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Abstract

In order to improve the confinement time for tokamak type fusion reactors the
nature of turbulent transport in fusion plasmas needs to be better understood.
In this thesis the transport predicted by an advanced fluid model, called the
Weiland model, will be investigated analytically to further the understanding
of which factors contribute to both inward and outward transport in various
circumstances. The analytical expressions are then used to investigate how the
flux of particles and heat relate to the density and temperature gradients in the
plasma.
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Nomenclature

Most of the reoccurring abbreviations and symbols are described here. Note
that we write ∇ = ∂x = ∂

∂x below.

Symbols

Inverse gradient length Lf = − f
∇f

Cyclotron frequency ωc = |q|B
m

Larmor radius ρ = v⊥
ωc

Fraction of trapped electrons ft
εn = 2Ln

LB

ηj =
Lnj

LTj

τ = Te

Ti

ωDj = 2
k⊥Tj

qB
∇B
B

Nj = ω2 − 10
3 ωωDj + 5

3ω
2
Dj

N̂j = Nj/ω
2
De

ω̂ = ω/ωDe

Abbreviations

ITG Ion Temperature Gradient
TEM Trapped Electron Mode
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Introduction

The need for clean and safe energy

The increased demand for energy coupled with the ambition to decrease the
environmental impact resulting from the use of fossil fuel makes it necessary to
seek out new non-polluting alternatives to such energy sources as oil, coal and
traditional nuclear power. Such alternatives in current use include solar, wind
and hydroelectric power. In the case of solar and wind power, their variation in
energy output makes them unsuitable to replace the need for energy stemming
from large energy consumers such as industris and huge cities. They will however
work very well as a complement, coupled with general energy conservation, in
providing energy locally on a smaller scale.

Hydroelectric power is a more stable source of energy but its utility varies
greatly depending on different countries access to huge bodies of flowing water.
Sweden, for example, gets around 45% of its base energy from hydroelectric
power, while the number for the Unites States is 9%, and for the world overall
around 2%1.

Fusion as an energy source has great potential to be a key component for
future sustainable energy production. Since the energy produced stems from
nuclear reactions rather than chemical, which is the case for oil and coal, it is
estimated to release approximately one million times more energy per reaction.
This means that the amount of fuel for producing the same amount of energy
is greatly decreased. It is estimated that we have fairly easy access to over 20
000 years of inexpensive fuel on earth needed for the deuterium-trituim reaction
that is projected to be the fusion reaction used for the first generation of fusion
power plants. In time, the more difficult to induce deuterium-deuterium reaction
is hoped to be used, extending the availability of fuel to billions of years as
deuterium can be easily extracted from ordinary sea water, while tritium must
be created continuously from lithium due to the fact that tritium is radioactive
with a relatively short half-life of 12 years.

Besides the benefit of producing huge amounts of energy a fusion reactor
would have several other benefits. First of all, there are no CO2 emissions
whatsoever, nor any other chemically reactive substances, since the main rest
product from the deuterium-tritium reaction would be regular chemically inert
helium 4He. There would be some radioactive material due to the wall of the
reactor being activated by high energy neutrons, that would need to be stored for
some time, but the time scale would be much shorter than that of traditional
nuclear waste. Further, since the fusion reactor would not depend on chain

1See [1], chapter 1.
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2 Contents

reactions between the nuclei, as is the case for current nuclear power plants,
the risk of an accelerated reaction resulting in a possible meltdown would be
removed.

However, the construction of a fusion reactor is not without its obstacles.
In order to induce a sustained fusion reaction a fusion plasma must be created
and heated to over 108 K while being held in place by a magnetic field so that
particles keep fusing and not diffuse out of the plasma core and thus ending
the sustained reaction. The main focus on this thesis is to model the heat and
particle flux in a magnetically confined plasma given by an analytical treatment
of the Weiland model, an advanced fluid model developed at Chalmers.

Topics covered

Main topics dealt with are:

Chapter 1: We give a brief introduction to nuclear fusion reactions and some
basic plasma physics needed in order to understand how fusion plasmas
work. We also describe the Tokamak, which is currently the most vi-
able option for being the first fusion reactor to achieve sustained ignition
through magnetic confinement.

Chapter 2: The approach of kinetic modelling of plasmas is introduced and
we derive the fluid equations used for describing a fusion plasma. The
assumptions of the so called Weiland model, which is a successful model
of fusion plasmas developed at Chalmers, are described and some of the
most important results are given.

Chapter 3: We treat earlier know results of the Weiland model analytically in
order to better see what dependencies the flux of particles and heat have.
We also intoduce the concept of the peaking factor and present a possible
application of the model relevant to a method of injecting fuel into the
reactor, called pellet fueling.

Chapter 4: Using the equations for particle flux we use Matlab in order to
investigate the relation between the particle density gradient and the par-
ticle flux. In this process we also find values for the peaking factors and
how they relate to various conditions.

Summary and conclusions: A recap of results and suggestions for further
study.

Appendix A: Derivation of the ITG and TE modes from quasi-neutrality.

Appendix B: Calculation of the heat fluxes and related peaking factors made
in the same way as we calculated the particle flux in chapter 3.



Chapter 1

Fusion and plasma physics

1.1 The nucleus and nuclear reactions.

The atomic nucleus consists of positively charged protons and uncharged neu-
trons. The number of protons Z determines the element of the atom, while the
number of neutrons N can vary slightly, giving rise to different isotopes of the
same element. For example, the simplest element hydrogen has in its basic form
Z = 1 and N = 0, but also has naturally occuring isotopes with N = 1 and
N = 2, called deuterium D and tritium T respectively.

Figure 1.1: Hydrogen, deuterium and tritium nuclei.

The nucleus is held together by the strong nuclear force, counteracting the
Coulomb repulsion resulting from the positively charged protons. This strong
residual force dominates shorter length scales than the electromagnetic Coulomb
forces in play due to the fact that its force carrying particles are much more
massive, resulting in the strong force’s potential being approximately ∝ 1

rer ,
while the Coulomb potential is ∝ 1

r .

This results in some nuclear configurations being unstable. When the dis-
tance between two charged particles in the nucleus grows too big the Coulomb
repulsion becomes too large for the strong force to counteract and the nucleus
breaks apart. This process is called fission and is the process used in tradi-
tional nuclear power plants. The reverse scenario when a charged particle gains
enough momentum to break through the coulomb barrier to the point where
the strong force takes over and the particle is absorbed by the nucleus is called
fusion, and is currently the subject of much research.

Ryrbo, 2015. 3



4 Chapter 1. Fusion and plasma physics

Where does the energy come from?

One finds that, if weighed, the nucleus actually has more total mass than the
sum of the masses of the particles of which it consists. This is due to the fact
that the energy binding the nucleons together gives the nucleus additional energy
through the equivalency of mass and energy given by Einsteins famous equation
E = mc2. A way to quantify the energy stored in a nucleus is by measuring the
binding energy per nucleon. If A = Z + N is the number of nucleons then the

binding energy per nucleon, usually measured in MeV, is ∆mc2

A , where ∆m is
the difference in mass between the individual nucleons and the nucleus.

An example of a nuclear reaction is

D + T→ n + 4He + 17.6 MeV

Figure 1.2: Deuterium-tritium fusion resultning in an alpha particle and a free
neutron.

where the energy comes in the form of kinetic energy for the alpha particle
and the neutron. The reaction above is in fact the reaction intended for use in
near future fusion power plants.

Overcoming the Coulomb barrier

As mentioned above, a fusion reaction takes place when two nucleons or nuclei
overcome the Coulomb barrier and get close enough to each other for the strong
nuclear force to become stronger than the electromagnetic force of repulsion.
As seen in figure (1.3), the momentum of the incoming particle must be large
enough, otherwise the particle will have its trajectory altered too much and will
pass outside the area σ where the strong force would have absorbed it into the
nucleus. In order for this to happen on a large enough scale to extract energy
of any useful amount the number of collisions per volume needs to be large and
thus also the temperature. A measure often used as a benchmark for fusion
reactors is the triple product njTjτEj

, where nj is the particle density, Tj is the
temperature and τEj

is the energy confinement time, all for species j. In order
to achieve a sustained ongoing fusion reaction it has been calculated that we
must have

njTjτEj & 3 · 1021m−3keVs

a value that so far has not been reached in any current experiment. The en-
ergy confinements time τEj

is inversely proportional to the particle and heat
transport out of the plasma which motivates further investigation into the
physics of transport, which is the main focus of this thesis.
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Figure 1.3: An incoming particle might be diverted or absorbed by the nucleus
depending on its momentum p1 or p2, where p2 > p1

1.2 Plasmas

Plasma is commonly known as the fourth state of matter, and is as far as we
can tell the most common state of ordinary matter in the observable universe.
Stars are mostly made up of plasma and in them fusion processes occur, creating
heavier elements that are eventually spread across the cosmos as the star dies.
Examples of plasmas closer to earth are lightning bolts and aurora, as well as
plasmas used in industrial applications. Our interest in plasmas comes from the
fact that it is in this state nuclear fusion occurs.

A plasma can be said to be a quasi-neutral gas consisting of freely moving
charged ions and electrons, which exhibit collective behavior. What we mean by
quasi-neutral is that the number of positive and negative charges in the plasma
is approximately equal on a macroscopic level. We express this as

ne ≈ ni (1.1)

where ne is the number of electrons and ni is the number of ions, in this case
assuming that Z = 1. The collective behavior mentioned results from the fact
that the plasma always tries to even out any regions giving an electric field due
to an excess of positive or negative charge in the area. This also means that the
plasma is very effective at blocking out electrical fields, a phenomenon known
as Debye shielding.

1.3 Fusion plasmas and tokamaks

In order for fusion reactions of hydrogen to occur on any large scale the thermal
energy needs to be on the order of hundreds of millions of degrees kelvin. This
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process occurs naturally in the centers of stars such as our sun due to gravi-
tational pressure and light elements are turned into heavier ones. Since we do
not have such great gravitational pressure at our disposal on Earth we need
to contain fusion plasmas using the electromagnetic force in machines such as
tokamaks and stellarators, of which the tokamak is currently the focus of most
research. A tokamak is a torus-shaped device with a B field running along its
azimuthal direction, which we shall call ẑ. The reason that a torus shape is used
is that it allows for field lines without endpoints. The field lines are twisted in
order to confine the plasma in the center of the torus, thus reducing additional
drifts of particles. The plasma is heated to an operating temperature above 10
keV, i.e. over 108 K , by using a combination of ohmic heating, neutral-beam
injection and radio frequency heating.

For a tokamak the Q-value is defined as the ratio between the outgoing and
incoming power in the experiment. For Q = 1 we would have break-even and
for a sustainable working fusion reactor we would need Q >> 1.

Figure 1.4: Cutaway of the ITER tokamak currently under construction at
Cadarache, France. Image taken from iter.org
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Figure 1.5: A tokamak with major radius R and minor radius a. The twisted
B field is constructed as the sum of a toroidal and an azimuthal magnetic field.

Figure 1.6: Coordinate designation in a tokamak

Transport in tokamaks

Although the plasma is ideally held in place by the twisted magnetic field in the
tokamak, particles tend to deviate from the magnetic field lines due to various
drift effects such as the centrifugal force, polarization and inhomogeneity of the
magnetic field. These effects are described in more detail in appendix C. One
usually separates the transport into two categories, where the transport due
to collisions is called classical, while all other transport is collectively called
anomalous. It has been found that anomalous transport is the dominant form
of transport in tokamaks and thus a major contribution to a lowered energy
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confinement time. The anomalous transport is caused by small scale fluctuations
in the plasma, driven by plasma instabilities.



Chapter 2

Kinetic and fluid modeling
of plasmas

The large number of individual particles in a plasma makes detailed calculations
very difficult, even with the aid of super computors, so we thus turn to a sta-
tistical method known as kinetic theory to make calculations more manageable.
We first introduce the notion of a distribution function and then define various
physical quantities in terms of this distribution function and see how they relate
to each other by imposing restrictions such as continuity, leading to the Vlasov
equation.

As the distribution function will depend on 7 variables we use the method
of taking moments of the equation, leading to a reduced set of variables needed
to describe the position of the resulting quantities. This will give us the fluid
equations known as the Braginskii equations, which we will use as our basis
for a two-fluid theory describing the motions of electrons and ions within the
plasma.

2.1 The distribution function

We define the distribution function fj(r,w, t) by letting fj(r,w, t)drdw be the
probability of finding particles of type j within the six-dimensional volume el-
ement drdw = d3rd3w located at coordinate (r,w) at time t. For clarity we
state that r represents the position and w the velocity. The reason we use this
notation is in order to be able to use v for the fluid velocity below. Also, from
now on we simply write fj(r,w, t) := fj , unless we want to write any depen-
dency explicitly. With this definition of the distribution function we now define

Ryrbo, 2015. 9



10 Chapter 2. Kinetic and fluid modeling of plasmas

Particle density nj =

∫
fjdw (2.1a)

Fluid velocity vj =
1

nj

∫
wfjdw (2.1b)

Plasma pressure pj =
mj

3

∫
|w − vj |2fjdw (2.1c)

Stress tensor πj = mj

∫
(w − vj)

2fjdw − pjI (2.1d)

Heat flux qj =
mj

2

∫
(w − vj)× |w − vj |2fjdw (2.1e)

The Vlasov equation

For a distribution function fj it can be shown in the general case that the total
derivative with respect to time to be equal to Cj +Sj , where Cj is the Coulomb
collision operator and Sj is an external particle source. Written explicitely this
becomes

dfj
dt

=
∂fj
∂t

+
∂fj
∂x

∂x

∂t
+
∂fj
∂y

∂y

∂t
+
∂fj
∂z

∂z

∂t
+
∂fj
∂wx

∂wx
∂t

+
∂fj
∂wy

∂wy
∂t

+
∂fj
∂wz

∂wz
∂t

= Cj+Sj

(2.2)
which can be written using more convenient notation as

∂fj
∂t

+ w · ∇fj + a · ∂fj
∂w

= Cj + Sj (2.3)

Using the Lorentz force equation given in equation 1.3 we can write a =
F
m = q

m (E + w ×B), giving us

∂fj
∂t

+ w · ∇fj +
qj
mj

(E + w ×B) · ∂fj
∂w

= Cj + Sj (2.4)

This is the so called Boltzmann equation. We will assume that there are no
particle sources or Coulomb collisions, thus Cj = Sj = 0, giving us the Vlasov
equation

∂fj
∂t

+ w · ∇fj +
qj
mj

(E + w ×B) · ∂fj
∂w

= 0 (2.5)
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Moments of the Vlasov equation

By taking a moment of an equation we mean integrating the equation multi-
plied by wn where n refers to the nth moment. We do this in order to lower
the dimensionality of our equations from a dependency on (r,w, t)→ (r, t). As
the zeroth, first and second moment of the Vlasov equation we get the following
equations:

Continuity equation

∂nj
∂t

+∇ · (njvj) = 0 (2.6)

Momentum balance equation

mjnj
∂vj
∂t

+mjnjvj · ∇vj = njqj(E + vj ×B)−∇pj −∇ · πj (2.7)

Energy equation

∂

∂t

(
1

2
mjnjv

2
j +

3

2
pj

)
+∇ ·

[(
1

2
mjnjv

2
j +

5

2
pj

)
vj + πj · vj + q

]
= (2.8)

qjnjE · vj
where E and B are of course governed by Maxwells equations. The continuity
equation simply states that the number of particles is conserved. The mo-
mentum balance equation can be interpreted as a fully written out version of
Newton’s second law F = ma, where the forces are gathered on the right hand
side and accelerations on the left hand side. The energy equation describes the
evolution of pressure in the plasma.

2.2 The Weiland fluid model

A model currently used in theoretical fusion plasma research at Chalmers is
the Weiland model [5]. It is based on equations 2.6-2.8 for each plasma species
j = i, e, for ions and electrons respectively. The equations are truncated by the
diamagnetic heat flux in the energy equation. We will use this model henceforth
assuming that the plasma only has one ion species present, and that it is an
isotope of hydrogen.

In order to calculate the stability properties of the plasma, we assume equa-
tions 2.6-2.8 and that the particle density n = n0 + δn and the temperature
T = T0 + δT , where δn and δT are perturbations, which are Fourier decom-
posed as ∼ ei(k·r−ωt), where k = (kx, k⊥, k‖) and r = (x, y, z), as per the
coordinate designation we introduced for a tokamak in chapter 1. It is assumed
that k‖ << k⊥ and that ω

k‖
is much larger than the thermal velocity for ions

but much smaller than the thermal velocity of the electron.
As for ω, it is generally complex with ω = ωr + iγ, with a γ > 0 generating

an instability for quantity X as

δX ∼ ei(k·r−(ωr+iγ)t) = ei(k·r−ωrt)eγt (2.9)

which we see grows indefinitely with increasing t.
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For the definitions of a plasma we assumed quasi-neutrality, which we will
now also assume to the first order in the variations of ni and ne, i.e.

δni ≈ δne (2.10)

These assumptions, coupled with equation 2.6, 2.7 and 2.6 in the low fre-
quency regime, provides the basis of the Weiland model.

In order to further investigate possible instabilities in the plasma the real fre-
quency ωr and the growth rate γ is needed. The assumption of quasi-neutrality
leads to a dispersion relation1, which is a fourth grade polynomial in ω, and thus
has at most two roots with positive imaginary part that would lead to instabil-
ities. These two modes are called the Ion Temperature Gradient mode and the
Trapped Electron mode, or ITG mode and TEM for short. In certain parameter
regions (N̂i >> N̂e and N̂e >> N̂i) these modes become decoupled as can be
described by two independent equations, which are derived in appendix A.

For the TE mode we have that the normalized growth rate γ̂ is largely driven
by the electron temperature gradient R

LTe
and the density gradient R

Ln
, while

the ITG mode is driven by the ion temperature gradient R
LTi

and the density

gradient R
Ln

works to stabilize the growth rate.
These modes and their respective growth rates are very important to study

as we have that the energy confinement time τE ∝ 1
γ3 , so it is of great interest

to see what drives these instabilities in order to be able to increase τE .
A major advantage that comes with the fluid equations is that results from

this model are much more computationally efficient than more advanced fluid
models, while still providing fairly good results when compared with experi-
ments.

1Equation A.1 in appendix A



Chapter 3

Particle transport

In a fusion plasma there are various kinds of transport due to both classical
collisions between particles but also due to the effects described in appendix
C, collectively called anomalous transport. Most of the transport in a fusion
plasma is due to this anomalous transport and in this chapter we will derive
some equations describing the flux of particles with the starting point in known
results from the Weiland model. We apply the Weiland model to two different
problems, namely finding the flux of particles and finding the value of R

Ln
for

which the flux is zero.

3.1 Particle flux

In general we have that the flux of particles in a fluid is given by

Γn =< δnvEr
>= −D∇n (3.1)

i.e the flux is calculated as a spatial and temporal average of the product
δnvEr

, where δn refers to the variation in particle density n and vEr
is the radial

electrostatic drift given by equation C.13. D is the effective particle diffusion
coefficient and will be given for the Weiland model below. In a similar way the
temperature flux is given by

ΓTj =< δTjvEr >= −χj∇Tj (3.2)

where δTj is the pertubation of Tj . In this chapter we will focus on the
transport of particles given by equation 3.1 but a similar treatment of the tem-
perature transport can be found in appendix B.

According to [3],[5] we have, for the Weiland model, that

D = − γ̂
3ωDe
k2
x

ft∆n (3.3)

where

∆n =
1

N̂

[
|ω̂2|(εn− 1) + ω̂r

(
14

3
− 2ηe−

10

3
εn

)
+

5

3

(
− 11

3
+ 2ηe +

7

3
εn

)]
(3.4)
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14 Chapter 3. Particle transport

and kx is the wave number in the x-direction, γ̂ is the growth rate, ω̂r is the
real frequency, ω̂ = ω̂r+iγ̂, ωDe is the electron diamagnetic frequency, εn = 2Ln

LB
,

ηe = Ln

LTi
and ft is the fraction of trapped electrons.

Rearranging the terms in order to make the εn and ηe dependencies clearer
we get

D = − γ̂
3ωDe
k2
x

ft

N̂

[
(|ω̂|2− 10

3
ω̂r+

35

9
)εn+(

10

3
−2ω̂r)ηe+

14

3
ω̂r−|ω̂|2−

55

9

]
(3.5)

Combining equations 3.1 and 3.5 we get

Γn =
γ̂3ωDe
k2
x

ft

N̂

[
(|ω̂|2−10

3
ω̂r+

35

9
)εn+(

10

3
−2ω̂r)ηe+

14

3
ω̂r−|ω̂|2−

55

9

]
∇n (3.6)

and by writing with εn = 2 Ln

LB
and ηe = Ln

LTe
explicitly we get

Γn =
γ̂3ωDe
k2
x

ft

N̂

[
2(|ω̂|2− 10

3
ω̂r+

35

9
)
Ln
LB

+(
10

3
−2ω̂r)

Ln
LTe

+
14

3
ω̂r−|ω̂|2−

55

9

]
∇n

(3.7)
Due to the geometry of the tokamak it can be shown using Ampere’s law

and assuming that B = B(r)r̂ that LB = R, where R is the major radius of the
tokamak. By multiplying equation 3.7 by R

n and remembering that Ln = − n
∇n ,

it can be written as

RΓn
n

= − γ̂
3ωDe
k2
x

ft

N̂

[
2(|ω̂|2−10

3
ω̂r+

35

9
)+(

10

3
−2ω̂r)

R

LTe

+(
14

3
ω̂r−|ω̂|2−

55

9
)
R

Ln

]
(3.8)

The first term inside the bracket is proportional to∇B on the non-normalized
form. The term will be positive for all values of ω̂ and thus always lead to an
inward contribution of the particle flux, which is called a pinch. For the range
of ω̂r and γ̂ in the regions we are interested in, R

Ln
will contribute to a positive

flux and thus be diffusive, while R
LTe

will have a negative contribution. However,

since both ω̂r and γ̂ are dependent on both R
Ln

and R
LTe

, we will need to conduct

simulations in order to better determine where the flux is positive or negative,
as well as where each mode is dominant.

3.2 The peaking factor

We are interested in finding for which density gradient the total flux is equal
to zero. This is the density gradient we expect to find in a steady state plasma
core where there are no particle sources. This value of the density gradient is
called the peaking factor

PF =
R

Ln

∣∣∣∣
Γn=0

(3.9)

When the peaking factor is positive it means that the density profile is
peaked, corresponding to an inward pinch. Conversely, a negative peaking fac-
tor would result from an outward pinch flux. For particles serving as fuel for
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the fusion reaction a positive peaking factor is desired, while negative peaking
factors for impurities would be greatly beneficial.
For the flux given by equation 3.8. we simply note that for the flux to be zero
we have that the terms in the brackets must add to zero. Some rearranging of
the terms yields

R

Ln

∣∣∣∣
Γn=0

=
2
(
|ω̂|2 − 10

3 ω̂r + 35
9

)
+ R

LTe

(
10
3 − 2ω̂r

)
|ω̂|2 + 55

9 −
14
3 ω̂r

(3.10)

Peaking factors for various ω̂r and γ̂

If we assume that we are close to marginal stability so that γ̂ << ω̂r ⇒ ω̂ ≈ ω̂r,
we get the general expression

R

Ln

∣∣∣∣
ω̂r>>γ̂

=
2(ω̂2

r − 10
3 ω̂r + 35

9 ) + R
LTe

( 10
3 − 2ω̂r)

ω̂2
r − 14

3 ω̂r + 55
9

(3.11)

and similarly far away from marginal stability we have γ̂ >> ω̂r

R

Ln

∣∣∣∣
γ̂>>ω̂r

=
2(γ̂2 + 35

9 ) + 10R
3LTe

γ̂2 + 55
9

(3.12)

We take a closer look at the case when the real part of ω̂ is dominant. As
shown in appendix A the real parts of the TE and ITG modes can be written
approximately as

ω̂TEMr =
10g

3
− 1

2

ft
1− ft

(
1

εn
− g
)

(3.13)

and

ω̂ITGr =
3τ + (10ft − 10− 3τ)εn

6τ(1− ft)εn
(3.14)

respectively. Using these equations we can get a complete analytical equation
for the peaking factors in these cases. For the case when the TE mode dominates
we get

R

Ln

∣∣∣∣TEM
ω̂r>>γ̂

=

100
36 g

2 − 10
6 gκ+ κ2

4 −
50
9 g + 5

3κ+ 35
9 + R

LTe

(
10
3 (1− g

2 ) + κ
)

100
36 g

2 − 10
6 gκ+ κ2

4 −
70
9 g + 7

3κ+ 55
9

(3.15)
where

κ =
ft

1− ft

(
1

εn
− g
)

=
ft

1− ft

(
2
R

Ln
− g
)

(3.16)

As for the ITG mode dominated case we get

R

Ln

∣∣∣∣ITG
ω̂r>>γ̂

=
α+ β R

LTe

ζ
(3.17)

where
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α = 18τ2ε2n − 36τ2εn + 18τ2 + 120ε2nτ(1− ft)− 120τεn(1− ft) + 200ε2n(1− ft)2

−120τ2εn(1− ft) + 400τεn(1− ft) + 120τ2εn(1− ft) + 280τ2ε2n(1− ft)2 (3.18)

β = 120τ2ε2n(1− ft)2− 36τ2εn(1− ft) + 60τε2(1− ft)2 + 18τ2ε2(1− ft) (3.19)

ζ = 9τ2ε2n − 18τ2εn + 9τ2 + 60ε2nτ(1− ft)− 60τεn(1− ft) + 100ε2n(1− ft)2

−84τ2εn(1− ft) + 280τε2n(1− ft)2 + 84τ2εn(1− ft) + 220τ2ε2n(1− ft)2 (3.20)

As can be seen the expressions for the peaking factors become rather cum-
bersome even in simple cases. A further complication comes from the fact that
in both cases we have R

Ln
on both sides of the equations since εn = 2 Ln

LB
=

2Ln

R = 2 1
R/Ln

so finding an expression for the peaking factor analytically be-

comes quite cumbersome, especially when we allow for larger γ̂. So when we
look for the peaking factor in these complicated cases we simply find R

Ln
for

which equation 3.8 equals to zero. This will be shown in more detail in chapter
4.

3.3 Pellet fueling application

A possible application for the results above is a new method of adding additional
fuel to an ignited fusion plasma called pellet fueling. It is desirable to find a
more efficient fueling method than the currently used hydrogen gas infusion and
pellet fueling is a candidate for such a method. The main idea is to shoot frozen
pellets of deuterium and tritium into the plasma in order to add more fuel for
the fusion process. However, due to the turbulent nature of the plasma only
some parts of the fuel will be absorbed and given a chance to participate in
the fusion process while the rest will be forced out of the plasma as part of the
diffusion. A projected additional benefit from pellet fueling is that it can be
used as a method to control spontaneous instabilities at the edge of the plasma,
which would reduce the long term strain on the walls of the reactor. For our
purposes we are very interested in the flux of particles for negative R

Ln
, as this

will indicate whether parts of the pellet will be sucked into the plasma core or
not.
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Figure 3.1: Exaggerated particle density for the plasma after being hit by a
pellet.
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Chapter 4

Simulations

In order to better visualize the behavior and nature of the flux of particles
resulting from the assumptions made in the approximate version of the Weiland
model used here we will investigate the particle flux and peaking factor and
their dependencies on plasma parameters such as various gradients and values
of k⊥ρ, as well as investigate how the different modes are influenced and where
each of them dominates. The simulations were done in Matlab where the values
of the various quantities depending on R

Ln
were stored in a vector and then

plotted accordingly for different values of R
LTi

and R
LTe

in order to determine

the dependency on them as well.

4.1 Particle flux in pellet fueled plasmas

We wish take a better look at the behavior of equation 3.8 as a function of R
Ln

.
In order to make the simulations more straightforward we multiply the equation

with1 k2x
ωDe

and get

k2
x

ωDe

RΓn
n

= −γ̂3 ft

N̂

[
2(|ω̂|2−10

3
ω̂r+

35

9
)+(

10

3
−2ω̂r)

R

LTe
+(

14

3
ω̂r−|ω̂|2−

55

9
)
R

Ln

]
(4.1)

We can see that Γn ∝ γ̂3, so the flux is driven by instabilities in the ITG
and TE mode and the flux is equal to zero when γ̂ = 0.

We note that the R
LTe

term will give a positive contribution to the flux for

ω̂r >
10
6 and a negative one otherwise. The R

LTi
dependency only comes in

through ω̂r and γ̂ for the the ITG mode.
The values used for the simulations are τ = 1, ft = 0.5 and k⊥ρ = 0.2,

corresponding to typical tokamak parameters used in simulations. In order to
get realistic results we use the ω̂r and γ̂ expressions for the ITG and TE modes
derived in appendix A, which are also written here for convenience.

1This does not alter the form of the graph as k2x is a positive number and ωDe =

2 k⊥Te
qB

∇B
B

= 2 k⊥Te
|q|BR

, which is also always positive. As we are mainly interested in where

the flux is positive, negative or zero, we get the same information by looking at the graph for
this equation.

Ryrbo, 2015. 19
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ITG mode frequency and growth rate

As is shown in appendix A, the solution to the dispersion relation ω̂(k) is given
by

ω̂r =
3τ + (10ft − 10− 3τ)εn

6τ(1− ft)εn
+

k2
⊥ρ

2

2εnτ(1− ft)

[
(
5

3
+

τ

1− ft
)εn− ηi− 1− τ

1− ft

]
(4.2)

and

γ̂ =

√
ηi − ηith
τεn(1− ft)

[
1− k2

⊥ρ
2

1− ft

(
1− (1 + εn)

4εn

)]
(4.3)

where

ηith ≈
2

3
+

τ

2(1− ft)

(
1

2εn
− 1

)
+

(
10(1− ft)

9τ
+

τ

4(1− ft)

)
εn+

k2
⊥ρ

2

τ

[
− τ2

8(1− ft)2ε2n
+

τ

1− ft

(
τ

8(1− ft)
− 5

6

)
1

εn
+

5τ

3(1− ft)
− 5

9
+

τ2

8(1− ft)2
+

(
5

9
− 5τ

6(1− ft)
− τ2

8(1− ft)2

)
εn

]
(4.4)

TE mode frequency and growthrate

For the TEM mode we use the same values as for the ITG mode and in addition
put the shear factor g = 1.

ω̂r =
10g

6
− 1

2

ft
1− ft

(
1

εn
− g
)

(4.5)

and

γ̂ =

√
ft(ηe − ηeth)

εn(1− ft)
(4.6)

where

ηeth =
2

3
− ft

2(1− ft)
+

10εng(1− ft)
9ft

+
ftεng

4(1− ft)
+

ft
4εng(1− ft)

(4.7)

Note that the TE mode has neither a ηi nor a k⊥ρ dependency.
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We plot the flux stemming from each mode as well as the different modes
respective ω̂r and γ̂ in order to be able to determine their effect on the flux as
a whole.

In order to keep track of when our approximations are valid we also plot
N̂i/N̂e to indicate that the TE mode approximation is valid when N̂i/N̂e << 1
and the ITG mode approximation when N̂i/N̂e >> 1, as these assumptions
were made when deriving the expression for the respective modes. We can also
tell which mode is dominant by looking at which has the largest growth rate,
and we find that both these methods agree with each other for all conducted
simulations. ITG plots are in red, TEM in blue.

We start out by looking at the case when R
LTe

<< R
LTi

, and thus the ITG

mode,driven by R
LTi

, dominates. As we can see in figure 4.1 the ITG flux

dominates, but we can only rely on these results in the region where N̂i >> N̂e,
which as can be seen in the top right corner is where R

Ln
is approximately smaller

than 5. In this region the flux goes from being negative to being positive. As for
the ω̂r for each mode, we see that they are virtually linearly dependent on R

Ln

with ω̂ITG < 0 and ω̂TE > 0 for R
Ln

. 5, while the growth rate γ̂ instead has a
maximum value and will always be positive, as can be expected from equations
4.3 and 4.6, as long as ft is not extremely large.
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Figure 4.1: R
LTi

= 8, R
LTe

= 4

We see that the peaking factor for the ITG flux is 2.2 and that the flux is
negative for smaller value and positive for larger values. The fact that the flux
is negative for negative R

Ln
is beneficial to the proposed concept of pellet fueling

as the application would only work given such an inward flux toward the plasma
core. For R

Ln
= 0 we have a negative flux for the ITG mode and a positive flux

for the TE mode. In the next section we will show additional fluxes for more
values of R

LTi
and R

LTe
in the context of evaluating the factors that affect the
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peaking factors.
For the TEM dominated case we see in figure 4.2 that N̂i << N̂e for all R

Ln
,

meaning that our approximations should yield an accurate flux overall. We note
that the shape of the flux graph resembles a mirrored version of the ITG flux
in figure 4.1. The TEM dominated flux appears to have multiple zeroes, but it
is likely that except for the zero at R

Ln
= 2.2, they do not actually represent a

real peaking factor but is due to numerical approximations.

−5 0 5

−0.5

0

0.5

1

Particle flux

R/L
n

k
x2
/ω

D
e
*
R

Γ
n
 /

n

−5 0 5
−1

0

1

2

3

4

N
i
/N

e

R/L
n

N
i/N

e

−5 0 5
0

0.5

1

1.5

γ

R/L
n

γ

−5 0 5

−5

0

5

10

ω
r

R/L
n

ω
r

Figure 4.2: R
LTi

= 2, R
LTe

= 8

In contrast to the ITG mode, the TE mode has a positive flux for negative
R
Ln

indicating that pellet fueling would not work well for this mode, which would
result in the injected fuel being transported toward the plasma edge region.
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Figure 4.3: R
LTi

= 8, R
LTe

= 8

When looking at the case when both modes contribute to the flux, as seen
in figure 4.3, we can see that the ITG flux is mostly negative and the TEM
flux mostly positive. This region for which the validity of the approximations
become uncertain exists for other values of R

LTe
and R

LTi
as well and additional

figures with more of these values are found in appendix D. As in the dominated
cases the ITG and TE mode are symmetrical which underlines the fact that
pellet fueling would only work for the ITG mode.

4.2 Peaking factors

As we saw in chapter 3, it is difficult to express the peaking factor PF = R
Ln

∣∣
Γn=0

analytically so we will simply get the peaking factor by plotting the flux given
by equation 4.1 and find the value for when Γn = 0 numerically. Since we know
from the previous section where each mode dominates, we pick suitable values
of R

LTe
and R

LTi
in order to ensure that the mode we investigate is dominant

in the relevant region. We start out by investigating the behavior of the ITG
mode for various R

LTe
and k⊥ρ.

ITG mode dominated plasmas

In figure 4.8 we have plotted the ITG mode flux for R
LTi

= 8, insuring that we

have overall ITG dominance, and set R
LTe

to 2,4,6 and 8. From the figure we

can see that as far as the peaking factor goes, it increases for larger values of
R
LTe

, consistent with the observation of a negative contribution to the flux from
R
LTe

in equation 4.1. The numerical values for the resulting peaking factors are

given in table 4.1, where we see that ω̂r increases with R
LTe

, while γ̂ decreases.
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Figure 4.4: The ITG driven particle flux with R
LTe

as a parameter. The graph

is shifted to the right with increasing R
LTe

.

R
LTe

PF ω̂r γ̂

2 2.2 -1.7120 2.2394
4 2.9 -1.4040 2.1274
6 3.6 -1.0960 1.9621
8 4.5 -0.7000 1.64463

Table 4.1: Peaking factors for the ITG mode.

Varying k⊥ρ shows that while the flux is somewhat altered, the peaking
factors stay virtually the same. Looking at equation 4.1, 4.2 and 4.3 we that
γ̂3 is a multiplicative factor so any small change in γ̂ will alter the amplitude
of Γn, but the zeros of equation 4.1 remain largely the same. We note that for
k⊥ρ = 0.4, the flux goes to infinity for large R

Ln
. This is a result a breakdown

of the approximation k2
⊥ρ

2 << 1 used to derive equations 4.2 and 4.3. Because
of this, the ηith term will never cancel out the ηi term in equation 4.3.
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Figure 4.5: The ITG driven flux with k⊥ρ as a parameter. The amplitude of
the flux increases with growing k⊥ρ.

k⊥ρ PF ω̂r γ̂
0.2 2.2 -1.7120 2.2394
0.3 2.2 -1.8937 2.1304
0.4 2.2 -2.1480 1.9776

Table 4.2: Peaking factors for the ITG mode for various k⊥ρ

TE mode dominated case

Since the TE mode does not have any k⊥ρ dependency under the present ap-
proximations, we will only investigate how the peaking factor relates to R

LTe
.

We see that ω̂r is unaffected by changes in R
LTe

so the zeros of the flux, and thus

peaking factors remain unaltered by varying R
LTe

. This is due to a cancellation

of the factor 10
3 − 2ω̂r in the term containing the R

LTe
factor in equation 4.1.

We do however get larger variation in γ̂, but this only serves to increase the
amplitude of the flux and has no major effect on the peaking factors.
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Figure 4.6: The TEM driven flux with R
LTe

as a parameter. In this graph the

amplitude of the flux increases with growing R
LTe

.

R
LTe

PF ω̂r γ̂

4 2.3 1.5333 0.3415
6 2.3 1.5333 1.0567
8 2.3 1.5333 1.4549

Table 4.3: Peaking factors for the TE mode for various R
LTe

for R
LTi

= 2.

We note that for the TE mode dominated plasmas the peaking factors are
usually smaller that for ITG mode plasmas.



Summary and conclusions

In this thesis we have tried to get a deeper insight into what drives the turbu-
lent transport of the fusion plasma contained in a tokamak. Starting with the
Weiland model and some known results, an analytical treatment of the flux of
particles and heat2 resulted in expressions for the normalized flux and how it
depends on parameters such as temperature and particle density gradients. For
cases when the eigenvalues ω̂ does not depend on the density gradient we could
even get an accurate expression for the peaking factor for the particle density.

In order to better visualize the results, simulations of the flux were made
using realistic values of ω̂r and γ̂ for both ITG and TE mode dominated plas-
mas. From these simulations it was also possible to obtain the peaking factors
and their dependency on gradients and k⊥ρ. It turned out that, overall, the
dependency on these parameters were rather weak for the parameters used in
the simulations.

When it comes to the possible application of pellet fueling it was found that
a negative density gradient would yield an inward particle flux for the ITG mode
but not for the TE mode. This means that for a ITG mode dominated plasma
it would be possible to insert additional fuel into the plasma core by the method
of pellet fueling.

Possible future work

In order to see how accurate the flux derived analytically from the fluid equations
of the Weiland model are, further study and comparison with more advanced
models can be done. For example, the simulations should be done for more
values of τ, ft, g and so on. If gyrokinetic simulations were carried out they
could be compared to the results in this thesis in order to determine their accu-
racy, and if so, could possible indicate any advantages that comes from using a
computationally efficient fluid model. If the differences between the fluid sim-
ulations and gyrokinetic simulations are minor, using the fluid equations could
save computing time for simulations in certain regimes. Ultimately though, the
results must be compared to experiments, which would determine their accuracy
and eventual usefulness.

2See appendix B

Ryrbo, 2015. 27
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[8] A. Heikkilä and J. Weiland (1993), Transport dure to ion-temperature-
gradient-driven magnetic modes, Chalmers University of Technology,
Gothenburg.

[9] A. Skyman, D. Tegnered, H. Nordman, P. Strand (2014), Gyrokinetic mod-
elling of stationary electron and impurity profiles in tokamaks, Chalmers
University of Technology, Gothenburg.

[10] J. Andersson, H. Nordman, R. Singh, J. Weiland (2006), Zonal flow gener-
ation in collisioness trapped electron mode turbulence, Chalmers University
of Technology, Gothenburg.

Ryrbo, 2015. 29



30 Bibliography



Appendix A

Derivations

Finding ω̂ = ω̂r + iγ̂ from quasi-neutrality

We start by assuming quasi-neutrality and writing the fraction of trapped elec-
trons as ft, which can, according to [3], be written as

N̂iN̂eεn
Te
eφ

[
δni
ni
− ft

δnet
net
− (1− ft)

δnep
nep

]
= 0 (A.1)

Assuming that the passing electrons are adiabatic we have

δnep
nep

=
eφ

Te
(A.2)

In [3], it is shown that

δnet
net

=
eφ

Te

1

N̂e

1

εn

[
ω̂(1− εn) + ηe +

5

3
εn −

7

3

]
(A.3)

and

δni
ni

=
eφ

Te

1

N̂i

1

εn
ω̂2
De

[
− ω̂2k2

⊥ρ
2εn + ω̂

(
1− εn −

5

3
k2
⊥ρ

2 εn
τ
− k2
⊥ρ

2 1 + ηi
τ

)

−1

τ

(
ηi −

7

3
+

5

3
εn

)
− k2ρ2 5

3τ2
(1 + ηi)

]
(A.4)

Inserting equation A.2, A.3 and A.4 into A.1 gives

N̂e

[
− ω̂2k2ρ2εn + ω̂

(
1− εn − k2

⊥ρ
2 5εn

3τ
− k2
⊥ρ

2 1 + ηi
τ

)

−1

τ

(
ηi −

7

3
+

5

3
εn

)
− k2
⊥ρ

2 5

3τ2
(1 + ηi)

]
=

= (1− ft)N̂iN̂eεn + ftN̂i

[
ω̂(1− εn) +

(
ηe −

7

3
+

5

3
εn

)]
(A.5)
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Dividing this equation with N̂iN̂e gives

1

N̂i

[
− ω̂2k2

⊥ρ
2εn + ω̂

(
1− εn − k2

⊥ρ
2 5εn

3τ
− k2
⊥ρ

2 1 + ηi
τ

)

−1

τ

(
ηi −

7

3
+

5

3
εn

)
− k2
⊥ρ

2 5

3τ2
(1 + ηi)

]
=

= (1− ft)εn +
ft

N̂e

[
ω̂(1− εn) +

(
ηe −

7

3
+

5

3
εn

)]
(A.6)

The ITG mode

For N̂i << N̂e equation A.6 can be reduced to[
− ω̂2k2

⊥ρ
2εn + ω̂

(
1− εn − k2

⊥ρ
2 5εn

3τ
− k2
⊥ρ

2 1 + ηi
τ

)

−1

τ

(
ηi −

7

3
+

5

3
εn

)
− k2
⊥ρ

2 5

3τ2
(1 + ηi)

]
= N̂i(1− ft)εn (A.7)

With N̂i = ω̂2 + 10
3τ ω̂ + 5

3τ2 we can write the equation on the form

ω̂2(1− ft + k2
⊥ρ

2)εn + ω̂

[
10

3τ
(1− ft)εn + εn + k2

⊥ρ
2 5

3τ
εn + k2

⊥ρ
2 1 + ηi

η
− 1

]

+

[
5

3τ2
(1− ft)εn +

1

τ

(
ηi +

5

3
εn −

7

3

)
+ k2
⊥ρ

2 5

3τ2
(1 + ηi)

]
= 0 (A.8)

This is a second degree polynomial in ω̂, which can be written as

ω̂2 +Aω̂ +B = 0 (A.9)

where

A =

10
3τ (1− ft)εn + εn + k2

⊥ρ
2 5

3τ εn + k2
⊥ρ

2 1+ηi
η − 1

(1− ft + k2
⊥ρ

2)εn
(A.10)

and

B =
5

3τ2 (1− ft)εn + 1
τ (ηi + 5

3εn −
7
3 ) + k2

⊥ρ
2 5

3τ2 (1 + ηi)

(1− ft + k2
⊥ρ

2)εn
(A.11)

Thus a general solution is given by

ω̂ =
A

2
±
√
A2

4
−B (A.12)

and we see that we have an imaginary part γ̂ only if A2

4 < B. Performing a
Taylor expansion to the first order in k2ρ2 gives
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ω̂r =
3τ + (10ft − 10− 3τ)εn

6τ(1− ft)εn
+

k2ρ2

2εnτ(1− ft)

[
(
5

3
+

τ

1− ft
)εn− ηi− 1− τ

1− ft

]
(A.13)

γ̂ =

√
ηi − ηith
τεn(1− ft)

[
1− k2

⊥ρ
2

1− ft

(
1− (1 + εn)

4εn

)]
(A.14)

where

ηith ≈
2

3
+

τ

2(1− ft)

(
1

2εn
− 1

)
+

(
10(1− ft)

9τ
+

τ

4(1− ft)

)
εn+

k2
⊥ρ

2

τ

[
− τ2

8(1− ft)2ε2n
+

τ

1− ft

(
τ

8(1− ft)
− 5

6

)
1

εn
+

5τ

3(1− ft)
− 5

9
+

τ2

8(1− ft)2
+

(
5

9
− 5τ

6(1− ft)
− τ2

8(1− ft)2

)
εn

]
(A.15)

according to [8].

The TE mode

A similar treatment of equation A.6 while assuming that N̂i << N̂e gives

N̂e(1− ft)εn + ft

[
ω̂(1− εn) +

(
ηe −

7

3
+

5

3
εn

)
= 0 (A.16)

With N̂e = ω̂2 − 10
3 ω̂ + 5

3 we can rearrange the terms as

ω̂2(1−ft)εn+ ω̂

(
ft(1−εn)− 10

3
(1−ft)εn

)
+

5

3
(1−ft)εn+ft(ηe+

5

3
εn−

7

3
) = 0

(A.17)
and just as with the ITG mode we can write the general solution as ω̂ =

C
2 ±

√
C2

4 −D with

C =
ft(1− εn)− 10

3 (1− ft)εn
(1− ft)εn

(A.18)

and

D =
5
3 (1− ft)εn + ft(ηe + 5

3εn −
7
3 )

(1− ft)εn
(A.19)

Solving for ω̂ and γ̂ gives according to [10]

ω̂r =
10g

6
− 1

2

ft
1− ft

(
1

ε
− g
)

(A.20)

and
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γ̂ =

√
ft(ηe − ηeth)

εn(1− ft)
(A.21)

where

ηeth =
2

3
− ft

2(1− ft)
+

10εng(1− ft)
9ft

+
ftεng

4(1− ft)
+

ft
4εng(1− ft)

(A.22)



Appendix B

Flux calculations

We will here show how to calculate the flux and peaking factors relating to the
ion and electron temperatures, much in the same way as we did for particle
density in chapter 3.

Ion heat flux

According to [3], the ion heat diffusivity is given by

χi =
1

ηi

[
ηi −

2

3
− (1− ft)

10εn
9τ
− 2

3
ft∆i

]
γ̂3ωDe/k

2
x

(ω̂r + 5/3τ)2 + γ̂2
(B.1)

where

∆i =
1

N̂

{
|ω̂|2

[
|ω̂|2(ε−1)+ω̂r

(
14

3
−2ηe−

10

3
εn

)
+

5

3

(
− 11

3
+2ηe+

7

3
εn

)
(B.2)

− 5

3τ

(
1 + ηe −

5

3
εn

)]
+

50

9τ
(1− εn)ω̂r +

25

9τ

(
ηe −

7

3
+

5

3
εn

)}
and

N̂ =

(
ω̂2
r − γ̂2 − 10

3
ω̂r +

5

3

)2

+ 4

(
ω̂rγ̂ −

5

3
γ̂

)2

(B.3)

Arranging the term by sign and factoring with regard to ω̂r, due to the fact
that it can change signs, we get

χi =

[
1−

(
Ai
εn
ηi

+Bi
ηe
ηi

+
Ci
ηi

)]
γ̂3ωDe/kx

(ω̂r + 5/3τ)2 + γ̂2
(B.4)

where

Ai = (1− ft)
10

9τ
+

2ft

3N̂

(
|ω̂|4 − 10

3
|ω̂|2ω̂r +

35

9
|ω̂|2 − 50

9τ
+

125

27

)
(B.5a)

Bi =
2ft

3N̂

(
− 2|ω̂|2ω̂r +

10

3
|ω̂|2 − 5

3τ
|ω̂|2 +

25

9τ

)
(B.5b)

Ci =
2ft

3N̂

(
− |ω̂|4 +

14

3
|ω̂|2ω̂r −

55

9
|ω̂|2 − 5

3τ
|ω̂|2 +

50

9τ
ω̂r −

175

27τ

)
(B.5c)

where εn
ηi

= 2
LTi

LB
, ηe
ηi

=
LTi

LTe
and 1

ηi
=

LTi

Ln
contain all gradient contributions.
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Positive and negative contributions to χi

If we write Ai = A+
i +A−i +Aω̂r

i , Bi = B+
i +B−i +Bω̂r

i and Ci = C+
i +C−i +Cω̂r

i

where

A+
i =

10

9τ
+

2ft

3N̂

(
|ω̂|4 +

35

9
|ω̂|2 +

127

25

)
(B.6a)

A−i = −
(

10ft
9τ

+
2ft

3N̂

50

9τ

)
(B.6b)

Aω̂r
i = −20ft

9N̂
|ω̂|2ω̂r (B.6c)

B+
i =

2ft

3N̂

(
10

3
|ω̂|2 +

25

9τ

)
(B.6d)

B−i = −10ft

9N̂
|ω̂|2 (B.6e)

Bω̂r
i = − 4ft

3N̂
|ω̂|2ω̂r (B.6f)

C+
i = 0 (B.6g)

C−i = − 2ft

3N̂

(
|ω̂|4 +

55

9
|ω̂|2 +

175

27τ

)
(B.6h)

Cω̂r
i =

2ft

3N̂

(
14

3
|ω̂|2 +

50

9τ

)
ω̂r (B.6i)

Ion heat flux

The ion heat flux is given by ΓTi
= −χi∇Ti and with χi as calculated above we

get

RΓTi

Ti
=

[(
Ai
εn
ηi

+Bi
ηe
ηi

+
Ci
ηi

)
− 1

]
∇Ti

γ̂3ωDe/kx
(ω̂r + 5/3τ)2 + γ̂2

(B.7)

Multiplying this equation with R
Ti

gives us the normalized heat flux

RΓTi

Ti
=

[
2Ai +Bi

R

LTe

+ Ci
R

Ln
− R

LTi

]
γ̂3ωDe/kx

(ω̂r + 5/3τ)2 + γ̂2
(B.8)

With the separation of positive and negative contributions to χi we made
above we can easily separate the positive and negative contributions to the heat
flux as

RΓ+
Ti

Ti
=

[
2A+

i +B+
i

R

LTe

+ C+
i

R

Ln

]
γ̂3ωDe/kx

(ω̂r + 5/3τ)2 + γ̂2
(B.9a)

RΓ−Ti

Ti
=

[
2A−i +B−i

R

LTe

+ C−i
R

Ln
− R

LTi

]
γ̂3ωDe/kx

(ω̂r + 5/3τ)2 + γ̂2
(B.9b)

RΓω̂r

Ti

Ti
=

[
2Aω̂r

i +Bω̂r
i

R

LTe

+ Cω̂r
i

R

Ln

]
γ̂3ωDe/kx

(ω̂r + 5/3τ)2 + γ̂2
(B.9c)
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Peaking factors

By setting ΓTi
= 0 we get an expression for the peaking factor for R

LTi
where

R

LTi

∣∣∣∣
ΓTi

=0

= 2Ai +Bi
R

LTe

+ Ci
R

Ln
(B.10)

In order to get some sense of scale we investigate the case where the imagi-
nary contribution to γ̂ is much smaller than the real part ω̂r, which we will set
to ±1. We then get

R

LTi

∣∣∣∣
ω̂r=1

= 2

[
(1− ft)

10

9τ
+

2ft

3N̂

(
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(B.11)

+
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3
+
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9τ

)
R

LTe

−
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9
− 70

27τ
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R

Ln

]
and

R

LTi
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2ft

3N̂

(
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(B.12)

+
2ft

3N̂

[(
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3
+
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9τ

)
R

LTe

−
(
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9
− 370

27τ

)
R

Ln

]

Electron heat flux

According to [3], the electron heat diffusivity is given by

χe =
1

ηe
ft

(
ηe −

2

3
− 2

3
∆e

)
γ̂3ωDe/kx

(ω̂r − 5/3)2 + γ̂2
(B.13)

where

∆e =
1

N̂

{
|ω̂|2

[
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(
14

3
−2ηe−
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3
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+
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(B.14)

+
50

9
(1− εn)ω̂r −

25

9

(
ηe −

7

3
+

5

3
εn

)}
With the gradient dependency written out we have

χe =

[
1− 2

3N̂
(Ae

εn
ηe

+
Be
ηi

+ Ce)

]
ftγ̂

3ωDe/kx
(ω̂r − 5/3)2 + γ̂2

(B.15)

where

Ae = |ω̂|4 − 10

3
|ω̂|2ω̂r +

10

9
|ω̂|2 +

50

9
ω̂r +

125

27
(B.16a)

Be = −|ω̂|4 +
14

3
|ω̂|2ω̂r −

40

9
|ω̂|2 − 50

9
ω̂r −

175

27
+ N̂ (B.16b)

Ce = 5|ω̂|2 − 2|ω̂|2ω̂r −
25

9
(B.16c)

and εn
ηe

= 2
LTe

LB
and 1

ηi
=

LTi

Ln
contain all gradients.
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Positive and negative contributions to χe

Similar to the case with the ion transport we write Ae = A+
e + A−e + Aω̂r

e ,
Be = B+

e +B−e +Bω̂r
e and Ce = C+

e + C−e + Cω̂r
e where

A+
e = |ω̂|4 +

10

9
|ω̂|2 +

125

27
(B.17a)

A−e = 0 (B.17b)

Aω̂r
e =

(
50

9
− 10

3
|ω̂|2

)
ω̂r (B.17c)

B+
e = N̂ (B.17d)

B−e = −
(
|ω̂|2(|ω̂|2 +

40

9
) +

175

27

)
(B.17e)

Bω̂r
e =

(
14

3
|ω̂|2 − 50

9

)
ω̂r (B.17f)

C+
e = 5|ω̂|2 (B.17g)

C−e = −25

9
(B.17h)

Cω̂r
e = −2|ω̂|2ω̂r (B.17i)

Electron heat flux

Using ΓTe = −χe∇Te we get

RΓTe

Te
=

[
2

3N̂

(
Ae
εn
ηe

+
Be
ηe

+ Ce

)
− 1

]
ftγ̂

3ωDe/kx
(ω̂r − 5/3)2 + γ̂2

∇Te (B.18)

We normalize by multiplying the equation with R
Te

and get

RΓTe

Te
=

[
2

3N̂

(
2Ae +Be

R

Ln
+ Ce

R

LTe

)
− R

LTe

]
ftγ̂

3ωDe/kx
(ω̂r − 5/3)2 + γ̂2

(B.19)

We can separate the positive and negative contributions as above

RΓ+
Te

Te
=

2

3N̂

[
2A+

e +B+
e

R

Ln
+ C+

e

R

LTe

]
ftγ̂

3ωDe/kx
(ω̂r − 5/3)2 + γ̂2

(B.20a)

RΓ−Te

Te
=

[
2

3N̂

(
2A−e +B−e

R

Ln
+ C−e

R

LTe

)
− R

LTe

]
ftγ̂

3ωDe/kx
(ω̂r − 5/3)2 + γ̂2

(B.20b)

RΓω̂r

Te

Te
=

2

3N̂

[
2Aω̂r

e +Bω̂r
e

R

Ln
+ Cω̂r

e

R

LTe

]
ftγ̂

3ωDe/kx
(ω̂r − 5/3)2 + γ̂2

(B.20c)

Peaking factors

By setting ΓTe
= 0, we get the peaking factor for R

LTe
as

R

LTe

∣∣∣∣
ΓTe=0

=
2Ae +Be

R
Ln

3N̂
2 − Ce

(B.21)
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As for ΓTi
= 0 we investigate the case when ω̂ = ω̂r = ±1 and get

R

LTe

∣∣∣∣
ω̂r=1

=
1

6

(
242− 167

R

Ln

)
(B.22)

and

R

LTe

∣∣∣∣
ω̂r=−1

=
61

336
+

39

84

R

Ln
(B.23)
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Appendix C

Basic particle motion due to
electric and magnetic fields

Electric and magnetic fields described by the Maxwell equations

∇ ·E =
ρ

ε0
(C.1a)

∇×E = −∂B

∂t
(C.1b)

∇ ·B = 0 (C.1c)

∇×B =
1

c2
∂E

∂t
+

1

c2ε0
J (C.1d)

play a central role in contributing to the transport of particles in a tokamak,
so we will briefly review some simple relations.

The force on a particle is given by the Lorentz force equation

F = m
dv

dt
= q(E + v ×B) (C.2)

We will focus on the effects of a magnetic B-field, so we ignore any E-field
and write (1.3) as

dv

dt
=

q

m
(v ×B) (C.3)

We assume that B = Bẑ, and since we are only interested in the velocity
v⊥ perpendicular to the magnetic field we also assume that v⊥ = (vx, vy, 0).

This gives us

v̈x +
(qB
m

)2
vx = 0 (C.4a)

v̈y +
(qB
m

)2
vy = 0 (C.4b)

We define the cyclotron frequency
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ωc =
|q|B
m

(C.5)

and thus the solutions to (1.5) can be written as

vx = v⊥ cos(±ωct+ ϕx) (C.6a)

vy = v⊥ cos(±ωct+ ϕy) (C.6b)

where v⊥, ϕx and ϕy are constants determined by initial conditions.
Integrating (1.7) and selecting ϕx = 0, ϕy = π/2 gives us formulas for the

positions

x = ±ρ sin(±ωct) (C.7a)

v = ±ρ cos(±ωct) (C.7b)

where we have defined the Larmor radius

ρ =
v⊥
ωc

(C.8)

We interpret ρ as the oscillatory deviation from the mean path for a particle
in the magnetic field.

Now, we wish to find a general expression for the drift velocity resulting
from an additional perpendicular force F⊥ applied to the mass m by starting
out with

dv⊥
dt

=
q

m
(v⊥ ×B) +

F⊥
m

(C.9)

we assume that the perpendicular velocity v⊥ consists of a time dependent
and a constant drift part, i.e.

v⊥(t) = u(t) + vD (C.10)

Putting this into (1.10) gives us

du

dt
=

q

m
u×B +

q

m
vD ×B +

F⊥
m

(C.11)

which includes the expression in (1.9), which we remove leading to

vD =
1

q

F⊥ ×B

B2
(C.12)

Contributions to particle drift in tokamaks

Using equation C.12 for FE = qE and Fg = mg gives the electrostatic drift

vE =
E×B

B2
(C.13)

and the gravitational drift



43

vg =
m

q

g ×B

B2
(C.14)

respectively. Also taking into account the centrifugal force given by Fc =
mv2‖
R2

c
Rc = −mv

2
‖

B ∇|B| we get the curvature drift

vc =
mv2
‖

qB

B×∇B
B2

(C.15)

There are also drifts too complicated to derive here, such as the polarization
drift

vpj =
1

B0ωcj

[
∂

∂t
+ v · ∇

]
E (C.16)

where B0 is the background magnetic field and j refers to the particle species,
i.e. j = i for ions and j = e for electrons.

Further we have an anisotropic drift

vπj =
ẑ ×∇ · πj
qjnjB0

(C.17)

where πj is the stress tensor, as well as a diamagnetic drift

v∗j =
B×∇pj
qjnjB2

(C.18)

where pj is the plasma pressure. Finally we also have a drift due to the
inhomogeneity of the magnetic field in the tokamak, known as a ∇B drift

v∇B =
mjv

2
⊥

2qjB

B×∇B
B2

(C.19)

Note that all drift velocities that depend on the charge q will have opposite
signs for ions and electrons.
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