
Comparison between GPU and parallel
CPU optimizations in viewshed analysis
Master’s thesis in Computer Science: Algorithms, Languages and Logic

TOBIAS AXELL
MATTIAS FRIDÉN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2015

Comparison between GPU and parallel
CPU optimizations in viewshed analysis

TOBIAS AXELL
MATTIAS FRIDÉN

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden 2015

Comparison between GPU and parallel CPU optimizations in viewshed analysis
TOBIAS AXELL
MATTIAS FRIDÉN

© TOBIAS AXELL and MATTIAS FRIDÉN, 2015.

Supervisor: Erik Sintorn, Department of Computer Science and Engineering
Examiner: Ulf Assarsson, Department of Computer Science and Engineering

Department of Computer Science and Engineering
Chalmers University of Technology
412 96 Gothenburg, Sweden
Telephone +46 31 772 1000

Cover: A viewshed on a rolling landscape, the red ball marks the observer position.

Gothenburg, Sweden 2015

iv

Comparison between GPU and parallel CPU optimizations in viewshed analysis
TOBIAS AXELL
MATTIAS FRIDÉN
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
Parallel CPU implementations of a viewshed algorithm using both multithreading
and SIMD vectorization and GPU implementations were implemented and com-
pared in this study. The results show that parallelism is essential for achieving
good performance on a CPU, and that data transfer can be partly overlapped by
computations to hide some of the overheads in GPU implementations. The GPU
implementation was the fastest with a performance approximately 3 times faster
than the parallel CPU implementation for the hardware the tests were performed
on.

Keywords: viewshed, line of sight, GPU, parallel CPU, SIMD, vectorization, R2.

v

Acknowledgements
We would like to thank Erik Sintorn for his supervision and for many great con-
versations, and Ulf Assarsson for being our examiner. We would also like to thank
Anders and the others for help and support during the project.

Tobias Axell and Mattias Fridén, Gothenburg, June 2015

vii

Contents

1 Introduction 1
1.1 Problem . 1
1.2 The Viewshed Problem . 1

1.2.1 Extended Problem . 2
1.3 Previous Work . 2
1.4 Purpose and Goals . 4
1.5 Limitations . 4
1.6 Outline . 4

2 Theory 5
2.1 Line of Sight . 5

2.1.1 Computing a Line of Sight . 5
2.1.2 DEM Interpretation and Interpolation 6
2.1.3 Parallel Prefix Scan . 7
2.1.4 Algorithm Criteria . 9

2.2 Viewshed Algorithms . 9
2.2.1 R3 . 10
2.2.2 R2 . 10
2.2.3 Wave Front Algorithms . 12

2.3 CPU Parallelism . 14
2.3.1 Multithreading . 15
2.3.2 SIMD Instructions . 15
2.3.3 SPMD on SIMD and the ISPC Compiler 15

2.4 GPU . 16
2.4.1 Kernel Execution . 17
2.4.2 Memory . 17
2.4.3 Programming Models . 18

3 Approach 19
3.1 GPU Implementations . 20

3.1.1 R3 . 20
3.1.2 R2 . 20
3.1.3 Hiding API Call Overheads 21
3.1.4 Minimizing Allocations . 21
3.1.5 Hiding Transfer Overheads . 21
3.1.6 Parallel Prefix Scan . 22

ix

Contents

3.2 CPU Implementations of R2 . 24
3.2.1 Memory Issues With R2 . 25

4 Result 27
4.1 CPU Implementations of R2 . 27

4.1.1 Multicore Parallelism . 28
4.1.2 Vectorization . 28
4.1.3 CPU Summary . 29

4.2 GPU Implementations of R2 . 33
4.2.1 Minimizing Allocations by Reusing Memory 33
4.2.2 Hiding Transfer Overheads Using Multiple Command-queues . 34
4.2.3 Dividing Computations Using Parallel Prefix Scan 35
4.2.4 GPU Summary . 37

4.3 Performance CPU vs GPU . 37
4.4 Approximation Error of R2 . 39

5 Discussion 43
5.1 Performance Comparisons . 43
5.2 Cache Efficiency in the R2 Implementations for the CPU 43
5.3 Results of the Parallel Prefix Scan Implementation 44
5.4 Power Consumption . 44
5.5 Conclusions about performance on other hardware 45
5.6 R2 and R3 out of Range Disagreement 45

6 Conclusions 47

7 Future Work 49
7.1 Parallel Prefix Scan Using Global Memory 49
7.2 OpenCL on CPUs . 49
7.3 Improving CPU Implementations . 49
7.4 Parallel Implementation of Izraelevitz’ Algorithm 50
7.5 Implementation Using Both CPU and GPU 50

Bibliography 53

x

1
Introduction

A viewshed is an area that is visible from a given observation point. Every point
that is within a given range from the observation point and is visible from the
observation point is part of the viewshed. A viewshed can be used to find suitable
points for optimizing path planning, find out if a camera has coverage of some area,
or landscape planning.

As previous research indicates that the viewshed problem is suitable for parallel
computation [1], it will be of interest to research and test different algorithms for
both the CPU and GPU to find good algorithms for these. These algorithms will be
implemented and optimized, and then the best implementation on each hardware
will be compared to find out if the viewshed problem is better suited for the CPU
or the GPU.

1.1 Problem

The aim of this thesis will be to research whether the CPU or GPU is the most suited
computing platform for solving the viewshed problem in parallel, and to find out
what it is that makes the implementation fast or not. This parallelization may not
be trivial and tests needs to be performed to find out what makes implementations
fast or not. To get a fair comparison between implementations, it is important that
the hardware that the algorithms are tested on is fair to compare, or at least tested
with the differences in mind. All implemented algorithms has to be tested to find
time-consuming parts so that they can be optimized. It might be hard to estimate
how an implementation will behave on other hardware than it has been tested on,
thus the implementation needs to be tested on different hardware to be able to draw
more general conclusions about the performance of the implementation on other
hardware.

1.2 The Viewshed Problem

Computing a viewshed takes three parameters; a digital elevation model (DEM)
which is a map with height information about the terrain, an observer position in
three dimensions, and a range defining the area around the observer position for
which to compute the viewshed. The task is then to compute which parts of the
area inside the range that are visible from the observation point (see Figure 1.1).

1

1. Introduction

Figure 1.1: A cross section of a binary viewshed. Green dots indicates visible
DEM points and red dots indicates obscured DEM points

1.2.1 Extended Problem
This paper will adopt the same solution format as Franklin et al. [2], computing
the height above ground that is needed at each position in order to be visible from
the observer position. For example, a height of 0 meter means that the ground on
that position is visible and a height value of 1 meter means that an object on that
position has to be at least 1 meter high (or elevated 1 meter above ground level) in
order to be visible from the observation point (see Figure 1.2).

1.3 Previous Work

R3, R2, and Xdraw are three algorithms that has been studied by Franklin et al. [2]
The R3 algorithm is non-approximate with an θ(n3) complexity. The R2 algorithm
has time complexity θ(n2) and almost as accurate as R3. The Xdraw algorithm has
the same algorithm complexity as R2, but with a better constant and with an even
higher approximation error.

Wang et al. [3] has developed an algorithm that’s similar to the Xdraw algorithm
that uses reference planes to define local horizons based on previous results. This
algorithm is also fast, but approximate.

Izraelevitz [4] has developed a modified version of the Xdraw that use a back-
tracking method that sacrifices some performance in order to reduce approximation
error.

Xia et al. [5] has implemented four versions of a line of sight based viewshed
algorithm (it is unclear exactly which one as they do not describe it in detail)
with different levels of parallelism: SMSR (Sequential matrix travarsial, Sequential

2

1. Introduction

Figure 1.2: A cross section of an extended viewshed. The numbers indicate the
required height above ground at each point in order to be visible from the observers
position

ray traversial), PMSR (Parallel matrix travarsial, Sequential ray traversial), SMPR
(Sequential matrix travarsial, Parallel ray traversial), and PMPR (Parallel matrix
travarsial, Parallel ray traversial). The parallel parts were implemented on the GPU
using CUDA and the sequential parts were implemented on the CPU. The version
using PMSR were the one with the best results.

Stojanovic and Stojanovic [6] implemented the R3 algorithm on the GPU and
compared the implementation to a sequential CPU solution. It differs from the
algorithm implemented by Xia et al. as it computes a binary result and is using
this fact to finish the computation of a sightline as soon as the target cell has been
occluded, if it is occluded.

Blelloch, Sengupta et al. and Dotsenko et al. have developed algorithms for
solving the prefix scan and prefix scan algorithms in parallel[7, 8, 9], and Blelloch has
also shown that a parallel prefix scan algorithm can be used to solve the Line of Sight
(LOS) problem in parallel, a problem closely related to the viewshed problem[7].

Lee et al. has argued that many claimed speedups of 10x to 1000x when using
GPUs are exaggerated and shows that the average relation in execution speed (with-
out data transfer overheads in their measurements) is a 2.5x advantage for GPUs
for a set of 14 tested problems including Monte Carlo, Convolution image filtering
and Fast Fourier Transform algorithms[10].

Gregg and Hazelwood argue for the importance of the context in which an algo-
rithm is used, as data-transfer overheads from and to the GPU may have a large

3

1. Introduction

impact on the runtime of a GPU implementation[11].

1.4 Purpose and Goals
The purpose of this thesis is to compare GPU and parallel CPU solutions of the
viewshed problem in order to determine if either of these two classes of hardware
is more suitable for solving this problem efficiently. For this thesis we have three
goals:

1. Implement two algorithms for viewshed analysis (see 1.2.1): one for a CPU,
and one for a GPU. The algorithms may be approximate but then with a
justifiably small approximation error.

2. Benchmark the produced implementations to see whether a GPU implementa-
tion or a CPU implementation is better than the other in terms of performance.

3. Reach more general conclusions about what makes the algorithms/ implemen-
tations efficient (or inefficient) on GPUs and CPUs. Such conclusions could
be used as basis for decision when choosing for which hardware to implement
some solution to some other geospatial analysis problem.

1.5 Limitations
This thesis will only compare parallelization on CPUs and GPUs. We will not
consider distributed computing, computer clusters or any other special hardware for
parallel computation.

There are different kinds of DEMs, such as rasters/grids, triangulated irregular
networks (TINs), and triangulated grids but this thesis will only consider algorithms
working on raster DEMs and optimizations for them.

This study will not consider refraction in the atmosphere nor diffraction over and
around terrain that may be of interest when computing viewsheds for, for example,
radio signals.

1.6 Outline
Chapter 2 will present different algorithms for the viewshed problem as well as rele-
vant theory for GPU programming and parallel optimizations for CPUs. Chapter 3
chapter will describe implementation choices, chosen algorithms, encountered prob-
lems, and suggested solutions. Chapter 4 will contain results where benchmarks
of different implementations will be presented and compared. Chapter 4 will be
followed by a discussion chapter, a conclusion chapter, and a chapter about future
work.

4

2
Theory

This chapter will first present relevant algorithms for viewshed analysis and the
closely related line of sight problem. Then some theory for parallel CPU optimiza-
tion, and background theory for GPGPU programming is presented.

2.1 Line of Sight

The line of sight (LOS) problem is; given a DEM, an observer position and a direc-
tion; calculate which points on the ground along the sightline originating from the
observer position with the given direction that are visible from the observer position.

This can also be expressed in terms of angles, or slopes; a point p on the ray is
visible if and only if the vertical slope of the line from the observer position to p
is higher than the slopes of the lines from the observer to all the points on the ray
that is between the observer position and the point p (see Figure 1.1) [7].

Franklin et al. also considers the extended version of the problem where not only
a binary result is wanted, but also the height required to be visible from the observer
(see Figure 1.2). They use this output to compare different solutions in terms of
difference in meters between results of two algorithms, instead of just comparing the
binary result if a cell can be seen or not[2].

2.1.1 Computing a Line of Sight
Consider an observer O and a point pt which is the target position that the observer
is looking at. By stepping along the sightline created from O to pt, one can compute
if pt is visible or not by looking up the height of the ground at each step s to describe
the point ps on the sightline on step s. The position of ps is used to first compute
the index of that point in the DEM, and this index is used together with the DEM
to create the point pg describing the point on the ground at step s. pg only occludes
pt if the height of pg is greater than the height of ps.

Another way of computing the same result is by computing the vertical angle
vt between O and pt before stepping along the sightline, and then computing the
vertical angle vg for each point pg on the ground at each step s. vg can then be
compared against vt at each step s instead of comparing their heights. pg is occluding
pt if and only if vg is greater than vt. The most occluding horizon for a point pt

is simply the point pg with the greatest vertical angle that was computed from all
steps along the sightline from O to pt.

5

2. Theory

To compute the height that is required to elevate a point p from the ground in
order for it to be visible from the observer position, the most occluding horizon h is
computed for p, and the lift can then be computed from O, p and h .

As seen in Figure 2.1, the most occluding point isn’t necessarily the highest
point, but instead the point that has the highest vertical angle from the observer.
An algorithm cannot stop once it finds a horizon that occludes the point in question,
but has to compute the vertical angle for all points on the ground along the sightline
in order to find the highest one.

Figure 2.1: Visualization of horizons. The most occluding horizon is the point on
the line between the observer and the target that has the highest vertical angle. In
this image, its point C, as the angles fulfill a < b < c

2.1.2 DEM Interpretation and Interpolation
In order to know which points to consider when finding the most occluding horizon,
a stepping method must be chosen, and the stepping method is dependent on how
the data in the DEM is interpreted. The DEM represents an area of continuous
terrain and the points in the DEM can be considered as samples as the DEM has a
finite amount of points (see Figure 2.2a).

When using the DEM to reconstruct the height of an arbitrary point of the terrain,
several methods for lookups can be used such as nearest neighbor, linear interpola-
tion, and cubic interpolation. Nearest neighbor will sample from the closest point
in the DEM and return the value without modification, while linear interpolation
and cubic interpolation will make multiple samples and then return an interpolated
result. Linear interpolation uses two samples and mixes them depending on the
distance from the point that the result is wanted for and is considered a good choice
of interpolation method to use for the viewshed problem according to Franklin et
al. [2], as long as the positions to sample are on the edge segment between two
points in the DEM. Linear interpolation of four values (arranged as corners of an

6

2. Theory

axis aligned rectangle) is performed by first performing linear interpolation of pairs
along one dimention, and then interpolating the result along the other dimention.
This is also called bilinear interpolation. The interpolation method used by samplers
on the GPU is either nearest or bilinear interpolation [12], and interpolation has to
be made manually on the CPU.

(a) A visualization of a raster DEM as a
grid where the data points is located at
the intersections of the grid lines

(b) Visualization of x and y-crossings in
a raster DEM

Figure 2.2: Illustration showing where DEM points, x-crossings, and y-crossings
are located

As linear interpolation is the recommended interpolation method, sample points
should be made on line segments between two sample points and thus the stepping
method will need to make a sample each time the sightline passes such a edge
segment. Franklin et al. uses the terms x-crossing and y-crossings for for when a
sightline passes between two points in the DEM where an x-crossing is when the
sightline passes between two DEM points with the same x-position and an y-crossing
is when the sightline passes between two DEM points with the same y-position.
Figure 2.2b illustrates this.

According to Franklin et al. the earth’s curvature must be accounted for when
working with large scale problems. They propose a close approximation as

EC = D2
O

2 ∗RE

(2.1)

where where DO is the distance from the observer, RE is the effective radius of the
earth’s, and EC is the change in elevation due to earth curvature [2].

2.1.3 Parallel Prefix Scan
Blelloch has shown that the line of sight problem can be solved in parallel by using
a parallel prefix scan algorithm [7]. The parallel prefix scan algorithm operates on
an ordered set of n elements and uses a binary associative operator ⊕ to produce
an ordered set of n elements, where output at index i is input[i] ⊕ output[i − 1].
The first element of the output is initially set to the value of the first element in the

7

2. Theory

input for an inclusive scan. In figure 2.3, the max operation was used to produce
the result, and the operation can be interpreted as the maximum number so far in
the input.

Figure 2.3: Visualization of the prefix scan algorithm using the max operator

Blelloch solves the line of sight problem in parallel by solving a sub problem of
the prefix scan problem in parallel with n/2 processors by using two sweeps, one
up sweep and one down sweep. The up sweep is performed by creating a tree with
log(n) levels. Figure 2.4 illustrates this tree with the max operation as ⊕. The levels
are processed incrementally and level l uses n/2l+1 processors, where each processor
uses the ⊕ operator on two elements from level l− 1 with the exception of the first
level operates directly on the input set[7].

Figure 2.4: Up sweep in an example using the max operator. Level 0 uses 4
processors that each work on two elements on the previous level

The down sweep works on the same tree with the same number of processors at
each level, but instead processes the tree levels in decreasing order. Initially the
identity value is inserted at the root. The identity value for the max operation is
negative infinity as max(−∞, x) = max(x,−∞) = x. Each processor p at level l
writes to its right child the value from the ⊕ operator on the value at tree position
p and the value of the left child. To the child to its left, the value in the tree at

8

2. Theory

position p is written. Figure 2.5 shows the tree after the execution of the down
sweep.

Figure 2.5: Down sweep by writing maximum of current value and value of left
child to the right child, and writing the current value to left child

To get the solution to the inclusive prefix scan problem, a left shift of the elements
in the array needs to be performed, followed by the final computation of the last
index, output[n − 1], that will be set to outpupt[n − 2] ⊕ input[n − 1]. Instead of
doing this shift, the intermediate result can directly be used as a lookup table in the
line of sight problem to look up any previous maximum angle.

2.1.4 Algorithm Criteria
Franklin et al. describe two criteria that they consider important for line of sight
algorithms: the criterion of adequacy and the criterion of appropriateness.

The criterion of adequacy states that every point in a DEM that is on a sightline
or a direct neighbor to the sightline (in the sense that there is no other point between
the point and the sightline) shall influence the computation of the most occluding
horizon for that sightline.

The criterion of appropriateness is the reverse of the criterion of adequacy, it
states that any point in a DEM that is not on a sightline nor a direct neighbor of
the sightline should not influence the computation of the most occluding horizon for
that sightline [2].

2.2 Viewshed Algorithms
There are several existing algorithms for the viewshed problem described in litera-
ture. Franklin et al. [2] present the R3 and R2 algorithms that are based on solutions
to the line of sight problem. They also present the Xdraw approximating algorithm
that is not based on LOS, but is rather what they call a wave front algorithm [2].
Wang et al. present an algorithm based on reference planes that is very similar to
the Xdraw algorithm [3]. Izraelevitz presents an algorithm that combines the wave

9

2. Theory

front and LOS approach in order to reduce the approximation error, but keep some
of the good time complexity that the wave front approach gives [4].

2.2.1 R3
The R3 algorithm [2] is based on the line of sight problem. It works by computing
the line of sight from the observation point to every cell in the raster DEM in order
to determine the visibility of that cell. The R3 algorithm provides high correctness
as it makes full use of the available elevation data [4] and satisfies both the criteria
of adequacy and appropriateness, but it’s time complexity is relatively high, θ(n3),
for an n by n raster DEM [2]. It steps on every x-crossing and y-crossong along
a sightline and on every such crossing it computes the vertical angle between the
observer, and uses the maximum of these angles to compute the height required to
see the target point from the observer.

2.2.2 R2
The R2 algorithm [2], just like the R3 algorithm, works by sending out rays from
the observer and computing the line of sight along that ray. What differentiates R2
from R3 is the way that the sightlines are computed. R3 computes a line of sight
to every cell in the raster DEM and each line of sight computation only writes the
visibility (or required height) value at the end of the sightline to the result raster. R2
only computes line of sight to the boundary cells of the area for which to compute
the viewshed and lets these rays fill in the values of the cells they pass over from the
observer out to the boundary. The boundary cells are defined as the set of cells that
are inside the boundary and has at least one adjacent cell outside of the boundary
[2].

This method introduces a new problem; there will still be raster cells that are
passed over by multiple rays, especially close to the observer. Since the rays in R2
writes results for all cells on the way out from the observer, several line of sight
computations will write a result to the same cell. This could be unwanted because
different sightline computations may have different approximation errors for a certain
DEM point and the algorithm will then have an unnecessarily high approximation
error if not the best result for each DEM point is used.

This can be solved by letting each sightline computation decide whether or not
to write a cell to the result raster. Franklin et al. [2] suggests that when multiple
sightlines pass over a raster cell only the one that passes closest to the cell’s center
should write its value to the result raster (see Figure 2.6) [2].

As described in 2.1.2, the points to sample are located on the x and y crossings in
the DEM, but for the R2 algorithm a different stepping might be sought in order to
make the algorithm faster. Franklin et al. propose to reduce the number of points
to which complete line of sights are calculated by only considering the axis with the
most crossings. Figure 2.7 shows the naming of the octants of a viewshed and as
octants I, IV, V and VIII have more x-crossings than y-crossings, only x-crossings
will be considered in these octants. In octant II, III, VI and VII, only y-crossings
will be considered. This way of only stepping in one of the crossings does reduce

10

2. Theory

Figure 2.6: Visualization of two lines that both traverse a cell. The sightline p
passes the point t slightly closer than the sightline q. Therefore the required height
computed in p’s x-crossing is chosen as the best approximate result for t

accuracy, but even with this modification, Franklin et al. still argue that the R2
algorithm fulfills the criterion of adequacy and the criterion of appropriateness in a
broader sense.

Figure 2.7: Visualization of octants

This makes the stepping method easier as the slope of the line which to step
along, and a fixed step size, can be calculated before the actual stepping. With
this stepping method, all instances of line of sight in the same octant will take an
equal amount of steps on the sightline and the points of which to sample will all
be on the same line in the same step of the algorithm (see Figure 2.8). This offers
opportunities for caching, shared reads from the DEM, synchronization and loop
divergency.

11

2. Theory

Figure 2.8: Visualization of stepping in octant I. The figure show how the steps
are taken in the x-crossings

2.2.3 Wave Front Algorithms

Wave front algorithms are algorithms that are not based on a line of sight algo-
rithm for computing the viewshed problem but rather computes visibility in layers
outwards from the observer like a wave. Examples of wave front algorithms are the
Xdraw algorithm presented by Franklin et al. [2] and the reference plane algorithm
presented by Wang et al. [3].

The reference plane algorithm first assumes that the points on the map that are
closest to the observer are always visible, and therefore has the required height 0,
since there are no points between them and the observer that can conceal them.
Then the DEM is divided into octants (see Figure 2.7) and the result for the hori-
zontal, vertical and diagonal dividing lines are calculated with a LOS method as in
R2. Then for every point inside the octants the required height for a point p is com-
puted by finding the two reference points, r1p and r2p, that are the two points closest
to p that a straight line from the observer to p would go between. The algorithm
computes the results in a breadth first manner from the observer and outwards.
This means that when computing the result for p all points in the octant that are
closer to the observer than p (horizontally, if in octant I, IV, V or VIII, vertically
otherwise), including r1p and r2p, has already been processed by the algorithm. The
observer position, r1p, and r2p are then used to form a plane in three dimensions:
the reference plane. The elevations used when forming the plane is the height of
the observer and the required heights of r1p and r2p. If the point p is above or on
the reference plane it is visible and the required height for p is 0, if p is below the
plane, p is obscured and its required height is the distance from p to the plane in
the height axis [3].

12

2. Theory

The Xdraw algorithm works in a similar fashion, but instead of creating a plane,
Xdraw interpolates the point between the two reference points r1p and r2p that the
straight line from the observer to p would pass through, and computes the required
height for p as: if p is on or above the line the required height is 0, otherwise the
required height is the distance from the point p to the line in the height axis [2].

Figure 2.9: Illustration of why wave front algorithms does not fulfill the criterion
of appropriateness. The point in the lower left corner is the observer position, the
dashed line is an imagined sightline to a border cell. The circled intersections is the
data points that computing the visibility for the end point of the sightline would
depend upon. The red circles are inappropriate dependencies

Wave front algorithms such as Xdraw and reference plane fulfils the criterion
of adequacy but breaks the criterion of appropriateness due to how the result for
one point depends on two results for two other points. How the dependency for
the result of one point in an octant propagates backwards is shown in Figure 2.9.
Because of these inappropriate dependencies, the wave front method has a quite
high approximation error [2].

A method for reducing the approximation error of the wave front method is intro-
duced by Israelevitz [4]. Israelevitz’s algorithm combines the wave front approach
with the LOS approach by introducing a backtrack order. The algorithm computes
the result from the observer and outwards like the Xdraw and reference plane algo-
rintms so that when computing the visibility for a point p in the DEM, the points
between the observer and p have already been processed. When computing the vis-
ibility for a point p in a DEM with Israelevitz’s algorithm, the first thing done is
to backtrack a number of steps defined by the backtrack order along a straight line
from p towards the observer (see Figure 2.10). Steps are defined as y-crossings in

13

2. Theory

(a) A DEM point (r) was found during
the backtracking, that will be used to
compute the result for (p) with the LOS
method

(b) The backtracking found no point to
compute a LOS from, so the points (r1)
and (r2) will be used to compute the re-
sult for (p) with the wave front method

Figure 2.10: Illustration of backtracking in Izraelevitz’ algorithm in octant I with
backtrack order 4. (O) is the observer position, (p) is the point to compute the
result for, (k) is how far back the backtracking will go with backtrack order 4 and
(r) or, (r1) and (r2) are the point or points that the algorithm will use to compute
the visibility of the (p)

octants I, IV, V and VIII, and x-crossings in octants II, III, VI and VII (see Figures
2.7 and 2.2b). If the line passes directly over a DEM point, p0, within those steps
the visibility of p is computed as a LOS originating from p0 with p0’s already com-
puted required height above ground to p (see Figure 2.10a). If the line does not pass
directly over any DEM point within the number of steps defined by the backtrack
order, the visibility of p is computed like in the Xdraw algorithm using two refer-
ence points (see Figure 2.10b). This method reduces the approximation error that
the inappropriate dependencies of the wave front method cause by computing some
points with the LOS method and thereby stopping the propagation of inappropriate
dependencies[4].

2.3 CPU Parallelism
There are two main ways of parallelizing programs on the CPU: one can distribute
the workload of the program over several cores (assuming that the processor has
more than one core) and one can use the processors SIMD vector units that executes
operations on several data elements at a time, sometimes referred to as vectorization
[13].

Single Program, Multiple Data (SPMD) is an execution model for parallel (or
concurrent) programs. In the SPMD model there are several instances of the same

14

2. Theory

program running in parallel working on different data [13]. The model is therefore
often used for data parallel applications [14].

2.3.1 Multithreading
Most modern CPUs have multiple cores and in order to make use of multiple cores in
a program the program workload has to be distributed over multiple threads. There
are a few different ways of doing this. One can either divide and distribute the work
manually using threads, or one can use tools and frameworks such as OpenMP [13]
or Cilk [15, 13]. Using multiple cores is more effective when the workloads for each
thread are large and independent, as synchronization and communication between
CPU cores is rather slow [15].

Hyper-threading is a term defined by Intel for running two threads on one CPU
core by letting the threads share some of the hardware resources of the core. This
can be beneficial in some cases, but not always. Performance gains of running two
threads on one core is not doubled as the threads will compete for the same hardware
resources [15]. Benchmarks of server applications have shown performance gains of
up to 30% when using hyper-threading on Intel Xeon processors [16].

2.3.2 SIMD Instructions
Single Instruction, Multiple Data (SIMD) is a kind of instructions that performes
some operation on several data elements at once [15]. Today’s desktop processors
usually have SIMD units and some instruction set extension such as SSE or AVX
with SIMD instructions [15]. SIMD instructions operate on special vector registers
of sizes typically between 64 and 256 bits on todays CPUs. SSE, for example, uses
128 bit registers and AVX uses 256 bit registers [15]. The notion of SIMD lanes is
often used to denote the indices for different elements in a vector register that are
being processed with SIMD instructions and often, but not always, one counts how
many 32 bit items can be operated on at the same time. SSE, which operates on
128 bit vectors, can perform 4 32-bit operations with one instruction [13].

These vector operations are suitable for computations on larger data sets where
the same computation needs to be repeated many times for different data points, if
the computations are independent and can be computed in parallel. Fields where
SIMD instructions are often used are audio processing, and mathematical vector
and matrix computations [15].

2.3.3 SPMD on SIMD and the ISPC Compiler
One way of implementing the SPMD model is by mapping program instances to
SIMD lanes. In this way one can run multiple instances of one program in paral-
lel in one thread. The Intel SPMD Program Compiler (ISPC) works in this way.
It compiles a language (also called ISPC), that is based on C99. ISPC has also
borrowed some features from C++ and introduced some features of its own for
parallelism such as special parallel foreach loops and vector data types.

The foreach statement is the primary parallel feature of ISPC. It is similar to a
regular for-loop in the sense that it performs the same block of code several times

15

2. Theory

with some index variable that is different each time. The difference between ISPC’s
foreach statement and a regular for-loop is that the semantics of the foreach loop
does not specify any order in which iterations are executed. The compiler then
distributes the loops workload over program instances so that multiple iterations
are being executed in parallel.

Using SIMD instructions to execute several program instances in parallel is not
a trivial task, and there are a few things that can cause problems, primarely two
things; branching and memory operations (loads and stores). ISPC solves these
problems, but they may cause performance issues in ISPC programs when these
issues are not considered or are unavoidable.

Branching statements, such as if statements, switches, and loops can be one source
of performance loss is ISPC programs. This is due to the fact that if program in-
stances take different branches in a branching statement, the different branches that
potentially (and most likely) do different things and cannot be executed in parallel
with SIMD instructions as the very definition of SIMD is that the instructions do
the same operation with several different operands. ISPC solves this by executing
one branch at a time using an execution mask: a flag for each program instance
that says if the program instance is active or not, in order to activate and deactivate
program instances in the branches that specific program instance take and do not
take.

Loads and stores (reads from, and writes to RAM) performed by program in-
stances using SIMD vectors are called gathers and scatters. A gather or scatter
usually access the same address or coherent addresses in memory, called coherent
gathers or scatters, e.g. when each program instance read a constant variable or
when the program instances read from or write to consecutive indices in an array.
SSE and AVX provide vector load and store instructions, but only for data that
is contiguous in memory. Gathers and scatters of data that the compiler cannot
guarantee will be contiguous in memory have to be compiled to sequences of load
or store instructions that load or store one vector element at a time[13].

2.4 GPU

The GPU is a processing unit mainly for computing graphics. Graphics compu-
tations are often parallel, and thus the GPU’s architecture was been developed to
reach as good parallel computational ability as possible. To achieve this, the hard-
ware is built in hierarchies to split up workloads many times to enable parallelism.
OpenCL is a a framework that can be used to target the graphics processing unit of
a computer to use its capabilities for other things than just rendering. This can be
referred to as general-purpose programming on graphics processing units (GPGPU).
Code written for OpenCL can also be run on CPUs, and OpenCL is supported on
multiple vendors, including Nvidia, AMD and Intel [17]. The following subsections
will use OpenCL terminology. CUDA is another similar framework that supports
GPU computing, which only targets Nvidia GPUs [18].

16

2. Theory

2.4.1 Kernel Execution

The smallest executing unit on the GPU is called a work-item. Each work-item
executes a kernel, which is a function that will be executed on the GPU. Each work-
item is a part of a work-group executing on a compute unit, and each work-item has
a global ID and a local ID to distinguish them from each other. The global ID is
derived from the number of global work-items that were specified when executing
the kernel, and the local ID specifies a work-item ID within a work-group. Both
global and local IDs are N-dimesional and each index begin at 0. [12].

An OpenCL device has one or more compute units, where each work-group is
executed on the same compute unit. Each compute unit contains one ore more
processing elements, and may also include dedicated texture filter units. A processing
element is a virtual scalar processor, and each work-item may be processed on one
or more processing elements. The work-items in a work-group will be executed in
terms of wave fronts in AMD terminology [19] or warps in NVIDIA terminology [20].
The size of a wave front varies with hardware, but usually has the size 32 or 64.
The size of a warp also varies with hardware, but is often 32 on modern hardware.
The GPU executes other warps when one warp is paused or stalled, and according
to NVIDIA, this is only way to hide latencies and keep the hardware busy [20].

A command-queue is used to queue commands that will be executed on a specific
device. Several command-queues can be used to achieve concurrency and in some
cases parallelism by overlapping transfers and computations [21].

2.4.2 Memory

Five different memory types are present on the GPU which can be used for different
things to increase performance. The memory type with the most space is the global
memory, which is used to pass data from host to device. This memory is accessible
by all work-items executing in a context.

The constant memory, which is a region of the global memory, can also be used
for this. The data transferred to constant memory must stay constant, and can
only be read. The constant memory is a cached memory, and reads from constant-
memory will be performed faster for work-items in the same work-group than global
memory.

Texture memory is also a region of global memory, but has caches that is tweaked
for two dimensional spatial locality. Images and textures is well suited for this
memory. Samplers is used to describe how to sample from an image within kernels.

Local memory is only accessible by work-items in the same work-group and barri-
ers can be used to perform synchronization between work-items in a work-group to
ensure that writes or reads from local memory is executed in a synchronized matter.

Private memory is a region of memory private to a work-item, and can is not
visible to other work-items. Variables placed in private memory will use registers if
available, and is the fastest memory level. The number of accessible registers depend
on the number of work-items that was specified when executing the kernel.

17

2. Theory

2.4.3 Programming Models
OpenCL supports two programming models, a data parallel and a task parallel
programming model. The data parallel programming model defines sequences of
instructions that is applied to multiple elements [20]. The task parallel programming
model instead launches individual instances of kernels and parallelism is achieved
by using vector data types or queueing multiple tasks.

18

3
Approach

The R2 algorithm was chosen for both the GPU and CPU implementations for three
reasons:

• The R2 algorithm has the complexity θ(n2) which according to Franklin et al.
[2] is the lowest possible complexity order for a viewshed algorithm working on
raster DEMs, since the raster DEM has a number of data points proportional
to n2 and some computation has to be performed for each data point.

• The R2 algorithm has a relatively small approximation error.

• The algorithm is easy to parallelize; as each LOS computation is independent
from the other LOS computations, meaning they can be computed in parallel.

For measuring the approximation error of R2 an implementation of R3 was also
implemented to act as ground truth.

To simplify the implementation of R2 and to deal with the fact that the raster
type the implementations work with has to be rectangular we define the boundary of
R2 as the square with the side 2r, where r is the range of the viewshed to compute,
and the observer position in its center (see Figure 3.1). No visibility computations
are made for the raster cells that are out of range, but are inside the square boundary.
Instead, a marker value indicating that the position is out of range is written in the
result.

To parallelize R2 each LOS is given an index from which its target point in
the square boundary can be computed. In this way the result of one LOS can be
computed independently from all other LOS computations on either the CPU or the
GPU.

The implementations of R2 uses the method suggested by Franklin et al. [2] for
deciding which LOS computation that should write the result for a specific DEM
point that is presented in 2.2.2. The implementations of R2 and R3 use Formula
(2.1) for compensating for earth curvature.

19

3. Approach

Figure 3.1: Illustration of how the sight lines are directed at the square border
around an observer with some given range

3.1 GPU Implementations
The GPU implementations were made in OpenCL. We chose OpenCL for two rea-
sons: compatibility with hardware from different manufacturers, and our previous
experience and knowledge of OpenCL.

3.1.1 R3
This algorithm is primarily used as a ground truth for measuring the approximation
error of R2. The R3 algorithm was implemented in OpenCL with one work-item
per cell in the result raster and thus one line of sight computation per work-item.
Each work-item steps in the way described in chapter 2.1.2, towards its target cell,
and writes its result to the target cell once it has been reached. When stepping,
each sample in the DEM is performed by linear interpolation to get a more accurate
interpretation of the input data. This interpolation is performed in texture units on
the GPU and is thus faster to perform on the GPU than on the CPU, which has to
do the interpolation manually [22]. The interpolation method used by these texture
units is bilinear interpolation, but the samples will always be located between two
sample points as described in the algorithm earlier, so even if bilinear interpolation
is used on the GPU, a linear interpolation on the CPU will have the same result.

3.1.2 R2
As the R2 algorithm sends sightlines to the border of the raster, and the GPU work-
items can only differ with its indices [20], the kernels needs a way to figure out its
index on the border. As we do not want to launch kernels with two dimensional
indices, as only the indices along the border is needed, a one dimensional index is
easier. This one dimensional index is then used to compute the two dimensional
index in the border.

20

3. Approach

The height data is passed to the GPU as an image to make sure that the height
data is stored into texture memory and that lookups from this image are cached.
Reads from the raster from within the kernel is done with a sampler that is configured
to use bilinear interpolation to get as accurate height estimations as possible for
points on or between any points in the DEM. The raster space is cached which
can be exploited to get a performance increase if the work-groups are arranged for
spatial locality [20].

The size of work-groups for this algorithm are chosen to be 6 multiples of 32 to
get 6 warps in each work-group that can be switched for hiding memory latencies.
This also allows 192 work-items to access the same region of local memory that can
be used for values that would otherwise have been frequently read from the global
memory. The work-groups are grouped in the same order as they are indexed in the
border to make sure that as many texture lookups as possible within a work-group
are done close. Each work-group should share as much data as possible in local
memory to minimize the number of reads from global memory, and as the viewshed
problem has a lot of arguments, these will be copied from global memory to local
memory by one work-item in each work-group before any work-item continues with
computations.

3.1.3 Hiding API Call Overheads
Calls to the GPU can either be blocking or non blocking [12]. If the call is blocking,
some overheads will be added for the command to reach the GPU, for the command
to be fully executed, and for a response to be sent back to host. In order to hide
these delays, or overheads, a command-queue was used to queue commands to the
GPU, that does not block and does not wait for any result. Actions that get queues
can have dependencies on other previously queued actions, to create a chain of
dependencies that ensures that a result from a previous action is finished before
another action uses that result. To actually get the result from a series of queued
actions, a last action can be queued that blocks until it’s processed, and that action
can either be the read from GPU to CPU or even an "empty" action that only waits
for the read to be finished. With the command-queue, the GPU can pull actions
from a queue on the GPU instead of being idle between issued actions from the
CPU.

3.1.4 Minimizing Allocations
If multiple calls to a viewshed algorithm is made with the same range and DEM
resolution, the same amount of GPU memory will be allocated and released over
and over again. To take advantage of this fact, the allocated GPU space can be
kept instead of released, and reused if the algorithm is used with the same range
and DEM resolution multiple times in a row.

3.1.5 Hiding Transfer Overheads
AGPU computation can be abstracted into three larger parts: data transfer to GPU,
computation of the result, and transfer of the result from GPU to host memory.

21

3. Approach

The transfer from and to the GPU and kernel execution can be partially overlapped
by splitting the computation into parts. By transferring only a part of the input
data at a time, the GPU can begin execution once the first part of input data has
been transferred, at the same time as the next part is being transferred. This can
theoretically be implemented using any number of queues, but it’s not practical to do
it for more than four splits for the viewshed problem because of two major reasons:
every sightline has to be located in only one of these parts that the input has been
split in for it to get access to all necessary data, and the shape of the split parts
has to be rectangular to be able to efficiently transfer a sub-image of the original
input to the GPU. Figure 3.2 illustrates a scenario where the input were split into
two parts, showing that 50% of the transfer overheads can be theoretically hidden
by using two command-queues and queueing the writes, reads and computations for
each half of the problem to different queues.

Figure 3.2: Visualization of possible speedup from queues by splitting transfers and
kernel execution in half, and overlapping transfer overheads with kernel execution
to achieve parallelism between the command-queues

3.1.6 Parallel Prefix Scan
The R2 implementation lets one work-item handle one sightline in the viewshed
problem, but even the sightlines may need to be distributed over several threads if
the GPU is still not saturated after such division of work. To do this, a parallel
prefix scan algorithm can be used to compute the horizons and final results for each
step along the a sightline in parallel.

The example by Blelloch that solves the line of sight problem in parallel cannot
be used directly for the R2 algorithm, as the algorithm splits a sightline of length n
into n/2 parts and uses one processor per part. In a viewshed problem on a raster
containing 2000x2000 cells, the border will consist of 7996 cells which is also the
number of sightlines that will be created. Each sightline will take 1000 steps, and
with 500 processors per sightline, Blellochs approach would create about 4000000
threads to solve this instance. To use this approach on instances of viewshed instead
of single instances of line of sights, Blellochs approach had to be modified. The
proposed algorithm by Blelloch also works on a copy of the problem where the
memory is modified each step, and in order to let multiple threads share the same
area in memory on the GPU, the local memory needs to be used.

22

3. Approach

To allow fewer number of processors than n/2, each thread will instead treat a
segment of a line of sight as a separate prefix scan problem, for which the last cell in
the segment is of relevance to the next segment in the sightline. All segments needs
to be in the same work-group to use the local memory and synchronize between each
step to know that all writes were completed, and 4 segments with a workgroup-size
of 4 would not even fill a warp, and would not allow multiple warps to hide memory
latency. To get the worksizes up to 192, which fits 6 warps within a workgroup,
49 sightlines needs to be packed into the same workgroup. To store the all these
sightlines in local memory, memory for 49000 floats would be needed to store all
angles of all 49 sightlines, which requires a storage of 49kb to save the data. This
already exceeds the maximum local memory size of GPUs with compute capability
3.5 [23] and the space requirement will only increase when the input problem size
increases.

To solve this, only the last step in each segment stores the computed prefix scan
value to the local memory. The number of segments for each sightline is relatively
small as they are chosen manually to increase the numbers of threads by a small
multiple, and thus there will be even fewer steps in the up and down sweep as the
number of steps is dependent on the number of segments. As these steps are so
few, one of the threads in the sightline could instead handle the prefix scan of the
elements stored in the local memory, and each segment only has to do one read from
the local memory to get the relevant prefix-scan value from all previous segments
to use for the final sweep in the segment. As the data for all steps in the sightline
can’t be saved in local memory, each thread handling a segment has to compute the
angle again when doing the second sweep. See Figure 3.3 for an example of a line
of sight solved by the parallel prefix scan implementation.

This implementation should have more impact on GPUs with more cores as it
increases the number of work-items that may solve the problem in parallel. Smaller
problems with this implementation may saturate the GPU earlier than the basic
implementation and possibly execute faster, but only as long as all work-items that
this algorithm produces can be run in parallel. This algorithm should not yield any
performance increase once the GPU implementation without the parallel prefix scan
algorithm i fully saturated.

23

3. Approach

Figure 3.3: Image showing the parallel prefix scan algorithm using the max oper-
ator, computing the horizons for all steps of a sightline. Step 0: thread i computes
local prefix scan for elements in segment i, but only saving the last horizon. Step
1: The last horizon is stored in index i of array in local memory. Step 2: thread
i computes a prefix scan of elements in local memory. Step 3: thread i computes
local prefix scan for segment i, but with value from local index i− 1 as initial value.
Segment 0 does not start with an initial value

3.2 CPU Implementations of R2

In order to test and evaluate the two different ways of parallelization on the CPU
(see Section 2.3), four different versions using threads and SIMD instructions were
developed: one with no parallelism, one that distributes the work over threads,
one that uses SIMD instructions and one version that uses both threads and SIMD
instructions.

The parallel versions of the R2 algorithm was implemented as SPMD programs
that compute multiple lines of sight in parallel. The scalar (non-vectorized) imple-
mentations were written it C++ and the vectorized implementations were written
in a combination of C++ and ISPC. The two dimensional indices of the border cells
are computed from the one dimensional index of the each LOS computation in the
same way as in the GPU implementation.

Multithreading was implemented in C++ using semaphores and threads and is
used to distribute the LOS computations over multiple cores. We chose to do this
without any previously mentioned frameworks (OpenMP and Clik) as only the most
basic functionality was needed such as creating, pausing and resuming threads.
Vectorization is done using ISPCs foreach loops and is used within the threads (or
on its own) to compute several lines of sight in parallel with SIMD instructions on

24

3. Approach

each core that is used.
Since the CPU does not have texture units like the GPU, linear interpolated

reading from DEM had to be implemented in software for the CPU versions of R2.
When the R2 algorithm performs a lookup in the DEM, two DEM points will be
read and interpolated between.

3.2.1 Memory Issues With R2
In RAM, a raster DEM is stored as a 1 dimensional array where the rows of the
DEM are laid out after each other, so index 0 of a such an array contains the first
height value of the first, and index w, where w is the length of a row, contains the
first height value of the second row.

The way that the R2 algorithm traverses a DEM is in sightlines from the center
and out towards the border. When several lines of sight are computed in parallel
the sightlines in octants I, IV, V and VIII will spread out over different rows in the
DEM. Since elements in the columns of the DEM are not contiguous in memory,
ISPC is not able to compile the parallel reads of DEM points and writes of result
values to coherent gathers and scatters. And since the code reading from the DEM
is the same code no matter where in the DEM the read is done, and vice versa for
the writes, all gathers from the DEM and scatters to the result in the vectorized
implementation will be incoherent.

25

3. Approach

26

4
Result

The results in this chapter were produced on a computer with 8GB ram, an Intel
i7 3610QM @ 2.3 GHz processor with the AVX instruction set extension and a
NVIDIA GTX 660m graphics card. All examples were run on a DEM with 10 meter
resolution over the area around Lake Tahoe, California/Nevada, USA. The observer
is assumed to stand in the middle of a cell in the DEM. Each measurement using
range can be converted to raster resolution by doubling the range to get a diameter,
dividing by 10 meter as a DEM with 10 meter resolution were used, and then adding
one since the observer is in the middle of a cell and the range is extended in opposite
directions. With a range of 10000 meter, a raster of 2001 x 2001 pixels would be
used for the viewshed computation. The max range used in a few examples is 80000
meter which would result in a 16001x16001 raster.

The performance tests were performed by starting with zero range, going to 80000
meter with steps of 1000 meter. For each step, 30 viewshed computations were
made and the time was measured and averaged to get consistent results. The error
measurements were made by performing 100 viewshed computations with 10000
meter range, evenly spaced over 51x51 km.

The implementation of the R3 algorithm made the driver for the graphics card
crash due to being locked for longer that two seconds when reaching a range of
15000 meter. An estimation of R3:s performance above 15000 m range was done
with polynomial regression (of degree 3 since R3 has the complexity θ(n3)). The
performance comparisons between the R2 and R3 are not meant to affect the CPU
vs GPU suitability discussion for the viewshed problem, but only to point out the
importance of the choice of algorithm.

To get a better perspective of each optimization that was made, the CPU and
GPU optimizations are first presented separately and then compared at the end,
together with some error measurements.

The GPU version mentioned in this chapter as the basic GPU implementation is
an implementation without the optimizations mentioned in 4.2.

All presented performance gains in the text of this chapter was measured at the
range of 80000 meter which corresponds to a 16001x16001 raster on a DEM with 10
meter resolution.

4.1 CPU Implementations of R2
In this section the performance results for the different CPU implementations of the
R2 algorithm produced. Comparisons between different levels of parallelization will

27

4. Result

be presented as well as the impact of using linear interpolation.

Figure 4.1: Performance comparison between the R3 algorithm (GPU-R3) imple-
mented for the GPU, and the sequential implementation of the R2 algorithm (CPU).
GPU-R3 (b) is a polynomial regression of GPU-R3 estimating how the curve for
the R3 algorithm would continue

In figure 4.1 we can see the performance of the R2 algorithm (with θ(n2) com-
plexity) for the CPU implemented in C++ with no parallelism in comparison to the
R3 algorithm (with θ(n3) complexity) for the GPU implemented in OpenCL. The
brighter blue curve is the polynomial regression of R3.

4.1.1 Multicore Parallelism
Figure 4.2 shows a performance comparison between the completely sequential im-
plementation and the implementation using only threads for parallelism. Four in-
stances of the multithreaded implementation is shown using 1, 2, 4 and 8 threads.
As seen in the graph, the sequential implementation (b) has almost exactly the same
performance as the multithreaded one when using only one thread (a). Distributing
the workload over two threads gives approximatly a 1.9 times performance increase,
four threads gives approximatly a 2.8 time performance increase and eight threads
(in order to use all cores and hyper-threading) gives approximatly a 3.0 times per-
formance increase compared to the sequential implementation.

4.1.2 Vectorization
The implementation that is parallelized using vectorization is shown in figure 4.3
compared to the sequential implementation. Using SIMD parallelism gives approx-

28

4. Result

Figure 4.2: Impact on performance of multicore parallelism. Here we see the
performance of the sequential implementation (b) compared to four instances of the
threaded implementation with different numbers of threads running

imatly a 2.6 times increase in performance compared to the scalar implementation.

4.1.3 CPU Summary
Figure 4.4 shows a compilation of how multicore and SIMD parallelism as well as the
combination of the two affect the performance of the R2 algorithm running on the
CPU. Using both multicore and SIMD parallelism gave the CPU implementation
a 9.4 times increase in performance in comparison to the implementation using no
form of parallelism.

Another aspect of the implementation that affects performance is the choice of
interpolation method. Because the linear interpolation used by the CPU implemen-
tations is implemented in software and is used many times by the algorithm it has a
certain performance cost. See Figure 4.5 for a comparison of a CPU implementation
with linear and nearest neighbor interpolation. The graph shows a 14% increase in
performance when changing from linear to nearest neighbor interpolation. Chang-
ing interpolation method will however affect the result which may be undesirable,
therefore will all performance comparisons in the report but this one consider CPU
implementations that use linear interpolation.

29

4. Result

Figure 4.3: Impact on performance of vectorization. In this graph we see the
sequential implementation compared to the vectorized version implemented partly
in C++ and partly in ISPC targeting the AVX instruction set

30

4. Result

Figure 4.4: Impact on performance of multithreading and vectorization in the
CPU implementations

31

4. Result

Figure 4.5: Impact on performance of using linear interpolation compared to near-
est neighbor interpolation on the CPU

32

4. Result

4.2 GPU Implementations of R2

Figure 4.6 show the performance of the R3 algorithm and the R2 algorithm, both
implemented on the GPU. As the graph shows, R2 scales better with the input
compared to R3. This follows our expectations as the number of sightlines traversed
by R3 is of complexity θ(c ∗ n3) while R2 is θ(c ∗ n2), where c is affected by the
parallelism.

Figure 4.6: Comparison between GPU implementations of R3 and R2

To further improve the R2 implementation on the GPU, the implementation
was split into 3 bigger parts that can be addressed in order to gain performance;
Allocation, transfer and computation. The results of these optimizations will be
discussed in the following subsections.

4.2.1 Minimizing Allocations by Reusing Memory

The rests for GPU implementation of R2 that reuses previously allocated GPU space
to minimize the number of new allocations required is shown in figure 4.7 compared
to an implementation that does not reuse memory. As the tests perform 30 runs of
the algorithm at each range and then averages the runtime, the algorithm will only
reallocate the space the first time at each range and then keep reusing it until the
range changes and more space needs to be allocated.

33

4. Result

Figure 4.7: Impact on total run time of reusing previously allocated memory.
GPU-R keeps and reuses memory when possible while GPU always allocates new
GPU memory at each run and releases it afterwards

4.2.2 Hiding Transfer Overheads Using Multiple Command-
queues

To deal with transfer overheads, multiple queues were used to be able to start the
kernels before all of the data was completely transferred to the GPU, effectively
hiding transfers behind computation.

To get a closer look what actually happens, figure 4.8a illustrates only the transfer
time, with and without the multi queueing optimization.

As Figure 4.8a indicates, the results do not get a 50% reduction of transfer time
which was the aim from the theory chapter, and Figure 4.9a shows why. The compu-
tation is not taking enough time to hide the reads from the GPU. If the computations
had been more time consuming, or if less data had been transfered back from the
GPU, more of the read could have been hidden by the computations. To try this
out, another test was performed where the data type of the result was changed from
a float raster to a short raster, i.e. 16 bits per raster cell instead of 32 bits per
raster cell. The performance gain seen in Figure 4.8b is the result of half of the
result reads being hidden behind the kernel computations, which is also confirmed
by Figure 4.9b. The actual performance gain is about 45% of the measured transfer
time, which is an improvement to previous 27% and quite close to the theoretical
maximum of 50%. Even though this yeilds a better performance increase, 32 bit
floats per raster cell will be used through the result chapter to maintain the a high
accuracy for the algorithm.

34

4. Result

(a) 16 bit inputs, 32 bit outputs (b) 16 bit inputs, 16 bit outputs

Figure 4.8: Impact on exposed transfer time by hiding parts of the transfer us-
ing double command-queues (Q Transfer) compared not hiding any transfer time
(Transfer)

(a) 16 bit inputs, 32 bit outputs (b) 16 bit inputs, 16 bit outputs

Figure 4.9: Visualisation of how data transfer is hidden behind computation (see
also figure 3.2). Green boxes are transfer and red boxes are computation. The
images was created with NVIDIA NSight [24]

4.2.3 Dividing Computations Using Parallel Prefix Scan
To be able to saturate the GPU at shorter ranges, a parallel prefix scan algorithm
was used to compute each sightline in parallel. Figure 4.10 shows that the number
of segments does not seem to be affecting the performance, and compared to the
implementation without the parallel prefix scan implementation Figure 4.11 shows
that increased parallelism do not decrease the computation time even in smaller
ranges. This is probably because the number of sightlines in the viewshed problems is
relatively high even in smaller ranges, which saturates the GPU that it was tested on
early. For further discussion on the performance of the parallel prefix scan argorithm,
see Section 5.3.

35

4. Result

Figure 4.10: Different variations of the parallel prefix scan implementation where
GPU-Px is the GPU implementation using parallel prefix scan with x segments

Figure 4.11: Impact on computation time of parallel prefix scan implementation
where P4 is the parallel prefix scan implementation with 4 segments for each sight-
line and GPU is the basic GPU implementation

36

4. Result

4.2.4 GPU Summary
Finally all GPU optimizations are shown together in Figure 4.12. The allocation
and queue implementations show a 11.3% and 16.3% increase in performance over
the basic implementation. The combination of these implementations increase the
performance by 30% while the parallel prefix scan implementation slightly decreases
the performance overall.

Figure 4.12: Comparison of different GPU optimizations where GPU is the basic
implementation, GPU-R reuses memory, GPU-Q uses two command-queues, GPU-
R-Q both reuses memory and uses two command-queues, and GPU-P4 uses the
parallel prefix scan implementation with 4 segments per sightline

4.3 Performance CPU vs GPU
The effect of parallelism can be see in Figure 4.13, which reveals a performance gain
of 9.4x to 29.3x compared to the non-parallel CPU implementation.

The basic GPU implementation has a performance gain of 20.3x compared to
the non-parallel CPU implementation and a 1.9x compared to the multithreaded,
vectorized CPU implementation, and the GPU variant that both reuses the GPU
memory and uses two queues reach a performance improvement of 29.4x compared
to the non-parallel CPU implementation and 3.1x compared to the multithreaded,
vectorized CPU implementation.

37

4. Result

Figure 4.13: Effect of parallelism. GPU is the basic GPU implementation, CPU
is the non-parallel CPU implementation, CPU-V-8 is the both vectorized and mul-
tithreaded (8 threads) CPU implementation and GPU-R-Q is the GPU implemen-
tation that reuses GPU memory and uses two command-queues

The final performance comparison between the fastest of the CPU implementa-
tions and the fastest of the GPU implementation can be seen in Figure 4.14. The
GPU implementation with memory re-usage and two command-queues compared to
the CPU implementation that is both vectorized and multithreaded yields a 3.1x
performance gain for the GPU implementation.

38

4. Result

Figure 4.14: Comparison of between the vectorized multithreaded (8 threads)
CPU implementation (CPU-V-8) and the GPU implementation that reuse memory
and uses two command-queues (GPU-R-Q)

4.4 Approximation Error of R2

As the R2 algorithm is an approximation of the correct result, some measurements
of how close to R3 it is would give some insight of how big this approximation
error is. As both algorithms solve the extended viewshed problem, measuring the
difference between the outputs of the algorithms will show how big the error is,
and if there is some correlation of where the error happens. Figure 4.15 shows the
frequencies of differences of different sizes between the R2 implementations and the
R3 implementation. An optimal result would be that all differences were located at
the center bin (meaning all differences are 0). Our results has the majority of the
result in the center bin, and a small fraction in the bins closest to the one in the
center, which shows that the error is small. The first and the last bin captures all
differences that is lower than -15.5 meters and bigger than 15.5 meters. If our result
is compared to Franklin et al., the results are very similar. The difference is that
our error seems to be slightly more gathered around the center bin, which could be
the result of different implementations of interpolation, ways of determining which
sightline that is responsible for which cell, or the resolution of the DEMs used in
the tests test.

Figure 4.16 shows the approximation error of the CPU implementation using
nearest neighbour interpolation. Comparing it with Figure 4.15b one can see that
the nearest neighbour interpolation gives a slightly lower peak in the histogram,
and the histogram is somewhat skewed to towards more positive differences. That
nearest neighbor interpolation gives a lower peak than linear interpolation is not

39

4. Result

(a) Differences between the GPU imple-
mentation of R2 and R3

(b) Differences between the CPU imple-
mentation of R2 using linear interpola-
tion and R3

Figure 4.15: Histograms showing the approximation error of the GPU (a) and
CPU (b) implementations compared to R3.

very strange since the ground truth algorithm also uses linear interpolation.

Figure 4.16: Differences between the CPU implementation of R2 using nearest
neighbour interpolation and R3

Figure 4.17a shows that there is a correlation between the distance from the
observer, and the average size of approximation errors. The values of the bins are

40

4. Result

the averaged absolute values of the error at each distance.

(a) Error of CPU and GPU in different
ranges compared to R3 with last two bins
excluded

(b) Error of CPU and GPU in different
ranges compared to R3 with last two bins
included

Figure 4.17: Error of CPU and GPU in different ranges compared to R3

In Figure 4.17a, the values of the two rightmost bins were ignored, as the figure
initially looked like in Figure 4.17b. This is probably because the two last bins is the
borderline of where DEM points are close to the observers range. The R2 algorithm
only guarantees that a cell gets written by the sightline that is closest to it’s center,
but the position of where it passes the cell can still be outside of the range while the
target position is inside, see Figure 4.18 for an example. The value that was chosen
to be written for cells that are out of range value was a very high value, which may
explain the high average shown in the last two bins in Figure 4.17b.

41

4. Result

Figure 4.18: Illustration of a sightline from R2 that determines that a point on
the sightline is further from the observer than the range, while the target point is
inside the range

42

5
Discussion

5.1 Performance Comparisons

As the R3 algorithm is primarily used for measuring approximation errors of R2, it
did not get as much attention as the R2 implementation in terms of optimizations
to make it execute faster. The performance comparisons with R3 were made to
point out the effect of algorithm complexity, and not to show any kind of exact
performance increase.

Our result of 3.1x performance gain of the best GPU implementation over the
best CPU implementation is close to the average performance gain of 2.5x for GPUs
reported by Lee et al. [10].

5.2 Cache Efficiency in the R2 Implementations
for the CPU

Caching may work a little differently for different sightline computations depending
on octant and the direction of the sightlines in relation to the raster DEM, due
to the way that the R2 implementation traverses the array containing the DEM.
The sightline computations in octants II, III, VI and VII will step in y-crossings
meaning they will read from different rows of the DEM in every step. This may
cause caching to work less efficiently since elements on different rows are separated
in memory. However the vectorized implementation that computes several sightlines
in parallel will make its gathers from same row in each step which may be beneficial
for caching, as the DEM points read are close to each other in memory. In octants I,
IV, V and VIII the gathers performed in the sightline computations will read from
columns in the DEM rather than rows which is probably not very cache efficient.
However the sightline computations in those octants will step in x-crossings and will
often run along the rows of the DEM which may be more cache efficient. This is
only speculation and we have unfortunately not been able to measure how efficiently
the implementations use caching and have not been able to verify that this really is
how the implementation would use the cache.

43

5. Discussion

5.3 Results of the Parallel Prefix Scan Implemen-
tation

The purpose of the parallel prefix scan implementation was to provide even more
parallelism for the viewshed problem by letting multiple processors handle a single
line of sight. If not enough resources exist to keep all work-items computing at
the same time, the segments will be computed in sequence and the overheads for
splitting the computation will only entail a performance decrease. As the parallel
prefix scan implementation did not get any noticeable performance increase at any
range, this extra parallelism seem to be unnecessary on the hardware it was tested
on. The same conclusion was made by Xia et al.[25], even though they got greater
performance decrease by using parallel sightline computation.

5.4 Power Consumption

It might be interesting to weight the results with power consumption, but the closest
heuristic that we have for both devices is the thermal design power(TDP), which is
a measure of heat that the device dissipates under relatively heavy workloads. Even
though TDP does not directly reflect the amount of energy that the processors
consume, they may give some sense of relativity between the CPU and GPU. Figure
5.1 shows the performance weighted by their TDP values which was 45 W for the
CPU[26] and 75 W for the GPU[27].

Figure 5.1: Performance measurements scaled with TPD

44

5. Discussion

5.5 Conclusions about performance on other hard-
ware

We were a bit limited in terms of hardware during this study, and the tests were
not performed on other hardware than the one specified in the beginning of 4. As
stated in 1.1, such tests are necessary to draw conclusions on other hardware, and
thus we could not give more general performance estimations.

5.6 R2 and R3 out of Range Disagreement
The disagreement between R2 and R3 if a result from a point on a sightline is
inside the range of the observer or not can be avoided. R2 could check if the cell
currently being processed is within range or not, instead of checking for the point
on the sightline that the algorithm actually stepped on. This was a behavior that
was noticed after all benchmarks were performed and after the decision were made
to not change the implementation further, but this change would probably increase
the agreement between the R2 and R3 algorithms for cells that are close to the edge
of the observer range.

45

5. Discussion

46

6
Conclusions

Several implementations were made for both the CPU and the GPU to show the
effect of some optimizations. The chosen algorithm was R2 which is an approximate
algorithm. The approximation error of our implementations were measured by com-
paring the result of the R2 implementations with results from the R3 algorithm.
The differences/errors are presented in the Figures 4.15 and 4.17a and we consider
these approximation errors to be well within acceptable levels.

As the results show, the GPU implementation is faster than the parallel CPU
implementation, with a speedup of about 3.1 times faster on a DEM of 16001x16001
data points. Both parallel CPU and the GPU implementations are preferable to the
sequential CPU solution for the viewshed problem, where the GPU reach a 29.3x
performance increase and the parallel CPU implementation reach a 9.4x performance
increase.

On the GPU, which is massively parallel, a problem that can be split into many
pieces that can run in parallel is crucial. The work-items that handle these pieces
should cooperate when possible, making use of shared memory or caches. As the
DEM in the viewshed problem can be seen as a texture, the texture memory on
the GPU can offer hardware implemented interpolation methods when reading from
the DEM and caches that are optimized for spatial locality. For the R2 algorithm,
the input and output data is relatively small compared to computations, which is
suitable for the GPU, and as parts of the viewshed problem can be computed in
batches, parts of the transfers can be hidden by computations by using multiple
command-queues. This problem is very parallel in general and fits the GPU very
well.

As seen in the results, CPU implementations of the R2 algorithm benefit quite a
lot from parallelism; vectorization, multithreading or a combination of the two. Due
to how the R2 algorithm traverses the DEM, in sightlines from the observer position
in the center and outwards, our vectorized implementation does have uncoherent
gathers when reading from the DEM and uncoherent scatters when writing the
result values. An algorithm/implementation that does not suffer from gathers and
scatters would likely be faster, however, even if the implemetation has uncoherent
gathers and scatters it still benefits from vectorization.

47

6. Conclusions

48

7
Future Work

7.1 Parallel Prefix Scan Using Global Memory

The intermediate result of the parallel prefix scan algorithm could be stored in global
memory instead of being recalculated after the prefix scan has been made in parallel
but due to the large amount of memory required for this operation, the choice was
made to recalculate the angle instead to minimize the memory usage, and let the
GPU do some extra computational work in order to increase the parallelism of the
problem. An implementation that saves the result for use after the first scan in our
implementation of the parallel prefix scan algorithm would be interesting to see in
the future.

7.2 OpenCL on CPUs

Comparisons between viewshed algorithms implemented in OpenCL but run on
a CPU, and handwritten vectorized and multithreaded implementations would be
interesting to see.

7.3 Improving CPU Implementations

The CPU implementations have some memory related performance issues that we
have not overcome. It would be of interest to look deeper into memory optimizations
for parallel CPU implementations of R2 and possibly also other viewshed algorithms.
The issue we know we have is incoherent gathers and scatters in the vectorized
implementation due to how the R2 implementation traverses the DEM. At this
moment we do not know if incoherent gathers and scatters can be be avoided in the
R2 algorithm or if there is some other viewshed algorithm that can be parallelized
with SIMD instructions without having incoherent gathers and scatters. This would
be of interest to look further into as this most likely is one of the things that affect
performance negatively in our implementation of R2.

It would also be of interest to further study and measure how to use caches
effectively in a parallel implementation of R2.

49

7. Future Work

7.4 Parallel Implementation of Izraelevitz’ Algo-
rithm

It would be interesting to see if Izraelevitz’ viewshed algorithm could be implemented
to run efficiently on parallel CPUs and how it would perform (considering both speed
and approximation error) in comparison to R2.

7.5 Implementation Using Both CPU and GPU
It would also be interesting to see if a viewshed algorithm could be made that takes
full advantage of both CPU and GPU for computations.

50

Bibliography

[1] Y. Gao, H. Yu, Y. Liu, Y. Liu, M. Liu, and Y. Zhao, “Optimization for viewshed
analysis on gpu,” in Geoinformatics, 2011 19th International Conference on.
IEEE, 2011, pp. 1–5.

[2] W. R. Franklin, C. K. Ray, and S. Mehta, “Geometric algorithms for siting of
air defense missile batteries,” A], Research Project for Battle, no. 2756, 1994.

[3] J. Wang, G. J. Robinson, and K. White, “Generating viewsheds without using
sightlines,” Photogrammetric engineering and remote sensing, vol. 66, no. 1,
pp. 87–90, 2000.

[4] D. Izraelevitz, “A fast algorithm for approximate viewshed computation,” Pho-
togrammetric Engineering & Remote Sensing, vol. 69, no. 7, pp. 767–774, 2003.

[5] Y.-j. Xia, L. Kuang, and X.-m. Li, “Accelerating geospatial analysis on gpus
using cuda,” Journal of Zhejiang University SCIENCE C, vol. 12, no. 12, pp.
990–999, 2011.

[6] N. Stojanovic and D. Stojanovic, “Performance improvement of viewshed anal-
ysis using gpu,” in Telecommunication in Modern Satellite, Cable and Broad-
casting Services (TELSIKS), 2013 11th International Conference on, vol. 2.
IEEE, 2013, pp. 397–400.

[7] G. E. Blelloch, “Prefix Sums and Their Applications,” Computer, pp. 35–60,
1990.

[8] S. Sengupta, A. E. Lefohn, and J. D. Owens, “A work-efficient step-efficient
prefix sum algorithm,” in Workshop on edge computing using new commodity
architectures, 2006, pp. 26–27.

[9] Y. Dotsenko, N. K. Govindaraju, P.-P. Sloan, C. Boyd, and J. Manferdelli,
“Fast scan algorithms on graphics processors,” in Proceedings of the 22nd annual
international conference on Supercomputing. ACM, 2008, pp. 205–213.

[10] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,
M. Smelyanskiy, S. Chennupaty, P. Hammarlund et al., “Debunking the 100x
gpu vs. cpu myth: an evaluation of throughput computing on cpu and gpu,”
in ACM SIGARCH Computer Architecture News, vol. 38, no. 3. ACM, 2010,
pp. 451–460.

51

Bibliography

[11] C. Gregg and K. Hazelwood, “Where is the data? why you cannot debate cpu
vs. gpu performance without the answer,” in Performance Analysis of Systems
and Software (ISPASS), 2011 IEEE International Symposium on. IEEE, 2011,
pp. 134–144.

[12] Khronos Group. The opencl specification. Accessed: 2015-07-01. [Online].
Available: https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

[13] M. Pharr and W. R. Mark, “ispc: A spmd compiler for high-performance cpu
programming,” in Innovative Parallel Computing (InPar), 2012. IEEE, 2012,
pp. 1–13.

[14] F. Darema, “The spmd model: Past, present and future,” in Recent Advances
in Parallel Virtual Machine and Message Passing Interface. Springer, 2001,
pp. 1–1.

[15] A. Fog, “Optimizing software in C++,” pp. 1—-160, 2014. [Online]. Available:
http://www.agner.org/optimize/optimizing_cpp.pdf

[16] S. D. Casey. How to determine the effectiveness of hyper-
threading technology with an application. Intel Corpora-
tion. [Online]. Available: https://software.intel.com/en-us/articles/
how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application

[17] Khronos Group. Opencl - the open standard for parallel programming
of heterogeneous systems. Accessed: 2015-06-18. [Online]. Available:
https://www.khronos.org/opencl/

[18] NVIDIA Corporation. Parallel programming and computing platform
| cuda | nvidia | nvidia. Accessed: 2015-06-18. [Online]. Available:
http://www.nvidia.com/object/cuda_home_new.html

[19] Advanced Micro Devices, Inc. Amd accelerated parallel processing
opencl programming guide. Accessed: 2015-06-18. [Online]. Available:
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/07/AMD_
Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.
pdf

[20] NVIDIA Corporation, “NVIDIA OpenCL Best Practices Guide,” Op-
timization, vol. 181, no. 1.0, pp. 2175–2184, 2009. [Online]. Avail-
able: http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/
papers/NVIDIA_OpenCL_BestPracticesGuide.pdf

[21] NVIDIA Corporation, “OpenCL Best Practices Guide,” p. 54, 2010.

[22] D. Ruijters, B. M. ter Haar Romeny, and P. Suetens, “Efficient gpu-based
texture interpolation using uniform b-splines,” Journal of Graphics, GPU, and
Game Tools, vol. 13, no. 4, pp. 61–69, 2008.

52

https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.agner.org/optimize/optimizing_cpp.pdf
https://software.intel.com/en-us/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application
https://software.intel.com/en-us/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application
https://www.khronos.org/opencl/
http://www.nvidia.com/object/cuda_home_new.html
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf
http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf

Bibliography

[23] NVIDIA Corporation. Programming guide :: Cuda toolkit documentation.
Accessed: 2015-06-24. [Online]. Available: http://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#compute-capabilities

[24] NVIDIA Corporation. NVIDIA Nsight | NVIDIA. Accessed: 2015-06-23.
[Online]. Available: http://www.nvidia.com/object/nsight.html

[25] Y. Xia, Y. Li, and X. Shi, “Parallel viewshed analysis on gpu using cuda,”
in Computational Science and Optimization (CSO), 2010 Third International
Joint Conference on, vol. 1. IEEE, 2010, pp. 373–374.

[26] Intel Corporation. Ark | intel; core i7-3610qm processor (6m cache, up to
3.30 ghz). Accessed: 2015-05-28. [Online]. Available: http://ark.intel.com/
products/64899/Intel-Core-i7-3610QM-Processor-6M-Cache-up-to-3_30-GHz

[27] Futuremark Corporation. Nvidia geforce gtx 660m review. Accessed:
2015-05-28. [Online]. Available: http://www.futuremark.com/hardware/gpu/
NVIDIA+GeForce+GTX+660M/review

53

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
http://www.nvidia.com/object/nsight.html
http://ark.intel.com/products/64899/Intel-Core-i7-3610QM-Processor-6M-Cache-up-to-3_30-GHz
http://ark.intel.com/products/64899/Intel-Core-i7-3610QM-Processor-6M-Cache-up-to-3_30-GHz
http://www.futuremark.com/hardware/gpu/NVIDIA+GeForce+GTX+660M/review
http://www.futuremark.com/hardware/gpu/NVIDIA+GeForce+GTX+660M/review

	Introduction
	Problem
	The Viewshed Problem
	Extended Problem

	Previous Work
	Purpose and Goals
	Limitations
	Outline

	Theory
	Line of Sight
	Computing a Line of Sight
	DEM Interpretation and Interpolation
	Parallel Prefix Scan
	Algorithm Criteria

	Viewshed Algorithms
	R3
	R2
	Wave Front Algorithms

	CPU Parallelism
	Multithreading
	SIMD Instructions
	SPMD on SIMD and the ISPC Compiler

	GPU
	Kernel Execution
	Memory
	Programming Models

	Approach
	GPU Implementations
	R3
	R2
	Hiding API Call Overheads
	Minimizing Allocations
	Hiding Transfer Overheads
	Parallel Prefix Scan

	CPU Implementations of R2
	Memory Issues With R2

	Result
	CPU Implementations of R2
	Multicore Parallelism
	Vectorization
	CPU Summary

	GPU Implementations of R2
	Minimizing Allocations by Reusing Memory
	Hiding Transfer Overheads Using Multiple Command-queues
	Dividing Computations Using Parallel Prefix Scan
	GPU Summary

	Performance CPU vs GPU
	Approximation Error of R2

	Discussion
	Performance Comparisons
	Cache Efficiency in the R2 Implementations for the CPU
	Results of the Parallel Prefix Scan Implementation
	Power Consumption
	Conclusions about performance on other hardware
	R2 and R3 out of Range Disagreement

	Conclusions
	Future Work
	Parallel Prefix Scan Using Global Memory
	OpenCL on CPUs
	Improving CPU Implementations
	Parallel Implementation of Izraelevitz' Algorithm
	Implementation Using Both CPU and GPU

	Bibliography

