CHALMERS
UNIVERSITY OF TECHNOLOGY

Study of Modulation Schemes for the Dual-Active-Bridge Converter in a Grid-Connected Photovoltaic Park

Master's Thesis in M. Sc. Sustainable Electrical Power Supply at the University of Stuttgart

VERENA STEUB

Study of Modulation Schemes for the Dual-Active-Bridge Converter in a Grid-Connected Photovoltaic Park

VERENA STEUB
(Enrolment Number: 2573849)

Institut für Leistungselektronik und Elektrische Antriebe

CHALMERS
UNIVERSITY OF TECHNOLOGY

Department of Electrical Engineering
Division of Electric Power Engineering
Chalmers University of Technology
Gothenburg, Sweden 2018

Institute of Power Electronics and Electrical Drives (ILEA)
University of Stuttgart Stuttgart, Germany 2018

Study of Modulation Schemes for the Dual-Active-Bridge Converter in a Grid-Connected Photovoltaic Park
VERENA STEUB
© VERENA STEUB, 2018.

Starting Date: January 8, 2018
Submission Date: July 28, 2018

Supervisors:
Dr. Amin Bahmani, Department of Electrical Engineering
M. Sc. Johannes Ruthardt, Institute of Power Electronics and Electrical Drives

Examiners:
Prof. Torbjörn Thiringer, Department of Electrical Engineering
Prof. Dr.-Ing. Jörg Roth-Stielow, Institute of Power Electronics and Electrical Drives

Master's Thesis 2018
Department of Electrical Engineering
Division of Electric Power Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Telephone +46 317721000
Institute of Power Electronics and Electrical Drives (ILEA)
University of Stuttgart
DE-70569 Stuttgart, Germany
Telephone +49 71168567401

Typeset in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$
Gothenburg, Sweden 2018

Erklärung

Ich versichere, dass ich die vorliegende Arbeit, abgesehen von den Anregungen, die mir von Seiten meiner Betreuer, Herrn Dr. Amin Bahmani und Herrn M. Sc. Johannes Ruthardt sowie von meinen Prüfern, Herrn Prof. Torbjörn Thiringer und Herrn Prof. Dr.-Ing. Jörg Roth-Stielow gegeben worden sind, selbstständig durchgeführt und verfasst habe. Es wurden keine anderen als die angegebenen Quellen und Hilfsmittel benutzt. Alle Ausführungen, die wörtlich oder sinngemäß aus anderen Werken übernommen wurden, sind als solche gekennzeichnet.

Göteborg, den 28. Juli 2018

Study of Modulation Schemes for the Dual-Active-Bridge Converter in a Grid-Connected Photovoltaic Park
VERENA STEUB
Department of Electrical Engineering
Division of Electric Power Engineering
Chalmers University of Technology

Abstract

This works aims at comparing two modulation schemes for the Dual-Active-Bridge DC-DC converter topology. On the basis of a specific case of application, the most suitable method shall be identified.

The model of a Dual-Active-Bridge converter is built and simulated in PLECS ${ }^{\oplus}$. It is embedded in the configuration of a photovoltaic park with an output power of $P=0.97 \mathrm{MW}$, an input voltage level of $V_{i}=1.3 \mathrm{kV}$ and an output voltage level of $V_{o}=16 \mathrm{kV} \pm 5 \%$. The considered load levels are assumed to be full load, 80%, $50 \%, 30 \%$ and 10% of the full load, respectively. The feed-in of solar power into the transmission grid is facilitated by the Dual-Active-Bridge. The power flow through the converter is controlled either by the so called single-phase-shift modulation or the trapezoidal modulation scheme. Both techniques are examined and compared concerning the root mean square value of their inductor current, possible load range, switching losses and resulting efficiency.

The root mean square value of the inductor current is found to be lower with single-phase-shift modulation than with trapezoidal modulation for all voltage and load levels. Additionally, the single-phase-shift modulation can cover a wider load range than the trapezoidal modulation scheme. However, the trapezoidal modulation scheme features better soft-switching capabilities and therefore generally lower switching losses than the single-phase-shift modulation. Altogether, it is observed that depending on the used switch and load level, a different modulation scheme is favorable. Using a SiC MOSFET switch, the single-phase-shift modulation shows a better efficiency than the trapezoidal modulation for loads down to 50% of the full load. For lower loads, the trapezoidal modulation provides slightly better results. In the case of an IGBT switch, the trapezoidal modulation outplays the single-phasemodulation over the entire load range.

Keywords: Dual-Active-Bridge, Modulation Schemes, Photovoltaic Park, Single-Phase-Shift Modulation, Trapezoidal Modulation.

Study of Modulation Schemes for the Dual-Active-Bridge Converter in a Grid-Connected Photovoltaic Park
VERENA STEUB
Department of Electrical Engineering
Division of Electric Power Engineering
Chalmers University of Technology

Kurzfassung

In der vorliegenden Arbeit werden zwei Modulationsarten für den Dual-Active-Bridge-Gleichspannungswandler verglichen. Anhand eines spezifischen Anwendungsfalls soll das für diese Topologie am besten geeignete Verfahren bestimmt werden.

Ein Modell eines Dual-Active-Bridge-Wandlers wird in PLECS ${ }^{\oplus}$ aufgebaut und simuliert. Dieses wird am Beispiel eines Photovoltaik-Parks mit einer Ausgangsleistung von $P=0,97 \mathrm{MW}$, einer Eingangsspannung von $V_{i}=1,3 \mathrm{kV}$ und einer Ausgangsspannung von $V_{o}=16 \mathrm{kV} \pm 5 \%$ untersucht. Es werden Lastfälle von Volllast über $80 \%, 50 \%, 30 \%$ und 10% der maximalen Last betrachtet. Die Einspeisung in das Übertragungsnetz wird durch die Dual-Active-Bridge ermöglicht. Der Leistungsfluss durch den Gleichspannungswandler wird entweder durch die sogenannte Single-Phase-Shift-Modulation oder die trapezoide Modulation geregelt. Beide Techniken werden bezüglich des Effektivwerts ihres Spulenstroms, des möglichen abgedeckten Lastbereichs, der Schaltverluste und des resultierenden Wirkungsgrades untersucht und verglichen.

Der Effektivwert des Spulenstroms stellt sich bei der Single-Phase-Shift-Modulation für alle Spannungs- und Lastebenen als niedriger heraus als bei der trapezoiden Modulation. Darüber hinaus kann mit der Single-Phase-Shift-Modulation ein breiterer Lastbereich abgedeckt werden als mit der trapezoiden Modulation. Letztere verfügt jedoch über bessere Eigenschaften bezüglich weicher Einschaltvorgänge und weist daher allgemein geringere Schaltverluste auf. Insgesamt zeigt sich, dass je nach verwendeter Schalterart und Lastebene eine jeweils andere Modulationsart vorzuziehen ist. Unter Verwendung eines SiC MOSFET-Schalters bietet die Single-Phase-Shift-Modulation bessere Wirkungsgrade für Lasten von Volllast bis hinunter zu 50% der Last. Für Lasten kleiner als 50% liefert die trapezoide Modulation bessere Ergebnisse. Im Falle des IGBT-Schalters übertrifft die trapezoide Modulation die Single-Phase-Shift-Modulation über den gesamten Lastbereich.

Acknowledgements

This work has been carried out at the Department of Electrical Engineering at Chalmers University of Technology in cooperation with the Institute of Power Electronics and Electrical Drives at the University of Stuttgart.

First of all, I would like to thank my supervisor Dr. Amin Bahmani and my examiner Prof. Torbjörn Thiringer for making it possible to carry out my Master's thesis as a visiting student at the Department of Electrical Engineering at Chalmers University of Technology. I would like to express my profound gratitude for their valuable guidance, precious advice and counseling that helped me to find the right track during the thesis work and to successfully conclude my master studies.

My thanks likewise goes to my supervisor Johannes Ruthardt, M. Sc., and my examiner Prof. Dr.-Ing. Jörg Roth-Stielow, Institute of Power Electronics and Electrical Drives at the University of Stuttgart for accepting and supervising this project as external Master's thesis and to Maximilian Nitzsche, M. Sc., for the very pleasant communication and organization.

Last, but not least, I would like to thank my friend Babak AlikhanzadehAlamdari, M. Sc., who has welcomed me at the department in the most cordial way and supported me throughout the thesis in every matter, be it organizationally, technically or personally.

Verena Steub
Gothenburg, Sweden, July 2018

Contents

List of Figures ix
List of Tables xii
List of Abbreviations and Symbols xiii
1 Introduction 1
1.1 Problem Background and Previous Work 1
1.2 Dual-Active-Bridge Topology, its Modulation and Application 2
1.3 Methodology 4
1.4 Ethical and Sustainability Aspects 4
2 Case Set Up 5
2.1 Case of Application 5
2.2 Choice of Switches 7
3 Modulation Schemes 9
3.1 Single-Phase-Shift Modulation 10
3.1.1 Transmission Power and Phase-Shift Angle φ 11
3.1.2 Voltages and Currents 12
3.1.3 Switching Behaviour 14
3.2 Trapezoidal Modulation 15
3.2.1 Transmission Power, Phase-Shift Angle φ and Duty Cycles 15
3.2.2 Voltages and Currents 19
3.2.3 Switching Behaviour 22
3.3 Triangular Modulation 22
3.3.1 Transmission Power, Phase-Shift Angle φ and Duty Cycles 23
3.3.2 Switching Behaviour 25
3.4 Combined Modulations 26
4 Model in $\mathrm{PLECS}{ }^{\ominus}$ 29
4.1 Components and Parameters 29
4.1.1 Transformer and Leakage Inductance 30
4.1.2 MOSFET Switches 32
4.1.3 Anti-Parallel Diodes 33
4.1.4 Gate Signal Generation 33
4.1.5 Output Capacitance 34
4.1.6 Output Voltage V_{o} 34
4.2 Specialities in the Simulation of the Trapezoidal Modulation Scheme 34
4.2.1 Soft-Switching Qualities 34
4.2.2 Auxiliary Parameter ϵ 36
5 Analysis of Simulation Results 37
5.1 Transformer Voltages and Inductor Current 37
5.1.1 Single-Phase-Shift Modulation 38
5.1.2 Trapezoidal Modulation 41
5.2 Comparison of Single-Phase-Shift and Trapezoidal Modulation 44
5.2.1 RMS Inductor Current 44
5.2.2 Total Losses and Efficiency 46
5.2.3 Share of Switching Losses 51
5.3 Application of an IGBT Switch 54
5.3.1 RMS Inductor Current 55
5.3.2 Total Losses and Efficiency 57
5.3.3 Share of Switching Losses 61
6 Conclusion 63
6.1 Round-Up of the Presented Work 63
6.2 Future Work 65
Bibliography 66
A PLECS ${ }^{\ominus}$ Modeling I
A. 1 Single-Phase-Shift Modulation I
A.1.1 Initialization Parameters for all Voltage Levels I
A. 2 Trapezoidal Modulation III
A.2.1 Initialization Parameters for $V_{i} \leq n V_{o}$ III
A.2.2 Initialization Parameters for $V_{i}>n V_{o}$ VI
B Simulation Results IX
C MOSFET Datasheet XIV
D IGBT Datasheet XX
E Photovoltaic Panel Datasheet XXVI
F Series and Parallel Connection of Switches XXVIII

List of Figures

1.1 Two options for the PV park configuration according to [37] 1
1.2 Dual-Active-Bridge topology 3
2.1 Global irradiance in Tarifa on March 20, 2016 5
2.2 Adapted configuration of the PV park based on [37] 6
2.3 Assumed losses in the system 7
2.4 Power fed into one DAB in the course of March 20, 2016 7
2.5 Series and parallel connection of MOSFETs and anti-parallel diodes in one switching block 8
3.1 Considered variables for modulation 9
3.2 Primary and referred secondary transformer voltage and inductor cur- rent for the single-phase-shift modulation 10
3.3 Switching signals for the gates Q1 to Q8 11
3.4 Gate signal to the switch, current through the switch and switching losses for the example of a MOSFET switch on the primary side of the DAB 15
3.5 Primary and referred secondary transformer voltage and inductor cur- rent for the trapezoidal modulation 16
3.6 Switching signals for the gates Q1 to Q4 18
3.7 Switching signals for the gates Q5 to Q8 19
3.8 Primary and referred secondary transformer voltage and inductor cur- rent for the triangular modulation 23
3.9 Switching signals for the gates Q1 to Q4 25
3.10 Switching signals for the gates Q5 to Q8 26
3.11 Distribution of modulation schemes over the whole angle range with the chosen output voltages $V_{o}=15.2 \mathrm{kV}, V_{o}=16 \mathrm{kV}$ and $V_{o}=16.8 \mathrm{kV} 28$
4.1 Schematic of the DAB model in PLECS ${ }^{\circledR}$ for the example of single- phase-shift modulation 29
4.2 Process of choosing the value of leakage inductance for all the three modulation schemes 31
4.3 Distribution of modulation schemes over the power range with the chosen leakage inductance and the output voltages $V_{o}=15.2 \mathrm{kV}$, $V_{o}=16 \mathrm{kV}$ and $V_{o}=16.8 \mathrm{kV}$ 32
4.4 Scaling of switching and conduction losses 33
4.5 Course of the simulated output voltage V_{o} with $V_{o}=16 \mathrm{kV}$ 36
5.1 Primary and referred secondary transformer voltage $v_{T 1}$ and $n v_{T 2}$ and respective inductor current i_{L} at $V_{o}=16 \mathrm{kV}$ with single-phase-shift modulation 38
5.2 Primary and referred secondary transformer voltage $v_{T 1}$ and $n v_{T 2}$ and respective inductor current i_{L} at $V_{o}=15.2 \mathrm{kV}$ with single-phase-shift modulation 39
5.3 Primary and referred secondary transformer voltage $v_{T 1}$ and $n v_{T 2}$ and respective inductor current i_{L} at $V_{o}=16.8 \mathrm{kV}$ with single-phase-shift modulation 40
5.4 Primary and referred secondary transformer voltage $v_{T 1}$ and $n v_{T 2}$ and respective inductor current i_{L} at $V_{o}=16 \mathrm{kV}$ with trapezoidal modulation 41
5.5 Primary and referred secondary transformer voltage $v_{T 1}$ and $n v_{T 2}$ and respective inductor current i_{L} at $V_{o}=15.2 \mathrm{kV}$ with trapezoidal modulation 42
5.6 Primary and referred secondary transformer voltage $v_{T 1}$ and $n v_{T 2}$ and respective inductor current i_{L} at $V_{o}=16.8 \mathrm{kV}$ with trapezoidal modulation 43
5.7 RMS inductor current at different transmission power levels with $V_{o}=16 \mathrm{kV}$ and MOSFET switches 44
5.8 RMS inductor current at different transmission power levels with $V_{o}=15.2 \mathrm{kV}$ and MOSFET switches 45
5.9 RMS inductor current at different transmission power levels with $V_{o}=16.8 \mathrm{kV}$ and MOSFET switches 45
5.10 Total losses at different transmission power levels with $V_{o}=16 \mathrm{kV}$ and MOSFET switches 47
5.11 Total losses at different transmission power levels with $V_{o}=15.2 \mathrm{kV}$ and MOSFET switches 47
5.12 Total losses at different transmission power levels with $V_{o}=16.8 \mathrm{kV}$ and MOSFET switches 48
5.13 Efficiency at different transmission power levels with $V_{o}=16 \mathrm{kV}$ and MOSFET switches 49
5.14 Efficiency at different transmission power levels with $V_{o}=15.2 \mathrm{kV}$ and MOSFET switches 50
5.15 Efficiency at different transmission power levels with $V_{o}=16.8 \mathrm{kV}$ and MOSFET switches 50
5.16 Percentage share of switching losses at different transmission power levels with $V_{o}=16 \mathrm{kV}$ and MOSFET switches 52
5.17 Percentage share of switching losses at different transmission power levels with $V_{o}=15.2 \mathrm{kV}$ and MOSFET switches 53
5.18 Percentage share of switching losses at different transmission power levels with $V_{o}=16.8 \mathrm{kV}$ and MOSFET switches 53
5.19 RMS inductor current at different transmission power levels with $V_{o}=16 \mathrm{kV}$ and IGBT switches 55
5.20 RMS inductor current at different transmission power levels with $V_{o}=15.2 \mathrm{kV}$ and IGBT switches 56
5.21 RMS inductor current at different transmission power levels with $V_{o}=16.8 \mathrm{kV}$ and IGBT switches 56
5.22 Total losses at different transmission power levels with $V_{o}=16 \mathrm{kV}$ and IGBT switches 57
5.23 Total losses at different transmission power levels with $V_{o}=15.2 \mathrm{kV}$ and IGBT switches 58
5.24 Total losses at different transmission power levels with $V_{o}=16.8 \mathrm{kV}$ and IGBT switches 58
5.25 Efficiency at different transmission power levels with $V_{o}=16 \mathrm{kV}$ and IGBT switches 59
5.26 Efficiency at different transmission power levels with $V_{o}=15.2 \mathrm{kV}$ and IGBT switches 60
5.27 Efficiency at different transmission power levels with $V_{o}=16.8 \mathrm{kV}$ and IGBT switches 60
5.28 Percentage share of switching losses at different transmission power levels with $V_{o}=16 \mathrm{kV}$ and IGBT switches 61
5.29 Percentage share of switching losses at different transmission power levels with $V_{o}=15.2 \mathrm{kV}$ and IGBT switches 62
5.30 Percentage share of switching losses at different transmission power levels with $V_{o}=16.8 \mathrm{kV}$ and IGBT switches 62
B. 1 Simulation results of SPS modulation when the chosen MOSFET switch is used X
B. 2 Simulation results of trapezoidal modulation when the chosen MOSFET switch is used XI
B. 3 Simulation results of SPS modulation when the chosen IGBT switch is used XII
B. 4 Simulation results of trapezoidal modulation when the chosen IGBT switch is used XIII
F. 1 Calculation of PV output power in Tarifa on March 20, 2016 XXIX
F. 2 Calculation of necessary number of in series and in parallel connected switches for the given power XXX
F. 3 Composition of the switching elements on the LV- and HV-side XXX

List of Tables

4.1 Simulation Parameter Initialization 30
4.2 Value for the leakage inductances with full power transmission at $\varphi=60^{\circ}$ 31
4.3 Expected and observed switching losses of the trapezoidal modulation scheme (0: no switching losses, 1: switching losses are observed) 35

List of Abbreviations and Symbols

Abbrevia	ions
AC	Alternating Current
DAB	Dual-Active-Bridge
DC	Direct Current
HV	High Voltage
IGBT	Insulated-Gate Bipolar Transistor
LV	Low Voltage
MF	Medium Frequency
MOSFET	Metal-Oxide-Semiconductor Field-Effect Transistor
MPP	Maximum Power Point
MPPT	Maximum Power Point Tracking
MV	Medium Voltage
PV	Photovoltaic
RMS	Root Mean Square
SiC	Silicon Carbide
SPS	Single-Phase-Shift
STC	Standard Test Conditions
Symbols	
ϵ	Auxiliary Parameter for Phase-Shifting in Trapezoidal Modulation
Ω_{1}	Zero-Voltage Length of Primary Side Transformer Voltage
Ω_{2}	Zero-Voltage Length of Secondary Side Transformer Voltage
φ	Phase-Shift Angle
D_{1}	Duty Cycle of Primary Side Transformer Voltage in Trapezoidal and Triangular Modulation
D_{2}	Duty Cycle of Secondary Side Transformer Voltage in Trapezoidal and Triangular Modulation
D	Duty Cycle of Primary and Secondary Side Transformer Voltage in Single-Phase-Shift Modulation

\boldsymbol{d}	DC Transformation Ratio
$\boldsymbol{f}_{\boldsymbol{s}}$	Switching Frequency
\boldsymbol{L}	Leakage Inductance
\boldsymbol{n}	Transformer Turns Ratio
$\boldsymbol{T}_{\boldsymbol{s}}$	Switching Period
$\boldsymbol{T}_{\boldsymbol{h}}$	Half a Switching Period
$\boldsymbol{V}_{\boldsymbol{i}}$	Input Voltage
$\boldsymbol{V}_{\boldsymbol{o}}$	Output Voltage
$\boldsymbol{v}_{\boldsymbol{T} \mathbf{1}}$	Primary Side Transformer Voltage
$\boldsymbol{v}_{\boldsymbol{T} \boldsymbol{2}}$	Secondary Side Transformer Voltage

1

Introduction

1.1 Problem Background and Previous Work

Today's energy system is shifting more and more towards renewable energies. In this transformation process, it is necessary to overthink common and established ways of feeding power into the grid in order to find the best possible solutions for high efficiency and low cost. For the grid connection of large photovoltaic parks different options have been examined in [37]. Two of them are presented in Figure 1.1.

Figure 1.1: Two options for the PV park configuration according to [37]
In Figure 1.1(a), the generated solar current is converted from DC to AC right at the output of the solar field by means of an inverter. This inverter simultaneously acts as MMP tracker for the PV subfield [37]. After this stage, a transformer transmits the voltage from the low voltage level to the medium voltage level. The entire
power generated by the PV park will be collected at the following AC bus bar and can either be used at medium voltage level or, after another transformation stage, be fed into the main grid at high voltage level.

In Figure 1.1(b), the generated solar voltage is boosted up by means of a DC-DC converter ensuring a constant output voltage of all solar subfields. At the same time, this DC-DC converter functions as MPP tracker. The resulting voltage is handed over to another DC-DC converter boosting up the voltage from low voltage level to medium voltage level. Only after this second transmission stage, the voltage will be converted from DC to AC by the help of a central inverter. This means that the power generated by the PV park will be collected at a DC bus bar and be inverted collectively. After the inversion stage and a transformation stage, it is fed into the main grid at high voltage level.

According to [37], the use of the second configuration will lead to an increased energy yield per year as well as an improved efficiency and economic performance. Comparing both configurations, it is apparent that the DC configuration is equipped with an additional DC-DC converter to execute the voltage boosting between low voltage and medium voltage level. Thereby, this converter is replacing the respective transformer in the AC configuration and functioning as a key component in the alternative DC configuration. In order to realize this concept, first a topology for the DC-DC conversion stage has to be chosen. A comparison of three topologies for this purpose has been done in [5]. It resulted in the choice of the two-level Dual-Active-Bridge (DAB) converter which will consequently be employed in this work. In order to control the flow of power through this converter, various modulation techniques are available and can be applied. In the following, two of these shall be examined and compared with respect to overall efficiency, switching losses, possible load range and root mean square (RMS) value of the inductor current.

1.2 Dual-Active-Bridge Topology, its Modulation and Application

The two-level Dual-Active-Bridge presented in [15] consists of two full bridges that are connected via a high- or medium-frequency transformer as can be seen in Figure 1.2. The transformer provides galvanic isolation and its leakage inductance serves as power transfer element [15, 27].

By giving respective gate signals to the switches, a square voltage is generated on the primary and secondary side of the transformer, named as $v_{T 1}$ and $v_{T 2}$ in Figure 1.2.

Figure 1.2: Dual-Active-Bridge topology

Adequate switching actions control the power flow between input and output. As mentioned before and also according to [27], the DAB converter topology shows advantageous features which make its use preferable over other DC-DC converter topologies. Among these features are the value of the possible efficiency of the converter that can be achieved as well as its power density. Additionally, it is stated in [15] that all switches of the DAB exhibit zero- or low-switching loss capabilities. This improves efficiency in comparison with hard-switched topologies. Moreover, it allows for higher switching frequencies which would have led to unreasonably high switching losses if soft-switching was not available. High switching frequencies in turn lead to a smaller area footprint of the transformer, reducing weight and making transport easier. Aside from that, it is notable that the DAB is a bidirectional topology and is therefore often utilized in applications of energy storage, e. g. for linking batteries in automotive applications. However, this advantage will not be made use of in this work. [15]

In literature, numerous different modulations schemes for the DAB are presented. Among these are for example the single-phase-shift (SPS) control, dual-phase-shift control [26, 43], extended-phase-shift control and triple-phase-shift control [44] as well as trapezoidal [35, 27], triangular [35, 27] and optimized modulation [27] method. Other modulation schemes making use of a change in switching frequency in order to control the power flow are not considered in this work. After extensive research, the single-phase-shift modulation and the trapezoidal modulation scheme are selected to be applied to the DAB and to be modelled, simulated and tested in PLECS ${ }^{\oplus}$.

Due to the available resources in the scope of this work, the theory of the triangular modulation scheme which complements the trapezoidal modulation scheme (refer Section 3.4) will be presented shortly, but not implemented in the simulation. In [27] and related works like [29] and [30], the single-phase-shift, trapezoidal, triangular and optimized modulation are employed for low voltage automotive applications. In the present work, the single-phase-shift and trapezoidal modulation will be applied to a high voltage photovoltaic application, following the use case of [37].

1.3 Methodology

At first, the boundary conditions for the specified application of a grid-connected photovoltaic park are defined and presented in Chapter 2. In Chapter 3, the theoretical details of the chosen modulation schemes are compiled and differences between them are worked out. A model of a Dual-Active-Bridge is built in PLECS ${ }^{\circledR}$ and the chosen modulation schemes are applied to the model and simulated. Details of simulation parameters and modeling are given in Chapter 4. A set of parameters is determined and presented in Chapter 5, that shall be used in order to compare and evaluate the suitability of the respective modulation scheme in the determined application. Conclusions with respect to which modulation scheme is most suitable for the decided case are drawn and presented in Chapter 6.

1.4 Ethical and Sustainability Aspects

On one hand, semiconductor appliances generally belong to a conflicting area of technology, as the used materials feature several difficulties concerning availability and acquirement. On the other hand, the development and improvement of converters using semiconductor switches facilitate the grid integration of renewable energies and can therefore promote their advancement. Furthermore, the use of modern power electronic devices can improve the efficiency of electrical plants. The advantages and disadvantages of these technologies therefore have to be weighed up and decided upon in every specific situation. For this project, only software simulations will be applied. Hence, questions of material choice and usage are not yet urgently relevant at this stage and will not be discussed in the scope of this work. When it comes to the experimental set up and practical application of the considered technology, a detailed assessment should be carried out.

2

Case Set Up

2.1 Case of Application

In order to test the behaviour of the chosen modulation schemes, the model of the Dual-Active-Bridge along with the respective modulations is embedded in a test scenario where different load conditions apply. As mentioned earlier, a photovoltaic park is chosen as case of application, building up on the accomplished work in [5]. The location of the considered photovoltaic park is Tarifa, Cádiz in Spain, at a latitude of 36.092390° and a longitude of -5.770569°. This is chosen in line with [37]. The selected test date is March 20, 2016. The insolation data for this site and date is available from [2]. Figure 2.1 shows the course of the global irradiance in $\left[\frac{W}{m^{2}}\right]$.

Figure 2.1: Global irradiance in Tarifa on March 20, 2016

The layout of the park follows the one presented in [37] and is shown in Figure 2.2. The park is divided into six subfields, each built up of 150 strings and 24 photovoltaic panels in each string. With a nominal power of 260 W per panel, the resulting nominal power of the park is 5.6 MW . As can be seen in Figure 2.2, the MPPT is realized by boost converters, bringing up the voltage to 1.3 kV . The
boost converters will not be further contemplated within the scope of this work and their output voltage of 1.3 kV is assumed to be constant. The input of one subfield is then fed into the DC-DC conversion stage on medium voltage level, the Dual-Active-Bridge, stepping up the voltage from 1.3 kV to 16 kV . The output voltage is assumed to incorporate a voltage fluctuation of $\pm 5 \%$ so that it can take the values of $15.2 \mathrm{kV}, 16 \mathrm{kV}$ and 16.8 kV .

Figure 2.2: Adapted configuration of the PV park based on [37]

The power fed into the medium voltage DC-DC conversion stage is calculated as follows:

$$
\begin{equation*}
P_{D A B}=\left(B_{i}+D_{i}\right) N_{\text {panel }} A_{P V} \eta_{P V} \eta_{M P P T} \eta_{\text {system }} \tag{2.1}
\end{equation*}
$$

where B_{i} is the in-plane beam irradiance in $\left[\frac{W}{m^{2}}\right], D_{i}$ is the in-plane diffuse irradiance in $\left[\frac{W}{m^{2}}\right], N_{\text {panel }}$ is the number of panels, $A_{P V}$ is the surface area of one PV panel in $\left[m^{2}\right], \eta_{P V}$ is the efficiency of the chosen panels, $\eta_{M P P T}$ is the efficiency of the MPP tracker and $\eta_{\text {system }}$ is the efficiency of the whole system, representing e.g. losses in cables. This is a simplified approach as the efficiency of the PV panels is given for standard test conditions which in reality will not always be satisfied. However, it is sufficient for the designated application which is merely to feed an exemplary varying load into the medium voltage level DC-DC stage.

The panels that are assumed to be used for this photovoltaic park are of type Q.PRO BFR-G4.1 260-270 from Q-Cells (refer datasheet in Appendix E). The 260 W
module is chosen which has an efficiency of 15.6%. The dimensions of the module are $1670 \mathrm{~mm} \times 1000 \mathrm{~mm}$. With the given insolation and total number of panels, this leads to a maximum input power per Dual-Active-Bridge of 0.97 MW , corresponding to the output power of one PV subfield at 12 PM (refer Figure F. 1 in Appendix F).

Figure 2.3: Assumed losses in the system

The resulting power that will be fed into one of the six DABs in the course of the chosen exemplary day is depicted in Figure 2.4.

Figure 2.4: Power fed into one DAB in the course of March 20, 2016

2.2 Choice of Switches

Due to the usage of a medium to high switching frequency in the converter, it is beneficial to opt for a switch type featuring low switching losses. Comparing IGBTs and MOSFETs with respect to switching performance, MOSFETs clearly show better qualities [33]. The switches that are used for the Dual-Active-Bridge are therefore

SiC MOSFETs of type C2M0045170D by Cree. These MOSFETs feature a blocking voltage $V_{D S m a x}$ of 1700 V , an on-resistance $R_{D S(o n)}$ of $45 \mathrm{~m} \Omega$ and a continuos drain current I_{D} of 72 A at $25^{\circ} \mathrm{C}$. Moreover, the intrinsic body diode of a MOSFET can be utilized as anti-parallel diode so that an external diode is not necessary.

Every switching block Q1 to Q8 has to be able to withstand the full input voltage of 1.3 kV on the input side and 16 kV on the output side and the current resulting from transmission of maximum power (refer Figure 1.2). This leads to a necessary parallel and series connection of a certain number of MOSFETs in each switching block. It is assumed that an allowed current of 70% of the maximum current and a safety margin of 55% of the maximum blocking voltage for the allowed voltage are safe choices. This results in a connection of two MOSFETs in series and 15 MOSFETs in parallel in each switching block Q1 to Q4 on the low voltage side and 15 MOSFETs in series and two MOSFETs in parallel in each switching block Q5 to Q8 on the high voltage side. The respective calculations are presented in Figure F. 2 in Appendix F.

Figure 2.5: Series and parallel connection of MOSFETs and anti-parallel diodes in one switching block

3

Modulation Schemes

Generally, three parameters can be controlled in order to affect the power flow between the primary and secondary side of a Dual-Active-Bridge converter: The phase-shift between the primary and secondary square voltages, the respective duty cycle of the square voltages and the switching frequency. The modulation schemes that are considered in this work take advantage of a change in phase-shift as shown in Figure 3.1(a) and/or duty cycle to control the power flow as shown in Figure 3.1(b). Also, frequency switching methods are not considered.

(a) Change of the phase-shift between the two transformer voltages

(b) Change of the duty ratio of the two transformer voltages

Figure 3.1: Considered variables for modulation

Two modulation schemes will be contemplated: The single-phase-shift modulation scheme, in literature also called as rectangular modulation [35], and the trapezoidal modulation scheme. The latter has its name due to the trapezoidal shape the inductor current takes when applying it.

The single-phase-shift modulation solely uses a phase-shift between the two transformer voltages to control the power flow while the trapezoidal modulation uses a
phase-shift and additionally changes the duty ratio of the transformer voltages introducing a zero-voltage period. The zero-voltage period is attained by introducing a phase-shift between the two legs of each full bridge. Both modulation schemes have been presented in [27] and [35]. These are therefore the main sources from which the following theory and equations originate and on which grounds the modulation schemes have been implemented in PLECS ${ }^{\oplus}$.

3.1 Single-Phase-Shift Modulation

The SPS control is the standard modulation scheme for the Dual-Active-Bridge. The square voltages in a circuit that is modulated with this scheme will always have duty cycles of 50% of the switching period while the frequency stays constant. Two square voltages $v_{T 1}$ and $v_{T 2}$ are generated on the primary and secondary side of the transformer by giving respective switching signals to the switches Q1 to Q8. A phase-shift φ is introduced between the switching signals for the primary side and the switching signals for the secondary side, leading to the same phase-shift φ between the two voltages $v_{T 1}$ and $v_{T 2}$. This is shown in Figures 3.2 and 3.3, with $v_{T 2}$ referred to the primary side. A voltage difference is induced and a current flows from the primary to the secondary side.

Figure 3.2: Primary and referred secondary transformer voltage and inductor current for the single-phase-shift modulation

Figure 3.3: Switching signals for the gates Q1 to Q8

3.1.1 Transmission Power and Phase-Shift Angle φ

Originating from [16] and [27], the transmitted power in the SPS control is expressed as

$$
\begin{equation*}
P=\frac{n V_{o} V_{i}}{2 \pi f_{s} L} \varphi\left(1-\frac{\varphi}{\pi}\right) \tag{3.1}
\end{equation*}
$$

The required angle for the transmission of a desired amount of power then reads as

$$
\begin{equation*}
\varphi_{1,2}=\frac{\pi \pm \sqrt{\pi^{2}-\frac{8 \pi^{2} f_{s} L P}{n V_{o} V_{i}}}}{2} \tag{3.2}
\end{equation*}
$$

Considering only the results for φ_{2}, this results in possible values of $\varphi=\left[0, \frac{\pi}{2}\right]$. The term under the square root must not become smaller than zero as imaginary values for $\varphi_{1,2}$ are not valid:

$$
\begin{equation*}
L \stackrel{!}{\leq} \frac{n V_{o} V_{i}}{8 f_{s} P} \tag{3.3}
\end{equation*}
$$

With this maximum value for the leakage inductance, the maximum power would be
transferred at an angle of $\varphi=\frac{\pi}{2}$. However, this is the maximum possible angle and it is not favorable for the minimization of reactive power in the system. A smaller phase-shift angle will therefore be chosen later in this work (refer Section 4.1.1).

3.1.2 Voltages and Currents

During the different periods of one switching cycle, different voltages and currents apply. These are explained in the following. The labels of the time intervals are referring to Figures 3.2 and 3.3.

1. Time interval $\mathrm{T}_{1}\left(0<\mathrm{t}<\mathrm{t}_{1}\right)$

- Q1 and Q4 are switched ON
- Q2 and Q3 are switched OFF
- Q5 and Q8 are OFF
- Q6 and Q7 are ON

In the first time interval T_{1}, the voltage across the inductor is equal to $\left(V_{i}+\right.$ $n V_{o}$) and therefore positive. This causes the inductor current i_{L} to rise. While $\mathrm{i}_{\mathrm{L}}<0$, the anti-parallel diodes conduct the current on the primary side and allow for soft turn-on. At the zero-crossing point, the current is handed over to the switches Q1 and Q4. The flow of the inductor current in this time interval is given by

$$
\begin{equation*}
i_{L}(t)=i_{L}(0)+\frac{1}{L}\left(V_{i}+n V_{o}\right) \Delta t \tag{3.4}
\end{equation*}
$$

2. Time interval $\mathrm{T}_{2}\left(\mathrm{t}_{1}<\mathrm{t}<\mathrm{t}_{2}\right)$

- Q1 and Q4 are ON
- Q2 and Q3 are OFF
- Q5 and Q8 are switched ON
- Q6 and Q7 are switched OFF

In the second time interval T_{2}, the voltage across the inductor is equal to $\left(V_{i}-n V_{o}\right)$ and is negative if $V_{i}<n V_{o}$. This relation holds in the case of nominal output voltage $V_{o}=16 \mathrm{kV}$ and $V_{o}=16 \mathrm{kV}+5 \%$ and causes the inductor current to fall. In the case of $V_{o}=16 \mathrm{kV}-5 \%, V_{i}$ will be larger than
$n V_{o}$ and the current slope during this time interval is reversed (refer simulation results in Section 5.2). The current flow in this time interval is given by

$$
\begin{equation*}
i_{L}(t)=i_{L}\left(t_{1}\right)+\frac{1}{L}\left(V_{i}-n V_{o}\right) \Delta t \tag{3.5}
\end{equation*}
$$

3. Time interval $\mathrm{T}_{3}\left(\mathrm{t}_{2}<\mathrm{t}<\mathrm{t}_{3}\right)$

- Q1 and Q4 are switched OFF
- Q2 and Q3 are switched ON
- Q5 and Q8 are ON
- Q6 and Q7 are OFF

The voltage across the inductor is given by $\left(-V_{i}-n V_{o}\right)$. It is therefore always negative and causes the inductor current to decrease further and at a steeper slope than during the previous time interval. The current flow in this time interval is given by

$$
\begin{equation*}
i_{L}(t)=i_{L}\left(t_{2}\right)+\frac{1}{L}\left(-V_{i}-n V_{o}\right) \Delta t \tag{3.6}
\end{equation*}
$$

4. Time interval $\mathrm{T}_{4}\left(\mathrm{t}_{3}<\mathrm{t}<\mathrm{t}_{4}\right)$

- Q1 and Q4 are OFF
- Q2 and Q3 are ON
- Q5 and Q8 are switched OFF
- Q6 and Q7 are switched ON

During the last time interval T_{4}, the voltage across the inductor is equal to $\left(-V_{i}+n V_{o}\right)$. Similar to time interval T_{2}, the sign of this voltage depends on the relation between V_{i} and V_{o}. In the case of nominal output voltage $V_{o}=16 \mathrm{kV}$ and $V_{o}=16 \mathrm{kV}+5 \%$, a positive voltage is applied across the inductor causing the inductor current to rise again. In the case of $V_{o}=16 \mathrm{kV}-5 \%$, the slope will consequently be negative (refer simulation results in Section 5.2). The
currrent flow in this time interval can be described as

$$
\begin{equation*}
i_{L}(t)=i_{L}\left(t_{3}\right)+\frac{1}{L}\left(-V_{i}+n V_{o}\right) \Delta t \tag{3.7}
\end{equation*}
$$

In general, it is notable that the current shows a reversed symmetrical behaviour.

3.1.3 Switching Behaviour

Power electronic circuits can be divided into soft-switched and hard-switched topologies. A switching action is named as soft if either the current through the switch or the voltage across the switch is zero in the moment of switching. Otherwise, it is called as hard-switched. By ensuring soft switching actions, switching loss are avoided.

Figure 3.4 shows the example of a switch on the primary side of the Dual-ActiveBridge. It can be seen that the current through the MOSFET is negative prior to turn-on. That means that in the turn-on moment, the current will also flow through the diode and facilitates soft-switching for the MOSFET, ie., no switching losses occur. Furthermore, it is visible from the graph that the MOSFET current is positive in the moment of turn-off. Hence, it will solely flow through the switch and switching losses occur in the turn-off moment. In the single-phase-shift modulation, all eight switches of the DAB show the same behaviour as the exemplary switch in Figure 3.4. This could be observed during the simulations and means that in the turn-on moment eight switches are soft-switched and in the turn-off moment zero switches are soft-switched.

Figure 3.4: Gate signal to the switch, current through the switch and switching losses for the example of a MOSFET switch on the primary side of the DAB

3.2 Trapezoidal Modulation

Equal to the single-phase-shift modulation, the two transformer voltages $v_{T 1}$ and $v_{T 2}$ will be phase-shifted in the trapezoidal modulation scheme. In addition to that, two inner phase-shifts are introduced between the two legs of each full bridge. This causes the duty cycle of $v_{T 1}$ and $v_{T 2}$ to change and introduces a period of time during which $v_{T 1}$ and $v_{T 2}$ will be zero. These intervals are named Ω_{1} and $\Omega_{2}[35]$ and can be seen in Figure 3.5. An auxiliary parameter ϵ is introduced which is needed for the simulation and is further explained in Section 4.2.2. It is notable that the on and off times of the switches continue to equal 50% of one switching period and it is only the duty cycles of the transformer voltages that change.

3.2.1 Transmission Power, Phase-Shift Angle φ and Duty Cycles

The equations for the transmission power, phase-shift angle and other following expressions are given in [35]. However, they have been supplemented with the transformer turns ratio n since n is not equal to 1 in this work and therefore has to be considered. Furthermore, the corresponding equations have been simplified concerning the factors $\operatorname{sgn}(\varphi)$ and $\operatorname{sgn}\left(I_{c h 2}\right)$ which in this work will always be equal

Figure 3.5: Primary and referred secondary transformer voltage and inductor current for the trapezoidal modulation
to 1 as only unidirectional and positive power flow occurs. Lastly, the blanking time $\tau_{\text {blank }}$ that has been considered in [35] is neglected because in the scope of this work it is not considered in the single-phase-shift modulation either.

According to [27] and [35], the ratio of input and output power is decisive for calculating the necessary parameters to implement the trapezoidal modulation scheme. Two cases can be distinguished which lead to different values for d, the so called DC transformation ratio. This ratio is defined as

$$
\begin{equation*}
d=\frac{n V_{o}}{V_{i}} \tag{3.8}
\end{equation*}
$$

Case 1: Input voltage V_{i} is lower than referred output voltage $n V_{o}$

In the case of

$$
\begin{equation*}
V_{i} \leq n V_{o} \tag{3.9}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
d \geq 1 \tag{3.10}
\end{equation*}
$$

In order to implement the trapezoidal modulation, values for the parameters Ω_{1}, Ω_{2} and the phase-shift φ between the two bridges have to be calculated. Ω_{1} and Ω_{2} are defined as zero-voltage widths [35] of the primary and secondary side transformer voltages $v_{T 1}$ and $v_{T 2}$, given by the following equations

$$
\begin{align*}
& \Omega_{1}=\frac{\pi\left(V_{i}-n V_{o}\right)+2 n V_{o} \varphi}{2\left(V_{i}+n V_{o}\right)} \tag{3.11}\\
& \Omega_{2}=\varphi-\Omega_{1} \tag{3.12}
\end{align*}
$$

Case 2: Input voltage V_{i} is higher than referred output voltage $n V_{o}$

In the case of

$$
\begin{equation*}
V_{i}>n V_{o} \tag{3.13}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
d<1 \tag{3.14}
\end{equation*}
$$

In this case, the equations for Ω_{1} and Ω_{2} change and are given by

$$
\begin{align*}
& \Omega_{1}=\varphi-\Omega_{2} \tag{3.15}\\
& \Omega_{2}=\frac{\pi\left(n V_{o}-V_{i}\right)+2 V_{i} \varphi}{2\left(V_{i}+n V_{o}\right)} \tag{3.16}
\end{align*}
$$

By means of Ω_{1} and Ω_{2}, the equations of the duty cycles of $v_{T 1}$ and $v_{T 2}$ can be derived, leading to

$$
\begin{align*}
& D_{1}=\left(1-\frac{2 \Omega_{1}}{\pi}\right) T_{h s} \tag{3.17}\\
& D_{2}=\left(1-\frac{2 \Omega_{2}}{\pi}\right) T_{h s} \tag{3.18}
\end{align*}
$$

where $T_{h s}$ is half a switching period.
D_{1} and D_{2} are not only representing the duty cycles, but also corresponding to the inner phase-shifts, i.e., the phase-shifts between the two legs of the input and output bridge. This can be seen in Figures 3.6 and 3.7.

It is notable that the inner phase-shifts attain different values in the input and output bridge. Again with the respective values for Ω_{1} and Ω_{2}, the transmitted

Figure 3.6: Switching signals for the gates Q1 to Q4
power and corresponding angle are calculated equally in both cases [35]:

$$
\begin{align*}
P & =\frac{n V_{o}\left(\pi-\varphi-\Omega_{1}-\Omega_{2}\right)\left[n V_{o}\left(\varphi-\Omega_{2}+\Omega_{1}\right)+V_{i}\left(\varphi-\Omega_{1}+\Omega_{2}\right)\right]}{4 \pi^{2} L f_{s}} \\
& +\frac{\left(n V_{o}\right)^{2}\left(\varphi-\Omega_{2}+\Omega_{1}\right)^{2}}{4 \pi^{2} L f_{s}} \tag{3.19}
\end{align*}
$$

and

$$
\begin{equation*}
\varphi=\pi\left(\frac{e_{1}}{2 e_{2}}-\frac{\left(V_{i}+n V_{o}\right) \sqrt{e_{3}-4 f_{s} I_{c h 2} L e_{2}}}{2 \sqrt{V_{i} e_{2}}}\right) \tag{3.20}
\end{equation*}
$$

where

$$
\begin{align*}
& e_{1}=V_{i}^{2}+\left(n V_{o}\right)^{2} \tag{3.21}\\
& e_{2}=V_{i}^{2}+n V_{o} V_{i}+\left(n V_{o}\right)^{2} \tag{3.22}\\
& e_{3}=n V_{o} V_{i}^{2} \tag{3.23}
\end{align*}
$$

and $I_{c h 2}$ is set as $I_{c h 2}=\frac{P}{n V_{o}}$.

Figure 3.7: Switching signals for the gates Q5 to Q8

Corresponding to the case in single-phase-shift modulation, the maximally transmitted power can be deduced by derivation of this equation by the phase-shift angle φ and setting this expression to zero. This gives the value of φ at which maximum power transfer occurs ($\varphi=\frac{\pi}{3}$) and subsequently the corresponding leakage inductance. The expression is taken from [35] and reads as:

$$
\begin{equation*}
L=\frac{\left(n V_{o}\right)^{2} V_{i}^{2}}{4 f_{s} P_{\max }\left[V_{i}^{2}+n V_{o} V_{i}+\left(n V_{o}\right)^{2}\right]} \tag{3.24}
\end{equation*}
$$

With $P_{\max }=0.97 \mathrm{MW}$ and nominal voltages, the leakage inductance corresponds to $L=29.8 \mu \mathrm{H}$ (refer Section 4.1.1 for final determination of L).

3.2.2 Voltages and Currents

Similarly to single-phase-shift modulation, different voltages and currents apply during the different periods of one switching cycle. These are explained in the following. The labels of the time intervals are referring to Figures 3.5, 3.6 and 3.7.

1. Time interval $\mathrm{T}_{1}\left(0<\mathrm{t}<\mathrm{t}_{1}\right)$

- Q2, Q6 and Q7 are ON
- Q4 is switched ON
- Q1, Q5 and Q8 are OFF
- Q3 is switched OFF

In the first time interval the voltage across the inductor is given by $n V_{o}$. This voltage is always positive and causes a rising current i_{L} equal to

$$
\begin{equation*}
i_{L}(t)=i_{L}(0)+\frac{1}{L} n V_{o} \Delta t \tag{3.25}
\end{equation*}
$$

2. Time interval $\mathrm{T}_{2}\left(\mathrm{t}_{1}<\mathrm{t}<\mathrm{t}_{2}\right)$

- Q4 and Q6 are ON
- Q1 and Q8 are switched ON
- Q3 and Q5 are OFF
- Q2 and Q7 are switched OFF

The voltage across the inductor is now given by V_{i}. This voltage is again positive so that i_{L} will increase further. However, the slope will be different than in the first time interval. Depending on the relation between V_{i} and $n V_{o}$, the slope will be less steep for $V_{o}=16 \mathrm{kV}$ and $V_{o}=16.8 \mathrm{kV}$ and steeper for $V_{o}=15.2 \mathrm{kV}$.

$$
\begin{equation*}
i_{L}(t)=i_{L}\left(t_{1}\right)+\frac{1}{L} V_{i} \Delta t \tag{3.26}
\end{equation*}
$$

3. Time interval $\mathrm{T}_{3}\left(\mathrm{t}_{2}<\mathrm{t}<\mathrm{t}_{3}\right)$

- Q1, Q4 and Q8 are ON
- Q5 is switched ON
- Q2, Q3 and Q7 are OFF
- Q6 is switched OFF

In the third time interval, a voltage of $\left(V_{i}-n V_{o}\right)$ is applied across the inductor. This corresponds to the second time interval T_{2} in 3.1.2. Therefore, the same relations apply and in case of nominal output voltage $V_{o}=16 \mathrm{kV}$ and $V_{o}=16.8 \mathrm{kV}$, the inductor current will fall. For $V_{o}=15.2 \mathrm{kV}$ the current in this time interval will rise.

$$
\begin{equation*}
i_{L}(t)=i_{L}\left(t_{2}\right)+\frac{1}{L}\left(V_{i}-n V_{o}\right) \Delta t \tag{3.27}
\end{equation*}
$$

4. Time interval $\mathrm{T}_{4}\left(\mathrm{t}_{3}<\mathrm{t}<\mathrm{t}_{4}\right)$

- Q1, Q5 and Q8 are ON
- Q3 is switched ON
- Q2, Q6 and Q7 are OFF
- Q4 is switched OFF

During the fourth time interval, the voltage across the inductor is given by $\left(-n V_{o}\right)$. This expression is always negative and causes the inductor current to fall.

$$
\begin{equation*}
i_{L}(t)=i_{L}\left(t_{3}\right)+\frac{1}{L}\left(-n V_{o}\right) \Delta t \tag{3.28}
\end{equation*}
$$

5. Time interval $\mathrm{T}_{5}\left(\mathrm{t}_{4}<\mathrm{t}<\mathrm{t}_{5}\right)$

- Q3 and Q5 are ON
- Q2 and Q7 are switched ON
- Q4 and Q6 are OFF
- Q1 and Q8 are switched OFF

The voltage across the inductor is now expressed by $\left(-V_{i}\right)$. This expression is again always negative and causes the inductor current to decrease further. Similar to time interval T_{2}, it depends on the level of the output voltage V_{o} if the slope is steeper or less steep than during the previous time interval.

$$
\begin{equation*}
i_{L}(t)=i_{L}\left(t_{4}\right)+\frac{1}{L}\left(-V_{i}\right) \Delta t \tag{3.29}
\end{equation*}
$$

6. Time interval $\mathrm{T}_{6}\left(\mathrm{t}_{5}<\mathrm{t}<\mathrm{t}_{6}\right)$

- Q2, Q3 and Q7 are ON
- Q6 is switched ON
- Q1, Q4 and Q8 are OFF
- Q5 is switched OFF

In the last time interval, the applied voltage across the inductor equals $\left(-V_{i}+\right.$ $\left.n V_{o}\right)$. This corresponds to the voltage in the time interval T_{4} in Section 3.1.2. For $V_{o}=16 \mathrm{kV}$ and $V_{o}=16.8 \mathrm{kV}$, the inductor current rises due to the positive voltage. For $V_{o}=15.2 \mathrm{kV}$ the applied voltage is negative and gives a negative slope to the inductor current (refer simulation results in Section 5.5).

$$
\begin{equation*}
i_{L}(t)=i_{L}\left(t_{5}\right)+\frac{1}{L}\left(-V_{i}+n V_{o}\right) \Delta t \tag{3.30}
\end{equation*}
$$

3.2.3 Switching Behaviour

Just like in SPS modulation, the MOSFET current in all switches is negative prior to the turn-on moment (refer Figure 3.4). Thus, also the diode will conduct the current and ensure soft-switching. However, in contrast to SPS modulation and according to [35], four switches are expected to feature soft-switching also in the turn-off moment. By switching according to the trapezoidal modulation scheme, two points in time are generated where both $v_{T 1}$ and $v_{T 2}$ are zero. These moments are labeled as t_{1} and t_{4} in Figure 3.5. Choosing the duty ratios D_{1} and D_{2} according to equations (3.17) and (3.18), it is then ensured that the switching happens in the very moment when the inductor current crosses zero. From Figures 3.6 and 3.7, it can be observed that it is the switches Q1, Q2, Q7 and Q8 that will profit from this modulation and be soft-switched in the turn-off moment. That means that in total eight switches are soft-switched in turn-on and four switches are soft-switched in turn-off. It can be noted that two of these switches are on the LV-side and two on the HV-side.

3.3 Triangular Modulation

The triangular modulation owes its name to the triangular shape that the current takes when it is applied. The variables for controlling the power flow are the phaseshift angle between primary and secondary transformer voltage as well as a change
in duty ratio of these voltages. In distinction from the trapezoidal modulation scheme, the triangular modulation features two time periods during which both square voltages $v_{T 1}$ and $v_{T 2}$ are zero. This results in two time intervals with zero inductor current i_{L} as can be seen in Figure 3.8.

Figure 3.8: Primary and referred secondary transformer voltage and inductor current for the triangular modulation

3.3.1 Transmission Power, Phase-Shift Angle φ and Duty Cycles

Again the parameters to implement this modulation scheme have to be calculated and two cases are distinguished. The following relations are based on [35].

Case 1: Input voltage V_{i} is lower than referred output voltage $n V_{o}$

In the case of

$$
\begin{equation*}
V_{i} \leq n V_{o} \tag{3.31}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
d \geq 1 \tag{3.32}
\end{equation*}
$$

The zero-voltage widths Ω_{1} and Ω_{2} are defined as

$$
\begin{align*}
& \Omega_{1}=\frac{\pi}{2}-\frac{n V_{o} \varphi}{n V_{o}-V_{i}} \tag{3.33}\\
& \Omega_{2}=\varphi+\Omega_{1} \tag{3.34}
\end{align*}
$$

In contrast to the trapezoidal modulation, the transmission power is given by two different expressions according to the value of d. In the first case it reads as

$$
\begin{equation*}
P=\frac{n V_{o} V_{i} \varphi\left(\pi-2 \Omega_{2}\right)}{2 \pi^{2} L f_{s}} \tag{3.35}
\end{equation*}
$$

while the corresponding angle is given by

$$
\begin{equation*}
\varphi=\frac{\pi \sqrt{I_{c h 2} L f_{s}\left(n V_{o}-V_{i}\right)}}{V_{i}} \tag{3.36}
\end{equation*}
$$

Case 2: Input voltage V_{i} is higher than referred output voltage $n V_{o}$

In the case of

$$
\begin{equation*}
V_{i}>n V_{o} \tag{3.37}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
d<1 \tag{3.38}
\end{equation*}
$$

The zero-voltage widths Ω_{1} and Ω_{2} differ from case 1 and read as

$$
\begin{align*}
& \Omega_{1}=\varphi+\Omega_{2} \tag{3.39}\\
& \Omega_{2}=\frac{\pi}{2}+\frac{\varphi V_{i}}{n V_{o}-V_{i}} \tag{3.40}
\end{align*}
$$

The power and angle are defined as

$$
\begin{equation*}
P=\frac{n V_{o} V_{i} \varphi\left(\pi-2 \Omega_{1}\right)}{2 \pi^{2} L f_{s}} \tag{3.41}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi=\frac{\pi \sqrt{I_{c h 2} L f_{s}\left(V_{i}-n V_{o}\right)}}{\sqrt{n V_{o} V_{i}}} \tag{3.42}
\end{equation*}
$$

The duty cycles can be calculated with the same relations that are given in (3.17) and (3.18). Like in the other two modulation methods, various voltages and resulting currents will apply during the six different time intervals. Since the triangular modulation is not simulated in the scope of this work, the quantitative course of these values is not further regarded.

3.3.2 Switching Behaviour

According to [35], the triangular modulation scheme features soft-switching in the turn-on moment for all switches. Additionally, it is mentioned that six switches will be soft-switched also in the moment of turn-off. When examining the course of the inductor current and transformer voltages in Figure 3.8, it can be seen that both will be zero at the moments $0, t_{1}, t_{3}$ and t_{4}. Comparing with the switching signals in Figures 3.9 and 3.10, it is concluded that it is therefore the switches Q1, Q2, Q3, Q4, Q7 and Q8 that will be soft-switched at turn-off. However, the triangular modulation is not simulated in the scope of this work. This assumption has therefore yet to be proven.

Figure 3.9: Switching signals for the gates Q1 to Q4

Figure 3.10: Switching signals for the gates Q5 to Q8

3.4 Combined Modulations

It is described in [27] and [35] that different modulations are varyingly well suited for different power levels. When combining the three presented modulations, the following distribution is suggested in [35]:

Case 1: Input voltage V_{i} is lower than referred output voltage $n V_{o}$

- Triangular modulation for

$$
\begin{equation*}
0=\varphi \leq \frac{\pi}{2}\left(1-\frac{V_{i}}{n V_{o}}\right) \tag{3.43}
\end{equation*}
$$

- Trapezoidal modulation for

$$
\begin{equation*}
\frac{\pi}{2}\left(1-\frac{V_{i}}{n V_{o}}\right) \leq \varphi \leq \frac{\pi}{2}\left(\frac{V_{i}^{2}+\left(n V_{o}\right)^{2}}{V_{i}^{2}+n V_{o} V_{i}+\left(n V_{o}\right)^{2}}\right) \tag{3.44}
\end{equation*}
$$

- Single-phase-shift modulation for

$$
\begin{equation*}
\frac{\pi}{2}\left(\frac{V_{i}^{2}+\left(n V_{o}\right)^{2}}{V_{i}^{2}+n V_{o} V_{i}+\left(n V_{o}\right)^{2}}\right) \leq \varphi \leq \frac{\pi}{2} \tag{3.45}
\end{equation*}
$$

Case 2: Input voltage V_{i} is higher than referred output voltage $n V_{o}$

- Triangular modulation for

$$
\begin{equation*}
0=\varphi \leq \frac{\pi}{2}\left(1-\frac{n V_{o}}{V_{i}}\right) \tag{3.46}
\end{equation*}
$$

- Trapezoidal modulation for

$$
\begin{equation*}
\frac{\pi}{2}\left(1-\frac{n V_{o}}{V_{i}}\right) \leq \varphi \leq \frac{\pi}{2}\left(\frac{V_{i}^{2}+\left(n V_{o}\right)^{2}}{V_{i}^{2}+n V_{o} V_{i}+\left(n V_{o}\right)^{2}}\right) \tag{3.47}
\end{equation*}
$$

- Single-phase-shift modulation for

$$
\begin{equation*}
\frac{\pi}{2}\left(\frac{V_{i}^{2}+\left(n V_{o}\right)^{2}}{V_{i}^{2}+n V_{o} V_{i}+\left(n V_{o}\right)^{2}}\right) \leq \varphi \leq \frac{\pi}{2} \tag{3.48}
\end{equation*}
$$

With the chosen voltage levels, this leads to the distribution shown in Figure 3.11.

Figure 3.11: Distribution of modulation schemes over the whole angle range with the chosen output voltages $V_{o}=15.2 \mathrm{kV}, V_{o}=16 \mathrm{kV}$ and $V_{o}=16.8 \mathrm{kV}$

It is notable that the upper limit value for trapezoidal modulation slightly changes due to the changing output voltages. The exact values are 60.0068° (for $V_{o}=15.2 \mathrm{kV}$), 60.0064° (for $V_{o}=16 \mathrm{kV}$) and 60.055° (for $V_{o}=16.8 \mathrm{kV}$), but it will be set to 60° for reasons of simplicity.

Also, this work does not focus on the exact switching moment from one modulation scheme to the other and this is therefore not regarded.

4

Model in PLECS ${ }^{\circ}$

4.1 Components and Parameters

With the framework conditions given in Chapter 2, the model of the Dual-ActiveBridge can be built in PLECS ${ }^{\oplus}$. Parameters that are defined in the Simulation Parameter Initialization dialogue in PLECS ${ }^{\oplus}$ are given in Table 4.1. The definition of certain parameters will be explained in the following sections. A schematic of the PLECS ${ }^{\oplus}$ model is presented in Figure 4.1 and the complete PLECS ${ }^{\oplus}$ simulation initialization dialogues for both modulation schemes and all voltage levels are provided in Appendix A.

Figure 4.1: Schematic of the DAB model in PLECS ${ }^{\oplus}$ for the example of single-phase-shift modulation

Table 4.1: Simulation Parameter Initialization

	Parameter	Value
Input Voltage	V_{i}	1.3 kV
Output Voltages	V_{o}	$15.2 \mathrm{kV}, 16 \mathrm{kV}, 16.8 \mathrm{kV}$
Maximum Input Power	P	0.97 MW
Switching Frequency	f_{s}	5 kHz
Primary Number of Turns	N_{1}	1
Secondary Number of Turns	N_{2}	12
Turns Ratio	n	0.0833
On-Resistance $R_{D S(o n)}$	Ron	$45 \mathrm{~m} \Omega$
n_{s} / n_{p} on the Low Voltage Side	$n s _L V / n p _L V$	$2 / 15$
n_{s} / n_{p} on the High Voltage Side	$n s _H V / n p _H V$	$15 / 2$
Leakage Inductance	L	$28.3 \mu \mathrm{H}$
Output Capacitance	C	$37.9 \mu \mathrm{~F}$

4.1.1 Transformer and Leakage Inductance

In this work, the transformer does not feature any core or winding losses, but is assumed to show ideal behaviour. Thus, it is modeled as a combination of two windings with a turns ratio of 1:12 and an attached leakage inductance. The leakage inductance is one of the most important elements of the Dual-Active-Bridge and makes it possible to transmit power. An appropriate sizing is fundamental for the behaviour of the model, because a large leakage inductance leads to an undesirable flow of reactive power and circulating current in the system. Is it too small, the soft-switching capability of the topology might be obstructed. The inductance value is chosen such that it is suitable for all three modulation schemes. Thus, the comparison is carried out under equal initial conditions.

The value of the leakage inductance is a function of the power and the angle at which this power is transferred (refer Equations (3.1) and (3.19)). To determine its value, these two variables have to be set. In case of trapezoidal modulation, it was shown in Figure 3.11 that with the chosen input and output voltages, the maximum possible angle lays at 60° in both case 1 and case 2 . Consequently, this angle is chosen as maximum power transmission angle. For the SPS modulation, the maximum power transmission angle is also set to 60°, hereby allowing for a fair comparison. The procedure for determining the final value of the leakage inductance is shown in Figure 4.2.

Figure 4.2: Process of choosing the value of leakage inductance for all the three modulation schemes

From Table 4.2 the leakage inductance is consequently set to $L=28.3 \mu \mathrm{H}$ for all modulation schemes and all output voltage levels.

Table 4.2: Value for the leakage inductances with full power transmission at $\varphi=60^{\circ}$

	15.2 kV	16 kV	16.8 kV
SPS	$37.7 \mu \mathrm{H}$	$39.7 \mu \mathrm{H}$	$41.7 \mu \mathrm{H}$
Trapezoidal	$28.3 \mu \mathrm{H}$	$29.8 \mu \mathrm{H}$	$31.2 \mu \mathrm{H}$

It is notable that with this choice of leakage inductance only in the case of trapezoidal modulation at $V_{o}=15.2 \mathrm{kV}$, full load will be transmitted at 60° and in the other cases it has been naturally shifted to smaller angles (refer Figure 4.3 where the division of power over the modulation schemes is shown). Further, it has to be noted that the triangular modulation is not involved in this process. This is because it is not yet known at which power the modulation scheme will change from trapezoidal to triangular. Therefore, no power values can be assigned to the respective angles presented in Figure 3.11.

Figure 4.3: Distribution of modulation schemes over the power range with the chosen leakage inductance and the output voltages $V_{o}=15.2 \mathrm{kV}, V_{o}=16 \mathrm{kV}$ and $V_{o}=16.8 \mathrm{kV}$

4.1.2 MOSFET Switches

In order to simulate conduction and switching losses in PLECS ${ }^{\oplus}$, a thermal description has to be assigned to each switch. The thermal description is based on the graphs available from the data sheet: The $V_{D S}-I_{D S}$-diagram at $25^{\circ} \mathrm{C}$, the $I_{D S}-E_{o n}$-diagram and $I_{D S}-E_{o f f}$-diagram, respectively. However, it was described in Section 2.2 that it is necessary to connect multiple MOSFETs in series and parallel in each switching block Q1 to Q8. In order to avoid the physical modeling of these series and parallel connections, a thermal description of a MOSFET equivalent is created. It features the same characteristics as n_{s} in series and n_{p} in parallel connected switches. This allows to model only this MOSFET equivalent in PLECS ${ }^{\circledR}$ and will avoid unnecessary slowing down of the simulation. Moreover, the adaptation of the model in case of desired changes in voltage or maximum transmitted power is facilitated.

To model the MOSFET equivalent, the following approach is tested and validated in an exemplary circuit before its implementation in the DAB model. First, the value of the on-resistance $R_{D S(o n)}$ is multiplied by $\frac{n_{s}}{n_{p}}$. In addition, the mentioned diagrams are scaled by multiplying the voltage values with the number of serial connected switches n_{s} and the current values with the number of parallel connected switches n_{p}, as shown in Figure 4.4. The scaled diagrams are fed into PLECS ${ }^{\oplus}$ and directly give the correct conduction losses of the MOSFET equivalent. To obtain the correct switching losses, the switching energy $E_{\text {switch }}$ that results from the simulation has to be multiplied with n_{s} and n_{p}, subsequently. It is worth mentioning that two different MOSFET equivalents are created since n_{s} and n_{p} are different at the low voltage side from the high voltage side.

Figure 4.4: Scaling of switching and conduction losses

4.1.3 Anti-Parallel Diodes

The intrinsic body diode of the MOSFET is used as anti-parallel diode in the circuit. This is a simple approach in the case of SiC MOSFETs and decreases the cost as well as the required space compared to the use of an external anti-parallel diode $[11,12]$. The characteristics of the body diode are given in the MOSFET datasheet in Appendix C. For the modeling of the diodes in PLECS ${ }^{\oplus}$, the procedure is the same as in the case of the MOSFETs. The thermal description is based on the $V_{D S}-I_{D S}$-diagram at $25^{\circ} \mathrm{C}$ and is scaled with the number of series and parallel connected switches. The diode switching losses are neglected.

4.1.4 Gate Signal Generation

In order to control the two full-bridges, a subsystem is created in which the necessary gate signals for the MOSFETs are generated. The signals are created by the comparison of a triangular wave with a constant reference signal m. The triangular
wave is chosen to oscillate between 0 and 1 while the constant reference signal is equal to 0.5 .

4.1.5 Output Capacitance

In the scope of this work no voltage control for the output capacitor is implemented. This leads to the assumption that a big capacitor would be suitable in order to keep the output voltage V_{o} at a constant level. However, this approach causes a long time span until the system reaches steady-state conditions. In [35], the output capacitance is proposed to be chosen as

$$
\begin{equation*}
C=50 \frac{I_{\text {Load }}}{V_{o} f_{s}} \tag{4.1}
\end{equation*}
$$

with

$$
\begin{equation*}
I_{\text {Load }}=\frac{P}{V_{o}} \tag{4.2}
\end{equation*}
$$

Setting the maximum output power P at 0.97 MW leads to a value of $C=37.9 \mu \mathrm{~F}$. With this choice, the circuit reaches steady-state within 0.04 s while the voltage ripple lies within an acceptable range (refer also Figure 4.5).

4.1.6 Output Voltage V_{o}

It was mentioned earlier that the output voltage V_{o} is allowed to vary between the three values $V_{o}=16 \mathrm{kV}, V_{o}=15.2 \mathrm{kV}$ and $V_{o}=16.8 \mathrm{kV}$ which correspond to the nominal voltage and to $V_{o} \pm 5 \%$. Prior to every simulation, the value of V_{o} is preset and fixed.

4.2 Specialities in the Simulation of the Trapezoidal Modulation Scheme

4.2.1 Soft-Switching Qualities

Table 4.3 presents the expected switching losses of the system with trapezoidal modulation as explained in Section 3.2.3. In comparison, the observations in the simulation are presented and it can be seen that the values do not correspond to each other in the switches Q1, Q2, Q7 and Q8. It is apparent from Figures 3.5 to 3.7 that these switches should achieve soft-switching in turn-on and turn-off

Table 4.3: Expected and observed switching losses of the trapezoidal modulation scheme (0: no switching losses, 1: switching losses are observed)

due to the fact that their switching happens in the moment when the inductor current i_{L} crosses zero. From the simulation results, it is however obvious that this moment is missed by several microseconds depending on voltage level and load. This causes unexpected turn-on and turn-off losses. A possible explanation could be that all parameters that form the trapezoidal modulation, $\Omega_{1}, \Omega_{2}, D_{1}, D_{2}$ and D, are calculated based on the theoretical equations presented in Chapter 3. These equations have been implemented in PLECS ${ }^{\circledR}$ with values like the output voltage V_{o} assumed to be constant and at nominal value. In the simulation it is however observed that due to ohmic losses in the switches, the output voltage V_{o} will not reach this nominal value, but settle at a slightly lower value (refer Figure 4.5). To solve this discrepancy between the theoretical equations and the simulation results, two suggestions are put forward. One one hand, a control circuit could be implemented to keep the voltage across the output capacitor at the constant and nominal value of 16 kV . On the other hand, the momentary value V_{o} could be dynamically fed back to the equations that are used to calculate the necessary parameters. Hence, ensure the correct determination and dynamic adaptation of these values. Due to the available resources in the scope of this work, these possible solutions are not tested in the simulation. Nevertheless, it is the goal to fairly treat the trapezoidal modulation in comparison with the SPS and not lose its main achievement of partial zero turn-off losses that are mentioned in literature [19, 35]. After considering different feasible options, it is decided that the switching losses of the respective switches will be manually set to zero in the simulation. This is shown in Table 4.3.

Figure 4.5: Course of the simulated output voltage V_{o} with $V_{o}=16 \mathrm{kV}$

4.2.2 Auxiliary Parameter ϵ

For the implementation of the trapezoidal modulation in PLECS ${ }^{\oplus}$, an auxiliary parameter ϵ is set additionally to (3.17) and (3.18) which is used to phase-shift the switching signals in order to reach the correct voltage and current forms. As can be seen in Figure 3.5, this value is not equal to the phase-shift angle φ. This is due to the fact that the phase-shift is measured between half the on-time of $v_{T 1}$ and half the on-time of $v_{T 2}$. In the single-phase-shift modulation, ϵ equals φ because of the constant duty cycle of $0.5 T_{s}$ for both square voltages where T_{s} is one switching period. However, in trapezoidal modulation, the duty cycle of the square voltages can differ from $0.5 T_{s}$ and the resulting difference between ϵ and φ has to be considered. The complete initialization parameters are provided in Appendix A.2.2.

Analysis of Simulation Results

After modeling the Dual-Active-Bridge as well as the two considered modulation schemes in PLECS ${ }^{\oplus}$, the presented case set up from Chapter 2 is simulated. According to this set up, the modulation schemes are subject to a variation in load and to a fluctuation in output voltage. The considered load cases are full load, $80 \%, 50 \%$, 30% and 10% of full load, respectively. The output voltage V_{o} will vary between the nominal voltage of $V_{o}=16 \mathrm{kV}$, a voltage drop down to $V_{o}=15.2 \mathrm{kV}$ and a voltage rise up to $V_{o}=16.8 \mathrm{kV}$. This corresponds to a fluctuation of $\pm 5 \%$. Both modulation schemes are simulated individually over the whole load range and the results of each case are compared and evaluated with regards to the following criteria:

- RMS Inductor Current
- Total Losses of the Semiconductor Switches
- Overall Efficiency
- Switching Losses
- Soft-Switching Range

The parameters for comparison were chosen inspired by [13] and [19].

5.1 Transformer Voltages and Inductor Current

The basic functionality of the model and the two modulation schemes is tested by looking at the transformer voltages $v_{T 1}$ and $v_{T 2}$ and the resulting current i_{L} through the leakage inductance. In the following Figures 5.1 to 5.6 , the course of these parameters is presented for the three possible output voltage levels and different load conditions. It must be noted that the secondary transformer voltage is referred to the primary side and is consequently displayed as $n v_{T 2}$.

5.1.1 Single-Phase-Shift Modulation

In Figure 5.1, the Dual-Active-Bridge is subject to an output voltage of $V_{o}=16 \mathrm{kV}$. All wave forms show the theoretically expected behaviour presented in Figure 3.2. It is visible that the current value decreases when the load is decreasing while at the same time the phase-shift angle between $v_{T 1}$ and $n v_{T 2}$ becomes smaller.

Figure 5.1: Primary and referred secondary transformer voltage $v_{T 1}$ and $n v_{T 2}$ and respective inductor current i_{L} at $V_{o}=16 \mathrm{kV}$ with single-phase-shift modulation

Figure 5.2 depicts the course of $v_{T 1}$ and $n v_{T 2}$ at a 5% deviated value of the nominal voltage level of $V_{o}=15.2 \mathrm{kV}$. It can be observed in this case that the referred output voltage is lower than the input voltage. Therefore, the slope of the inductor current has changed its sign to a positive value while the inductor voltage is $\left(V_{i}-n V_{o}\right)$. This was explained in Section 3.1.2.

Figure 5.2: Primary and referred secondary transformer voltage $v_{T 1}$ and $n v_{T 2}$ and respective inductor current i_{L} at $V_{o}=15.2 \mathrm{kV}$ with single-phase-shift modulation

In Figure 5.3 the output voltage shows a rise of voltage of 5%. Thus, the referred output voltage is higher than the input voltage. The sign of the slope of the inductor current in the second time interval is negative, corresponding to the case of nominal voltage.

Figure 5.3: Primary and referred secondary transformer voltage $v_{T 1}$ and $n v_{T 2}$ and respective inductor current i_{L} at $V_{o}=16.8 \mathrm{kV}$ with single-phase-shift modulation

5.1.2 Trapezoidal Modulation

The wave forms from the simulation of the trapezoidal modulation exhibit the expected behaviour from Figure 3.5. Equally to single-phase-shift modulation, the value of the current as well as the phase-shift angle decrease with decreasing load. According to the equations in Section 3.2.1, the zero-voltage widths Ω_{1} and Ω_{2} decrease with decreasing phase-shift angle. The duty cycles are in return increasing. Furthermore, the slope of the current alternates in the third time interval while $\left(V_{i}-n V_{o}\right)$ is applied, depending on the relation of V_{i} and V_{o}. This was presented in Section 3.2.2.

Figure 5.4: Primary and referred secondary transformer voltage $v_{T 1}$ and $n v_{T 2}$ and respective inductor current i_{L} at $V_{o}=16 \mathrm{kV}$ with trapezoidal modulation

Figure 5.5: Primary and referred secondary transformer voltage $v_{T 1}$ and $n v_{T 2}$ and respective inductor current i_{L} at $V_{o}=15.2 \mathrm{kV}$ with trapezoidal modulation

Figure 5.6: Primary and referred secondary transformer voltage $v_{T 1}$ and $n v_{T 2}$ and respective inductor current i_{L} at $V_{o}=16.8 \mathrm{kV}$ with trapezoidal modulation

5.2 Comparison of Single-Phase-Shift and Trapezoidal Modulation

5.2.1 RMS Inductor Current

In the following Figures 5.7 to 5.9 , the course of the RMS inductor current is depicted for the three different output voltage levels and different load conditions, respectively. Firstly, it can be noted that due to the constant output voltage in every case, the current value decreases with decreasing load. Secondly, it is visible that for an output voltage lower than nominal at $V_{o}=15.2 \mathrm{kV}$, the current takes a larger value in order to deliver the requested power while for a higher output voltage at $V_{o}=16.8 \mathrm{kV}$, the current reduces. Beyond that, it is apparent that for all voltage and load levels, the single-phase-shift modulation presents lower RMS current values than the trapezoidal modulation. Depending on the voltage level, a difference between 9% and up to 20% in current stress can be observed for the full load condition. This observation coincides with simulation results that are shown in [13]. Finally, it is noted that the minimum load that can be transmitted via trapezoidal modulation at $V_{o}=16.8 \mathrm{kV}$ is 213 kW , corresponding to 22% of the full load (refer Figure 4.3). Therefore, no current value is available in the case of a 10% load for trapezoidal modulation in Figure 5.9, but the power transmission must be handled by means of the triangular modulation.

Figure 5.7: RMS inductor current at different transmission power levels with $V_{o}=16 \mathrm{kV}$ and MOSFET switches

Figure 5.8: RMS inductor current at different transmission power levels with $V_{o}=15.2 \mathrm{kV}$ and MOSFET switches

Figure 5.9: RMS inductor current at different transmission power levels with $V_{o}=16.8 \mathrm{kV}$ and MOSFET switches

5.2.2 Total Losses and Efficiency

The Figures 5.10 to 5.12 show the total losses and the Figures 5.13 to 5.15 show the corresponding efficiencies of the built up model. The losses consist of switching losses and conduction losses of the semiconductor switches and conduction losses of the anti-parallel diodes. The respective diagrams of turn-on and turn-off switching energy and characteristics of the body diode are presented in the MOSFET datasheet in Appendix C.

It is apparent that the total losses decrease with decreasing load and accordingly decreasing current. Corresponding to the behaviour of the RMS current, the total losses will be higher for a lower output voltage and lower for a higher output voltage.

According to what is expected from the course of the RMS current, the total losses in trapezoidal modulation can at first be observed to be larger than in single-phaseshift modulation. However, starting at a load of 30% and downwards, the relation is inverted and the total loss values of the trapezoidal modulation scheme become slightly smaller than the ones of the SPS modulation. Consequently, it is visible in the Figures 5.13 to 5.15 that for load conditions down to 50% of the load, the SPS modulation will provide a better efficiency than the trapezoidal modulation. For smaller values of transmitted power, the figures show that the trapezoidal modulation presents slightly better results. This is in line with the suggestions in literature to apply SPS modulation for large loads and trapezoidal modulation for light loads. The results can be explained when looking at the distribution of switching and conduction losses at the different load levels. It is presented in the following Section 5.2.3.

Figure 5.10: Total losses at different transmission power levels with $V_{o}=16 \mathrm{kV}$ and MOSFET switches

Figure 5.11: Total losses at different transmission power levels with $V_{o}=15.2 \mathrm{kV}$ and MOSFET switches

Figure 5.12: Total losses at different transmission power levels with $V_{o}=16.8 \mathrm{kV}$ and MOSFET switches

In general, the efficiency of the built up DAB controlled via SPS modulation varies between 97.91% and 99.62%, depending on the load and voltage condition. If the control is done by means of the trapezoidal modulation scheme, the efficiency settles between 96.78% and 99.69%.

Figure 5.13: Efficiency at different transmission power levels with $V_{o}=16 \mathrm{kV}$ and MOSFET switches

Figure 5.14: Efficiency at different transmission power levels with $V_{o}=15.2 \mathrm{kV}$ and MOSFET switches

Figure 5.15: Efficiency at different transmission power levels with $V_{o}=16.8 \mathrm{kV}$ and MOSFET switches

5.2.3 Share of Switching Losses

Generally, it is visible that the percentile share of switching losses with respect to total losses increases with decreasing load. That is because the current and thereby, the absolute value of conduction losses decreases. Moreover, the SPS modulation and the trapezoidal modulation show different characteristics concerning soft-switching. This was presented in the Sections 3.1.3 and 3.2.3. From these findings, the trapezoidal modulation is expected to exhibit a lower share of switching losses than the SPS modulation. The Figures 5.16 to 5.18 support this assumption. At 50% of the load, the switching losses with trapezoidal modulation account for only around half of the switching losses in SPS modulation. At 10% of the load, the trapezoidal switching losses represent around 60% of the SPS switching losses.

However, this behaviour is reflected in the overall efficiency only at very low loads. At full load and nominal voltage, the absolute value of switching losses is observed to be even higher in trapezoidal than in SPS modulation (compare Figure B. 1 and Figure B. 2 in Appendix B).

Starting at 80% towards lighter loads, the absolute value of switching losses is in fact smaller in trapezoidal than in SPS modulation. Yet, it was shown that the RMS inductor current in trapezoidal modulation is always larger than in SPS modulation. This causes the absolute value of the conduction losses to be larger in trapezoidal than in SPS. Hence, the sum of switching and conduction losses results to be larger as well. The effect of lesser switching losses in trapezoidal modulation becomes only visible at very light loads of 30% or 10%. Here, the inverted proportions are apparent in the overall efficiency and total losses. These results can be explained by the good switching performance featuring low switching energies exhibited by the chosen SiC MOSFETs.

It should additionally be noted that in the case of single-phase-shift modulation, the Dual-Active-Bridge loses soft-switching capabilities in the case of 10% of the load when the output voltage is deviating from the nominal value:

- $V_{o}=15.2 \mathrm{kV}: \mathrm{HV}$-side switches loose soft-switching in turn-on
- $V_{o}=16.8 \mathrm{kV}$: LV-side switches loose soft-switching in turn-on

Moreover, it is noticed that for trapezoidal modulation, only the switch Q6 looses soft-switching in turn-on for $V_{o}=15.2 \mathrm{kV}$ at 10% of the load. These observations support the choice of the trapezoidal modulation for low loads.

Figure 5.16: Percentage share of switching losses at different transmission power levels with $V_{o}=16 \mathrm{kV}$ and MOSFET switches

Figure 5.17: Percentage share of switching losses at different transmission power levels with $V_{o}=15.2 \mathrm{kV}$ and MOSFET switches

Figure 5.18: Percentage share of switching losses at different transmission power levels with $V_{o}=16.8 \mathrm{kV}$ and MOSFET switches

5.3 Application of an IGBT Switch

Considering the findings in Section 5.2.3, the model of the Dual-Active-Bridge is redesigned applying a dummy IGBT model based on the IGBT switch IKQ75N120CT2 by Infineon. The IGBT has considerably lower conduction losses, but higher switching energies than the considered MOSFET. It is expected that the effect of lower switching losses in trapezoidal mode will thereby be made more visible in the results. Similarly to the procedure when creating the MOSFET model, a thermal model is built in PLECS ${ }^{\oplus}$, based on the switching energies that are given in the datasheet in Appendix D. The on-resistance is identified to equal $R_{o n}=27.8 \mathrm{mH}$. The anti-parallel diode continues to have the charasteristics of the MOSFET body diode. It has to be noted that this is a simplified approach as the blocking voltage of the used IGBT is lower than the blocking voltage of the employed MOSFET. For a real implementation, the number of switches that are connected in series and parallel might therefore have to be adapted in order to comply with required safety margins for IGBTs.

The course of the primary and secondary transformer voltage and the leakage inductor current is identical to the graphs presented in Section 5.1.

5.3.1 RMS Inductor Current

In the following Figures 5.19 to 5.21 , the course of the RMS inductor current is presented when the IGBT switch is used. The current shows the same behaviour as with MOSFETs. Solely the values of the current are slightly higher due to the lower ohmic resistance of the IGBTs.

Figure 5.19: RMS inductor current at different transmission power levels with $V_{o}=16 \mathrm{kV}$ and IGBT switches

Figure 5.20: RMS inductor current at different transmission power levels with $V_{o}=15.2 \mathrm{kV}$ and IGBT switches

Figure 5.21: RMS inductor current at different transmission power levels with $V_{o}=16.8 \mathrm{kV}$ and IGBT switches

5.3.2 Total Losses and Efficiency

In the Figures 5.22 to 5.27 , the total losses and resulting efficiencies of the Dual-Active-Bridge that is equipped with IGBT switches are presented. It is visible that in comparison with the results of Section 5.2.2, the total losses in trapezoidal modulation are lower than the SPS losses over the whole load range. These results are reasonable considering the better switching performance of the trapezoidal modulation scheme combined with the inverted share of switching and conduction losses with IGBTs. For both modulation schemes, the total losses at low loads are considerably higher when using IGBTs instead of MOSFETs: While the conduction losses are very low due to both the low current and the good conducting behaviour of the IGBTs, the switching losses stay at a comparatively high level (compare Figure B. 3 and Figure B. 4 in Appendix B).

Figure 5.22: Total losses at different transmission power levels with $V_{o}=16 \mathrm{kV}$ and IGBT switches

Figure 5.23: Total losses at different transmission power levels with $V_{o}=15.2 \mathrm{kV}$ and IGBT switches

Figure 5.24: Total losses at different transmission power levels with $V_{o}=16.8 \mathrm{kV}$ and IGBT switches

In general, the efficiency of the DAB with IGBT switches varies between 95.52% and 98.33% with SPS modulation and between 97.81% and 98.9% with trapezoidal modulation. The trapezoidal modulation shows better efficiencies than the SPS modulation at all voltage and load levels. An explanation is given in the following Section 5.3.3. It is worth noting that the efficiency does not increase with decreasing load like in the case of MOSFETs.

Figure 5.25: Efficiency at different transmission power levels with $V_{o}=16 \mathrm{kV}$ and IGBT switches

Figure 5.26: Efficiency at different transmission power levels with $V_{o}=15.2 \mathrm{kV}$ and IGBT switches

Figure 5.27: Efficiency at different transmission power levels with $V_{o}=16.8 \mathrm{kV}$ and IGBT switches

5.3.3 Share of Switching Losses

In general, the following Figures 5.28 to 5.30 show the lower share of switching losses in trapezoidal modulation than in SPS modulation as expected. This is also valid for the absolute switching loss values (compare Figure B. 3 and Figure B. 4 in Appendix B). Although the absolute value of conduction losses with trapezoidal modulation is still higher than with SPS modulation due to the higher current value, the role of the switching losses is now different. The proportion of switching and conduction losses is inverted when using IGBT switches. Thus, comparing with Figures 5.16 to 5.18, it is obvious that the share of switching losses is clearly larger than in the MOSFET case for both modulation schemes. The effect of the better switching performance of the trapezoidal modulation scheme therefore becomes explicitly visible in the efficiency. Besides, it is notable that soft-switching occurs at all examined voltage and load levels.

Figure 5.28: Percentage share of switching losses at different transmission power levels with $V_{o}=16 \mathrm{kV}$ and IGBT switches

Figure 5.29: Percentage share of switching losses at different transmission power levels with $V_{o}=15.2 \mathrm{kV}$ and IGBT switches

Figure 5.30: Percentage share of switching losses at different transmission power levels with $V_{o}=16.8 \mathrm{kV}$ and IGBT switches

6

Conclusion

6.1 Round-Up of the Presented Work

In this work, a Dual-Active-Bridge is employed to transfer the generated power from a photovoltaic park to the medium voltage level. Two suitable modulation schemes for this purpose are evaluated. The parameters of the transformer and semiconductor switches were chosen to fit the solar output power of 0.97 MW . The input voltage level V_{i} is equal to $V_{i}=1.3 \mathrm{kV}$. The output voltage level V_{o} varies between the nominal value of $V_{o}=16 \mathrm{kV}, V_{o}=15.2 \mathrm{kV}$ and $V_{o}=16.8 \mathrm{kV}$ which corresponds to a deviation of $\pm 5 \%$. Other simulation parameters are given in Table 4.1.

The power flow through the Dual-Active-Bridge is chosen to be controlled by either the single-phase-shift modulation scheme or the trapezoidal modulation scheme. From the presented equations in Chapter 3, it is evident that the single-phaseshift modulation features a simpler implementation than the trapezoidal modulation scheme. The single-phase-shift modulation is realized with only one variable, namely the phase-shift angle φ, and functions identically for all voltage levels. For the trapezoidal modulation scheme, two more variables have to be calculated, namely the zero-voltage widths Ω_{1} and Ω_{2}. Furthermore, two cases have to be differentiated according to the voltage levels.

Due to their good switching performance favorable for a medium switching frequency, SiC MOSFETs were chosen for this simulation. Additionally, a dummy IGBT was created to confirm the obtained results.

Concerning the covered load range, the single-phase-shift modulation is advantageous over the trapezoidal modulation scheme. It can cover the whole load range whereas the trapezoidal modulation has to be combined with the triangular modulation scheme for low loads. Additionally, the single-phase-shift modulation generates lower RMS inductor currents than the trapezoidal modulation at all voltage and load levels.

However, the trapezoidal modulation scheme shows advantages over the single-phase-shift modulation with respect to soft-switching behaviour. While the single-phase-shift modulation exhibits eight softly turned on switches and eight hard turned off switches, the trapezoidal modulation scheme allows for eight softly turned on switches, but has only four hard turned off switches.

When it comes to efficiency, the favoured modulation scheme depends on the chosen switch and load level. In case of a SiC MOSFET switch with low switching losses, the single-phase-shift modulation is favorable over the trapezoidal modulation for loads down to 50% of full load. At lower loads, the trapezoidal modulation slightly outplays the single-phase-shift modulation due to the lower share of switching losses. In case of the IGBT dummy switch featuring better conduction performance, the trapezoidal modulation is more suitable over the entire load range.

Depending on various parameters like the chosen switches, the load range that has to be covered, the voltage levels and power range in the individual use case, it can be concluded that the single-phase-shift modulation is expected to be more suitable for higher loads and the trapezoidal modulation scheme for medium to low loads. Nevertheless, a "cost-benefit-analysis" between the necessary calculation effort and the improvement of the efficiency should be conducted for every individual use case in order to opt for the optimal modulation scheme.

6.2 Future Work

Several measures can be taken for further investigation and improvement of the presented analysis. To fully benefit from the respective advantages, first of all, the triangular modulation should be modeled and added to the simulation. This allows for coverage over the whole load range. After that, an adequate voltage control strategy should be added to the model as was explained in Section 4.2.1. In addition, the transformer is treated as an ideal component in the scope of this work. In order to include transformer losses in the study and to examine possible effects of the different modulation schemes on the transformer parameters, a detailed model of the transformer should be included.

Moreover, some results in [19] and [29] give rise to the assumption that the outcomes concerning the suitability of the modulation techniques might depend on the respective ratios of voltage levels, power levels and resulting currents. Hence, the presented application could be modified to different boundary conditions.

Finally, many more modulation techniques for the Dual-Active-Bridge converter are available in literature. Among these are the dual-phase-shift modulation, the extended-phase-shift modulation, the triple-phase-shift modulation and the optimized modulation method. All these methods vary the phase-shift between the input and output bridge as well as between the two legs of one full-bridge according to different criteria that can be found in the respective literature.

Bibliography

[1] Digi-Key Electronics: The Significance of the Intrinsic Body Diodes inside MOSFETs. https://www.digikey.com/en/articles/techzone/2016/sep/ the-significance-of-the-intrinsic-body-diodes-inside-mosfets, Sept. 2016. Accessed: 2018-07-01.
[2] European Commission - JRC Photovoltaic Geographical Information System (PVGIS). http://re.jrc.ec.europa.eu/pvg_tools/en/tools.html\#TMY, Sept. 2017. Accessed: 2018-04-17.
[3] North Carolina State University: 'Smart' transformers could make reliable smart grid a reality. Science Daily. https://www.sciencedaily.com/ releases/2017/07/170705113105.htm, July 2017. Accessed: 2017-11-11.
[4] Electronics Tutorials: MOSFET as a Switch - Using Power MOSFET Switching. https://www.electronics-tutorials.ws/transistor/tran_7.html, 2018. Accessed: 2018-05-05.
[5] Alikhanzadehalamdari, B. Comparison of High-Power DC-DC Converters for Solar Applications with Respect to Efficiency and Chip-area. Master's thesis, Chalmers University of Technology, Gothenburg, Sweden, 2018.
[6] Bahmani, M. Design and optimization considerations of medium-frequency power transformers in high-power DC-DC applications. PhD thesis, Chalmers University of Technology, Gothenburg, Sweden, 2016. OCLC: 944957642.
[7] Bai, H., and Mi, C. Eliminate Reactive Power and Increase System Efficiency of Isolated Bidirectional Dual-Active-Bridge DC-DC Converters Using Novel Dual-Phase-Shift Control. In: IEEE Transactions on Power Electronics 23, 6 (Nov. 2008), pp. 2905-2914.
[8] Barlik, R., Nowak, M., and Grzejszczak, P. Power transfer analysis in a single phase dual active bridge. In: Bulletin of the Polish Academy of Sciences: Technical Sciences 61, 4 (Jan. 2013), pp. 809-828.
[9] Bhattacharya, S. IEEE Spectrum: Technology, Engineering, and Science News. Smart Transformers Will Make the Grid Cleaner and More Flexible. https://spectrum.ieee.org/energy/renewables/smart-transformers-will-make-the-grid-cleaner-and-more-flexible, June 2017. Accessed: 2017-11-10.
[10] Carbone, R., Ed. Energy Storage in the Emerging Era of Smart Grids. InTechOpen, Sept. 2011. Available at http://www.intechopen.com/books/ energy-storage-in-the-emerging-era-of-smart-grids, Accessed: 2018-07-20.
[11] Casady, J. B. 3.3 kV SiC MOSFET Update for Medium Voltage Applications. In 2015 IEEE Energy Conversion Congress \mathfrak{B} Expo - ECCE. 20-24 September 2015, Montreal, Canada.
[12] Casady, J. B., McNutt, T., Girder, D., and Palmour, J. MediumVoltage SiC RED update. Wolfspeed, A Cree Company, Apr. 2016. Available at https://www.nist.gov/document/wolfspeed-cree-sic-pwr-nist-wkshp-apr2016shortpdf, Accessed: 2018-07-22.
[13] Cui, Y., Hou, R., Malysz, P., and Emadi, A. Improved combined modulation strategy for dual active bridge converter in electrified vehicles. In 2017 IEEE Transportation Electrification Conference and Expo (ITEC), pp. 101-107. 22-24 June 2017, Chicago, IL, USA.
[14] Davis, S. Are Solid-State Transformers Ready for Prime Time? Power Electronics. http://www.powerelectronics.com/alternative-energy/are-solid-state-transformers-ready-prime-time, Aug. 2017. Accessed: 2018-06-29.
[15] Doncker, R. W. A. A. D., Divan, D. M., and Kheraluwala, M. H. A three-phase soft-switched high-power-density DC/DC converter for high-power applications. In: IEEE Transactions on Industry Applications 27, 1 (Jan. 1991), pp. 63-73.
[16] Doncker, R. W. D., Divan, D. M., and Kheraluwala, M. H. A three-phase soft-switched high power density DC/DC converter for high power applications. In Conference Record of the 1988 IEEE Industry Applications Society Annual Meeting, pp. 796-805, Vol.1. 2-7 Oct. 1988, Pittsburgh, PA, USA.
[17] Falcones, S., Mao, X., and Ayyanar, R. Topology comparison for Solid State Transformer implementation. In IEEE PES General Meeting, pp. 1-8. 25-29 July 2010, Providence, RI, USA.
[18] George, K. Design and Control of a Bidirectional Dual Active Bridge DC-DC Converter to Interface Solar, Battery Storage, and Grid-Tied Inverters, 2015. Bachelor's thesis, University of Arkansas, Department of Electrical Engineering, Fayetteville.
[19] Hoek, H. v., Neubert, M., and Doncker, R. W. D. Enhanced Modulation Strategy for a Three-Phase Dual Active Bridge-Boosting Efficiency of an Electric Vehicle Converter. In: IEEE Transactions on Power Electronics 28, 12 (Dec. 2013), pp. 5499-5507.
[20] Jain, A. K., and Ayyanar, R. Pwm control of dual active bridge: Comprehensive analysis and experimental verification. In: IEEE Transactions on Power Electronics 26, 4 (Apr. 2011), pp. 1215-1227.
[21] Ji, S., Zhang, Z., and Wang, F. Overview of high voltage sic power semiconductor devices: development and application. In: CES Transactions on Electrical Machines and Systems 1, 3 (Sept. 2017), pp. 254-264.
[22] Joebges, P., Hu, J., and Doncker, R. W. D. Design method and efficiency analysis of a DAB converter for PV integration in DC grids. In 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC), pp. 1-6. 5-8 Dec. 2016, Auckland, New Zealand.
[23] Kanellos, M. Next for the Grid: Solid State Transformers. https://www.greentechmedia.com/articles/read/next-for-the-grid-solid-state-transformers, Mar. 2011. Accessed: 2017-10-10.
[24] Karshenas, H. R., Daneshpajooh, H., Safaee, A., Jain, P., and Bakhshai, A. Bidirectional DC - DC Converters for Energy Storage Systems. In Energy Storage in the Emerging Era of Smart Grids, R. Carbone, Ed. InTechOpen, Sept. 2011. pp. 161-179, Available at https://www.intechopen.com/books/energy-storage-in-the-emerging-era-of-smart-grids/bidirectional-dc-dc-converters-for-energy-storage-systems, Accessed: 2018-07-20.
[25] Keeping, S. Digi-Key Electronics: Voltage- and Current-Mode Control for PWM Signal Generation in DC-to-DC Switching Regulators. https://www.digikey.se/en/articles/techzone/2014/oct/voltage-and-current-mode-control-for-pwm-signal-generation-in-dc-to-dc-switching-regulators, Oct. 2014. Accessed: 2017-11-15.
[26] Kim, M., Rosekeit, M., Sul, S. K., and Doncker, R. W. A. A. D. A dual-phase-shift control strategy for dual-active-bridge DC-DC converter in wide voltage range. In 8th International Conference on Power Electronics ECCE Asia, pp. 364-371. 30 May-3 June 2011, Jeju, South Korea.
[27] Krismer, F. Modeling and optimization of bidirectional dual active bridge $D C-D C$ converter topologies. PhD thesis, ETH Zürich, Zürich, Switzerland, 2010.
[28] Krismer, F., and Kolar, J. W. Closed Form Solution for Minimum Conduction Loss Modulation of DAB Converters. In: IEEE Transactions on Power Electronics 27, 1 (Jan. 2012), pp. 174-188.
[29] Krismer, F., and Kolar, J. W. Efficiency-Optimized High-Current Dual Active Bridge Converter for Automotive Applications. In: IEEE Transactions on Industrial Electronics 59, 7 (July 2012), pp. 2745-2760.
[30] Krismer, F., Round, S., and Kolar, J. W. Performance optimization of a high current dual active bridge with a wide operating voltage range. In 2006 37th IEEE Power Electronics Specialists Conference, pp. 1-7. 18-22 June 2006, Jeju, South Korea.
[31] McLyman, C. W. T. Transformer and Inductor Design Handbook, Chapter 17: Winding Capacitance and Leakage Inductance, 3 ed. Idyllwild, California: Kg Magnetics, Inc., 2004. Available at https://coefs.uncc.edu/mnoras/ courses/power-electronics/tr_design/, Accessed: 2018-07-13.
[32] Mi, C., Bai, H., Wang, C., and Gargies, S. Operation, design and control of dual H-bridge-based isolated bidirectional DC-DC converter. In: IET Power Electronics 1, 4 (Dec. 2008), pp. 507-517.
[33] Pala, Vipindas, B. E. V., and Casady, J. Simplifying power conversion with medium voltage SiC MOSFETs. CS Compound Semiconductor. https://compoundsemiconductor.net/article/99201/Simplifying_ Power_Conversion_With_Medium_Voltage_SiC_MOSFETs, Apr. 2016. Accessed: 2018-07-02.
[34] Qin, H., and Kimball, J. W. Generalized Average Modeling of Dual Active Bridge DC-DC Converter. In: IEEE Transactions on Power Electronics 27, 4
(Apr. 2012), pp. 2078-2084.
[35] Schibli, N. Symmetrical multilevel converters with two quadrant DC-DC feeding. PhD thesis, École polytechnique fédérale de Lausanne EPFL, Lausanne, Switzerland, 2000.
[36] Siddique, H. A. B., Ali, S. M., And Doncker, R. W. D. DC collector grid configurations for large photovoltaic parks. In 2013 15th European Conference on Power Electronics and Applications (EPE), pp. 1-10. 2-6 Sept. 2013, Lille, France.
[37] Siddique, H. A. B., and Doncker, R. W. D. Evaluation of DC CollectorGrid Configurations for Large Photovoltaic Parks. In: IEEE Transactions on Power Delivery 33, 1 (Feb. 2018), pp. 311-320.
[38] SMA. Solar Technology AG. Zentral-Wechselrichter, Planung eines PVGenerators, Planungsleitfaden. DC-PL-de-11, Version 1.1, 2013.
[39] Sun, H., Zhang, J., and Fu, C. Control strategy for dual active bridge based DC solid state transformer. In 2017 20th International Conference on Electrical Machines and Systems (ICEMS), pp. 1-6. 11-14 Aug. 2017, Sydney, NSW, Australia.
[40] Vechalapu, K., Kadavelugu, A. K., and Bhattacharya, S. High voltage dual active bridge with series connected high voltage silicon carbide (SiC) devices. In 2014 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2057-2064. 14-18 Sept. 2014, Pittsburgh, PA, USA.
[41] Wang, Y., Haan, S. W. H. d., and Ferreira, J. A. Optimal operating ranges of three modulation methods in dual active bridge converters. In 2009 IEEE 6th International Power Electronics and Motion Control Conference, pp. 1397-1401. 17-20 May 2009, Wuhan, China.
[42] Wilamowski, B. M., and Irwin, J. D. Power Electronics and Motor Drives, 2 ed. CRC Press, Boca Raton, Feb. 2011. Google-Books-ID: oGbMBQAAQBAJ.
[43] Zhao, B., Song, Q., and Liu, W. Power Characterization of Isolated Bidirectional Dual-Active-Bridge DC-DC Converter With Dual-Phase-Shift Control. In: IEEE Transactions on Power Electronics 27, 9 (Sept. 2012), pp. 4172-4176.
[44] Zhao, B., Song, Q., Liu, W., and Sun, Y. Overview of Dual-Active-Bridge Isolated Bidirectional DC-DC Converter for High-FrequencyLink Power-Conversion System. In: IEEE Transactions on Power Electronics 29, 8 (Aug. 2014), pp. 4091-4106.

A

PLECS ${ }^{\circ}$ Modeling

A. 1 Single-Phase-Shift Modulation

A.1.1 Initialization Parameters for all Voltage Levels

```
% Input Voltage
Vi=1.3e3
% Output Voltage: 16e3 +/- 5% deviation
Vo=16e3
% Switching Frequency
fs=5e3
% Switching Period
Ts=1/fs
Ths=0.5*1/fs
% Triangular Wave
dutycycle=0.5
% Modulation Index
m=0.5
% Transformer
N1=1 % Number of turns on primary side
N2=12 % Number of turns on secondary side
n=N1/N2 % Turns ratio
% MOSFET Series and Parallel Connection
% Ron Value from Data Sheet
Ron__datasheet=45e-3
% LV-side
ns_LV=2
np_LV=15
```

```
% HV-side
ns_HV=15
np_HV=2
% DC Conversion Ratio
d=Vo*n/Vi
% Single-Phase-Shift
Pmax=0.97e6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% set angle in degrees at which maximum power
% should be transmitted
Phi_SPS_max=60
Phi_SPS_rad_max=Phi_SPS_max / 180*pi
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% calculate respective leakage inductance
L_SPS=(Vi*Vo*n)/(2*pi*pi*fs *Pmax )*Phi_SPS_rad_max*
(pi-Phi_SPS_rad_max)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% set power that should be transmitted
% L=L_SPS
L}=2.82868e-
Ptransmit = 1*0.97e6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate respective Phi
% Power transfer function for SPS
a=1
b=-pi
c=(Ptransmit *2*pi*pi*fs*L)/(Vi*Vo*n)
% not applicable
Phi1 =1/(2*a)*(-b+sqrt (b*b-4*a*c))
% Varying Values for Phase-Shift depending on given P
Phi2=1/(2*a)*(-b-sqrt (b*b-4*a*c))
Phi_SPS=Phi2/(pi)*180;
% Enter Phase-Shift in Degrees
Phi=Phi_SPS
Phi_rad=(Phi /180)*pi
```

```
D=Phi / 180
ph_input=0
ph_output=D*Ths
% Transmission Power and Load
P}=\textrm{Vi}*\textrm{Vo}*\textrm{n}/(2*\textrm{pi}*\textrm{pi}*\textrm{fs}*\textrm{L})*\textrm{Phi}_rad*[pi-(Phi_rad)
R=(Vo)^2/P
```


A. 2 Trapezoidal Modulation

A.2.1 Initialization Parameters for $V_{i} \leq n V_{o}$

```
% Input Voltage
Vi=1.3e3
% Output Voltage: 16e3 and 16e3 + 5% deviation
Vo=16e3
% Switching Frequency
fs=5e3
% Switching Period
Ts=1/fs
Ths=0.5*1/fs
% Triangular Wave
dutycycle=0.5
% Modulation Index
m=0.5
% Transformer
N1=1 % Number of turns on primary side
N2=12 % Number of turns on secondary side
n=N1/N2 % Turns ratio
% MOSFET Series and Parallel Connection
% Ron Value from Data Sheet
Ron_datasheet=45e-3
% LV-side
ns_LV=2
np_LV=15
```

```
% HV-side
ns_HV=15
np_HV=2
% DC Conversion Ratio
d=Vo*n/Vi
Pmax=0.97e6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% set angle at which maximum power should be transmitted
Phi_tr_max=60
Phi_tr_rad_max=Phi_tr_max / 180*pi
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% calculate respective leakage inductance
Omega1_max =(pi *(Vi-n*Vo) +2*n*Vo*Phi_tr__rad_max ) / (2*(Vi+n*Vo))
Omega2_max=Phi_tr_rad_max-Omega1_max
L_Trapez=(n*Vo*(pi-Phi_tr_rad_max-Omega1_max-Omega2_max)*
(n*Vo*(Phi_tr_rad_max-Omega2_max+Omega1_max)+Vi*
(Phi_tr_rad_max-Omega1_max+Omega2_max )) + ((n*Vo)^2)*
((Phi_tr_rad_max-Omega2_max+Omega1_max)^2))/(4*Pmax*pi*pi*fs )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% enter power that should be transmitted
Ptransmit =0.3*0.97e6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate respective Phi, Omega1 and Omega2
% L=L_Trapez
L}=2.82868e-
% Phi calculation according to Schibli
e}1=\mp@subsup{\textrm{Vi}}{}{`}2+(\textrm{n}*\textrm{Vo})\mp@subsup{}{}{\wedge}
e}2=\textrm{Vi}\mp@subsup{}{}{\wedge}2+\textrm{Vi}*\textrm{n}*\textrm{Vo}+(\textrm{n}*\textrm{Vo})\mp@subsup{}{}{\wedge}
e}3=\mp@subsup{V}{i^}{`}2*(n*Vo
```

```
Phi_trapez_rad=pi*(e1/(2*e2)-((Vi+n*Vo)*
(sqrt(e3-4*fs *(Ptransmit/(n*Vo))*L*e2))/(2*(sqrt (Vi))*e2)))
Phi_trapez=Phi_trapez_rad/pi*180
Omega1=(pi *(Vi-n*Vo) +2*n*Vo*Phi_trapez_rad ) / (2*(Vi+n*Vo))
Omega2=Phi_trapez_rad-Omega1
Phi=Phi_trapez
Phi_rad=(Phi__trapez / 180)*pi
% inner phase-shift of input bridge (duty ratio of vT1)
D1=(1-(2*Omega1/ pi ))*Ths
% inner phase-shift of output bridge (duty ratio of vT2)
D2=(1-(2*Omega2/pi ))*Ths
% Phase-Shift between vT1 and vT2 (outer phase-shift)
D=(2*Omega2/ pi )*Ths
% Gate Signals
ph_Q12=0
ph_Q34=ph_Q12+D1
ph_Q56=ph_Q12+D
ph_Q78=ph_Q12+D+D2
% Transmission Power and Load
P}=(\textrm{n}*\textrm{Vo}*(\mathrm{ pi-Phi__rad-Omega1-Omega2)*
(n*Vo*(Phi_rad-Omega2+Omega1)+Vi*
(Phi_rad-Omega1+Omega2))) /(4*L*pi*pi*fs )+(((n*Vo)^2)*
((Phi_rad-Omega2+Omega1)^2)/(4*L*pi*pi*fs ))
R=Vo^2/P
```


A.2.2 Initialization Parameters for $V_{i}>n V_{o}$

```
% Input Voltage
Vi=1.3e3
% Output Voltage: 16e3 - 5% deviation
Vo=15.2e3
% Switching Frequency
fs=5e3
% Switching Period
Ts=1/fs
Ths=0.5*1/fs
% Triangular Wave
dutycycle=0.5
% Modulation Index
m=0.5
% Transformer
N1=1 % Number of turns on primary side
N2=12 % Number of turns on secondary side
n=N1/N2 % Turns ratio
% MOSFET Series and Parallel Connection
% Ron Value from Data Sheet
Ron_datasheet=45e-3
% LV-side
ns_LV=2
np_LV=15
% HV-side
ns_HV=15
np_HV=2
% DC Conversion Ratio
d=Vo*n/Vi
Pmax=0.97e6
```

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% set angle at which maximum power should be transmitted
Phi_tr_max=60
Phi_tr_rad_max=Phi_tr_max / 180*pi
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% calculate respective leakage inductance
Omega2_max =(pi*(n*Vo-Vi)+2*Vi*Phi__tr_rad__max ) / (2*(Vi+n*Vo))
Omega1_max=Phi_tr_rad_max-Omega2_max
L_Trapez=(n*Vo*(pi-Phi_tr_rad_max-Omega1_max-Omega2_max)*
(n*Vo*(Phi_tr_rad_max-Omega2_max+Omega1_max)+Vi*
(Phi_tr_rad_max-Omega1_max+Omega2_max )) +((n*Vo)^2)*
((Phi_tr_rad_max-Omega2_max+Omega1_max)^2))/(4*Pmax*pi*pi*fs )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% enter power that should be transmitted
Ptransmit =0.3*0.97e6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate respective Phi, Omega1 and Omega2
%L=L_Trapez
L}=2.82868e-
% Phi calculation according to Schibli
e}1=\textrm{Vi}\mp@subsup{}{}{`}2+(\textrm{n}*\textrm{Vo})^
e}2=\textrm{Vi}^2+\textrm{Vi}*\textrm{n}*\textrm{Vo}+(\textrm{n}*\textrm{Vo}\mp@subsup{)}{}{\wedge}
e}3=\mp@subsup{V}{i^}{`}2*(n*Vo
Phi_trapez_rad=pi*(e1/(2*e2)-((Vi+n*Vo)*
(sqrt(e3-4*fs *(Ptransmit/(n*Vo))*L*e2))/(2*(sqrt(Vi))*e2)))
Phi_trapez=Phi_trapez_rad/pi*180
Omega2=(pi *(n*Vo-Vi)+2*Vi*Phi_trapez_rad )/ (2*(Vi+n*Vo))
Omega1=Phi_trapez_rad-Omega2
Phi=Phi_trapez
Phi_rad=(Phi__trapez/180)*pi
% inner phase-shift of input bridge (duty ratio of vT1)
D1=(1-(2*Omega1/pi))*Ths
```

```
% inner phase-shift of output bridge (duty ratio of vT2)
D2 =(1-(2*Omega 2/ pi ) )*Ths
% Phase-Shift between vT1 and vT2 (outer phase-shift)
D=(2*Omega 2/pi )*Ths
% Gate Signals
ph_Q12=0
ph_Q34=ph_Q12+D1
ph_Q56=ph_Q12+D
ph_Q78=ph_Q12+D+D2
% Transmission Power and Load
P}=(\textrm{n}*\textrm{Vo}*(\mathrm{ pi-Phi__rad-Omega1-Omega2)*
(n*Vo*(Phi_rad-Omega2+Omega1)+Vi*
(Phi_rad-Omega1+Omega2))) / (4*L*pi*pi*fs ) +(((n*Vo)^2)*
((Phi_rad-Omega2+Omega1)^2)/(4*L*pi*pi*fs ))
R=Vo^2/P
```

B

Simulation Results

SPS Modulation												
16 kV	Full load		80\% load		50\% load		30\% load		10\% load			
	Absolut	\%										
Switching losses [W]	425.713	2.262685695	222.075	1.866756891	143.613	2.646673436	142.896	6.827100861	142.617	38.69027595		
Conduction losses [W]	18388.8	97.7373834	11674.2	98.13303296	5282.56	97.35338185	1950.17	93.17270803	225.995	61.30972405		
Total losses [W]	18814.5	100	11896.3	100	5426.17	100	2093.07	100	368.612	100		
Total losses [kW]	18.8145		11.8963		5.42617		2.09307	0.1	0.368612			
RMS inductor current [A]	853.426		656.402		391.96		230.225		78.553			
Peak inductor current [A]	971.397		747.732		458.742		286.091		120.605			
Efficiency [\%]	98.0732		98.4749		98.8851		99.2804		99.6166			
15.2 kV	Full load		80\% load		50\% load		30\% load		10\% load			
	Absolut	\%										
```Switching losses [W] Conduction losses [W] Total losses [W] Total losses [kW]```	525.668 2.56315887   19982.9 97.4366851   20508.6 100   20.5086		255.967 2.000476738   12539.3 97.99926536   12795.3 100   12.7953		144.638 2.49466186   5653.27 97.50547612   5797.9 100   5.7979		138.863 6.120170652   2130.08 93.87996157   2268.94 100   2.26894		163.686 39.87828409   246.778 60.12171591			
			0.410464									
RMS inductor current [A]	887.451				679.733		404.58		237.498		$81.226$	
Peak inductor current [A]	990.143		756.095		460.684		286.966		$121.033$			
Efficiency [\%]	97.9077		98.3666		98.8186		99.2276		99.5831			
16.8 kV	$\begin{array}{r} \text { Full } \\ \text { Absolut } \end{array}$	\%	80\% load		50\% load		30\% load		10\% load			
Switching losses [W]	389.829	2.212473609			147.687		$146.852 \quad 6.62707474$		Absolut $\quad \%$			
Conduction losses [W]	$17229.7 \quad 97.78712343$				5032.28 97.14882519		$\begin{array}{\|rr\|}2069.08 & 93.37256424 \\ 2215.94 & 100\end{array}$		225.508 36.09433171   399.267 63.90582835			
Total losses [W]	17619.6	100	$\begin{array}{rr}11110 & 98.13534021 \\ 11321.1 & 100\end{array}$		5179.97	100			624.774			
Total losses [kW]	17.6196		11.3211		5.17997 0.1		2.21594		0.624774			
RMS inductor current [A]	828.449		641.881		390.703		239.381		103.853			
Peak inductor current [A]	1028.24		820.699		547.168		379.215		201.9			
Efficiency [\%]	98.1889		98.5424		98.9286		99.2308		99.3351			

Figure B.1: Simulation results of SPS modulation when the chosen MOSFET switch is used

Trapezoidal Modulation										
16 kV	Full load		80\% load		50\% load		30\% load		10\% load	
	Absolut	\%								
Switching losses [W]	453.539	1.881522014	147.394	1.153642654	72.0305	1.320378935	71.4677	3.470299746	71.323	23.83790107
Conduction losses [W]	23651.4	98.11863978	12628.9	98.84552769	5383.26	98.67963023	1987.98	96.53153088	227.875	76.16143048
Total losses [W]	24104.9	100	12776.4	100	5455.29	100	2059.41	100	299.2	100
Total losses [kW]	24.1049		12.7764		5.45529		2.05941		0.2992	
RMS inductor current [A]	971.878		694.9		400.751		232.495		78.7217	
Peak inductor current [A]	1236.22		835.206		477.753		290.771		120.995	
Efficiency [\%]	97.5387		98.364		98.88		99.2925		99.6888	
15.2 kV	Full load		80\% load		50\% load		30\% load		10\% load	
	Absolut	\%								
Switching losses [W]	725.179	2.290347542	180.673	1.304875054	76.0188	1.309501703	69.4182	3.10193485	81.4319	24.6403435
Conduction losses [W]	30937.2	97.70958613	13665.3	98.69492994	5729.17	98.69082215	2168.48	96.89798472	249.05	75.35962624
Total losses [W]	31662.4	100	13846	100	5805.17	100	2237.9	100	330.482	100
Total losses [kW]	31.6624		13.846		5.80517		2.2379		0.330482	
RMS inductor current [A]	1121.59		725.443		414.025		239.856		81.3457	
Peak inductor current [A]	1516.27		862.505		482.076		291.823		121.276	
Efficiency [\%]	96.778		98.2317		98.8139		99.2377		99.6693	
16.8 kV	Full load		80\% load		50\% load		30\% load		$10 \%$ load	
	Absolut	\%	Absolut	\%	Absolut	\%	Absolut	\%		
Switching losses [W]	361.687	1.707101457	136.071	1.138507493	73.9313	1.427584156	73.484	3.409740525	n.p.	n.p.
Conduction losses [W]	20825.9	98.29472512	11815.6	98.86124986	5104.85	98.57263404	2081.64	96.59044508	n.p.	n.p.
Total losses [W]	21187.2	100	11951.7	100	5178.77	100	2155.12	100	n.p.	n.p.
Total losses [kW]	21.1872		11.9517		5.17877		2.15512		n.p.	n.p.
RMS inductor current [A]	915.533		672.982		396.578		239.898		n.p.	n.p.
Peak inductor current [A]	1197.27		876.003		553.768		377.713		n.p.	n.p.
Efficiency [\%]	97.8307		98.4652		98.9313		99.2535		n.p.	n.p.

Figure B.2: Simulation results of trapezoidal modulation when the chosen MOSFET switch is used

SPS Modulation										
16 kV	Full load		80\% load		50\% load		30\% load		10\% load	
	Absolut	\%								
Switching losses [W]	10945.2	65.13798049	9234.48	70.47876359	6806.4	78.51949952	5429.11	89.66517861	4150.76	98.26656376
Conduction losses [W]	5857.99	34.86255512	3968.06	30.28475482	1862.02	21.48050048	625.759	10.33480488	73.2178	1.733384154
Total losses [W]	16803.1	100	13102.5	100	8668.42	100	6054.87	100	4223.98	100
Total losses [kW]	16.8031		13.1025		8.66842		6.05487		4.22398	
RMS inductor current [A]	854.836		657.323		392.452		230.657		79.6028	
Peak inductor current [A]	969.85		746.476		458.572		287.237		124.772	
Efficiency [\%]	98.2851		98.3302		98.2364		97.9525		95.7937	
15.2 kV	Full load		80\% load		50\% load		30\% load		10\% load	
	Absolut	\%	Absolut	\%	Absolut	$\%$	Absolut	\%	Absolut	\%
Switching losses [W]	10979.6	63.43216324	9101.63	67.96064962	6727.45	76.79939085	5338.72	88.36043813	4063.77	98.02444478
Conduction losses [W]	6329.6	36.56783676	4290.85	32.03920105	2032.34	23.20083746	703.261	11.63957842	81.9011	1.975581752
Total losses [W]	17309.2	100	13392.5	100	8759.77	100	6041.98	100	4145.67	100
Total losses [kW]	17.3092		13.3925		8.75977		6.04198		4.14567	
RMS inductor current [A]	888.462		680.253		404.69		237.55		81.9326	
Peak inductor current [A]	995.47		760.321		463.746		289.772		125.441	
Efficiency [\%]	98.2368		98.2973		98.2244		97.9687		95.9303	
16.8 kV	Full load		80\% load		$50 \%$ load		30\% load		10\% load	
	Absolut	\%								
Switching losses [W]	10976.1	66.80889397	9220.94	70.70513902	6930.47	79.78658249	5560.48	89.08141916	4265.59	96.22072892
Conduction losses [W]	5453	33.19110603	3820.47	29.29493766	1755.79	20.21341751	681.542	10.91861288	167.544	3.779361309
Total losses [W]	16429.1	100	13041.4	100	8686.26	100	6242.02	100	4433.13	100
Total losses [kW]	16.4291		13.0414		8.68626		6.24202		4.43313	
RMS inductor current [A]	830.33		643.404		392.198		241.536		110.422	
Peak inductor current [A]	1028.55		821.644		550.096		385.053		216.158	
Efficiency [\%]	98.32		98.3341		98.2259		97.8771		95.5185	

Figure B.3: Simulation results of SPS modulation when the chosen IGBT switch is used


Figure B.4: Simulation results of trapezoidal modulation when the chosen IGBT switch is used

MOSFET Datasheet


Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions	Note
$\mathrm{V}_{\text {griposs }}$	Drain-Source Breakdown Voltage	1700			V	$\mathrm{V}_{\text {cs }}=0 \mathrm{~V}, \mathrm{I}_{0}=100 \mu \mathrm{~A}$	
$V_{\text {oss(m) }}$	Gate Threshold Voltage	2.0	2.6	4	V	$\mathrm{V}_{\text {os }}=\mathrm{V}_{\text {GS }} \mathrm{l}_{0}=18 \mathrm{~mA}$	Fig. 11
			1.8		V	$\mathrm{V}_{\text {os }}=\mathrm{V}_{\text {oss }} \mathrm{I}_{0}=18 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	
loss	Zero Gate Voltage Drain Current		2	100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OS }}=1700 \mathrm{~V}, \mathrm{~V}_{\text {Gs }}=0 \mathrm{~V}$	
loss	Gate-Source Leakage Current			600	nA	$\mathrm{V}_{\text {GS }}=20 \mathrm{~V}, \mathrm{~V}_{\text {OS }}=0 \mathrm{~V}$	
$\mathrm{R}_{\text {os(on) }}$	Drain-Source On-State Resistance		45	70	m $\Omega$	$V_{\text {GS }}=20 V_{\text {, }} \mathrm{I}_{0}=50 \mathrm{~A}$	$\begin{aligned} & \text { Fig. } \\ & 4,5,6 \end{aligned}$
			90			$\mathrm{V}_{\text {GS }}=20 \mathrm{~V}, \mathrm{I}_{0}=50 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	
gts	Transconductance		21.7		s	$\mathrm{V}_{\text {os }}=20 \mathrm{~V}, \operatorname{los}=50 \mathrm{~A}$	Fig. 7
			24.4			$\mathrm{V}_{\text {os }}=20 \mathrm{~V}$, los $=50 \mathrm{~A}, \mathrm{~T}, ~=150{ }^{\circ} \mathrm{C}$	
$\mathrm{C}_{158}$	Input Capacitance		3672		pF	$\begin{aligned} & V_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=1000 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{AC}}=25 \mathrm{mV} \end{aligned}$	$\begin{aligned} & \text { Fig. } \\ & \text { 17,18. } \end{aligned}$
Coss	Output Capacitance		171				
$\mathrm{Crss}^{8}$	Reverse Transfer Capacitance		6.7				
Ess	Coss Stored Energy		105		$\mu \mathrm{J}$		Fig 16
Eon	Turn-On Switching Energy (SiC Diode FWD)		2.1		mJ		Fig. 26, 29b Note 2
Eoff	Turn Off Switching Energy (SiC Diode FWD)		0.86				
Eow	Turn-On Switching Energy (Body Diode FWD)		4.7		mJ		$\begin{aligned} & \hline \text { Fig. 26, } \\ & 29 \mathrm{a} \\ & \text { Note 2 } \end{aligned}$
Eoff	Turn Off Switching Energy (Body Diode FWD)		0.93				
$\mathrm{t}_{\text {don }}$	Turn-On Delay Time		65		ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1200 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-5 / 20 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=50 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{G} \text { (ext) }}=2.5 \Omega \text {, Timing relative to } \mathrm{V}_{\mathrm{DS}} \\ & \text { Inductive load } \end{aligned}$	$\begin{aligned} & \text { Fig. 27, } \\ & 29 \\ & \text { Note } 2 \end{aligned}$
$\mathrm{t}_{\text {t }}$	Rise Time		20				
$\mathrm{t}_{\text {dolf }}$	Turn-Off Delay Time		48				
$t_{t}$	Fall Time		18				
$\mathrm{R}_{6(m)}$	Internal Gate Resistance		1.3		$\Omega$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {AC }}=25 \mathrm{mV}$	
$\mathrm{Q}_{88}$	Gate to Source Charge		44		nC	$\begin{array}{\|l} V_{\text {DS }}=1200 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=-5 / 20 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A} \\ \text { Per IEC60747-8-4 pg } 21 \end{array}$	Fig. 12
$\mathrm{Q}_{\mathrm{gd}}$	Gate to Drain Charge		57				
$\mathrm{Q}_{5}$	Total Gate Charge		188				


Thermal Characteristics

## 

Package

Maximum Ratings ( $\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$ unless otherwise specified)					
Symbol	Parameter	Value	Unit	Test Conditions	Note
$\mathrm{V}_{\text {DSmax }}$	Drain - Source Voltage	1700	v	$\mathrm{V}_{\text {GS }}=0 \mathrm{~V}, \mathrm{IO}_{0}=100 \mu \mathrm{~A}$	
$\mathrm{V}_{\text {GSmax }}$	Gate - Source Voltage	-10/+25	v	Absolute maximum values, AC ( $\mathrm{f}>1 \mathrm{~Hz}$ )	
$\mathrm{V}_{\text {GSop }}$	Gate - Source Voltage	-5/+20	v	Recommended operational values	
$1{ }_{0}$	Continuous Drain Current	72	A	$\mathrm{V}_{\text {GS }}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Fig. 19
		48		$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	
$\mathrm{I}_{\text {(pulse) }}$	Pulsed Drain Current	160	A	Pulse width $t_{p}$ limited by $\mathrm{T}_{\text {jmax }}$	Fig. 22
$\mathrm{P}_{\mathrm{D}}$	Power Dissipation	520	w	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	Fig. 20
$\mathrm{T}_{J}, \mathrm{~T}_{\text {stg }}$	Operating Junction and Storage Temperature	$\begin{aligned} & -40 \text { to } \\ & +150 \end{aligned}$	${ }^{\circ} \mathrm{C}$		
$\mathrm{T}_{\mathrm{L}}$	Solder Temperature	260	${ }^{\circ} \mathrm{C}$	1.6 mm (0.063") from case for 10 s	
M	Mounting Torque	$\begin{gathered} \hline 1 \\ 8.8 \end{gathered}$	$\begin{gathered} \mathrm{Nm} \\ \mathrm{lbf-in} \end{gathered}$	M3 or 6-32 screw	







Figure 5. On-Resistance vs. Drain Current


## CREE $\stackrel{-}{\text { - }}$

Typical Performance








Figure 18. Capacitances vs. Drain-Source
Voltage $(0-1000$ V)
CREE -

Figure 20. Maximum Power Dissipation Derating vs.
Case Temperature


Figure 24. Clamped Inductive Switching Energy vs.
Drain Current ( $\left.V_{D D}=1200 \mathrm{~V}\right)$

Figure 23. Clamped Inductive Switching Energy vs.
Drain Current $\left(V_{D D}=900 \mathrm{~V}\right)$


Figure 21. Transient Thermal Impedance
(Junction-Case)
2 Frain Current (VD $\left.{ }_{D}=900 \mathrm{~V}\right)$



Typical Performance


Figure 28. Switching Times Definition
ESD Ratings

ESD Test				Total Devices Sampled	Resulting Classification
ESD-HBM	All Devices Passed 4000V	$3 \mathrm{~A}(>4000 \mathrm{~V})$			
ESD-CDM	All Devices Passed 1000V	IV (>1000V)			

## CREE $\stackrel{-}{\text { - }}$


Notes

- RoHS Compliance
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the
threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/
EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or
from the Product Documentation sections of www.cree.com.
REACh Compliance
REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA)
has published notice of their intent to frequently revise the SVHC listing for the foreseeable futureplease contact a Cree represen-
tative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is
also available upon request.
- This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body
nor in applications in which failure of the product could lead todeath, personal injury or propenty damage, including but not limited
to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical
equipment, aircraft navigation or communication or control systems, air traffic control systems.

[^0]


IGBT Datasheet

IKQ75N120CT2	infineon
TRENCHSTOP ${ }^{\text {TM }} 2$ low $\mathrm{V}_{\text {ce(sat) }}$ second generation IGBT	
Table of Contents	
Description	1
Table of Contents	. 2
Maximum Ratings	3
Thermal Resistance	3
Electrical Characteristics	. . 4
Electrical Characteristics Diagrams	6
Package Drawing	. . 13
Testing Conditions	. . . 14
Revision History	. . . 15
Disclaimer	. . . . . 16

Low $\mathrm{V}_{\text {ce(sat) }}$ IGBT in TRENCHSTOP ${ }^{\text {тм }} 2$ technology copacked with soft, fast

$(5) 6$

$\sigma^{\text {RoHS }}$

[^1]$\vee 2.2$
$2017-05-02$

Parameter	Symbol	Conditions	Value			Unit
			min.	typ.	max.	
Static Characteristic						
Collector-emitter breakdown voltage	$V_{\text {(BR)CES }}$	$V_{\text {GE }}=0 \mathrm{~V}, \mathrm{l}_{\mathrm{C}}=0.50 \mathrm{~mA}$	1200	-	-	V
Collector-emitter saturation voltage	$V_{\text {CEsat }}$	$\begin{aligned} & V_{G E}=15.0 \mathrm{~V}, I_{\mathrm{C}}=75.0 \mathrm{~A} \\ & T_{T_{\mathrm{E}}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{vj}}=15^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{r} 1.75 \\ 2.30 \\ \hline \end{array}$	2.15	V
Diode forward voltage	$V_{F}$	$\begin{aligned} & V_{G E}=0 V, l_{F}=75.0 \mathrm{~A} \\ & T_{y_{j}}=25^{\circ} \mathrm{C} \\ & T_{v j}=15^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 1.90 \\ & 1.85 \\ & \hline \end{aligned}$	2.30	V
Gate-emitter threshold voltage	$V_{G E(t h)}$	$\mathrm{I}_{\mathrm{C}}=1.88 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=V_{\text {GE }}$	5.1	5.8	6.5	V
Zero gate voltage collector current	Ices	$\begin{aligned} & V_{\text {CE }}=1200 \mathrm{~V}, V_{\text {GE }}=0 \mathrm{~V} \\ & T_{y}=25^{\circ} \mathrm{C} \\ & T_{y y}=15 \circ^{\circ} \mathrm{C} \\ & T_{\mathrm{V}}=175^{\circ} \mathrm{C} \end{aligned}$	-	$5000$	$450$	$\mu \mathrm{A}$
Gate-emitter leakage current	1 lges	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=20 \mathrm{~V}$	-	-	100	nA
Transconductance	gts	$V_{\text {CE }}=20 \mathrm{~V}, I_{\mathrm{C}}=75.0 \mathrm{~A}$	-	27.0	-	S


Electrical Characteristic, at $T_{\mathrm{vj}}=25^{\circ} \mathrm{C}$, unless otherwise specified						
Parameter	Symbol	Conditions	Value			Unit
			min.	typ.	max.	
Dynamic Characteristic						
Input capacitance	$C_{\text {ies }}$	$V_{C E}=25 \mathrm{~V}, V_{\text {GE }}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	4856	-	pF
Output capacitance	$C_{\text {oes }}$		-	505	-	
Reverse transfer capacitance	$C_{\text {res }}$		-	290	-	
Gate charge	Q	$\begin{aligned} & V_{C C}=960 \mathrm{~V}, I_{\mathrm{C}}=75.0 \mathrm{~A}, \\ & V_{G E}=15 \mathrm{~V} \end{aligned}$	-	370.0	-	nC
Internal emitter inductance measured 5 mm ( 0.197 in .) from case	$L_{\text {E }}$		-	13.0	-	nH
Switching Characteristic, Inductive Load						
Parameter	Symbol	Conditions	Value			Unit
			min.	typ.	max.	
IGBT Characteristic, at $T_{V \mathrm{vj}}=25^{\circ} \mathrm{C}$						
Turn-on delay time	$t_{\text {don }}$		-	37	-	ns
Rise time	$t_{r}$		-	49	-	ns
Turn-off delay time	$t_{\text {dofl }}$		-	326	-	ns
Fall time	$t_{f}$		-	46	-	ns
Turn-on energy	$E_{\text {on }}$		-	6.70	-	mJ
Turn-off energy	$E_{\text {off }}$		-	4.10	-	mJ
Total switching energy	$E_{\text {ls }}$		-	10.80	-	mJ

## IKQ75N120CT2

TRENCHSTOP ${ }^{\text {TM }} 2$ low $\mathrm{V}_{\text {ce(sat) }}$ second generation IGBT

Parameter	Symbol	Value	Unit
Collector-emitter voltage, $T_{\mathrm{vj}} \geq 25^{\circ} \mathrm{C}$	$V_{\text {CE }}$	1200	V
DC collector current, limited by $T_{\text {vimax }}$ $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ value limited by bondwire $T_{\mathrm{C}}=137^{\circ} \mathrm{C}$	Ic	$\begin{aligned} & 150.0 \\ & 75.0 \end{aligned}$	A
Pulsed collector current, $t_{p}$ limited by $T_{\text {vimax }}$	$I_{\text {cpuls }}$	300.0	A
Turn off safe operating area $V_{C E} \leq 1200 \mathrm{~V}, T_{\mathrm{V} j} \leq 175^{\circ} \mathrm{C}, t_{\mathrm{p}}=1 \mu \mathrm{~s}$		300.0	A
Diode forward current, limited by $T_{\text {vimax }}$   $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ value limited by bondwire $T_{\mathrm{C}}=100^{\circ} \mathrm{C}$	/F	$\begin{aligned} & 150.0 \\ & 75.0 \\ & \hline \end{aligned}$	A
Diode pulsed current, $t_{\mathrm{p}}$ limited by $T_{\text {vjmax }}$	1 fpuls	300.0	A
Gate-emitter voltage	$V_{\text {GE }}$	$\pm 20$	V
Short circuit withstand time $V_{G E}=15.0 \mathrm{~V}, V_{\mathrm{Cc}} \leq 600 \mathrm{~V}$ Allowed number of short circuits $<1000$ Time between short circuits: $\geq 1.0$ s $T_{\mathrm{Vj}}=175^{\circ} \mathrm{C}$	tsc	10	$\mu \mathrm{s}$
Power dissipation $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Power dissipation $T_{\mathrm{C}}=137^{\circ} \mathrm{C}$	$P_{\text {iot }}$	$\begin{aligned} & 938.0 \\ & 237.0 \end{aligned}$	W
Operating junction temperature	$T_{v}$	-40...+175	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {stg }}$	$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
Soldering temperature, wave soldering 1.6 mm (0.063in.) from case for 10s		260	${ }^{\circ} \mathrm{C}$

\[

\]


TRENCHSTOP ${ }^{\text {TM }} 2$ low $\mathrm{V}_{\text {ce(sat) }}$ second generation IGBT


$V_{\mathrm{CE}}$, COLLECTOR-EMITTER VOLTAGE [V]
Figure 4. Typical output characteristic
$\left(T_{\mathrm{vj}}=25^{\circ} \mathrm{C}\right)$


IKQ75N120CT2
TRENCHSTOP ${ }^{\text {TM }} 2$ low $V_{\text {cessal }}$ second generation IGBT
infineon
TRENCHSTOP ${ }^{\text {TM }} 2$ low $\mathrm{V}_{\text {ce(sat) }}$ second generation IGBT
Diode Characteristic, at $T_{\mathrm{vj}}=\mathbf{2 5} \mathbf{}$ 受


Diode Characteristic, at $\boldsymbol{T}_{\mathrm{vj}}=175^{\circ} \mathrm{C}$

Diode reverse recovery time	$t_{\text {rr }}$	$\begin{aligned} & T_{\mathrm{Vj}}=175^{\circ} \mathrm{C}, \\ & V_{\mathrm{R}}=600 \mathrm{~V}, \\ & L_{\mathrm{F}}=75.0 \mathrm{~A}, \\ & d i_{\mathrm{F}} / d t=800 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	-	600	-	ns
Diode reverse recovery charge	$Q_{\text {rr }}$		-	13.30	-	$\mu \mathrm{C}$
Diode peak reverse recovery curren	$I_{\text {rm }}$		-	42.0	-	A
Diode peak rate of fall of reverse recovery current during $t_{b}$	$d i_{r} / d t$		-	-125	-	A/ $/ \mathrm{s}$


TRENCHSTOP ${ }^{\text {TM }} 2$ low $\mathrm{V}_{\text {ce(sat) }}$ second generation IGB





KQ75N120CT2






IKQ75N120CT2
TRENCHSTOP ${ }^{\text {TM }} 2$ low $\mathrm{V}_{\text {ce(sat) }}$ second generation IGBT





E
Photovoltaic Panel Datasheet



## QCELLS

## F

Series and Parallel Connection of Switches

Latitude (decimal degrees): 36.092 Latiuda (decimal degrees). 6.092							Efficiency PV panels   Efficiency MPP Tracker	0.156 0.99		
Elevation (m): 26 )							System losses, cables etc	0.99		
Radiation database:PVGII-CMSAF							Area of 1 panel [m2]	1.67		
							Number of panels in the park	21600		with STC-irradiance of 1000
Tarifa, Cadiz, Spain							Number of subfields	6		5.627232
Slope: 30							Subfields per DAB	1		
Azimuth: 0										
				Bil $\mathrm{W}^{\text {m }}$ 2			[ ${ }^{\text {a }}$	Energu of toal PV park area IMW	Power reduced by system losses $[\mathrm{MW}]=$	Output Power per subfield
	Di. In-plane beam	irraiance (Wm2)	Hour 00.54	-100	${ }_{0} 0$	${ }_{0}$	Globa	Oner 0.00		[MW] = Input to ONE DAB
	Ri: In-plane reflected	ted irradiance (W/m2)	01.54	0	0	0	0	0.00	0.00	0.00
	As: Sun elevation		02:54	0	0	0	0	0.00	0.00	0.00
	Tamb: Ambient ter	emperature (deg. C)	03.54	0	0	0	0	0.00	0.00	0.00
	W70: 10 m Wind sp	peed (m's)	04.54	0	0	0		0.00	0.00	0.00
	Int: 1 means solar	radiation values are reco	05.54	0	0	0	0	0.00	0.00	0.00
			06.54	0	24.88	0.37	24.88	0.14	0.14	0.02
			07.54	89.51	130.13	2.7	219.64	1.24	1.21	0.20
			08.54	349.41	168.98	5.84	518.39	2.92	2.86	0.48
			09.54	665.54	132.64	8.76	798.18	4.49	4.40	0.73
			10:54	817.63	143.56	10.5	961.19	5.41	5.30	0.88
			115	-30.2	350.28	5.31	380.48	2.14	2.10	0.35
			12.54	909.65	149.27	11.59	1058.92	5.96	5.84	0.97
			13.54	10.72	295.24	4.34	${ }^{305.96}$	1.72	1.69	0.28
			14.54	0	149.54	2.15	149.54	0.84	0.82	0.14
			15.54	501.47	117.7	6.81	619.17	3.48	3.41	0.57
			16.54	275.22	89.07	4.05	364.29	2.05	2.01	0.33
			17:54	64.23	40.98	1.21	105.21	0.59	0.58	0.10
			18.54	0	0	0	0	0.00	0.00	0.00
			19.54	0		0	0	0.00	0.00	0.00
			$20: 54$	0	0	0	0	0.00	0.00	0.00
			21.54	0	0	0	0	0.00	0.00	0.00
			22.54	0	-	0		0.00	0.00	0.00
			23.54	0	0	0	0	0.00	0.00	0.00

Figure F.1: Calculation of PV output power in Tarifa on March 20, 2016


Figure F.2: Calculation of necessary number of in series and in parallel connected switches for the given power


Figure F.3: Composition of the switching elements on the LV- and HV-side


[^0]:    C2M PSPICE Models: http://wolfspeed.com/power/tools-and-support
    SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support
    SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support
    Related Links

[^1]:    Key Performance and Package Parameters
    Key Performance and Package Parameters

    | Type | $V_{\text {CE }}$ | $\boldsymbol{I}_{\mathrm{C}}$ | $\boldsymbol{V}_{\text {CEsat }}, \boldsymbol{T}_{\mathrm{V}]}=\mathbf{2 5} 5^{\circ} \mathrm{C}$ | $\boldsymbol{T}_{\text {vimax }}$ | Marking | Package |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
    | IKQ75N120CT2 | 1200 V | 75 A | 1.75 V | $175^{\circ} \mathrm{C}$ | K75MCT2 | PG-TO247-3-46 |

