to get
the same output size as input [18]. For example if using zero padding of size one in
Figure 2.2, i.e two extra rows and columns around the grid, will yield a output of
size 6×6.

Another layer that is typical for a CNN is the pooling layer. The pooling
layer is used to summarize the information in a given neighbourhood of the output.
This will make the information in the output feature map more compact and also
make the representation more resistant to translations in the input image. There
are different kinds of pooling layers, two examples are the max pooling layer that
saves the maximum value of a rectangular neighbourhood in the output and the
weighted average pooling layer which saves the weighted average of a square around
a center pixel [18]. The max pooling operation is shown in Figure 2.3.

Figure 2.3: Schematic of the max pooling operation. The maximum value in
each of the colored neighbourhoods (left square) is saved in a new more compact
representation of the output (right square).

2.2.3 Activation functions
The role of an activation function is to introduce non-linearity to the output of a
neuron. Consider the output from a neuron in layer 1, z[1],

z[1](X) = W [1]X + b[1]

where X ∈ Rn×m is the input, W [1] ∈ Rm×n the weights and b[1] ∈ Rm the bias. z[1]

will then be the input to a neuron in the next layer z[2]. The output from that layer
can be described as,

z[2](z[1]) = W [2]z[1] + b[2]

= W [2](W [1]X + b[1]) + b[2]

= W [2]W [1]X +W [2]b[1] + b[2].

Let W [2]W [1] = W and W [2]b[1] + b[2] = b. This yields the final output from the
second layer

z[2] = WX + b.
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This shows that without an activation function, the output from every layer will be
a linear function of the input regardless of the number of layers. The non-linearity
that the activation function introduces is necessary for the back propagation process,
which will be described in Section 2.3.2. The derivative of z must depend on the
input x in order to let the network learn to predict the output. If not introducing
non-linearity, the derivative of z is just a constant and not dependent on the change
of the input. Introducing non-linearity enables the network to learn more complex
mapping functions [20].

There are various kinds of activation functions that can be used in a neural
network. Some of the most common ones are the Rectified Linear Unit (ReLU)
function and the Tangens hyperbolicus (tanh) function. The ReLU function is the
most common and recommended activation function used in feed forward neural
networks and is defined as the maximum value of an input x and zero,

ReLU(x) = max{0, x}.
If applied to a linear transformation the function yields a nonlinear transformation
keeping the properties that enable linear models to be optimized with gradient based
methods [18].

The tanh function, as the name indicate, is a hyperbolic function which
returns the hyperbolic tangent of the input value. Tanh is defined as,

tanh(x) = 2
1 + e−2x − 1

where x is the output value from the neuron. The output is bound to the interval
[-1,1]. In Figure 2.4 the two activation functions are shown.

Figure 2.4: Graph showing the ReLU function (orange) and tanh function (blue).

2.3 Training an Artificial Neural Network
When training a network the task is to tune the learnable parameters to minimize
the difference between the output of the network and the ground truth by using a
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training set. The training set is looped through more than one time. Each loop is
called an epoch and since the network will see each sample more than one time it
has more than one chance to learn from the sample. During training the trainable
parameters of the network are updated to achieve the smallest possible error, ideally
0. Example of parameters that are updated during training are the weights and
biases of the network. The difference between the network’s output and the ground
truth can be described using a loss function, L(f(x; θ),y), where f(x; θ) is the
predicted output from the network, x the input, θ the learnable parameters and y
is the ground truth. The loss function can be defined in different ways, some of the
variants will be presented in Section 2.3.1. The update of the parameters can be
done in various ways and one optimization method that can be used is the gradient
decent algorithm. In gradient decent the parameters are updated accordingly,

θi+1 ← θi − µ
∂L(f(x; θ),y)

∂θi
(2.3)

where µ is the learning rate which is a hyper parameter that decides how large
step to take in the update and ∂L

∂θi
is the gradient of the loss with respect to the i-th

trainable parameter that is updated [18]. To calculate the gradients ∂L
∂θi

with respect
to each parameter back propagation is used which will be described in Section 2.3.2.

2.3.1 Loss function
When training a network, the objective is to model the input data as accurately
as possible. To determine the performance of the network, loss functions are used.
Normally the goal is to minimize the error between the predicted estimate given
from the network and the ground truth. This means that if the error is large the
value given from the loss function will take a large value. To minimize the error a
optimization algorithm is used in combination with the loss function which decides
how to update the network’s weights in a optimal way. The main task for the loss
function is that it must describe the good and bad aspects of a model in one number
such that improvements in the number also reflects an improvement of the model’s
accuracy [21].

When dealing with a regression problem a loss function that can be used is
the minimum squared error (MSE). MSE measures the average squared difference
between the predicted value and the ground truth, which can be formulated as,

MSE =
∑n
i=0(ŷi − yi)2

n
(2.4)

where ŷi is the estimate predicted by the network and yi is the ground truth [21].
Another loss function used for regression problems is the Huber Loss or, as

it also is called, SmoothL1 function. SmoothL1 is defined as,

L(ŷ, y) = 1
n

∑
i

zi (2.5)
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where n is the total number of elements and zi is given by,

zi =


1
2(ŷi − yi)2, if |ŷi − yi| < δ

δ |ŷi − yi| − 1
2δ, otherwise.

(2.6)

The function is quadratic for values smaller than δ and linear for values larger than
δ, and therefore less sensitive to outliers compared to the MSE loss [22].

2.3.2 Backpropagation
To describe how the derivation of the loss’ gradient, ∂L

∂wi
, in Equation (2.3) is per-

formed it is easiest to consider a simple network as in Figure 2.1. The loss function,
in this example, can be defined as the squared distance between the predicted out-
put, and the desired output, L = (ŷ− y)2 and the parameters to be learned are the
weights, wi. The output from the i-th neuron in the input layer can be described
as,

z
[I]
i = a

(
w

[I]
0 + w

[I]
i xi

)
where the superscript I referrers to the input layer, z[I]

i is the output from the input
layer, xi the i-th input to the layer, w[I]

i the i-th weight of the neuron and w[I]
0 the

bias term.
The output from the i-th neuron in the hidden layer (H) is in a similar way

described as,

z
[H]
i = a

(
w

[H]
0 +

2∑
i=1

w
[H]
i z

[I]
i

)
.

Since the i-th neuron in the hidden layer gets the weighted output from each neuron
in the previous layer, these outputs needs to be summarized, thereof the summation
in the expression.

Finally, the output from the neuron in the output layer (O) can be described
as

y[O] = a

(
w

[O]
0 +

3∑
i=1

w
[O]
i z

[H]
i

)
.

The derivation of the gradient, ∂L
∂wi

is performed by making use of the chain rule.
The calculations in Equation (2.7) show derivations of three derivatives. The first
one is the derivative of the loss with respect to the weights in the output layer, the
second one is the derivative of the loss with respect to the weights in the hidden
layer and the last third one is the derivative of the loss with respect to the weights
in the input layer.

∂L

∂w
[O]
i

= ∂L

∂y
[O]
i

∂y
[O]
i

w
[O]
i

= 2(ŷ − y∗)a′(·)z[H]
i = α[O]z

[H]
i

∂L

∂w
[H]
i

= ∂L

∂y
[O]
i

∂y
[O]
i

∂z
[H]
i

∂z
[H]
i

∂w
[H]
i

= α[O]w
[O]
i a′(·)z[I]

i = α[O]α[H]z
[I]
i

∂L

∂w
[I]
i

= ∂L

∂y
[O]
i

∂y
[O]
i

∂z
[H]
i

∂z
[H]
i

∂z
[I]
i

∂z
[I]
i

∂w
[I]
i

= α[O]α[H]w
[H]
i a′(·)xi.

(2.7)
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To update all the weights the same derivations are made with respect to all the
weights in the network [23].

2.3.3 Optimizers
When updating the weights in a neural network, the ambition is to update them
in an optimal way. To do this an optimization algorithm is used. A very impor-
tant parameter when choosing optimization algorithm is that it should operate as
efficiently as possible to reduce the training time. To find the optimal parameters
different optimizers can be used. The gradient decent (GD) optimizer, that is men-
tioned in Section 2.3, is one of them. When using GD, the gradients for all samples
in the training set are calculated to make an update step. This results in a very time
consuming and computationally heavy operation if the training set consists of many
samples, which is one reason to why the GD is seldom used in machine learning
applications. A commonly used optimizer is instead the stochastic gradient decent
optimizer (SGD), which is a modification of GD. Unlike GD, SGD updates the coef-
ficients after each data sample, or after a mini batch of randomly selected samples.
The samples, and the mini-batches, have to be shuffled in order to calculate an
unbiased estimate of the gradient. When using SGD the choice of hyperparameters
is of great importance to tune the algorithm. One example of an important hyper
parameter is the learning rate. When using SGD the decision to use learning rate
decay needs to be set manually which highly can affect the performance [18].

An extension to SGD is the Adam optimization algorithm. Adam is compu-
tationally efficient and is well suited for problems that contains a large amount of
data and parameters. Unlike SGD, Adam uses estimates from the first and second
moments to compute adaptive learning rates for different individual parameters and
typically needs less tuning [24].

2.3.4 Data sets
The data that is used when training a network is commonly divided into three
different data sets; a training set, a validation set and a test set. The training set is
usually the largest of the three sets and is used during training of the network in the
optimization step where it is used to update the learnable parameters. This means
that the network model is exposed to the training data a lot of times and learns
from it. If the model has a low error on the training set it is said to have a high
capacity i.e it can fit the training set. The validation set is used to evaluate how
well the model performs on data it is not allowed to train on. The validation set can
be used to fine tune the model’s hyperparameters, i.e the model is allowed to see
the set but does not learn from it. However, since the validation set is used to fine
tune hyperparameters, the model is in some way influenced by it. The validation
set can also be used to determine when to stop training. The test set is used to
evaluate how well the final model performs on unseen data. The test set is usually
the smallest set and is only used once. The error on the test set represents how
good the final model is and when the test error is low it means that the model can
generalize well to new data. The ratio between the training, validation and test set
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can vary depending on the size of the total amount of data, but a first split is usually
made with the ratios 0.7, 0.2, 0.1 for training, validation and test respectively [19].

2.3.5 Regularization methods

One of the main challenges of machine learning problems is that the algorithm
should perform well on input data that has not been seen before, this ability is called
generalization. If trained enough, a network can learn to represent almost any set of
data. However at some point the predictive performance of the network will reach
a peak followed by a decrease of the predictive power. This is called overfitting,
which is a consequence of that given to much training, the network will start to fit
the noise in the training data [19]. In order to prevent overfitting, regularization
methods can be used. Regularization are any modifications made to the learning
algorithm with the purpose of reducing the generalization error, sometimes at the
expense of increased loss at the training set [18]. There is no regularization method
that is the best one, instead the choice of the most suitable regularization method
will depend on the task that is to be solved. In this section, different regularization
methods that are widely used will be presented.

Early stopping

Early stopping is used to interrupt the training of the network when its predictive
power starts to decrease. A performance metric is monitored and when the metric
is met the training process is stopped. During training the error with respect to
the validation set is often set to be the monitored metric. This metric represents
how well the network performs on unseen data. The error normally decreases in
the beginning of the training, but when the network starts to overfit the training
data, the validation error starts to increase, whilst the training error continues to
decrease. To achieve a network with good generalization performance, the model is
saved at the point of the smallest validation error [25].

Dropout layers

Dropout is a computationally inexpensive but powerful method to prevent overfit-
ting when training neural networks. The main idea is simple; randomly selected
neurons are multiplied by zero and therefore ignored during training. The neurons
are retained with a probability p, independently of other neurons. The contribution
from these neurons are temporarily lost, which forces the network to update the
remaining weights to perform the task of the network. This is thought to prevent
single weights to specialize in specific feature extractions, and training the model
to learn multiple independent representations. A drawback of dropout is that it
requires more training time, since not all weights are updated each pass through the
network [26].
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Data augmentation

A way to get a machine learning model to generalize better on unseen data is simply
to train it on more data. If the amount of data is limited, a solution can be to create
fake training data from the existing data and then add it to the training set. Consider
the situation when having an image as input to a neural network. The image can
then be modified in different ways, e.g translated, rotated and scaled [18].

Batch Norm layers

Normalization is a common pre-processing of the input data to get a more symmetric
representation of the data, which in many cases can speed up the training. Batch
Norm (BN) works in a similar way, but instead of just normalizing the input, BN
normalizes the values inside the network, more specifically, the output from the
previous hidden layer. BN can be applied both before and after the activation
function but an advice from Andrew Y. Ng is to use it before the activation function
[27].

The BN calculation is performed as follows, consider some intermediate val-
ues in a neural network, z[l](1), ..., z[l](n) where [l] represents the l-th layer in the
network and (1), .., (m) represents the 1-st to m-th neuron in a layer. For simplicity
the superscript [l] is left out in the following calculations. For each batch the nor-
malization of the z-value is performed by subtracting the batch mean and dividing
it by the batch standard deviation,

µ = 1
m

∑
i

z(i)

σ2 = 1
m

∑
i

(z(i) − µ)2

z(i)
norm = z(i) − µ√

σ2 + ε

where µ is the batch mean, σ2 the standard deviation, z(i)
norm the normalized z-value

and ε is a small number to avoid division with 0. In the last step BN introduces the
variable z̃(i) which includes two new trainable parameters γ and β,

z̃(i) = γz(i)
norm + β

γ and β is updated in the same way as the other trainable parameters in the network.
z̃(i) is then used instead of z(i) as the input to the activation function in the neuron.
The parameters γ and β makes it possible to chose the mean of z̃(i) according to
what is suitable [27].
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Method

This chapter describes the methods regarding data that have been used in this
project, as well as all the networks that have been developed and the training pro-
cedures.

Section 3.1 describes how we gathered LiDAR data from the urban driv-
ing simulator CARLA and how the raw data was processed in order to speed up
the training of the neural networks. Section 3.2 presents all aspects of the neural
networks developed for 2D input data; creation of the training data, the network
architectures and how the networks were trained. The last section in this chapter
presents the networks that were developed for point clouds as input, as well as the
creation of training data and how the networks were trained.

3.1 Collecting data in CARLA
The data used in this thesis project was collected in CARLA by connecting to the
simulation server through python scripts. A car was fitted with a rotating LiDAR
sensor. The LiDAR was equipped with 32 channels, a field of view in the range
[-10,30] degrees, a rotation frequency of 10Hz and a range of 100m. The number of
points generated by all lasers per second was 56000 points.

In order to get LiDAR data covering all roads in the simulation environment’s
towns, waypoints were placed evenly approximately 50m apart. Waypoints are
coordinates that the simulation deems as suitable to position the vehicle. The
vehicle drove on auto pilot roughly 15 seconds with start in each waypoint. A
LiDAR measurement was collected every 5 metres. The data was visualized using
Matlab to ensure that the data covered the whole town. An example of the raw
data is shown in Figure 3.1.

Since waypoints were placed on both lanes of the roads, each road is visited on
average twice, gathering enough data to create a dense point cloud. The collected
data from the LiDAR sensor is saved in a ply-file1 for each LiDAR sweep. The
file consists of three columns representing the coordinates x, y, z where each row
contains the coordinates for one detection made by the LiDAR. All detections were
given in coordinates relative to the LiDAR which was located in the origin. The
coordinates were transformed into global coordinates such that multiple sweeps could
be visualized together. In order to do that, the global position of the LiDAR at each
measurement was also gathered from the simulator and saved separately in a csv-file.

1Polygon File Format (PLY), originally developed to store information from 3D-scanners.
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Two different towns were used for training, validation and testing of the
network. Town 1, which was the largest town, was used for training and Town 2 was
used for validation and testing. To get two separate sets for validation and testing,
Town 2 was divided into two geographically separated parts where the largest part
was used for validation and the smaller part for testing. Bird’s eye view images of
all LiDAR sweeps covering both towns are shown in Figure 3.2. Town 1 and Town
2 consists of 2.9 km and 1.4 km drivable roads respectively [16].

Figure 3.1: Raw data from one single LiDAR measurement visualized in Matlab.
Each point represents one detection, the points are color coded after height in this
image. The side walks can be seen as the straight lines adjacent to the car, and
some trees and houses are visible as well.

3.1.1 Pre-processing and sorting the data
The collected data from CARLA was converted, from point clouds with coordinates
relative to the LiDAR, into global coordinates where each detection makes up a
point in the town where the data was collected. For each sweep, all detections were
rotated according to the vehicle’s heading, and then translated to the vehicle’s global
coordinates in the town. Detections from the vehicle’s roof and hood were removed,
since they are not static objects that belong in a static map. In order to retrieve
detections when creating training data later on, all detections were sorted into a
spatial grid where each grid cell spanned 15 m × 15m. For Town 2 this corresponds
to 414 grids, and 832 grids for the larger Town 1. Each LiDAR detection was sorted
into its corresponding grid, and all detections in each grid were then saved as a
csv-file. When retrieving all points in a specific area of the town, it is enough to
look up the grid containing the specific location, and all adjacent grids. This sorting

20



3. Method

Town 1 Town 2

Figure 3.2: Bird’s eye view images of Town 1 and Town 2. The red vertical line in
Town 2 visualizes where the town is separated for validation and test set. The part
on the right side is used for testing and the left is for validation.

speeds up the process of retrieving points corresponding to a certain region, since
all relevant points are already gathered in one file which corresponds to 1 − 2% of
the total amount of detections.

3.2 Networks with top-view LiDAR images as in-
put

In this section we will present the first kind of networks that were developed in this
project. The input to these networks consists of LiDAR sweeps converted to 2D top-
view image, as described in Section 3.2.1. The network architectures differs between
the networks but they have in common that they contain multiple 2D-convolutional
layers and fully connected layers.

3.2.1 Creating training data
The training samples were created on the go in the training loop, and each sample
consisted of LiDAR sweeps of the current surroundings and a cut-out from the map
at the vehicle’s global location. The sweeps were rotated and translated slightly to
introduce a rigid transformation relative to the map cut-out. The rigid transfor-
mation was used as the label for the training sample. The transformation for each
sample was drawn from a uniform distribution, allowing the network to train on
similar, but different, training samples between the epochs. In more detail, 5 subse-
quent LiDAR sweeps were loaded and overlayed, creating a dense point cloud of the
vehicle’s surroundings. The next step was to discretize the point cloud into a grid
structure covering an area of 30×30m around the vehicle, where each cell of the grid
represented one pixel in the top-view image. The spatial resolution of the discretized
point cloud was 0.1m or 0.05m yielding grid structures of sizes 300× 300 pixels or
600× 600 pixels respectively. Each detection was assigned to its corresponding cell
depending on its coordinates. The value of each cell was the number of detections
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in that area. The cutout was created by collecting all detections in the area of the
sweep, by reading the previously mentioned csv-files in Section 3.1.1 that covered
the specific area of the town. The detections in the map make up a very dense point
cloud, we therefore decided to sample twice as many detections from the map as
there were detections in the sweeps. These detections were then discretized into an
image, as described above when discretizing the sweep.

Next, the sweep and cut-out were concatenated into an array with size
2×300×300 pixels for the case when the spatial resolution was 0.1m and 2×600×600
pixels when 0.05m was used. Each element was then normalized to a value between
0 and 1, according to the highest number of detections in the whole layer. The nor-
malization was done to help the network to find similarities between the sweep and
the cut-out. We assumed that the structures that got most detections in the map
would be the same structures that yielded most detections the sweep. Therefore, a
normalization with respect to the number of detections should yield similar values
in the cutout and sweep for the same structures. Instead of normalizing this way,
occupancy grids can be applied. All cells that contains at least 1 detection will then
be assigned the value 1, yielding training samples consisting of only ones and zeros.
This variant of training data will also be used in the thesis project. An example of
an occupancy grid training sample is visualized in Figure 3.3.

Figure 3.3: Example of rotated and translated sweeps and a cut-out from the map
as a Bird’s Eye View image. Each pixel represents a square region of 0.1m. This
sample is created using occupancy grid, where the pixel values are either 0 or 1.
Contours of the vehicle can be seen in the sweeps, and contours of buildings in the
surroundings can be seen in both sweep and cut-out. The rigid transformation for
this specific sample is [x, y, θ] = [5, 5, 15] in metres and degrees respectively. This
transformation is large compared to the ones used when training the networks, and
only used here for visualization purposes.

We also used training data with extra information in the input, besides the
number of detections in each pixel. One type of input consisted of an extra layer
with the point cloud’s mean height in each cell, as well as the original layers with the
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number of detections. After the sweep and cut-out were concatenated the height
layers were normalized with the largest value found in both the sweep and cut-
out, such that structures of the same height get similar pixel values both in the
sweep and in the cut-out. Another type of input we trained the networks with,
was the usual training samples with number of detections, with two extra channels
containing information about the pixel coordinates. These kind of layers are called
CoordConv [15]. The first layer represented the x-values and was filled with constant
values where the first row consisted of zeros, the second row of ones etc. The second
layer represented the y-values and was similar but with columns filled in the same
way. The CoordConv layers were then normalized to values in the range [0, 1]. The
purpose of CoordConv is to let the kernels in the convolutional layers know where
in the image they are operating.

We believed that additional information, such as height and coordinates, may
help the network to find similarities between the sweeps and the cut-out.

Simple training samples

Before using the training data that consisted of a concatenated sweep and map cut-
out, we created simple training examples. This was done to quickly get started with
the development and training of our first network. The main idea was to see at the
start of the project if the networks can solve this kind of localization task at all. The
simple training examples were created in the same way as the training examples in
Section 3.2.1, but instead consisted of a sweep concatenated with the same sweep
somewhat translated. The translation was drawn from a uniform distribution. This
reduces the localization task of scan matching two similar but not identical LiDAR
images, to a simpler task of finding the displacement of two identical images.

3.2.2 Network architectures
In this section the networks that were developed for 2D LiDAR images as input will
be presented. They were named after the order they were created; Network 1, 2,
3 and 4 respectively. Each network has a few variations depending on parameters
such as spatial resolution. All the networks have the same output which is a vector
containing the translation and rotation angle, [x, y, θ]. Since the network utilizes
regression, the output is a vector with continuous values and no activation function
is used in the output layer. For regularization, Batch Norm (BN) and drop out with
p = 0.2, are used in all networks.

The architecture of Network 1 was inspired by the network presented by Cal-
tagirone et al. in [28] where the purpose of the network was semantic segmentation
of 2D LiDAR images. The input consists of either training samples of a sweep and
map cut-out as described in Section 3.2.1, or the simple training data as described in
Section 3.2.1. The input is processed by multiple convolutional layers, then passed
to multiple fully connected layers which finally generates the output vector. The
ReLU activation function is used in the first seven convolutional layers, and tanh is
used in the following convolutional layers and the two first fully connected layers.
The complete network architecture can be seen in Figure 3.4.
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Figure 3.4: Visualization of the architecture of Network 1. The input consists of
two concatenated top-view images of LiDARmeasurements. The input is first passed
through convolutional layers and finally propagated through three fully connected
layers. The color coding describes the settings for each layer.

Network 2 was developed from Network 1. Unlike Network 1, Network 2
takes the sweep and the cut-out as two separate inputs through three convolutional
layers with different weights. The kernels are of size 3× 3 with stride one and zero
padding. The outputs from the convolutional layers are two feature maps. These
feature maps are concatenated and passed through multiple convolutional layers and
finally three fully connected layers to yield the output vector. The ReLU activation
function is used in all layers except the three last convolutional layers and the two
first fully connected layers, where the tanh function is used. A schematic of Network
2 is shown in Figure 3.5.

Figure 3.5: Schematic of Network 2 where the sweep and the cut-out are processed
as two separate inputs through three convolutional layers before being concatenated
and passed through multiple convolutional layers and fully connected layers. The
color coding describes the settings for each layer.

Network 3 was inspired by the network FlowNetSimple presented in [13].
The input is fed through multiple convolutional layers. The first layers have a larger
kernel size to increase the receptive field and the last 5 layers are fully connected
layers. In Figure 3.6 a schematic is shown of the network used for images with a
spatial resolution of 0.1m. A similar version of the network adapted for inputs with
a spatial resolution of 0.05m can be found in Appendix A in Figure A.1. When
the network was trained with inputs containing layers with height information, the
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same architecture was used with the only difference that the input layer has 4 inputs
channels instead of 2. To investigate the importance of the receptive field in relation
to the grids spatial resolution, an architecture for a spatial resolution of 0.05m was
developed with larger kernels, to get an equal receptive field in terms of meters
comparable with Network 3 for a spatial resolution of 0.1m. This architecture can
be found in Appendix A, Figure A.2.

Figure 3.6: A schematic of Network 3 with 2 concatenated 2D LiDAR images
as input. This architecture is used for spatial resolution 0.1m. The color coding
describes the different features of the layers.

We wanted to see if the a change of the activation function made a difference
on the performance and therefore changed the activation function in the last three
convolutional layers from ReLU to the tanh activation function. Tanh was also
added as activation function in the two first fully connected layers. The modified
architecture of Network 3 is shown in Figure A.4 found in Appendix A.

We also modified Network 3 to handle two separate inputs, similar to Network
2. The network was named Network 4. Each input is fed separately through the three
first convolutional layers in Figure 3.6 before being concatenated and fed through
rest of the network. The same weights are used to process the separate inputs. The
architecture can be found in Appendix A in Figure A.3.

The last network developed was named Network 5 and was inspired by
LinkNet [1]. The sweep and cut-out are processed separately by a LinkNet module
and then concatenated and processed together by convolutional and fully connected
layers. An overview of the network is presented in Figure 3.7 and the LinkNet
module is visualized in Figure 3.8.

Figure 3.7: The architecture of Network 5, that consists of LinkNet modules
followed by convolutional and fully connected layers. This architecture is developed
for a spatial resolution of 0.1m.
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Figure 3.8: A visualization of LinkNet [1] that is used in Network 5. The input is
first processed by a convolutional layer with stride 2 followed by a max-pooling oper-
ation. The Encoder block and the Decoder block are explained in more detail below
the overall architecture in the image. In the encoders’ and decoders’ convolutional
layers, the kernel sizes are (3 × 3) or (1 × 1) and the number of input and output
channels are given by the second pair of parameters, e.g. (n,m). Furthermore, /2
means convolution with stride 2, and ∗2 means upsampling by a factor 2. The size
of the input decreases for each encoder block, and increases again with each decoder
block. Feature maps from higher resolutions are added along the way between the
decoders.

3.2.3 Training
When training Network 1, we started with the simple training data to investigate
if the network had the capacity to solve a similar but simpler localization problem.
When choosing which optimizer and loss function we wanted to use we tested two
different optimizers; Stochastic Gradient Decent (SGD) and Adam in combination

26



3. Method

with the loss functions Mean Squared Error (MSE) and SmoothL1. This was done
to see which combination that performed best. Finally the Adam optimizer in
combination with the SmoothL1 loss function was used. Next, we trained Network 1
using the training samples that consisted of the sweep and the cutout from the
map and used the Adam optimizer. We developed a customized loss function which
weighted the translation loss and rotation loss differently. The total loss was defined
as,

Ltot = (ŷ, y) = αLtrans(ŷ, y) + βLrot(ŷ, y)

where Ltrans is the translation loss and Lrot is the rotation loss. The parameters α
and β can be adjusted to weight the importance of the different losses. SmoothL1
was used as loss function for both the translation and rotation errors.

All networks were first trained on pure translation in the range [−1, 1]m with
no rotation. The networks were then tested on a test set with the same attributes.
Each network training was then resumed, again with a translation in the range
[−1, 1]m, but this time also with a rotation error in the range [−2, 2]degrees. The
purpose of this was to investigate if the combined translation and rotation error was
harder to predict than just pure translation. When training on pure translation,
the loss weights of the loss function above was set to α = 0.9, β = 0.1. When
introducing the rotation, the loss weights were set to α = β = 0.5 to encourage
the network to prioritize the rotation error. The translation and rotation up to 1m
and 2 degrees respectively were chosen since they correspond to approximately up
to 10 pixels error between the sweep and the map cutout, and hence of the same
magnitude.

The batch size varied when training the different networks, with the goal
of fully utilizing the memory on each GPU. The batch size ranged from 50-170
samples, distributed on 4 GPUs. All networks were trained with a learning rate
scheduler that decreased the learning rate with a factor 0.1 if the validation loss
had not decreased the last 5 epochs. The initial learning rate was set to 0.01.
Early stopping was used, with a patience of 10 epochs, allowing the learning rate
to decrease once before interrupting the training. The training data set consisted
of 3692 samples, the validation set of 923 samples and the test set of 1077 samples.
Table 3.1 presents a summary of all the networks that have been trained and tested,
including different versions for spatial resolutions or other special attributes.
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Table 3.1: This table summarizes all the different networks that have been trained
and tested. The results will be presented in Chapter 4.

Network number Spatial resolution Special attribute

Network 1
0.1 m Simple training data
0.1 m
0.1 m Different activation function

Network 2 0.1 m

Network 3

0.1 m
0.1 m Occupancy grid
0.1 m CoordConv
0.1 m Height layers
0.1 m Different activation function
0.05 m
0.05 m Larger kernels

Network 4 0.1 m
0.05 m

Network 5 0.1 m
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3.3 Networks with LiDAR point clouds as input
A part of this project consists of developing a network than can perform the local-
ization task using point clouds as input. A network of this type, taking raw point
clouds as input, will then learn to extract the necessary features to perform localiza-
tion. In the former case, using 2D images as input, the network was fed handcrafted
features, e.g. the number of detections in each pixel. This section will begin with
an explanation of how the training data was created, followed by a section that de-
scribes the network architectures that were used. Lastly, an overview of the training
process is presented.

3.3.1 Creating training data
The training samples were created on the go in the training loop with rigid transfor-
mations drawn from uniform distributions, with the consequence that the network
will never train on the exact same training sample between epochs. The method of
creating the training samples is closely related to the first steps of creating the BEV-
images for the networks using 2D images as input. First, 5 consecutive sweeps of the
current surroundings were loaded and used as the first part of the input. This point
cloud was rotated and translated to introduce an error in the alignment between the
sweeps and the map. Secondly, to create a cut-out of the map, all detections in the
region of the sweeps were loaded. The two point clouds, the current surrounding
and the map cut-out, could then be pre-processed into a representation that was
used as an input to the network. The following steps are inspired by the network
PointPillars [12] created by Alex H. Lang et al., and is performed on the two parts
of the input separately.

Figure 3.9: A visualization of the features that are calculated for each point in
one pillar. In this case, there are 4 points marked as blue stars in the pillar, and
the offset in x and y for each point is marked with red lines. The features for one
point is [xp, yp, z] where xp and yp are the calculated offsets, and z is the height of
the point.

The point cloud was discretized into to an evenly spaced grid in the xy-
plane, creating a set of pillars, where each pillar is a separate point cloud. The

29



3. Method

spatial resolution of the grid was set to 0.5m or 0.25m. The offset in the xy-plane
to the center of the pillar, xp, yp, was calculated for each point in each pillar and
saved together with the corresponding z-coordinate. The pillars then consisted of
a set of three features (D) for each point, namely the distance to the center and
the height of that point, [xp, yp, z] which is shown in Figure 3.9. A great amount
of the pillars would turn out empty and to exploit the sparsity a limit was set on
both number of non-empty pillars (P ) and points per pillar (N). For the cases
when the spatial resolution was 0.5m the limit on the pillars was set to 1260 and
maximum points in one pillar was set to 900 points. For the case when using a
spatial resolution of 0.25m the limit on the pillars was set to 5040 and maximum
points in one pillar was set to 225 points. This yields a tensor of size D×P ×N . If
P or N exceeds the limit, the data is randomly sampled and if there are not enough
pillars or points, zero padding is applied.

3.3.2 Network architectures
A network that handles point clouds as input must take into account that the data
is an unordered set where the input order of the coordinates should not matter.
Furthermore, points that are close in space have a geometrical meaning, which
should also be modelled by the network. The network used in this thesis project
relies on the first parts of Point Pillars, where point cloud pillars are passed trough
a first part of the network that computes a feature tensor for each point cloud pillar.
The first part is called a Pillar Feature Net (PFN) and will be described in more
detail in the next section. The second part of the network that handles the feature
tensors and outputs a rigid transformation is our own contribution, we call it the
Backbone of the network. In Figure 3.10 an overview of the whole network is shown.

Figure 3.10: An overview of the networks that use point clouds as input. The
green module is inspired by PointPillars, and processes the pillar point clouds to
produce a pseudo-image. The pseudo-images are processed in the blue module.

Point cloud to Pseudo-Image

The input to the network consists of a tensor of the size D×P ×N , where D is the
number of features for each point, P the number of pillars and N is the number of
points in each pillar as described in Section 3.3.1. The main idea of the first part of
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the network, the Pillar Feature Net (PFN) layer, is to compute a feature tensor for
each pillar and then create a pseudo-image where each pixel is the feature tensor of
the pillar in that location. For each point a convolutional layer with kernel size 1
and C = 64 or C = 32 channels is applied followed by a Bach Norm and a ReLU
layer yielding a tensor of size C ×P ×N . Lastly a max operator is applied over the
channels resulting in a C ×P tensor. The symmetric max operator function is used
to aggregate the information from each point making the output tensor invariant to
the input order. This tensor can be concatenated with the pillar point cloud input
tensor, and processed again by multiple PFN-layers. To create the pseudo image,
the output features are scattered back to the location of the original pillar. The
pseudo-image is of size C×H×W where H represents the height and W the width
of the image. The architecture for the PFN layer is shown in Figure 3.11 and the
process to convert a point cloud into a pseudo image is visualized in Figure 3.12.
For the case when using multiple PFN-layers see Appendix A, Figure A.5.

Figure 3.11: Schematic of a single PFN-layer which takes a pillar feature tensor
as input and outputs a pseudo-image of the tensor.

Figure 3.12: Visualization of the process to convert a point cloud into a pseudo-
image. To the left is a point cloud, in this figure seen as a top-view image, which
is divided into pillars. Each pillar point cloud is processed by a Pillar Feature Net
(PFN), and the resulting feature tensor is saved in a tensor to the right, in the
element corresponding to the original spatial location of the pillar. In this way a
pseudo-image is created, with a feature tensor making up each pixel.
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Backbone architectures

The task of the Backbone architecture is to take the pseudo-images of both the sweep
and the cutout as input, and output the rigid transformation that is needed to align
the sweep with the map. The sweep and cut-out can either be concatenated before
used as input or processed separately. The pseudo-images are of the dimensions
C ×H ×W , where H and W represents the number of pillars spatially in x and y
direction, and can be seen as an image where each tensor with C elements represents
one pixel. The idea is to use the same principles that were used in the network for
2D images, mainly to apply 2D-convolutional layers on the pseudo images and use
regression to output a rigid transformation. Several architectures for the Backbone
were developed; Backbone 1, 2, 3 and 4.

Backbone 1 was developed for two spatial resolutions; 0.5m and 0.25m. The
input consisted of concatenated pseudo-images of the sweep and the cut-out. The
number of features for the input was 64 in total for both sweep and map cut-out.
In Figure 3.13 Backbone 1 for spatial resolution 0.5m is presented. The similar
architecture for spatial resolution 0.25m is visualized in Figure A.6 in Appendix A.

Figure 3.13: Schematic of Backbone 1 for spatial resolution 0.5m. The color
coding presents the different settings for each layer.

We developed the architecture for Backbone 2, which is shown Figure 3.14,
from Backbone 1 by adding more convolutional layers and changing the number of
channels in some layers. Backbone 2 was only developed for a spatial resolution of
0.5m.

Unlike Backbone 1 and 2, Backbone 3 and 4 takes two inputs, one input is
the pseudo image for the LiDAR sweep and the other input is the pseudo image
for the cut-out. After passing multiple convolutional layers they are concatenated
before sent through a stack of fully connected layers. Backbone 3 was developed for
spatial resolution 0.5m, whilst Backbone 4 also was developed for spatial resolution
0.25m. The number of features of the pseudo images used in Backbone 3 was 32
or 64, Backbone 4 only used 32. Backbone 3 and 4 are shown in Figure 3.15 and
Figure 3.16. Backbone 4 for spatial resolution 0.25m is shown in Figure A.7 found
in Appendix A.
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Figure 3.14: Schematic of Backbone 2, which was developed from Network 1, for
spatial resolution 0.5m. The color coding presents the different settings for each
layer.

Figure 3.15: Backbone 3 with spatial resolution 0.5m and 32 features from PFN-
layer. Sweep and cutout pseudo-images are processed separately by convolutional
layers before being concatenated and sent through fully connected layers.

3.3.3 Training

All networks were trained using the Adam optimizer and the customized loss de-
scribed in Section 3.2.3 using the SmoothL1 loss function. When training on no
rotation, the loss parameters were set to α = 0.9 and β = 0.1. When training with
rotation the parameters were instead set to α = β = 0.5. When training on pure
translation, the range used was [−1.5, 1.5]m which corresponds to up to 3 and 6
pixels in the pseudo-image for spatial resolution 0.5m and 0.25m respectively. The
rotation used was in the range [−3, 3]degrees, which would correspond to up to 2
pixels in the pseudo-image for a spatial resolution 0.5m, and up to 4 pixels for spa-
tial resolution 0.25m. All networks were trained with a learning rate scheduler that
decreased the learning rate with a factor 0.1 if the validation loss had not decreased
the last 5 epochs. The initial learning rate was set to 0.01. The batch size varied
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Figure 3.16: Backbone 4 with spatial resolution 0.5m and 32 features from PFN-
layer. Sweep and cutout pseudo-images are processed separately by convolutional
layers before being concatenated and sent through fully connected layers.

when training the different networks, with the goal of fully utilizing the memory
on each GPU. The batch size ranged from 8-34 samples, distributed on 4 GPUs.
Early stopping was used, with a patience of 10 epochs, allowing the learning rate
to decrease once before interrupting the training. The training data set consisted of
3692 samples, the validation set of 923 samples and the test set of 1077 samples.

Different combinations of networks were trained, with variations in the pillar
size, which of the Backbones that were used, the number of features in the PFN-
layer and also how many PFN-layers to use. Table 3.2 presents a summary of all the
networks that have been trained and tested, including different versions for spatial
resolution or other special attributes.

Table 3.2: This table summarizes all the different networks that have been trained
and tested. The Backbones are described in this chapter, and the results will be
presented in the next chapter.

Backbone number Spatial resolution Number of features
from PFN-layer

Backbone 1

0.5 m 32
0.25 m 32
0.25 m 64
0.25 m 64, 64

Backbone 2 0.5 m 64
Backbone 3 0.5 m 32

Backbone 4 0.5 m 32
0.25 m 32
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The performances of the different networks are presented in this chapter starting
with the networks developed for using top-view LiDAR images as input, followed
by the results when using LiDAR point clouds as input. The chapter commences
with some brief overview of how the results are presented and which metrics that
indicate a good performance. The section with results for networks with top-view
images as input, starts with the results from an initial study of the localization task
using simple training data. Some brief discussions and comparisons are included in
this chapter when presenting the results.

4.1 Networks with top-view LiDAR images as in-
put

In this section we will present the results from training the networks that takes 2D
LiDAR images as input from Section 3.2. First the results from training Network 1
on simple training data will be presented as an initial study of the localization task.
Then the results when training Network 1, Network 2, Network 3 and Network 4 on
training data consisting of a sweep and a cut-out from the map are presented. All
the networks were tested using the SmoothL1 loss function with equal weighting for
the error in translation x and y and angle θ, independently of the loss used when
training to be able to compare the networks’ performances.

The test results are presented in tables and figures with histograms. The
tables contain important metrics which are used to compare the performance of
the networks. These metrics are; test loss, median translation prediction error and
median rotation prediction error. The prediction error is calculated by subtracting
the true value from the predicted value. The test loss is calculated by taking the total
test loss and divide it with the number of samples, which will enable a comparison
between the different test losses since the data sets were not always equal in size
depending on batch size. The network with the lowest test loss is considered to
be the one that performs the best. Note that the median translation prediction
error that is presented in the tables is the total translation error, i.e the hypotenuse
between the ground truth and the prediction. The median translation and rotation
errors are shown to give a feeling about how well the network performs, however a
small error does not always automatically mean that the network generalizes well
on the test set. Uniformly distributed prediction errors indicate that the network
performs poorly. In these cases, histograms of the distribution of the prediction
errors are presented. We expect the prediction error distribution to be narrowly

35



4. Results

centered around zero for a well performing network.

4.1.1 Initial studies using simple training data
The network, named Network 1 which is described in Section 3.2.2, was first trained
on simple training data to investigate if the network had the capability to solve
an easier localization problem before training on more realistic data. The batch
size was set to 170. The network was first trained on pure translation in the range
[−1, 1]m, and then tested on Test sets 1-3. Then it was trained from scratch on
pure rotation in the range [−2, 2]degrees and tested on Test set 4. The Test sets
are presented below:

• Test set 1: translation in the range [−1, 1]m, to see how the network handles
translation errors that it has been trained on.

• Test set 2: translation in the range [−3, 3]m with no rotation, to see how the
network handles unseen large translation errors.

• Test set 3: translation in the range [−1, 1]m with rotation in the range
[−2, 2]degrees, to see how the network performs on unseen rotation errors.

• Test set 4: rotation in the range [−2, 2]degrees, to see if the network has
potential to predict a rotation error.

After being trained on pure translation and tested on Test sets 1-3, the
weights of the network were then trained another round on simple training data
with the same translation error in the range [−1, 1]m and with a rotation error
in the range [−2, 2]degrees. The network was then tested again on Test set 3,
to confirm that the performance improved if trained on similar training data with
rotation errors.

Tables 4.1 and 4.2 present the results with metrics in the form of the test
loss, the median translation prediction error in the xy-plane and the median rotation
prediction error. In Table 4.1 it can be seen that when the network has been
trained on a translation error in the range [−1, 1]m the network can predict the rigid
transformation with a median translation error of 17 cm. It can to some extent also
correct larger translation errors in the range [−3, 3]m as seen in Test set 2. Figure
4.1 indicates that Network 1 is indeed able to recognize pure translation between
two images, since the prediction error spans a smaller range than the introduced
error in the training samples. When tested on Test set 3 that has training data with
rotation, the performance degrades. Test set 4 does however show that the network
can predict pure rotation with a relatively good accuracy.

The network was also trained on rotation and tested again on Test set 3.
The result can be seen in Table 4.2. This result can be further explored together
with Figure 4.2, showing the prediction errors before and after training on rotation.
Even though the test loss and median translation error increase when trained on
rotation, the histogram indicates that the network have learned to identify and
correct rotation, since the width of the histogram for the rotation angle decreases
after training on rotation.
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test loss (1e -4) median translation
prediction error

median rotation
prediction error

Test set 1 0.3832 0.17m 0.0009 °
Test set 2 12.6510 0.93m -0.0028 °
Test set 3 11.6242 0.16m -0.1864 °
Test set 4 7.4441 0.01m -0.0072 °

Table 4.1: Table with test loss as well as median prediction errors for translation
and rotation. The network the was first trained on pure translation and then tested
on Test set 1-3. Then it was trained from scratch on pure rotation and tested on
Test set 4.

test loss (1e -4) median translation
predicted error

median rotation
predicted error

Test set 3 12.3329 0.25m -0.0201 °

Table 4.2: Table with test loss as well as the median translation and rotation error
for Test set 3. The network is trained on both translation and rotation.

Figure 4.1: Histograms showing the test results for Network 1 trained on transla-
tion in the range [−1, 1]m with no rotation and tested in Test set 1. The histograms
represents the prediction error for the translation in x, y in metres and the prediction
error for the rotation in degrees.

A quick conclusion is that the localization task should indeed be possible to
solve using neural network regression, since Network 1 can at least minimize the
translation to a median error of 17 cm which corresponds to the adjacent pixel or
the pixel next to that from the ground truth pixel. We can also conclude from the
metrics in Tables 4.1 and 4.2 that rotation seems to be a more difficult problem for
the neural network than pure translation, since the test loss ended at a higher value
when introducing a rotation error. The network’s performance on predicting the
rotation angle improved, at the cost of decreased accuracy for translation errors.
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(a) Network 1 trained on pure translation, but tested on rotation.

(b) Network 1 trained and tested on translation and rotation.

Figure 4.2: Results for Network 1 on simple training data. These histograms
show the prediction error in x, y, and rotation angle θ. Subfigure b) shows that
the network can predict the rotation with more accuracy after it has been exposed
to training samples with rotation errors. The error in translation does however
increase.

4.1.2 Network 1 and Network 2
In this section, the results when training Network 1 and 2 will be presented. The
training data consisted of a sweep concatenated with a cut-out of the map at the
initial guess of the position and heading of the vehicle. The batch size was set to 170
for Network 1 and 128 for Network 2. A reminder of the main difference between
Network 1 and Network 2, is that the sweep and the map cut-out are processed
separately before being concatenated after three convolution layers in Network 2.
The architectures are the same after these first layers. The training parameters that
were used are described in Section 3.2.3.

The network was initially trained on pure translation in the range [−1, 1]m,
and thereafter trained on rotation in the range [−2, 2]degrees as well. We also
wanted to see if the choice of activation function had any impact on the performance
of Network 1. Therefore we removed the tanh activation function and trained the
network again using the same setup as before. The results from training and testing
the networks on pure translation are presented in Table 4.3. The results from the
resumed training and testing on rotation is presented in Table 4.4.
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Table 4.3: Table presenting the performance of Network 1, Network 2 and
Network 1 without tanh on a test set with a translation error in the range [−1, 1]m
and no rotation.

Network name test loss (1e-4) median translation
prediction error

median rotation
prediction error

Network 1 0.6128 0.19m 0.0005 °
Network 2 0.9116 0.22m -0.0010 °

Network 1 without tanh 1.2802 0.27m -0.0006 °

Table 4.4: Table presenting the performance of Network 1, Network 2 and Network
1 without tanh on a test set with a translation error in the range [−1, 1]m and
rotation error in the range [−2, 2]degrees.

Network name test loss (1e-4) median translation
prediction error

median rotation
prediction error

Network 1 7.5300 0.21m 0.0347 °
Network 2 10.2021 0.22m 0.0955 °

Network 1 without tanh 11.7482 0.32m 0.0051 °

Network 1’s test loss increased from 0.6128e-4 to 7.5300e-4 when adding the
rotation error, this shows that the rotation angle is harder for the network to predict
than pure translation. The results for Network 2 follows the same trend with an
increase of the loss. By comparing the test loss between Network 1 and Network 2
in Tables 4.3 and 4.4 it can be seen that Network 1 performs better than Network 2
on both test sets, e.g. both on pure translation as well as rotation. The conclusion
from this is that the network architecture of Network 1 is more suitable for this
task compared to Network 2. It can also be seen in the tables that the test loss
for Network 1 without the usage of the tanh activation is higher than the loss for
regular Network 1. This indicates that the tanh activation function is suitable to
use in Network 1.

4.1.3 Network 3
Since Network 3 performs significantly better than the earlier networks, as will
be clear in this section, many different combinations and ideas were tested with
this architecture as a starting point. Network 3 is designed differently compared
to Network 1 and 2, with an increasing of the capacity of the model to solve the
localization task with higher accuracy. The network was trained using different set
ups with special attributes as described below,
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• Spatial resolution 0.1m: using grids with a spatial resolution of 0.1m.

• With tanh: using grids with a spatial resolution of 0.1m and tanh as activation
function in some layers.

• Occupancy grid: using occupancy grid instead of number of detections as input
feature, with grids with a spatial resolution of 0.1m.

• CoordConv: adding coordinate layers to the input as described in Section
3.2.1, using grids with a spatial resolution of 0.1m.

• Height: adding height-layers to the input as described in Section 3.2.1, using
grids with a spatial resolution of 0.1m.

• Spatial resolution 0.05m: using grids with a spatial resolution of 0.05m.

• Larger kernels: using grids with a spatial resolution of 0.05m with larger
convolution kernels to increase the receptive field.

All versions were first trained and tested on pure translation, and then trained again
on rotation, in the same way as for Network 1 and 2. The results for pure translation
can be seen in Table 4.5, and with rotation in Table 4.6.

Table 4.5: Performance of Network 3 trained on different set of parameters. All
networks were trained on translation in the range [−1, 1]m with no rotation. Each
trained network model was then tested on a test set with the same set of parameters
as the training set it was trained on. The best performance is marked in bold text.

Special attribute test loss (1e-4) median translation
prediction error

median rotation
prediction error

Spatial resolution 0.1m 0.1161 0.08m 0.0000 °
With tanh 0.0366 0.05m -0.0001°
Occupancy grid 0.6236 0.18m 0.0001 °
CoordConv 12.9339 0.79m 0.0013 °
Height 13.3525 0.80m 0.0015 °
Spatial resolution 0.05m 0.4403 0.08m -0.0015 °
Larger kernels 16.3682 0.52 m 0.0027°
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Table 4.6: Performance of Network 3 trained on different set of parameters. All net-
works were trained on translation in the range [−1, 1]m with rotation [−2, 2] degrees.
Each trained network model was then tested on a test set with the same set of pa-
rameters as the training set it was trained on. The best performance is marked in
bold text.

Special attribute test loss (1e-4) median translation
prediction error

median rotation
prediction error

Spatial resolution 0.1m 0.4236 0.07m -0.0149 °
With tanh 0.4183 0.05m 0.0151°
Occupancy grid 8.4105 0.29m 0.0813 °
CoordConv 35.6720 0.80m 0.0734 °
Height 36.5592 0.80m 0.0137 °
Spatial resolution 0.05m 2.5242 0.14m -0.0440 °
Larger kernels 22.8829 0.50 m 0.1076°

The test loss is lowest for Network 3 with a spatial resolution of 0.1m with
the activation tanh, in both Tables 4.5 and 4.6 for pure translation and with rota-
tion respectively. We can see that the choice of activation function improved the
performance slightly. Instead of not using any activation functions in the fully con-
nected layers, as is the case in the regular Network 3 architecture, the two first fully
connected layer uses the tanh activation function. The tanh is also used as activa-
tion function in the last three convolutional layers. The network with CoordConv
and with height features perform noticeably poor for cases both with and without
rotation errors. In Figure 4.3 it can be seen that the prediction errors for all output
parameters for the CoordConv network are uniformly distributed, indicating that
the training has not improved the performance at all.

Figure 4.3: Histograms showing the distribution of the translation prediction error
in x and y as well as the rotation angle for Network 3 with coordinate layers. The
network was trained on a translation error in the range [−1, 1]m and rotation error
in [−2, 2] degrees. The prediction errors seem to be uniformly distributed, in the
same ranges as the introduced errors in the training samples, which indicates that
the training has not improved the network’s performance at all.
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As can be seen in Tables 4.5 and 4.6, the performance did not improve when
decreasing the spatial resolution to 0.05m, even though the test loss was still in
comparable size with the best performing network. The same architecture was used
again, but with larger kernels to increase the receptive field of the network, but this
unexpectedly severely degraded the performance.

Network 3 with tanh, using grids with spatial resolution 0.1m without any
extra attributes such as occupancy grids, performed well with a low test loss com-
pared to the others. One final test was executed on Network 3 with tanh trained
on both translation and rotation. It was tested on a test set with no errors at
all, i.e. the sweep and the map cut-out are perfectly aligned. The test yielded a
test loss of 0.2124e-4, a median translation prediction error of 0.03 m and median
rotation prediction error of 0.0006 °, where the test loss is slightly larger and the
median error is slightly smaller than the metrics in Table 4.6. This indicates that
the network can correct large rigid transformations accurately, but fail to recognize
small misalignments, since it still predicts small transformations even when the test
samples are perfectly aligned.

4.1.4 Network 4
Network 4 is similar to Network 3, with the difference that it processes the sweep
and the map cut-out as two separate inputs. Network 4 was first trained and tested
using pure translation in [−1, 1]m, with the results presented in Table 4.7 for grids
with a spatial resolution of 0.1m and 0.05m. The network was then trained and
tested on data with translation in the range [−1, 1]m as well as rotation in the range
[−2, 2]degrees. The results are presented in Table 4.8.

Table 4.7: Performance of Network 4 trained and tested on pure translation with-
out rotation. The translation error was in the range [−1, 1]m.

Spatial resolution test loss (1e-4) median translation
prediction error

median rotation
prediction error

0.1m 0.1153 0.06m 0.0000 °
0.05m 1.3801 0.18m 0.0000 °

Table 4.8: Performance of Network 4 trained and tested on translation and rota-
tion. The translation error was in the range [−1, 1]m and the rotation in the range
[−2, 2]degrees.

Spatial resolution test loss (1e-4) median translation
prediction error

median rotation
prediction error

0.1m 0.6568 0.10m -0.0388 °
0.05m 5.1144 0.17m 0.0198 °

Comparing these results with Network 3’s performance, we see that Network
4 does not outperform Network 3. All error metrics are higher for Network 4 except
the median translation prediction error when using pure rotation which is the same
for the two networks.
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4.1.5 Network 5
Network 5 has a different network architecture compared to the rest, and its perfor-
mance is presented in Table 4.9. We can see that the results are comparable with
the best performing Network 3, which indicate that this architecture is also suitable
to solve the localization task.

Table 4.9: Performance of Network 5 first trained on pure rotation in the range
range [−1, 1] m and then with a rotation in the range [−2, 2] degrees. The network
was then tested on a test set with the same set of parameters as the training set it
was trained on.

Rotation test loss (1e-4) median translation
prediction error

median rotation
prediction error

No 0.0543 0.06m -0.0001 °
Yes 0.4038 0.08m 0.0257 °

4.1.6 Summary of the networks’ performances
In Figure 4.4, all our networks that uses 2D top-view images as input are presented.
The blue markers show the results of the networks that were trained and tested on
pure translation and the red markers show the networks that were trained and tested
on both translation and rotation. The dotted line represents the spatial resolution
of the input to the networks. In the left plot the networks with an input with a
spatial resolution of 0.1m are shown and in the right the networks with an input
with spatial resolution of 0.05m are shown.

Figure 4.4: Plots presenting the test loss with respect to the median displacement
error for all the networks, with 2D top view images as input, that we have trained.
The left plot shows the networks with an input with a spatial resolution of 0.1m
and the right plot the networks with an input with a spatial resolution of 0.05m.
The vertical dotted lines represent the size of the spatial resolutions. The blue
markers show the networks that were trained and tested on pure translation and
the red markers show the networks that were trained and tested on translation and
rotation. The best performing networks for a spatial resolution of 0.1m in the left
corner are Network 3, Network 3: with tanh, Network 4 and Network 5.
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When comparing all the networks in the left plot with a spatial resolution of
0.1m in Figure 4.4, it is seen that four networks succeed with yielding predictions
that are more accurate than the spatial resolution itself. This holds both for pure
translation and for translation with rotation. When looking at the right plot with a
spatial resolution of 0.05m, it is seen that none of the networks succeed with this.
It can also be seen that Network 3 with tanh and input with a spatial resolution
of 0.1m outperforms all other networks. When testing on pure translation, its test
loss ended at 0.0366 e-4 with a median translation error of 0.05m. This network
also outperformed the others when a rotation error was introduced in the samples.
The test loss ended at 0.4183 e-4 with a median translation and rotation prediction
error of 0.05m and 0.0151 ° respectively.

4.1.7 Which samples are easy or difficult to predict?

To see if there was some pattern regarding which samples that was easier or more
difficult for Network 3 with the tanh activation function to predict, we compared the
labels of the three best predictions and the three worst. In Table 4.10 the labels of
the samples are presented starting with the one the network predicted best (sample
1) and ending with the poorest prediction (sample 6).

Table 4.10: This Table presents labels and predictions for some test samples on
Network 4 with tanh as activation function. Sample 1-3 are the samples that the
network performed best on, and sample 4-6 are the samples that it performed worst
on. The labels are presented in full in column 2. The total translated distance
introduced in the samples are given in column 3, whereas the predicted translated
distance can be found in column 4. All the translation values are given in meters.

Sample Labels [x, y, θ] Total label
translation

Total predicted
translation

1 [ 0.85, -0.70, 0.00] 1.10 1.10
2 [-0.48, -0.73, 0.00] 0.88 0.88
3 [0.20, 0.75, 0.00] 0.77 0.77
4 [-0.93, -0.77, 0.00] 1.21 1.03
5 [-0.33, -0.74, 0.00] 0.81 0.63
6 [0.96, 0.72, 0.00] 1.20 1.00

In Figure 4.5 the easiest and most difficult sample for the network to predict
(sample 1 and sample 6) are visualized. Looking at the images one see that they
are quite similar, which gives the impression that the network does not find some
samples easier to predict than others. The images of samples 2-5 are shown in
Figures B.1 and B.2 found in Appendix B.
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(a) Sample 1, which was the easiest for the network to predict.

(b) Sample 6, which was the most difficult for the network to predict.

Figure 4.5: The figure is showing the easiest (a) and most difficult (b) sample for
the network to predict. The left image is the sweep and the right the cut-out from
the map.
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4.2 Networks with LiDAR point clouds as input
In this section, the results from training the networks that takes the LiDAR point
cloud as input will be presented. First the results from networks using Backbone
1 will be presented followed by the ones that use Backbone 2, 3 and 4. All the
networks were tested using the SmoothL1 loss function with equal weighting for
the error in translation x and y and angle θ, independently of the loss used when
training to be able to compare the networks’ performances.

The test results are presented in tables and figures in the same way as for
the networks presented in Section 4.1, with tables for test loss and other metrics,
and clarifying histograms for the prediction error distributions when needed. Re-
garding the training and testing of the networks, all the networks have been trained
and tested on a translation error in the range [−1.5, 1.5]m and a rotation error in
[−3, 3]degrees if nothing else is stated in connection to the presented results.

4.2.1 Network with Backbone 1
The results presented in this section are all from training networks using Backbone 1.
The backbone architecture can differ slightly at the input layers and the first fully
connected layer depending on the spatial resolution and number of features that are
used in the Pillar Feature Net, but is otherwise identical. Different combinations of
spatial resolutions and number of features in the PFN-layer were trained and tested,
as will be described below. The first combination was trained on training data with
translation errors in the range [−3, 3]m, and combination 2 and 3 were trained on
training data with translation errors in the range [−1.5, 1.5]m. No rotation errors
were introduced in any combination.

1. The first version of the network was trained with spatial resolution of 0.5m
using using 32 features from the PFN-layer.

2. The second version of the network was trained with a spatial resolution of
0.25m using 32 features from the PFN-layer.

3. The third version of the network was also trained with a spatial resolution of
0.25m using 64 features from the PFN-layer.

All three versions are tested on a test set with pure translation in the range of
[−1.5, 1.5]m. The results are presented in Table 4.11.

Table 4.11: Test results for different versions of Backbone 1. All networks are
tested on pure translation in the range of [−1.5, 1.5]m. No rotation errors were
introduced in the training or test data sets.

Spatial
resolution

Number of
features

Test loss (1e-4) Median translation
prediction error

Median rotation
prediction error

0.5m 32 66.7357 1.07m 0.0129 °
0.25m 32 121.3999 1.03 m -0.0031 °
0.25m 64 218.2622 0.95m -0.0092 °
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The results in Table 4.11 are not satisfying in terms of test loss or median
errors, and increasing the number of weights in the PFN-layer does not improve the
overall performance. As seen in the table, the first version of the network with spatial
resolution 0.5m and 32 features got the highest median translation prediction error,
while the test loss is the lowest. This trend also follows for the second and third
version, where the second version with spatial resolution 0.25m and 32 features has
a lower test loss than the third version, but higher median translation error. This
can be explained when looking at the distribution of the predicted errors. Version
1 has errors that are centered around zero, which may yield a lower test loss even
if the distributions are not narrow for the predicted translation in x and y. Version
1 and 2 predicts the translation in x relatively well but the prediction of y is very
poor, which may lead to an increase in test loss even if the median translation error
is lower. The histograms that visualize the distribution of the median prediction
errors are shown in Appendix B in Figure B.4.

To investigate how Backbone 1 with a spatial resolution of 0.25m and 64
features in the PFN-layer performed when predicting the rotation we continued to
train it on rotation. We also trained a similar architecture with two PFN-layers
with 64 channels each, since we wanted to see if the PFN’s capacity needed to be
increased to find important features in the point cloud. The results from these
versions are presented in Table 4.12.

Table 4.12: The results when using Backbone 1 with a spatial resolution of 0.25m
and when using Backbone 1 with two PFN-layers.

Spatial
resolution

Number of
features

test loss (1e-4) median translation
prediction error

median rotation
prediction error

0.25m 64 652.6360 0.92m 0.0768°
0.25m 64, 64 749.7436 1.18m 0.1710°

Figure 4.6 visualizes the distribution of the error of network’s predictions
when testing the version with a spatial resolution of 0.25m and a single PFN-
layer, trained on both translation and rotation. The error seems to be uniformly
distributed for both translation in y and for the rotation angle, indicating that
this network does not have the capability of solving the localization task at all.
The performance of the network with two PFN-layers was also poor. Due to time
constraints we did not have time to investigate why, however a quick guess is that
it might have been caused by an implementation error.

4.2.2 Network with Backbone 2
The network with Backbone 2 was trained with pillars of spatial resolution 0.5m.
The network was trained on pure translation and the number of features that was
used in the PFN layer was 64. When testing the network on a test set with the
same parameters as the training set the test loss was 142.2248 e-4 and the median
translation prediction error was 1.13m. By comparing these results with the results
in Section 4.2.1 we drew the conclusion that Backbone 2 did not perform good
enough to be developed further.
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Figure 4.6: Histograms showing the translation and rotation error when testing
on a set with translation errors in the range [−1.5, 1.5]m and rotation errors in
[−3, 3]degrees. The distributions are uniformly distributed for y and the angle,
indicating that the performance for these output parameters have not been improved
at all after training.

4.2.3 Networks with Backbone 3 and Backbone 4
Backbone 3, unlike Backbone 2, takes two separate inputs. The pseudo image of
the sweep and the pseudo image of the map cut-out is processed separately through
multiple convolutional layers before being concatenated and propagated through
multiple fully connected layers. The results from this network are presented in
Table 4.13.

Table 4.13: Performance of network with Backbone 3 trained on translation in
range [−1.5, 1.5]m with and without rotation in the range [−3, 3]degrees.

Spatial
resolution

Number of
features

Rotation test loss
(1e-4)

median translation
prediction error

median rotation
prediction error

0.5 m 32 No 27.4700 0.64m -0.0001 °
0.5 m 32 Yes 132.4586 0.90m 0.4501 °

The test loss for Backbone 3 is considerable lower than for the other back-
bones, but it still performs poorly when predicting the rotation angle. Since we got
promising results we decided to develop Backbone 3 further, resulting in Backbone
4. We tested Backbone 4 using two different spatial resolutions, 0.5m and 0.25m.
The results are presented in Table 4.14.

By comparing the results in Table 4.14 with all other backbones’ results,
the conclusion is that this network with spatial resolution 0.5m has the best perfor-
mance. It is interesting to visualize the distribution of the networks error predictions
as in Figure 4.7. Subfigure a) shows the prediction error histograms when trained
and tested on pure translation, and we can see that the prediction errors are centered
around zero, indicating that the network can predict the translation between sweep
and cut-out fairly accurately. Subfigure b) shows the prediction errors when trained
on samples with rotation as well, and the performance degrades noticeably as seen
in Table 4.14. The histograms show that while the network can predict translation
in y and correct some of the rotation angle, it looses the ability to predict translation
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Table 4.14: Performance of network with Backbone 4 trained on translation in
range [−1.5, 1.5]m with and without rotation in the range [−3, 3] °. The best per-
formance is marked in bold text.

Spatial
resolu-
tion

Number of
features

Rotation test loss
(1e-4)

median transla-
tion prediction
error

median rotation
prediction error

0.5m 32 No 6.1458 0.28m 0.0000 °
0.5m 32 Yes 85.3636 0.80m 0.0064 °
0.25m 32 No 53.7752 0.64m 0.0000 °
0.25m 32 Yes 215.3096 0.92m 0.0913 °

in x. This will be further discussed in Chapter 5.

(a) Test results of Backbone 4 on pure translation, visualized as a histogram with
the prediction error for the translation in x, y in metres and the prediction error for
the rotation in degrees.

(b) Test results of Backbone 4 on translation and rotation in, visualized as a his-
togram with the prediction error for the translation in x, y in metres and the pre-
diction error for the rotation in degrees.

Figure 4.7: a) Histograms showing the test results for Backbone 4 trained on
pure translation in the range [−1.5, 1.5]m. b) Histograms showing the test results
for Backbone 4 trained on translation and rotation in the range [−1.5, 1.5]m and
[−3, 3]degrees.
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4.2.4 Summary of the networks’ performances
In Figure 4.8, the losses with respect to the median displacement error for all the
networks that uses point clouds as input are shown. The blue markers represent the
performance of networks that have been trained and tested on only pure translation
and the red markers represent the networks that have been trained and tested on
translation as well as rotation. The dotted lines show the the spatial resolution.

Figure 4.8: Plots presenting the test loss with respect to the median displacement
errors for all the networks with point cloud as input that we have trained. The left
plot shows the networks with a spatial resolution of 0.5m and the right plot the
networks with an a spatial resolution of 0.25m. The vertical dotted lines represent
the spatial resolutions. The blue markers show the networks that were trained and
tested on pure translation and the red markers show the networks that were trained
and tested on translation and rotation.

As seen from the plots, the best performing network when using point clouds
as input was Backbone 4 in combination with a PFN-layer with 32 features for
a spatial resolution of 0.5m. It was the only network that succeeded to predict
transformations with higher accuracy than the spatial resolution, when trained and
tested on pure translation. The test loss ended at 6.1458 e-4 with median transla-
tion prediction error of 0.28m. When trained and tested on translation together
with rotation, the test loss was 85.3636 e-4 with median translation prediction error
of 0.80m and median rotation prediction error 0.0064°. The introduced rotation
degrades the performance noticeably, but it is still the best performing network.
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In this chapter, we discuss our results beginning with a discussion about important
features in the inputs to the networks. Different kind of handcrafted features in
the 2D input yielded varying results, and some features degraded the performance
completely. Different sizes of the grids and pillars in 2D-input and point cloud input
greatly affected the performance as well. The discussion continues with the design of
the network architectures, and which choices that led to an improved performance.
Some interesting design choices are for example if the sweep and cut-out are pro-
cessed separately by the network, or which activation function that worked best. We
will also discuss the test data that was easiest and most difficult for the networks
to predict, and if there are any patterns to these samples. The chapter continues
with a broad discussion about regression for this kind of localization problem. From
the results we can see that rotation errors are difficult for the network to predict,
and hard to distinguish from pure translation. Finally, we will conclude the chapter
with some future work that should be investigated, should this project continue.

5.1 Input to networks
What we have found to be one the most crucial parameters when developing our
networks, is the input to the network itself. The network architecture and training
hyperparameters do of course impact the results, but even our best performing
network degraded completely when changing details in the input. Some parameters
have remained unchanged during the whole project and will be discussed later. Given
more time, their importance might be interesting to investigate. Other parameters
that we have altered will be discussed in the next section.

When processing the LiDAR data, we removed the detections that originate
from the vehicle itself, such as detections on the hood. This was done after visual
investigation of all detections overlayed to visualize the towns, where we saw that the
roads were cluttered with detections from the vehicle. Since these detections are not
static, we decided to remove all detections within 1m of the LiDAR. A related idea
we wanted to investigate was to remove all detections on the road surface, letting
the networks learn that areas that lack detections are most likely drivable areas,
whereas sidewalks would emerge as distinct structures that separate roads from all
other structures. This idea was difficult to implement, since the urban simulator
CARLA behaved unexpectedly when moving the vehicle to new locations during
the collection of data. The LiDAR data from CARLA lacks the specific property of
reflective intensity that is often used in data from real LiDARs. This feature would
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most likely have been included in the training data if it had been available.
Normalization of the data can have a big impact on the results. We decided

to normalize the number of detections relative to the maximum number of detec-
tions. This is important, since the sweep and map cut-out contain different amounts
of detections in total. To make the pixel values comparable, we normalize them sep-
arately. This should yield similar pixel values for the same structures in the sweep
and the cut-out.

Input features
We have identified some input parameters that seem to be more important than
others for how well the neural networks perform. In the case of networks with a 2D
images as input, we as developers have to decide how to pre-process the data and
which information the network should be fed as input. Our standard approach was
to discretize the LiDAR data into a grid structure, where each pixel represents an
intensity of detections. This produces a feature map where structures that obstructs
the LiDAR sensor beams, such as building walls, yield many detections. These pixels
will then have a larger value than a pixel for road surface, which only have a few
detections from the ground. This kind of input have performed best. Feature maps
like this should work well for environments where there are different kind of objects
with differing heights around the vehicle, such as buildings, bus stops, fences, as
is the case in the simulated environment CARLA. We also trained networks using
occupancy grid, with the hope that the localization task would boil down to finding
patches of zeros and ones that matched in size and shape. This approach worked, but
did not yield better results than using the number of detections as described above.
A natural next step in the development of the input was to include a layer of mean
height in each pixel. We think that this should help the network to distinguish more
structures, such as sidewalks and road surfaces which are both flat but at different
heights. This did, surprisingly enough, yield poor results. A modified version of
Network 3 was trained with this input, but also deeper networks with more layers
since we anticipated that the networks capacity should increase when including more
information in the input, but still with poor results.

Spatial resolution
Intuitively, the grid size should be a very important parameter in the neural network.
A finer grid structure should lead to a more accurate prediction, since the network
is then able to pinpoint smaller displacements between the sweep and the cut-out.
Network 3 was modified such that it could use inputs with a spatial resolution of
0.1m and 0.05m, with slight differences in the architecture to handle the different
input sizes. The results show that decreasing the spatial resolution did not improve
the accuracy, instead the test loss and median translation error almost doubled.
We still believe firmly that decreasing the spatial resolution should lead to better
predictions, however it seems that the network architecture can only be used on the
spatial resolution that it was developed for. In order to actually make use of the finer
resolution, the architecture has to be developed differently to perform better. One
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example of a parameter that could be changed in the architecture can for example
be the kernel size of the convolution layers. If the spatial resolution is decreased
in size, the kernel’s size should be increased such that the receptive field remains
the same as for a larger spatial resolution. This was implemented, but with poor
results indicating that the kernel size is not the most crucial factor when designing
an architecture for a finer spatial resolution. This line of reasoning also applies to
the backbones when using point clouds as input. Smaller pillars yield more feature
vectors which should then also be processed with a larger receptive field. This has
not yet been tested.

5.2 Architecture design
In this section, the architecture designs of the networks with top-view LiDAR images
as input will be discussed, followed by the networks with the point cloud as input.
We will highlight differences that may be a factor as to why some of them are better
to solve the localization task than others.

Networks with top-view LiDAR images as input

The network that performed best among the top-view LiDAR images networks was
Network 3 with tanh, which is inspired by a network designed for estimating optical
flow in image pairs. One thing that may be a factor to why Network 3 with tanh
outperforms the others, is that it has a larger kernel size in the first three convo-
lutional layers. This increases the receptive field of the network, which we believe
is an important parameter, as mentioned before in the section about spatial resolu-
tion. Overall, the network is deeper than the other networks with more channels in
many of the layers and more fully connected layers. A deeper network often have a
higher potential to solve difficult tasks and it seems that this is necessary to solve
the localization task. The network also has dropout in almost every layer, which
can be an additional factor. The drop out parameter p, which decides the amount of
neurons to ignore during training, can be a promising parameter to experiment with
in order to increase the performance. Network 3 with tanh also uses two different
activation functions; the ReLU function was used in the first half of the network
while the three last convolutional layers and the two first fully connected had the
tanh as activation function and the rest of the fully connected layers did not use
an activation function. When using the tanh activation function in the network in-
stead of only the ReLU function the network performed marginally better, however
we think that the difference was too small to state that the choice of activation
function had a vital role in this case.

Processing the sweep and map cut-out separately was a design choice that
we thought would lead to better performance, since the network can in some sense
find important structures in the images firstly, and secondly compare these struc-
tures in the images. Our results show the opposite, the performance degrades when
processing the inputs separately. This trend is also seen when looking at Network 1
and 2, where Network 2 also takes two separate inputs.
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One of the network architectures, Network 5, is very different from the other, with
residual blocks and deconvolutional layers. The network uses a version of LinkNet to
process the sweep and cut-out separately before concatenating them and processing
them trough convolutional and fully connected layers as usual. This new approach
performed well on the localization task and should definitely be investigated further
by changing hyper parameters such as number of channels, kernel sizes, etc.

Networks with point cloud as input

The backbone that performed best when solving the localization task was Backbone
4. The main difference between Backbone 4 and the other backbones is that Back-
bone 4 processes the inputs separately through all the convolutional layers, before
concatenating them deeper in the network to pass them through multiple fully con-
nected layers. We think that processing the inputs separately may help the network
to find important features for the sweep and cut-out. What is surprising is that
this tactic did not work for the top-view input networks, even though it seems to
be crucial for the backbone design. An idea to further increase the performance of
Backbone 4 is to increase the kernel size in the first layers to increase the receptive
field of the network. It can also be the case that the network should be deeper to
have the potential to solve the task better.

5.3 Is some data easier to learn than other data?
To understand our networks better we investigated if some kind of samples were
easier to predict than others. We compared samples where Network 3 gave a pre-
diction close to the ground truth with samples that yielded a poor prediction. Our
expectation was that samples with clear structures or distinct objects should be eas-
ier to predict than samples that were blurry with many detections distributed over
the whole image. Unfortunately a clear trend was not found. The sample that gave
a prediction close to the ground truth was similar to the one that the network found
hard to predict. The labels of the samples, i.e the size of errors that was introduced
in the data, did not seem to have an impact on the performance either, since a small
error sometimes was difficult to predict while a large error was easy. To investigate
this further it can be a good idea to include an output parameter from the network
that shows how certain it is about each prediction. This knowledge can then be
used to find a possible pattern among the samples.

5.4 Regression for rotation problems
A common issue for all networks in this thesis project is that the networks’ perfor-
mances degrade when introducing data that has been rotated. The networks can
identify and correct pure translation, but rotation errors increase the overall loss, of-
ten affecting and degrading the translation predictions in one direction, e.g in x or y.
A hypothesis to this phenomenon is that the networks have difficulties distinguish-
ing pure translation from displacements that are induced by rotation. A pixel in the
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outer edge of an image shifts more pixels than a pixel in the origin when the image
is rotated around its center. The convolutional kernels work locally and may have a
hard time identifying this subtle difference, and instead interpreting the outer edge
pixels as affected by pure translation. Since both translation and rotation errors are
possibly interpreted as translation in two dimensions by the networks, one of the
elements in the output vector seems to be neglected. Two elements are enough to
describe the transformation between the sweep and the cut-out, if you experience
only translation as the networks seem to do.

A plausible conclusion is that regression is simply not suitable when rotation
errors are prone to occur. Another possible way to attack this kind of problem is to
instead use classification methods. This can be done using different bins for possible
angle intervals and then use cross-correlation to check which one of the rotated
versions that match the map cut-out best. A downside with using classification
methods is that the accuracy of the rotation error that can be predicted by the
network is limited. Our initial thought with using a regression method instead of
classification was that we wanted the networks to be able to solve for more than a
number of predefined possible rotation errors.

5.5 Future work
In this section we will give ideas of what we think could be interesting to investigate
further in the future.

Since we did not succeed with using regression methods to solve this local-
ization problem with results that can compete with state-of-the-art methods, more
investigations should be carried out. Some things that can be further investigated
are for example different kinds of architectures, experiment with hyper parameters
and/or use different kind of handcrafted features in the input. The point cloud
input could for example include features like cluster mean and x and y coordinates.
For the 2D input we could include features such as maximum, minimum and mean
height of the detections.

Another approach could be to use regression in combination with classifica-
tion. Regression could be used to predict the translation and classification could be
used for rotation bins. Another suggestion on how to proceed with the development
of the networks is to introduce iterative parts, where the network corrects the sweep
with its own prediction of the rigid transformation, before processing the sample
again through the network to output a new refined prediction. One idea can also be
to solve the problem in two steps. Firstly the network could solve the translation
task and correct the error, and then pass the corrected sample to another part of
the network that solves for the rotation angle.

When a network architecture that can solve the task is found, it would be
interesting to see if the network can generalize well on different kind of LiDARs.
When the networks perform satisfyingly, some run time analysis should be performed
in order to evaluate if the network can run in real time. Another interesting idea
that could be investigated further is to develop neural networks where the sweep
and cut-outs are processed separately that perform well, such that the whole map
can be processed offline before it is stored in the vehicle computer. If the network
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can find a suitable representation of the map that takes up less memory than the
original point cloud map, valuable storage on the hard disk can be freed. Ideally
the map should be memory efficient such that it can have potential to be stored in
a vehicle computer, or downloaded during the ride.

Lastly, some code can be optimized to decrease the training time, especially
in the case for the point cloud networks where training a network can take up to 24
hours. Some of the poor results could also be explained by poor implementations,
such as the networks using CoordConvs or height information as an input feature.
In these cases, the networks did not converge during training.
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6
Conclusion

In this thesis project, we present different types of neural networks that estimate
a rigid transformation between a LiDAR sweep and a map cut-out using neural
network regression, to perform localization in an a priori known map. We have
found that the localization task can be solved by using 2D images as input with
only one feature, which is the intensity of detections in each pixel. Networks using
point clouds should intuitively perform better since the point cloud contains more
information and is not pre-processed, and the results show that the point cloud
networks do perform relatively better compared to their pillar size, however they do
not outperform the networks using 2D images. The overall aim of the thesis was
to localize a vehicle in an a priori known map with centimetre level precision, using
a LiDAR sensor and deep neural networks. Our results show that this localization
task can indeed be carried out with our methods, but the evaluated networks can
not compete with state-of-the-art methods today.
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A
Supplementary network

architectures

This Appendix presents all versions of the main architectures presented in Chapter
3. For example, architectures with slight modifications for different input sizes or
versions with different activation functions can be found here.

Networks with top-view LiDAR images as input

Complementary architectures for networks with top-view LiDAR images as input
are presented in this section.

Network 3

Figure A.1 presents the network version of Network 3 used when the input with a
spatial resolution 0.05m and therefore an input size of 2×600×600 pixels. There is
a similar version in Figure A.2 where the convolutional kernels are larger, to increase
the receptive field. Figure A.3 is the architecture used when the sweep and cut-out
are processed separately by the first three convolutional layers. The last version of
Network 3 is presented in Figure A.4, which is identical to the original but with
tanh as activation function in some convolutional layers and in some fully connected
layers.

Figure A.1: Architecture for Network 3 when the input has a spatial resolution of
0.05m.
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Figure A.2: Architecture for Network 3 when the input has a spatial resolution of
0.05m. The kernels are larger compared to Figure A.1, such that the receptive field
increases. This receptive field is now as large, in terms of meters, as for Network 3
for spatial resolution 0.1m.

Figure A.3: Architecture for Network 3 when the input sweep and cut-out are
processed separately by the first layers. The spatial resolution is 0.1m.

Figure A.4: Architecture for Network 3 when using tanh as activation function in
the last three convolutional layers instead of the ReLU function. Tanh is also used
as activation function in the two first fully connected layers. The spatial resolution
is 0.1m.
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Networks with LiDAR point clouds as input

Complementary architectures for networks with LiDAR point clouds as input are
presented in this section. Figure A.5 shows the design of multiple PFN-layers that
are used before to create the pseudo-images. Figure A.6 shows the network archi-
tecture for Backbone 1, but modified to suit inputs with spatial resolution 0.25m.
Figure A.7 shows the network for Backbone 4, modified for inputs with spatial
resolution 0.25m and 32 features from the PFN-layers.

Figure A.5: A visualization of the PFN network with 2 PFN-layers. The output
from the first layer is concatenated with the max operation value, before passed
through a new PFN-layer.

Figure A.6: A version of Backbone 1, but where the input has a spatial resolution
of 0.25m.
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Figure A.7: Backbone 4 with spatial resolution 0.25m and 32 features from PFN-
layer. Sweep and cutout pseudo-images are processed separately by convolutional
layers before being concatenated and sent through fully connected layers.
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B
Supplementary results

Visualization of samples that was predicted by Net-
work 3
Figure B.1 shows the 2nd and 3rd easiest samples for Network 3 to predict and
Figure B.2 shows the 2nd and 3rd most difficult samples. The labels for the images
are presented in Table B.1.

Table B.1: Labels of the samples shown in Figures B.1 and B.2

Sample Labels [x, y, θ] Total label
translation

Total predicted
translation

2 [-0.48, -0.73, 0.00] 0.88 0.88
3 [0.20, 0.75, 0.00] 0.77 0.77
4 [-0.93, -0.77, 0.00] 1.21 1.03
5 [-0.33, -0.74, 0.00] 0.81 0.63

V



B. Supplementary results

(a) Sample 2, which was the 2nd easiest for the network to predict.

(b) Sample 3, which was 3rd easiest for the network to predict.

Figure B.1: The figure is showing sample 2 and sample 3 which where the 2nd
and 3rd easiest samples for Network 3 to predict. The left image is the sweep and
the right the cut out from the map.

Prediction error histograms
Figure B.3 shows the test results of Backbone 4 when using a spatial resolution
of 0.25m, 32 features in the PFN layer. Figure B.3 a) shows the results when the
backbone was trained and tested on pure translation in the interval [−1.5, 1.5]m
and Figure B.3 b) shows the test results after continuing training on rotation in the
range [−3, 3] degrees.

Figure B.4 shows the results of Backbone 1 when it is trained and tested
on pure translation. Figure B.4 a) shows the the predicted error distribution when
using a spatial resolution of 0.5m and 32 features from the PFN-layer, Figure B.4 b)
shows the predicted error distribution when using a spatial resolution of 0.25m
and 32 features from the PFN-layer and Figure B.4 c) shows the predicted error
distribution when using a spatial resolution of 0.25m and 64 features from the
PFN-layer.

VI



B. Supplementary results

(a) Sample 4, which was the 3rd hardest for the network to predict.

(b) Sample 5, which was the 2nd hardest for the network to predict.

Figure B.2: The figure is showing sample 4 and 5 which where the 2nd and 3rd
hardest samples for Network 3 to predict. The left image is the sweep and the right
the cut out from the map.
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B. Supplementary results

(a) Test results of Backbone 4, with a spatial resolution of 0.25m, on pure transla-
tion, visualized as a histogram with the prediction error for the translation in x, y
in metres and the prediction error for the rotation in degrees.

(b) Test results of Backbone 4, with a spatial resolution of 0.25m, on translation and
rotation in, visualized as a histogram with the prediction error for the translation
in x, y in metres and the prediction error for the rotation in degrees.

Figure B.3: a) Histograms showing the test results for Backbone 4, with a pillar
size of 0.25m, trained on pure translation in the range [-1.5,1.5]m. b) Histograms
showing the test results for Backbone 4 trained on translation and rotation in the
range [-1.5,1.5]m and [-3,3]°.
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B. Supplementary results

(a) Histogram showing the predicted error distribution when using a spatial distri-
bution of 0.5m and 32 features from the PFN-layer.

(b) Histogram showing the predicted error distribution when using a spatial distri-
bution of 0.25m and 32 features from the PFN-layer.

(c) Histogram showing the predicted error distribution when using a spatial distri-
bution of 0.25m and 64 features from the PFN-layer.

Figure B.4: The figure presents histograms over the predicted error distribution
of a network using Backbone 1. a) shows the predicted error when using spatial
resolution 0.5m and 32 features from the PFN-layer. Subfigure b) shows the pre-
dicted error when using spatial resolution 0.25m and 32 features from the PFN-layer.
Subfigure c) shows the predicted error when using spatial resolution 0.25m and 64
features from the PFN-layer.
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