
Football Match Prediction using
Deep Learning
Recurrent Neural Network Applications

Master’s Thesis in Computer Science – algorithms, languages and logic

DANIEL PETTERSSON
ROBERT NYQUIST

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017
EX031/2017

Master’s Thesis EX031/2017

Football Match Prediction using Deep Learning

Recurrent Neural Network Applications

DANIEL PETTERSSON
ROBERT NYQUIST

Supervisor and Examiner:
Professor Irene Yu-Hua Gu, Department of Electrical Engineering

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2017

Football Match Prediction using Deep Learning
Recurrent Neural Network Applications
DANIEL PETTERSSON
ROBERT NYQUIST

© DANIEL PETTERSSON, ROBERT NYQUIST, 2017.

Supervisor and Examiner:
Professor Irene Yu-Hua Gu, Department of Electrical Engineering

Master’s Thesis EX031/2017
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Football Match Predicition using Deep Learning
Recurrent Neural Network Applications
DANIEL PETTERSSON
ROBERT NYQUIST
Department of Electrical Engineering
Chalmers University of Technology

Abstract

In this thesis, the deep learning method Recurrent Neural Networks (RNNs) has
been investigated for predicting the outcomes of football matches. The dataset con-
sists of previous recorded matches from multiple seasons of leagues and tournaments
from 63 different countries and 3 tournaments that include multiple countries.

In the thesis work, we have studied several different ways of forming up input data
sequences, as well as different LSTM architectures of RNNs that may lead to effective
prediction, along with LSTM hyper-parameter tuning and testing. Extensive tests
have been conducted through many case studies for the prediction and classification
of football match winners.

Using the proposed LSTM architectures, we show that the classification accuracy
of the football outcome is 98.63% for many-to-one strategy, and 88.68% for many-
to-many strategy. The prediction accuracy starts from 33.35% for many-to-one and
43.96% for many-to-many, and is increasing when more information about a match
from longer time duration of data sequence is fed to the network. Using the full time
data sequence, the RNN accuracy reached 98.63% for many-to-one, and 88.68% for
many-to-many strategy.

Our test results have shown that deep learning may be used for successfully pre-
dicting the outcomes of football matches. For further increasing the performance
of the prediction, prior information about each team, player and match would be
desirable.

Keywords: Football, deep learning, machine learning, predictions, recurrent neural
network, RNN, LSTM

v

Acknowledgements

We would firstly like to thank our supervisor Irene Yu-Hua Gu at the Department
of Electrical Engineering at Chalmers University of Technology, where this thesis
has been conducted. We would like to thank her for the help she has been giving
throughout this work.

We would also like to express our thanks to Forza Football for providing us with
data, equipment, and workspace.

We have grown both academically and personally from this experience and are very
grateful for having had the opportunity to conduct this study.

Daniel Pettersson, Robert Nyquist, Gothenburg, June 2017

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . 1
1.2 Goals . 1
1.3 Constraints . 1
1.4 Problem Formulation . 2
1.5 Disposition . 2

2 Background Theory 3
2.1 Machine Learning . 3

2.1.1 Neural Networks . 3
2.1.2 Deep Learning . 4
2.1.3 Recurrent Neural Networks 4

2.1.3.1 Long Short-Term Memory 6
2.1.3.2 Gated Recurrent Unit 9

2.1.4 Dropout . 10
2.1.5 Embeddings . 11
2.1.6 Softmax Classifier . 11
2.1.7 Cross Entropy Error . 12
2.1.8 Adam Optimizer . 12
2.1.9 Hardware . 12

2.1.9.1 Central Processing Unit 12
2.1.9.2 Graphics Processing Unit 12

2.1.10 Software Libraries . 13
2.2 Predicting the Outcome of Football Matches 13

2.2.1 Challenges in Predicting the Outcome of Football Matches . . 13
2.2.2 Previous Work . 14

3 Proposed Methods for Football Match Prediction 15
3.1 Data . 15
3.2 Network Input . 16

3.2.1 Deep Embeddings . 17
3.2.2 One-Hot Vector with all Attributes 17

ix

Contents

3.2.3 Concatenated Embedding Vectors for all Attributes 18
3.3 Naive Statistical Model . 18
3.4 Deep Learning Architecture . 19

3.4.1 Many-To-One . 20
3.4.2 Many-To-Many . 21

4 Results and Evaluation 23
4.1 Setup . 23
4.2 Dataset . 24
4.3 Training . 24

4.3.1 Tuning Parameters . 25
4.4 Classification . 26

4.4.1 Discussion . 27
4.5 Prediction . 32

4.5.1 Discussion . 33
4.6 Comparison . 40

4.6.1 Naive Statistical Model . 40
4.6.2 Human Accuracy . 40

4.6.2.1 Betting Companies 40
4.6.2.2 10 Newspapers . 41
4.6.2.3 Forza Football Users 42

4.6.3 Discussion . 42
4.7 Remarks and Further Discussion . 43

5 Conclusion 45

A Raw data I

B Leagues and tournaments VII

x

List of Figures

2.1 Example neural network, two input nodes, three hidden, one output. 4
2.2 Example of a synced recurrent neural etwork, many-to-many. At each

timestep, there is an output corresponding to the input at that time. 5
2.3 Many-to-one Recurrent Neural Network where a sequence input re-

turns a fixed output. 6
2.4 Illustration of a LSTM unit. 7
2.5 An example of a multi-layer LSTM network with 3 layers. xt is the

input at time t, hj
t is the output of layer j at time t. The output from

layer j at time t is fed to layer j + 1 at time t. The output of layer j
at time t is also passed on to the same layer j at time t+ 1. 8

2.6 Illustration of a GRU. 10
2.7 Left: A standard neural net with 1 hidden layer. Right: An example

of a thinned network produced by applying dropout to the network
on the left. 10

3.1 Architecture of deep embeddings. 17
3.2 Example of one-hot encoded attributes concatenated with player and

team embedding. 17
3.3 The simple high level architecture of the model. 19
3.4 Detailed illustration of the architecture used. xt is the input vector

at time step t, ot is a single layer feed forward neural network, ŷt is
the predicted class at time t, L represents the number of layers, and
u number of LSTM units per layer. 20

4.1 An illustrative map of the system describing different parts of this
chapter. 23

4.2 Confusion matrices for classification. Each row is actual truth, row 1
for home win, row 2 for draw, and row 3 for away win. Each column
is the predicted value in the same order. The color of the background
shows how big part of the distribution is on that cell, where black
means 100%, white 0%, and gray shades for all the values in between.
The values in the confusion matrices are calculated for only the last
event. 27

4.3 Accuracy for classification of Case studies 1–6. The color and shape
of the legend is used throughout the rest of the following plots. 28

4.4 Accuracy for classification of case study 7. 29

xi

List of Figures

4.5 Loss for classification of case studies 1–6. 30
4.6 Loss for classification of case study 7. 31
4.7 Prediction accuracy at match minute 0. The color and shape of the

legend are used throughout the rest of the following plots. Note:
Case Studies 1–6 use the many-to-many approach (Section 3.4.2),
while Case Study *7 uses the many-to-one (Section 3.4.1). 34

4.8 Prediction accuracy at match minute 15 for case studies 1–7. 34
4.9 Prediction accuracy at match minute 30 for case studies 1–7. 35
4.10 Prediction accuracy at match minute 45 for case studies 1–7. 35
4.11 Prediction accuracy at match minute 60 for case studies 1–7. 36
4.12 Prediction accuracy at match minute 75 for case studies 1–7. 36
4.13 Prediction accuracy at match minute 90 for case studies 1–7. 37
4.14 Prediction accuracy at full time for case studies 1–7. 37
4.15 Confusion matrices for match minute 0, 15, 30, 45, 60, 75, and 90 for

network case study 3 with two layers of 256 units. 38
4.16 Confusion matrices for match minute 0, 15, 30, 45, 60, 75, and 90 for

network case study 7 with two layers of 256 units. 39

xii

List of Tables

4.1 Specifications of the computer specifications used for training. 24
4.2 Specifications of the graphics card specifications used for training. . . 24
4.3 Software used for training. 24
4.4 Dataset split into three parts used for training, validation, and testing. 25
4.5 Comparison between the different training case studies. Case Study 7

uses the many-to-one approach where the accuracy is only calculated
at the end of the sequence, while Case Studies 1–6 uses many-to-many
and calculates the accuracy for all events in the sequence and takes
the average of them all. The “Train Accuracy” and “Test Accuracy”
columns contains the last event classification for both approaches. . . 26

4.6 Prediction comparison between the different case studies. 32
4.7 Leagues and tournaments that odds were gathered for. 40
4.8 Betting companies, their accuracy and prediction distribution. 41
4.9 Competitors in the 10 Newspapers challenge 2015 and their accuracy. 42
4.10 Accuracy for Forza Football users predictions. The predictions can

be made both before and after the lineups are known. 42

xiii

List of Tables

xiv

1
Introduction

There have been several tries at predicting sport games using data from the past, but
humans are still superior at predicting sport outcomes. There are multiple commer-
cial services which have sports analysis and prediction as their main business. They
use “sophisticated software and statistical algorithms” to aid their data tracking,
but at the core they still have experts analysing the games manually1.

This work aims at predicting the outcome of football matches using deep learning
and recurrent neural networks, RNNs.

1.1 Background

Accurate football prediction is very valuable for the small Gothenburg based com-
pany Football Addicts and their smartphone application Forza Football. This thesis
is a collaboration with the company Football Addicts and the project has used data
available from the company.

1.2 Goals

This thesis aims at predicting football matches using deep learning and RNNs. The
goal is to have a prediction accuracy that can compete with betting companies, by
letting the network focus on players performance.

1.3 Constraints

There are many deep learning methods that can be used to predict football matches,
depending on, for example, the data available. Due to the type of data available for
this project, RNN is the method chosen and no other methods will be tested.

The thesis only uses data from a fixed set of leagues. Players transferred from a
league outside of the leagues to one league in the set will not have the historic data.

1Examples: http://www.stats.com/football/ and http://instatfootball.com/

1

http://www.stats.com/football/
http://instatfootball.com/

1. Introduction

All these players will be treated the same, even though in real life they have different
history.

Our project does not consider any kind of ranking of different leagues used to train
the model. This means that the model might predict a draw or even a win for a
top team in a lower ranked league, even though it is highly improbable. Matches
with two teams from different leagues with a large rank difference occur rarely and
should therefore not be a problem.

1.4 Problem Formulation

This report aims at investigating whether deep learning can be used to predict
football matches by analyzing the following:

• Can RNNs be used for the purpose of match predictions?

• Is history about players important when predicting the outcome of a match?

• How long history is relevant for a player?

1.5 Disposition

The disposition of this report generally follows that of a standard technical report.
Chapter 2 covers the background theory necessary to understand the conducted
study. The proposed methods can be found in Chapter 3. The results along with
the setup used for the study can be found in Chapter 4, where the result of each
experiment is followed by a discussion. Finally in Chapter 5 the conclusion from the
study is presented.

2

2
Background Theory

This chapter aims at describing the theory needed to understand the work con-
ducted, as well as present related work that is useful for this thesis. It starts off
with an introduction to machine learning, neural networks, and deep learning.

2.1 Machine Learning

Machine learning is a subfield to artificial intelligence which has increased in pop-
ularity over the last few years (especially neural networks and deep learning), both
in research and in industries. In contrast to traditional rule-based artificial intelli-
gence, where an algorithm is more or less a list of predefined static rules, machine
learning tries to use data to learn to make predictions or decisions. Many problems
make it unfeasible to construct or design rules to help find a solution due to the
sheer amount of constraints or complexity of the problem, which is where machine
learning can leverage data to learn a solution.

2.1.1 Neural Networks

Artificial neural networks (ANNs) are a computational approach that is based on the
way a biological brain solves problems. The human brain is composed of nerve cells
called neurons that are connected with each other by axons. ANNs are composed of
multiple nodes, which imitate the biological neurons of a human brain. The neurons
are connected by links, which imitate the biological axons, and they interact with
each other. Each node takes input data, performs a simple operation, and passes
the result to other nodes. Like a biological brain, an ANN is self-learning and can
therefore excel in areas where the solution is difficult to express by a traditional
programming approach.

The core of neural networks, neurons, is just a simple activation function that has
multiple inputs and one output. The neuron can be seen as a composition of several
other weighted neurons and the network can be described by the network function

f(x) = K

(∑
i

wigi(x)
)

(2.1)

3

2. Background Theory

Input
layer

Hidden
layer

Output
layer

Figure 2.1: Example neural network, two input nodes, three hidden, one output.

where wi are weights, gi are other functions and K is the activation function e.g.,
the logistic function, hyperbolic tangent or rectifier (K(x) = max(0, x)). A network
consists of several layers of these neurons, where connections go from one layer to
the other. The first layer is the input layer, the last layer is the output, and all
the layers in between are hidden layers. A deep neural network can have several
hundred hidden layers.

A neural network with at least one hidden layer with a finite number of neurons in
that layer can approximate any continuous function. This is known as the universal
approximation theorem, and is one reason to why one could believe that neural
networks can be used for general artificial intelligence. It seems likely that being
able to approximate functions is a very good property to possess when trying to
learn how to behave.

2.1.2 Deep Learning

Deep learning is a technique that builds on deep neural networks (DNNs), a form of
artificial neural network. The difference is that deep neural networks have multiple
hidden layers. There have been big advancements in the field of deep learning during
the last few years. Two of the most acclaimed papers are about DeepMind’s network
that plays Atari 2600 games [31] and their network that beats the world champion
in the board game GO [32].

2.1.3 Recurrent Neural Networks

One key constraint or limitation of a normal neural network is that the input and
output is of fixed length. If you input images they all need to have the same size,
and the output, e.g., when doing classification is a probability of different fixed
classes. The recurrent neural network, RNN, tries to address this issue of fixed size
input/output. RNN introduces loops between events or steps allowing information
to be used in a later stage, just like a memory. One can see a loop as a copy of the
network with the same parameters that just sends the state to the next step, see

4

2. Background Theory

Figure 2.2. This enables a RNN to be used on sequences of input and output which
can take previous information into account. It has been shown that this works very
well for a number of situations like natural language processing, video classification,
image classification, etc. [38, 3, 7, 43].

Given a sequence x = (x1,x2, ...,xT), the RNN updates its recurrent hidden state
ht by

ht =

0, t = 0
Φ(ht−1,xt), otherwise

(2.2)

where Φ is a nonlinear function. Traditionally the update for the recurrent hidden
state, ht, is implemented as

ht = g(Wxt + Uht−1), (2.3)

where g is a smooth and bounded function such as a logistic sigmoid function, W
and U are weight matrices.

One big problem with a straightforward RNN is the vanishing or exploding gradient.
This can happen during training and the calculation of gradients for the backprop-
agation. The gradients are calculated using the chain rule which multiplies small
numbers many times, making the error signal decrease with an exponential factor.
The same thing can also happen when gradients are too large, which can result in
the exploding gradient. This is just as bad because the network’s early layers are
unable to learn as the error cannot propagate properly [21]. Both problems can be
avoided by using Long Short-Term Memory and Gated Recurrent Unit, discussed
in the next 2 sections.

xt

ct

yt

=

x1

c1

y1

x2

c2

y2

x3

c3

y3

x4

c4

y4

x5

c5

y5

Figure 2.2: Example of a synced recurrent neural etwork, many-to-many. At each
timestep, there is an output corresponding to the input at that time.

Figure 2.3 shows a RNN where only one output is used, classifying the entire se-
quence given instead of every timestep in a sequence.

5

2. Background Theory

x1

c1

x2

c2

x3

c3

x4

c4

x5

c5

y1

Figure 2.3: Many-to-one Recurrent Neural Network where a sequence input returns
a fixed output.

2.1.3.1 Long Short-Term Memory

A Long Short-Term Memory (LSTM) unit is a recurrent network unit that is de-
signed to remember values for either a long or a short duration of time [20] e.g., if
the LSTM unit detects an important feature from an early input sequence, it carries
this information over a long distance. This is significant for many applications, such
as speech processing, music composition and time series prediction.

Since a LSTM does not use an activation function within its recurrent components
the stored value is not iterativelty squashed over time. Each j-th LSTM unit main-
tains a memory cj

t at time t [8]. The output hj
t is computed by

hj
t = oj

t tanh(cj
t), (2.4)

where oj
t is an output gate that is computed by

oj
t = σ(Woxt + Uoht−1 + Voct)j, (2.5)

where σ is a logistic sigmoid function, Vo is a diagonal matrix, and Wo and Uo are
weight matrices.

Memory cell cj
t is updated by

cj
t = f j

t c
j
t−1 + ijt c̃

j
t , (2.6)

where the new memory content is

c̃j
t = tanh(Wcxt + Ucht−1)j (2.7)

and f j
t is a forget gate. The forget gate modulates how much of the memory will be

forgotten and an input gate, ijt decides the degree to which the new memory content
is added to the memory cell. The gates are computed by

f j
t = σ(Wfxt + Ufht−1 + Vfct−1)j, (2.8)

6

2. Background Theory

ijt = σ(Wixt + Uiht−1 + Vict−1)j. (2.9)

A LSTM unit is able to decide whether to keep the existing memory via the intro-
duced gates. See Figure 2.4 for a graphical illustration of a LSTM unit and Figure
2.5 for an example of a multi-layer LSTM network.

cj
t +

+

f j
t

Forget Gate

oj
t

Output Gate

c̃j
t

ijt

Input Gate

hj
t

xt

Figure 2.4: Illustration of a LSTM unit.

The following part will describe some different variants of LSTM.

• LSTM with peepholes

LSTM units with peepholes include the internal state when calculating the values
of all gates [13]. The gates for the j-th LSTM with peephole at time step t are
calculated by

oj
t = σ(Woxt + Uoht−1 + Poct−1)j (2.10)

f j
t = σ(Wfxt + Ufht−1 + Pfct−1)j (2.11)

ijt = σ(Wixt + Uiht−1 + Pict−1)j (2.12)

where P are matrices with weights that need to be learned by the network.

A LSTM with peephole has an improved ability to learn tasks that require precise
timing and counting of the internal states [17].

• Convolutional LSTM

A drawback for LSTM is its usage of full connections in input-to-state and state-
to-state transitions in which no spatial information is encoded when handling spa-
tiotemporal data [42]. To overcome this problem, all the inputs xt, outputs ht,

7

2. Background Theory

LSTM
cell 1

LSTM
cell 2

LSTM
cell 3

x1

y1

h3
1

LSTM
cell 1

LSTM
cell 2

LSTM
cell 3

x2

y2

h3
2

h1
1

h2
1

LSTM
cell 1

LSTM
cell 2

LSTM
cell 3

x3

y3

h3
3

h1
2

h2
2

h1
3

h2
3

Inputs

First layer

Second layer

Third layer

Outputs

Figure 2.5: An example of a multi-layer LSTM network with 3 layers. xt is the
input at time t, hj

t is the output of layer j at time t. The output from layer j at
time t is fed to layer j + 1 at time t. The output of layer j at time t is also passed
on to the same layer j at time t+ 1.

8

2. Background Theory

memory cells ct and gates ot, ft, it of the convolutional LSTM are 3D tensors whose
last two dimensions are the spatial dimensions. The outputs, memory cells and gates
for the j-th convolutional LSTM at time t are calculated by

hj
t = oj

t ◦ tanh(cj
t) (2.13)

cj
t = f j

t ◦ cj
t−1 + ijt ◦ tanh(Wc ∗ xt + Uc ∗ hj

t−1) (2.14)

oj
t = σ(Wo ∗ xt + Uo ∗ ht−1 + Vo ◦ ct)j (2.15)

f j
t = σ(Wf ∗ xt + Uf ∗ ht−1 + Vf ◦ ct)j (2.16)

ijt = σ(Wi ∗ xt + Ui ∗ ht−1 + Vi ◦ ct)j (2.17)

where U , V and W are weight matrices, ∗ is the convolution operator [41] and ◦ is
the entrywise product [22].

2.1.3.2 Gated Recurrent Unit

A gated recurrent unit, GRU, is designed to adaptivly reset or update its memory
[8]. Unlike a LSTM, a GRU does not have a separate memory cell.

The activation hj
t of GRU j at time t is a linear interpolation between the previous

activation hj
t−1 and the candidate activation h̃j

t [8]. An update gate zj
t decides how

much the unit updates its activation:

hj
t = (1− zj

t)hj
t−1 + zj

t h̃
j
t (2.18)

zj
t = σ(Wzxt + Uzht−1)j (2.19)

The candidate activation h̃j
t is computed by

h̃j
t = tanh(Wxt + U(rt � ht−1))j, (2.20)

where rt is a set of reset gates. When rj
t is off (rj

t is close to 0), the reset gate makes
the unit act as if it is reading the first symbol of an input sequence. This way it is
allowed to forget the previously computed state.

Reset gate rj
t is computed by

rj
t = σ(Wrxt + Urht−1)j. (2.21)

9

2. Background Theory

See Figure 2.6 for a graphical illustration.

As the forget and input gates are combined into a single update gate the GRU is
simpler than a standard LSTM unit and therefore computationally more efficient.

hj
t

zj
t

Update Gate

rj
t

Reset Gate

h̃j
t

xt

hj
t

Figure 2.6: Illustration of a GRU.

2.1.4 Dropout

Neural networks with a large amount of parameters have a problem with overfitting
[34]. A model that overfits on the training data will result in bad performance.
By introducing dropout, the risk for overfitting decreases. The idea is to randomly
drop units along with their connections during the training to prevent units from
co-adapting too much. At training time each node has a probability p to be dropped
out.

Input
layer

Hidden
layer

Output
layer

(a) Network without dropout applied.

Input
layer

Hidden
layer

Output
layer

(b) Network with dropout applied.

Figure 2.7: Left: A standard neural net with 1 hidden layer. Right: An example
of a thinned network produced by applying dropout to the network on the left.

10

2. Background Theory

Applying dropout to a neural networks can be seen as sampling a “thinned” network
from the original. The thinned network consists of all nodes (with respective con-
nection) that survived the dropout. Figure 2.7(b) show a sampled thinned network
from the network in Figure 2.7(a). A neural network with n units can be seen as
a collection of 2n possible thinned neural networks. For each training stage a new
thinned neural network is sampled and trained. So training a neural network with
dropout can be seen as training a collection of 2n thinned networks. Each network
gets trained rarely or not at all.

2.1.5 Embeddings

Entities in the dataset can be modeled in a d-dimensional vector space, called the
“embedding space” or distributed representation. Each entity i is assigned a vector
Vi ∈ Rd [5]. Within the embedding space there is a specific similarity measure
that captures the relation between entities. One of the earliest use of distributed
representation date back to 1988 due to Rumelhart, Hinton and Williams [40].

Embeddings can be used to fight the curse of dimensionality [4]. The curse of dimen-
sionality is the phenomena that arises when working with data in high-dimensional
space. Choosing attributes, and how many, that describes the entities is tricky. The
solution is to let the network learn the distributed representation. The network will
adjust the representations during training which enables it to capture information
about the entities [30].

Representing entities in an embedding space has helped algorithms to achive better
performance in various areas, such as statistical language modeling and various
natural language processing (NLP) tasks [10, 15, 39, 33].

2.1.6 Softmax Classifier

The softmax function is a generalization of the logistic function that squashes a
K-dimensional vector of arbitrary values to a K-dimensional vector of real values
in range [0,1] that add up to 1 [6]. The output of the softmax function can then be
used to represent a probability distribution over K different possible classes.

σ(z)j = ezj∑K
k=1 e

zk
for i = 1 . . . K (2.22)

The softmax function is used in various multiclass classification methods, such as
multinomial logistic regression, multiclass linear discriminant analysis, naive Bayes
classifiers, and artificial neural networks. In a neural network-based classifier the
function in the final layer is often a softmax function.

11

2. Background Theory

2.1.7 Cross Entropy Error

The cross entropy can be used as an error measure for neural networks. It describes
the entropy of a distribution y′ with respect to another distribution y and measures
how many bits you need to encode data on average [16].

H(y′,y) = −
∑

i

y′i log yi (2.23)

2.1.8 Adam Optimizer

Adam, derived from adaptive moment estimation, is an algorithm for first-order
gradient-based optimization of stochastic objective functions that is well suited for
problems that are large in terms of data and parameters [27]. Adam is also suited for
problems with very noisy and sparse gradients. The method only requires first-order
gradient.

Adam computes individual adaptive learning rates for different parameters from
estimates of first and second moments of the gradients. The magnitudes of param-
eter updates are invariant to rescaling the gradient, its stepsizes are approximately
bounded by the stepsize hyperparameter, it does not require stationary objective,
it works with a sparse gradient and naturally performs a form of step size anneal-
ing. It combines the advantages of AdaGrad [11], to deal with sparse gradients, and
RMSProp [19], to deal with non-stationary objectives. It is proven to be well-suited
for a wide range of non-convex optimization problems in the field machine learning.

2.1.9 Hardware

A deep learning algorithm can contain a large number of parameters. This may lead
to training taking a long time and therefore the choice of hardware is important.

2.1.9.1 Central Processing Unit

Traditionally, mathematical computations have been done on the Central Processing
Unit (CPU). This includes the computations done for training a neural network. To-
day’s CPUs have multiple cores [12]. In order to optimize the run time, calculations
that can be done separately should be done on separate cores.

2.1.9.2 Graphics Processing Unit

A Graphics Processing Unit (GPU) is a processor that is designed to execute com-
putations in parallel, which is common in 3D graphics[35].

Modern CPUs often have an integrated GPU, which shares the system memory with
the CPU. A GPU can also be a standalone chip, which it is often referred to as a

12

2. Background Theory

dedicated GPU. A dedicated GPU has its own memory which is often faster than
the system memory, helping to speed up computations. It is the dedicated GPUs
that nowadays are common to use for machine learning. Operations required to
train a DNN can be made in parallel. Therefore GPUs exceed CPUs in performance
when it comes to training. Running a program for training a neural network on a
GPU requires that the GPU manufacturer supports it. For high-end GPUs there
are two major manufacturers today, AMD and NVIDIA. Both of them supports the
possibility to train neural networks.

NVIDIA have developed their hardware-software architecture CUDA [28] that al-
lows code to be run on their GPUs with a high computational power. An alternative
to CUDA is OpenCL for parallel computing on the most common types of proces-
sor, including GPUs, from multiple manufactures [36]. OpenCL is maintained by
the non-profit consortium The Khronos Group. Both alternatives have their pros
and cons [25]. Which one should be used differs from project to project and what
hardware is available.

2.1.10 Software Libraries

There exist several software libraries for simplifying the process of implementing
machine learning algorithms. They provide tools for setting up a functional neural
network.

For this project the software library Tensorflow [1] was used to build the neural
network. Tensorflow was chosen because it is a well documented library that is
popular and therefore a lot of functions available via forums and blogs.

2.2 Predicting the Outcome of Football Matches

Predicting the outcome of football matches is today done by both football experts
and machine learning algorithms, with various outcome. This section discusses some
challenges in predicting the outcome and some previous work.

2.2.1 Challenges of Predicting the Outcome of
Football Matches

Both human and computer predictions have their challenges. Humans are emotional
and can affect the analysis of teams playing each other and therefore the prediction.
A computer does not have the knowledge of the current mental health of the team.
Cracks between players and coaches might affect the outcome. For both humans
and computer there is also always the problem of deciding which attributes are
important.

13

2. Background Theory

Football, as many other sports, is highly stochastic. One lucky hit among hundreds
of passes, shots, and dribbles can in the end change the whole outcome of the game.
This makes it more complicated to predict the outcome of football matches, both
for humans and computers.

2.2.2 Previous Work

Several attempts have been made to predict the outcome of football matches, and
other sports [24, 18, 23, 2]. The accuracy varies depending on what sport, league
and approach that has been used. Most attempts are done on one or a low number of
leagues by building statistical models. Basic neural networks have been used in a few
cases, but none have used deep learning to train a network to learn football matches
and high dimensional representations of players and teams. These approaches are
just predictions before the match and cannot be used for prediction for ongoing
matches.

14

3
Proposed Methods for Football

Match Prediction

Previous works on predicting outcomes of team sport matches using machine learn-
ing have mainly focused on team data [24, 18, 23, 2]. The focus also lies on a single
tournament, league or team.

Players representing a football club during a match are constantly changing. Both
because a specific player does not make the team or that a player is transferred to
a different team. The approach for this thesis is to focus on the players. In such a
way it takes into account if a player does not play for a team in a specific match,
which will have an impact.

A match is played at a specific time, and events occur at a relative time in a game.
The order of matches and events matter since they have an impact on the fu-
ture. Therefore a long short-term memory network (LSTM) [14] is exploited for
this project.

3.1 Data

The dataset used for this project includes the information for each player in the
teams. The dataset includes matches for leagues and tournaments for the 54 coun-
tries in the Union of European Football Associations (UEFA)1, USA, Brazil, Chile,
Mexico, Argentina, Uruguay, Australia, Japan and China. A full list of leagues and
tournaments can be seen in Appendix B.

Since players move between clubs and leagues, the data used is for multiple leagues
over multiple years. In this way, information about a player is moved along with
the player when a player changes club and therefore changes in teams are noticed.
Information about players is gathered from events in which they are involved in
during a game. The following events in each game have players connected to them:

Lineups: Each starting player and head coach for a team.

Position: Starting position for each starting player.
1http://www.uefa.com/memberassociations/uefarankings/index.html

15

http://www.uefa.com/memberassociations/uefarankings/index.html

3. Proposed Methods for Football Match Prediction

Goal: Goalscorer and possible assisting player.

Card: Which player gets the card and which type of card.

Substitution: Player entering the field and player leaving the field.

Penalty: Which player takes the penalty, and what is the outcome. Whether the
penalty is saved the by goalkeeper is also connected to the event.

Below is an example of how the raw data of a goal looks like and Appendix A
contains the structure of the raw data for a whole match.

"goal": [
{

"assistPlayerId": "f54pd3cld0qkc8ol15bk9ye39",
"assistPlayerName": "F. Fernández",
"contestantId": "410jti6axb01yhvbc0axsp8li",
"lastUpdated": "2017-02-12T16:36:59.362Z",
"periodId": 1,
"scorerId": "ex186m2z3yp666b1g219a8ted",
"scorerName": "A. Mawson",
"timeMin": 36,
"type": "G"

}
]

The dataset consists of 35234 games distributed between 45.50% home wins, 29.61%
away wins and 24.89% draws. All events include either the absolute or relative
time. There is no ranking on what events are more important than others. Various
sites and newspapers provide this information about football games, in different
structures. Therefore, the project can be remade without having the data provided
from a specific source.

3.2 Network Input

There are several ways to encode the data before feeding it to the network. The
dataset contains several event types, with different structures and different numbers
of attributes. We somehow need to merge or fuse this into a generalized input
which the network can work with. A normal feed forward neural network requires
all input to be of a fixed size, meaning that the dataset needs to be preprocessed
so that everything is the same size. By using a RNN we can let all examples be
of different length, but we still need the input vector at each time step to be fixed
in size. This means that even though we have different types of events, they must
have the same shape when fed to the network. There are several possibilities and
techniques that can be can utilized to solve this problem that are outlined below.

16

3. Proposed Methods for Football Match Prediction

3.2.1 Deep Embeddings

Inspired by word2vec as it works well for natural language processing, where em-
bedding is used [29]. It has different inputs for each event type in the embeddings,
and the embedding is a learned representation for the network input. This network
should be trained end-to-end, learning both the embeddings and the primary task
at the same time [37, 26, 9]. One then feeds the appropriate event at each time step,
and set the remaining to be zero or other default “empty” value. Figure 3.1 depicts
an example of embedded input at time t.

Embedding

RNN

Goal Card Lineup Substitution

Figure 3.1: Architecture of deep embeddings.

3.2.2 One-Hot Vector with all Attributes

By using a one-hot vector which encodes all attributes for this event, the attribute
vector contains columns for all the attributes of all events. This means that for
different events several columns are unused, and are set to zero. All attributes
except player and team information are one-hot encoded, the player and team are
looked up in two different embedding spaces, as can be seen in Figure 3.2. This
results in a very sparse input, but includes all different attributes for all events in
the same vector.

0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 x x x y y y

Period Position
Goal
type

Card
type

Penalty
type Substitution

Player
emb

Team
emb

Figure 3.2: Example of one-hot encoded attributes concatenated with player and
team embedding.

17

3. Proposed Methods for Football Match Prediction

3.2.3 Concatenated Embedding Vectors for all Attributes

This is a slight variant of the one-hot vector above. Instead of using a sparse one-hot
encoded vector we provide one embedding per event type, and a lookup for all the
values in the attribute vector, and concatenate the resulting embeddings. These
embeddings are also learned during end-to-end training of the network.

3.3 Naive Statistical Model

A pure statistical model is created to see what prediction accuracy is possible to
reach with a simple model using the same data. The model does not care about
players in each team. It only considers goals and cards. Below is the algorithm to
predict the outcome of a match.

GoalScoret = ght · kgh + gat · kga − cht · kch − cat · kca (3.1)

Y ellowCardScoret = yt · ky (3.2)

RedCardScoret = rt · ry (3.3)

Feature scaling is applied to each score to normalize the data.

x′ = x−min(x)
max(x)−min(x) (3.4)

TotalScoret = GoalScore′t − Y ellowCardScore′t −RedCardScore′t (3.5)

Scorem = TotalScoret1 − TotalScoret2 (3.6)

f(Scorem) =

home win, if Scorem > Home win threshold
away win, if Scorem < Away win threshold
draw, otherwise

(3.7)

18

3. Proposed Methods for Football Match Prediction

GoalScoret Goal score for team t
ght Home goals for team t
kgh Home goal rate
gat Away goals for team t
kga Away goal rate
cht Goals conceded home for team t
kch Goal conceded home rate
cat Goals conceded away for team t
kca Goal conceded away rate
Y ellowCardScoret Yellow card score for team t
yt Yellow cards for team t
ky Yellow card rate
RedCardScoret Red card score for team t
rt Red cards for team t
kr Red card rate
TotalScoret Total score for team t
Scorem Score for match m

Each team t in each match gets a score that depends on goals, made and conceded,
yellow and red cards for the 2015, 2015/2016, 2016, 2016/017 seasons until 2016-
11-05. The predicted outcome is then decided by the difference in score between
TotalScore’t1 and TotalScore’t2. The k variables are used as a ratio to tune the
model.

3.4 Deep Learning Architecture

A few different models have been used and tested in this project. The core of our
RNN consists of LSTM or GRU cells and a softmax classifier. For input both one-
hot, see Secion 3.2.2, and embedding vectors, see Section 3.2.3, are used and tested.
The longest sequence in the dataset is calculated and that is used to pad all the other
sequences with zero vectors so that they are the same length. Dynamic unrolling of
the sequence takes place by also feeding a sequence length parameter. This makes
the network only run for as many time steps that each sequence contains.

Inputs
10 Features

Embeddings
One-hot transform LSTM Softmax classifier

Figure 3.3: The simple high level architecture of the model.

The block diagram of the model can be seen in Figure 3.3 that consists of inputs,
input processing, some number of LSTM layers and units, and lastly a softmax
classifier. This architecture can also be seen in detail in Figure 3.4. The input
vector consists of 10 integer features: period, home team, away team, main player,
assisting player, position, goal type, card type, penalty type, and substitute. These

19

3. Proposed Methods for Football Match Prediction

x1
LSTM 1
u units

LSTM L
u units

. . . o1 softmax ŷ1

x2
LSTM 1
u units

LSTM L
u units

. . . o2 softmax ŷ2

x3
LSTM 1
u units

LSTM L
u units

. . . o3 softmax ŷ3

xt
LSTM 1
u units

LSTM L
u units

. . . ot softmax ŷt

...

...

...

...

...

...

Figure 3.4: Detailed illustration of the architecture used. xt is the input vector
at time step t, ot is a single layer feed forward neural network, ŷt is the predicted
class at time t, L represents the number of layers, and u number of LSTM units per
layer.

features are then either transformed to a one-hot encoding per feature and then
concatenated together, or an embedding lookup per feature and then concatenated
to form a bigger vector with real valued numbers. An example of an input vector
can be (penalty event by the away team in the second half):

[
2 0 1309 929 28619 0 0 0 1 0

]
and the concatenated embedding vector like this (abbreviated for readability):
[
0.8029604 0.18677819 0.58298826 . . . 0.3224628 0.41138625 0.05778933

]
The softmax classifier has an output of three different classes, being home win,
draw, and away win. The loss function used to calculate the error is a standard
cross entropy error, discussed in Section 2.1.7 The loss and accuracy are tested in
two different ways, many-to-one and many-to-many, both introduced in Section 2.1.3
and further discussed in Sections 3.4.1 and 3.4.2.

3.4.1 Many-To-One

One being many-to-one, meaning that the loss was only calculated once, on the last
time step and then being used to do backpropagation through time for the entire
sequence. The calculations for accuracy of this technique is described as follows:

For each match m, there is a target (i.e., class label) ym:

20

3. Proposed Methods for Football Match Prediction

ym =

[1, 0, 0] (Home victory)
[0, 1, 0] (Draw)
[0, 0, 1] (Away victory)

and an output ŷm from the last event in match m

ŷm ∈ {[1, 0, 0], [0, 1, 0], [0, 0, 1]}

The accuracy is then calculated by

rm =

1 if ŷm = ym

0 otherwise
(3.8)

accuracy =

M∑
m=1

rm

M
(3.9)

where M is the number of matches.

3.4.2 Many-To-Many

The second approach is an average loss over the entire sequence, calculating the
loss for each time step and then averaging this loss for the backpropagation. This
technique is called sequence loss, since it calculates the total loss of a sequence of
outputs. It is used to get a better prediction over the entire sequence. Since the
aim is to predict the result at any time, not just in the end, this might give a better
result. The calculations for the accuracy of this technique is described as follows:

For each match m, there is a target (i.e., class label) ym:

ym =

[1, 0, 0] (Home victory)
[0, 1, 0] (Draw)
[0, 0, 1] (Away victory)

ŷm = [ŷ1
m, ŷ

2
m, ..., ŷ

n
m], ŷi

m ∈ {[1, 0, 0], [0, 1, 0], [0, 0, 1]} for i = 1...n,

where ŷi
m is the predicted outcome for event i, and n is the number of events in the

match m.

The number of correct predictions for each match is calculated by

ri
m =

1 if ŷi
m = ym

0 otherwise
for i = 1...n, (3.10)

21

3. Proposed Methods for Football Match Prediction

and then the accuracy over all matches is calculated by

accuracy =

M∑
m=1

n∑
i=1

ri
m

M∑
m=1

#elements in rm

(3.11)

where M is the number of matches.

22

4
Results and Evaluation

This chapter shows the result of using different methods and hyperparameters to
classify and predict football matches. The figures in this chapter only include the
case studies that we found to work best for ease of readability and visibility. Figure
4.1 shows a diagram that describes how the different parts of the system is connected.

Input
(train set)

LSTM
training

Training
(Section 4.3)

Input
(validate set)

LSTM
testing

Input
(test set)

Classification
(Section 4.4)

Prediction
(Section 4.5)

fixed
parameters
from tuning

Figure 4.1: An illustrative map of the system describing different parts of this
chapter.

4.1 Setup

The network was trained and evaluated on a desktop computer running Linux.
The computer specifications can be found in Table 4.1 and more details about the
graphics card used can be found in Table 4.2. Versions of the software libraries used
can be found in Table 4.3.

23

4. Results and Evaluation

CPU Intel Core i7 6700K 4 GHz
Motherboard ASUS Z170-A S-1151 ATX

RAM Corsair Vengeance LPX 16GB 2666MHz DDR4
GPU ASUS DC2 OC Strix NVIDIA GeForce GTX 960 4GB
SSD Samsung 850 EVO

Table 4.1: Specifications of the computer specifications used for training.

Manufacturer Asus
Clock frequency 1126MHz

Cuda cores 1024
Memory 4.0 GB GDDR5

Memory frequency 7010Mhz

Table 4.2: Specifications of the graphics card specifications used for training.

4.2 Dataset

The dataset used in the evaluation is described in detail in Section 3.1. It contains
35234 matches for two years, from 2015 until 2017. Table 4.4 lists the number of
matches in each of the training, validation, and testing sets. The validation and
testing dataset are normalized to contain roughly the same number of classes, so
that the results on the testing set should not be biased. Unfortunately this does not
make our results entirely comparable with others, since the data is always biased
towards home winners. If we compare the test accuracies from Table 4.5 with the
non-normalized test set we got numbers as high as 55% for case studies 1–6.

4.3 Training

Training was a big and time consuming part of the project. There are parameters
to tune, architectures, input encodings, and losses to compare just to get the best
inference when trying to predict outcome. Some techniques result in better classifi-
cation but lower prediction than others, so in the next few sections we will describe
how and what we did to improve the results.

Linux kernel 4.4.0-64-generic
Nvidia driver 375.26

cuDNN 5.1
CUDA 8.0
Python 3.6

Tensorflow 1.0

Table 4.3: Software used for training.

24

4. Results and Evaluation

Train Validate Test Discarded Total
24410 3608 6660 557 35234
69.3% 10.2% 18.9% 1.6% 100%

Table 4.4: Dataset split into three parts used for training, validation, and testing.

4.3.1 Tuning Parameters

Several combinations of hidden layers, units per layer, batch size, learning rate, and
embedding sizes were tested. This subsection includes the result for the parameters
that were most successful, both in terms of accuracy and how feasible the perfor-
mance requirements were. We were constrained by hardware and time which forced
us to pick branches of parameters that seemed good to explore further, most of the
results gathered during this project has been discarded since we only chose a few top
ones. In the following section we describe the parameters of our LSTM architectures
and how they were tuned.

Dropout The first networks we trained did not utilize dropout (see Section 2.1.4).
After analyzing the first few networks performance it was very clear that over-
fitting was occuring, reducing the accuracy of the network. We understood
that dropout must be used in this case to reduce overfitting and increase ac-
curacy. Therefore all networks shown in this chapter have been trained with
a 50% dropout rate, all other networks were discarded because of the low
accuracy in comparison.

Learning rate We experimented with changing the learning rate of the network
but found no surprise here. When increasing the learning rate too much the
loss randomly jumped or improved just very little. When decreasing the learn-
ing rate too much the loss never improved at all. We found values around 10−4

to work very well, both in times of convergence and time used to train which
is why we choose to fix it as 10−4.

Batch size We tried batch sizes between 1 and 500 and noticed that sizes over 100
were too large for our data and setup. The accuracy of the network was very
stable, but the loss could not make it improve on the training set at all. We
decided to use values like 30 or 50 to make the training time faster for new
tests, but decided to keep it at 10 when doing the final training.

Embedding dimensions When using the inputs to do embedding lookups before
feeding to the LSTM one needs to decide on how big and how many dimen-
sions the embeddings should contain. We first started with the team and
player embeddings. We tried values between 1 and 100, it seemed to make no
difference between having 10 or 100 dimensions for teams or players. We did
notice a big difference when having as low as 1 or 2, then we would not see
any convergence and the loss would just randomly jump around. We also tried
different values for the rest of the embeddings, but saw the same thing as with
the teams or players embedding dimension size. Since there are many different
values for the team and players we decided to continue with a dimension size

25

4. Results and Evaluation

of 30, and for the rest of the values we used 10 to ease the size of the input
for computational reasons.

4.4 Classification

Our tests are divided into two parts, classification and prediction. Classification
uses all the data available and simply does a classification of which class a match
belongs to. There are three different classes, home win, draw, and away win.

We decided to pick seven different case studies out of all that we have tried and
show data and plots of all of these. They are numbered and the first six uses the
many-to-many approach described in Section 3.4, where the loss and accuracy were
calculated as the average loss/accuracy of all outputs for every time step, see Section
3.4.2.

The seventh case study uses the many-to-one approach, see Section 3.4.1, which
calculated the loss and accuracy only on the last prediction. This has of course
affected the value “accuracy” in tables, as the average accuracy is much lower than
the last accuracy since it includes all of the accuracies at all time steps. This can
be seen in Table 4.5 where all the case study parameters and accuracy are shown.

Case Study Layers LSTM Units Train
Average
Accuracy

Test
Average
Accuracy

Train
Accuracy

Test
Accuracy

1 1 3 0.5979 0.4595 – 0.7777
2 1 256 0.6150 0.5003 – 0.8868
3 2 256 0.6179 0.4952 – 0.8459
4 2 512 0.6254 0.4909 – 0.8532
5 2 1024 0.6221 0.4873 – 0.8389
6 1 2048 0.6116 0.5022 – 0.8682
*7 2 256 – – 1.0000 0.9863

Table 4.5: Comparison between the different training case studies. Case Study 7
uses the many-to-one approach where the accuracy is only calculated at the end of
the sequence, while Case Studies 1–6 uses many-to-many and calculates the accu-
racy for all events in the sequence and takes the average of them all. The “Train
Accuracy” and “Test Accuracy” columns contains the last event classification for
both approaches.

Observing the classification results there is one clear winner out of all case studies.
Case study 7 has a training accuracy of 100% and a testing accuracy of 98% which
is very high. Comparing this with the other six having a test accuracy at 45–50%,
we can see that it is much easier to classify using only the latest information instead
of doing a prediction at every time step and then averaging this. This is also very
evident when looking at the accuracy in Figures 4.3, and 4.4, and loss in Figures
4.5, and 4.6. Case study 7 quickly drops the loss below 1, both for training and
testing, before running training for the first epoch. Figure 4.2 shows the confusion

26

4. Results and Evaluation

2194 80 26

171 1723 131

11 143 2181

(a) Case study 3, using many-to-
many (Section 3.4.2).

2284 7 9

7 2011 7

30 18 2287

(b) Case study 7, using many-to-one
(Section 3.4.1).

Figure 4.2: Confusion matrices for classification. Each row is actual truth, row 1
for home win, row 2 for draw, and row 3 for away win. Each column is the predicted
value in the same order. The color of the background shows how big part of the
distribution is on that cell, where black means 100%, white 0%, and gray shades for
all the values in between. The values in the confusion matrices are calculated for
only the last event.

matrices for case studies 3 and 7. These matrices visualizes the detailed performance
of our predictions, we can see that case study 7 has very few errors and a clear black
diagonal. Case study 3 not as good, some gray areas close to the diagonal. The
accuracy of case Study 7 follows the loss and reaches above 90% before finishing the
first epoch, and after that slighty increasing towards 98%. Ignoring this clear winner
and just comparing case studies 1–6 we see that case study 1 never reaches the same
accuracy as the others, the same thing with the loss, it never goes as low as for the
other 2–5. This is not surprising since Case study 1 only has one layer of LSTM
with three units, not much room to recognize patterns in the data. Comparing the
rest of the Case studies 2–5, it is slighty disappointing, no clear winner by the plots
in Figure 4.5, 4.6 or 4.3, 4.4, but at least Table 4.5 can show us the values in the end
of training by zooming in. Some values are a bit surprising, case studies 3, 4, and 5
are all lower in test accuracy than case study 2 even though it has the least amount
of parameters available, the only one better than case study 2 is case study 6 which
has one huge layer with 2048 units inside. We also tried networks much larger than
this, all the way up to 10 layers with 2048 units, but saw no convergence even after
several days of training.

4.4.1 Discussion

We thought and hoped that there would be a bigger difference between the different
case studies, but it seems that it only makes a small difference in classification results.
We thought that bigger networks would result in better classification accuracy, but
it seems to be only slighty better if even better at all.

One thing that makes a huge difference is how the accuracy is calculated. When

27

4. Results and Evaluation

0 1 2 3 4 5 6 7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Epochs

A
cc
ur
ac
y

Case Study 1 Case Study 2 Case Study 3
Case Study 4 Case Study 5 Case Study 6
Case Study *7

(a) Training accuracy.

0 1 2 3 4 5 6 7
0.3

0.35

0.4

0.45

0.5

Epochs

A
cc
ur
ac
y

(b) Validation accuracy.

Figure 4.3: Accuracy for classification of Case studies 1–6. The color and shape
of the legend is used throughout the rest of the following plots.

28

4. Results and Evaluation

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

Epochs

A
cc
ur
ac
y

(a) Training accuracy.

0 1 2 3 4 5 6 7
0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

A
cc
ur
ac
y

(b) Validation accuracy.

Figure 4.4: Accuracy for classification of case study 7.

29

4. Results and Evaluation

0 1 2 3 4 5 6 7

1

2

3

Epochs

Lo
ss

(a) Training loss.

0 1 2 3 4 5 6 7

1

1.2

1.4

1.6

Epochs

Lo
ss

(b) Validation loss.

Figure 4.5: Loss for classification of case studies 1–6.

30

4. Results and Evaluation

0 1 2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

3

Epochs

Lo
ss

(a) Training loss.

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

Epochs

Lo
ss

(b) Validation loss.

Figure 4.6: Loss for classification of case study 7.

31

4. Results and Evaluation

calculating the outcome on all events and then taking the average we get a lower
classification accuracy than when we calculated the outcome on only the last event.
This is no surprise, in the first case the calculated outcome on the first event has the
same impact as the calculated outcome on the last event. This does not make sense
since the calculated outcome on the last event contains more information about the
match, it should have a bigger impact.

For case study 3 we can see that it does few away winner classifications when the
outcome is home winner and the other way around, which is a positive thing. This
is not the case with case study 7. It does more away win predictions than draw
predictions when the outcome is home winner and more home winenr in predictions
than draw predictions when the outcome is away winner. This is however so few
cases that it should not be considered a problem.

The interested reader who wonders what accuracy case studies 1–6 have on the last
prediction Table 4.6 shows this as we move on to the prediction section.

4.5 Prediction

This section describes the results from prediction. Prediction is performed by using
only part of the previous data. The network predicts the future values which have not
yet been seen. We decided to predict every 15th minute of all matches. This means
that we have one prediction before the match starts, 15th minute, 30th minute,
45th minute (half time), 60th minute, 75th minute, 90th minute, and full time
(since matches can have extended full time).

Prediction Accuracy During Match
Case
Study

Layers LSTM
Units

0 m 15 m 30 m 45 m 60 m 75 m 90 m Full
Time

1 1 3 0.4284 0.4361 0.4631 0.5039 0.5747 0.6469 0.7305 0.7777
2 1 256 0.4396 0.4479 0.4705 0.5151 0.5831 0.6797 0.8048 0.8868
3 2 256 0.4226 0.4283 0.4537 0.4982 0.5661 0.6644 0.7784 0.8459
4 2 512 0.4355 0.4404 0.4621 0.5062 0.5741 0.6728 0.7813 0.8532
5 2 1024 0.4313 0.4393 0.4659 0.5051 0.5740 0.6687 0.7775 0.8389
6 1 2048 0.4324 0.4380 0.4638 0.5115 0.5811 0.6813 0.7954 0.8682
*7 2 256 0.3335 0.3539 0.4151 0.5048 0.6280 0.7409 0.8825 0.9863

Table 4.6: Prediction comparison between the different case studies.

Table 4.6 lists all the case studies with their parameters (same as before), and
prediction accuracy before the match starts and every 15th minute until full time.
Figures 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, and 4.14 shows the prediction accuracy
at each 15th minute time interval and full time. Unfortunately due to smoothing,
since the accuracy varies a lot, the values are a bit lower as compared to the best
results recorded into Table 4.6. Out of case studies 1–6, case study 1 is also the
worst one, same as in the classification, since it has such a small set of parameters
to learn.

32

4. Results and Evaluation

We can see that case study 7 still has the best full time accuracy, which is to be
expected, but if we look at the “0th minute” column we can see that case study 7
actually is the worst. Even the tiny case study 1 has a better prediction than case
study 7 with a 42% accuracy compared to 33%. This can also be seen in Figures
4.7, 4.8, and 4.9, where case study 7 is by far the worst predictor. Although this
changes when we reach minute 45, then case study 7 is somewhat equal to the rest
of the networks, and after this time step it improves and exceeds the other networks
performance. It seems to sacrifice earlier accuracy for the later, where it has an
excellent result.

Figures 4.15 and 4.16 show confusion matrices for case study 3 and case study
7. What can be seen in both case study 3 and case study 7 is that in the earlier
predictions a lot of the guesses are on home winner. This is somewhat expected since
the training dataset has a bias towards the home winners. As the time progresses
to later predictions we can see that the distribution moves towards the correct state
with black on the diagonal. Case study 3 is much better at finding away winners in
the earlier predictions, in minute 0 it correctly predicts 999 away wins in comparison
to 134 for case study 7. Towards the end of predictions we can see that very few
mistakes happen where both networks predict an away winner when the target is
a home winner and vice versa, most of the mistakes there are instead towards the
“closest” class which must be seen as a positive result. It is a lot more likely to end
in a draw than an away winner when the target is a home winner, it requires more
for the actual result to go from one team winning to the other team winning. On
the last prediction we can see just how good case study 7 is, predicting 173 and 25
matches wrong on home winner compared with 186 and 47 for case study 3. For
draw matches case study 7 predicts 157 and 161 matches wrong, where case study
3 has 301 and 239. And last, when away winner is the true target, case study 7 has
28 and 233 wrong, and case study 3 has 36 and 309.

4.5.1 Discussion

The fact that all case studies gets better prediction the further match time goes is
not a surprise, as more information should lead to a better prediction.

As seen in Figures 4.15 and 4.16 both case study 3 and 7 seem to have learned
from the training data. It is more likely that the outcome is a home winner. Case
study 3 also seems to have learned a better representation, than case study 7, of the
outcome from the begining. Home winner is most likely, away winner the second
and draw the last. The further a match goes, both networks make few away winner
predictions when the outcome is home winner and the other way around which is a
positive result.

The two different networks in case study 7 and case study 2 switch at beeing best at
predictions around half-time. It could be due to the reason that the further a match
goes on, the more data the networks need to handle. Therefore the smaller network
might not be able to handle the amount of data in the end of a match, while the
large network does not have any advantages over the small network in the begining

33

4. Results and Evaluation

0 1 2 3 4 5 6 7

0.3

0.35

0.4

0.45

Epochs

A
cc
ur
ac
y

Case Study 1 Case Study 2 Case Study 3
Case Study 4 Case Study 5 Case Study 6
Case Study *7

Figure 4.7: Prediction accuracy at match minute 0. The color and shape of the
legend are used throughout the rest of the following plots. Note: Case Studies
1–6 use the many-to-many approach (Section 3.4.2), while Case Study *7 uses the
many-to-one (Section 3.4.1).

0 1 2 3 4 5 6 7

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

Epochs

A
cc
ur
ac
y

Figure 4.8: Prediction accuracy at match minute 15 for case studies 1–7.

34

4. Results and Evaluation

0 1 2 3 4 5 6 7

0.35

0.4

0.45

Epochs

A
cc
ur
ac
y

Figure 4.9: Prediction accuracy at match minute 30 for case studies 1–7.

0 1 2 3 4 5 6 7
0.3

0.35

0.4

0.45

0.5

Epochs

A
cc
ur
ac
y

Figure 4.10: Prediction accuracy at match minute 45 for case studies 1–7.

35

4. Results and Evaluation

0 1 2 3 4 5 6 7
0.3

0.4

0.5

0.6

Epochs

A
cc
ur
ac
y

Figure 4.11: Prediction accuracy at match minute 60 for case studies 1–7.

0 1 2 3 4 5 6 7
0.3

0.4

0.5

0.6

0.7

0.8

Epochs

A
cc
ur
ac
y

Figure 4.12: Prediction accuracy at match minute 75 for case studies 1–7.

36

4. Results and Evaluation

0 1 2 3 4 5 6 7

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Epochs

A
cc
ur
ac
y

Figure 4.13: Prediction accuracy at match minute 90 for case studies 1–7.

0 1 2 3 4 5 6 7

0.4

0.6

0.8

1

Epochs

A
cc
ur
ac
y

Figure 4.14: Prediction accuracy at full time for case studies 1–7.

37

4. Results and Evaluation

1681 174 445

1229 233 563

1105 231 999

(a) Match minute 0

1680 173 447

1213 244 568

1050 236 1049

(b) Match minute 15

1692 187 421

1174 250 601

923 261 1151

(c) Match minute 30

1745 208 347

1102 291 632

697 277 1361

(d) Match minute 45

1811 302 187

872 571 582

390 397 1548

(e) Match minute 60

1876 331 93

527 1092 406

125 504 1706

(f) Match minute 75

2067 186 47

301 1485 239

36 309 1990

(g) Match minute 90

Figure 4.15: Confusion matrices for match minute 0, 15, 30, 45, 60, 75, and 90 for
network case study 3 with two layers of 256 units.

38

4. Results and Evaluation

1925 289 86

1658 272 95

1873 328 134

(a) Match minute 0

1833 363 104

1546 352 127

1683 383 269

(b) Match minute 15

1630 517 153

1218 566 241

1187 561 587

(c) Match minute 30

1475 638 187

887 798 340

653 659 1023

(d) Match minute 45

1608 562 130

512 1129 384

249 673 1413

(e) Match minute 60

1811 422 67

336 1372 317

80 516 1739

(f) Match minute 75

2102 173 25

157 1707 161

28 233 2074

(g) Match minute 90

Figure 4.16: Confusion matrices for match minute 0, 15, 30, 45, 60, 75, and 90 for
network case study 7 with two layers of 256 units.

39

4. Results and Evaluation

since the amount of data is small. The results presented in Table 4.6 discard this
guess since no other larger network than case study 7 outperformed the network in
case study 2 at any time.

4.6 Comparison

In this section we present the result from the naive statistical model from Section
3.3, as well as human performance, to get a clear picture of what kind of performance
we have achieved.

4.6.1 Naive Statistical Model

The model is tested on matches played after 2016-11-05, which is 20% of the matches
in the dataset. After each match in the test set the TotalScore for both teams are
updated. It was able to reach 46.45% in test accuracy.

4.6.2 Human Accuracy

Since there are no recorded human predictions in our data set, different prediction
statistics have been used to get an estimation of how good humans are at predicting
the outcome of football games. Only statistics where home winner, away winner or
draw predictions have been made have been used for the estimation.

4.6.2.1 Betting Companies

Odds from 5 different betting companies were collected, A, B, C, D and E. We
gathered odds for 5 leagues and 2 tournaments between 2017-04-18 and 2017-05-21,
which once is shown in Table 4.7.

League/Tournament Region
La Liga Spain
Bundesliga Germany
Premier League England
Serie A Italy
Ligue 1 France
Champions League Europe
Europa League Europe

Table 4.7: Leagues and tournaments that odds were gathered for.

For each game we assume that the team with the lowest odds on it is the predicted
winner, without taking to account that betting companies can change their odds

40

4. Results and Evaluation

for economical benefits. All odds are gathered after the lineups for each game is
released, which can affect the odds. Table 4.8 show the accuracy and prediction
distribution of the betting companies. What matches are selected for each company
differs since the data could only be collected between the release of the lineups and
the start of the match. The data for some matches could therefore not be collected
for all betting companies in time. Equal odds is when the betting company have
the lowest odds on two or more outcomes.

Company Predicted Games Accuracy Predictions
A 64 48.44% Home win: 64.06%

Draw: 0.0%
Away win: 35.94%
Equal odds: 0.0%

B 61 49.18% Home win: 62.30%
Draw: 0.0%
Away win: 36.07%
Equal odds: 1.64%

C 63 47.62% Home win: 61.90%
Draw: 0.0%
Away win: 38.10 %
Equal odds: 0.0%

D 62 46.77% Home win: 61.29%
Draw: 0.0%
Away win: 38.71 %
Equal odds: 0.0%

E 63 50.79% Home win: 61.90%
Draw: 0.0%
Away win: 36.51%
Equal odds: 1.59%

Table 4.8: Betting companies, their accuracy and prediction distribution.

4.6.2.2 10 Newspapers

Since the 1960s there have been something called 10 Newspapers bets in Sweden
(10 tidningars tips)1. Sports experts from each newspaper/magazine, both national
and local, predict the outcome of 13 games each week, a total of 676 games. The
paper with most correct predictions at the end of the year wins. Table 4.9 show the
accuracy of the 10 newspapers competing in 20152.

1http://www.spelaspel.se/odds/tio-tidningars-tips
2https://om.svenskaspel.se/2016/01/18/vinnare-tio-tidningars-tips-2015/

41

http://www.spelaspel.se/odds/tio-tidningars-tips
https://om.svenskaspel.se/2016/01/18/vinnare-tio-tidningars-tips-2015/

4. Results and Evaluation

Newspaper Accuracy
Sydsvenska dagbladet 46.75%
Expressen 46.60%
Aftonbladet 46.45%
Dala-Demokratin 46.45%
Borlänge Tidning 45.86%
Vi Tippa 45.86%
TT 45.71%
Dagens Spel 45.56%
Skånska Dagbladet 45.12%
Dagens Nyheter 43.05%

Table 4.9: Competitors in the 10 Newspapers challenge 2015 and their accuracy.

4.6.2.3 Forza Football Users

The Forza Football application has the possibility for users to predict the outcome
of a game. By comparing which outcome for a match that got the highest amount
of predictions with the actually outcome we were able to get an insight into the
accuracy of football fans. We looked at matches between 2015-06-01 and 2017-04-
01. Table 4.10 shows the accuracy depending on how many predictions the games
have.

Predictions Amount of Matches Accuracy
All matches 83963 47.49%
>100 predictions 40916 50.92%
>500 predictions 17490 52.57%
>1000 predictions 10520 54.34%
>5000 predictions 2858 59.13%
>10000 predictions 1215 59.50%
>20000 predictions 317 55.21%

Table 4.10: Accuracy for Forza Football users predictions. The predictions can be
made both before and after the lineups are known.

Since users just predict without any chance of winning money, gut feeling might play
a big role in how they predict. They are more likely to predict wins for their favourite
teams or against teams that they don’t like when there is no reward involved.

4.6.3 Discussion

The human accuracy on predicting the outcome of football matches is difficult to
measure. The accuracy differs depending on what matches are predicted. Predic-
tions on different leagues and tournaments give different accuracies and humans
predict the outcome on a much smaller set of leagues and tournaments than the
network. This makes it hard compare the network against human accuracy.

42

4. Results and Evaluation

Other statistical models are made for one or few leagues and can therefore be tuned
to work for that specific league or leagues. Therefore it is not entirely fair to compare
it with other models.

The human accuracy and the naive statistical model accuracy should just be viewed
as a guideline of what peformance the network should have.

4.7 Remarks and Further Discussion

One theory of why the prediction accuracy is not higher is that the networks have
problems with learning multi-dimensional representations of the teams and players.
This could be solved with having deeper data about the matches. Since each match
does not have more information than teams, lineups, goals, assists, penalties, card
and substitutions, a lot of leagues have to be used. Since the data set only consists
of the 2-3 last seasons for each league and tournament, a lot of different leagues,
without any large amount of transfers between them, have to be used to get enough
amount of data. If a smaller set of leagues were used, however with more seasons for
each league and more data about each match, most of the teams and players would
occur more often in the dataset. This would probably require a bigger network to
be able to use all the data and to learn more about the players and the teams and
thereby make better predictions. Also the only pure positive event for a team during
a game in our dataset are goals and penalties. These events include forwards and
midfielder a lot more than defenders and goalkeepers. Therefore the network might
not realise the importance of which defenders and goalkeepers play in a game.

One important thing to take in consideration when predicting games is the physical
and psychological health of the team and the players. These are things that are hard
to both gather information about, to put a measure on and use for a computer.

Since there exist few documented predictions from one and the same person over
a lot of matches it is hard to measure how good he performance of the network is
compared to humans. For the competitions that exist, the competitors are able to
concentrate on a few leagues while the network predicts the outcome for matches
all over the world. This also increases the difficulty with compareing the network
against a human.

43

4. Results and Evaluation

44

5
Conclusion

A LSTM network performs wells on classification and has potential to perform
well on predictions of the outcome of football games. Using the proposed LSTM
architecture the final test classification accuracy of the outcome was 98.63% for the
many-to-one approach and 88.68% for the many-to-many approach. When only
teams and lineups are known the prediction accuracy is 34.30% for many-to-one
and 45.90% for many-to-many. The more informaion the networks are fed about a
match, i.e. the longer an ongoing match is played, the better the network performce
on predicting the outcome. At full time many-to-one reached 98.63% and many-
to-many 88.68%. This is no suprise since more information should lead to better
predictions. However, the increased prediction accuracy over minutes played in a
match indicates that the network is able to learn about football.

Future work can be performed on this subject; for example, different data could
be used, different inputs and architectures could be tested and other things than
winner could be predicted, such as the amout of goals or cards.

45

5. Conclusion

46

Bibliography

[1] Martín Abadi et al. “Tensorflow: Large-scale machine learning on heteroge-
neous distributed systems”. In: arXiv preprint arXiv:1603.04467 (2016).

[2] Burak Galip Aslan and Mustafa Murat Inceoglu. “A comparative study on
neural network based soccer result prediction”. In: Intelligent Systems De-
sign and Applications, 2007. ISDA 2007. Seventh International Conference
on. IEEE. 2007, pp. 545–550.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine
Translation by Jointly Learning to Align and Translate”. In: CoRR abs/1409.0473
(2014). url: http://arxiv.org/abs/1409.0473.

[4] Yoshua Bengio et al. “A neural probabilistic language model”. In: Journal of
machine learning research 3.Feb (2003), pp. 1137–1155.

[5] Antoine Bordes et al. “Learning structured embeddings of knowledge bases”.
In: Conference on artificial intelligence. EPFL-CONF-192344. 2011.

[6] John S Bridle. “Probabilistic interpretation of feedforward classification net-
work outputs, with relationships to statistical pattern recognition”. In: Neu-
rocomputing. Springer, 1990, pp. 227–236.

[7] Kyunghyun Cho et al. “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation”. In: CoRR abs/1406.1078 (2014).
url: http://arxiv.org/abs/1406.1078.

[8] Junyoung Chung et al. “Empirical evaluation of gated recurrent neural net-
works on sequence modeling”. In: arXiv preprint arXiv:1412.3555 (2014).

[9] Vataya Chunwijitra, Ananlada Chotimongkol, and Chai Wutiwiwatchai. “A
Hybrid Input-type Recurrent Neural Network for LVCSR Language Model-
ing”. In: EURASIP J. Audio Speech Music Process. 2016.1 (Dec. 2016), 93:1–
93:12. issn: 1687-4714. doi: 10.1186/s13636- 016- 0093- x. url: https:
//doi.org/10.1186/s13636-016-0093-x.

[10] Ronan Collobert and Jason Weston. “A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning”. In: Proceed-
ings of the 25th international conference on Machine learning. ACM. 2008,
pp. 160–167.

[11] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient meth-
ods for online learning and stochastic optimization”. In: Journal of Machine
Learning Research 12.Jul (2011), pp. 2121–2159.

[12] David Geer. “Chip makers turn to multicore processors”. In: Computer 38.5
(2005), pp. 11–13.

47

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1406.1078
http://dx.doi.org/10.1186/s13636-016-0093-x
https://doi.org/10.1186/s13636-016-0093-x
https://doi.org/10.1186/s13636-016-0093-x

Bibliography

[13] Felix A Gers and Jürgen Schmidhuber. “Recurrent nets that time and count”.
In: Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-
ENNS International Joint Conference on. Vol. 3. IEEE. 2000, pp. 189–194.

[14] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. “Learning to for-
get: Continual prediction with LSTM”. In: Neural computation 12.10 (2000),
pp. 2451–2471.

[15] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Domain adaptation for
large-scale sentiment classification: A deep learning approach”. In: Proceedings
of the 28th international conference on machine learning (ICML-11). 2011,
pp. 513–520.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[17] Alex Graves. “Long short-term memory”. In: Supervised Sequence Labelling
with Recurrent Neural Networks (2012), pp. 37–45.

[18] Jordan Gumm, Andrew Barrett, and Gongzhu Hu. “A machine learning strat-
egy for predicting march madness winners”. In: Software Engineering, Arti-
ficial Intelligence, Networking and Parallel/Distributed Computing (SNPD),
2015 16th IEEE/ACIS International Conference on. IEEE. 2015, pp. 1–6.

[19] Geoffrey Hinton, NiRsh Srivastava, and Kevin Swersky. “Neural Networks for
Machine Learning Lecture 6a Overview of mini–batch gradient descent”. In:
(2012).

[20] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:
Neural computation 9.8 (1997), pp. 1735–1780.

[21] Sepp Hochreiter et al.Gradient Flow in Recurrent Nets: the Difficulty of Learn-
ing Long-Term Dependencies. 2001.

[22] Roger A Horn. “The hadamard product”. In: Proc. Symp. Appl. Math. Vol. 40.
1990, pp. 87–169.

[23] Josip Hucaljuk and Alen Rakipović. “Predicting football scores using machine
learning techniques”. In: MIPRO, 2011 Proceedings of the 34th International
Convention. IEEE. 2011, pp. 1623–1627.

[24] Anito Joseph, Norman E Fenton, and Martin Neil. “Predicting football results
using Bayesian nets and other machine learning techniques”. In: Knowledge-
Based Systems 19.7 (2006), pp. 544–553.

[25] Kamran Karimi, Neil G Dickson, and Firas Hamze. “A performance compar-
ison of CUDA and OpenCL”. In: arXiv preprint arXiv:1005.2581 (2010).

[26] Douwe Kiela and Léon Bottou. “Learning Image Embeddings using Convo-
lutional Neural Networks for Improved Multi-Modal Semantics”. In: Proceed-
ings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP-14). Doha, Qatar, 2014.

[27] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-
mization”. In: CoRR abs/1412.6980 (2014). url: http://arxiv.org/abs/
1412.6980.

[28] David Luebke. “CUDA: Scalable parallel programming for high-performance
scientific computing”. In: Biomedical Imaging: From Nano to Macro, 2008.
ISBI 2008. 5th IEEE International Symposium on. IEEE. 2008, pp. 836–838.

48

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Bibliography

[29] Tomas Mikolov et al. “Distributed Representations of Words and Phrases
and their Compositionality”. In: CoRR abs/1310.4546 (2013). url: http :
//arxiv.org/abs/1310.4546.

[30] Tomas Mikolov et al. “Efficient estimation of word representations in vector
space”. In: arXiv preprint arXiv:1301.3781 (2013).

[31] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In:
arXiv preprint arXiv:1312.5602 (2013).

[32] David Silver et al. “Mastering the game of Go with deep neural networks and
tree search”. In: Nature 529.7587 (2016), pp. 484–489.

[33] Richard Socher et al. “Parsing natural scenes and natural language with re-
cursive neural networks”. In: Proceedings of the 28th international conference
on machine learning (ICML-11). 2011, pp. 129–136.

[34] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks
from overfitting”. In: Journal of Machine Learning Research 15.1 (2014), pp. 1929–
1958.

[35] D Steinkraus, I Buck, and PY Simard. “Using GPUs for machine learning al-
gorithms”. In: Document Analysis and Recognition, 2005. Proceedings. Eighth
International Conference on. IEEE. 2005, pp. 1115–1120.

[36] John E Stone, David Gohara, and Guochun Shi. “OpenCL: A parallel pro-
gramming standard for heterogeneous computing systems”. In: Computing in
science & engineering 12.3 (2010), pp. 66–73.

[37] Jaeyong Sung, Ian Lenz, and Ashutosh Saxena. “Deep Multimodal Embed-
ding: Manipulating Novel Objects with Point-clouds, Language and Trajecto-
ries”. In: CoRR abs/1509.07831 (2015). url: http://arxiv.org/abs/1509.
07831.

[38] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Sequence to Sequence Learning
with Neural Networks”. In: CoRR abs/1409.3215 (2014). url: http://arxiv.
org/abs/1409.3215.

[39] Peter D Turney and Patrick Pantel. “From frequency to meaning: Vector space
models of semantics”. In: Journal of artificial intelligence research 37 (2010),
pp. 141–188.

[40] DRGHR Williams and Geoffrey Hinton. “Learning representations by back-
propagating errors”. In: Nature 323.6088 (1986), pp. 533–538.

[41] David A Wilson. “Convolution and Hankel operator norms for linear systems”.
In: IEEE Transactions on Automatic Control 34.1 (1989), pp. 94–97.

[42] SHI Xingjian et al. “Convolutional LSTM network: A machine learning ap-
proach for precipitation nowcasting”. In: Advances in Neural Information Pro-
cessing Systems. 2015, pp. 802–810.

[43] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. “Recurrent Neural Net-
work Regularization”. In: CoRR abs/1409.2329 (2014). url: http://arxiv.
org/abs/1409.2329.

49

http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1509.07831
http://arxiv.org/abs/1509.07831
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1409.2329

Bibliography

50

Appendix A

Raw data

{
"liveData": {

"card": [
{

"contestantId": "a3nyxabgsqlnqfkeg41m6tnpp",
"lastUpdated": "2017-02-13T20:10:56.553Z",
"optaEventId": "1381274270",
"periodId": 1,
"playerId": "eczc8ttdfagqliov10cuqeuol",
"playerName": "Y. Toure",
"timeMin": 10,
"type": "YC"

}
],
"goal": [

{
"contestantId": "a3nyxabgsqlnqfkeg41m6tnpp",
"lastUpdated": "2017-02-13T20:29:43.523Z",
"optaEventId": "1268066259",
"periodId": 1,
"scorerId": "e9l5r0txzrjbenli05rn3k4wl",
"scorerName": "R. Sterling",
"timeMin": 29,
"type": "G"

},
{

"contestantId": "1pse9ta7a45pi2w2grjim70ge",
"lastUpdated": "2017-02-13T21:41:59.188Z",
"optaEventId": "491505339",
"periodId": 2,
"scorerId": "2smmv9hdoiet7necaf00ol51x",
"scorerName": "T. Mings",
"timeMin": 69,
"type": "OG"

I

A. Raw data

}
],
"lineUp": [

{
"contestantId": "1pse9ta7a45pi2w2grjim70ge",
"player": [

{
"firstName": "Artur",
"lastName": "Boruc",
"matchName": "A. Boruc",
"playerId": "eaeh3ogbfsfp0obus2wk66r4l",
"position": "Goalkeeper",
"positionSide": "Centre",
"shirtNumber": 1

},
{

"firstName": "Dan",
"lastName": "Gosling",
"matchName": "D. Gosling",
"playerId": "80y7k4ht4s4nkta9wnf30y40l",
"position": "Substitute",
"shirtNumber": 4

}
],
"teamOfficial": {

"firstName": "Eddie",
"id": "ezlkz2b39qic4wu066cgl1o0l",
"lastName": "Howe",
"type": "manager"

}
},
{

"contestantId": "a3nyxabgsqlnqfkeg41m6tnpp",
"player": [

{
"firstName": "Wilfredo Daniel",
"lastName": "Caballero",
"matchName": "W. Caballero",
"playerId": "6bhm9cfkwxv5ojh49rqv11g45",
"position": "Goalkeeper",
"positionSide": "Centre",
"shirtNumber": 13

},
{

"firstName": "Fabian",
"lastName": "Delph",

II

A. Raw data

"matchName": "F. Delph",
"playerId": "9q6c7nbjhgwp2yrelznmk1gb9",
"position": "Substitute",
"shirtNumber": 18

}
],
"teamOfficial": {

"firstName": "Josep",
"id": "3r7wi8r14k888ip3y2bzbacid",
"lastName": "Guardiola i Sala",
"type": "manager"

}
}

],
"matchDetails": {

"matchLengthMin": 98,
"matchLengthSec": 29,
"matchStatus": "Played",
"period": [

{
"end": "2017-02-13T20:50:28Z",
"id": 1,
"lengthMin": 50,
"lengthSec": 16,
"start": "2017-02-13T20:00:12Z"

},
{

"end": "2017-02-13T21:53:50Z",
"id": 2,
"lengthMin": 48,
"lengthSec": 13,
"start": "2017-02-13T21:05:37Z"

}
],
"periodId": 14,
"scores": {

"ft": {
"away": 2,
"home": 0

},
"ht": {

"away": 1,
"home": 0

},
"total": {

"away": 2,

III

A. Raw data

"home": 0
}

},
"winner": "away"

},
"missedPen": [],
"substitute": [

{
"contestantId": "a3nyxabgsqlnqfkeg41m6tnpp",
"lastUpdated": "2017-02-13T20:15:31.422Z",
"periodId": 1,
"playerOffId": "d66tmyj9pt69gub8pcjgo3bh1",
"playerOffName": "Gabriel Jesus",
"playerOnId": "5ch5dk1z9opa2iwd64kb4e5sl",
"playerOnName": "S. Aguero",
"timeMin": 15

}
]

},
"matchInfo": {

"competition": {
"country": {

"id": "1fk5l4hkqk12i7zske6mcqju6",
"name": "England"

},
"id": "2kwbbcootiqqgmrzs6o5inle5",
"name": "Premier League"

},
"contestant": [

{
"country": {

"id": "1fk5l4hkqk12i7zske6mcqju6",
"name": "England"

},
"id": "1pse9ta7a45pi2w2grjim70ge",
"name": "AFC Bournemouth",
"position": "home"

},
{

"country": {
"id": "1fk5l4hkqk12i7zske6mcqju6",
"name": "England"

},
"id": "a3nyxabgsqlnqfkeg41m6tnpp",
"name": "Manchester City",
"position": "away"

IV

A. Raw data

}
],
"date": "2017-02-13Z",
"description": "AFC Bournemouth vs Manchester City",
"id": "9n1lozeiz5rv8atl9hs5cjkyx",
"lastUpdated": "2017-02-13T22:16:15Z",
"ruleset": {

"id": "79plas4983031idr6vw83nuel",
"name": "Men"

},
"sport": {

"id": "289u5typ3vp4ifwh5thalohmq",
"name": "Soccer"

},
"time": "20:00:00Z",
"tournamentCalendar": {

"endDate": "2017-05-21Z",
"id": "2c1fh40r28amu4rgz0q66ago9",
"name": "Premier League 2016/2017",
"startDate": "2016-08-13Z"

},
"venue": {

"id": "8vnu2g41orfaa25n2djgrv4jm",
"longName": "Vitality Stadium",
"shortName": "Vitality Stadium"

},
"week": "25"

}
}

V

A. Raw data

VI

Appendix B

Leagues and tournaments

League Region Seasons
Premier League England 2015/2016, 2016/2017
Championship England 2015/2016, 2016/2017
FA Cup England 2015/2016, 2016/2017
League Cup England 2015/2016, 2016/2017
La Liga Spain 2015/2016, 2016/2017
Segunda B Spain 2015/2016, 2016/2017
Copa Del Rey Spain 2015/2016, 2016/2017
Bundesliga Germany 2015/2016, 2016/2017
2 Bundesliga Germany 2015/2016, 2016/2017
DFB Pokal Germany 2015/2016, 2016/2017
Ligue 1 France 2015/2016, 2016/2017
Ligue 2 France 2015/2016, 2016/2017
Coupe De France France 2015/2016, 2016/2017
Serie A Italy 2015/2016, 2016/2017
Serie B Italy 2015/2016, 2016/2017
Copa Italia Italy 2015/2016, 2016/2017
Primeira Liga Portugal 2015/2016, 2016/2017
Segunda Liga Portugal 2015/2016, 2016/2017
Taca Da Liga Portugal 2015/2016, 2016/2017
Premier League Russia 2015/2016, 2016/2017
2 Devision Russia 2015/2016, 2016/2017
Cup Russia 2015/2016, 2016/2017
Premier League Ukraine 2015/2016, 2016/2017
Druha Liga Ukraine 2015/2016, 2016/2017
Cup Ukraine 2015/2016, 2016/2017
First Division A Belgium 2015/2016, 2016/2017
First Division B Belgium 2015/2016, 2016/2017
Cup Belgium 2015/2016, 2016/2017
Super Lig Turkey 2015/2016, 2016/2017
2 Lig Turkey 2015/2016, 2016/2017
Cup Turkey 2015/2016, 2016/2017

VII

B. Leagues and tournaments

League Region Seasons
First League Czech Republic 2015/2016, 2016/2017
Super League Switzerland 2015/2016, 2016/2017
Eredivisie Netherlands 2015/2016, 2016/2017
Super League Greece 2015/2016, 2016/2017
Bundesliga Austria 2015/2016, 2016/2017
1. HNL Croatia 2015/2016, 2016/2017
Liga 1 Romania 2015/2016, 2016/2017
Superliga Denmark 2015/2016, 2016/2017
Premier League Belarus 2015/2016, 2016/2017
Ekstraklasa Poland 2015/2016, 2016/2017
Allsvenskan Sweden 2015, 2016, 2017
Major League Soccer USA 2016, 2017
Serie A Brazil 2016, 2017
Liga MX Mexico 2015/2016, 2016/2017
Primera Division Argentina 2016, 2016/2017
Liga Alef Israel 2015/2016, 2016/2017
Championship Scotland 2015/2016, 2016/2017
Primera Division Uruguay 2015/2016, 2016/2017
A League Australia 2015/2016, 2016/2017
Super League China 2015, 2016, 2017
J1 League Japan 2015, 2016, 2017
Super Liga Slovakia 2015/2016, 2016/2017
Fl1 active cup Liechtenstein 2015/2016, 2016/2017
NB1 Hungary 2015/2016, 2016/2017
Divizia Nationala Moldovia 2015/2016, 2016/2017
1 Deild Iceland 2015, 2016, 2017
Veikkausliiga Finland 2015, 2016, 2017
Superliga Albania 2015/2016, 2016/2017
Premier Division Republic of Ireland 2015, 2016, 2017
Premier Liga Bosnia and Herzegovina 2015/2016, 2016/2017
Erovnuli liga Georgia 2015/2016, 2016, 2017
Virsliga Latvia 2015, 2016, 2017
First league Macedonia 2015/2016, 2016/2017
Esiliiga A Estonia 2015, 2016, 2017
First League Montenegro 2015/2016, 2016/2017
Premier League Armenia 2015/2016, 2016/2017
National Division Luxembourg 2015/2016, 2016/2017
A Lyga Lithuania 2015, 2016, 2017
Premier League Malta 2015/2016, 2016/2017
Premier League Wales 2015/2016, 2016/2017
1 Deild Faroe Islands 2015, 2016, 2017
Premier Division Gibraltar 2015/2016, 2016/2017
1 Divisio Andorra 2015/2016, 2016/2017
Campionato San Marino 2015/2016, 2016/2017
Champions League Europe 2015/2016, 2016/2017
Europa League Europe 2015/2016, 2016/2017
Club World Cup Worldwide 2015/2016, 2016/2017VIII

	List of Figures
	List of Tables
	Introduction
	Background
	Goals
	Constraints
	Problem Formulation
	Disposition

	Background Theory
	Machine Learning
	Neural Networks
	Deep Learning
	Recurrent Neural Networks
	Long Short-Term Memory
	Gated Recurrent Unit

	Dropout
	Embeddings
	Softmax Classifier
	Cross Entropy Error
	Adam Optimizer
	Hardware
	Central Processing Unit
	Graphics Processing Unit

	Software Libraries

	Predicting the Outcome of Football Matches
	Challenges in Predicting the Outcome of Football Matches
	Previous Work

	Proposed Methods for Football Match Prediction
	Data
	Network Input
	Deep Embeddings
	One-Hot Vector with all Attributes
	Concatenated Embedding Vectors for all Attributes

	Naive Statistical Model
	Deep Learning Architecture
	Many-To-One
	Many-To-Many

	Results and Evaluation
	Setup
	Dataset
	Training
	Tuning Parameters

	Classification
	Discussion

	Prediction
	Discussion

	Comparison
	Naive Statistical Model
	Human Accuracy
	Betting Companies
	10 Newspapers
	Forza Football Users

	Discussion

	Remarks and Further Discussion

	Conclusion
	Raw data
	Leagues and tournaments

