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Abstract

This works aims at comparing two modulation schemes for the Dual-Active-Bridge
DC-DC converter topology. On the basis of a specific case of application, the most
suitable method shall be identified.

The model of a Dual-Active-Bridge converter is built and simulated in PLECS®. It
is embedded in the configuration of a photovoltaic park with an output power of
P = 0.97 MW, an input voltage level of V; = 1.3 kV and an output voltage level
of V, = 16 kV £5%. The considered load levels are assumed to be full load, 80 %,
50 %, 30 % and 10 % of the full load, respectively. The feed-in of solar power into the
transmission grid is facilitated by the Dual-Active-Bridge. The power flow through
the converter is controlled either by the so called single-phase-shift modulation or
the trapezoidal modulation scheme. Both techniques are examined and compared
concerning the root mean square value of their inductor current, possible load range,

switching losses and resulting efficiency.

The root mean square value of the inductor current is found to be lower with single-
phase-shift modulation than with trapezoidal modulation for all voltage and load
levels. Additionally, the single-phase-shift modulation can cover a wider load range
than the trapezoidal modulation scheme. However, the trapezoidal modulation
scheme features better soft-switching capabilities and therefore generally lower switch-
ing losses than the single-phase-shift modulation. Altogether, it is observed that
depending on the used switch and load level, a different modulation scheme is fa-
vorable. Using a SiC MOSFET switch, the single-phase-shift modulation shows a
better efficiency than the trapezoidal modulation for loads down to 50 % of the full
load. For lower loads, the trapezoidal modulation provides slightly better results. In
the case of an IGBT switch, the trapezoidal modulation outplays the single-phase-

modulation over the entire load range.

Keywords: Dual-Active-Bridge, Modulation Schemes, Photovoltaic Park, Single-
Phase-Shift Modulation, Trapezoidal Modulation.
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Kurzfassung

In der vorliegenden Arbeit werden zwei Modulationsarten fiir den Dual-Active-
Bridge-Gleichspannungswandler verglichen. Anhand eines spezifischen Anwendungs-

falls soll das fiir diese Topologie am besten geeignete Verfahren bestimmt werden.

Ein Modell eines Dual-Active-Bridge-Wandlers wird in PLECS® aufgebaut und simu-
liert. Dieses wird am Beispiel eines Photovoltaik-Parks mit einer Ausgangsleistung
von P = 0,97 MW, einer Eingangsspannung von V; = 1,3 kV und einer Ausgangss-
pannung von V, = 16 kV 5% untersucht. Es werden Lastfille von Volllast tiber
80 %, 50 %, 30 % und 10 % der maximalen Last betrachtet. Die Einspeisung in das
Ubertragungsnetz wird durch die Dual-Active-Bridge erméglicht. Der Leistungs-
fluss durch den Gleichspannungswandler wird entweder durch die sogenannte Single-
Phase-Shift-Modulation oder die trapezoide Modulation geregelt. Beide Techniken
werden beziiglich des Effektivwerts ihres Spulenstroms, des moglichen abgedeckten
Lastbereichs, der Schaltverluste und des resultierenden Wirkungsgrades untersucht

und verglichen.

Der Effektivwert des Spulenstroms stellt sich bei der Single-Phase-Shift-Modulation
fir alle Spannungs- und Lastebenen als niedriger heraus als bei der trapezoiden
Modulation. Dariiber hinaus kann mit der Single-Phase-Shift-Modulation ein brei-
terer Lastbereich abgedeckt werden als mit der trapezoiden Modulation. Letztere
verfiigt jedoch iiber bessere Eigenschaften beziiglich weicher Einschaltvorgange und
weist daher allgemein geringere Schaltverluste auf. Insgesamt zeigt sich, dass je
nach verwendeter Schalterart und Lastebene eine jeweils andere Modulationsart
vorzuziehen ist. Unter Verwendung eines SiC MOSFET-Schalters bietet die Single-
Phase-Shift-Modulation bessere Wirkungsgrade fiir Lasten von Volllast bis hinunter
zu 50 % der Last. Fur Lasten kleiner als 50 % liefert die trapezoide Modulation
bessere Ergebnisse. Im Falle des IGBT-Schalters tibertrifft die trapezoide Modulation
die Single-Phase-Shift-Modulation tiber den gesamten Lastbereich.
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1

Introduction

1.1 Problem Background and Previous Work

Today’s energy system is shifting more and more towards renewable energies. In this
transformation process, it is necessary to overthink common and established ways
of feeding power into the grid in order to find the best possible solutions for high
efficiency and low cost. For the grid connection of large photovoltaic parks different

options have been examined in [37]. Two of them are presented in Figure 1.1.

Grid

Grid
MV/HV-Transformer

MV/HV- Transformer Central Inverter

MYV AC Collector Bus Bar MV DC Collector Bus Bar

3-Winding-Transformer

&

g g g z
% (R S s e e, _g i M b éh
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: No. of PV strings: | No. of PV strings ! : No. of PV strings: i No. of PV strings !
One One One One
subfield subfield subfield subfield
(a) MV AC Collector Bus Bar (b) MV DC Collector Bus Bar

Figure 1.1: Two options for the PV park configuration according to [37]

In Figure 1.1(a), the generated solar current is converted from DC to AC right at
the output of the solar field by means of an inverter. This inverter simultaneously
acts as MMP tracker for the PV subfield [37]. After this stage, a transformer trans-

mits the voltage from the low voltage level to the medium voltage level. The entire
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power generated by the PV park will be collected at the following AC bus bar and
can either be used at medium voltage level or, after another transformation stage,

be fed into the main grid at high voltage level.

In Figure 1.1(b), the generated solar voltage is boosted up by means of a DC-DC
converter ensuring a constant output voltage of all solar subfields. At the same time,
this DC-DC converter functions as MPP tracker. The resulting voltage is handed
over to another DC-DC converter boosting up the voltage from low voltage level to
medium voltage level. Only after this second transmission stage, the voltage will be
converted from DC to AC by the help of a central inverter. This means that the
power generated by the PV park will be collected at a DC bus bar and be inverted
collectively. After the inversion stage and a transformation stage, it is fed into the

main grid at high voltage level.

According to [37], the use of the second configuration will lead to an increased
energy yield per year as well as an improved efficiency and economic performance.
Comparing both configurations, it is apparent that the DC configuration is equipped
with an additional DC-DC converter to execute the voltage boosting between low
voltage and medium voltage level. Thereby, this converter is replacing the respective
transformer in the AC configuration and functioning as a key component in the
alternative DC configuration. In order to realize this concept, first a topology for
the DC-DC conversion stage has to be chosen. A comparison of three topologies for
this purpose has been done in [5]. It resulted in the choice of the two-level Dual-
Active-Bridge (DAB) converter which will consequently be employed in this work.
In order to control the flow of power through this converter, various modulation
techniques are available and can be applied. In the following, two of these shall be
examined and compared with respect to overall efficiency, switching losses, possible

load range and root mean square (RMS) value of the inductor current.

1.2 Dual-Active-Bridge Topology, its Modulation
and Application

The two-level Dual-Active-Bridge presented in [15] consists of two full bridges that
are connected via a high- or medium-frequency transformer as can be seen in Figure
1.2. The transformer provides galvanic isolation and its leakage inductance serves

as power transfer element [15, 27].
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By giving respective gate signals to the switches, a square voltage is generated on
the primary and secondary side of the transformer, named as vy, and vyg in Figure
1.2.

| | Leakage a |
QlJ:} Q3J:} . Inductance L. Q5 Jﬁ} Q7J:}
1L
1 L
V, 7_% VT1 % % VT2 Load == D Vo
Q2 JE} Q4JE} Q6 JE} Q8 JE]‘
Input Output
Bridge Bridge

Figure 1.2: Dual-Active-Bridge topology

Adequate switching actions control the power flow between input and output. As
mentioned before and also according to [27], the DAB converter topology shows
advantageous features which make its use preferable over other DC-DC converter
topologies. Among these features are the value of the possible efficiency of the con-
verter that can be achieved as well as its power density. Additionally, it is stated
in [15] that all switches of the DAB exhibit zero- or low-switching loss capabilities.
This improves efficiency in comparison with hard-switched topologies. Moreover, it
allows for higher switching frequencies which would have led to unreasonably high
switching losses if soft-switching was not available. High switching frequencies in
turn lead to a smaller area footprint of the transformer, reducing weight and mak-
ing transport easier. Aside from that, it is notable that the DAB is a bidirectional
topology and is therefore often utilized in applications of energy storage, e. g. for
linking batteries in automotive applications. However, this advantage will not be

made use of in this work. [15]

In literature, numerous different modulations schemes for the DAB are presented.
Among these are for example the single-phase-shift (SPS) control, dual-phase-shift
control [26, 43], extended-phase-shift control and triple-phase-shift control [44] as
well as trapezoidal [35, 27|, triangular [35, 27] and optimized modulation [27] method.
Other modulation schemes making use of a change in switching frequency in order to
control the power flow are not considered in this work. After extensive research, the
single-phase-shift modulation and the trapezoidal modulation scheme are selected
to be applied to the DAB and to be modelled, simulated and tested in PLECS®.
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Due to the available resources in the scope of this work, the theory of the triangu-
lar modulation scheme which complements the trapezoidal modulation scheme (refer
Section 3.4) will be presented shortly, but not implemented in the simulation. In [27]
and related works like [29] and [30], the single-phase-shift, trapezoidal, triangular
and optimized modulation are employed for low voltage automotive applications. In
the present work, the single-phase-shift and trapezoidal modulation will be applied

to a high voltage photovoltaic application, following the use case of [37].

1.3 Methodology

At first, the boundary conditions for the specified application of a grid-connected
photovoltaic park are defined and presented in Chapter 2. In Chapter 3, the theoret-
ical details of the chosen modulation schemes are compiled and differences between
them are worked out. A model of a Dual-Active-Bridge is built in PLECS® and
the chosen modulation schemes are applied to the model and simulated. Details of
simulation parameters and modeling are given in Chapter 4. A set of parameters
is determined and presented in Chapter 5, that shall be used in order to compare
and evaluate the suitability of the respective modulation scheme in the determined
application. Conclusions with respect to which modulation scheme is most suitable

for the decided case are drawn and presented in Chapter 6.

1.4 Ethical and Sustainability Aspects

On one hand, semiconductor appliances generally belong to a conflicting area of
technology, as the used materials feature several difficulties concerning availabil-
ity and acquirement. On the other hand, the development and improvement of
converters using semiconductor switches facilitate the grid integration of renewable
energies and can therefore promote their advancement. Furthermore, the use of
modern power electronic devices can improve the efficiency of electrical plants. The
advantages and disadvantages of these technologies therefore have to be weighed
up and decided upon in every specific situation. For this project, only software
simulations will be applied. Hence, questions of material choice and usage are not
yet urgently relevant at this stage and will not be discussed in the scope of this
work. When it comes to the experimental set up and practical application of the

considered technology, a detailed assessment should be carried out.
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Case Set Up

2.1 Case of Application

In order to test the behaviour of the chosen modulation schemes, the model of the
Dual-Active-Bridge along with the respective modulations is embedded in a test
scenario where different load conditions apply. As mentioned earlier, a photovoltaic
park is chosen as case of application, building up on the accomplished work in [5].
The location of the considered photovoltaic park is Tarifa, Cadiz in Spain, at a
latitude of 36.092390° and a longitude of -5.770569°. This is chosen in line with [37].
The selected test date is March 20, 2016. The insolation data for this site and date

is available from [2]. Figure 2.1 shows the course of the global irradiance in [%]

1200 r
1000 1
800 r
600 1
400 r

2007

Global irradiance [%ﬁ]

0 ; g : : : : ;i . ;
0o 2 4 6 8 10 12 14 16 18 20 22
Hour of the day

Figure 2.1: Global irradiance in Tarifa on March 20, 2016

The layout of the park follows the one presented in [37] and is shown in Figure
2.2. The park is divided into six subfields, each built up of 150 strings and 24
photovoltaic panels in each string. With a nominal power of 260 W per panel,
the resulting nominal power of the park is 5.6 MW. As can be seen in Figure 2.2,
the MPPT is realized by boost converters, bringing up the voltage to 1.3 kV. The
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boost converters will not be further contemplated within the scope of this work and
their output voltage of 1.3 kV is assumed to be constant. The input of one subfield
is then fed into the DC-DC conversion stage on medium voltage level, the Dual-
Active-Bridge, stepping up the voltage from 1.3 kV to 16 kV. The output voltage is

assumed to incorporate a voltage fluctuation of +5% so that it can take the values

of 15.2 kV, 16 kV and 16.8 kV.
Grid
MV/HV-Transformer
Central Inverter
T MYV DC Collector Bus Bar

L
DAB

AR
1.3kV/16 kV+5%

: One
i Subfield

Figure 2.2: Adapted configuration of the PV park based on [37]

The power fed into the medium voltage DC-DC conversion stage is calculated as
follows:
PDAB - (Bz + Dz) Npanel APV Npv NMPPT Nsystem (2]-)

where B; is the in-plane beam irradiance in [%}, D; is the in-plane diffuse irradiance
in {%], Npaner is the number of panels, Apy is the surface area of one PV panel in
[m?], npy is the efficiency of the chosen panels, nyppr is the efficiency of the MPP
tracker and 7system is the efficiency of the whole system, representing e.g. losses
in cables. This is a simplified approach as the efficiency of the PV panels is given
for standard test conditions which in reality will not always be satisfied. However,
it is sufficient for the designated application which is merely to feed an exemplary

varying load into the medium voltage level DC-DC stage.

The panels that are assumed to be used for this photovoltaic park are of type
Q.PRO BFR-G4.1 260-270 from Q-Cells (refer datasheet in Appendix E). The 260 W

6
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module is chosen which has an efficiency of 15.6 %. The dimensions of the module
are 1670 mm x 1000 mm. With the given insolation and total number of panels, this
leads to a maximum input power per Dual-Active-Bridge of 0.97 MW, corresponding
to the output power of one PV subfield at 12 PM (refer Figure F.1 in Appendix F).

Hﬁwﬁjcameg =/
_ DC - DC stage:
= 99%

°  1.3kV/16kV

Insolation on a npv=15.6% nurrr=99% 1)System
plane with a tilt

of 30° and an

azimuth of 0°

Figure 2.3: Assumed losses in the system

The resulting power that will be fed into one of the six DABs in the course of the

chosen exemplary day is depicted in Figure 2.4.

Input power [MW]
T & &

S
Do

0 2 4 6 8 10 12 14 16 18 20 22
Hour of the day

Figure 2.4: Power fed into one DAB in the course of March 20, 2016

2.2 Choice of Switches

Due to the usage of a medium to high switching frequency in the converter, it is ben-
eficial to opt for a switch type featuring low switching losses. Comparing IGBTs and
MOSFETs with respect to switching performance, MOSFETs clearly show better
qualities [33]. The switches that are used for the Dual-Active-Bridge are therefore
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SiC MOSFETs of type C2M0045170D by Cree. These MOSFETs feature a blocking
voltage Vpgmas of 1700 V, an on-resistance Rpgon) of 45 m{) and a continuos drain
current Ip of 72 A at 25 °C. Moreover, the intrinsic body diode of a MOSFET can

be utilized as anti-parallel diode so that an external diode is not necessary.

Every switching block Q1 to Q8 has to be able to withstand the full input voltage
of 1.3 kV on the input side and 16 kV on the output side and the current resulting
from transmission of maximum power (refer Figure 1.2). This leads to a necessary
parallel and series connection of a certain number of MOSFETSs in each switching
block. It is assumed that an allowed current of 70 % of the maximum current and
a safety margin of 55% of the maximum blocking voltage for the allowed voltage
are safe choices. This results in a connection of two MOSFETs in series and 15
MOSFETs in parallel in each switching block Q1 to Q4 on the low voltage side and
15 MOSFETs in series and two MOSFETSs in parallel in each switching block Q5 to
Q8 on the high voltage side. The respective calculations are presented in Figure F.2

in Appendix F.

S ] ) ] Leakage ---=- -
: QIJE}. Q3 Jt} ~ Inductance L : Q5JE}:Q7JE}
e - 1L L __ il
+ . —
T VT1 VT2 Load 7~ D
1.3 kV l | 16 kV
Q2 J:} Q4J:} Q6 _E} Q8 _IE}

Figure 2.5: Series and parallel connection of MOSFETs and anti-parallel diodes
in one switching block
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Modulation Schemes

Generally, three parameters can be controlled in order to affect the power flow
between the primary and secondary side of a Dual-Active-Bridge converter: The
phase-shift between the primary and secondary square voltages, the respective duty
cycle of the square voltages and the switching frequency. The modulation schemes
that are considered in this work take advantage of a change in phase-shift as shown
in Figure 3.1(a) and/or duty cycle to control the power flow as shown in Figure

3.1(b). Also, frequency switching methods are not considered.

|7

Voltage

(a) Change of the phase-shift between the
two transformer voltages

Voltage
+
Voltage

i |

(b) Change of the duty ratio of the two transformer voltages

Figure 3.1: Considered variables for modulation

Two modulation schemes will be contemplated: The single-phase-shift modulation
scheme, in literature also called as rectangular modulation [35], and the trapezoidal

modulation scheme. The latter has its name due to the trapezoidal shape the in-

ductor current takes when applying it.

The single-phase-shift modulation solely uses a phase-shift between the two trans-

former voltages to control the power flow while the trapezoidal modulation uses a
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phase-shift and additionally changes the duty ratio of the transformer voltages intro-
ducing a zero-voltage period. The zero-voltage period is attained by introducing a
phase-shift between the two legs of each full bridge. Both modulation schemes have
been presented in [27] and [35]. These are therefore the main sources from which
the following theory and equations originate and on which grounds the modulation

schemes have been implemented in PLECS®.

3.1 Single-Phase-Shift Modulation

The SPS control is the standard modulation scheme for the Dual-Active-Bridge.
The square voltages in a circuit that is modulated with this scheme will always have
duty cycles of 50 % of the switching period while the frequency stays constant. Two
square voltages vr; and vpy are generated on the primary and secondary side of
the transformer by giving respective switching signals to the switches Q1 to Q8.
A phase-shift ¢ is introduced between the switching signals for the primary side
and the switching signals for the secondary side, leading to the same phase-shift ¢
between the two voltages vp; and vpe. This is shown in Figures 3.2 and 3.3, with
vrs referred to the primary side. A voltage difference is induced and a current flows

from the primary to the secondary side.

1
£ i I 1 i I "
o ] | | 1
~ | | | ]
=] 1 | 1 |
O 1 1
< 1 T L T .
|l =
8 I | I !
= | | ! | —
> : | : |
______ _! ,._____________.g | IQP
T T, T T
0 tl t2 t3 t4

Figure 3.2: Primary and referred secondary transformer voltage and inductor
current for the single-phase-shift modulation
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time

time

time

T To Ty Ty time
0 t1 te ts3 ta

Figure 3.3: Switching signals for the gates Q1 to Q8

3.1.1 Transmission Power and Phase-Shift Angle ¢

Originating from [16] and [27], the transmitted power in the SPS control is expressed
as
nVoVi

_ b
P= e ? =% &)

The required angle for the transmission of a desired amount of power then reads as

Tt /T2 — 787;/2]?5;13
P12 = 5 Fol (3.2)

Considering only the results for ¢,, this results in possible values of ¢ = [0, 7]. The
term under the square root must not become smaller than zero as imaginary values

for ¢y 9 are not valid:

(3.3)

With this maximum value for the leakage inductance, the maximum power would be

11
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transferred at an angle of ¢ = 7. However, this is the maximum possible angle and
it is not favorable for the minimization of reactive power in the system. A smaller

phase-shift angle will therefore be chosen later in this work (refer Section 4.1.1).

3.1.2 Voltages and Currents

During the different periods of one switching cycle, different voltages and currents
apply. These are explained in the following. The labels of the time intervals are

referring to Figures 3.2 and 3.3.

1. Time interval T; (0 < t < t1)

Q1 and Q4 are switched ON
Q2 and Q3 are switched OFF
Q5 and Q8 are OFF

Q6 and Q7 are ON

In the first time interval Ty, the voltage across the inductor is equal to (V; 4+
nV,) and therefore positive. This causes the inductor current iy, to rise. While
i, < 0, the anti-parallel diodes conduct the current on the primary side and
allow for soft turn-on. At the zero-crossing point, the current is handed over to
the switches Q1 and Q4. The flow of the inductor current in this time interval
is given by

i) = ip(0)+ 2 (Vi +nV,) At (3.4)

2. Time interval Ty (t; < t < to)

Q1 and Q4 are ON

Q2 and Q3 are OFF

Q5 and Q8 are switched ON
Q6 and Q7 are switched OFF

In the second time interval Ty, the voltage across the inductor is equal to
(V; = nV,) and is negative if V; < nV,. This relation holds in the case of
nominal output voltage V, = 16 kV and V, = 16 kV + 5% and causes the
inductor current to fall. In the case of V, = 16 kV - 5%, V; will be larger than

12
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nV, and the current slope during this time interval is reversed (refer simulation

results in Section 5.2). The current flow in this time interval is given by

inlt) = inlt) + 7 (Vi — V) A (3.5)

3. Time interval T3 (t2 < t < t3)

Q1 and Q4 are switched OFF
Q2 and Q3 are switched ON
Q5 and Q8 are ON

Q6 and Q7 are OFF

The voltage across the inductor is given by (—V; —nV}). It is therefore always
negative and causes the inductor current to decrease further and at a steeper
slope than during the previous time interval. The current flow in this time

interval is given by

i) = in(t) + z (=Vi —nV,) At (3.6)

4. Time interval Ty (t3 < t < ty4)

Q1 and Q4 are OFF

Q2 and Q3 are ON

Q5 and Q8 are switched OFF
Q6 and Q7 are switched ON

During the last time interval Ty, the voltage across the inductor is equal to
(=V;+nV,). Similar to time interval Ty, the sign of this voltage depends on the
relation between V; and V,. In the case of nominal output voltage V, = 16 kV
and V, = 16 kV + 5 %, a positive voltage is applied across the inductor causing
the inductor current to rise again. In the case of V, = 16 kV - 5%, the slope

will consequently be negative (refer simulation results in Section 5.2). The

13
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currrent flow in this time interval can be described as

ir(t) = ip(ts) +2 (=Vi+nV,) At (3.7)

In general, it is notable that the current shows a reversed symmetrical behaviour.

3.1.3 Switching Behaviour

Power electronic circuits can be divided into soft-switched and hard-switched topolo-
gies. A switching action is named as soft if either the current through the switch
or the voltage across the switch is zero in the moment of switching. Otherwise, it
is called as hard-switched. By ensuring soft switching actions, switching loss are

avoided.

Figure 3.4 shows the example of a switch on the primary side of the Dual-Active-
Bridge. It can be seen that the current through the MOSFET is negative prior
to turn-on. That means that in the turn-on moment, the current will also flow
through the diode and facilitates soft-switching for the MOSFET, ie., no switching
losses occur. Furthermore, it is visible from the graph that the MOSFET current is
positive in the moment of turn-off. Hence, it will solely flow through the switch and
switching losses occur in the turn-off moment. In the single-phase-shift modulation,
all eight switches of the DAB show the same behaviour as the exemplary switch in
Figure 3.4. This could be observed during the simulations and means that in the
turn-on moment eight switches are soft-switched and in the turn-off moment zero

switches are soft-switched.

14



3. Modulation Schemes

=

g 1.0

'@

Q

=

& 00

<< 1000

9] 0-

o

3 1000

O

E

% 6'X le-4 )

=y

eTy]

: A

3 0 : ‘
= 0 1 2 x 10
2

wn

Simulation time [s]

Figure 3.4: Gate signal to the switch, current through the switch and switching
losses for the example of a MOSFET switch on the primary side of the DAB

3.2 Trapezoidal Modulation

Equal to the single-phase-shift modulation, the two transformer voltages vy and
vro Will be phase-shifted in the trapezoidal modulation scheme. In addition to that,
two inner phase-shifts are introduced between the two legs of each full bridge. This
causes the duty cycle of vy and vrs to change and introduces a period of time during
which v and vre will be zero. These intervals are named ©; and €2 [35] and can
be seen in Figure 3.5. An auxiliary parameter € is introduced which is needed for
the simulation and is further explained in Section 4.2.2. It is notable that the on
and off times of the switches continue to equal 50 % of one switching period and it

is only the duty cycles of the transformer voltages that change.

3.2.1 Transmission Power, Phase-Shift Angle ¢ and
Duty Cycles

The equations for the transmission power, phase-shift angle and other following
expressions are given in [35]. However, they have been supplemented with the
transformer turns ratio n since n is not equal to 1 in this work and therefore has
to be considered. Furthermore, the corresponding equations have been simplified

concerning the factors sgn(¢) and sgn(l.,2) which in this work will always be equal

15



3. Modulation Schemes

R
R e om s . D,
| I D:
R R— 1 |29 20, Nr-m-d------ 1
i oo T Tom |
: ‘ .
| |
! ]

time

Voltage and Current

B [ N

T1 Ty Ts T4 Ts Ts

0 t1 te2 ts ta ts te

Figure 3.5: Primary and referred secondary transformer voltage and inductor
current for the trapezoidal modulation

to 1 as only unidirectional and positive power flow occurs. Lastly, the blanking time
Thiank that has been considered in [35] is neglected because in the scope of this work

it is not considered in the single-phase-shift modulation either.

According to [27] and [35], the ratio of input and output power is decisive for calcu-
lating the necessary parameters to implement the trapezoidal modulation scheme.
Two cases can be distinguished which lead to different values for d, the so called DC

transformation ratio. This ratio is defined as

nV,

d = 3.8
- (3:5)
Case 1: Input voltage V; is lower than referred output voltage nV,
In the case of
Vi <nlj (3.9)
it follows that
d>1 (3.10)

In order to implement the trapezoidal modulation, values for the parameters €2y, €2,
and the phase-shift ¢ between the two bridges have to be calculated. 2; and 2, are
defined as zero-voltage widths [35] of the primary and secondary side transformer

voltages vr; and vre, given by the following equations

16
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m (Vi = nV,) + 2nV,p

Q:
' 2(V; +nV,)

(3.11)

Case 2: Input voltage V; is higher than referred output voltage nV,

In the case of
Vi >nl, (3.13)

it follows that
d<1 (3.14)

In this case, the equations for €2; and €2y change and are given by

T (nV, = V;) + 2V;p

0y =
2 2(V; + nV,)

(3.16)

By means of 2; and (2, the equations of the duty cycles of vy and vps can be

derived, leading to

20)

D, = (1—1> Ths (3.17)
m
20)

Dy = (1—;> Ths (3.18)

where Ty, is half a switching period.

D; and D, are not only representing the duty cycles, but also corresponding to the
inner phase-shifts, i. e., the phase-shifts between the two legs of the input and output
bridge. This can be seen in Figures 3.6 and 3.7.

It is notable that the inner phase-shifts attain different values in the input and

output bridge. Again with the respective values for 2; and €y, the transmitted

17
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Figure 3.6: Switching signals for the gates Q1 to Q4
power and corresponding angle are calculated equally in both cases [35]:
p — nV, (m—@— Q1 — Qo) [0V, (¢ — Qo+ Q) + Vi (¢ — Q1 + Q)]
Am2Lf,
(3.19)
4 (nVo)? (p — Qo + Qy)?
Am2Lf,
and
o= e (Vi+nV,) Ves —4flpaLes (3.20)
262 2\/Vi€2
where
er = VP2 +(nV,)? (3.21)
es = V2 +nV,V; + (nV,)? (3.22)
es = nV,V;? (3.23)

and 1.9 1s set as [0 =

P
nVy*
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Figure 3.7: Switching signals for the gates Q5 to Q8

Corresponding to the case in single-phase-shift modulation, the maximally trans-
mitted power can be deduced by derivation of this equation by the phase-shift angle

v and setting this expression to zero. This gives the value of ¢ at which maxi-

mum power transfer occurs (¢ = %) and subsequently the corresponding leakage

inductance. The expression is taken from [35] and reads as:

(nV,)? V2
4fsPraz [V + nV,V; 4+ (nV,)?]

L = (3.24)

With P,,.. = 0.97 MW and nominal voltages, the leakage inductance corresponds
to L = 29.8 uH (refer Section 4.1.1 for final determination of L).

3.2.2 Voltages and Currents

Similarly to single-phase-shift modulation, different voltages and currents apply dur-
ing the different periods of one switching cycle. These are explained in the following.

The labels of the time intervals are referring to Figures 3.5, 3.6 and 3.7.
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1. Time interval T; (0 < t < ty)

Q2, Q6 and Q7 are ON
Q4 is switched ON

Q1, Q5 and Q8 are OFF
Q3 is switched OFF

In the first time interval the voltage across the inductor is given by nV,. This

voltage is always positive and causes a rising current 7, equal to

i) = in(0) +2 nV, At (3.25)

2. Time interval Ty (t; < t < tg)

Q4 and Q6 are ON

Q1 and Q8 are switched ON
Q3 and Q5 are OFF

Q2 and Q7 are switched OFF

The voltage across the inductor is now given by V;. This voltage is again
positive so that i; will increase further. However, the slope will be different
than in the first time interval. Depending on the relation between V; and nV,,
the slope will be less steep for V, = 16 kV and V, = 16.8 kV and steeper for
V, =15.2 kV.

i) = in(t) +i Vi At (3.26)

3. Time interval T3 (t2 < t < t3)

Q1, Q4 and Q8 are ON
Q5 is switched ON

Q2, Q3 and Q7 are OFF
Q6 is switched OFF

20
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In the third time interval, a voltage of (V; — nV,) is applied across the induc-
tor. This corresponds to the second time interval Ty in 3.1.2. Therefore, the
same relations apply and in case of nominal output voltage V, = 16 kV and
V, = 16.8 kV, the inductor current will fall. For V, = 15.2 kV the current in

this time interval will rise.

1

ir(t) = irlta) + ¢ (Vi —nl) At (3.27)

. Time interval Ty (t3 < t < t4)

Q1, Q5 and Q8 are ON
Q3 is switched ON

Q2, Q6 and Q7 are OFF
e Q4 is switched OFF

During the fourth time interval, the voltage across the inductor is given by

(—nV,). This expression is always negative and causes the inductor current to

fall.

inlt) = inlts) + 7 (-nV,) At (3.28)

. Time interval Tj (t4 < t < t5)

Q3 and Qb5 are ON

Q2 and Q7 are switched ON
Q4 and Q6 are OFF

Q1 and Q8 are switched OFF

The voltage across the inductor is now expressed by (—V;). This expression
is again always negative and causes the inductor current to decrease further.
Similar to time interval Ts, it depends on the level of the output voltage V, if
the slope is steeper or less steep than during the previous time interval.

1

in(t) = inlt) + 4 (<V) At (3.20)
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6. Time interval Tg (t5 < t < tg)

Q2, Q3 and Q7 are ON
Q6 is switched ON

Q1, Q4 and Q8 are OFF
Q5 is switched OFF

In the last time interval, the applied voltage across the inductor equals (—V; +
nV,). This corresponds to the voltage in the time interval Ty in Section 3.1.2.
For V, =16 kV and V,, = 16.8 kV, the inductor current rises due to the positive
voltage. For V, = 15.2 kV the applied voltage is negative and gives a negative

slope to the inductor current (refer simulation results in Section 5.5).

int) = inlts) + 7 (~Vit Vo) A (3.30)

3.2.3 Switching Behaviour

Just like in SPS modulation, the MOSFET current in all switches is negative prior
to the turn-on moment (refer Figure 3.4). Thus, also the diode will conduct the
current and ensure soft-switching. However, in contrast to SPS modulation and
according to [35], four switches are expected to feature soft-switching also in the
turn-off moment. By switching according to the trapezoidal modulation scheme,
two points in time are generated where both vy and vpo are zero. These moments
are labeled as t; and t4 in Figure 3.5. Choosing the duty ratios D; and D, according
to equations (3.17) and (3.18), it is then ensured that the switching happens in the
very moment when the inductor current crosses zero. From Figures 3.6 and 3.7, it
can be observed that it is the switches Q1, Q2, Q7 and Q8 that will profit from
this modulation and be soft-switched in the turn-off moment. That means that in
total eight switches are soft-switched in turn-on and four switches are soft-switched
in turn-off. It can be noted that two of these switches are on the LV-side and two

on the HV-side.

3.3 Triangular Modulation

The triangular modulation owes its name to the triangular shape that the current
takes when it is applied. The variables for controlling the power flow are the phase-

shift angle between primary and secondary transformer voltage as well as a change
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in duty ratio of these voltages. In distinction from the trapezoidal modulation
scheme, the triangular modulation features two time periods during which both
square voltages vy and vy are zero. This results in two time intervals with zero

inductor current 77, as can be seen in Figure 3.8.
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Figure 3.8: Primary and referred secondary transformer voltage and inductor
current for the triangular modulation

3.3.1 Transmission Power, Phase-Shift Angle ¢ and
Duty Cycles

Again the parameters to implement this modulation scheme have to be calculated
and two cases are distinguished. The following relations are based on [35].
Case 1: Input voltage V; is lower than referred output voltage nV,
In the case of
V; <nV, (3.31)

it follows that
d>1 (3.32)

The zero-voltage widths 2; and €2, are defined as

nVop

T
0 = - — —2
VT2 oy, -

(3.33)
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In contrast to the trapezoidal modulation, the transmission power is given by two

different expressions according to the value of d. In the first case it reads as

nV,Vip (m — 2Qs)
2m2Lf,

while the corresponding angle is given by

P =

(3.35)

T IchZLfs (n‘/o - ‘/l)
o = v 7 (3.36)

Case 2: Input voltage V; is higher than referred output voltage nV,

In the case of

Vi > nV, (3.37)

it follows that
d<1 (3.38)

The zero-voltage widths €2; and €25 differ from case 1 and read as

O = o+ (3.39)
_ T, eV
Oy = 5 + VoV (3.40)

The power and angle are defined as

nV,Vip (m — 2€)

P =
2m2Lf

(3.41)

and

7 /L2 Lfs (Vi — nV,)
v NDAT

(3.42)

The duty cycles can be calculated with the same relations that are given in (3.17) and
(3.18). Like in the other two modulation methods, various voltages and resulting
currents will apply during the six different time intervals. Since the triangular
modulation is not simulated in the scope of this work, the quantitative course of

these values is not further regarded.
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3.3.2 Switching Behaviour

According to [35], the triangular modulation scheme features soft-switching in the
turn-on moment for all switches. Additionally, it is mentioned that six switches will
be soft-switched also in the moment of turn-off. When examining the course of the
inductor current and transformer voltages in Figure 3.8, it can be seen that both
will be zero at the moments 0, t;, t3 and t4. Comparing with the switching signals
in Figures 3.9 and 3.10, it is concluded that it is therefore the switches Q1, Q2,
Q3, Q4, Q7 and Q8 that will be soft-switched at turn-off. However, the triangular
modulation is not simulated in the scope of this work. This assumption has therefore

yet to be proven.
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Figure 3.9: Switching signals for the gates Q1 to Q4
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Figure 3.10: Switching signals for the gates Q5 to Q8

3.4 Combined Modulations

It is described in [27] and [35] that different modulations are varyingly well suited
for different power levels. When combining the three presented modulations, the
following distribution is suggested in [35]:

Case 1: Input voltage V; is lower than referred output voltage nV,

o Triangular modulation for

T Vi
= < - (1= 4
0 Y= 2 ( nVo) (343)

o Trapezoidal modulation for

7T<1—Vi><
2 nVO_SD

IN

V2 + (nV,)?
L 44
(Vf +nV,V; + (nV,)? (3.44)

26



3. Modulation Schemes

 Single-phase-shift modulation for

s V2 4 (nV,)? T
z g < p< — 3.45
2 (WMVOVH(WO)? =3 (345)
Case 2: Input voltage V; is higher than referred output voltage nV,
o Triangular modulation for
T nV,
0 = < — [1- 3.46
s < % > (3.46)
e Trapezoidal modulation for
T nV, T V2 + (nVO)2
— (1-— < < — L 3.47
2 < w) =¥ =9 (W+n%%+(nvo)2 347)
 Single-phase-shift modulation for
T V2 + (nV,)? T
Z i < < — 3.48
2 (1/;2+n%%+(n%)2 =Y =3 (3.48)

With the chosen voltage levels, this leads to the distribution shown in Figure 3.11.
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Figure 3.11: Distribution of modulation schemes over the whole angle range with
the chosen output voltages V,, = 15.2 kV, V, = 16 kV and V, = 16.8 kV

It is notable that the upper limit value for trapezoidal modulation slightly changes
due to the changing output voltages. The exact values are 60.0068° (for V,, = 15.2kV),
60.0064° (for V, = 16 kV) and 60.055° (for V, = 16.8 kV), but it will be set to 60°

for reasons of simplicity.

Also, this work does not focus on the exact switching moment from one modulation

scheme to the other and this is therefore not regarded.
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Model in PLECS®

4.1 Components and Parameters

With the framework conditions given in Chapter 2, the model of the Dual-Active-
Bridge can be built in PLECS®.
Parameter Initialization dialogue in PLECS® are given in Table 4.1. The definition
of certain parameters will be explained in the following sections. A schematic of the
PLECS® model is presented in Figure 4.1 and the complete PLECS® simulation ini-

tialization dialogues for both modulation schemes and all voltage levels are provided

in Appendix A.
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Figure 4.1: Schematic of the DAB model in PLECS® for the example of single-
phase-shift modulation



4. Model in PLECS®

Table 4.1: Simulation Parameter Initialization

Parameter Value
Input Voltage Vi 1.3 kV
Output Voltages V, 15.2 kV, 16 kV, 16.8 kV
Maximum Input Power P 0.97 MW
Switching Frequency fs 5 kHz
Primary Number of Turns Ny 1
Secondary Number of Turns No 12
Turns Ratio n 0.0833
On-Resistance Rpg(on) Ron 45 m{?
ns/n, on the Low Voltage Side ns_LV/np LV 2/15
ns/n, on the High Voltage Side ns HV/np HV 15 /2
Leakage Inductance L 28.3 uH
Output Capacitance C 37.9 uF

4.1.1 Transformer and Leakage Inductance

In this work, the transformer does not feature any core or winding losses, but is
assumed to show ideal behaviour. Thus, it is modeled as a combination of two
windings with a turns ratio of 1:12 and an attached leakage inductance. The leak-
age inductance is one of the most important elements of the Dual-Active-Bridge
and makes it possible to transmit power. An appropriate sizing is fundamental for
the behaviour of the model, because a large leakage inductance leads to an unde-
sirable flow of reactive power and circulating current in the system. Is it too small,
the soft-switching capability of the topology might be obstructed. The inductance
value is chosen such that it is suitable for all three modulation schemes. Thus, the

comparison is carried out under equal initial conditions.

The value of the leakage inductance is a function of the power and the angle at
which this power is transferred (refer Equations (3.1) and (3.19)). To determine
its value, these two variables have to be set. In case of trapezoidal modulation,
it was shown in Figure 3.11 that with the chosen input and output voltages, the
maximum possible angle lays at 60° in both case 1 and case 2. Consequently, this
angle is chosen as maximum power transmission angle. For the SPS modulation,
the maximum power transmission angle is also set to 60°, hereby allowing for a fair
comparison. The procedure for determining the final value of the leakage inductance

is shown in Figure 4.2.
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Choose
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scheme

v

Choose maximum power
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maximum power
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transfer function

Choose
smallest ————» refer Table 4.2
value

Apply chosen value to all
modulation schemes and SRRV 0]t} }cIaEs)
voltage levels

Figure 4.2: Process of choosing the value of leakage inductance for all the three
modulation schemes

From Table 4.2 the leakage inductance is consequently set to L = 28.3 uH for all
modulation schemes and all output voltage levels.

Table 4.2: Value for the leakage inductances with full power transmission at
@ = 60°

152kVv 16 kV  16.8 kV

SPS 3.7 pH 397 pH  41.7 pH
Trapezoidal 283 pH 29.8 puH 31.2 puH

It is notable that with this choice of leakage inductance only in the case of trapezoidal
modulation at V, = 15.2 kV, full load will be transmitted at 60° and in the other cases
it has been naturally shifted to smaller angles (refer Figure 4.3 where the division
of power over the modulation schemes is shown). Further, it has to be noted that
the triangular modulation is not involved in this process. This is because it is not
yet known at which power the modulation scheme will change from trapezoidal to
triangular. Therefore, no power values can be assigned to the respective angles

presented in Figure 3.11.
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Figure 4.3: Distribution of modulation schemes over the power range with the
chosen leakage inductance and the output voltages V, = 15.2 kV, V, = 16 kV and
V, = 16.8 kV

4.1.2 MOSFET Switches

In order to simulate conduction and switching losses in PLECS®, a thermal de-
scription has to be assigned to each switch. The thermal description is based on
the graphs available from the data sheet: The Vpg — Ipg—diagram at 25 °C, the
Ips — Eyp—diagram and Ipg — E,rr—diagram, respectively. However, it was de-
scribed in Section 2.2 that it is necessary to connect multiple MOSFETSs in series
and parallel in each switching block Q1 to Q8. In order to avoid the physical mod-
eling of these series and parallel connections, a thermal description of a MOSFET
equivalent is created. It features the same characteristics as n in series and n,, in
parallel connected switches. This allows to model only this MOSFET equivalent in
PLECS® and will avoid unnecessary slowing down of the simulation. Moreover, the
adaptation of the model in case of desired changes in voltage or maximum trans-

mitted power is facilitated.
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4. Model in PLECS®

To model the MOSFET equivalent, the following approach is tested and validated in
an exemplary circuit before its implementation in the DAB model. First, the value of
the on-resistance Rpg(on) is multiplied by Z—p In addition, the mentioned diagrams
are scaled by multiplying the voltage values with the number of serial connected
switches n, and the current values with the number of parallel connected switches
np, as shown in Figure 4.4. The scaled diagrams are fed into PLECS® and directly
give the correct conduction losses of the MOSFET equivalent. To obtain the correct
switching losses, the switching energy Fguicn that results from the simulation has
to be multiplied with n, and n,, subsequently. It is worth mentioning that two
different MOSFET equivalents are created since ng and n, are different at the low

voltage side from the high voltage side.

Eswjtcb [mJ ] [011 [A] X np

Vibtock [V] X s Von [V] X s
]011 [A] X 1p

Figure 4.4: Scaling of switching and conduction losses

4.1.3 Anti-Parallel Diodes

The intrinsic body diode of the MOSFET is used as anti-parallel diode in the circuit.
This is a simple approach in the case of SiC MOSFETs and decreases the cost as
well as the required space compared to the use of an external anti-parallel diode
[11, 12]. The characteristics of the body diode are given in the MOSFET datasheet
in Appendix C. For the modeling of the diodes in PLECS®, the procedure is the
same as in the case of the MOSFETs. The thermal description is based on the
Vps — Ips—diagram at 25 °C and is scaled with the number of series and parallel

connected switches. The diode switching losses are neglected.

4.1.4 Gate Signal Generation

In order to control the two full-bridges, a subsystem is created in which the neces-
sary gate signals for the MOSFETs are generated. The signals are created by the

comparison of a triangular wave with a constant reference signal m. The triangular
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wave is chosen to oscillate between 0 and 1 while the constant reference signal is

equal to 0.5.

4.1.5 Output Capacitance

In the scope of this work no voltage control for the output capacitor is implemented.
This leads to the assumption that a big capacitor would be suitable in order to keep
the output voltage V, at a constant level. However, this approach causes a long
time span until the system reaches steady-state conditions. In [35], the output

capacitance is proposed to be chosen as

[Load
C = 50 4.1
Vofs (4.1)
with
P
]Load - Vo X (42)

Setting the maximum output power P at 0.97 MW leads to a value of C' = 37.9 uF.
With this choice, the circuit reaches steady-state within 0.04 s while the voltage

ripple lies within an acceptable range (refer also Figure 4.5).

4.1.6 Owutput Voltage V,

It was mentioned earlier that the output voltage V, is allowed to vary between the
three values V, = 16 kV, V, = 15.2 kV and V, = 16.8 kV which correspond to the
nominal voltage and to V,, £5 %. Prior to every simulation, the value of V, is preset
and fixed.

4.2 Specialities in the Simulation of the Trape-

zoidal Modulation Scheme

4.2.1 Soft-Switching Qualities

Table 4.3 presents the expected switching losses of the system with trapezoidal
modulation as explained in Section 3.2.3. In comparison, the observations in the
simulation are presented and it can be seen that the values do not correspond to
each other in the switches Q1, Q2, Q7 and Q8. It is apparent from Figures 3.5

to 3.7 that these switches should achieve soft-switching in turn-on and turn-off

34



4. Model in PLECS®

Table 4.3: Expected and observed switching losses of the trapezoidal modulation
scheme (0: no switching losses, 1: switching losses are observed)

Turn-On Turn-Off
expected observed expected observed
8; 8 1 8 1 } set all to zero
Q3 0 0 1 1
8;1 8 8 i 1 correct
Q6 0 0 1 1
8; 8 1 8 1 } set all to zero

due to the fact that their switching happens in the moment when the inductor
current iy, crosses zero. From the simulation results, it is however obvious that this
moment is missed by several microseconds depending on voltage level and load.
This causes unexpected turn-on and turn-off losses. A possible explanation could
be that all parameters that form the trapezoidal modulation, €21, €5, D;, Dy and
D, are calculated based on the theoretical equations presented in Chapter 3. These
equations have been implemented in PLECS® with values like the output voltage
V., assumed to be constant and at nominal value. In the simulation it is however
observed that due to ohmic losses in the switches, the output voltage V,, will not reach
this nominal value, but settle at a slightly lower value (refer Figure 4.5). To solve
this discrepancy between the theoretical equations and the simulation results, two
suggestions are put forward. One one hand, a control circuit could be implemented
to keep the voltage across the output capacitor at the constant and nominal value of
16 kV. On the other hand, the momentary value V, could be dynamically fed back to
the equations that are used to calculate the necessary parameters. Hence, ensure the
correct determination and dynamic adaptation of these values. Due to the available
resources in the scope of this work, these possible solutions are not tested in the
simulation. Nevertheless, it is the goal to fairly treat the trapezoidal modulation in
comparison with the SPS and not lose its main achievement of partial zero turn-off
losses that are mentioned in literature [19, 35]. After considering different feasible
options, it is decided that the switching losses of the respective switches will be

manually set to zero in the simulation. This is shown in Table 4.3.
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Figure 4.5: Course of the simulated output voltage V, with V, = 16 kV

4.2.2 Auxiliary Parameter ¢

For the implementation of the trapezoidal modulation in PLECS®, an auxiliary
parameter € is set additionally to (3.17) and (3.18) which is used to phase-shift
the switching signals in order to reach the correct voltage and current forms. As
can be seen in Figure 3.5, this value is not equal to the phase-shift angle ¢. This
is due to the fact that the phase-shift is measured between half the on-time of
vr; and half the on-time of vpy. In the single-phase-shift modulation, € equals ¢
because of the constant duty cycle of 0.5 Ty for both square voltages where T is one
switching period. However, in trapezoidal modulation, the duty cycle of the square
voltages can differ from 0.5 T and the resulting difference between € and ¢ has to be

considered. The complete initialization parameters are provided in Appendix A.2.2.
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Analysis of Simulation Results

After modeling the Dual-Active-Bridge as well as the two considered modulation
schemes in PLECS®, the presented case set up from Chapter 2 is simulated. Accord-
ing to this set up, the modulation schemes are subject to a variation in load and to
a fluctuation in output voltage. The considered load cases are full load, 80 %, 50 %,
30% and 10% of full load, respectively. The output voltage V,, will vary between
the nominal voltage of V, = 16 kV, a voltage drop down to V, = 15.2 kV and a
voltage rise up to V, = 16.8 kV. This corresponds to a fluctuation of +£5%. Both
modulation schemes are simulated individually over the whole load range and the

results of each case are compared and evaluated with regards to the following criteria:

e RMS Inductor Current

o Total Losses of the Semiconductor Switches
o Overall Efficiency

o Switching Losses

o Soft-Switching Range

The parameters for comparison were chosen inspired by [13] and [19].

5.1 Transformer Voltages and Inductor Current

The basic functionality of the model and the two modulation schemes is tested by
looking at the transformer voltages vy and vy and the resulting current 77, through
the leakage inductance. In the following Figures 5.1 to 5.6, the course of these
parameters is presented for the three possible output voltage levels and different
load conditions. It must be noted that the secondary transformer voltage is referred

to the primary side and is consequently displayed as nvps.
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5.1.1 Single-Phase-Shift Modulation

In Figure 5.1, the Dual-Active-Bridge is subject to an output voltage of V, = 16 kV.

All wave forms show the theoretically expected behaviour presented in Figure 3.2.

It is visible that the current value decreases when the load is decreasing while at the

same time the phase-shift angle between vy; and nvre becomes smaller.
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Figure 5.1: Primary and referred secondary transformer voltage vy; and nvpre and
respective inductor current i;, at V, = 16 kV with single-phase-shift modulation
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Figure 5.2 depicts the course of vy and nvry at a 5 % deviated value of the nominal
voltage level of V, = 15.2 kV. It can be observed in this case that the referred output
voltage is lower than the input voltage. Therefore, the slope of the inductor current
has changed its sign to a positive value while the inductor voltage is (V; —nV,). This

was explained in Section 3.1.2.
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Figure 5.2: Primary and referred secondary transformer voltage vr; and nvrs and
respective inductor current iy at V, = 15.2 kV with single-phase-shift modulation
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In Figure 5.3 the output voltage shows a rise of voltage of 5%. Thus, the referred

output voltage is higher than the input voltage. The sign of the slope of the inductor

current in the second time interval is negative, corresponding to the case of nominal

voltage.
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Figure 5.3: Primary and referred secondary transformer voltage vy; and nvprs and
respective inductor current i;, at V, = 16.8 kV with single-phase-shift modulation
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5.1.2 Trapezoidal Modulation

The wave forms from the simulation of the trapezoidal modulation exhibit the ex-
pected behaviour from Figure 3.5. Equally to single-phase-shift modulation, the
value of the current as well as the phase-shift angle decrease with decreasing load.
According to the equations in Section 3.2.1, the zero-voltage widths €2; and 25 de-
crease with decreasing phase-shift angle. The duty cycles are in return increasing.
Furthermore, the slope of the current alternates in the third time interval while
(V; —nV,) is applied, depending on the relation of V; and V,. This was presented in
Section 3.2.2.
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Figure 5.4: Primary and referred secondary transformer voltage vy; and nvpre and
respective inductor current ¢;, at V, = 16 kV with trapezoidal modulation
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Figure 5.5: Primary and referred secondary transformer voltage vr; and nvps and
respective inductor current 77, at V, = 15.2 kV with trapezoidal modulation
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Figure 5.6: Primary and referred secondary transformer voltage vr; and nvps and
respective inductor current i7, at V, = 16.8 kV with trapezoidal modulation
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5.2 Comparison of Single-Phase-Shift and Trape-

zoidal Modulation

5.2.1 RMS Inductor Current

In the following Figures 5.7 to 5.9, the course of the RMS inductor current is de-
picted for the three different output voltage levels and different load conditions,
respectively. Firstly, it can be noted that due to the constant output voltage in
every case, the current value decreases with decreasing load. Secondly, it is visible
that for an output voltage lower than nominal at V, = 15.2 kV, the current takes
a larger value in order to deliver the requested power while for a higher output
voltage at V, = 16.8 kV, the current reduces. Beyond that, it is apparent that for
all voltage and load levels, the single-phase-shift modulation presents lower RMS
current values than the trapezoidal modulation. Depending on the voltage level, a
difference between 9 % and up to 20 % in current stress can be observed for the full
load condition. This observation coincides with simulation results that are shown
in [13]. Finally, it is noted that the minimum load that can be transmitted via
trapezoidal modulation at V, = 16.8 kV is 213 kW, corresponding to 22 % of the full
load (refer Figure 4.3). Therefore, no current value is available in the case of a 10 %
load for trapezoidal modulation in Figure 5.9, but the power transmission must be

handled by means of the triangular modulation.
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Figure 5.7: RMS inductor current at different transmission power levels with
V, = 16 kV and MOSFET switches
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5. Analysis of Simulation Results

5.2.2 Total Losses and Efficiency

The Figures 5.10 to 5.12 show the total losses and the Figures 5.13 to 5.15 show
the corresponding efficiencies of the built up model. The losses consist of switching
losses and conduction losses of the semiconductor switches and conduction losses
of the anti-parallel diodes. The respective diagrams of turn-on and turn-off switch-
ing energy and characteristics of the body diode are presented in the MOSFET
datasheet in Appendix C.

It is apparent that the total losses decrease with decreasing load and accordingly
decreasing current. Corresponding to the behaviour of the RMS current, the total

losses will be higher for a lower output voltage and lower for a higher output voltage.

According to what is expected from the course of the RMS current, the total losses
in trapezoidal modulation can at first be observed to be larger than in single-phase-
shift modulation. However, starting at a load of 30 % and downwards, the relation
is inverted and the total loss values of the trapezoidal modulation scheme become
slightly smaller than the ones of the SPS modulation. Consequently, it is visible
in the Figures 5.13 to 5.15 that for load conditions down to 50 % of the load, the
SPS modulation will provide a better efficiency than the trapezoidal modulation.
For smaller values of transmitted power, the figures show that the trapezoidal
modulation presents slightly better results. This is in line with the suggestions
in literature to apply SPS modulation for large loads and trapezoidal modulation
for light loads. The results can be explained when looking at the distribution of
switching and conduction losses at the different load levels. It is presented in the

following Section 5.2.3.
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In general, the efficiency of the built up DAB controlled via SPS modulation varies
between 97.91 % and 99.62 %, depending on the load and voltage condition. If the
control is done by means of the trapezoidal modulation scheme, the efficiency settles
between 96.78 % and 99.69 %.
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Figure 5.13: Efficiency at different transmission power levels with V, = 16 kV and
MOSFET switches
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5. Analysis of Simulation Results

5.2.3 Share of Switching Losses

Generally, it is visible that the percentile share of switching losses with respect to
total losses increases with decreasing load. That is because the current and thereby,
the absolute value of conduction losses decreases. Moreover, the SPS modulation and
the trapezoidal modulation show different characteristics concerning soft-switching.
This was presented in the Sections 3.1.3 and 3.2.3. From these findings, the trape-
zoidal modulation is expected to exhibit a lower share of switching losses than the
SPS modulation. The Figures 5.16 to 5.18 support this assumption. At 50 % of
the load, the switching losses with trapezoidal modulation account for only around
half of the switching losses in SPS modulation. At 10 % of the load, the trapezoidal

switching losses represent around 60 % of the SPS switching losses.

However, this behaviour is reflected in the overall efficiency only at very low loads.
At full load and nominal voltage, the absolute value of switching losses is observed
to be even higher in trapezoidal than in SPS modulation (compare Figure B.1 and

Figure B.2 in Appendix B).

Starting at 80 % towards lighter loads, the absolute value of switching losses is in
fact smaller in trapezoidal than in SPS modulation. Yet, it was shown that the RMS
inductor current in trapezoidal modulation is always larger than in SPS modulation.
This causes the absolute value of the conduction losses to be larger in trapezoidal
than in SPS. Hence, the sum of switching and conduction losses results to be larger
as well. The effect of lesser switching losses in trapezoidal modulation becomes only
visible at very light loads of 30 % or 10%. Here, the inverted proportions are ap-
parent in the overall efficiency and total losses. These results can be explained by
the good switching performance featuring low switching energies exhibited by the
chosen SiC MOSFETs.

It should additionally be noted that in the case of single-phase-shift modulation, the
Dual-Active-Bridge loses soft-switching capabilities in the case of 10 % of the load

when the output voltage is deviating from the nominal value:

o V, =15.2 kV: HV-side switches loose soft-switching in turn-on
e V, =16.8 kV: LV-side switches loose soft-switching in turn-on
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Moreover, it is noticed that for trapezoidal modulation, only the switch Q6 looses
soft-switching in turn-on for V, = 15.2 kV at 10 % of the load. These observations

support the choice of the trapezoidal modulation for low loads.
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Figure 5.16: Percentage share of switching losses at different transmission power
levels with V, = 16 kV and MOSFET switches
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5. Analysis of Simulation Results

5.3 Application of an IGBT Switch

Considering the findings in Section 5.2.3, the model of the Dual-Active-Bridge is re-
designed applying a dummy IGBT model based on the IGBT switch IKQ75N120CT2
by Infineon. The IGBT has considerably lower conduction losses, but higher switch-
ing energies than the considered MOSFET. It is expected that the effect of lower
switching losses in trapezoidal mode will thereby be made more visible in the re-
sults. Similarly to the procedure when creating the MOSFET model, a thermal
model is built in PLECS®, based on the switching energies that are given in the
datasheet in Appendix D. The on-resistance is identified to equal R,, = 27.8 mH.
The anti-parallel diode continues to have the charasteristics of the MOSFET body
diode. It has to be noted that this is a simplified approach as the blocking voltage
of the used IGBT is lower than the blocking voltage of the employed MOSFET.
For a real implementation, the number of switches that are connected in series and
parallel might therefore have to be adapted in order to comply with required safety
margins for IGBTs.

The course of the primary and secondary transformer voltage and the leakage in-

ductor current is identical to the graphs presented in Section 5.1.
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5. Analysis of Simulation Results

5.3.1 RMS Inductor Current

In the following Figures 5.19 to 5.21, the course of the RMS inductor current is
presented when the IGBT switch is used. The current shows the same behaviour as
with MOSFETs. Solely the values of the current are slightly higher due to the lower
ohmic resistance of the IGBTs.
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Figure 5.19: RMS inductor current at different transmission power levels with
V, = 16 kV and IGBT switches
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Figure 5.21: RMS inductor current at different transmission power levels with
V, = 16.8 kV and IGBT switches
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5.3.2 Total Losses and Efficiency

In the Figures 5.22 to 5.27, the total losses and resulting efficiencies of the Dual-
Active-Bridge that is equipped with IGBT switches are presented. It is visible
that in comparison with the results of Section 5.2.2; the total losses in trapezoidal
modulation are lower than the SPS losses over the whole load range. These re-
sults are reasonable considering the better switching performance of the trapezoidal
modulation scheme combined with the inverted share of switching and conduction
losses with IGBTs. For both modulation schemes, the total losses at low loads are
considerably higher when using IGBTs instead of MOSFETs: While the conduction
losses are very low due to both the low current and the good conducting behaviour of
the IGBTs, the switching losses stay at a comparatively high level (compare Figure
B.3 and Figure B.4 in Appendix B).
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Figure 5.22: Total losses at different transmission power levels with V, = 16 kV
and IGBT switches
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5. Analysis of Simulation Results

In general, the efficiency of the DAB with IGBT switches varies between 95.52 %
and 98.33 % with SPS modulation and between 97.81 % and 98.9 % with trapezoidal
modulation. The trapezoidal modulation shows better efficiencies than the SPS
modulation at all voltage and load levels. An explanation is given in the following
Section 5.3.3. It is worth noting that the efficiency does not increase with decreasing
load like in the case of MOSFETs.
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Figure 5.25: Efficiency at different transmission power levels with V, = 16 kV and
IGBT switches
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5.3.3 Share of Switching Losses

In general, the following Figures 5.28 to 5.30 show the lower share of switching losses
in trapezoidal modulation than in SPS modulation as expected. This is also valid for
the absolute switching loss values (compare Figure B.3 and Figure B.4 in Appendix
B). Although the absolute value of conduction losses with trapezoidal modulation is
still higher than with SPS modulation due to the higher current value, the role of the
switching losses is now different. The proportion of switching and conduction losses
is inverted when using IGBT switches. Thus, comparing with Figures 5.16 to 5.18,
it is obvious that the share of switching losses is clearly larger than in the MOSFET
case for both modulation schemes. The effect of the better switching performance
of the trapezoidal modulation scheme therefore becomes explicitly visible in the

efficiency. Besides, it is notable that soft-switching occurs at all examined voltage

and load levels.
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Figure 5.28: Percentage share of switching losses at different transmission power
levels with V, = 16 kV and IGBT switches
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Conclusion

6.1 Round-Up of the Presented Work

In this work, a Dual-Active-Bridge is employed to transfer the generated power from
a photovoltaic park to the medium voltage level. Two suitable modulation schemes
for this purpose are evaluated. The parameters of the transformer and semicon-
ductor switches were chosen to fit the solar output power of 0.97 MW. The input
voltage level V; is equal to V; = 1.3 kV. The output voltage level V, varies between
the nominal value of V, = 16 kV, V, = 15.2 kV and V, = 16.8 kV which corresponds

to a deviation of +5%. Other simulation parameters are given in Table 4.1.

The power flow through the Dual-Active-Bridge is chosen to be controlled by either
the single-phase-shift modulation scheme or the trapezoidal modulation scheme.
From the presented equations in Chapter 3, it is evident that the single-phase-
shift modulation features a simpler implementation than the trapezoidal modulation
scheme. The single-phase-shift modulation is realized with only one variable, namely
the phase-shift angle ¢, and functions identically for all voltage levels. For the
trapezoidal modulation scheme, two more variables have to be calculated, namely
the zero-voltage widths €2; and €25. Furthermore, two cases have to be differentiated

according to the voltage levels.
Due to their good switching performance favorable for a medium switching fre-

quency, SiC MOSFETs were chosen for this simulation. Additionally, a dummy

IGBT was created to confirm the obtained results.
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6. Conclusion

Concerning the covered load range, the single-phase-shift modulation is advan-
tageous over the trapezoidal modulation scheme. It can cover the whole load
range whereas the trapezoidal modulation has to be combined with the triangular
modulation scheme for low loads. Additionally, the single-phase-shift modulation
generates lower RMS inductor currents than the trapezoidal modulation at all volt-

age and load levels.

However, the trapezoidal modulation scheme shows advantages over the single-
phase-shift modulation with respect to soft-switching behaviour. While the single-
phase-shift modulation exhibits eight softly turned on switches and eight hard turned
off switches, the trapezoidal modulation scheme allows for eight softly turned on

switches, but has only four hard turned off switches.

When it comes to efficiency, the favoured modulation scheme depends on the chosen
switch and load level. In case of a SiC MOSFET switch with low switching losses,
the single-phase-shift modulation is favorable over the trapezoidal modulation for
loads down to 50 % of full load. At lower loads, the trapezoidal modulation slightly
outplays the single-phase-shift modulation due to the lower share of switching losses.
In case of the IGBT dummy switch featuring better conduction performance, the

trapezoidal modulation is more suitable over the entire load range.

Depending on various parameters like the chosen switches, the load range that has
to be covered, the voltage levels and power range in the individual use case, it can
be concluded that the single-phase-shift modulation is expected to be more suitable
for higher loads and the trapezoidal modulation scheme for medium to low loads.
Nevertheless, a “cost-benefit-analysis” between the necessary calculation effort and
the improvement of the efficiency should be conducted for every individual use case

in order to opt for the optimal modulation scheme.
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6.2 Future Work

Several measures can be taken for further investigation and improvement of the
presented analysis. To fully benefit from the respective advantages, first of all, the
triangular modulation should be modeled and added to the simulation. This allows
for coverage over the whole load range. After that, an adequate voltage control
strategy should be added to the model as was explained in Section 4.2.1. In addi-
tion, the transformer is treated as an ideal component in the scope of this work. In
order to include transformer losses in the study and to examine possible effects of
the different modulation schemes on the transformer parameters, a detailed model

of the transformer should be included.

Moreover, some results in [19] and [29] give rise to the assumption that the out-
comes concerning the suitability of the modulation techniques might depend on the
respective ratios of voltage levels, power levels and resulting currents. Hence, the

presented application could be modified to different boundary conditions.

Finally, many more modulation techniques for the Dual-Active-Bridge converter
are available in literature. Among these are the dual-phase-shift modulation, the
extended-phase-shift modulation, the triple-phase-shift modulation and the opti-
mized modulation method. All these methods vary the phase-shift between the
input and output bridge as well as between the two legs of one full-bridge according

to different criteria that can be found in the respective literature.
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A

PLECS® Modeling

A.1 Single-Phase-Shift Modulation

A.1.1 Initialization Parameters for all Voltage Levels

% Input Voltage
Vi=1.3e3

% Output Voltage: 16e3 +/— 5% deviation
Vo=16e3

% Switching Frequency
fs=be3d

% Switching Period
Ts=1/fs
Ths=0.5%1/fs

% Triangular Wave
dutycycle=0.5

% Modulation Index
m=0.5

% Transformer

Ni=1 % Number of turns on primary side
N2=12 % Number of turns on secondary side
n=N1/N2 % Turns ratio

% MOSFET Series and Parallel Connection
% Ron Value from Data Sheet
Ron datasheet=45e—3

% LV—side
ns LV=2
np_ LV=15




A. PLECS® Modeling

% HV—side
ns HV=15
np HV=2

% DC Conversion Ratio
d=Vox*n/Vi

% Single—Phase—Shift
Pmax=0.97e6

TITTSSTTISTISTISSITSTISTISSTISTISTISSISSITISTISSIISTISTISSTIIS o

% set angle in degrees at which maximum power
% should be transmitted

Phi SPS max=60
Phi_ SPS_rad_max=Phi_SPS max/180x pi

TITTTTTTTITTTTTTTTTTTTTTTSTSTSSTSTSSSSSSSSS SIS SIS SIS SIS SIS o
% calculate respective leakage inductance

L_SPS=(VixVoxn) /(2 pixpix*fs+«Pmax)*Phi_SPS_rad_maxx
(pi—Phi_SPS rad_max)

TITTTTTTTITTTTTTTTTTTTTTTSSSTTSSSSSSSSSSSSS SIS SIS SIS SIS SIS SIS o
% set power that should be transmitted

% L=L_SPS

L=2.82868e—5

Ptransmit=1x0.97¢e6
YSSTTTTTTISSSTTTTTTISSSTTTTTTISSSSTTTTTISSSSTTT TSI TSI STSTTTTTIS o

% Calculate respective Phi

% Power transfer function for SPS
a=1

b=npi
c=(Ptransmit*2xpixpi*xfs*L)/(VixVoxn)

% not applicable
Phil=1/(2xa)*(—b+sqrt (bxb—4xaxc))

% Varying Values for Phase—Shift depending on given P
Phi2=1/(2xa)*(—b—sqrt (bxb—4xaxc))
Phi_ SPS=Phi2/(pi)=*180;

% Enter Phase—Shift in Degrees
Phi=Phi_SPS
Phi_rad=(Phi/180)* pi

IT




A. PLECS® Modeling

D=Phi /180

ph_input=0
ph_output=DxThs

% Transmission Power and Load
P=VixVosn/(2xpixpixfs«L)*Phi_rad*[pi—(Phi_rad)]
R=(Vo)~2/P

A.2 Trapezoidal Modulation

A.2.1 Initialization Parameters for V; < nV,

% Input Voltage
Vi=1.3e3

% Output Voltage: 16e3 and 16e3 + 5% deviation
Vo=16e3

% Switching Frequency
fs=be3d

% Switching Period
Ts=1/fs
Ths=0.5%1/fs

% Triangular Wave
dutycycle=0.5

% Modulation Index
m=0.5

% Transformer

Ni1=1 % Number of turns on primary side
N2=12 % Number of turns on secondary side
n=N1/N2 % Turns ratio

% MOSFET Series and Parallel Connection
% Ron Value from Data Sheet
Ron datasheet=45e—3

% LV—side
ns LV=2
np LV=15

I11




A. PLECS® Modeling

% HV—side
ns HV=15
np HV=2

% DC Conversion Ratio
d=Vox*n/Vi

Pmax=0.97¢6

TITTSSTTISTISTISSITSTISTISSTISTISTISSISSITISTISSIISTISTISSTIIS o

% set angle at which maximum power should be transmitted
Phi tr max=60

Phi_tr_rad_max=Phi_tr max/180%pi
TSI STST TSI TSI TSI SIS IS TSI SIS TSI TSI TSI STSITSTS TSI TSI T

% calculate respective leakage inductance
Omegal max=(pi*(Vi—n*Vo)+2xnxVoxPhi_tr rad max)/(2%(Vi+n*xVo))

Omega2 max=Phi_tr rad_max—Omegal max

L_Trapez=(n*Vox(pi—Phi_tr rad max—Omegal max—Omega2 max )
(n*Vox(Phi_tr rad max—Omega2 max+Omegal max)+ Vix
(Phi_tr_rad_ max—Omegal max+Omega2 max))+((nxVo) 2)x

((Phi_tr rad max—Omega2 max+Omegal max) 2))/(4*Pmaxxpixpixfs)

YSSTTTTTTISSSTTTTTTISSSTTTTTTISSSSTTTTTISSSSTTT TSI TSI STSTTTTTIS o
% enter power that should be transmitted
Ptransmit=0.3%0.97e6

TTTSSTTISTISTISSISSTISTISSISSTISTISSISSITIS SIS SITSTISTISSIIS o

% Calculate respective Phi, Omegal and Omega2
% L=L_Trapez
L=2.82868e—5

% Phi calculation according to Schibli
el=Vi 2+ (nxVo) 2

e2=Vi 2+ VixnxVo+(n*xVo) 2
e3=Vi~2x(nxVo)

IV



A. PLECS® Modeling

Phi_trapez_ rad=pix(el/(2xe2)—((Vitn*xVo)x*
(sqrt (e3—4xfs«(Ptransmit /(n*Vo))xLxe2))/(2x(sqrt(Vi))xe2)))

Phi_trapez=Phi_trapez_rad/pix180

Omegal=(pix*(Vi—n*Vo)+2+nxVoxPhi_trapez_rad)/(2x(VitnxVo))
Omega2=Phi_trapez_ rad—Omegal

Phi=Phi_ trapez
Phi rad=(Phi_trapez/180)xpi

% inner phase—shift of input bridge (duty ratio of vT1)
D1=(1—(2%Omegal/pi))*Ths

% inner phase—shift of output bridge (duty ratio of vT2)
D2=(1—(2%Omega2/pi))*Ths

% Phase—Shift between vT1 and vI2 (outer phase—shift)
D=(2+Omega2/pi)*Ths

% Gate Signals
ph_Q12=0
ph_Q34=ph_Q12+D1

ph_ Q56=ph_ Q124D
ph_ Q78=ph_Q124D+D2

% Transmission Power and Load
P=(n*Vox(pi—Phi_rad—Omegal—Omega2 ) *

(nxVox(Phi rad—Omega2+Omegal)+Vix
(Phi_rad—Omegal+Omega2))) /(4*Lxpixpixfs)+(((nxVo) 2)x
((Phi_rad—Omega2+Omegal )" 2)/(4xLxpixpi*fs))

R=Vo™2/P




A. PLECS® Modeling

A.2.2 [Initialization Parameters for V; > nV,

% Input Voltage
Vi=1.3e3

% Output Voltage: 16e3 — 5% deviation
Vo=15.2e3

% Switching Frequency
fs=5e3

% Switching Period
Ts=1/fs
Ths=0.5%1/fs

% Triangular Wave
dutycycle=0.5

% Modulation Index
m=0.5

% Transformer

N1=1 % Number of turns on primary side
N2=12 % Number of turns on secondary side
n=N1/N2 % Turns ratio

% MOSFET Series and Parallel Connection
% Ron Value from Data Sheet
Ron datasheet=45e¢—3

% LV—side
ns LV=2
np_LV=15

% HV—side
ns HV=15
np HV=2

% DC Conversion Ratio
d=Vox*n/Vi

Pmax=0.97¢6

VI




A. PLECS® Modeling

TSSTTSSTTTSTISTTSSTITSTISSTISSTSTTSTIST IS SIS SIIS T IS SIS STISTIS TS S To

% set angle at which maximum power should be transmitted
Phi tr max=60

Phi_tr_rad_max=Phi_tr max/180%pi
ST SIS TSI TSI TSI TSI SIS SIS IS IS STSI SIS SIISISISTSIT TSI TS

% calculate respective leakage inductance

Omega2 max=(pi#*(n*xVo—Vi)+2xVixPhi_tr_rad_max)/(2x(VitnxVo))
Omegal max=Phi_tr rad max—Omega2 max

L_Trapez=(n*xVox(pi—Phi_tr rad max—Omegal max—Omega2 max)sx
(n*Vox(Phi_tr rad max—Omega2 max+Omegal max)+ Vix

(Phi_tr rad max—Omegal max+Omega2 max))+((nxVo) 2)x

((Phi_ tr rad max—Omega2 max+Omegal max) 2))/(4*Pmaxxpixpixfs)

YIS TTTTTTISSSSTTTTTTISSSTTTTTTISSSSTTTTIISSSSTITTTISSSSTSTTTTTIS o
% enter power that should be transmitted
Ptransmit=0.3%0.97e6

TSTTSTTISTISTISSITST IS SIS STITSTISTIS SIS SIS SIS SIS ST IS TISSTITS o

% Calculate respective Phi, Omegal and Omega2
Y%l=L_Trapez
L=2.82868e—5

% Phi calculation according to Schibli
el=Vi 2+(nxVo) 2

e2=Vi 2+ VixnxVo+(n*xVo) 2
e3=Vi~2x(nxVo)

Phi_trapez_ rad=pix(el/(2xe2)—((Vitn*xVo)x*
(sqrt (e3—4xfs«(Ptransmit /(n*Vo))*xLxe2)) /(2% (sqrt(Vi))*xe2)))
Phi_ trapez=Phi_ trapez rad/pi*180

Omega2=(pi*(n*xVo—Vi)+2+«VixPhi_trapez_ rad)/(2x(VitnxVo))
Omegal=Phi_trapez_ rad—Omega2

Phi=Phi_trapez
Phi rad=(Phi trapez/180)xpi

% inner phase—shift of input bridge (duty ratio of vTl)
D1=(1—(2%Omegal/pi))*Ths

VII



A. PLECS® Modeling

% inner phase—shift of output bridge (duty ratio of vT2)
D2=(1—(2%Omega2/pi))*Ths

% Phase—Shift between vT1 and vI2 (outer phase—shift)
D=(2+%Omega2/pi)=Ths

% Gate Signals
ph__Q12=0
ph_ Q34=ph Q124+D1

ph_ Q56=ph Q124D
ph Q78=ph Q124D+D2

% Transmission Power and Load
P=(n*Vox(pi—Phi_rad—Omegal—Omega2 )
(nxVox(Phi_rad—Omega2+Omegal)+Vix
(Phi_rad—Omegal+Omega2))) /(4*Lxpixpixfs)+(((nxVo) 2)x
((Phi_rad—Omega2+Omegal )~ 2)/(4*Lxpi*pixfs))

R=Vo™2/P

VIII
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B. Simulation Results
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F. Series and Parallel Connection of Switches
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F. Series and Parallel Connection of Switches

Imputveltage V] 13 2015 s
 Cutput voltage [kW] 16, 24800 !
i I !
i i !
:SaFety rnargin current 7074 of rating | |
1 Safety margin voltage 553 !
[_D[4] 72| 50.40 i
W DS V] 1700; 1096.77 |
i
1
)
]
'
1
1

Irput DC - current [4]

High voltage side
Murnber of Mosfets in parallel |

[dependent on current] LDutput DC - current [4]
oo/

Murnber of kMosfets in parallel
[dependent on current] i

1

i
i ) ) ) 0.00;
i 0.00 0.00;] 0.00 0.00,
| 0.00 0.00 0.00 0.00
! 0.00 0.00 0.00 0.00]
1 0.00 0.00 0.00 0.00;
i 0.00 0.00] 0.00 0.000
| 17.59 0.35] 143 0.03!
! 185.30 3.08: 1262 0.25,
| 366.54 TN 29.78 0.59]
| 56438 20! 45.86 041
| E79.64 13.48! 55.22 110
! 269.03 534 2186 0.43]
i 748.74 14.86 £0.84 121
i 216.34 4.29] 17.58 035
| 105.74 210, 8.59 017
! 437.80 8.69, 3587 0.7
1 257.58 2.1 2093 0.42]
| 74,33 148 £.04 02
| 0.00 0.00; 0.00 0.00!
! 0.00 0.00 0.00 0.00]
| 0.00 0.00 0.00 0.00;
| 0.00 0.00] 0.00 0.000
| 0.00 0.00 0.00 0.00!
! .00 0.00 .00 0.00]
1
i i ]
| Configuration of one “switching element” in | |
the full bridge ! |
High voltage side ]
i Murnber of Mosfets in series ns 119 14.59 14.59)
| Murnber of Mosfet-strings in parallel np 4.6, 121 !
| i ;
1 1 I
ns 2 15 !
np 15 2 !
| 1

Figure F.2: Calculation of necessary number of in series and in parallel connected

switches for the given power

LV-Side HV-Side

13 kv < < —| < < N 16KV
0.97 MW < < 3 < < 0.97 MW
np=15 < anZ <
REEE S
SR wts GG
¢ ¢ ¢
¢ ¢ ¢

Switching Element LV-side

Figure F.3: Composition of the switching elements on the LV- and HV-side
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