

Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, July 2011

Evaluation of Digital Power Control Algorithms for
Automotive LED Headlights using TMS320F28035
Microcontroller

Master of Science Thesis in Integrated Electronic System Design

MUHAMMAD WAQAR AZHAR

Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, July 2011

The Author grants to Chalmers University of Technology the non-exclusive right to
publish the Work electronically and in a non-commercial purpose make it accessible on
the Internet. The Author warrants that he/she is the author to the Work, and warrants that
the Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology store the Work electronically and make it
accessible on the Internet.

Evaluation of Digital Power Control Algorithms for Automotive LED Headlights using
TMS320F28035 Microcontroller

Muhammad Waqar Azhar

© Muhammad Waqar Azhar, July 2011.

Examiner: Prof. Per Larsson-Edefors

Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

ACKNOWLEDGEMENTS

First of all. thanks to ALLAH Almighty for enabling me to complete this thesis
and all the blessings upon me. Special thanks to Ole-Kristian Skroppa for

supervising my thesis and the support and motivation that he gave throughout
this project. I would like to extend my gratitude towards my internal supervisor

Professor Per Larsson-Edefors and for his valuable feedback throughout my
master degree. Moreover, I would like to thank the automotive application team,

especially Christoph Mendth, Matthias Terhorst, Roberto Scibilia and Josef
Mieslinger for their valuable help during different phases of project.

I would like to dedicate this work to my parents, my intelligent and hardworking
father who has been an inspiration all through my life and my mother who’s love

and care has enabled me to reach this far in professional life. Last but not the
least i would like to thank rest of my family and friends for their extended support

Abstract

Digital power management solutions offer some distinct advantages over their
analog counterparts and are increasingly being employed by power electronics de-
signers these days. The post-implementation flexibility of digital solutions is one
of the major advantages. Increasing demands on functionalities like communica-
tion, remote fault monitoring and configurability have also fueled this transition
from analog to digital control. The possibility of implementing non-linear con-
trol algorithms is a major advantage of these solutions. Highly integrated analog
components, like analog to digital converters and comparators in modern micro-
controllers, have enabled designers to decrease on-board component count and
complexity. Digital power management solutions have limitations in performance
when compared to analog designs, but rapid performance improvements in micro-
controllers (MCUs) certainly create a bright future for digital power management.

In this project we have investigated a digital power control implementation
for switch mode DC-DC converters. The application under consideration is LED-
based automotive headlights. LEDs (light emitting diodes) have gained foothold
in many lighting applications due to the decrease in cost per lumen. The automo-
tive industry has previously employed LEDs in a number of lighting application,
like back and interior lighting, and now consider a potential use in headlights.
Moreover we wanted to prove the capabilities of the TMS320F28035 MCU that is
designed for real-time control applications. The combination of two new avenues
of digital power management and LED headlights has raised a few challenges that
have been solved in this project.

First, the characteristic behavior of LEDs is different from conventional in-
candescent bulbs. LEDs are controlled by maintaining a constant current through
them rather than applying a constant voltage. Switch mode power stages in-
tended to control LEDs inherently operate in voltage mode. Considerable model-
ing and implementation efforts are required to handle both these contrasting be-
haviors. Secondly, discrete-time models are required for MCU implementation.
Existing control theory predominantly employs continuous-time models. These
continuous-time models are required to be converted to discrete-time models to
make use of existing models for digital implementation. Discrete-time models
that are developed from scratch requires considerable effort. Third, existing test-
setups used for analog designs can not be directly used for digital designs. Con-
siderable analysis is required for these modifications.

The first step in the design flow is modeling; we have to model converters
for controlling current through LEDs. Two solutions are proposed: First, exist-
ing continuous-time voltage mode models for converters are used and modified
to control LEDs. Later some further modifications are made to convert them to
discrete time. Second, a new non-linear and discrete-time model is proposed for
controlling LED current using inductor current feedback.

Later, the developed model is implemented on TMS320F28035. This MCU
contains two heterogeneous processor cores. A pre-implementation analysis is
carried out to allocate hardware resources and system bandwidth to different soft-
ware tasks. The control loop is implemented on a so-called control-law accel-
erator, as it is optimized for this purpose, while useful features like graphical
user interface and diagnostics are implemented on C28x CPU. The initial band-
width allocation to different software tasks is verified by doing measurements
and re-allocation. The initial implementation of different software components is
also optimized to enhance performance based on this post-implementation system
analysis.

Lastly, the implemented control algorithms are verified by performing fre-
quency response measurements. Modifications are made to existing test-setups to
suit them to needs of digital power control. Open loop and closed loop measure-
ments are performed under different operating conditions. These measurements
are compared with results from the model and used to lay down our final analy-
sis. Recursive design approach is used at each design phase. Moreover previous
design phases are revisited whenever necessary to optimize the implementation.

Contents

1 Background and Theory 9
1.1 Problem Statement . 9
1.2 Project Work Flow . 10
1.3 What is LED . 10
1.4 Application of LEDs in Automotive Lighting 11
1.5 LEDs Characteristic Behavior 13
1.6 Comparison Between Linear and Switch Mode Control 14
1.7 Switch Mode DC/DC Power Converter 16

1.7.1 Buck Converter . 16
1.7.2 Boost Converter . 16
1.7.3 SEPIC Converter . 17
1.7.4 Comparison Between Different SMPS Topologies 18

1.8 Comparison Between Analog and Digital Power Management . . 19
1.8.1 Analog Controller . 20
1.8.2 Digital Power Management 20
1.8.3 Continuous vs Discrete Time Compensation 21
1.8.4 Comparison between Analog and Digital Power Management 21

2 Hardware Platform 23
2.1 Evaluation Module Overview . 23
2.2 SMPS stages . 24

2.2.1 Buck SMPS Stage . 24
2.2.2 Boost SMPS Stage . 24
2.2.3 Buck-Boost SMPS Stage 24
2.2.4 SEPIC SMPS Stage . 25

2.3 Central Controller . 26
2.3.1 TMS320F28035 Real-Time Micro-Controller 26
2.3.2 Control Law Accelerator 28
2.3.3 Analog to Digital Converter 30
2.3.4 Enhanced Pulse Width Modulation Module 31

2.4 Pin Assignments . 33

1

3 Design Considerations for LED Automotive Headlights 35
3.1 Design Matrices . 35

3.1.1 SMPS Modeling . 35
3.1.2 Switching Frequency . 36
3.1.3 Current Control vs Voltage Control 37
3.1.4 Life Cycle and Diagnostics 37

4 Modeling and Compensation 38
4.1 Voltage-Mode Control . 38

4.1.1 Modeling of SMPS . 39
4.1.2 Compensation . 45

4.2 Current-Mode Control . 47

5 System Architecture and Firmware 52
5.1 Software Development Tools and Resources 52

5.1.1 Digital Power Library 52
5.2 System Overview . 52
5.3 Challenges Related to Discrete System Implementation 54
5.4 Hardware Initialization . 55

5.4.1 PWM Initialization . 56
5.4.2 ADC Initialization . 57
5.4.3 CLA Initialization . 58

5.5 Control Loop Implementation 58
5.5.1 Control Loop Architecture 59
5.5.2 System Architecture . 60
5.5.3 Improvements in Control Loop Architecture 62
5.5.4 Control Loop Triggering 64

5.6 C28x Code . 65
5.7 PWM Dimming . 69

5.7.1 Limitation I . 70
5.7.2 Limitation II . 71

5.8 Diagnostics . 73
5.8.1 Over-Voltage Protection 74

6 Measurement and Results 78
6.1 Measurement Equipment . 78
6.2 Open-Loop Measurements . 79

6.2.1 Method I . 80
6.2.2 Method II . 80
6.2.3 Method III . 81
6.2.4 Digital Controller Measurement Setup 81

2

6.2.5 Measurement Results . 84
6.3 Closed-Loop Measurement . 86
6.4 Hardware Platform Improvement 90

7 Conclusion 92

A Matlab Models 98
A.1 Buck . 98
A.2 Boost . 98
A.3 Buck-Boost . 99
A.4 SEPIC . 100
A.5 Filter Conversion Script . 100

A.5.1 Convert.m . 100
A.5.2 Convert2.m . 101

A.6 Current Mode Control . 101

B Firmware 102
B.1 Main.c . 102
B.2 2nd Order IIR Filter code . 117
B.3 3rd Order IIR Filter code . 118
B.4 CLA Code . 119
B.5 CLA ISR used for Dimming . 121
B.6 PWM Initialization . 122

C Source Code for Open Loop Measurement for Buck SMPS 124
C.1 CLA Code . 124
C.2 Modifications in Main Code . 125

3

List of Figures

1.1 Comparison of Luminous Efficiency based on Haitz Law 11
1.2 Future trends in LED device efficiency 13
1.3 Characteristic of an Ultra White Automotive LED [1] 14
1.4 Linearly controlled LED setup [2] 15
1.5 Generic buck architecture. 17
1.6 Generic boost architecture. 18
1.7 Generic SEPIC architecture. 19
1.8 Block diagram of SMPS controlled by analog controller 20
1.9 Block diagram of SMPS controlled by digital controller 21

2.1 General EVM board layout . 24
2.2 Detailed implementation of buck SMPS stage 25
2.4 Detailed implementation of buck-boost SMPS stage 25
2.3 Detailed implementation of boost SMPS stage 26
2.5 Detailed implementation of SEPIC SMPS stage 26
2.6 Functional block diagram of TM320F28035 [3] 27

4.1 Voltage control mode . 39
4.2 Bode plot of Matlab model for buck converter 42
4.3 Bode plot of Matlab model for boost converter 44
4.4 Bode plot of Matlab model for buck-boost converter 45
4.5 Bode plot of Matlab model for SEPIC converter 46
4.6 Bode plot of compensated Matlab model for buck converter 47
4.7 Bode plot of compensated Matlab model for boost converter . . . 48
4.8 Two switching states of boost converter [4] 49
4.9 Bode plot for current mode control model for boost converter . . . 51

5.1 General software architecture. 53
5.2 Sampling true average current 54
5.3 Symmetric PWM waveform . 56
5.4 Synchronization of PWM and triggering of ADC channels 57
5.5 CLA task control flow diagram 58

4

5.6 3-pole 3-zero filter interfacing in control loop 60
5.7 High resolution PWM driver . 61
5.8 Control loop system implementation 62
5.9 Modified control loop system implementation 63
5.10 Computation sequence of control loop 64
5.11 Time line diagram of four control loops running on CLA 65
5.12 C28x software architecture overview 66
5.13 State Machine A . 66
5.14 State Machine B . 67
5.15 State Machine C . 68
5.16 Enable dimming task architecture 69
5.17 Circuit Description of Dimming 70
5.18 Triggering of ISR handling dimming function 71
5.19 Screen shot of dimming . 71
5.20 Screen shot of dimming after improvements 73
5.21 Over-voltage protection implementation I 75
5.22 Over-voltage protection implementation II 76
5.23 OVP screen shot for boost SMPS 77

6.1 Open-loop measurement circuit setup I [5] 80
6.2 Open-loop measurement circuit setup II [5] 80
6.3 Open-loop measurement circuit setup III [5] 81
6.4 Open loop gain for buck converter 81
6.5 Open-loop measurement setup 83
6.6 Open-loop gain for buck converter 84
6.7 Open-loop gain for boost converter 85
6.8 Open-loop gain for SEPIC converter 85
6.9 Classical method for measuring frequency response [5] 86
6.10 Venable method for measuring frequency response [5] 87
6.11 Closed-loop measurement setup 88
6.12 Boost feedback loop measurement 88
6.13 Buck feedback loop measurement setup 89

5

List of Tables

1.1 Comparison between conventional and LED light efficiency [6] . . 12
1.2 Comparison of analog and digital controller performance [7] . . . 22

2.1 Detailed list of peripherals in TMS320F28035 MCU [8] 28
2.2 Pin connection on EVM . 33

6

List of Abbreviations

• ADC-Analog to Digital Converter

• CPU-Central Processing Unit

• DC-Direct Current

• ESR-Equivalent Series Resistance

• EVM-Evaluation Module

• GUI-Generic User Interface

• ISR-Interrupt Service Routine

• GPIO-General Purpose Input Output

• JTAG-Joint Task Action Group

• MCU-Micro Controller Unit

• FET-Field Effect Transistors

• OPAmp-Operational Amplifier

• PCB-Printed Circuit Board

• PWM-Pulse Width Modulation

• ePWM-Enhanced Pulse Width Modulation

• RISC-Reduced Instruction Set

• SMPS-Switch Mode Power Supplies

• TI-Texas Instruments

• USB-Universal Serial Bus

7

• DSP-Digital Signal Processor

• CLA-Control Law Accelerator

• HRPWM-High Resolution Pulse Width Modulation

• SYSCLKOUT-System Clock Signal

• RAM-Random Access Memory

• LED-Light Emitting Diode

• SAR-Successive approximation Register

• SOC-ADC channel control logic

• DPL-Digital Power Library

• IIR-Infinite Impulse Responce

• CCS-Code Composer Studio

• IDE-Integrated Development Environment

8

Chapter 1

Background and Theory

1.1 Problem Statement
Digital control is being employed by commercial power supply designers. This
comprises both digital circuits and micro-controller (MCU) based solutions. Dig-
ital circuit solutions give better performance and optimization because they are
tailored to specifications, while MCU based solutions offer considerable perfor-
mance with low cost and less time to market. Digital power control offers signifi-
cant advantages over analog control.

The purpose of this project is to evaluate digital power control for switch mode
power supplies (SMPS) driving LEDs. LED based automotive headlights is the
underlined product. This project deals with two combined problems. First, mod-
eling of power LEDs and designing a control strategy for them using switch mode
power supplies. Secondly, using digital power control for this implementation.
The major design tasks are depicted below

• Efficient control algorithms for LEDs headlamps

• Optimal algorithm for pulse width modulation (PWM) dimming of LED
headlamps

• Models for current mode control of switch mode power supplies

• Compensation based on above model

• MCU implementation and its trade-offs

• The relative importance of different diagnostic function has to be deter-
mined to have an optimal implementation, as total system bandwidth is lim-
ited

9

Modeling of SMPS in current mode needs considerable design space explo-
ration because of lack of available published work. Different implementation
strategies are to be analyzed and solved, furthermore a post-implementation anal-
ysis of system behavior and performance is also desirable to get a measure of
effectiveness.

1.2 Project Work Flow
First, SMPS driving power LEDs are modeled in MATLAB to evaluate system
behavior. Later on these models are used for MCU based implementation. The
implementation consists of control law, communication and diagnostic functions.
Texas Instrument’s TMS320F28035 real-time micro-controller is used for imple-
mentation of digital power control algorithms. Later, performance of these im-
plemented algorithms will be evaluated using a frequency response analyzer. A
recursive design approach between different design phases is employed to search
optimal algorithms and implementation.

1.3 What is LED
LEDs differ from traditional light sources. In an incandescent lamp, a tungsten
filament is heated by electric current until it glows or emits light. In a fluorescent
lamp, an electric arc excites mercury atoms, which emit ultraviolet (UV) radiation.
After striking the phosphor coating on the inside of glass tubes, the UV radiation
is converted and emitted as visible light. A LED, in contrast, is a semiconductor
diode. It consists of a semiconductor p-n junction. When properly biased, current
flows from the p-side (anode) to the n-side (cathode) and light is emitted [9].
However, silicon is unsuitable for making LEDs because the so-called energy band
gap is too low. The first LEDs were made from gallium arsenide (GaAs) and
produced infrared light at about 905 nm. The reason for producing this color is
the energy band gap, that is, the difference between the conduction band and the
lowest energy level (valence band) in GaAs. When a voltage is applied across the
LED, electrons are given enough energy to jump into the conduction band and
current flows. When an electron loses energy and falls back into the low energy
state (the valence band), a photon (light) is often emitted [10].

LEDs provide several advantages over tradition light sources; as summarized
below

• Long life

• Robustness

10

• Small size

• Non-toxicity

• Versatility

• High energy efficiency

1.4 Application of LEDs in Automotive Lighting
With advances in semiconductor technology, LEDs have started getting attention
for usage as light sources. Recent advancements have considerably decreased the
cost of Lumen per Watt to such a level that LEDs have started finding foothold in
a lot of applications. Haitz law—a LED counterpart of Moore’s law for integrated
circuits—states that every decade, the cost per lumen falls by a factor of 10 and
the amount of light generated per LED package increases by a factor of 20, for a
given wavelength of light. A comparison between projected data based on Haitz
law and real data for LED efficiency for past decade is shown in figure 1.1 [11].

lm

Figure 1.1: Comparison of Luminous Efficiency based on Haitz Law

11

The efficiency of LEDs has increased over the last decade. A lot of research
has been done and power LEDs manufacturers are trying to keep up with the latest
developments. Before looking into the future trends in LEDs it is worthwhile to
put down a comparison presented in table 1.4, conducted by United States Depart-
ment of Energy [6].

CFL LED
Light Source
Lamp lumen rating (lm) 860
Light source wattage (W) 13 1
LED manufacturer declared ”typical luminous flux” (lm/led) 100
Number of lamps/LEDs per fixture 1 12
Luminaire measurements
Luminaire lumens (lm) 514 589
Measured luminaire wattage (W) 12 14
Fixture efficiency 60
Luminaire efficacy (lm/W) 42 42

Table 1.1: Comparison between conventional and LED light efficiency [6]

LEDs have gained a significant ground in recent years and are predicted to
outperform traditional light sources on the parameters of cost and efficiency. A
study conducted by US Department of Energy (see figure 1.2) presents the past
development and future trends of commercial and laboratory based LED devices
[12].

LEDs are experiencing an exponential growth, like integrated circuits density
have experienced in last decade. LEDs are becoming increasingly efficient, mak-
ing them likely and natural successors to conventional lighting solutions. Con-
cerning automotive headlights, this replacement has started with some premium
cars having LED headlights. A continuous decrease in cost of Lumen per Watt
will certainly enable manufactures to use LED-based headlights in mid range cars
in the coming years.

High efficiency is also a major factor. There has been a market shift toward
energy-efficient cars in recent years such as hybrid cars. LED-based lighting so-
lutions, being more energy efficient, are more suitable for such cars. According
to a study, LED-based headlights can save 40% energy compared to halogen lamp
[13]. LED-based headlights are more compact [14]. LEDs currently dominate
the tail and center-mounted brake light markets. The use of LED in headlamps
is expected to reach 26% of the market by 2015, mainly replacing halogen lamps
[15]. Moreover, LED-based lighting solutions have a significant safety advantage

12

1990 2000 2010 2020 2030

0

80

60

40

20

100

120

140

160

180

200

LED Market
Device

DOE Project
World Record for

Laboratory Devices

Projected LED Lab

Projected LED
Market

Source:US Department of Energy

E
ff

ic
ie

n
c
y
 (

L
u

m
e
n

s
 p

e
r
 w

a
tt

)

Figure 1.2: Future trends in LED device efficiency

over those using filament lamps. The time from current flow to light output in an
LED is measured in nanoseconds. In a filament lamp the response time is about
300 ms. This enables other drivers to quickly see critical signals, e.g., brakes [10].

1.5 LEDs Characteristic Behavior
A LED can be described as a constant voltage load. The voltage drop depends
on the internal energy barrier required for the photons of light to be emitted and
this energy barrier defines color of light [10]. The I-V characteristic of a LED is
similar to a normal p-n junction diode. Below the turn-on threshold voltage, very
little current will flow through it. Above threshold, current flow increases rapidly
for incremental increases in forward voltage. The threshold for typical automo-
tive, white LEDs is approximately 3.2 Volts [1]. The rise in forward current is
exponential with respect to applied voltage above the threshold. Thus the LED
can be modeled as a voltage source in series with a resistor. This is valid only
at a single operating DC current, as the LED is non linear. If the DC operating
current in the LED is changed, then the resistance of the model must be changed
to reflect the new operating point. Additionally, at large forward currents, the
LED operates at a high power level, which in turn begins to heat the die. As a re-
sult, the LED’s forward voltage drop decreases and its dynamic impedance starts
increasing with respect to temperature. It is important to consider the thermal
environment when the LED’s impedance is determined [16]. Moreover, lighting
characteristics of LEDs, e.g., wavelength shift and luminance decay, are related

13

with its junction temperature. The thermal interaction of each LED will cause
change in color [17]. The I-V characteristic curve of an automotive LED module
from OSRAM (LE UW D1W1 01) is shown in figure 1.3 [1]. The I-V curve is
non linear and current increases exponentially beyond the forward threshold volt-
age. The slope of this curve at a specific operating DC current is a measure of the
dynamic impedance.

13 14 15 16 17 18 19

F

0

200

400

600

800

1000

F

Figure 1.3: Characteristic of an Ultra White Automotive LED [1]

Power LEDs are used in automotive headlights. These headlights have slightly
different behavior than normal LEDs; these are current controlled devices com-
pared to one used in interior and back lighting. The output luminous flux is de-
termined by the forward current through them. That is why we need to control
current through LEDs [18]. This fact need to be considered while modeling and
implementing the control algorithm.

1.6 Comparison Between Linear and Switch Mode
Control

Two of the most common methods to drive LEDs are linear and switch mode con-
verters. Linear converters are easier to control. A typical linearly controlled LED
is shown in figure 1.4, referenced from [2]. The control circuitry must monitor
the output voltage, and adjust the voltage driving gate to hold the output voltage
at the desired value. In this case, a field effect transistor (FET) is operating in its

14

linear conduction mode, as compared to saturation mode in switch mode power
supplies (SMPS). Moreover, the FET is conducting continuously through oper-
ation, while in SMPS the FET only conducts during its on-time, which in turn
depends on the duty cycle. An increased conduction time of the FET in a linear
regulator results in more losses. Consequently, low efficiency is one of the major
drawbacks. Moreover, in a linear converter, the load voltage should be always
lower than the supply voltage. While the SMPS stage can drive a load with a
voltage greater than supply voltage, driving LEDs from a SMPS stage can give
us better efficiency with less power dissipated in the FET. But control of SMPS
driver is more complex than linear driver [18].

VREF

Sense

Resistor

Control

+

–

Figure 1.4: Linearly controlled LED setup [2]

Considering the control of both techniques the linear control is very simple.
The DC bias to the FET gate is controlled based on a feedback, to maintain con-
stant current. In contrast, control for a SMPS stage is complex. The transfer
function of SMPS converters contain a number of poles and zeros. A feedback
controlled filter called compensator is designed to cancel out system poles to
achieve the desired system gain in the required bandwidth region. The simplest
of these compensator designs are far more complex than a linear mode controller.
The choice between linear and switch mode power control is a trade off which is
driven by efficiency. That is why linear control is suitable for back and interior
lighting application, but not for headlights.

15

1.7 Switch Mode DC/DC Power Converter
An investigation of the most common DC/DC power supply topologies is pre-
sented in this section, with the perspective of digital power control. Topologies
used in our project are buck, boost and SEPIC; see details below.

1.7.1 Buck Converter
The buck converter is one of the most basic DC-DC switch mode converter. It
is a step down converter so its output voltage Vo ranges from the input voltage
Vi to 0. The output is not isolated from the input. The input current for a buck
power stage is discontinuous or pulsating, due to the power switch (Q1) current
that pulses from zero to IO every switching cycle. The output current for a buck
power stage is continuous or non-pulsating, because the output current is supplied
by the output inductor-capacitor combination; the output capacitor never supplies
the entire load current [19]. A generic implementation of a buck converter is
shown in figure 1.5. Current and voltage waveforms are also presented in same
figure. The voltage conversion relationship in terms of duty cycle (D) is presented
in equation 1.1. The relationship between the output current and the inductor
current is presented in equation 1.2.

Vo = Vi ×D (1.1)

IL(avg) = IO (1.2)

1.7.2 Boost Converter
Boost is a non-isolated power stage topology, also called as step-up power stage.
Power supply designers choose the boost power stage, because the required output
voltage is always higher than the input voltage and has the same polarity. The
input current for a boost power stage is continuous, because the input current is
the same as the inductor current. The output current for a boost power stage is
discontinuous, because the output diode conducts only during a portion of the
switching cycle. The output capacitor supplies the entire load current for the rest
of the switching cycle [4]. A generic implementation of a boost converter is shown
in figure 1.6, along with current and voltage waveforms.

16

Figure 1.5: Generic buck architecture.

Equation 1.3 shows the voltage translation between input and output voltage.
The relationship between output and inductor current in terms of duty cycle (D)
is shown in equation 1.4.

Vo =
Vi

1−D
(1.3)

IL(avg) =
Io

1−D
(1.4)

1.7.3 SEPIC Converter
SEPIC stands for single-ended primary-inductor converter. It can produce an out-
put voltage Vo greater, less and equal to the input voltage Vi. A generic imple-
mentation of a SEPIC converter is shown in figure 1.7. The SEPIC converter
is similar to a buck-boost converter as both can step-up and step-down voltage.
SEPIC has advantages such as isolation and non-inverting output, but has a far
complex transfer function that needs higher-order compensator than buck, boost
and buck-boost. A voltage translation equation in terms of duty cycle (D) is given

17

Inducter current Solid

Output Current Dashed

VQ Solid

Output Voltage Dashed

Figure 1.6: Generic boost architecture.

in 1.5.

Vo =
Vi ×D

1−D
(1.5)

1.7.4 Comparison Between Different SMPS Topologies
All converter topologies discussed above are used for different applications de-
pending upon input and output voltage ranges. Apart from this there are some
striking differences. Buck and boost converters are non-isolated, while the output
of SEPIC is isolated. Isolation can prevent short circuit current from input supply,
in case of short circuit at output load. SEPIC is far more difficult to control than
buck and boost as its frequency response contains more poles-zeros compared
to buck and boost. In addition to the inevitable fourth-order pole of SEPIC, an-
other important feature in the transfer function is a single right half plane (RHP)
zero. Right half plane zeros are a result of converters, where the response to an
increased duty cycle is to initially decrease the output voltage [20]. Isolation,
voltage translation and compensator complexity are major trade-offs faced by the
SMPS designer.

18

L1

Q L2

Cp

Cout

Q

IL1 SOLID

IIN DASHED

IL2 SOLID

IOUT DASHED

D* TS (1-D)* TS

TS
VIN+VOUT

Figure 1.7: Generic SEPIC architecture.

1.8 Comparison Between Analog and Digital Power
Management

Power management is an interdisciplinary area of modern electronics, merging
hard-core analog circuit design with expertise from mechanical and RF engi-
neering, safety and EMI, materials, semiconductors and magnetic components.
Traditionally power supply design is considered an analog trade. But from the
very early days, by the introduction of relays and rectifiers, power management
is slowly incorporating more and more ideas from the digital world. The intro-
duction of switched mode power conversion required even more digital circuits.
Integrated pulse width modulators have introduced even more digital content to
power management. Today’s highly integrated power management ICs are packed
with digital modules, e.g., pulse width modulators and timers. The digital circuits
allow the integration of some highly sophisticated features like EEPROM based
trimming after packaging to eliminate package stress related initial offsets, digital
delay techniques to adjust proper timing of gate drive signals, micro-controllers
and state machines for battery charging and management [7].

19

1.8.1 Analog Controller
Analog control design is traditionally used for switch mode DC-DC converters.
A typical block diagram of an analog controller is shown in figure 1.8. It is im-
portant to mention that analog compensation blocks in analog controller consist
of hardwired circuits and components. This implementation is inflexible and not
configurable. That is a major drawback of analog compensation. However, high
bandwidth and low response time to input changes are some of benefits in using
analog controllers over alternative designs options.

ref

Figure 1.8: Block diagram of SMPS controlled by analog controller

1.8.2 Digital Power Management
Digital power management is a new direction in power supply controller design,
to replace the analog circuits by digital implementations. Digital power stands for
digital control of the power supply. Digital power supply control attempts to move
the barrier between the analog and digital sections of the power supply right to the
pins of the control IC [7]. Increased complexity and performance requirements
in the discrete analog design of power electronics control have led designers to
increasingly consider digital control solutions.

First let us review a digital control model as depicted in figure 1.9. Two ma-
jor differences from an analog controller are the analog-digital converter (ADC)
and the compensator. The analog compensator is here replaced by a digital one,
which is either a software implementation executing on a MCU or a hardware
solution implemented on an FPGA. Flexibility is a noteworthy advantage of this
digital implementation, offering, first, adjustability. That is, every parameter—
including voltage and current thresholds, operating frequency, thermal shut down,
and startup time—which is measured or programmed can also be adjusted by the
digital controller on the fly. Second, flexibility can be used to invoke different
control algorithms as the operating conditions of the power supply are changing.

20

Lastly, due to highly integrated communication peripherals in modern MCUs, the
flexibility of the digital approach is greatly enhanced through the on-the fly pro-
grammability [7].

Feedback

Amplifier

Figure 1.9: Block diagram of SMPS controlled by digital controller

It’s important to note that deployment of digital control had no effect on the
operating principle and the design of the power stage. The specification of the
power supply still determines the choice of topology, the selection of power com-
ponents and the required control functions. That leaves a fair amount of design
tasks still in the analog realm for the power supply experts [7].

1.8.3 Continuous vs Discrete Time Compensation
Analog compensation employs continuous-time S-transforms, while digital com-
pensation employs discrete z-transforms. On the theoretical front, the majority of
present implementations translate S-domain transfer functions to Z-domain. This
approach permits utilization of the well understood linearized small signal models
of switch mode converters. Once the poles and zeros are calculated to ensure the
stability of the system, the Z coefficients of the digital transfer function can be
found easily. The weakness of this method is that by starting from a linearized
model, the benefits of a higher-performance non-linear control theory can not be
fully utilized. As a result, the performance of power supplies using either digital
or analog controllers are very similar today [7].

1.8.4 Comparison between Analog and Digital Power Manage-
ment

The striking difference between analog and digital control is the quality and the
amount of information available for the controller to make decisions regarding the
operation of the power stage. The schemes have their respective advantages and
disadvantages. Analog controllers have very high bandwidth and low response

21

times, while digital controllers are weaker on these parameters in exchange for
flexibility and configurability; features that are absent from analog controllers.
Table 1.8.4 is formulated to present a comparison between the techniques [7].

Control Properties Analog Digital
Switching frequency (CPU limitations) + -

Precision(tolerances,aging,temperature effects,drift,offset, etc.) - +

Resolution (numerical problems, quantization, rounding, etc.) + -

Bandwidth (sampling loop, ADC . DAC speed) + -

Instantaneous over current protection + -

Compatibility with power components + -

Power requirements + -

Communication, data management - +

Understanding theory + -

Advanced control algorithm (non-linear control, improved transient) - +

Multiple loops - +

Cost of controller + -

Cost of a platform (flexibility, time to market) - +

Component count(comparable functionality, integration) - +

Reliability + ?

Table 1.2: Comparison of analog and digital controller performance [7]

22

Chapter 2

Hardware Platform

2.1 Evaluation Module Overview
A LED demo evaluation module (EVM) was available to demonstrate a working
demo of LED-based automotive headlights based on the concept of digital power
management using a micro-controller. We used the C2000 family MCU from
Texas Instruments. The C2000 series is based on a 32-bit CPU, called C2000 or
C28x, with different variations of analog and digital peripherals [21]. An impor-
tant feature is that the EVM is based on the dual inline socket (DIMM), so any of
the C2000 series control sticks can be plugged in. We preferred the latest micro-
controller available in the Piccolo B family, i.e., TMS320F28035. Development
of this EVM was not part of this project but it’s worthwhile to mention all the
necessary details for the readers to comprehend the firmware development in later
part of this report. Broadly an EVM can be divided into two main sections

• SMPS stages

• Central controller

There are four different SMPS stages on our EVM because of two reasons:
First, this EVM has been built to support different ranges of LEDs. Different
ranges of LEDs require different voltage ranges which in turn are provided by
different SMPS converters. Secondly, the purpose of this project is to evaluate
and compare between different SMPS topologies with the perspective of digital
power control. Certainly in a standard product one has to choose between these
converters as some of them as easy to use along with their pros and cons. Figure
2.1 shows a high-level layout of the EVM.

23

Figure 2.1: General EVM board layout

2.2 SMPS stages
The detailed implementation of different converters is described in subsequent
sections. One important fact that applies to all of converters is that there are
current feedbacks available from two different points on this EVM; first from the
output current and second from the inductor current. These two feedbacks give us
the option to design a compensator based on any of these feedbacks.

2.2.1 Buck SMPS Stage
The detailed implementation of a buck SMPS stage is shown in figure 2.2. This
is a standard buck implementation as explained in section 1.7.1. Please note that
the internal inductor resistance is used as a current shunt for the inductor current
feedback.

2.2.2 Boost SMPS Stage
The detailed implementation of a boost SMPS stage is shown in figure 2.3. This
is a standard boost implementation as explained earlier in section 1.7.2.

2.2.3 Buck-Boost SMPS Stage
The detailed implementation of buck-boost SMPS stage implementation is shown
in figure 2.4. It is important to mention that this is not a standard buck-boost im-
plementation, but actually it is a boost converter whose output load is connected

24

OP-AMP

Gate

Driver

PWM from
Microcontroller

Rshunt

Inducter

Current

Feedback

Output

Current

Feedback

out

in Cin

RL

O
P

-A
M

P

Figure 2.2: Detailed implementation of buck SMPS stage

between the converter’s output and input node. Apart from the output load con-
nection, this circuit is the same as the boost converter described in section 2.2.2.

RshuntOP-AMP

in

out

Inducter
Current

Feedback

Gate

Driver

PWM from

Microcontroller

Rshunt

Output

Current

Feedback

in

OP-AMP

Figure 2.4: Detailed implementation of buck-boost SMPS stage

2.2.4 SEPIC SMPS Stage
The detailed implementation of a SEPIC SMPS stage implementation is shown
in figure 2.5. This is a standard SEPIC implementation as explained earlier in
section 1.7.3.

25

Rshunt OP-AMP

RshuntOP-AMP

in

out

Inducter

Current

Feedback

Output

Current
Feedback

Gate
Driver

PWM from

Microcontroller

Cin

Figure 2.3: Detailed implementation of boost SMPS stage

Rshunt

+

_
OP-AMP

in

out

Inducter

Current

Feedback

Output
Current

Feedback

Gate

Driver

PWM from

Microcontroller

Rshunt

+

_
OP-AMP

L2

L1

Cin

C1

C2

Q

D1

+

_

Figure 2.5: Detailed implementation of SEPIC SMPS stage

2.3 Central Controller
The TMS320F28035 micro-controller from the C2000 family is serving as central
control unit on the EVM.

2.3.1 TMS320F28035 Real-Time Micro-Controller
The TMS320F2803x family of micro-controllers combines the power of the C2000
processor core and the control law accelerator (CLA) along with highly integrated
peripherals. C2000 is a 32-bit processor developed by Texas Instruments. CLA
is a 32-bit floating point coprocessor designed to implement control-centric algo-
rithms with details available in section 2.3.2. This MCU is code-compatible with

26

previous C2000-based controllers. An internal voltage regulator allows for sin-
gle rail operation. Analog comparators with internal 10-bit references have been
added and can be used directly to control the PWM outputs. It also contains a
powerful ADC that supports 0 to 3.3 V fixed full scale range conversion and also
a ratio-metric conversion based on VREFHI/VREFLO references. The ADC inter-
face has been optimized for low access overhead. A high resolution pulse width
modulation (HRPWM) module is available to enable a more precise control[3].
To give a perspective, the block diagram is presented in figure 2.6.

3 External Interrupts

M0

SARAM 1Kx16

(0-wait)

16-bit Peripheral Bus

S
P

IS
T

E
x

M1

SARAM 1Kx16

(0-wait)

eCAN

(32-mail
box)

SCI

(4L FIFO)

ePWM
SPI

(4L FIFO)

I2C

(4L FIFO)
LIN

HRPWM

eCAP

32-Bit Peripheral Bus

GPIO MUX

C28x
32-bit CPU

A7:0

B7:0

PIE

CPU Timer 0

CPU Timer 1

CPU Timer 2

TCK

TDI
TMS

TDO

TRST

OSC1,

OSC2,

Ext,

PLL,

LPM,

WD

XCLKIN

X2

XRS

32-bit Peripheral Bus
(CLA accessible)

E
C

A
P

x

E
P

W
M

x
A

E
P

W
M

x
B

E
S

Y
N

C
I

E
S

Y
N

C
O

C
A

N
T

X
x

C
A

N
R

X
x

S
D

A
x

S
C

L
x

S
P

IS
IM

O
x

S
P

IS
O

M
Ix

S
P

IC
L

K
x

COMP1OUT

S
C

IR
X

D
x

GPIO
Mux

LPM Wakeup

CLA

ADC

PSWD

FLASH

32K/64K x 16

Secure

OTP/Flash

Wrapper

Boot-ROM

8Kx16

(0-wait)

SARAM

8K x 16

(0-wait)

Secure

L
IN

A
R

X

L
IN

A
T

X

COMP

3
2

-b
i t

p
e

r i
p

h
e

ra
l

b
u

s

(C
L

A
a

c
c
e

s
s

ib
le

)

COMP1A

COMP1B
COMP2A

COMP2B
COMP3A

COMP3B

COMP2OUT

COMP3OUT

eQEP

E
Q

E
P

x
A

E
Q

E
P

x
B

E
Q

E
P

x
I

E
Q

E
P

x
S

S
C

IT
X

D
x

X1

GPIO

MUX

AIO

MUX

VREG

OTP 1K x 16
Secure

(CLA Only on 6K)

From
COMP1OUT,
COMP2OUT,
COMP3OUT

POR/
BOR

M
e
m

o
ry

B
u

s

C
L

A
B

u
s

Memory Bus

Memory Bus

T
Z

x

Code
Security
Module

Figure 2.6: Functional block diagram of TM320F28035 [3]

To give a further insight of the integrated peripherals in TMS320F28035, a
table 2.3.1 of peripherals is given.

27

TMS320F28035
CPU 1 C28x
Peak MMACS 60
Frequency (MHz) 60
CLA 1
RAM (kB) 20
OTP ROM (kB) 2
Flash (kB) 128
PWM 14
CAP/QEP 1/1
ADC 1 12bit
ADC Channels 14
CLA 1
ADC Conversion Time (nsec) 217
I2C 1
UART 1 SCI
SPI 2
CAN 1
Timers 3 32bit GP,
Watchdog Timers 1
GPIO 45
Core Supply (V) 1.8
I/O Supply (V) 3.3

Table 2.1: Detailed list of peripherals in TMS320F28035 MCU [8]

2.3.2 Control Law Accelerator
The CLA is an independent and fully-programmable 32-bit floating-point math
processor. As name implies, it brings concurrent control-loop execution capabil-
ity. It’s low interrupt latency allows it to read ADC samples just-in-time. This
reduces the ADC sample to output delay to enable faster system response and
faster control loops. By using the CLA to service time-critical control loops, the
main CPU is free to perform other system tasks such as communications and di-
agnostics [22].

Functional Overview

The control law accelerator extends the capabilities of the C2000 CPU by adding
parallel processing. The CLA is clocked at the same rate as the main CPU. It has

28

an independent bus architecture consisting of separate data and program buses. It
contains an independent eight-stage pipeline. The register file contains four 32-bit
result registers (MR0-MR3), two 16-bit auxiliary registers (MAR0, MAR1) and a
special function status register (MSTF). Communication between main CPU and
CLA is done through two dedicated message RAMs for simplex communication
between the CLA and the main CPU. The CLA has direct access to the ePWM
2.3.4, the HRPWM 2.3.4, the comparator and the ADC result registers. This fact
makes it very suitable for implementation of control algorithms, also called con-
trol laws. Because the control algorithm accesses ADC and PWM registers in
every loop iteration, providing access of these registers directly to CLA without
any help from main CPU has significantly decreased the access latency. The over-
all effect would be a faster control loop. The main CPU can map CLA program
and data memory to the main CPU space or CLA space.

CLA Instruction Set

The CLA instruction set supports IEEE single-precision (32-bit) floating point
math operations. Moreover, some parallel instructions are provided for code opti-
mization. A list below shows all the instructions.

• Floating-point math with parallel load or store

• Floating-point multiply with parallel add or subtract

• 1/X and 1/sqrt(X) estimations

• Data type conversions

• Conditional branch and call

• Data load/store operations

CLA Programming

As the CLA can function independent of the main CPU it executes its own pro-
gram. The program code for the CLA is written in assembly as there is no com-
piler available yet. This code is compiled into a separate section using compiler
directive. This section is placed in a specific memory bank reserved for the CLA
program. The CLA program code can consist of up to eight tasks or interrupt ser-
vice routines. The start address of each task is specified by the MVECT registers.
There is no limit on task size as long as the tasks fit within the CLA program
memory space. One task is serviced at a time through to completion. There is no
nesting of tasks. Upon task completion a task-specific interrupt is flagged within

29

the PIE. When a task finishes the next highest-priority pending task is automati-
cally started. Each task can be triggered by following method.

• From C28x CPU via the IACK instruction

• Task1 to Task7 can be triggered by the corresponding ADC or ePWM mod-
ule interrupts

• Task8 can be triggered by ADCINT8 or by CPU Timer 0

2.3.3 Analog to Digital Converter
The 12-bit ADC module in TMS32028035 is partly based on successive approx-
imation registers (SAR) and partly pipelined. SAR uses a binary search through
all possible quantization levels before finally converging upon a digital output for
each conversion. A pipeline ADC uses two or more steps of sub-ranging. First,
a coarse conversion is done. In a second step, the difference to the input signal
is determined with a digital to analog converter (DAC). This difference is then
converted finer, and the results are combined in a last step. The exact internal
architecture of the ADC is not available due to commercial secrecy.

The ADC runs at full system clock and no pre-scaling is required. The core
of the ADC contains a single 12-bit converter which is fed by two sample and
hold circuits, which in turn are fed by a total of up to 16 analog input channels.
The sample and hold circuits can be sampled simultaneously or sequentially. The
converter can be configured to run with an internal band gap reference (0 - 3.3
V) to create true voltage based conversions. It can also use external voltage refer-
ences VREFHI/VREFLO to create ratio-metric based conversions. This ADC is not
sequencer based, however, it is easy for the user to create a series of conversions
from a single trigger using software. The basic principle of operation is centered
around the configurations of individual conversions called SOC (start of conver-
sion). These SOCs can be configured for trigger, sample window and channel.
The ADC can be triggered by multiple sources as listed below [23].

• S/W - software immediate start

• ePWM 1-7

• GPIO XINT2

• CPU Timers 0/1/2

• ADCINT1/2

30

2.3.4 Enhanced Pulse Width Modulation Module
The enhanced pulse width modulator (ePWM) peripheral is a key element in con-
trolling many of the power electronic systems found in both commercial and in-
dustrial equipments. These systems include digital motor control, switch mode
power supply control, un-interruptible power supplies (UPS). The ePWM periph-
eral performs a DAC function, where the duty cycle is equivalent to a DAC analog
value. An effective PWM peripheral must be able to generate complex pulse width
waveforms with minimal CPU overhead or intervention. It needs to be highly pro-
grammable and very flexible while being easy to understand and use. The ePWM
unit described here addresses these requirements by allocating all needed timing
and control resources on a per ePWM channel basis. Cross coupling or sharing
of resources has been avoided, instead each ePWM is built up from smaller sin-
gle channel modules with separate resources that can operate together as required
to form a system. This modular approach results in an orthogonal architecture
and provides a more transparent view of the peripheral structure, helping users to
understand its operation quickly [24].

Functional Overview

The ePWM module represents one complete PWM channel composed of two
PWM outputs, EPWMxA and EPWMxB. Seven ePWM modules are present in
this device. Each ePWM instance is identical with one exception. Some instances
include a hardware extension that allows more precise control of the PWM out-
puts. This extension is the high-resolution pulse width modulator (HRPWM). The
ePWM modules are chained together via a clock synchronization scheme that al-
lows them to operate as a single system when required. Additionally, this syn-
chronization scheme can be extended to the capture peripheral modules (eCAP).
Modules can also operate stand-alone. Each ePWM module supports the follow-
ing features [24]:

• Dedicated 16-bit time-base counter with period and frequency control

• Two PWM outputs (EPWMxA and EPWMxB) that can be used in the fol-
lowing configurations:

– Two independent PWM outputs with single-edge operation

– Two independent PWM outputs with dual-edge symmetric operation

– One independent PWM output with dual-edge asymmetric operation

• Asynchronous override control of PWM signals through software

31

• Programmable phase-control support for lag or lead operation relative to
other ePWM modules

• Hardware-locked (synchronized) phase relationship on a cycle-by-cycle ba-
sis

• Dead-band generation with independent rising and falling edge delay con-
trol

• Programmable trip zone allocation of both cycle-by-cycle trip and one-shot
trip on fault conditions

• A trip condition can force either high, low, or high-impedance state logic
levels at PWM outputs

• All events can trigger both CPU interrupts and ADC start of conversion
(SOC)

• Programmable event pre-scaling minimizes CPU overhead on interrupts

• PWM chopping by high-frequency carrier signal, useful for pulse trans-
former gate drives

High Resolution PWM Module

The HRPWM module extends the time resolution capabilities of the convention-
ally derived PWM. HRPWM is typically used when PWM resolution falls below
9-10 bits. This module supports both duty cycle and phase-shift control methods.
The high resolution capability is only implemented on the A signal path of PWM,
that is, on the EPWMxA output. The EPWMxB output has the conventional PWM
capability [25].

32

2.4 Pin Assignments

Signal Name Description Target Connection
EPWM-1A Boost 1 GPIO-00
EPWM-2A Boost 2 GPIO-02
EPWM-3A Dimming,Boost1 GPIO-04
EPWM-3B Dimming,Buck GPIO-05
EPWM-4A Buck GPIO-06
EPWM-5A SEPIC GPIO-08
EPWM-6A Dimming,SEPIC GPIO-10
EPWM-6B Dimming,Boost2 GPIO-11
EPWM-7A - GPIO-12
EPWM-7B - GPIO-13
ADC-A0 Spare ADC Channel 1- Temp Sense ADC-A0
ADC-A1 Spare ADC Channel 1- Temp Sense ADC-A1
ADC-A2 Boost1 Inductor Current ADC-A2
ADC-A3 Buck Output Current ADC-A3
ADC-A4 Boost2 Inductor Current ADC-A4
ADC-A5 Buck Output Voltage ADC-A5
ADC-A6 SEPIC Inductor Current ADC-A6
ADC-A7 Input Current Sense ADC-A7
ADC-B0 Boost1 Feedback ADC-B0
ADC-B1 Boost 1 Output Voltage ADC-B1
ADC-B2 Boost 2 Output Current ADC-B2
ADC-B3 Boost 2 Output Voltage ADC-B3
ADC-B4 Buck Switching Current ADC-B4
ADC-B5 SEPIC Output Current ADC-B5
ADC-B6 Input Current Sense ADC-B6
ADC-B7 SEPIC Inductor Current ADC-B7

Table 2.2: Pin connection on EVM

It is important to understand the details of connection between SMPS stages and
the MCU. These are presented in table 2.4. Please note that PWM modules 3 and
6 are intended to be used for providing dimming PWM signals. Two outputs from
each PWM module, i.e., EPWMxA and EPWMxB, are connected to dimming
FETs. This setup is designed to control four FETs using two PWM modules.
However, it was not possible to provide dimming signal to two different SMPS
converters from one PWM module. One PWM module can only control one dim-
ming FET. Since there are only three spare PWM modules, only three converters
will be dimmed and one converter will not have dimming capability. Module 3, 6,

33

7 will be used for dimming boost-1, SEPIC, boost-2 respectively. The buck con-
verter is not dimmed. Since there is no connection between module 7 and boost-2
SMPS, a jumper is placed to enable this modification.

34

Chapter 3

Design Considerations for LED
Automotive Headlights

LEDs are largely used in automotive applications, e.g., in back lighting, interior
lighting and panel lighting. Use of LEDs in headlamps was only limited to a few
premium cars until recent breakthroughs in technology. LEDs offer a number of
advantages, such as far better energy efficiency, over conventional incandescent
bulbs which are traditionally used in automotive headlights. This makes them
suitable for battery operated systems. A number of design matrices are identified
for a digital power controller for automotive LED headlights. This will simplify
the design process.

3.1 Design Matrices
Identification of design trade offs early in the design process could help simplify
design effort. Some of these are based on theoretical aspects related to modeling
and compensation. Moreover, some are related to the MCU-based implementation
and the switching frequency. Each of these design trade offs are presented in
subsequent sections.

3.1.1 SMPS Modeling
Efficient system modeling is always required for effective control. Control algo-
rithms are built around these models for precise and effective control. Accurate
system models are normally more detailed and consequently controls are more
complex. The efficiency of a model is directly proportional to its complexity. In
practice, some details are left out due to limitations of implementation technology.
This also applies to switch mode converters. The converter model complexity di-

35

rectly translates into higher filter order in the compensator. In an MCU-based im-
plementation this means more instructions in compensator software, that is, longer
computation time, that in turn defines the upper limit of switching frequency. Fur-
thermore, a general model is more complex than one tailored to specific operating
conditions.

SMPS are inherently non-linear due to the presence of switching devices like
FETs and diodes. Averaging approximations can be used to develop linear models
of these components [26],[27]. This modeling approach tends to lose important
information on system behavior due to averaging approximation. Controller im-
plementations based on this model are thus less efficient. MCU-based implemen-
tations give choice of implementing complex and non-linear models. Considering
the digital control implementation, its full capability is not used while using linear
models. Instead, non-linear models are required to fully exploit the capabilities of
an MCU-based digital controller. Modeling SMPS efficiently for specific design
specifications and implementation technology could help reducing complexity of
plant and consequently the complexity of compensator.

3.1.2 Switching Frequency
The switching frequency in SMPS is one of the most important parameters. SMPS
are inherently non-linear due to PWM switching. Small signal stability is ensured
by averaging approximations used to model these SMPS in the linear domain.
Theoretically such approximations are only valid for half of the switching fre-
quency as proposed by the Nyquist criterion, but in practice the model is far more
limited, to 1/10 to 1/7 of the switching frequency. Consequently the compensa-
tion designed to control these SMPS is also valid in similar limits. So a system
with higher switching frequency can compensate high frequency perturbations.
That means that an increased sampling frequency can increase the stability of the
system [28]. Furthermore, a higher frequency in SMPS means less output ripple,
because higher frequency components are easier to filter out by using low pass
filters in the power stage.

In case of digital power management, practical limits are introduced due to
MCU-based implementation: The master clock frequency and the sampling times
of the ADC are the major limiting factors. The software complexity of the con-
trol loop, determined by the underlying SMPS topology, also imposes a limit.
For example, the transfer function of a SEPIC converter is more complex than a
buck converter, as it contain a fourth-order pole and a right half plane zero. Con-
sequently, a software implementation of the control law for SEPIC will contain
more instructions than that for buck, and the control loop for SEPIC will thus
take more clock cycles than that for buck. Assuming the same system clock, the
repetition frequency of the control loop for SEPIC will be less than that of buck.

36

Moreover, the switching frequency will determine the bandwidth availability to
other software tasks. All these factors make switching frequency an important
parameter in design trade offs.

3.1.3 Current Control vs Voltage Control
LED-based automotive headlights behave quite differently than their incandescent
counterparts. Traditionally the luminance of incandescent bulbs are controlled by
compensating the voltage applied to them. In contrast, LEDs are controlled by
compensating the current through them. Voltage-mode control implies that the
output voltage to a LED string is controlled and the resulting current, measured
by a shunt, is used as a feedback parameter to control the output voltage using
PWM duty cycle. This technique is indeed an indirect way to control the current.
Current-mode control, also referred as current injection control, uses the fact that
the average inductor current has a proportional relationship with average output
current. So controlling the average current in an inductor can control the aver-
age output current. This is a more direct approach based on current injection into
system. Modeling the system in current mode can reduce the system order, conse-
quently reducing the order of the compensator. A lack of documentation available
on current mode control in the context of digital power management is a major
hurdle in our case. In contrast, voltage-mode control is well known and a lot of
published work is available. These two modeling alternative serve as an important
trade off; note that the different complexity of the respective compensator has an
effect on switching frequency too.

3.1.4 Life Cycle and Diagnostics
Automotive based designs are always constrained by life cycle considerations. By
using necessary diagnostic functions, expensive pieces of equipment can be safe-
guarded from damage. Considering a digital controller, it’s easy to implement
diagnostics; additional logic is required in the case of analog controllers. In digital
power management, control loops and diagnostic functions can share the same
MCU using time-sharing techniques. But diagnostics need a fair share from the
valuable system bandwidth. System bandwidth is first allocated to the control
algorithm to fulfill specifications. The rest of the bandwidth is shared between
diagnostics, communication and system monitoring. A comprehensive analysis of
relative importance and time-to-action margins for different diagnostic functions
is required to estimate bandwidth requirements of different diagnostic functions.

37

Chapter 4

Modeling and Compensation

Modeling of SMPS converters is the first of the tasks at hand. There are two
current feedback alternatives available in each converter circuit 2.2. These two
alternative allow us to use two different control algorithms. SMPS topologies
implemented on EVM inherently operate in voltage mode. This is called voltage-
mode control and implies that the voltage across load is controlled. However, we
need to control the current through LEDs. These models need to be modified to
control current. Considerable documentation is available on modeling of these
converters in voltage mode. This fact make it first choice for implementation. The
second solution is to model converters for current-mode control. This is relatively
difficult because of lack of existing published work in the context of digital power
management. Two approaches are listed below

• In the first technique, the average output current is controlled by using feed-
back from a output current shunt. The current in the shunt is proportion-
ally related to the output voltage of the converter. This technique is termed
voltage-mode control (VCM). Existing voltage-mode models with modifi-
cations will be used in this case.

• In the second approach, the output current is controlled indirectly by con-
trolling the input current or the inductor current. This approach makes use
of the fact that average output current is proportional to the average inductor
(input) current. This technique is termed current-mode control (CCM). A
new model will be developed in this case.

4.1 Voltage-Mode Control
In this approach, the output current is controlled by using feedback from the out-
put current shunt in series with the LED. A converter using this feedback operates

38

in voltage mode i.e. output voltage is varied by changing PWM duty cycle. Sig-
nificant amount of existing published work and books present such models [29].
These models provide transfer functions of output voltage in terms of control pa-
rameter, i.e., the duty cycle. However, we need to maintain current through the
LED load. This technique models the converter in voltage mode and just replaces
the load with a dynamic LED load model. LEDs have a dynamic resistance behav-
ior so the chosen value of resistance represents a specific output current operating
point (Q-point). In the subsequent section a general explanation of this technique
is presented and it is applied to all the different SMPS topologies on our EVM.

4.1.1 Modeling of SMPS
Case I

The model derived in this section only applies to buck, boost, SEPIC converter
on EVM because this models considers the LED’s load connected between output
node and ground. Consider the SMPS stage driving a LED load in figure 4.1.
There is a current shunt to sense the output current value. The current through
the LEDs depends upon the voltage applied, which in turn depend on the duty
cycle. The transfer function of the output current in terms of duty cycle will be
calculated. Existing transfer functions on voltage to duty cycle are used to find the
desired transfer function. Let us consider this duty cycle to output voltage transfer
functions as Gv(s).

shunt

out

Output

Current

Feedback

OP-AMP

led

s

amp

o

Control Signal

Duty Cycle(D)

in

Figure 4.1: Voltage control mode

Gv(s) =
V

D
(4.1)

39

Considering the general output stage of converters in figure 4.1, a transfer
function from output current to duty cycle will be computed in the following steps.

The total output resistance seen by the converter is

R = n×Rd +Rs (4.2)

where

• Total output resistance = R

• LED forward biased resistance = Rd

• Current shunt resistance = Rs

• Number of LEDs = n

So the current through the LEDs will be

Io =
Vo

R
(4.3)

This current produces a voltage in the current shunt that is given by

V =
Vo ×Rs

R
(4.4)

This voltage is a measure of the current through the LEDs and will be ampli-
fied by the current sense amplifier. Later it will be sampled by the analog to digital
converter for current feedback. A transfer function from output current to output
voltage can be written as

Gi(s) =
Io
Vo

=
Gamp ×Rs

R
(4.5)

A current to control transfer function can easily be found now

G(s) = Gi(s)×Gv(s) =
Io
Vo

× Vo

D
=

Io
D

(4.6)

Our model proposes a product of an already existing output voltage to duty
cycle transfer function Gv(s) with a newly derived Gi(s) to get an output current

40

to duty cycle transfer function. Note that Gi(s) does not have any frequency-
dependent component and its just a DC scaling value. So the existing voltage-
mode model will be scaled with a value to get the current model.

In subsequent sections we will apply this model to all our underlying convert-
ers. A Matlab script is used to implement these models. The theory explained
in [30] is used to develop this script. Initially a continuous-time model is imple-
mented. Later a corresponding discrete model is developed using a continuous-
to-discrete transform function available in Matlab.

Case II

The buck-boost converter 2.2.3 on our EVM is not a conventional buck-boost con-
verter, but it is a boost converter with its output load connected between output and
input node. This circuit configuration enabled step-up and step-down operations
in boost converters similar to the buck-boost type. The model derived in the last
subsection is not valid in this case as the previous model assumes an output load
connected between output node and ground. Another model has to be derived:

Considering the LEDs are connected between output and input 2.4, the current
through the LEDs will be

Io =
Vo − Vin

R
(4.7)

This current produces a voltage in the current shunt

V =
(Vo − Vin)×Rs

R
(4.8)

This voltage is a measure of the current through the LEDs and will be ampli-
fied by a current sense amplifier. Later it will be sampled by the analog to digital
converter for current feedback. A transfer function from output current to output
voltage can be written as

Gi(s) =
Io
Vo

=
1− Vin

Vo
×Gamp ×Rs

R
(4.9)

Note that our model is valid for small signal perturbations around a DC oper-
ating point (Q-point). The duty cycle value is constant on this Q-point, so the term
1−Vin

Vo
can be replaced with duty cycle (D). The equation 4.9 thus will become

Gi(s) =
Io
Vo

=
D ×Gamp ×Rs

R
(4.10)

Hence equation 4.10 is a counterpart of equation 4.5.

41

Buck Converter

10
2

10
3

10
4

10
5

10
6

-225

-180

-135

-90

-45

0

P.M.: 40.1 deg
Freq: 2.22e+004 Hz

Frequency (Hz)

P
h

a
s
e
 (

d
e
g

)

-50

-40

-30

-20

-10

0

10

G.M.: 19.5 dB
Freq: 6.44e+004 Hz
Stable loop

Open-Loop Bode Editor for Open Loop 1 (OL1)

M
a
g

n
it

u
d

e
 (

d
B

)

Figure 4.2: Bode plot of Matlab model for buck converter

The voltage-mode transfer function for the buck converter is extracted from
[19]. This model is presented in equation 4.11.

Gv(s) = Vi×
R

R +RL

× 1 +RC × C

1 + S × [C × (RC + R×RL

R+RL
) + L

R+RL
] + S2 × (L× C × R+RC

R+RL
)

(4.11)

The final transfer function will be calculated by using equation 4.5 and 4.6
from above mentioned model. This model is implemented in a Matlab file in
section A.1. The bode plot for this model is shown in figure 4.2.

Boost Converter

The voltage-mode transfer function for the boost converter is extracted from [4].
This transfer function is presented in equation 4.12. The final transfer function
will be calculated by using equation 4.5 and 4.6 from above mentioned model.

42

This model is implemented in a Matlab file in appendix A.2. The bode plot of this
model is shown in figure 4.3.

GV (s) = Gdo ×
(1 + S

WZ1
)× (1− S

WZ2
)

1 + s
WO×Q

+ S2

WO
2

(4.12)

Gdo =
VI

(1−D)2
(4.13)

WZ1 =
1

RC × C
(4.14)

WZ2 =
(1−D)2 × (R−RL)

L
(4.15)

WO =
1√

L× C
×
√

RL + (1−D)2 ×R

R
(4.16)

Q =
WO

RL

L
+ 1

C×(R+RC)

(4.17)

Buck-Boost Converter

The buck-boost converter on our EVM has a similar circuit to the boost converter
in section 4.1.1. The only difference is that the LED load is connected between the
output and input node. The voltage-mode transfer function presented in a previous
section 4.1.1 will be used. The final transfer function is computed using equations
4.10 and 4.12. The detailed Matlab implementation is shown in appendix A.3.
The bode plot of this model is shown in figure 4.4.

SEPIC Converter

The voltage-mode transfer function is extracted from [20]. This is presented in
equation 4.18. This model is implemented in a Matlab file A.4. The bode plot for
this model is presented in figure 4.5.

GV (s) =
1

D′2
×

(1− S × L1×D2

R×D′2)(1− S × C1(L1+L2)×R×D
′2

L1×D2 + S2 × L2×C
D

)

[1 + S
WO1Q1

+ S2

(WO1)2
][1 + S

WO2Q2
+ S2

(WO2)2
]

43

10
2

10
3

10
4

10
5

10
6

0

90

180

270

360

P.M.: -13.8 deg
Freq: 4.04e+003 Hz

Frequency (Hz)

P
h

a
s
e
 (

d
e
g

)

-60

-50

-40

-30

-20

-10

0

10

20

30

40

G.M.: -7.07 dB
Freq: 3e+003 Hz
Unstable loop

Open-Loop Bode Editor for Open Loop 1 (OL1)
M

a
g

n
it

u
d

e
 (

d
B

)

Figure 4.3: Bode plot of Matlab model for boost converter

(4.18)

WO1 =
1√

L1[C2 × D2

D
′2] + L1(C1 + C2)

(4.19)

Q1 =
R

WO1 × [L1 × D2

D
′2 + L2]

(4.20)

WO2 =

√
1

A0

+
1

A1

(4.21)

A0 =
L1 × C1 × C2

(L− 1× C1) + C2

(4.22)

44

10
2

10
3

10
4

10
5

10
6

0

90

180

270

360

P.M.: Inf
Freq: NaN

Frequency (Hz)

P
h

a
s
e
 (

d
e
g

)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

G.M.: 12.6 dB
Freq: 5.94e+003 Hz
Stable loop

Open-Loop Bode Editor for Open Loop 1 (OL1)
M

a
g

n
it

u
d

e
 (

d
B

)

Figure 4.4: Bode plot of Matlab model for buck-boost converter

A1 =
L2 × C1 × C2

(L2 × C1 ×D2) + (C2 ×D1)
(4.23)

Q2 =
R

WO2(L1 + L2)
C1(WO1)2

C2(WO2)2

(4.24)

4.1.2 Compensation
Compensation in a control system is implemented to ensure stable operation. The
compensator does this by minimizing some critical system parameters. Phase lag
at crossover frequency is called phase margin. Gain lag at the point where the
phase crosses 180 degrees is called gain margin. Lower values of gain and phase
margins are desired for closed-loop system stability. Good values for phase mar-
gin are in the range of 45 to 60 degrees and 6 to 10 dB for gain margin. The Single
Input Single Output (SISO) tool in Matlab is used to design the compensator, and
design flow for this can be summarized as follow:

45

10
2

10
3

10
4

10
5

10
6

-180

0

180

360

540

720

P.M.: 5.24 deg
Freq: 1.45e+004 Hz

Frequency (Hz)

P
h

a
s
e
 (

d
e
g

)

-60

-50

-40

-30

-20

-10

0

10

20

30

40

G.M.: 4.93 dB
Freq: 1.52e+004 Hz
Unstable loop

Open-Loop Bode Editor for Open Loop 1 (OL1)
M

a
g

n
it

u
d

e
 (

d
B

)

Figure 4.5: Bode plot of Matlab model for SEPIC converter

• Discrete model developed in Matlab is imported into SISO design tool

• A pole is inserted at low frequency for keeping high gain at low frequency
and roll off at high frequency

• Insert zeros in proximity of converter poles to compensate

• Insert a pole in high frequency in proximity of Nyquist frequency (fsample

2
)

to reduce gain beyond fsample

2

• Moderate values for stability parameters, i.e., gain and phase margin, are
achieved by adjusting gain and position of poles and zeros

• Finally the compensator transfer function is exported to Matlab

First, the SISO design tool is used to design a compensator. Later the coeffi-
cient values for an infinite impulse response (IIR) filter is calculated. This filter is
implemented in a micro-controller. A Matlab script A.5 is written to automate this
process. The bode plot of the compensated model for the buck converter using the
SISO tool is shown in figure 4.6.

46

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

-225

-180

-135

-90

-45

0

P.M.: 65 deg
Freq: 1.84e+004 Hz

Frequency (Hz)

P
h

a
s
e

 (
d

e
g

)

-40

-20

0

20

40

60

80

G.M.: 28.1 dB
Freq: 1.85e+005 Hz
Stable loop

Open-Loop Bode Editor for Open Loop 1 (OL1)
M

a
g

n
it
u

d
e

 (
d

B
)

Figure 4.6: Bode plot of compensated Matlab model for buck converter

The bode plot of the compensated model for the boost converter, using the
SISO tool, is shown in figure 4.7.

4.2 Current-Mode Control
As a second proposal, the output current can be controlled by controlling the in-
ductor current or the input current. This method is called current injection mode
control [31]. Considerable documentation is available for analog controllers, how-
ever, information on digital controllers employing this technique is scarce. The
relation between the average inductor current and the average output current is
shown in equation 1.4. So by controlling the average inductor current we can
control the average output current [32]. The inductor current feedback is also
available on the EVM. This approach will help to reduce the order of the transfer
function. Consequently the compensator will be of lower order consuming less
instructions and time. Consider the boost converter presented in section 1.7.2.
During the on time of PWM cycle, the switch Q is turned on and the input volt-
age VIN is applied to inductor L. Consequently there will be an linear increase in

47

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

-90

0

90

180

270

360

P.M.: 38.9 deg
Freq: 1.7e+003 Hz

Frequency (Hz)

P
h

a
s
e

 (
d

e
g

)

-40

-30

-20

-10

0

10

20

30

40

50

60

G.M.: 13.8 dB
Freq: 5.79e+003 Hz
Stable loop

Open-Loop Bode Editor for Open Loop 1 (OL1)
M

a
g

n
it
u

d
e

 (
d

B
)

Figure 4.7: Bode plot of compensated Matlab model for boost converter

current. The slope of this current will depend upon input voltage and inductance.
During the off time of PWM cycle, when the switch in turned off, the inductor
discharges through the output load. Both these situations are depicted in figure
4.8. The voltage and current waveforms are presented in figure 1.7.2.

The average current through the inductor can be maintained by controlling the
midpoint of the current rising waveform. That means that if the inductor current is
sampled at midpoint of the PWM on cycle, this sample corresponds to the average
inductor current. Compensating this value with a required reference is desired.
In short, the behavior of the inductor and the rest of the power stage becomes
irrelevant in off time of PWM, which leaves us only one frequency dependent
element, that is, the inductor. So there will be only one pole in the system with
a value of L

R
. The average current through the inductor during the whole PWM

cycle will depend upon the duty cycle. So a change in duty cycle will change the
average inductor current. The current in inductor can be given as

△IL =
Vin

L
×△T (4.25)

48

c

a

ia

+
VI

p
L

IL = ic

C

RC
R

RDS(on)

VO

ON
State

c

a
ia

+
VI

p

C

RC
R

VO

OFF
State

VdL

IL = ic

RL

RL

Figure 4.8: Two switching states of boost converter [4]

The current rise in on time of PWM cycle

△IL =
Vin

L
× TON (4.26)

The average inductor current is the mid-point of this current ripple so the av-
erage current can be represented as

Iavg =
△IL
2

(4.27)

moreover

TON = D × TS (4.28)

Iavg =
VIN × Ts

2× L
×D (4.29)

49

Iavg
D

=
VIN × Ts

2× L
(4.30)

Equation 4.30 gives the steady state behavior. Replacing L with ZL will give
us the final transfer function, where

ZL = RL + s× L (4.31)

G(s) =
Iavg
D

=
VIN × Ts

2× ZL

(4.32)

G(s) =
VIN × Ts

2× (RL + s× L)
(4.33)

G(s) =
VIN × Ts

2×RL × (1 + s× L
RL

)
(4.34)

This model is implemented in a Matlab script that is presented in section A.6.
The bode plot for this is shown in figure 4.9. Please note that this model is not
linear. Benefits of non-linear control implementation on MCU can only be reaped
by using non-linear models. Further work is suggested to refine this model.

50

10
1

10
2

10
3

10
4

10
5

10
6

-135

-90

-45

0

P.M.: Inf
Freq: NaN

Frequency (Hz)

P
h

a
s
e
 (

d
e
g

)

-150

-100

-50

0

G.M.: 130 dB
Freq: 1.25e+005 Hz
Stable loop

Open-Loop Bode Editor for Open Loop 1 (OL1)

M
a

g
n

it
u

d
e

 (
d

B
)

Figure 4.9: Bode plot for current mode control model for boost converter

51

Chapter 5

System Architecture and Firmware

5.1 Software Development Tools and Resources
The Code Composer Studio (CCS) Integrated Development Environment (IDE)
is used for development and debugging of software, which is written in C and
assembly languages. The firmware for the C28x main CPU is written in C, while
CLA code is written in assembly due to un-availability of compiler. The XDS100
emulator from (Texas Instruments) TI and the XDS510 emulator from Spectrum
Digital is used for debugging software. A watch window available in the CCS
environment is used as GUI for monitoring system parameters and user input.
CCS3.3 was initially used, but CCS4 is used later on in the development cycle. A
number of available software libraries and frameworks are used for system devel-
opment. Some of these were optimized later according to project requirements.

5.1.1 Digital Power Library
As part of a package control suite from TI, the Digital Power Library (DPL) is a set
of drivers available to designers to ease application development. Details of this
library can be found in [33]. These libraries are optimized in term of instruction
count and their use can give a head start in the development phase. We used two
types of driver in our implementation: Control filters and PWM update driver.

5.2 System Overview
Challenges related to development and architecture of firmware are presented in
this chapter. Careful planning was required to divide the firmware into suitable
partitions. Moreover two other issues needed to be addressed: First, because of
availability of two CPUs, the allocation of different software parts to two CPUs

52

requires an early system analysis. Secondly, an allocation of bandwidth of dif-
ferent software functions is also an important factor as total system bandwidth is
constant. The obvious choice for implementation of control loop would be CLA
2.3.2, while diagnostics and monitoring functions are implemented on the C28x
CPU.

Boost Control Loop

(CLA Task1)

Graphical User Interface

&

Variable Update

Over Voltage Protection

Boost2 Control Loop

(CLA Task2)

Buck Control Loop

(CLA Task4)

SEPIC Control Loop

(CLA Task5)

Boost Output Voltage

Boost2 Output Voltage

Buck Output Voltage

Sepic Output Voltage

PWM 1

PWM 2

PWM 4

PWM 5

Input current

Input Voltage

Boost Output Current

Boost Output Current

Boost Output Current

Boost Output Current

CPU to CLA

Message

RAM

CLA to CPU

Message

RAM

C28x Core

Control Law Accelerator

PWM

Dimming

Figure 5.1: General software architecture.

The software implementation can be divided into several main categories:

• SMPS control loop

• Diagnostics function

• Variable monitoring and update

53

• PWM dimming

• Graphical User Interface

• In car communications

Four of the above mentioned software parts are implemented in this project,
while the last one will follow in future versions. A generalized view, showing
implementation of different software elements, is shown in figure 5.1. As can be
seen, four control loops will be implemented on the CLA. Functions implemented
on the C28x CPU include over-voltage protection, dimming and GUI.

Since the evaluation of a number of alternative algorithms is the very purpose
of this project, a number of software version are developed. A modest version of
code is presented in appendix B. The complete software package is provided at
http://www.cse.chalmers.se/edu/course/Digital_Power_Control_Automotive_LED_Headlights/.

A detailed explanation will follow in subsequent sections.

5.3 Challenges Related to Discrete System Imple-
mentation

PWM

ADC Acquisation Window

Load Current

Average

Current

Imax

2

Figure 5.2: Sampling true average current

Considering the discrete-time system implementation, the particular instant at
which feedback will be sampled during the whole control cycle have consider-
able importance. The LED current is supposed to be controlled. However, the
output current waveform rises and falls during a PWM cycle. Moreover, we want
to maintain the average current through LEDs, which also requires sampling at

54

specific instants. In short, the sampling instant becomes very important in a digi-
tal controller.

In order to control the average current, the feedback will be sampled at the
midpoint of the PWM on cycle. Note that the control loop will not have any
effect from this implementation. The control loop is just minimizing the error be-
tween the feedback and the reference. This phenomenon is depicted in figure 5.2.
One important point worthwhile to mention is that the above discussion applies to
both voltage- and current-mode control. In current-mode control, it becomes even
more important as the inductor current exhibits higher ripple slope than the output
current does. A detailed software implementation of this is presented in appendix
B.1.

5.4 Hardware Initialization
The initialization of the MCU and different peripherals is explained in this section.
There are some general initializations related to MCU that are needed to be done:
The master clock period should be defined. GPIOs are configured as input, output
or special function, i.e., PWM . The clock signal to different hardware modules is
enabled depending upon requirement and so on. There are some initializations that
are closely related to digital power management as one defines system behavior
listed in the previous section 5.3. Others are described in subsequent sections.

55

5.4.1 PWM Initialization

PRD

CMPA

CMPB

EPWMA

EPWMB

Figure 5.3: Symmetric PWM waveform

The PWM module is configured in symmetric mode. This mode is illustrated
in figure 5.3. The time base counter is configured in count up and down mode.
Compare A and B register is used to generate PWM signal. PWM module 1 is
configured as master and module 2, 4, 5 are configured as slave with a phase
difference of 90, 180, 270 degree respectively. This is graphically presented in
figure 5.4. Details of this firmware is presented in appendix B.6. This file also
contains configuration of dimming PWM module. Initialization of PWM modules
3, 6, 7 for driving dimming FET is the same with some difference. Dimming
PWM modules operate in non synchronous mode.

56

5.4.2 ADC Initialization

PWM 1
Driving

Boost 1 SMPS

Boost1 Feedback

Boost 1 Output Voltage

Input Curent

Input Voltage

High Priorty Channel

PWM 5
Driving

SEPIC SMPS

SEPIC Feedback

SEPIC Output Voltage

High Priorty Channel

PWM 4

Driving
Buck SMPS

Buck Feedback

Buck Output Voltage

High Priorty Channel

PWM 2

Driving
Boost 2 SMPS

Boost 2 Feedback

Boost 2 Output Voltage

High Priorty Channel

SYNC signal 900

SYNC signal

SYNC signal

1800

270
0

Trigger Signal

Trigger Signal

Trigger Signal

Trigger Signal

CLA Task 1
Boost 1

CLA Task 1
Boost 2

CLA Task 3
Buck

CLA Task 4
SEPIC

ADC End of Conversion

Signal

ADC End of Conversion

Signal

ADC End of Conversion
Signal

ADC End of Conversion
Signal

Figure 5.4: Synchronization of PWM and triggering of ADC channels

Important parameters in ADC initialization are triggering, acquisition window and
priority of different channels. Moderate acquisition times are tried and fixed to 8
clock cycles as it does not have any considerable effect on performance. Channels
connected to output current feedbacks of four converters are given high priority.
Each of these channels is triggered by the corresponding PWM modules driving
these SMPS converters. For example, PWM 1 is driven by PWM1. ADC channel
sampling boost 1 output current is triggered by PWM1. This scenario is depicted
in figure 5.4. Other signals associated with same converter will also be triggered
by PWM 1, however they are configured as low priority SOCs so they will be
computed afterwards. Since PWMs have 90 degree phase shift from previous
PWM module, there will be enough time for low priority channel’s conversion.

57

5.4.3 CLA Initialization
The CLA being a coprocessor requires significant initializations after which it can
work independently. Initializations required by the CLA module are listed below:

• Program and data memory is needed to be allocated to CLA

• Message RAMs are initialized with variables for inter processor communi-
cations

• Required number of tasks are enabled

• Triggering to task is defined

Since the control law is only required to be computed when a new feedback
sample is available, the CLA tasks are triggered by the end of the conversion
signal from the ADC channel connected to the output current feedback. This is
depicted in figure 5.4.

5.5 Control Loop Implementation
The control loop is the most important of all software parts. This is implemented
on the CLA as it is optimized for realtime control loop implementations as dis-
cussed in section 2.3.2. A typical control law implementation consists of three
steps. A control flow graph is showing this in figure 5.5.

Wait for triger
signal from PWM

ADC is trigered to
start convertion

Wait for ADC

end of Convertion

ADC Result is read and
Scaled

Next output of control

filter is Computed using
new input sample

PWM Compare Regiter is

updated with new output

value

NO

YES

NO

YES

Figure 5.5: CLA task control flow diagram

58

• Feedback is read using ADC and scaled accordingly

• A new value of feedback is fed to the control filter as a new input sam-
ple and a new value of output is computed depending upon internal filter
architecture

• A new value of output is scaled with period and written to PWM duty cycle
register

We are controlling four SMPS stages and there are four of these loops execut-
ing on CLA as shown in figure 5.1. Task 1, 2, 3, 4 are used to implement control
loop for boost, buck-boost, buck and SEPIC converters, respectively. Time divi-
sion multiplexing is used to execute four tasks on a single CLA resource. Let us
first look in detail on a single control loop. Task 8 is used for initialization of the
buffer structure used by control filters. It will only execute one during initializa-
tion.

5.5.1 Control Loop Architecture
The detailed architecture of the control loop is presented in this section. First
details of different components will be presented, and later limitations of this will
be discussed, followed by improvements and results.

Acquiring Feedback from ADC

The first step is to read a feedback value from the ADC result register. The CLA
can directly access the ADC result register. Later this value is scaled; this scaling
is dependent on circuit parameters in the feedback path. The firmware for this is
integrated into the control filter to decrease instruction count.

Control Filter

2nd and 3rd order control filters from DPL are used in our implementation. These
filters can be interfaced in the code by available pointers. Both these filter are ac-
tually infinite impulse response (IIR) filters. Both filters have identical interfaces
but the internal structure is different due to different filter orders. Data buffers and
coefficient structures will have different depth depending upon order of filter. The
interface for 3-pole 3-zero filter is shown in figure 5.6. The internal structure of
this filter is also presented in the figure.

The 2nd order version of this filter takes 31 clock cycle and the 3rd order filter
takes 38 clock cycles.

59

Pointer to Reference

Control_3P3Z_CLAPointer to Feedback

Pointer to Coeficients

Coeficient

Structure

Pointer to Output

Data
Buffer

B1

B2

B3

A1

A2

A3

Dmin

Dmax

B0

Z-1 Z-1 Z-1

Z-1 Z-1 Z-1

E(n)

b0 b1 b2 b3

b0 b0 b0

U(n)

U(n-1)U(n-2)U(n-3)

E(n-1) E(n-2) E(n-3)

CNTL_3P3Z_CLA_Ref:n:

CNTL_3P3Z_CLA_Fdbk:n:

CNTL_3P3Z_CLACoefStruct

CNTL_3P3Z_CLA_OUT:n:

Saturation

Figure 5.6: 3-pole 3-zero filter interfacing in control loop

PWM Update

The output of the control filter is written to PWM. But this value needs to be scaled
according to the PWM period. Moreover, since we are using the high resolution
feature in the PWM module, this value should be scaled accordingly. A PWM
update driver from DPL is used for this purpose. The interface and the internal
architecture is presented in figure 5.7. This driver consumes 12 clock cycles.

5.5.2 System Architecture
The above mentioned components are combined to implement control loops. A
few of the necessary steps are listed below. The system implementation is depicted
in figure 5.8.

• The feedback pointer is directed to the ADC result register corresponding
to feedback

60

Pointer to Input
P
W
M

Duty

PWMDRV_1chHiRes_CLA:n:

PWMDRV_1chHiRes_In:n: PWMnA

CMPA CMPAHR

CMPB

PRD

Duty

0.5

Figure 5.7: High resolution PWM driver

• A variable is initialized for reference. The reference is passed on from user.
The C28x CPU will read this value from the watch window and update it in
CPU to CLA message RAM for control loop

• The coefficient structure is initialized and placed in CPU to CLA message
RAM. This structure will hold filter coefficients

• A variable is initialized for keeping duty cycle value. This variable will
serve as output to control filter and input to PWM driver. Note that the
address of this variable is passed on to the control filter’s output pointer and
PWM driver input pointer. This variable must reside in CLA to CPU RAM
as this RAM be written by CLA and being used as data RAM for CLA

The control loop with 2nd order control filter will consume 45 cycles and
3rd order control loop will consume 52 clock cycles. These values are found by
adding the cycle count for control filter and PWM update; two clock cycles for
CLA task start are also added. The maximum limit on switching frequency can
be calculated by using equation 5.1.

FS =
Fclock

Cycles
(5.1)

In a system with three 2nd order control loops and one 3rd order control loops,
the total cycle count will be 187 clock cycles. The upper limit on switching fre-
quency can be found from this value; considering the 60 MHz clock, the upper
limit will be 320 kHz. But some modifications are required to improve other as-
pects of system. That will add some further instructions to the control law.

61

Control Filter

Pointer to Feedback

Pointer to Coeficients

Coeficient
Structure

Pointer to Output

Data

Buffer

B1

B2

B3

A1

A2

A3

Dmin

Dmax

B0

ADC Result Register

Reference

Pointer to Reference

Duty Cycle

Pointer to Input

P
W

M

PWMDRV_1chHiRes_CLA:n:

PWMnA

CPU to CLA Message
RAM

Figure 5.8: Control loop system implementation

5.5.3 Improvements in Control Loop Architecture
Two modifications in the above implementation are required:

Offset Cancelation

The feedback amplifier used to amplify the current feedback has a small offset.
The accuracy of current through LEDs is affected because of this offset. This off-
set is needed to be removed in software. One way to solve this is to subtract the
offset value from feedback every time the control law is computed. The value of
the offset can be measured during system initialization. A new variable is initial-
ized in CPU to CLA message RAM. The control law is modified to remove this
offset. The value is read from the variable containing the offset value and sub-
tracted from the feedback value. The cycle count for the control filter is increased
by three due to this modification.

Optimization of Control Law

Drivers used from DPL are very general in nature. Several modifications can be
made:

62

• One of the limiting factors is the number of memory accesses. One way
to minimize this is by reducing the number of pointers. We propose to
integrate all the variables into one structure. Only one pointer is accessed
for the whole structure and then variables can be accessed by incrementing
pointer. The sequence of instructions will be changed to make it consistent
with the newly developed variable structure.

• The memory access to the variable containing duty cycle value can be saved
by integrating two drivers. Moreover, some redundant instructions in PWM
driver were removed. There are some NOP (no operation) instructions in
the code to avoid data hazards. The instructions can be better adjusted in
the integrated driver.

• Instructions are rearranged to decrease NOP count and consequently overall
instruction count.

Modified Implementation

The above mentioned modifications are made. The first modification will increase
cycle count while the second one will decrease cycle count. The modified driver is
presented in appendix sections B.3. The new system implementation is presented
in figure 5.9. The new integrated driver consumes 35 clock cycles for the 2nd
order driver and 41 clock cycles for the 3rd order driver. The total cycles for four
SMPS stages will be 154 and the upper limit for switching frequency in this case
will be 388 kHz. In short, this modification was useful in increasing the switching
frequency.

Integrated Driver

Pointer to Feedback

Pointer to Input struct

In
p

u
t S

tru
c

tu
re

B1

B2

B3

A1

A2

A3

Dmin

Dmax

B0

ADC Result Register

Reference C
P

U
 to

 C
L

A
 M

e
s

s
a

g
e

 R
A

M

Offset

P

W
M

PWMnA

Figure 5.9: Modified control loop system implementation

63

5.5.4 Control Loop Triggering
The CLA tasks can be triggered by ADC end of conversion, PWM module or
by software. Due to limitations on sampling instants, the control law will be
triggered when ADC will complete conversion. The ADC start of conversion is
in turn triggered by the PWM module. Since this sampling instant is in middle of
PWM on cycle, this is configured in the initialization of the PWM module. Task
1,2,3,4 are triggered using the above setup. Task 8 consists of initialization code
to be run by the CLA. So task 8 is triggered by user in software once on system
startup. A detailed time line diagram of this is presented in figure 5.10.

△X represents the time from start of conversion to PWM update by control
loop. There are two versions of control filter as described in earlier sections. Let
us denote the time for the 2nd order control loop with △X1 and the 3rd order
control loop with △X2. Both these notations will be used later. △OVP gives the
time from start of conversion to computation of output by the CLA task.

PWM

ADC Acquisition
window

ADC
Computation

Window CLA Task
Computation Time

CLA
Interrupt

OVP

PWM
Update

X

Start of Convertion

GUI & Veriable Update

Figure 5.10: Computation sequence of control loop

Since four SMPS stages are controlled with one CLA, time sharing is used to
allocated 1/4 of bandwidth to each control loop. Moreover, due to requirements
on sampling instants discussed in section 5.3, this time sharing is desired because
of single shared ADC and CLA resource. Consequently, the PWM waveforms
controlling these SMPS are synchronized and phase shifted by 90 degrees. This
scenario is shown in figure 5.11.

64

Boost1 PWM

X1

X1

X1

X2

Boost2 PWM

Buck PWM

Sepic PWM

270
0

180
0

90
0

Start of Conversion

Total time for 4 Control Loops

Figure 5.11: Time line diagram of four control loops running on CLA

5.6 C28x Code
C28x, the main CPU, is assigned to monitoring system variables and diagnostics.
Important system parameters need to be monitored. This does not only have con-
siderable importance in development phase, but also in final product. Considering
a final product, some of these parameters are periodically logged in ECU for later
analysis in case of failure. There also exist a number of input parameters that are
needed to be passed to system by user. Some of them are used in control loop,
i.e., reference. Some will be used by diagnostic functions. In this design phase
we used watch windows functionality available in CCS as GUI. The firmware
for this is organized in a number of nested state machines. There is one central
state machine which will continuously check triggering conditions for nested state
machines. This is shown in figure 5.12

State machine A, B, C is triggered by overflow of timer 1, 2, 3, respectively.
Dimming state machine will be triggered by a VTimer0[0] reaching user defined
value, which is a software timer based on timer 1 overflow. A number of func-
tions exist inside each loop that are allowed to execute one by one using a state
pointer concept. The detailed implementation is presented in Main.c in appendix
B.1. Function-updating input parameters are organized in different loops based

65

TIMER 1
OVERFLOW

VTimer0[0]++

YES

NO TIMER 2
OVERFLOW

YES

NO TIMER 3
OVERFLOW

YES

NO
VTimer0[0]==N

YES

NO

State
Machine A

State
Machine B

State
Machine C

Dimming
State

Task A0

Task B0 Task A0 Dimmimg

Initialization

Figure 5.12: C28x software architecture overview

on their update requirement and loop repetition frequency. Using the right loop
for a certain parameter is important, because of bandwidth limitations; bandwidth
is a valuable resource in such MCU implementations. The details of each state is
presented in subsequent sections.

A State Machine

TASK C0

State A1

State A2

SP=&A2SP=&A1

SP=&A2 SP=&A1

Triger State
Execution based on

State Pointer(SP)

Timer 1
Overflow ? State Machine Exit

State Machine

Entry

YES

NO

Figure 5.13: State Machine A

State machine A is based on timer 1 which has a period of 1 ms. One of the states
is executed whenever this state machine is triggered. Since there are two tasks

66

in state machine A, the internal state will have a periodicity of 500 Hz. This is
graphically presented in figure 5.13. The actions performed in each task are listed
below.

• State A1: First, the global power enable input from user is monitored and
the main power FET is controlled accordingly. Second, the voltage refer-
ence variables for over-voltage protection are updated.

• State A2: This clears the current reference variables in case of trip zone
events. Trip zones are activated automatically by the over-voltage function
in case over-voltage condition is detected at any of converter.

B State Machine

Timer 2
Overflow ?

SP=&B2

SP=&B3 SP=&B4

SP=&B5

SP=&B1

SP=&B1

SP=&B2 SP=&B3

SP=&B4

SP=&B5

State Machine Exit

State Machine Entry

Figure 5.14: State Machine B

State machine B is based on timer 2 which has period of 2 ms; the same as for
state machine A. Since there are five tasks in state machine 5, the internal states
will have periodicity of 100 Hz. This is graphically presented in figure 5.13.

• State B1 updates the values of input current and voltage to GUI

• State B2 performs two function

– First, values of SEPIC output current and voltage are updated on GUI

– Secondly, output current reference value is updated to CLA from GUI
as user input

• State B3 performs same functions as state B2 for Boost1 converter

67

• State B4 performs same functions as state B2 for Boost2 converter

• State B5 performs same functions as state B2 for Buck converter

C State Machine

State machine C is based on timer 3, which has a period of 200 ms. There are two
tasks in state machine C, so the internal states will have a periodicity of 2.5 Hz.
This is graphically presented in figure 5.13.

• State C1 is just used to blink LED on the control stick to show execution of
code

• State C2 is used to clear PWM trip zones in response of user input. Trip
zones are required to be cleared to resume normal operation after a shut
down in response of an over-voltage condition.

TASK C0

State C1

State C2

SP=&C2SP=&C1

SP=&C2 SP=&C1

Triger State
Execution based on

State Pointer(SP)

Timer 3
Overflow ? State Machine Exit

State Machine

Entry

YES

NO

Figure 5.15: State Machine C

Dimming State

Dimming functions are driven by software timer VTimer0[0], which in turn is
driven by timer 1. 50 ticks are counted to trigger dimming. That means repetition
frequency will be 20 Hz. This state is employed for two purposes:

• It is used to enable or disable ISR that is handling dimming functionality
based on user input

• The dimming duty cycle is updated from GUI to PWM registers

The architecture of the dimming task is depicted in figure 5.16. Dimming is
only implemented for three converters, i.e., boost, buck-boost, and SEPIC, be-
cause of availability of only three free PWM modules. Other considerations for
dimming are discussed in section 5.7.

68

En_Dim = 1 ?

YES

NO

Boost1_dim = 1

Dimming Duty
Update from

GUI
(User Input)

Dimming

Enable Boost 1

Dimming

Enable Buck-

Boost

Dimming

Enable SEPIC

Enter

EXIT

Enable
Dimming

YES

NO

Figure 5.16: Enable dimming task architecture

5.7 PWM Dimming
An important characteristic of LED light is that current is converted into light. De-
creasing current through LEDs will decrease light intensity in headlights. How-
ever there are two limitation with this technique. A specified wavelength emitted
by an LED is at a certain current and the wavelength will change a little if the
current is higher or lower than the specified current [10]. That means a change
in average current through the LEDs will change the color, which is not desirable
in the case of automotive headlights and the associated commercial regulations.
Since SMPS are used to control the LED automotive headlights, the current in
the LEDs can be controlled by changing the duty cycle. However, at lower duty
cycles these SMPS operate in discontinuous conduction mode (DCM) instead of
continuous conduction mode (CCM). We want our converters to operate in CCM
as it is part of specifications. So the concept of PWM dimming will be employed.
The full range of dimming can be used by using PWM dimming while operating
in CCM. To implement PWM dimming in this configuration, a FET is introduced
in the circuit along with the grounding path. Figure 5.17 shows this configuration.

The dimming PWM signal will be derived at much lower frequency as com-
pared to the main PWM. One important point to be noted is that the main PWM
should be turned off during the off time of dimming PWM to avoid voltage and
current spikes, which could be dangerous for the hardware platform. Moreover,
based on same arguments, both PWM edges should be synchronized. The output
tripping feature available in ePWM modules in TMS32F28035 is used for this
implementation. Tripping is a protection feature in which the ePWM output pin
can be pulled to low, high or high impedance state. The trip zone can be trig-

69

LED

Load

Dimming

FET

TMS320F28035

Figure 5.17: Circuit Description of Dimming

gered from software or from hardware using external GPIO pin. Please note that
when the trip zone is triggered, the GPIO pin corresponding to a PWM module
is disconnected from the PWM module while the module still keeps on running
internally. The trip zone will be triggered for the main PWM, when the dimming
FET is switched off by dimming PWM signal. Similarly, the trip zone for the main
PWM is cleared when the dimming FET is turned on. There are two important
considerations related to implementation:

5.7.1 Limitation I
A high level of synchronization is required between both PWM modules. This is
achieved by using PWM interrupts. But there is a issue of delay between trigger-
ing and execution of Interrupt Service Routine (ISR). This is handled by triggering
ISR well before the PWM edge. This is possible by the help of a second compare
register available in the ePWM Module. This behavior can be clearly understood
by figure5.18.

One could argue that the main PWM will turn off or on before dimming PWM.
This situation will not create any voltage or current spikes. The dimming task is
given precedence over other CPU tasks by using ISR for implementation. But
there are other ISRs which also have critical importance, like the one discussed in
section 5.8.1, which could alter this synchronization between ISR execution and
PWM edge. Relative priorities between ISRs is a trade off.

Before moving further, it is good to summarize the actions taken in ISR:

• Trip the main PWM when dimming PWM goes low and vice versa

• Interrupt source has to change from rising edge to falling edge or vice versa
in each ISR call

• Compare B register in PWM module has to change so that we always trigger
the interrupt well before the PWM edge

70

Compare

B

Register

Compare

A

Register

Time Base

PWM Counter

Interrupt Service

Routine Trigger

Dimming PWM

Figure 5.18: Triggering of ISR handling dimming function

5.7.2 Limitation II

Figure 5.19: Screen shot of dimming

71

As discussed before, the PWM module is running while trip zone is activated.
That means the ADC is triggered periodically by PWM, which in turn will trigger
the CLA task. In short, the control loop is compensating during the off cycle
of dimming PWM. During the off cycle of dimming PWM, the current through
LEDs will fall to zero, consequently feedback will fall to zero. The CLA will
compensate this by increasing the PWM duty cycle until it reaches the maximum
allowable value. Remember that the PWM module’s output is disconnected from
GPIO pin and the CLA is only updating the PWM compare register. As soon
as this trip zone is cleared by ISR in the on cycle of dimming PWM, this PWM
with maximum duty cycle is applied to the SMPS stage, which will respond by
increasing its output. So there will be a large current rise. A screen shot from
real measurement is presented in figure 5.19. The curve in green and blue show
current and voltage respectively.

This high current will eventually be compensated by the control loop but this
has two drawbacks: First, this needs considerable time and, secondly, such a high
current can decrease the lifetime of LEDs and other components on the EVM. A
number of solutions for this are implemented and tested until we came across the
most suitable one. All of them are discussed here:

• The first option is to let PWM and CLA run as they are. There will be high
rush current on the rising edge of the dimming PWM so this option is not
feasible.

• The next obvious option is to try to restrict the duty cycle. First the current
reference to the CLA is switched to zero during the off time of the dimming
PWM and back to the original in on time. The duty cycle will drop during
the off time and has to rise during the on time; this will require an extremely
fast compensation.

• Next, the maximum duty cycle was fixed to a pre-conceived value so that
when it is increased by the CLA, it will be ceiled to that value and could
not increase further. This implementation performed better than the above
proposals but it has its own drawbacks. The pre-conceived maximum duty
cycle suitable for best performance is dependent on the DC operating point.

• The conclusion that can be improvised from the previous implementation
is that the duty cycle should be fixed to the value just before turning off
the dimming PWM as this will have fastest response as a head start will
be given to the compensator as well. This technique is implementated and
tested to give the best response.

72

Figure 5.20: Screen shot of dimming after improvements

Just to summarize the above discussion, the last technique is the best among
all to implement PWM dimming. There are a number of possible alternatives to
implement this, but the simplest one is chosen, that is, by disabling the corre-
sponding CLA task. This is done by disabling the corresponding ADC interrupt,
which is used for triggering that CLA task. Other CLA tasks are executing and
will not be affected. A screen shot using this technique is shown in figure 5.20.
The output current and voltage is shown in red and blue, respectively. This mea-
surement is done with a relatively slow compensation; that is why there are some
ripples in the start, but it compensates after some time. The time taken by com-
pensation defines the upper limit on the dimming frequency. The source code for
this is presented in section B.5

5.8 Diagnostics
The next important part of software implementation is the diagnostics. These
functions are important for the protection of the hardware platform. Considerable
system bandwidth is however needed to be allocated to these functions. An initial

73

implementation analysis is done for allocation of bandwidth to different diagnostic
functions. Post-implementation analysis is useful in verification and modification
of pre-implementation analysis.

5.8.1 Over-Voltage Protection
Over-voltage protection is the most important diagnostic function. An over-voltage
condition not handled in the specified time period could result in damage to hard-
ware. The bandwidth for the over-voltage protection (OVP) function is a major
trade-off:

• A high repetition rate for over-voltage check will result in suffocation of
other CPU tasks.

• Too low repetition rate can expose the EVM to over-voltage condition for
long-enough that can result in damaging EVM.

A detailed time-line diagram of the control loop implementation is presented
in figure 5.10. ADC acquisition and computation times are constant for a specific
configuration of the project. The execution time for the CLA task is dependent on
the number of instructions, which are in turn dependent on the complexity of the
compensator.

First Draft Implementation

In the first implementation the over-voltage check is made in every CLA task
ISR. The repetition rate for OVP is the same as the switching frequency. This
implementation is really fast, but consumes a lot of bandwidth. The details of this
implementation are shown in figure 5.21.

Second Draft Implementation

The initial post-implementation analysis of OVP showed that the rate of increase
of voltage is low enough to allow the repetition rate of OVP to be reduced to
free system bandwidth. Secondly, every ISR takes considerable clock cycles for
context saving. So we propose that instead of checking over-voltage condition for
each topology in its own ISR, an over-voltage condition for all channels can be
checked in one function. The ISR of the last CLA task in the whole time-line is
used to implement this global OVP function. The repetition rate of OVP is the
same as before. A considerable number of clock cycles initially lost in context
saving were saved by combining four ISRs in one. This second implementation is
presented in figure 5.22

74

Boost1 PWM

OVP

OVP

OVP

OVP

Boost2 PWM

Buck PWM

SEPIC PWM

CLA TASK 1
ISR Checks

OVP for Boost1

CLA TASK 2
ISR Checks

OVP for Boost2

CLA TASK 1
ISR Checks

OVP for Buck

CLA TASK 1
ISR Checks

OVP for SEPIC

o

o

o

Figure 5.21: Over-voltage protection implementation I

Timing Analysis

A screen-shot from real measurements is shown in figure 5.23. A time analysis
is carried out for the OVP task based on this. The purpose of this is to find lower
limits on repetition rate for OVP. The delay between two consecutive OVP checks
in the first implementation was 3µ s. The measurement showed that the maximum
rate at which voltage can increase under over-voltage condition is 17 kV/s. Note
that this value is dependent on the response time of compensation and independent
of OVP implementation. First, the voltage increase between two consecutive over-
voltage checks will be calculated

Voltage increase in 1 s:

V = 17kV (5.2)

Voltage increase in 3 µ s:

V = (17× 103)× (3× 10−6) = 0.051V (5.3)

So the voltage increase between two consecutive over-voltage checks is 0.051
V which is a very moderate value. This analysis gives the liberty to decrease the
repetition frequency of over-voltage checks to free the bandwidth for other tasks.

75

Boost1 PWM
OVP

OVP

OVP

OVP

Boost2 PWM

Buck PWM

SEPIC PWM

CLA TASK 4
This ISR Checks
OVP for Boost1,
Boost2, Buck,

SEPIC

o

o

o

Figure 5.22: Over-voltage protection implementation II

Calculation for a minimum repetition rate for OVP is valuable information and
very useful for further improvement in bandwidth allocation.

Consider x V as the maximum voltage that could be allowed to increase be-
tween two consecutive over-voltage checks. Then the rate of voltage change is:

△S =
1sec

17× 103V
= 5.88× 10−5 sec

V
(5.4)

For voltage x V, value will be

△Sx = x× 5.88× 10−5sec (5.5)

The lower limit on repetition rate depends on the variable x. A power con-
verter is designed to withstand certain maximum voltage. Moreover, circuit have
a tolerance limit i.e. circuit can avoid catastrophic failure for certain voltage above
maximum operating voltage. However, circuit can only with stand this voltage for
certain time. When using over voltage protection as periodic software check. The

76

Figure 5.23: OVP screen shot for boost SMPS

repetition frequency of this check determine the response time of system. So volt-
age above maximum operating voltage becomes an important factor. x represents
the voltage above maximum operating voltage that could be allowed to increase
to avoid any component failure between two over voltage checks.

77

Chapter 6

Measurement and Results

The frequency-response analysis is a measure to verifying performance of a sys-
tem. This analysis exposes system behavior in terms of gain and phase with fre-
quency. Primarily, there are two types of tests. First, the open-loop test; as the
name implies, this is carried out by opening the feedback loop. This test pro-
vides information on system behavior without effect of compensator. Second, the
closed-loop test; this test is done with the feedback loop intact. This test provides
information on the combined behavior of compensator and converter. The purpose
of closed-loop tests is to compare post-implementation system behavior with the
models used during design. This comparison provides some important insights
into digital power management tradeoffs. Both types of measurements will be
carried out on our system and details about measurement setup is discussed in
detail in subsequent sections.

6.1 Measurement Equipment
The Venable Windows software in combination with the supported Frequency
Response Analyzers (FRA) is a complete frequency-response modeling and mea-
surement system [5] that is used for measurements in this project. The hardware
portion consists of the 3235 FRA, which is used for making measurements of
gain, phase, and voltage versus frequency, and various accessories for coupling
the FRA to the electrical system under test. The software portion runs on any per-
sonal computer. The 3235 FRAs are controlled through a National Instruments
GPIB board. This software also contains a simple SPICE-like modeling program
for modeling the AC frequency response of circuits. Implementation model re-
sults and test results are in the same format and can be displayed simultaneously
for easy comparison. Compensation amplifier synthesis software lets the user
achieve the exact feedback loop bandwidth and phase margin. Math software

78

allows any kind of mathematical function on any one or two transfer functions.
Graph types supported are voltage versus frequency (log-log), gain and phase
versus frequency (semi-log), reactance versus frequency (log-log with lines for
constant capacitance and inductance), and Nyquist (log outside of the unity gain
circle and linear inside the unity gain circle). The FRA has a simple interface that
consists of an oscillator, channel 1 and channel 2. The oscillator provides the AC
signal and the DC bias. Channel 1 input serves as primary input, while channel 2
input serves as reference input [5].

6.2 Open-Loop Measurements
The open-loop transfer function refers to the gain from the output of the error
amplifier to the output of the system. This gain block typically has a fixed low-
frequency gain. The high-frequency gain falls off at a -1 (-20 dB/decade) or -2
(-40 dB/decade) slope depending on the characteristics of the circuit. Because the
gain at low frequency (including DC) is fixed, it is possible to use a DC voltage to
bias the operating point to achieve the desired system output. By superimposing
a small AC voltage on the DC bias voltage, the operating point of the modulator
can be varied. The transfer function of this gain block can then be measured by
connecting frequency selective voltmeters (the inputs of the FRA) to the input and
output of the circuit and sweeping the modulation frequency across the desired
frequency range. The output of the Venable 3235 FRAs are designed to deliver
DC and swept frequency AC voltage simultaneously. The inputs are designed to
measure voltage at the frequency of the output and reject all other frequencies and
DC [5].

The first step is the setting up of circuit to be controlled by FRA that is done by
breaking up the feedback loop and connecting the oscillator (channel 1, channel
2) at appropriate points. There are three ways these terminals can be connected
depending on the error amplifier. Please note that none of these methods is suitable
for a digital controller. These are just mentioned to give a preview of the problem.

79

6.2.1 Method I

Figure 6.1: Open-loop measurement circuit setup I [5]

If the error amplifier is a high output impedance transconductance amplifier, the
output can be biased high and the output of the FRA used directly to control the
operating point [5]. This setup is shown in figure 6.1.

6.2.2 Method II

Figure 6.2: Open-loop measurement circuit setup II [5]

If the error amplifier has a conventional low-impedance output but has an input
common-mode range at least equal to the voltage swing needed in the output to
control the system, the error amplifier can be wired as a buffer follower. This
setup is shown in figure 6.2.

80

6.2.3 Method III
If the error amplifier has a conventional low-impedance output and a relatively
narrow input common-mode voltage range that does not encompass the entire
output voltage swing required, the error amplifier can be wired as a gain stage and
there is complete freedom of operating point. If in doubt, this third method will
work in any situation. This third method is shown in figure 6.3.

Figure 6.3: Open-loop measurement circuit setup III [5]

6.2.4 Digital Controller Measurement Setup

Feedback

D
u

ty
C

y
c

le

Y1

Y2

X1 X2

X

Figure 6.4: Open loop gain for buck converter

81

The measurement setups mentioned are not valid for a digital controller, as
they rely on injecting a signal either after error amplifier or before it. In the case
of a digital controller, the error amplifier is hidden in the software implementation
so there is no connection to it. The scenario in which noise is injected before the
error amplifier and after the feedback is valid. Furthermore channel 1 is always
connected after the error amplifier which is not possible. A modification is re-
quired to get a new test setup. Since we only have a feedback pin available as an
interface to the digital controller, reference values are also provided by software.
This can be solved by developing a new firmware component that can translate
feedback value to duty cycles based on the compensator’s characteristic behavior.
The operating point is also needed to be adjusted in software. A curve between
feedback and duty cycle is plotted by empirical testing using a closed-loop imple-
mentation. Please note that this graph is plotted with only a few points in proxim-
ity of the Q point. Two points are chosen before and after the Q point as shown
in figure 6.6. Assuming linearity of the graph around the Q point, the feedback
to duty cycle translational factor is equal to the slope of the curve. Moreover the
operating point is achieved by transept. Since we intend to provide the operating
point in software, the duty cycle of a point before the Q point is taken as transept.
The slope can be given as

Slope = M =
Y2 − Y1

X2 −X1

(6.1)

The general slope transept equation can be given as 6.2. This is modified to get
equation 6.3. The term Y1 is a duty cycle value and will serve as DC offset. The
term FeedBack −X is used rather than only Feedback so that the output can
oscillate about the Q point. Firmware is developed to implement this equation.
Please note that this technique is applied to all converters to get their values of
slope and DC-offset. Consequently, firmware is developed for each converter.

y = C +M ×X) (6.2)

DutyCycle = Y1 + Slope× FeedBack −X (6.3)

The feedback loop is broken to setup hardware for open-loop measurements.
Noise is injected on one side and the response is measured on the other side. Fig-
ure 6.5 shows this setup. The loop can be broken either before the feedback am-
plifier or after it. In both cases, measurement is valid. The oscillator and channel
1 are coupled and connected to the noise injection point. Channel 2 is connected

82

on the other side so as to measure system response. There is an important con-
sideration in this regard that input and output points lie in close proximity; gain
will very low for such setup. This technique for open-loop measurement for digi-
tal power controller based converter is improvised but need further analysis. The
details of software implementation can be found in C for buck, boost and SEPIC
converters. The DC bias needed to operate on desired Q point is provided primar-
ily by software. A small value is also introduced from FRA so as to fine tune the
Q point. An AC value of the noise signal is selected so that feedback could not
exceed points X and Y, because our translational factor and transept is only valid
in this region.

Feedback

Amplifier

Channel 1 Channel 2Oscilator

Feedback loop is

broken from here

Figure 6.5: Open-loop measurement setup

83

6.2.5 Measurement Results

Frequency10 250 k

 1
0
 H

z

 1
0
0
 H

z

 1
 k

H
z

 1
0
 k

H
z

 1
0
0
 k

H
z

G
a

in
-8

0
0

P
h

a
s
e

-3
6

0
0

 -75 dB

 -70 dB

 -65 dB

 -60 dB

 -55 dB

 -50 dB

 -45 dB

 -40 dB

 -35 dB

 -30 dB

 -25 dB

 -20 dB

 -15 dB

 -10 dB

 -5 dB

 -337.5 deg

 -315 deg

 -292.5 deg

 -270 deg

 -247.5 deg

 -225 deg

 -202.5 deg

 -180 deg

 -157.5 deg

 -135 deg

 -112.5 deg

 -90 deg

 -67.5 deg

 -45 deg

 -22.5 deg

 1-Gain

 1-Phase

Figure 6.6: Open-loop gain for buck converter

The detailed implementation of firmware for the open-loop test for the buck con-
verter is shown in C. The code for other converters is similar with different val-
ues of DC-offset and slope factor. The bode plot of measured open-loop transfer
function for buck, boost and SEPIC is shown in figures 6.6, 6.7, 6.8, respectively.
Phase and gain scaling with frequency is provided in two separate graphs. The
phase response of all the converters is consistent with modeling results with mi-
nor deviations. This can be explained by tolerance in components used on the
PCB. The gain response differs largely from expected, from the modeling results.
This is due to fact that in our setup CH1 and CH2 are connected at the same point.
Theoretically, the gain should be zero at low frequencies in our case. However,
the low-frequency gain in our case is around -5 dB. This minor deviation can be
explained as a shortcoming in the data representation because existing data repre-
sentation has its roots in analog control measurements. Moreover, this setup for
open-loop measurement is new and needs further refinement. In short, develop-
ment and use of this test gives valuable insight into digital controller performance
measurements setups. However, new analysis techniques are needed to fully ex-
ploit capabilities of this test.

84

Frequency1 1 M

 1
 H

z

 1
0
 H

z

 1
0
0
 H

z

 1
 k

H
z

 1
0
 k

H
z

 1
0
0
 k

H
z

G
a

in
-8

0
0

P
h

a
s
e

-3
6

0
0

 -75 dB

 -70 dB

 -65 dB

 -60 dB

 -55 dB

 -50 dB

 -45 dB

 -40 dB

 -35 dB

 -30 dB

 -25 dB

 -20 dB

 -15 dB

 -10 dB

 -5 dB

 -337.5 deg

 -315 deg

 -292.5 deg

 -270 deg

 -247.5 deg

 -225 deg

 -202.5 deg

 -180 deg

 -157.5 deg

 -135 deg

 -112.5 deg

 -90 deg

 -67.5 deg

 -45 deg

 -22.5 deg

 2-Gain

 2-Phase

 3-Gain

 3-Phase

Figure 6.7: Open-loop gain for boost converter

Frequency1 1 M

 1
 H

z

 1
0
 H

z

 1
0
0
 H

z

 1
 k

H
z

 1
0
 k

H
z

 1
0
0
 k

H
z

G
a

in
-1

0
0

0

P
h

a
s
e

-3
5

0
1

0

 -90 dB

 -80 dB

 -70 dB

 -60 dB

 -50 dB

 -40 dB

 -30 dB

 -20 dB

 -10 dB

 -314 deg

 -278 deg

 -242 deg

 -206 deg

 -170 deg

 -134 deg

 -98 deg

 -62 deg

 -26 deg
 1-Gain

 1-Phase

Figure 6.8: Open-loop gain for SEPIC converter

85

6.3 Closed-Loop Measurement

Figure 6.9: Classical method for measuring frequency response [5]

The digital control loop implemented is verified by closed-loop measurements.
The classical way to measure a feedback loop transfer function is to break the loop
at some point, terminate the input with the output impedance, terminate the output
with the input impedance, drive a small AC signal into the input and measure
the ratio of the output to the input. In real life, this measurement approach is
virtually impossible since the loop gain is usually very high at low frequency and
it is difficult to keep the input stable enough to prevent the output from swinging
wildly from limit to limit. The classical approach is presented in 6.9 while the
Venable approach is presented in figure 6.10.

86

Venable Method

Figure 6.10: Venable method for measuring frequency response [5]

This difficulty in the measurement situation is avoided by finding a place
where the loop is confined to a single path (also a requirement in the classical
method) and a place where the signal comes from a low-impedance point and
drives a high-impedance point. This impedance condition minimizes the error
caused by not properly terminating the input and output. We then insert a small re-
sistor into the feedback loop (small compared to the input impedance of the loop).
Finally, we connect a floating AC source (the output of a transformer) across the
new resistor and drive the primary of the transformer with a sinusoidal voltage
source. This converts the resistor into a floating sinusoidal error voltage in series
with the feedback loop. This voltage modulates the operating point of the entire
circuit [5]. In the context of a digital implementation, this single path is available
between the feedback amplifier and the ADC channel. This setup for closed-loop
measurement is presented in figure 6.11. Noise will be injected over a resistor in
the feedback loop using the injection transformer (BodeBox) as mentioned above.

The feedback loop measurement for boost and buck converter is shown in
figure 6.12 and 6.13, respectively. The phase response is consistent with com-
pensator model. Minor deviations are there due to component tolerance as the
compensator model is based on an ideal converter model that assumes ideal com-
ponents. The gain response is different because of the same reasons explained
before in section 6.2.5.

87

Feedback

Amplifier

Channel 1 Channel 2Oscilator

Permutation is

injected in
feedback resistor

Measurement
Transformer

Osc Ch1 Ch2

R

Figure 6.11: Closed-loop measurement setup

Frequency1 1 M

 1
 H

z

 1
0
 H

z

 1
0
0
 H

z

 1
 k

H
z

 1
0
 k

H
z

 1
0
0
 k

H
z

G
a

in
-6

0
6

0

P
h

a
s
e

-1
8

0
1

8
0

 -50 dB

 -40 dB

 -30 dB

 -20 dB

 -10 dB

 0 dB

 10 dB

 20 dB

 30 dB

 40 dB

 50 dB

 -150 deg

 -120 deg

 -90 deg

 -60 deg

 -30 deg

 0 deg

 30 deg

 60 deg

 90 deg

 120 deg

 150 deg

 1-Gain

 1-Phase

 2-Gain

 2-Phase

Figure 6.12: Boost feedback loop measurement

88

Frequency100 100 k

 1
0
0
 H

z

 1
 k

H
z

 1
0
 k

H
z

G
a

in
-4

0
4

0

P
h

a
s
e

-3
6

0
0

 -35 dB

 -30 dB

 -25 dB

 -20 dB

 -15 dB

 -10 dB

 -5 dB

 0 dB

 5 dB

 10 dB

 15 dB

 20 dB

 25 dB

 30 dB

 35 dB

 -337.5 deg

 -315 deg

 -292.5 deg

 -270 deg

 -247.5 deg

 -225 deg

 -202.5 deg

 -180 deg

 -157.5 deg

 -135 deg

 -112.5 deg

 -90 deg

 -67.5 deg

 -45 deg

 -22.5 deg

 1-Gain

 1-Phase

 2-Gain

 2-Phase

Gain1--Buck close loop

Figure 6.13: Buck feedback loop measurement setup

89

6.4 Hardware Platform Improvement
There are issues that are exposed after the firmware development on the EVM.
Improvements are required in the EVM to improve performance. Moreover, there
are some suggestions regarding improvements in the micro-controller. The pro-
posed improvements in EVM are closely concerned with this project. However,
they also have a general perspective as well, general to similar applications.

Consequent ADC Triggering

While dealing with real-time applications, it’s important to have a deterministic
analysis of different software tasks. This will help to have an accurate timing anal-
ysis. Moreover, a discrete system implementation is required to sample feedback
signal at particular instants as discussed in section 5.3. This adds further impor-
tance to deterministic timing analysis. Non-critical signals, i.e., output voltages,
are sampled in time slots between sampling of critical signals, i.e., output cur-
rents. For example, in the boost converter all the non-critical signals are sampled
after sampling output current feedback. These conversions should be complete
before the buck-boost converter requests sampling of its current feedback. An
ideal scenario would be to start ADC conversion of non-critical signal from end
of conversion (EOC) signal of critical one. In general, an EOC should trigger a
start of conversion (SOC). That means simply routing EOC signal of one SOC
to start another SOC. Unfortunately this is not possible. A technique based on
polling and priority is used instead.

Summarizing the above discussion, a functionality of triggering start of con-
version of SOC from EOC of another one is needed. This is not available on this
TMS320F28035 MCU. This capability will increase the deterministic analysis of
real-time applications. From a hardware design’s perspective, a few multiplexes
are required in the signal routing path. That will not have a significant overhead
but yield a far better application analysis.

Inductor and Output Current feedback

In current mode, it is required to sample output current and inductor current values
at same time due to reasons discussed in section 5.3. There are two sample and
hold circuits in TMS320F28035. But simultaneous sampling is only possible with
pair of channel one from each group, i.e., group A and B. That means A0 can only
be simultaneously sampled with B0. This implies that the output current feedback
should be connected to A0 and the inductor current feedback should be connected
to B0 for any converter. Our EVM does not not support this connection as this
limitation was not known at the time of board development. It is suggested to

90

improve EVM to have these connections. However, the MCU can also be modified
in future versions to remove this limitation in hardware.

91

Chapter 7

Conclusion

Voltage-mode control for a converter driving LEDs poses some limitations on
digital controllers. First, this technique is an indirect way to control current. The
accuracy of the controlled parameter, i.e., the current, is considerably low. Sec-
ondly, the converter models used in this technique are complex, requiring a com-
plex compensator of the same order. This fact poses limitations on switching fre-
quency. A limited improvement in switching frequency can be made by optimiz-
ing firmware but this technique has some inherent limitations. These converters
are inherently non-linear and averaging approximations are applied to develop lin-
ear counterparts. These approximations are based on small signal linearity around
a large signal operating point (Q point). We used these linear continuous-time
models to develop discrete-time non-linear models, again by using some approx-
imation. This approach can be summarized as, first continuous-time linear mod-
els are developed for non-linear converters and later these continuous-time linear
models are converted to discrete-time models. Considerable system behavior in-
formation is lost because of approximations used at both transitions.

A direct approach to problem should be employed. Techniques based on
current-mode control are better suited for driving LEDs. Such techniques are
based on current injection control that uses the fact that current injected into an
inductor from input during the PWM on cycle will end up in output (with some
pre-known scaling factor). This technique can increase the accuracy of the con-
trolled parameter (current). Moreover, it can significantly reduce the complexity
of the compensator. But these techniques also require a transformation from ex-
isting continuous-time models to discrete-time models.

A discrete-time non-linear control developed directly for these converters would
certainly perform better. First, it can depict the exact behavior of system and none
of the system behavior is lost in approximations. Secondly, one of the advan-

92

tages of digital power management is that it is very easy to implement non-linear
control algorithms when compared with analog solution. Advantages of this ca-
pability can be fully reaped by using non-linear model to control power stages.
Lastly these non-linear models are far less complex and a compensator for them
can be realized using far less instructions. That, consequently, increases the up-
per limit on switching frequency. Switching frequency is a major limitation when
compared to analog controllers. In short, use of such models will improve over-
all performance of digital power management solutions and enable them to really
challenge analog counterparts. Unfortunately little work has been done in this re-
gard.

The proposed current control model is based on same motivations. It is a
non-linear discrete-time model proposed in the context of LEDs. There are two
considerations in this regard. First, this uses the current mode control technique
based current injection. Secondly, this model depicts non-linear behavior of con-
verters. The behavior of the converter during the PWM on cycle is used to develop
this model, while the PWM off cycle is not considered as it has no effect on the
value of the output current. This modeling technique was only applied to the
boost converter in our report. This model needs refinement and verification as it
just proposed a way forward.

Some of the measurement techniques currently being used for analog control
loop measurements cannot be directly employed for digital controllers. A new
test setup is proposed to measure open-loop transfer functions for digital con-
trollers. This test-setup performed really well and results are verifiable. But it can
be further refined. The existing test setup is used for closed-loop method. Both
open-loop and closed-loop measurements verified the models developed earlier
with some limitation. Further work is suggested in improving test setups. Further
work is suggested in transforming and interpreting well-known existing test se-
tups for analog controllers to digital controllers.

This discussion can be concluded by a evaluation of TMS320F28035 MCU
for such power control applications. This MCU is optimized for real-time control
applications and offers two distinct features to support digital power control ap-
plications. First, a floating point coprocessor (CLA) is available for control-law
implementation. Availability of two CPUs increases the performance consider-
ably by increasing system bandwidth. Moreover, integration of powerful analog
peripherals like ADC, PWM and comparator modules further enhances the ca-
pabilities. However, a number of limitations and improvements are discussed in
6.4. In short this controller is a complete package for digital power management
solutions.

93

94

Bibliography

[1] Headlamp without Optics Datasheet (LE UW D1W1 01 OSTAR), osram
Semiconductor. [Online]. Available: http//:www.osram.com

[2] M. Day, “LED-driver considerations,” 2004. [Online]. Available:
http://www.ti.com/sc/analogapps

[3] TMS320F28035 Data Sheet. [Online]. Available: http//:www.ti.com

[4] E. Rogers, Understanding Boost Power Stage in Switch Mode Power Stages
(SLVA061), March 1999.

[5] Using the Venable Windows Software Version 4 for Models 3215/3225/3235.
[Online]. Available: http://www.venable.biz

[6] “Using LEDs in Lighting,” US Department of Energy, Tech. Rep. [Online].
Available: http://www1.eere.energy.gov/buildings/ssl/m/using leds.html

[7] L. Balogh, “A Practical Introduction to Digital Power Control (SLUP232),”
Texas Instruments, Tech. Rep., 2005.

[8] TMS320F28035 Product Home Page. [Online]. Available:
http://focus.ti.com/docs/prod/folders/print/tms320f28035.html

[9] How LEDs Work. [Online]. Available:
http://www1.eere.energy.gov/buildings/ssl

[10] S. Winder, Power Supplies for LED Driving. Elsevier Inc., 2008.

[11] “Haitzs law.” [Online]. Available: http//:en.wikipedia.org/wiki/Haitz’s Law

[12] R. Lineback, “Solid State Lighting Set to Boost LED Growth,” May 2006.
[Online]. Available: www.ledsmagazine.com/features/3/5/6

[13] “Hella product page,” light-Headlamps. [Online]. Available: www.hella.com

95

[14] “Visteon product specifications,” light Emitting Diode (LED) Front Light-
ing.

[15] B. Flemming, “New Technologies in Electric-Powered Vehicles [Automo-
tive Electronics],” IEEE Vehicular Technology Magazine, vol. 5, no. 1,
March 2010.

[16] J. Betten, “Control Loop Consideration for an LED Driver,” August 2007.

[17] B.-J. Huang, C.-W. Tang, and J.-H. Wu, “Study of System Dynamics of
High-Power LEDs,” in International Conference on Electronic Materials
and Packaging, December 2006.

[18] D. Gacio, A. Calleja, J. Garcia, J. Ribas, and M. Rico-Secades, “Suitable
Switching Converter Topologies for Automotive Signal Lamps and Head-
lamps Using Power LEDs,” in Industry Applications Society Annual Meet-
ing, 2008. IAS ’08. IEEE, October 2008.

[19] E. Rogers, Understanding Buck Power Stage in Switch Mode Power Stages
(SLVA057), March 1999.

[20] R. Ridley, Analyzing the SEPIC Converter, November 2006. [Online].
Available: http//:www.ridleyengineering.com

[21] C2000 real time microcontroller platform. [Online]. Available:
http://focus.ti.com/mcu/docs/mcuprodoverview.tsp?sectionId=95&tabId=1531&familyId=916

[22] TMS320x2803x Piccolo Control Law Accelerator (CLA)
Reference Guide-Rev. B(SPRUGE6). [Online]. Available:
http://www-s.ti.com/sc/techlit/SPRUGE6

[23] TMS320x2802x,2803 Piccolo Analog-to-Digital Converter and Comparator
(SPRUGE5). [Online]. Available: http//www-s.ti.com/sc/techlit/SPRUGE5

[24] TMS320x2802x, 2803x Piccolo Enhanced Pulse Width Modulator
(SPRUGE9). [Online]. Available: http://www-s.ti.com/sc/techlit/SPRUGE9

[25] TMS320x2802x, 2803 Piccolo High-Resolution Pulse-Width Modulator.
[Online]. Available: http://www-s.ti.com/sc/techlit/SPRUGE8

[26] V. Vorperian, “Simplified analysis of PWM converters using model of PWM
switch. continuous conduction mode,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 26, no. 3, pp. 490 –496, May 1990.

96

[27] ——, “Simplified analysis of PWM converters using model of PWM switch.
Discontinuous conduction mode,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 26, no. 3, pp. 497 –505, May 1990.

[28] Y.-T. Chang and Y.-S. Lai, “Effect of sampling frequency of A/D converter
on controller stability and bandwidth of digital-controlled power converter,”
in 7th International Conference on Power Electronics, October 2007, pp.
625 –629.

[29] M. Rashid, Power Electronics Handbook. Academic Press, 2006.

[30] S. Choudhury, Designing a TMS320F280x Based Digitally Controlled DC-
DC Switching Power Supply (SPRAAB3), July 2005. [Online]. Available:
http://focus.ti.com/lit/an/spraab3/spraab3.pdf

[31] D. Sable and R. Ridley, “Comparison of performance of single-loop and
current-injection control for PWM converters that operate in both continu-
ous and discontinuous modes of operation,” IEEE Transactions on Power
Electronics, vol. 7, no. 1, pp. 136 –142, January 1992.

[32] Y.-S. Jung, J.-Y. Lee, and M.-J. Youn, “A new small signal modeling of
average current mode control,” in 29th Annual IEEE Power Electronics Spe-
cialists Conference, vol. 2, May 1998, pp. 1118 –1124.

[33] Control Suit. [Online]. Available:
http://focus.ti.com/docs/toolsw/folders/print/controlsuite.html

97

Appendix A

Matlab Models

A.1 Buck

%% P l a n t P a r a m e t e r s
Vin = 1 2 . 0 ; % I n p u t V o l t a g e
Vd = 3 . 3 ; % Led Forward v o l t a g e drop
N = 1 ; % No of LEDs
Vo = N∗Vd ; % o u t p u t V o l t a g e
D= Vo / Vin ; % Optimum Duty Cycle
Io = 1 ; % Maximum Outpu t C u r r e n t
L = 10e−6; % I n d u c t e r
C = 1 4 . 1 e−6; % C a p i t o r
Rc = 0 . 0 3 1 ; % C a p c i t o r P a r a s i t i c R e s i s t a n c e
Rl = 0 . 0 4 7 ; % I n d u c t e r P a r a s i t i c r e s i s t a n c e
F = 500 e3 ; % Sampl ing Frequency
Ts = 1 / F ; % Sampl ing P e r i o d
Td= 0.5∗Ts ; % Time Delay from Sampl ing t o Outpu t Update
Kd= 1 / 3 . 3 ;
%% F a c t o r I n t r o d u c e d due t o C u r r e n t C o n t r o l
Rs = 0 . 0 2 ; % Shunt R e s i s t a n c e t o measure c u r r e n t
Rd = 0 . 8 5 ; % Led Dynamic r e s i s t a n c e
R = (Rd∗N)+ Rs ; % T o t a l Led Load Dynamic R e s i s t a n c e
Gamp = 3 0 ; % C u r r e n t s e n s e a m p l i f i e r g a i n
Gi = Gamp∗Rs / R ; % T r a n s f e r F u n c t i o n f o r Outpu t C u r r e n t t o Outpu t V o l t a g e
Gdc = Vin∗R / (R+Rl) ; % Dc f a c t o r i n T r a n s f e r f u n c t i o n
%%%%%%%%%%%%%% Numerator o f Buck C o n v e r t e r T r a n s f e r F u n c t i o n %%%%%%%
n1 = Rc∗C ;
n0 = 1 ;
num Gps = Gdc∗Gi∗[n1 n0] ;
%%%%%%%%%%%%%% Denominator o f Buck C o n v e r t e r T r a n s f e r F u n c t i o n %%%%%%%
d2 = (L∗C∗(R+Rc)) / (R+Rl) ;
d1 = (C∗(Rc + ((R∗Rl) / (R+Rl)))) + (L / (R+Rl)) ;
d0 = 1 ;
denom Gps = [d2 d1 d0] ; % Denominator
%% C o n t i n u o s T a n s f e r F u n c t i o n
Gps dly Buck = t f (num Gps , denom Gps , i n p u t d e l a y , Td) ;
%% C o n t i n u o s T a n s f e r F u n c t i o n
Gpz Buck = c2d (Gps dly Buck∗Kd , Ts , zoh) ;
s i s o t o o l (bode , Gpz Buck) ;

A.2 Boost

%% P l a n t P a r a m e t e r s
Vin = 1 2 . 1 ; % I n p u t V o l t a g e
Vd = 2 . 9 0 6 ; % Led Forward v o l t a g e drop
N = 1 0 ; % No of LEDs
Vo = N∗Vd ; % o u t p u t V o l t a g e

98

D= 1−(Vin / Vo) ; % Optimum Duty Cycle
Io = 1 ; % Maximum Outpu t C u r r e n t
L = 39e−6; % I n d u c t e r
Rl = 0 . 0 4 7 ; % I n d u c t e r p a r a s i t i c R e s i s t a n c e
C = 30e−6; % C a p a c i t o r
Rc = 0 . 0 3 1 ; % P a r s i t i c R e s i s t a n c e
F = 500 e3 ; % Sampl ing Frequency
Ts = 1 / F ; % Sampl ing P e r i o d
Td= 0.5∗Ts ; % Delay from Sampl ing t o o u t p u t u p d a t e
Kd = 1 / 3 . 3 ;
%% F a c t o r I n t r o d u c e d due t o C u r r e n t C o n t r o l
Rs = 0 . 1 ; % Shunt R e s i s t a n c e t o measure c u r r e n t
Rd = 1 . 3 7 5 ; % Led Dynamic r e s i s t a n c e
R =(Rd∗N)+ Rs ; % T o t a l Led Load Dynamic R e s i s t a n c e
Kamp = 2 0 ; % A m p l i f i e r g a i n
Gi = Rs∗Kamp / R ; % C u r r e n t f a c t o r
%% P l a n t T r a n s f e r F u n c t i o n
D1 = (1−D) ˆ 2 ;
Gd0 = Vin / D1 ;
Wz1 = 1 / (Rc∗C) ;
Wz2 = (D1∗R−Rl) / L ;
Wo = (1 / s q r t (L∗C))∗ s q r t ((Rl +(D1∗R)) / R) ;
Q = Wo / ((Rl / L) + (1 / (C∗(R+Rc)))) ;
% Numerator o f Boos t C o n v e r t e r T r a n s f e r F u n c t i o n
n2 = −1/(Wz1∗Wz2) ;
n1 = (1 / Wz1)−(1/Wz2) ;
n0 = 1 ;
num Gps = Gd0∗Gi∗[n2 n1 n0] ;
% Denominator o f Boos t1 C o n v e r t e r T r a n s f e r F u n c t i o n
d2 = 1 / (Woˆ 2) ;
d1 = 1 / (Wo∗Q) ;
d0 = 1 ;
denom Gps = [d2 d1 d0] ; % Denominator
%% C o n t i n u o s T a n s f e r F u n c t i o n
G p s d l y B o o s t 1 = t f (num Gps , denom Gps , i n p u t d e l a y , Td) ;
%% C o n t i n u o s T a n s f e r F u n c t i o n
Gpz Boost1 = c2d (G p s d l y B o o s t 1∗Kd , Ts , zoh) ;
s i s o t o o l (bode , Gpz Boost1) ;

A.3 Buck-Boost

%% P l a n t P a r a m e t e r s %%%%%%%%%%%%%%%%%%%%%%%%%
Vin = 1 2 . 0 ; % I n p u t V o l t a g e
Vd = 3 . 3 ; % Led Forward v o l t a g e drop
N = 4 ; % No of LEDs
Vo = N∗Vd ; % o u t p u t V o l t a g e
D = 1−(Vin / Vo) ; % Optimum Duty Cycle
Io = 1 ; % Maximum Outpu t C u r r e n t
L = 39e−6; % I n d u c t e r
Rl = 0 . 0 4 7 ; % I n d u c t e r P a r a s i t i c R e s i s t a n c e
C = 30e−6; % C a p a s i t a n c e
Rc = 0 . 0 3 1 ; % C a p a c i t o r P a r a s i t i c R e s i s t a n c e
F = 300 e3 ; % Sampl ing Frequency
Ts = 1 / F ; % Sampl ing P e r i o d
Td= 0.25∗Ts ; % Delay from Sampl ing t o Outpu t Update
Kd = 1 / 3 . 3 ;
%% F a c t o r I n t r o d u c e d due t o C u r r e n t C o n t r o l
Rs = 0 . 1 ; % Shunt R e s i s t a n c e t o measure c u r r e n t
Rd = 0 . 8 5 ; % Led Dynamic r e s i s t a n c e
R =(Rd∗N)+ Rs ; % T o t a l Led Load Dynamic R e s i s t a n c e
Kamp = 2 0 ; % A m p l i f i e r g a i n
Gi = Rs∗D∗Kamp / R ; % c u r r e n t f a c t o r
%% P l a n t T r a n s f e r F u c t i o n
D1 = (1−D) ˆ 2 ;
Gd0 = Vin / D1 ;
Wz1 = 1 / (Rc∗C) ;
Wz2 = (D1∗(R−Rl)) / L ;
Wo = (1 / s q r t (L∗C))∗ s q r t ((Rl +(D1∗R)) / R) ;
Q = Wo / ((Rl / L) + (1 / (C∗(R+Rc)))) ;
% Numerator o f Buck−Boost C o n v e r t e r T r a n s f e r F u n c t i o n
n2 = −1/(Wz1∗Wz2) ;
n1 = (1 / Wz1)−(1/Wz2) ;
n0 = 1 ;
num Gps = Gd0∗Gi∗[n2 n1 n0] ;
% Denominator o f Buck−Boost C o n v e r t e r T r a n s f e r F u n c t i o n
d2 = 1 / (Woˆ 2) ;
d1 = 1 / (Wo∗Q) ;
d0 = 1 ;

99

denom Gps = [d2 d1 d0] ; % Denominator
%% C o n t i n u s T r a n s f e r F u n c t i o n
G p s d l y B o o s t 2 = t f (num Gps , denom Gps , i n p u t d e l a y , Td) ;
%% D i s c r e t e T r a n s f e r F u n c t i o n
Gpz Boost2 = c2d (G p s d l y B o o s t 2∗Kd , Ts , zoh) ;
s i s o t o o l (bode , Gpz Boost2) ;

A.4 SEPIC

%% P l a n t P a r a m e t e r s
Vin = 1 2 . 0 ; % I n p u t V o l t a g e
Vd = 3 . 3 ; % Led Forward v o l t a g e drop
N = 1 0 ; % No of LEDs
Vo = N∗Vd ; % o u t p u t V o l t a g e
D= Vo / (Vin+Vo) ; % Optimum Duty Cycle
Io = 1 ; % Maximum Outpu t C u r r e n t
D1 = Dˆ 2 ; % Duty Cycle Squre f o r s i m p l i f y i n g
D2 = (1−D) ˆ 2 ; % (1−Duty Cycle) Squre f o r s i m p l i f y i n g
L1 = 15e−6; % I n d u c t e r 1
L2 = 15e−6; % I n d u c t e r 2
C1 = 1 4 . 1 e−6; % C a p a c i t o r 1
C2 = 30e−6; % C a p a c i t o r 2
F = 300 e3 ; % Sampl ing Frequency
Ts = 1 / F ; % Sampl ing P e r i o d
Td = 0.25∗Ts ; % Delay from Sampl ing t o Outpu t Update
Kd= 1 / 3 . 3 ;
%% F a c t o r I n t r o d u c e d due t o C u r r e n t C o n t r o l
Rs = 0 . 1 ; % Shunt R e s i s t a n c e t o measure c u r r e n t
Rd = 0 . 8 5 ; % Led Dynamic r e s i s t a n c e
R = (Rd∗N)+ Rs ; % T o t a l Led Load Dynamic R e s i s t a n c e
Kamp = 2 0 ; % A m p l i f i e r g a i n
Gi = Rs∗Kamp / R ;
%% P l a n t T r a n s f e r F u n c t i o n
Gdc = 1/((1−D) ˆ 2) ;
Wz1 = (L1∗D1) / (R∗D2) ;
Wz2 = (D2∗(L1+L2)∗R∗C1) / (L1∗D1) ;
Wz3 = (L2∗C1) / D;
A0 = (L1∗C1∗C2) / ((L1∗C1)+C2) ;
A1 = (L2∗C1∗C2) / ((L2∗C1∗D2) + (C2∗D1)) ;
Wo1 = 1 / s q r t ((L1∗ ((C2∗D1 / D2)+C1)) + (L2∗(C1+C2))) ;
Wo2 = s q r t ((1 / A0) + (1 / A1)) ;
Q1 = (R∗D2) / (Wo1∗ ((L1∗D1) + (L2∗D2))) ;
Q2 = (R∗C2∗Wo2) / ((L1+L2)∗C1∗(Wo1 ˆ 2)) ;
% Numerator o f Boos t1 C o n v e r t e r T r a n s f e r F u n c t i o n
n3 = −1∗Wz1∗Wz3 ;
n2 = (Wz1∗Wz2) + Wz3 ;
n1 = −1∗(Wz1+Wz2) ;
n0 = 1 ;
num Gps = Gdc∗Gi∗[n3 n2 n1 n0] ;
% Denominator o f Boos t1 C o n v e r t e r T r a n s f e r F u n c t i o n
d4 = 1 / ((Wo1ˆ 2)∗ (Wo2 ˆ 2)) ;
d3 = (1 / (Wo2∗Q2∗(Wo1 ˆ 2))) + (1 / (Wo1∗Q1∗(Wo2 ˆ 2))) ;
d2 = (1 / (Wo1 ˆ 2)) + (1 / (Wo2 ˆ 2)) + (1 / (Wo1∗Wo2∗Q1∗Q2)) ;
d1 = (1 / (Wo1∗Q1)) + (1 / (Wo2∗Q2)) ;
d0 = 1 ;
denom Gps = [d4 d3 d2 d1 d0] ; % Denominator
%% C o n t i n u o s T a n s f e r F u n c t i o n
G p s d l y S e p i c = t f (num Gps , denom Gps , i n p u t d e l a y , Td) ;

%% C o n t i n u o s T a n s f e r F u n c t i o n
Gpz Sepic = c2d (G p s d l y S e p i c∗Kd , Ts , zoh) ;
s i s o t o o l (bode , Gpz Sepic) ;

A.5 Filter Conversion Script

A.5.1 Convert.m
Script for converting compensator transfer function for inputting in 2nd order filter
implemented in TMS320F28035 micro-controller.

100

Z0 = i n p u t (E n t e r Z0) ;
Z1 = i n p u t (E n t e r Z1) ;
Z2 = i n p u t (E n t e r Z2) ;
P1 = i n p u t (E n t e r P1) ;
P2 = i n p u t (E n t e r P2) ;
x= 2 ˆ 2 6 ;
B0 = Z0∗x ;
B1 = −Z0∗(Z2+Z1)∗x ;
B2 = Z0∗Z1∗Z2∗x ;
A1 = (P1+P2)∗x ;
A2 = −1∗P1∗P2∗x ;

A.5.2 Convert2.m
Script for converting compensator transfer function for inputting in 3nd order filter
implemented in TMS320F28035 micro-controller.

Z0 = i n p u t (E n t e r Z0) ;
Z1 = i n p u t (E n t e r Z1) ;
Z2 = i n p u t (E n t e r Z2) ;
Z3 = i n p u t (E n t e r Z2) ;
P1 = i n p u t (E n t e r P1) ;
P2 = i n p u t (E n t e r P2) ;
P3 = i n p u t (E n t e r P2) ;
x= 2 ˆ 2 6 ;
B0 = Z0∗x ;
B1 = −Z0∗(Z3+Z2+Z1)∗x ;
B2 = x∗Z0∗ ((Z3∗(Z1+Z2)) + Z1∗Z2) ;
B3 = −1∗Z0∗Z1∗Z2∗Z3∗x ;
A1 = (P1+P2+P3)∗x ;
A2 = −1∗(P1∗P2+ (P3∗(P1+P2)))∗ x ;
A3 = P1∗P2∗P3∗x ;

A.6 Current Mode Control

%% P l a n t P a r a m e t e r s
Vin = 1 2 . 0 ; % I n p u t V o l t a g e
L = 39e−6; % I n d u c t e r
Rl = 0 . 0 4 7 ; % I n d u c t e r p a r a s i t i c R e s i s t a n c e
F = 500 e3 ; % Sampl ing Frequency
Ts = 1 / F ; % Sampl ing P e r i o d
Td= 0.5∗Ts ; % Delay from Sampl ing t o o u t p u t u p d a t e
%% P l a n t T r a n s f e r F u n c t i o n
Gdc = Vin∗Ts / (2∗ Rl) ;
% Numerator o f Boos t C o n v e r t e r T r a n s f e r F u n c t i o n
n0 = 1 ;
num Gps = Gdc∗n0 ;
% Denominator o f Boos t1 C o n v e r t e r T r a n s f e r F u n c t i o n
d1 = L / Rl ;
d0 = 1 ;
denom Gps = [d1 d0] ; % Denominator
%% C o n t i n u o s T a n s f e r F u n c t i o n
G p s d l y B o o s t 1 = t f (num Gps , denom Gps , i n p u t d e l a y , Td) ;
%% C o n t i n u o s T a n s f e r F u n c t i o n
Gpz Boost1 = c2d (Gps d ly Boos t1 , Ts , zoh) ;
s i s o t o o l (bode , Gpz Boost1) ;

101

Appendix B

Firmware

This section contains complete software implementation

B.1 Main.c

i n c l u d e ”LedDemo−S e t t i n g s . h ”
i n c l u d e ” P e r i p h e r a l H e a d e r I n c l u d e s . h ”
i n c l u d e ” DSP280x EPWM defines . h ”
i f d e f i n e d (CLA TYPE0)

i n c l u d e ”LedDemo−CLAShared . h ”
e n d i f

i n c l u d e ” DPLib . h ”

/ /%%%
/ / FUNCTION PROTOTYPES
/ /%%%

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− FRAMEWORK−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
vo id D e v i c e I n i t (vo id) ;
vo id I S R I n i t (vo id) ;

i f d e f FLASH

vo id I n i t F l a s h () ;
vo id MemCopy(Uin t16∗∗ , U in t16∗∗ , U in t16 ∗∗) ;
pragma CODE SECTION(c l a 1 i s r , ” r amfuncs ”) ;
pragma CODE SECTION(Pwm3 Dim , ” ramfuncs ”) ;
pragma CODE SECTION(Pwm6 Dim , ” ramfuncs ”) ;

e n d i f / / (FLASH)

/ / S t a t e Machine f u n c t i o n p r o t o t y p e s
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / Alpha s t a t e s
vo id A0(vo id) ; / / s t a t e A0
vo id B0 (vo id) ; / / s t a t e B0
vo id C0 (vo id) ; / / s t a t e C0

/ / A bra nc h s t a t e s
vo id A1(vo id) ; / / s t a t e A1

/ / B bra nc h s t a t e s
vo id B1 (vo id) ; / / s t a t e B1
vo id B2 (vo id) ; / / s t a t e B2
vo id B3 (vo id) ; / / s t a t e B3
vo id B4 (vo id) ; / / s t a t e B4
vo id B5 (vo id) ; / / s t a t e B5

102

/ / C b ra nc h s t a t e s
vo id C1 (vo id) ; / / s t a t e C1
vo id C2 (vo id) ; / / s t a t e C2
vo id C3 (vo id) ; / / s t a t e C3

/ / V a r i a b l e d e c l a r a t i o n s
vo id (∗ A l p h a S t a t e P t r) (vo id) ; / / Base S t a t e s p o i n t e r
vo id (∗ A T a s k P t r) (vo id) ; / / S t a t e p o i n t e r A br an c h
vo id (∗ B T a s k P t r) (vo id) ; / / S t a t e p o i n t e r B br an c h
vo id (∗ C T a s k P t r) (vo id) ; / / S t a t e p o i n t e r C br an c h

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− USER −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
vo id BuckSingle CNF (i n t n , i n t prd , i n t mode , i n t phase) ;
vo id ADC CascSeqCNF (i n t ChSel [] , i n t T r i g S e l [] , i n t ACQPS, i n t Conv , i n t mode) ;

vo id Dimming CNF (i n t n , i n t p e r i o d) ;

i n t e r r u p t vo id c l a 1 i s r (vo id) ;

vo id I S R C i n i t (vo id) ;

vo id t r i p 1 (vo id) ;
vo id t r i p 2 (vo id) ;
vo id t r i p 3 (vo id) ;
vo id t r i p 4 (vo id) ;

vo id o f s e t m e a s (vo id) ;

/ / / dimming f u c t i o n / / / / / / / / /

vo id dimming (vo id) ;

vo id r e f c h e c k (vo id) ;

i f (Dimming == 2)
i n t e r r u p t vo id Pwm3 Dim (vo id) ;
i n t e r r u p t vo id Pwm6 Dim (vo id) ;
i n t e r r u p t vo id Pwm7 Dim (vo id) ;
e n d i f

/ / %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

s t r u c t inputDS2P2Z {
l ong o f s e t ;
l ong r e f e r e n c e ;
f l o a t b2 ;
f l o a t b1 ;
f l o a t b0 ;
f l o a t a2 ;
f l o a t a1 ;
f l o a t max ;
f l o a t min ;
} ;

s t r u c t inputDS3P3Z {
l ong o f s e t ;
l ong r e f e r e n c e ;
f l o a t b3 ;
f l o a t b2 ;
f l o a t b1 ;
f l o a t b0 ;
f l o a t a3 ;
f l o a t a2 ;
f l o a t a1 ;
f l o a t max ;
f l o a t min ;
} ;

/ /%%
/ / VARIABLE DECLARATIONS − GENERAL
/ /%%

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Glob a l V e r i a b l e s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
i n t 1 6 o f s e t 1 ; / / Boos t1 o f s e t
i n t 1 6 o f s e t 2 ; / / Boos t2 o f s e t
i n t 1 6 o f s e t 4 ; / / Buck o f s e t
i n t 1 6 o f s e t 5 ; / / S e p i c o f s e t

i n t 1 6 B o o s t 1 T h r e s h o l d ; / / Over V o l t a g e R e f e r e n c e f o r Boos t1
i n t 1 6 B o o s t 2 T h r e s h o l d , Boost2Temp ; / / Over V o l t a g e REfe rence f o r Boos t2

103

i n t 1 6 Buck Thre sho ld ; / / Over V o l t a g e R e f e r e n c e f o r Buck
i n t 1 6 S e p i c T h r e s h o l d ; / / Over V o l t a g e R e f e r e n c e f o r S e p i c

Uin t16 b1temp , b2temp , btemp , s temp ;

/ / G lob a l F l a g s f o r i n d i c a t i n g OV C o n d i t i o n s T r i g e r e d i n CLA Task4
/ / ISR & C l e a r e d i n main loop wi th C l e a r OVP f l a g s

i n t 1 6 Boost1 OVF , Boost2 OVF , Buck OVF , Sepic OVF ;

/ / / / / / / / / / / / / / / / / u s e r / / / / / / / / / /

e x t e r n c o n s t i n t 1 6 Boost1RefMax = 20480 ; / / e q u a l t o 40 i n Q9
e x t e r n c o n s t i n t 1 6 Boost2RefMax = 8704 ; / / e q u a l t o 19 i n Q9
e x t e r n c o n s t i n t 1 6 BuckRefMax = 15240 ; / / e q u a l t o 7 i n Q10
e x t e r n c o n s t i n t 1 6 SepicRefMax = 20480 ; / / e q u a l t o 40 i n Q9

/ / S c a l i n g C o n s t a n t s (v a l u e s found v i a s p r e a d s h e e t ; e x a c t v a l u e c a l i b r a t e d p e r boa rd)
i n t 1 6 K Vin , K I i n ;
i n t 1 6 K Vsepic , K I s e p i c , K I s e p i c I n d , iK Vsep ic , i K I s e p i c ;
i n t 1 6 K Vboost1 , K Iboos t1 , K I b o o s t 1 I n d , iK Vboost1 , i K I b o o s t 1 ;
i n t 1 6 K Vboost2 , K Iboos t2 , K I b o o s t 2 I n d , iK Vboost2 , i K I b o o s t 2 ;
i n t 1 6 K Vbuck , iK Vbuck , K Ibuck , K IbuckInd , i K I b u c k ;

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− FRAMEWORK−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i n t 1 6 VTimer0 [2] ; / / V i r t u a l Timers s l a v e d o f CPU Timer 0 (A e v e n t s)
i n t 1 6 VTimer1 [2] ; / / V i r t u a l Timers s l a v e d o f CPU Timer 1 (B e v e n t s)
i n t 1 6 VTimer2 [2] ; / / V i r t u a l Timers s l a v e d o f CPU Timer 2 (C e v e n t s)
i n t 1 6 HRmode ;

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− USER −−−
/ / The CLA w i l l work wi th f l o a t i n g p o i n t c o e f f i c i e n t s and w i l l
/ / d i r e c t l y a c c e s s t h e ADC r e s u l t r e g i s t e r

e x t e r n v o l a t i l e Uin t16 ∗CNTL 2P2Z Fdbk1 , ∗CNTL 2P2Z Fdbk2 , ∗CNTL 2P2Z Fdbk4 ,∗CNTL 3P3Z CLA Fdbk5 ;
/ / f o r S e p i c 3p−3z f i l t e r

e x t e r n s t r u c t inputDS2P2Z ∗CNTL 2P2Z Coef1 , ∗CNTL 2P2Z Coef2 , ∗CNTL 2P2Z Coef4 ;
e x t e r n s t r u c t inputDS3P3Z ∗CNTL 3P3Z CLA Coef5 ; / / f o r S e p i c 3p−3z f i l t e r

s t r u c t inputDS2P2Z Coef2P2Z 1 , Coef2P2Z 2 , Coef2P2Z 4 ;
s t r u c t inputDS3P3Z Coef2P2Z 5 ;

/ / The f o l l o w i n g a r e messages from t h e main CPU t o t h e CLA

pragma DATA SECTION(Coef2P2Z 1 , ”CpuToCla1MsgRAM”) ;
pragma DATA SECTION(Coef2P2Z 2 , ”CpuToCla1MsgRAM”) ;
pragma DATA SECTION(Coef2P2Z 4 , ”CpuToCla1MsgRAM”) ;
pragma DATA SECTION(Coef2P2Z 5 , ”CpuToCla1MsgRAM”) ;

i n t 1 6 SlewErro r , Duty [5] ;

i n t 1 6 Vsepic , VREFsepic , DmaxSepic ;
i n t 1 6 Vboost1 , VREFboost1 , DmaxBoost1 ;
i n t 1 6 Vboost2 , VREFboost2 , DmaxBoost2 ;
i n t 1 6 Vbuck , VREFbuck , DmaxBuck ;

i n t 1 6 DmaxBoost1Dim , DmaxBoost2Dim , DmaxSepicDim ;

f l o a t DmaxBoost1Dimf , DmaxBoost2Dimf , DmaxSepicDimf ;
f l o a t DmaxBoost1f , DmaxBoost2f , DmaxSepicf ;

l ong UOUTsepic , UOUTboost1 , UOUTboost2 , UOUTbuck ;

i n t 1 6 IREFsepic , IREFboost1 , IREFboost2 , IREFbuck ;
i n t 1 6 IMAXsepic , IMAXboost1 , IMAXboost2 , IMAXbuck ;
i n t 1 6 VMAXsepic , VMAXboost1 , VMAXboost2 , VMAXbuck ;

i n t 1 6 IREFsepicTemp , IREFboost1Temp , IREFboost2Temp , IREFbuckTemp ;

i n t ChSel [1 6] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
i n t T r i g S e l [1 6] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;

/ / ASM Module Te r m i n a l p o i n t e r s and v a r i a b l e s

e x t e r n long ∗Buck In1 , ∗Buck In2 , ∗Buck In4 , ∗Buck In5 ; / / Buck In3 n o t used (EPWM3)

s h o r t i n i t f l a g 1 , i n i t f l a g 2 , i n i t f l a g 3 , i n i t f l a g 4 ;
s h o r t f i n f l a g 1 , f i n f l a g 2 , f i n f l a g 3 , f i n f l a g 4 ;
/ /%%
/ / VARIABLE DECLARATIONS − CCS WatchWindow / GUI s u p p o r t
/ /%%

104

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− FRAMEWORK−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ /−−−−−−−−−−−−−−These v a r i a b l e s w i l l on ly be used w h i l e r u n n i n g from f l a s h−−−−−−−−−−−−−−−−//

i f d e f FLASH

i n t 1 6 SerialCommsTimer , CommsOKflg ;

/ / Used f o r r u n n i n g BackGround i n f l a s h , and ISR i n RAM

e x t e r n Uin t16 ∗RamfuncsLoadSta r t , ∗RamfuncsLoadEnd , ∗RamfuncsRunSta r t ;
e x t e r n Uin t16 ∗C l a 1 P r o g L o a d S t a r t , ∗Cla1ProgLoadEnd , ∗C l a 1 P r o g R u n S t a r t ;

/ / GUI s u p p o r t v a r i a b l e s
/ / s e t s a l i m i t on t h e amount o f e x t e r n a l GUI c o n t r o l s − i n c r e a s e as n e c e s s a r y

i n t 1 6 ∗v a r S e t T x t L i s t [1 6] ; / / 16 t e x t b o x c o n t r o l l e d v a r i a b l e s
i n t 1 6 ∗v a r S e t B t n L i s t [1 6] ; / / 16 b u t t o n c o n t r o l l e d v a r i a b l e s
i n t 1 6 ∗ v a r S e t S l d r L i s t [1 6] ; / / 16 s l i d e r c o n t r o l l e d v a r i a b l e s
i n t 1 6 ∗v a r G e t L i s t [1 6] ; / / 16 v a r i a b l e s s e n d a b l e t o GUI
i n t 1 6 ∗ a r r a y G e t L i s t [1 6] ; / / 16 a r r a y s s e n d a b l e t o GUI

Uin t16 FbBuf [BUF LEN] ;
Uin t16 PwmBuf [BUF LEN] ;

pragma DATA SECTION(FbBuf , ” da taLog ”) ;
pragma DATA SECTION(PwmBuf , ” da taLog ”) ;

e n d i f

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− USER −−−

/ / Moni to r (” Get ”) / / D i s p l a y as :
i n t 1 6 Gui Vin ; / / Q9
i n t 1 6 G u i I i n ; / / Q11
i n t 1 6 Gui Vsep ic , Gui Vboost1 , Gui Vboost2 , Gui Vbuck ; / / Q9
i n t 1 6 G u i I s e p i c , G u i I b o o s t 1 , G u i I b o o s t 2 ; / / Q14
i n t 1 6 G u i I b u c k ; / / Q11

/ / S e t v a r i a b l e s
i n t 1 6 G u i I s e t S e p i c , G u i I s e t B o o s t 1 , G u i I s e t B o o s t 2 , G u i I s e t B u c k ;
i n t 1 6 Gui EnPWR ;
i n t 1 6 G u i E n B l i n k e r ;

i n t 1 6 Pga inSep i c , Pga inBoos t1 , Pga inBoos t2 , PgainBuck ; / / ” c o u n t s ” (Q0)
i n t 1 6 I g a i n S e p i c , I g a i n B o o s t 1 , I g a i n B o o s t 2 , Iga inBuck ; / / ” c o u n t s ” (Q0)
i n t 1 6 DgainSepic , DgainBoost1 , DgainBoost2 , DgainBuck ; / / ” c o u n t s ” (Q0)

/ / V a r i a b l e s f o r background s u p p o r t on ly (no need t o a c c e s s)
i n t 1 6 i , H i s t P t r , t e m p S c r a t c h ; / / Temp h e r e means Temporary

/ / H i s t o r y a r r a y s a r e used f o r Running Average c a l c u l a t i o n (bo xc a r f i l t e r)
/ / Used f o r CCS d i s p l a y and GUI only , n o t p a r t o f c o n t r o l l oop p r o c e s s i n g
i n t 1 6 VinH [H i s t o r y S i z e] , I inH [H i s t o r y S i z e] ;
i n t 1 6 VsepicH [H i s t o r y S i z e] , Vboost1H [H i s t o r y S i z e] ;
i n t 1 6 Voost2H [H i s t o r y S i z e] , VbuckH [H i s t o r y S i z e] ;
i n t 1 6 I s e p i c H [H i s t o r y S i z e] , Iboos t1H [H i s t o r y S i z e] ;
i n t 1 6 Iboos t2H [H i s t o r y S i z e] , IbuckH [H i s t o r y S i z e] ;
i n t 1 6 I s e p i c I n d H [H i s t o r y S i z e] , I b o o s t 1 I n d H [H i s t o r y S i z e] ;
i n t 1 6 I b o o s t 2 I n d H [H i s t o r y S i z e] , IbuckIndH [H i s t o r y S i z e] ;

i n t 1 6 I i n R C a l i b ;

/ /−−− USER −−//

i n t 1 6 ClearBoost1 OVF ;
i n t 1 6 ClearBoost2 OVF ;
i n t 1 6 ClearBuck OVF ;
i n t 1 6 ClearSepic OVF ;
i n t 1 6 En dim ;
i n t 1 6 temp2 ;
i n t 1 6 Boos t1 d im ;
i n t 1 6 Boos t2 d im ;
i n t 1 6 Buck dim ;
i n t 1 6 S e p i c d i m ;
i n t 1 6 Boost1 dim DC ;
i n t 1 6 Boost2 dim DC ;
i n t 1 6 Buck dim DC ;
i n t 1 6 Sepic dim DC ;
i n t 1 6 pwm3 flag ;
i n t 1 6 pwm6 flag ;

105

i n t 1 6 s1 , s2 , s3 , s4 , s5 , s6 , s7 , s8 ;

i n t 1 6 Var ;
/ /%%
/ / MAIN CODE − s t a r t s h e r e
/ /%%

void main (vo id)
{
Var = 0 ;
/ / ===
/ / INITIALISATION − G e n e r a l
/ / ===

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− FRAMEWORK−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

D e v i c e I n i t () ; / / Device L i f e s u p p o r t & GPIO
/ / Only used i f r u n n i n g from FLASH
i f d e f FLASH
/ / Copy t ime c r i t i c a l code and F l a s h s e t u p code t o RAM. The RamfuncsLoadSta r t , RamfuncsLoadEnd
/ / and RamfuncsRunSta r t symbols a r e c r e a t e d by t h e l i n k e r . R e f e r t o t h e l i n k e r f i l e s .
MemCopy(& RamfuncsLoadSta r t , &RamfuncsLoadEnd , &RamfuncsRunSta r t) ;
/ / C a l l F l a s h I n i t i a l i z a t i o n t o s e t u p f l a s h w a i t s t a t e s . Th i s f u n c t i o n must r e s i d e i n RAM
I n i t F l a s h () ; / / C a l l t h e f l a s h wrapper i n i t f u n c t i o n
i f d e f i n e d (CLA TYPE0)
/ / Copy t h e CLA program code from i t s l o a d a d d r e s s t o t h e CLA program memory
MemCopy(& C l a 1 P r o g L o a d S t a r t , &Cla1ProgLoadEnd , &C l a 1 P r o g R u n S t a r t) ;
e n d i f / / (CLA TYPE0)

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / Timing sync f o r background l o o p s
/ / Timer p e r i o d d e f i n i t i o n s found i n P e r i p h e r a l H e a d e r I n c l u d e s . h
CpuTimer0Regs . PRD . a l l = mSec1 ; / / A t a s k s
CpuTimer1Regs . PRD . a l l = mSec2 ; / / B t a s k s
CpuTimer2Regs . PRD . a l l = mSec200 ; / / C t a s k s
/ / Tasks S t a t e−machine i n i t
A l p h a S t a t e P t r = &A0 ;
A T a s k P t r = &A1 ;
B T a s k P t r = &B1 ;
C T a s k P t r = &C1 ;
VTimer0 [0] = 0 ;
VTimer1 [0] = 0 ; VTimer1 [1] = 0 ;
VTimer2 [0] = 0 ;
HRmode = 1 ; / / D e f a u l t t o HR mode e n a b l e d
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− USER −−−
ClearBoost1 OVF =0;
ClearBoost2 OVF =0;
ClearBuck OVF =0;
ClearSepic OVF =0;

/ /−−−−−−−−−−−−−−−−−−−−//
Boost1 OVF =0;
Boost2 OVF =0;
Buck OVF =0;
Sepic OVF =0;

/ /−−−−−−−−−−−−−−−−−−−−//
En dim = 0 ;
Boos t1 d im = 0 ;
Boos t2 d im = 0 ;
Buck dim = 0 ;
S e p i c d i m = 0 ;

/ /−−−−−−−−−−−−−−−−−−//
i n i t f l a g 1 =1;
i n i t f l a g 2 =1;
i n i t f l a g 3 =1;
i n i t f l a g 4 =1;
f i n f l a g 1 =0;
f i n f l a g 2 =0;
f i n f l a g 3 =0;
f i n f l a g 4 =0;

/ /−−−−−−−−−−−−−−−−−−//
B o o s t 1 T h r e s h o l d =20480; / / e q u a l t o 40 i n Q9
B o o s t 2 T h r e s h o l d =8192; / / e q u a l t o 19 i n Q9
Buck Thre sho ld =12288; / / e q u a l t o 7 i n Q10
S e p i c T h r e s h o l d =20480; / / e q u a l t o 42 i n Q9
Boost1 dim DC = 500 ;
Boost2 dim DC = 500 ;
Buck dim DC = 500 ;
Sepic dim DC = 500 ;

/ / For LED s t r i n g boa rd
DmaxSepic = 820 ; DmaxBoost1 = 700 ; DmaxBoost2 = 700 ; DmaxBuck = 950 ;
DmaxSepicDim = 600 ; DmaxBoost1Dim = 600 ; DmaxBoost2Dim = 600 ;
DmaxBoost1f = IQ26toF (DmaxBoost1 ∗ 6 7 1 0 8) ;
DmaxBoost2f = IQ26toF (DmaxBoost2 ∗ 6 7 1 0 8) ;

106

DmaxSepicf = IQ26toF (DmaxSepic ∗ 6 7 1 0 8) ;
UOUTsepic = 0 ; UOUTboost1 = 0 ; UOUTboost2 = 0 ; UOUTbuck = 0 ;
IREFsep ic = 0 ; IREFboost1 = 0 ; IREFboost2 = 0 ; IREFbuck = 0 ;
IREFsepicTemp = 0 ; IREFboost1Temp = 0 ; IREFboost2Temp = 0 ; IREFbuckTemp = 0 ;
/ / 2 p o l e / 2 Zero compensa to r c o e f f i c i e n t s (B2 , B1 , B0 , A2 , A1) a r e mapped t o t h e s i m p l e r
/ / 3 c o e f f i c i e n t s P , I , D t o a l l o w f o r t r i a l & e r r o r i n t u i t i v e t u n i n g v i a CCS WatchWindow
/ / o r GUI S l i d e r s . Note : User can modify i f needed and a s s i g n f u l l s e t o f 5 c o e f .

P g a i n S e p i c = 1 ; I g a i n S e p i c = 1 ; Dga inSep ic = 5 ; / / ve ry ” l o o s e ” i n i t i a l l y
Pga inBoos t1 = 1 ; I g a i n B o o s t 1 = 1 ; DgainBoos t1 = 5 ; / / ve ry ” l o o s e ” i n i t i a l l y
Pga inBoos t2 = 1 ; I g a i n B o o s t 2 = 1 ; DgainBoos t2 = 5 ; / / ve ry ” l o o s e ” i n i t i a l l y
PgainBuck = 1 ; Iga inBuck = 1 ; DgainBuck = 5 ; / / ve ry ” l o o s e ” i n i t i a l l y

/ /−−−//
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Compensa t ion i m p l e m e n t a t i o n 1 −−//
/ /−−−//
i f (com == 1)

/ / C o e f f i c i e n t i n i t f o r Boos t1 Loop
Coef2P2Z 1 . b2 = IQ26toF (DgainBoos t1 ∗ 6 7 1 0 8) ;
Coef2P2Z 1 . b1 = IQ26toF ((I g a i n B o o s t 1 − Pga inBoos t1 − DgainBoos t1 − DgainBoos t1)∗6 7 1 0 8) ;
Coef2P2Z 1 . b0 = IQ26toF ((Pga inBoos t1 + I g a i n B o o s t 1 + DgainBoos t1)∗6 7 1 0 8) ;
Coef2P2Z 1 . a2 = 0 . 0 ;
Coef2P2Z 1 . a1 = 1 . 0 ;
Coef2P2Z 1 . max = DmaxBoost1f ;
Coef2P2Z 1 . min = 0 . 0 ;
/ / C o e f f i c i e n t i n i t f o r Boos t2 Loop
Coef2P2Z 2 . b2 = IQ26toF (DgainBoos t2 ∗ 6 7 1 0 8) ;
Coef2P2Z 2 . b1 = IQ26toF ((I g a i n B o o s t 2 − Pga inBoos t2 − DgainBoos t2 − DgainBoos t2)∗6 7 1 0 8) ;
Coef2P2Z 2 . b0 = IQ26toF ((Pga inBoos t2 + I g a i n B o o s t 2 + DgainBoos t2)∗6 7 1 0 8) ;
Coef2P2Z 2 . a2 = 0 . 0 ;
Coef2P2Z 2 . a1 = 1 . 0 ;
Coef2P2Z 2 . max = DmaxBoost2f ;
Coef2P2Z 2 . min= 0 . 0 ;

/ / C o e f f i c i e n t i n i t f o r BUCK Loop
Cof2P2Z 4 . b2 = IQ26toF (DgainBuck ∗ 6 7 1 0 8) ;
Coef2P2Z 4 . b1 = IQ26toF ((Iga inBuck − PgainBuck − DgainBuck − DgainBuck)∗6 7 1 0 8) ;
Coef2P2Z 4 . b0 = IQ26toF ((PgainBuck + Iga inBuck + DgainBuck)∗6 7 1 0 8) ;
Coef2P2Z 4 . a2 = 0 . 0 ;
Coef2P2Z 4 . a1 = 1 . 0 ;
Coef2P2Z 4 . max = IQ26toF (DmaxBuck ∗ 6 7 1 0 8) ;
Coef2P2Z 4 . min = 0 . 0 ;

/ / C o e f f i c i e n t i n i t f o r SEPIC Loop

Coef2P2Z 5 . b3 = 0 . 0 ;
Coef2P2Z 5 . b2 = IQ26toF (Dga inSep ic ∗ 6 7 1 0 8) ;
Coef2P2Z 5 . b1 = IQ26toF ((I g a i n S e p i c − P g a i n S e p i c − Dga inSep ic − Dga inSep ic)∗6 7 1 0 8) ;
Coef2P2Z 5 . b0 = IQ26toF ((P g a i n S e p i c + I g a i n S e p i c + Dga inSep ic)∗6 7 1 0 8) ;
Coef2P2Z 5 . a3 = 0 . 0 ;
Coef2P2Z 5 . a2 = 0 . 0 ;
Coef2P2Z 5 . a1 = 1 . 0 ;
Coef2P2Z 5 . max = DmaxSepicf ;
Coef2P2Z 5 . min= 0 . 0 ;
e n d i f

/ /−−//
H i s t P t r = 0 ;
/ / C o n f i g u r e S c a l i n g C o n s t a n t s
K Vin = 18586 ; / / 0 . 567 i n Q15 (s e e e x c e l s p r e a d s h e e t)
K I i n = 28160 ; / / Document t h i s v a l u e ! OKS
K Vboost1 = 31861 ; / / 0 . 972 i n Q15 (s e e e x c e l s p r e a d s h e e t)
K I b o o s t 1 = 27034 ; / / 0 . 825 i n Q15 (s e e e x c e l s p r e a d s h e e t)
K I b o o s t 1 I n d = 22528 ; / / 0 . 688 i n Q15 (s e e e x c e l s p r e a d s h e e t)
iK Vboos t1 = 16850 ; / / 1 . 028 i n Q14 (s e e e x c e l s p r e a d s h e e t)
i K I b o o s t 1 = 19859 ; / / 1 . 212 i n Q14 (s e e e x c e l s p r e a d s h e e t)
K Vboost2 = 31861 ; / / 0 . 972 i n Q15 (s e e e x c e l s p r e a d s h e e t)
K I b o o s t 2 = 27034 ; / / 0 . 825 i n Q15 (s e e e x c e l s p r e a d s h e e t)
K I b o o s t 2 I n d = 22528 ; / / 0 . 688 i n Q15 (s e e e x c e l s p r e a d s h e e t)
iK Vboos t2 = 16850 ; / / 1 . 028 i n Q14 (s e e e x c e l s p r e a d s h e e t)
i K I b o o s t 2 = 19859 ; / / 1 . 212 i n Q14 (s e e e x c e l s p r e a d s h e e t)
K Vsepic = 31861 ; / / 0 . 972 i n Q15 (s e e e x c e l s p r e a d s h e e t)
K I s e p i c = 27034 ; / / 0 . 825 i n Q15 (s e e e x c e l s p r e a d s h e e t)
K I s e p i c I n d = 22528 ; / / 0 . 688 i n Q15 (s e e e x c e l s p r e a d s h e e t)
i K V s e p i c = 16850 ; / / 1 . 028 i n Q14 (s e e e x c e l s p r e a d s h e e t)
i K I s e p i c = 19859 ; / / 1 . 212 i n Q14 (s e e e x c e l s p r e a d s h e e t)
K Vbuck = 20275 ; / / 0 . 619 i n Q15 (s e e e x c e l s p r e a d s h e e t)
K Ibuck = 22528 ; / / 0 . 688 i n Q15 (s e e e x c e l s p r e a d s h e e t)
K IbuckInd = 29384 ; / / 0 . 897 i n Q15 (s e e e x c e l s p r e a d s h e e t)
iK Vbuck = 26479 ; / / 1 . 616 i n Q14 (s e e e x c e l s p r e a d s h e e t)
i K I b u c k = 23831 ; / / 1 . 455 i n Q14 (s e e e x c e l s p r e a d s h e e t)
/ / ==

107

/ / INITIALIZATION − P e r i p h e r a l s used f o r s u p p o r t
/ / ==
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− USER −−−
/ / C o n f i g u r e t h e C o n t r o l Law A c c e l e r a t o r
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f d e f i n e d (CLA TYPE0)

/ /
/ / Th i s code assumes t h e CLA c l o c k i s a l r e a d y e n a b l e d i n t h e c a l l t o I n i t S y s C t r l () ;
/ / The symbols used i n t h i s c a l c u l a t i o n a r e d e f i n e d i n t h e CLA assembly code and i n
/ / t h e CLAShared . h h e a d e r f i l e
/ /

EALLOW;
/ /
/ / Ass ign t h e CLA program memory t o t h e CLA. Th i s assumes i t has a l r e a d y been
/ / i n i t i a l i z e d by e i t h e r t h e main CPU or by Code Composer S t u d i o
/ /
Cla1Regs .MMEMCFG. b i t . PROGE = 1 ;
/ /
/ / I n i t i a l i z e t h e CLA t a s k v e c t o r s . I n t e r r u p t 1 w i l l s t a r t t a s k 1 .
Cla1Regs .MVECT1 = (Uin t16) (& Cla1Task1 − &C l a 1 P r o g S t a r t)∗ s i z e o f (Uin t32) ;
Cla1Regs .MVECT2 = (Uin t16) (& Cla1Task2 − &C l a 1 P r o g S t a r t)∗ s i z e o f (Uin t32) ;
Cla1Regs .MVECT3 = (Uin t16) (& Cla1Task3 − &C l a 1 P r o g S t a r t)∗ s i z e o f (Uin t32) ;
Cla1Regs .MVECT4 = (Uin t16) (& Cla1Task4 − &C l a 1 P r o g S t a r t)∗ s i z e o f (Uin t32) ;
Cla1Regs .MVECT7 = (Uin t16) (& Cla1Task7 − &C l a 1 P r o g S t a r t)∗ s i z e o f (Uin t32) ;
Cla1Regs .MVECT8 = (Uin t16) (& Cla1Task8 − &C l a 1 P r o g S t a r t)∗ s i z e o f (Uin t32) ;
Cla1Regs . MPISRCSEL1 . b i t . PERINT1SEL = CLA INT1 ADCINT1 ; / / ADCINT1 w i l l s t a r t CLA Task 1
Cla1Regs . MPISRCSEL1 . b i t . PERINT2SEL = CLA INT2 ADCINT2 ; / / ADCINT2 w i l l s t a r t CLA Task 2
Cla1Regs . MPISRCSEL1 . b i t . PERINT3SEL = CLA INT3 ADCINT3 ; / / ADCINT3 w i l l s t a r t CLA Task 3
Cla1Regs . MPISRCSEL1 . b i t . PERINT4SEL = CLA INT4 ADCINT4 ; / / ADCINT4 w i l l s t a r t CLA Task 4
EDIS ;

e n d i f
/ / ==
/ / INCREMENTAL BUILD OPTIONS − NOTE: s e l e c t v i a P r o j e c t S e t t i n g s . h
/ / ==
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− USER −−−

IMAXsepic = 16384 ; / / 16384 = 1 . 0 i n Q14
IMAXboost1 = 16384 ; / / 16384 = 1 . 0 i n Q14
IMAXboost2 = 16384 ; / / 16384 = 1 . 0 i n Q14
IMAXbuck = 28676 ; / / 28676 = 0 . 7 i n Q12
Gui EnPWR = 0 ;
G u i E n B l i n k e r = 0 ;
G u i I s e t S e p i c = 0 ; G u i I s e t B o o s t 1 = 0 ; G u i I s e t B o o s t 2 = 0 ; G u i I s e t B u c k = 0 ;
I i n R C a l i b = 0 ;

/ / Have d e f i n e d common ADC c h a n n e l s e t u p f o r a l l I n c r e m e n t a l b i l d s

d e f i n e I b o os t 1 R AdcResu l t . ADCRESULT0 / / ADC−B0 Boost1 FB
d e f i n e I b o os t 2 R AdcResu l t . ADCRESULT1 / / ADC−B2 Boost2 FB
d e f i n e IbuckR AdcResu l t . ADCRESULT2 / / ADC−A3 Buck FB

d e f i n e I s e p i c R AdcResu l t . ADCRESULT3 / / ADC−B5 SEPIC FB
d e f i n e Vboost1R AdcResu l t . ADCRESULT4 / / ADC−B1 Boost1 o u t p u t v o l t a g e
d e f i n e Vboost2R AdcResu l t . ADCRESULT5 / / ADC−B3 Boost2 o u t p u t v o l t a g e
d e f i n e VbuckR AdcResu l t . ADCRESULT6 / / ADC−A5 Buck o u t p u t v o l t a g e
d e f i n e VsepicR AdcResu l t . ADCRESULT7 / / ADC−B7 SEPIC o u t p u t v o l t a g e
d e f i n e I b o o s t 1 I n d R AdcResu l t . ADCRESULT8 / / ADC−A2 Boost1 s w i t c h i n g c u r r e n t
d e f i n e I b o o s t 2 I n d R AdcResu l t . ADCRESULT9 / / ADC−A4 Boost2 s w i t c h i n g c u r r e n t
d e f i n e IbuckIndR AdcResu l t . ADCRESULT10 / / ADC−B4 Buck s w i t c h i n g c u r r e n t
d e f i n e I s e p i c I n d R AdcResu l t . ADCRESULT11 / / ADC−A6 SEPIC s w i t c h i n g c u r r e n t
d e f i n e VinR AdcResu l t . ADCRESULT12 / / ADC−B6 I n p u t v o l t a g e s e n s e
d e f i n e I inR AdcResu l t . ADCRESULT13 / / ADC−A7 I n p u t c u r r e n t m o n i t o r

/ / C o n f i g u r e t h e ADC
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ / Channel S e l e c t i o n f o r Cascaded Sequence r
/ / Th i s s e c t i o n i s based on Board Layout so don t change i t ,
/ / i t w i l l e f f e c t t h e p o r t a b i l i t y o f code t o demo board

ChSel [0] = 8 ; / / B0 − Boost 1 Feedback
ChSel [1] = 1 0 ; / / B2 − Boost 2 Feedback
ChSel [2] = 3 ; / / A3 − Buck Feedback
ChSel [3] = 1 3 ; / / B5 − SEPIC Feedback
ChSel [4] = 9 ; / / B1 − Boost1 o u t p u t v o l t a g e
ChSel [5] = 1 1 ; / / B3 − Boost2 o u t p u t v o l t a g e
ChSel [6] = 5 ; / / A5 − Buck o u t p u t v o l t a g e
ChSel [7] = 1 5 ; / / B7 − S e p i c o u t p u t v o l t a g e
ChSel [8] = 2 ; / / A2 − Boost 1 s w i t c h i n g c u r r e n t
ChSel [9] = 4 ; / / A4 − Boost 2 s w i t c h i n g c u r r e n t
ChSel [1 0] = 1 2 ; / / B4 − Buck s w i t c h i n g c u r r e n t
ChSel [1 1] = 6 ; / / A6 − S e p i c s w i t c h i n g c u r r e n t
ChSel [1 2] = 1 4 ; / / B6 − I n p u t V o l t a g e Sence
ChSel [1 3] = 7 ; / / A7 − I n p u t c u r r e n t s e n s e
ChSel [1 4] = 7 ; / / A7 − n o t used
ChSel [1 5] = 6 ; / / A6 − n o t used

108

T r i g S e l [0] = 5 ; / / B0 − Boost 1 Feedback
T r i g S e l [1] = 7 ; / / B1 − Boost1 f e e d b a c k
T r i g S e l [2] = 1 1 ; / / B3 − Boost2 Outpu t V o l t a g e Sence T r i g e r e d by PWM2 SOC2A
T r i g S e l [3] = 1 3 ; / / B7 − S e p i c Outpu t V o l t a g e Sence T r i g e r e d by PWM5 SOC5A
T r i g S e l [4] = 5 ; / / B0 − Boost 1 Feedback c u r r e n t Sence T r i g e r e d by PWM1 SOC1A
T r i g S e l [5] = 7 ; / / B2 − Boost 2 Feedback C u r r e n t Sence T r i g e r e d by PWM2 SOC2A
T r i g S e l [6] = 1 1 ; / / B5 − S e p i c Feedback C u r r e n t Sence T r i g e r e d by PWM5 SOC5A
T r i g S e l [7] = 1 3 ; / / B6 − I n p u t V o l t a g e Sence T r i g e r e d by PWM1 SOC1A
T r i g S e l [8] = 5 ; / / B4 − Buck S w i t c h i n g C u r r e n t Sence T r i g e r e d by PWM4 SOC4A
T r i g S e l [9] = 7 ; / / A5 − Dummy Read T r i g e r e d by PWM1 SOC1A
T r i g S e l [1 0] = 1 1 ; / / A3 − Buck Feedback C u r r e n t Sence T r i g e r e d by PWM4 SOC4A
T r i g S e l [1 1] = 1 3 ; / / A5 − Buck Outpu t V o l t a g e Sence T r i g e r e d by PWM4 SOC4A
T r i g S e l [1 2] = 5 ; / / A2 − Boost 1 S w i t c h i n g C u r r e n t Sence T r i g e r e d by PWM1 SOC1A
T r i g S e l [1 3] = 5 ; / / A4 − Boost 2 S w i t c h i n g C u r r e n t Sence T r i g e r e d by PWM2 SOC2A
T r i g S e l [1 4] = 0 ; / / A7 − I n p u t C u r r e n t Sence T r i g e r e d by PWM1 SOC1A
T r i g S e l [1 5] = 0 ; / / A6 − S e p i c S w i t c h i n g C u r r e n t Sence T r i g e r e d by PWM5 SOC5A
ADC CascSeqCNF (ChSel , T r i g S e l , 1 6 , 1 0 , 0) ;

/ /−−
i f (INCR BUILD == 1) / / CLA Close Loop Boost1 V−Mode , no Dimming (INCR BUILS 2 + CLA)
/ /−−

d e f i n e prd1 90 / / P e r i o d c o u n t = 333 kHz @ 60 MHz
BuckSingle CNF (1 , prd1 , 1 , 0) ; / / ePWM1 − Boost1 , P e r i o d =prd , Master , Phase = Don t Care
BuckSingle CNF (2 , prd1 , 0 , 9 0) ; / / ePWM2 − Boost2 , P e r i o d =prd , Slave , Phase = 90 Degrees
BuckSingle CNF (4 , prd1 , 0 , 1 8 0) ; / / ePWM4 − Buck , P e r i o d =prd , S lave , Phase = 180 Degrees
BuckSingle CNF (5 , prd1 , 0 , 2 7 0) ; / / ePWM5 − SEPIC , P e r i o d =prd , S lave , Phase = 270 Degrees
/ /
d e f i n e prd2 60000 / / P e r i o d c o u n t = 3 kHz @ 60 MHz
d e f i n e phase 30000 / / prd2 ∗90/180
i f (Dimming == 2)
Dimming CNF (3 , prd2) ; / / C o n f i g u r a t i o n of Boos t1 Dimming PWM
Dimming CNF (6 , prd2) ; / / C o n f i g u r a t i o n o f S e p i c Dimming PWM
Dimming CNF (7 , prd2) ; / / C o n f i g u r a t i o n o f Boost2 Dimming PWM

/ / Note:−
/ / Boos t2 Dimming FET i s c o n n e c t e d t o EPWM−6B b u t we want t o use PWM 7 f o r dimming
/ / So we w i l l p u t GPIO−11 on h igh impedence u s i n g t r i p zone

EPwm6Regs . TZCTL . b i t . TZB = 0 ; / / e n a b l i n g t r i p zone on PWM 6 o u t p u t B
EPwm6Regs . TZCTL . b i t . TZA = 3 ; / / e n a b l i n g t r i p zone on PWM 6 o u t p u t A
EPwm6Regs . TZFRC . b i t . OST = 1 ; / / T r i p i n g Outpu t B t o p u t i t i n High Impedence

e n d i f

/ /

EALLOW;
AdcRegs . SOCPRICTL . b i t . SOCPRIORITY = 0 x004 ; / / SOCs 0−3 a r e h igh p r i o r i t y
EDIS ;

I S R I n i t () ; / / ASM ISR i n i t

/ /

/ / CNTL 2P2Z c o n n e c t i o n s
CNTL 2P2Z Fdbk1 =&AdcResu l t . ADCRESULT0; / / p o i n t t o Boost1 o u t p u t v o l t a g e v a l u e
CNTL 2P2Z Coef1 = &Coef2P2Z 1 ; / / p o i n t t o f i r s t c o e f f o f Boos t1 Loop

CNTL 2P2Z Fdbk2 = &AdcResu l t . ADCRESULT1; / / p o i n t t o Boost2 o u t p u t v o l t a g e v a l u e
CNTL 2P2Z Coef2 = &Coef2P2Z 2 ; / / p o i n t t o f i r s t c o e f f o f Boos t2 Loop

CNTL 2P2Z Fdbk4 = &AdcResu l t . ADCRESULT2; / / p o i n t t o Buck o u t p u t v o l t a g e v a l u e
CNTL 2P2Z Coef4 = &Coef2P2Z 4 ; / / p o i n t t o f i r s t c o e f f o f Buck Loop

CNTL 3P3Z CLA Fdbk5 = &AdcResu l t . ADCRESULT3; / / p o i n t t o S e p i c o u t p u t v o l t a g e v a l u e
CNTL 3P3Z CLA Coef5 = &Coef2P2Z 5 ; / / p o i n t t o f i r s t c o e f f o f S e p i c Loop

e n d i f / / (INCR BUILD == 1)

/ / ===
/ / INTERRUPT & ISR INITIALISATION (b e s t t o run t h i s s e c t i o n a f t e r o t h e r i n i t i a l i s a t i o n)
/ / ===
i f d e f i n e d (CLA TYPE0)

EALLOW;

/ / Enab le CLA Task 8 and f o r c e i t u s i n g t h e IACK i n s t r u c t i o n .
/ / Th i s t a s k w i l l c l e a r t h e DBUFF b u f f e r used by t h e 2P2Z f i l t e r

Cla1Regs .MCTL. b i t . IACKE = 1 ;
Cla1Regs . MIER . a l l = M INT8 ;
Cla1ForceTask8andWai t () ;
asm (” RPT #3 | | NOP”) ;

109

/ / Enab le CLA Task 1 , 2 , 3 , 4 and d i s a b l e i n t e r r u p t 8 CLA i n t e r r u p t 1 i s t r i g g e r e d by ADCINT1

Cla1Regs . MIER . b i t . INT8 = 0 ; / / DISABLE TASK 8
Cla1Regs . MIER . b i t . INT1 = 1 ; / / ENABLE TASK 1
Cla1Regs . MIER . b i t . INT2 = 1 ; / / ENABLE TASK 2
Cla1Regs . MIER . b i t . INT3 = 1 ; / / ENABLE TASK 3
Cla1Regs . MIER . b i t . INT4 = 1 ; / / ENABLE TASK 4
asm (” RPT #3 | | NOP”) ;
EDIS ;
e n d i f

EALLOW;
/ / / / / / / / / / / / / Th i s i n t e r u p t w i l l t r i g e r CLA t a s k 1 f o r Boos t 1 c o n v e r s i o n / / / / / / / / / / / / /
AdcRegs . INTSEL1N2 . b i t . INT1SEL = 0x00 ; / / i n t e r u p t on EOC f o r b o o s t 1 FB on B0 i n SOC0
AdcRegs . INTSEL1N2 . b i t . INT1E = 0x1 ; / / e n a b l e I n t e r r u p t 1 i n ADC
AdcRegs . INTSEL1N2 . b i t . INT1CONT = 0x1 ;

/ / / / / / / / / / / / / Th i s i n t e r u p t w i l l t r i g e r CLA t a s k 2 f o r Boos t 2 c o n v e r s i o n / / / / / / / / / / / / /
AdcRegs . INTSEL1N2 . b i t . INT2SEL = 0x01 ; / / t r i g e r i n t e r u p t on EOC f o r b o o s t 2 FB
AdcRegs . INTSEL1N2 . b i t . INT2E = 0x1 ; / / e n a b l e I n t e r r u p t 1 i n ADC
AdcRegs . INTSEL1N2 . b i t . INT2CONT = 0x1 ;

/ / / / / / / / / / / / / Th i s i n t e r u p t w i l l t r i g e r CLA t a s k 3 f o r Boos t 2 c o n v e r s i o n / / / / / / / / / / / / /
AdcRegs . INTSEL3N4 . b i t . INT3SEL = 0x02 ; / / t r i g e r i n t e r u p t on EOC f o r S e p i c FB
AdcRegs . INTSEL3N4 . b i t . INT3E = 0x1 ; / / e n a b l e I n t e r r u p t 1 i n ADC
AdcRegs . INTSEL3N4 . b i t . INT3CONT = 0x1 ;

/ / / / / / / / / / / / / Th i s i n t e r u p t w i l l t r i g e r CLA t a s k 4 f o r Boos t 2 c o n v e r s i o n / / / / / / / / / / / / /
AdcRegs . INTSEL3N4 . b i t . INT4SEL = 0x03 ; / / t r i g e r i n t e r u p t on EOC f o r buck FB
AdcRegs . INTSEL3N4 . b i t . INT4E = 0x1 ; / / e n a b l e I n t e r r u p t 1 i n ADC
AdcRegs . INTSEL3N4 . b i t . INT4CONT = 0x1 ;

/ / ePWM i n t e r r u p t j u s t f o r c h e c k i n g sync
EPwm1Regs . ETSEL . b i t . INTSEL = ET CTR ZERO ; / / INT on Zero e v e n t
EPwm1Regs . ETSEL . b i t . INTEN = 0 ; / / Enab le INT
EPwm1Regs . ETPS . b i t . INTPRD = ET 1ST ; / / G e n e r a t e INT on e v e r y e v e n t

i f (Dimming == 2)
/ / ePWM3 i n t e r r u p t f o r Dimming

P i e C t r l R e g s . PIEIER3 . b i t . INTx3 = 1 ;
P i e V e c t T a b l e . EPWM3 INT = &Pwm3 Dim ;
P i e C t r l R e g s . PIEIER3 . b i t . INTx6 = 1 ;
P i e V e c t T a b l e . EPWM6 INT = &Pwm6 Dim ;
P i e C t r l R e g s . PIEIER3 . b i t . INTx7 = 1 ;
P i e V e c t T a b l e . EPWM7 INT = &Pwm7 Dim ;
e n d i f
/ / Remap t h e I n t e r r u p t V e c t o r s Being Used
P i e V e c t T a b l e . CLA1 INT4 = &c l a 1 i s r ;
P i e C t r l R e g s . PIEIER11 . b i t . INTx4 = 1 ;
EPwm1Regs . ETCLR . b i t . INT =1;
EPwm3Regs . ETCLR . b i t . INT =1;
AdcRegs . ADCINTFLGCLR . a l l = 0xFFFF ;
P i e C t r l R e g s . PIEIFR11 . a l l = 0 x0000 ;
P i e C t r l R e g s . PIEACK . a l l = 0xFFFF ;
P i e C t r l R e g s . PIECTRL . b i t . ENPIE = 1 ;
IER |= M INT11 ; / / Enab le CPU INT11 c o n n e c t e d t o CLA 1−8 INTs :
IER |= M INT3 ;
asm (” CLRC INTM, DBGM”) ; / / Enab le Glo ba l i n t e r r u p t INTM
EDIS ;

/ / ===
/ / BACKGROUND (BG) LOOP
/ / ===
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− FRAMEWORK−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f o r (; ;)
{

/ / b1temp= AdcResu l t . ADCRESULT0 + b o o s t 1 o f s e t ;
/ / S t a t e machine e n t r y & e x i t p o i n t
/ / ===
(∗ A l p h a S t a t e P t r) () ; / / jump t o an Alpha s t a t e (A0 , B0 , . . .)
/ / ===

}
} / / END MAIN CODE
/ / ===
/ / STATE−MACHINE SEQUENCING AND SYNCRONIZATION
/ / ===

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− FRAMEWORK−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
vo id A0(vo id)
{

/ / l oop r a t e s y n c h r o n i z e r f o r A−t a s k s
i f (CpuTimer0Regs . TCR . b i t . TIF == 1)

110

{
CpuTimer0Regs . TCR . b i t . TIF = 1 ; / / c l e a r f l a g
/ /−−−
(∗ A T a s k P t r) () ; / / jump t o an A Task (A1 , A2 , A3 , . . .)
/ /−−−
VTimer0 [0] + + ; / / v i r t u a l t i m e r 0 , i n s t a n c e 0 (s p a r e
Seria lCommsTimer ++;

}
A l p h a S t a t e P t r = &B0 ; / / Comment o u t t o a l l o w on ly A t a s k s

}
vo id B0 (vo id)
{

/ / l oop r a t e s y n c h r o n i z e r f o r B−t a s k s
i f (CpuTimer1Regs . TCR . b i t . TIF == 1)
{

CpuTimer1Regs . TCR . b i t . TIF = 1 ; / / c l e a r f l a g
/ /−−−
(∗ B T a s k P t r) () ; / / jump t o a B Task (B1 , B2 , B3 , . . .)
/ /−−−
VTimer1 [0] + + ; / / v i r t u a l t i m e r 1 , i n s t a n c e 0 (used t o c o n t r o l SPI LEDs

}
A l p h a S t a t e P t r = &C0 ;

}
vo id C0 (vo id)
{

/ / l oop r a t e s y n c h r o n i z e r f o r C−t a s k s
i f (CpuTimer2Regs . TCR . b i t . TIF == 1)
{

CpuTimer2Regs . TCR . b i t . TIF = 1 ; / / c l e a r f l a g
/ /−−−
(∗ C T a s k P t r) () ; / / jump t o a C Task (C1 , C2 , C3 , . . .)
/ /−−−
VTimer2 [0] + + ; / / v i r t u a l t i m e r 2 , i n s t a n c e 0 (s p a r e)

}

A l p h a S t a t e P t r = &dimming ; / / Back t o S t a t e A0
}

vo id dimming (vo id)
{
i f (VTimer0 [0] == 50)

{
VTimer0 [0] = 0 ;

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−PWM Based Dimming c o n t r o l−−−−−−−−−−−−−−−−−−−−−−−−−−−//

i f (Dimming == 2)

i f (En dim == 1)
{
EALLOW;
/ /−−−//
/ /−−−−−−−−− R o u t i n e f o r e n a b l i n g / D i s a b l i n g Boos t1 and Buck Dimming on PWM Channel 3 −−−−−−−−−//

i f (Boos t1 d im == 1)
{
temp2 =(prd2 /1000)∗ Boost1 dim DC ;
EPwm3Regs .CMPA. h a l f .CMPA = temp2 ;
EPwm3Regs .CMPB = temp2−5;
i f i n i t f l a g 1 == 1)

{
G p i o C t r l R e g s .GPAMUX1. b i t . GPIO4 = 1 ;
EPwm3Regs . ETSEL . b i t . INTEN = 1 ;
f i n f l a g 1 =1;
i n i t f l a g 1 = 0 ;

}
}
e l s e
{
i f (f i n f l a g 1 ==1)
{

EPwm3Regs . ETSEL . b i t . INTEN = 0 ;
f i n f l a g 1 = 0 ;
i n i t f l a g 1 = 1 ;
G p i o C t r l R e g s .GPAMUX1. b i t . GPIO4 = 0 ; / / 0=GPIO , 1=EPWM3A, 2=Resv , 3= Resv
G p i o C t r l R e g s . GPADIR . b i t . GPIO4 = 1 ; / / 1=OUTput , 0= INput
GpioDataRegs . GPASET . b i t . GPIO4 = 1 ; / / uncomment i f −−> S e t High i n i t i a l l y
EPwm1Regs . TZCLR . b i t . OST = 1 ;

}
}

/ /−−− END −−−//
/ /−−−//
/ /−−−−−−−−−−−−−−− R o u t i n e f o r e n a b l i n g / D i s a b l i n g S e p i c Dimming on PWM Channel 6 −−−−−−−−−−−−−−−//

111

i f (Boos t2 d im == 1)
{
temp2 =(prd2 /1000)∗ Boost2 dim DC ;
EPwm7Regs .CMPA. h a l f .CMPA = temp2 ;
EPwm7Regs .CMPB = temp2−5;
i f (i n i t f l a g 2 == 1)
{
EPwm7Regs . ETSEL . b i t . INTEN = 1 ;
G p i o C t r l R e g s .GPBMUX1. b i t . GPIO40 = 1 ;
f i n f l a g 2 = 1 ;
i n i t f l a g 2 = 0 ;
}
}
e l s e
{
i f (f i n f l a g 2 ==1)
{
EPwm7Regs . ETSEL . b i t . INTEN = 0 ;
f i n f l a g 2 =0;
i n i t f l a g 2 = 1 ;
Boos t2 d im = 0 ;
G p i o C t r l R e g s .GPBMUX1. b i t . GPIO40 = 0 ;
G p i o C t r l R e g s . GPBDIR . b i t . GPIO40 = 1 ;
GpioDataRegs . GPBSET . b i t . GPIO40 = 1 ;
EPwm2Regs . TZCLR . b i t . OST = 1 ;
}
}
/ /−−− END −−−//
/ /−−−//
/ /−−−−−−−−−−−−−−− R o u t i n e f o r e n a b l i n g / D i s a b l i n g S e p i c Dimming on PWM Channel 6 −−−−−−−−−−−−−−//
i f (S e p i c d i m == 1)
{
temp2 =(prd2 /1000)∗ Sepic dim DC ;
EPwm6Regs .CMPA. h a l f .CMPA = temp2 ;
EPwm6Regs .CMPB = temp2−5;
i f (i n i t f l a g 4 == 1)
{
EPwm6Regs . ETSEL . b i t . INTEN = 1 ;
G p i o C t r l R e g s .GPAMUX1. b i t . GPIO10 = 1 ;
f i n f l a g 4 = 1 ;
i n i t f l a g 4 = 0 ;
}
}
e l s e
{
i f (f i n f l a g 4 ==1)
{
EPwm6Regs . ETSEL . b i t . INTEN = 0 ;
f i n f l a g 4 = 0 ;
i n i t f l a g 4 = 1 ;
G p i o C t r l R e g s .GPAMUX1. b i t . GPIO10 = 0 ; / / 0=GPIO , 1=EPWM3A, 2=Resv , 3= Resv
G p i o C t r l R e g s . GPADIR . b i t . GPIO10 = 1 ; / / 1=OUTput , 0= INput
GpioDataRegs . GPASET . b i t . GPIO10 = 1 ; / / uncomment i f −−> S e t High i n i t i a l l y
EPwm5Regs . TZCLR . b i t . OST = 1 ;
}
}
/ /−−END−−//
EDIS ;
DmaxBoost1Dimf = IQ26toF (DmaxBoost1Dim ∗ 6 7 1 0 8) ;
DmaxBoost2Dimf = IQ26toF (DmaxBoost2Dim ∗ 6 7 1 0 8) ;
DmaxSepicDimf = IQ26toF (DmaxSepicDim ∗ 6 7 1 0 8) ;
}
e n d i f
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−− END PWM Based Dimming c o n t r o l −−−−−−−−−−−−−−−−−−−−−−//
} / / end Vt imer loop
A l p h a S t a t e P t r = &A0 ;
}
/ / ===
/ / A − TASKS
/ / ===
/ /−−
vo id A1(vo id) / / SMPS power On / Off C o n t r o l , DMAX Clamping , S o f t s t a r t
/ /−−
/ / Task r u n s e v e r y 1ms (CpuTimer0 p e r i o d [1 ms] ∗ 1 ”A” t a s k s a c t i v e)
{

i f (Gui EnPWR == 1)
{

GpioDataRegs . GPBSET . b i t . GPIO44 = 1 ; / / Enab le VPWR
r e f c h e c k () ;

}
e l s e
{

asm (”NOP”) ;

112

GpioDataRegs . GPBCLEAR . b i t . GPIO44 = 1 ; / / D i s a b l e VPWR
I i n R C a l i b = I inR ;

}

/ /−−−−−−−−−−−−−−−−−−−
A T a s k P t r = &A2 ;
/ /−−−−−−−−−−−−−−−−−−−

}
/−−
vo id A1(vo id) / / SMPS power On / Off C o n t r o l , DMAX Clamping , S o f t s t a r t
/ /−−
/ / Task r u n s e v e r y 1ms (CpuTimer0 p e r i o d [1 ms] ∗ 1 ”A” t a s k s a c t i v e)
{
/ /−−−

i f (Boost1 OVF == 1)
{
IREFboost1 = 0 ;
G u i I s e t B o o s t 1 =0;
Boos t1 d im = 0 ;
}

/ /−−−
i f (Boost2 OVF == 1)
{
IREFboost2 = 0 ;
G u i I s e t B o o s t 2 =0;
Boos t2 d im = 0 ;
}

/ /−−
i f (Buck OVF == 1)
{
IREFbuck = 0 ;
G u i I s e t B u c k =0;

/ / IsetBuckTemp =0;
Buck dim = 0 ;
}

/ /−−
i f (Sepic OVF == 1)
{
IREFsep ic = 0 ;
G u i I s e t S e p i c =0;
S e p i c d i m = 0 ;
}

/ /−−−−−−−−−−−−−−−−−−−
A T a s k P t r = &A1 ;
/ /−−−−−−−−−−−−−−−−−−−

}

/ / ===
/ / B − TASKS
/ / ===
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− USER −−
/ /−−
vo id B1 (vo id) / / I n p u t V o l t a g e & C u r r e n t Dashboard measurements
/ /−−
{
/ / Task r u n s e v e r y 10ms (CpuTimer1 p e r i o d [5 ms] ∗ 5 ”B” t a s k s a c t i v e)
/ /
/ / V o l t a g e measurement c a l c u l a t e d by :
/ / Gui Vin = VinAvg ∗ K Vin , where VinAvg = sum of 8 VinR samples
/ /

H i s t P t r ++;
i f (H i s t P t r ≥ H i s t o r y S i z e) H i s t P t r = 0 ;

/ / BoxCar Averages − I n p u t Raw samples i n t o BoxCar a r r a y s
/ /−−

VinH [H i s t P t r] = VinR ;
I inH [H i s t P t r] = I inR − I i n R C a l i b ;

t e m p S c r a t c h =0;
f o r (i =0 ; i <8; i ++) t e m p S c r a t c h = t e m p S c r a t c h + VinH [i] ;
Gui Vin = ((long) t e m p S c r a t c h ∗ (l ong) K Vin) >> 1 5 ;

t e m p S c r a t c h =0;
f o r (i =0 ; i <8; i ++) t e m p S c r a t c h = t e m p S c r a t c h + I inH [i] ;

G u i I i n = ((l ong) t e m p S c r a t c h ∗ (l ong) K I i n) >> 1 5 ;

/ /−−−−−−−−−−−−−−−−−
B T a s k P t r = &B2 ;
/ /−−−−−−−−−−−−−−−−−

113

}

/ /−−
vo id B2 (vo id) / / S e p i c Dashboard measurements
/ /−−
/ / Task r u n s e v e r y 10ms (CpuTimer1 p e r i o d [2 ms] ∗ 5 ”B” t a s k s a c t i v e)
{

/ /− Checks and s e t t h e c u u r e n t i f i t s g r e a t e r t h e Max Al lowab le

i f (G u i I s e t S e p i c > IMAXsepic) G u i I s e t S e p i c = IMAXsepic ;

/ / Ass ign t h e new v a l u e o f G u i I s e t S e p i c t o IREFSepic

Coef2P2Z 5 . r e f e r e n c e = ((long) G u i I s e t S e p i c ∗ (l ong) i K I s e p i c)>> 1 4 ;

i f (Gui EnPWR == 1) I s e p i c H [H i s t P t r] = I s e p i c R + Coef2P2Z 5 . o f s e t ;
e l s e I s e p i c H [H i s t P t r] = I s e p i c R ;

VsepicH [H i s t P t r] = VsepicR ;
I s e p i c I n d H [H i s t P t r] = I s e p i c I n d R ;

t e m p S c r a t c h =0;
f o r (i =0 ; i <8; i ++) t e m p S c r a t c h = t e m p S c r a t c h + VsepicH [i] ;
Gu i Vsep i c = ((l ong) t e m p S c r a t c h ∗ (l ong) K Vsepic) >> 1 5 ;

t e m p S c r a t c h =0;
f o r (i =0 ; i <8; i ++) t e m p S c r a t c h = t e m p S c r a t c h + I s e p i c H [i] ;
i f (Gui EnPWR == 0) Coef2P2Z 5 . o f s e t = t e m p S c r a t c h >> 3 ;
G u i I s e p i c = ((l ong) t e m p S c r a t c h ∗ (l ong) K I s e p i c) >> 1 5 ;

/ /−−−−−−−−−−−−−−−−−
B T a s k P t r = &B3 ;
/ /−−−−−−−−−−−−−−−−−

}

/ /−−
vo id B3 (vo id) / / Boos t1 Dashboard measurements
/ /−−
/ / Task r u n s e v e r y 10ms (CpuTimer1 p e r i o d [2 ms] ∗ 5 ”B” t a s k s a c t i v e)
{

/ /− Checks and s e t t h e c u u r e n t i f i t s g r e a t e r t h e Max Al lowab le

i f (G u i I s e t B o o s t 1 > IMAXboost1)

G u i I s e t B o o s t 1 = IMAXboost1 ;

/ / Ass ign t h e new v a l u e o f G i u I s e t B o o s t 1 t o IREFboost1

Coef2P2Z 1 . r e f e r e n c e = ((long) G u i I s e t B o o s t 1 ∗ (l ong) i K I b o o s t 1)>> 1 4 ;

i f (Gui EnPWR == 1) Iboos t1H [H i s t P t r] = I bo o s t 1 R + Coef2P2Z 1 . o f s e t ;
e l s e Iboos t1H [H i s t P t r] = Ib o o s t 1 R ;

Vboost1H [H i s t P t r] = Vboost1R ;

t e m p S c r a t c h =0;
f o r (i =0 ; i <8; i ++) t e m p S c r a t c h = t e m p S c r a t c h + Vboost1H [i] ;
Gui Vboos t1 = ((l ong) t e m p S c r a t c h ∗ (l ong) K Vboost1) >> 1 5 ;

t e m p S c r a t c h =0;
f o r (i =0 ; i <8; i ++) t e m p S c r a t c h = t e m p S c r a t c h + Iboos t1H [i] ;
i f (Gui EnPWR == 0) Coef2P2Z 1 . o f s e t = t e m p S c r a t c h >> 3 ;
G u i I b o o s t 1 = ((l ong) t e m p S c r a t c h ∗ (l ong) K I b o o s t 1) >> 1 5 ;

/ /−−−−−−−−−−−−−−−−−
B T a s k P t r = &B4 ;
/ /−−−−−−−−−−−−−−−−−

}

/ /−−
vo id B4 (vo id) / / Boos t2 Dashboard measurements
/ /−−
/ / Task r u n s e v e r y 10ms (CpuTimer1 p e r i o d [2 ms] ∗ 5 ”B” t a s k s a c t i v e)
{
/ /− Checks and s e t t h e c u u r e n t i f i t s g r e a t e r t h e Max Al lowab le

i f (G u i I s e t B o o s t 2 > IMAXboost2) G u i I s e t B o o s t 2 = IMAXboost2 ;

114

/ / Ass ign t h e new v a l u e o f G u i I s e t B o o s t 2 t o IREFboost2

Coef2P2Z 2 . r e f e r e n c e = ((long) G u i I s e t B o o s t 2 ∗ (l ong) i K I b o o s t 2) >> 1 4 ;

i f (Gui EnPWR == 1) Iboos t2H [H i s t P t r] = Ib o o s t 2 R + Coef2P2Z 2 . o f s e t ;
e l s e Iboos t2H [H i s t P t r] = Ib o o s t 2 R ;

Vboost2H [H i s t P t r] = Vboost2R ;

I b o o s t 2 I n d H [H i s t P t r] = I b o o s t 2 I n d R ;

t e m p S c r a t c h =0;
f o r (i =0 ; i <8; i ++) t e m p S c r a t c h = t e m p S c r a t c h + Vboost2H [i] ;
Gui Vboos t2 = ((l ong) t e m p S c r a t c h ∗ (l ong) K Vboost2) >> 1 5 ;

i f (Gui EnPWR == 1) Gui Vboos t2 = Gui Vboos t2 − Gui Vin ; / / For d a e t a i l s check s c h e m t i c

t e m p S c r a t c h =0;
f o r (i =0 ; i <8; i ++) t e m p S c r a t c h = t e m p S c r a t c h + Iboos t2H [i] ;
i f (Gui EnPWR == 0) Coef2P2Z 2 . o f s e t = t e m p S c r a t c h >> 3 ;
G u i I b o o s t 2 = ((l ong) t e m p S c r a t c h ∗ (l ong) K I b o o s t 2) >> 1 5 ;

/ /−−−−−−−−−−−−−−−−−
B T a s k P t r = &B5 ;
/ /−−−−−−−−−−−−−−−−−

}

/ /−−
vo id B5 (vo id) / / Buck Dashboard measurements
/ /−−
/ / Task r u n s e v e r y 10ms (CpuTimer1 p e r i o d [2 ms] ∗ 5 ”B” t a s k s a c t i v e)
{

/ /− Checks and s e t t h e c u u r e n t i f i t s g r e a t e r t h e Max Al lowab le

i f (G u i I s e t B u c k > IMAXbuck) G u i I s e t B u c k = IMAXbuck ;

/ / Ass ign t h e new v a l u e o f G u i I s e t B u c k t o IsetBuckTemp

Coef2P2Z 4 . r e f e r e n c e = ((long) G u i I s e t B u c k ∗ (l ong) i K I b u c k) >> 1 4 ;

VbuckH [H i s t P t r] = VbuckR ;

i f (Gui EnPWR == 1) IbuckH [H i s t P t r] = IbuckR + Coef2P2Z 4 . o f s e t ;
e l s e IbuckH [H i s t P t r] = IbuckR ;

IbuckIndH [H i s t P t r] = IbuckIndR ;

t e m p S c r a t c h =0;
f o r (i =0 ; i <8; i ++) t e m p S c r a t c h = t e m p S c r a t c h + VbuckH [i] ;
Gui Vbuck = ((long) t e m p S c r a t c h ∗ (l ong) K Vbuck) >> 1 5 ;

t e m p S c r a t c h =0;
f o r (i =0 ; i <8; i ++) t e m p S c r a t c h = t e m p S c r a t c h + IbuckH [i] ;
i f (Gui EnPWR == 0) Coef2P2Z 4 . o f s e t = t e m p S c r a t c h >> 3 ;
Gu i I b u c k = ((long) t e m p S c r a t c h ∗ (l ong) K Ibuck) >> 1 5 ;

/ /−−−−−−−−−−−−−−−−−
B T a s k P t r = &B1 ;
/ /−−−−−−−−−−−−−−−−−

}

/ / ===
/ / C − TASKS
/ / ===

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−− USER −−
/ /−−

/ /−−
vo id C1 (vo id) / / B l i n k e r c o n t r o l (Buck)
/ /−−
/ / Task r u n s e v e r y 1000ms (CpuTimer2 p e r i o d [500 ms] ∗ 2 ”C” t a s k s a c t i v e)
{

/ / t o g g l e an LED on t h e controlCARD

115

GpioDataRegs .GPBTOGGLE. b i t . GPIO34 = 1 ; / / 1 / (2∗500 ms) = 1Hz b l i n k r a t e

/ /−−−−−−−−−−−−−−−−−
C T a s k P t r = &C2 ;
/ /−−−−−−−−−−−−−−−−−

}

/ /−−
vo id C2 (vo id) / / T r i p zone c l e a r t a s k
/ /−−
/ / Task r u n s e v e r y 1000ms (CpuTimer2 p e r i o d [500 ms] ∗ 2 ”C” t a s k s a c t i v e)
{

i f (ClearBoost1 OVF ==1)
{

EALLOW;
EPwm1Regs . TZCLR . b i t . OST = 1 ;
EDIS ;
ClearBoost1 OVF =0;
Boost1 OVF =0;

}
i f (ClearBoost2 OVF ==1)
{

EALLOW;
EPwm2Regs . TZCLR . b i t . OST = 1 ;
EDIS ;
ClearBoost2 OVF =0;
Boost2 OVF =0;

}

i f (ClearBuck OVF ==1)
{

EALLOW;
EPwm4Regs . TZCLR . b i t . OST = 1 ;
EDIS ;
ClearBuck OVF =0;
Buck OVF =0;

}

i f (ClearSepic OVF ==1)
{

EALLOW;
EPwm5Regs . TZCLR . b i t . OST = 1 ;
EDIS ;
ClearSepic OVF =0;
Sepic OVF =0;

}
/ /−−−−−−−−−−−−−−−−−

C T a s k P t r = &C1 ;
/ /−−−−−−−−−−−−−−−−−
}

vo id o f s e t m e a s (vo id)
{
o f s e t 1 = AdcResu l t . ADCRESULT0 ; / / For Boost1 FeedBack
o f s e t 2 = AdcResu l t . ADCRESULT1 ; / / For Boost2 FeedBack
o f s e t 4 = AdcResu l t . ADCRESULT2; / / For Buck FeedBack
o f s e t 5 = AdcResu l t . ADCRESULT3 ; / / For S e p i c FeedBack
}

vo id r e f c h e c k ()
{
i f (B o o s t 1 T h r e s h o l d > Boost1RefMax) B o o s t 1 T h r e s h o l d = Boost1RefMax ;
i f (B o o s t 2 T h r e s h o l d > Boost2RefMax) B o o s t 2 T h r e s h o l d = Boost2RefMax ;
temp2= ((long) AdcResu l t . ADCRESULT12 ∗ (l ong) K Vin) >> 1 2 ; ;
Boost2Temp = B o o s t 2 T h r e s h o l d + temp2 ;
i f (Buck Thre sho ld > BuckRefMax) Buck Thre sho ld = BuckRefMax ;
i f (S e p i c T h r e s h o l d > SepicRefMax) S e p i c T h r e s h o l d = SepicRefMax ;
}

i f (Dimming == 2)

vo id i n t e r r u p t Pwm3 Dim (vo id)
{
EALLOW;
P i e C t r l R e g s . PIEACK . a l l = PIEACK GROUP3 ;

i f (EPwm3Regs . ETSEL . b i t . INTSEL == ET CTRD CMPA)
{

116

EPwm1Regs . TZCLR . b i t . OST = 1 ;
EPwm3Regs . ETSEL . b i t . INTSEL = ET CTRU CMPB ;
EPwm1Regs . ETSEL . b i t .SOCAEN =1;
}
e l s e i f (EPwm3Regs . ETSEL . b i t . INTSEL == ET CTRU CMPB)
{
EPwm1Regs . TZFRC . b i t . OST = 1 ;
EPwm3Regs . ETSEL . b i t . INTSEL = ET CTRD CMPA ;
EPwm1Regs . ETSEL . b i t .SOCAEN =0;
}
EPwm3Regs . ETCLR . b i t . INT =1;
EDIS ;
}

vo id i n t e r r u p t Pwm6 Dim (vo id)
{
EALLOW;
P i e C t r l R e g s . PIEACK . a l l = PIEACK GROUP3 ;

i f (EPwm6Regs . ETSEL . b i t . INTSEL == ET CTRD CMPA)
{
EPwm5Regs . TZCLR . b i t . OST = 1 ;
EPwm6Regs . ETSEL . b i t . INTSEL = ET CTRU CMPB ;
EPwm5Regs . ETSEL . b i t .SOCAEN =1;
}
e l s e i f (EPwm6Regs . ETSEL . b i t . INTSEL == ET CTRU CMPB)
{
EPwm5Regs . TZFRC . b i t . OST = 1 ;
EPwm6Regs . ETSEL . b i t . INTSEL = ET CTRD CMPA ;
EPwm5Regs . ETSEL . b i t .SOCAEN =0;
}
EPwm6Regs . ETCLR . b i t . INT =1;
EDIS ;
}

vo id i n t e r r u p t Pwm7 Dim (vo id)
{
EALLOW;
P i e C t r l R e g s . PIEACK . a l l = PIEACK GROUP3 ;
i f (EPwm7Regs . ETSEL . b i t . INTSEL == ET CTRD CMPA)
{
EPwm2Regs . TZCLR . b i t . OST = 1 ;
EPwm7Regs . ETSEL . b i t . INTSEL = ET CTRU CMPB ;
EPwm5Regs . ETSEL . b i t .SOCAEN =1;
}
e l s e i f (EPwm7Regs . ETSEL . b i t . INTSEL == ET CTRU CMPB)
{
EPwm2Regs . TZFRC . b i t . OST = 1 ;
EPwm7Regs . ETSEL . b i t . INTSEL = ET CTRD CMPA ;
EPwm5Regs . ETSEL . b i t .SOCAEN =0;
}
EPwm7Regs . ETCLR . b i t . INT =1;
EDIS ;
}

e n d i f

B.2 2nd Order IIR Filter code

;====================================
IIR2P2Z INIT .mac ro n
;====================================
; V a r i a b l e D e c l a r a t i o n s
; The f o l l o w i n g a r e messages from t h e main CPU t o t h e CLA
CNTL 2P2Z Fdbk : n : . u s e c t ”CpuToCla1MsgRAM ” ,2
CNTL 2P2Z Coef : n : . u s e c t ”CpuToCla1MsgRAM ” ,2

; v a r i a b l e s f o r t h e CLA u s i n g CLA−to−CPU Ram as Data Ram f o r CLA
CNTL 2P2Z DBUFF : n : . u s e c t ”Cla1ToCpuMsgRAM ” ,10

; P u b l i s h T e r m i n a l P o i n t e r s f o r a c c e s s from t h e C e n v i r o n m e n t
. d e f CNTL 2P2Z Fdbk : n :
. d e f CNTL 2P2Z Coef : n :
. d e f CNTL 2P2Z DBUFF : n :
; s e t t e r m i n a l t o p o i n t t o ZeroNet

MOVL XAR2, #ZeroNetCLA
MOVW DP , # CNTL 2P2Z Coef : n :

117

MOVL @ CNTL 2P2Z Fdbk : n : , XAR2
MOVL @ CNTL 2P2Z Coef : n : , XAR2
.endm

;====================================
IIR2P2Z .macro n
;====================================

C o n t r o l L a w 2 P 2 Z S t a r t : n :

MMOV16 MAR0, @ CNTL 2P2Z Coef : n :
MMOV16 MAR1, @ CNTL 2P2Z Fdbk : n :
MNOP ; can n o t use MAR0
MNOP ; can n o t use MAR1
MUI32TOF32 MR3, ∗MAR0[#2]++
MUI16TOF32 MR1, ∗MAR1
MADDF32 MR1,MR1,MR3
MMPYF32 MR1, MR1, #(1 .0L /4096 .0L)
MUI32TOF32 MR0, ∗MAR0[#2]++
MMPYF32 MR0, MR0, #(1 .0L /32768 .0L)

MSUBF32 MR0, MR0, MR1
MMOV32 @ CNTL 2P2Z DBUFF : n : + 4 , MR0
MMOV32 MR0, @ CNTL 2P2Z DBUFF : n :+8
MMOV32 MR1, ∗MAR0[#2]++
MMPYF32 MR3, MR0, MR1

| | MMOV32 MR1, ∗MAR0[#2]++
MMOVD32 MR0, @ CNTL 2P2Z DBUFF : n :+6
MMPYF32 MR2, MR0, MR1
MMOV32 MR1, ∗MAR0[#2]++
MMOVD32 MR0, @ CNTL 2P2Z DBUFF : n :+4
MMPYF32 MR2, MR1, MR0

| | MADDF32 MR3, MR3, MR2
MMOV32 MR0, @ CNTL 2P2Z DBUFF : n :+2
MMOV32 MR1, ∗MAR0[#2]++
MMPYF32 MR2, MR0, MR1

| | MADDF32 MR3, MR3, MR2
MMOVD32 MR0, @ CNTL 2P2Z DBUFF : n :+0
MMOV32 MR1, ∗MAR0[#2]++
MMPYF32 MR2, MR0, MR1

| | MADDF32 MR3, MR3, MR2
MADDF32 MR3, MR3, MR2

MUI16TOF32 MR0, @ EPwm: n : Regs.TBPRD
MMINF32 MR3, MR1

MMAXF32 MR3, #0 . 0
MMOV32 @ CNTL 2P2Z DBUFF : n : + 0 , MR3

; / / / / / / / / / PWM Update S e c t i o n / / / / / / / / / / / / / / / /
MMPYF32 MR0, MR0, MR3
MMPYF32 MR1,MR0,#65536 .0L

MF32TOI32 MR1, MR1
MMOV32 @ EPwm: n : Regs.CMPA.al l , MR1

Contro lLaw 2P2Z End : n :
.endm

;====================================
IIR2P2Z DBUFF CLA INIT .mac ro n
;====================================
; Use t h i s macro i n a t a s k f o r c e d u s i n g s o f t w a r e
; t o pe r fo rm t h e i n i t .
. i f

B.3 3rd Order IIR Filter code

;====================================
IIR3P3Z INIT .mac ro n
;====================================

CNTL 3P3Z CLA Fdbk : n : . u s e c t ”CpuToCla1MsgRAM ” , 2 , 1 , 1
CNTL 3P3Z CLA Coef : n : . u s e c t ”CpuToCla1MsgRAM ” , 2 , 1 , 1
CNTL 3P3Z CLA DBUFF : n : . u s e c t ”Cla1ToCpuMsgRAM ” , 1 4 , 1 , 1

; P u b l i s h T e r m i n a l P o i n t e r s f o r a c c e s s from t h e C e n v i r o n m e n t
. d e f CNTL 3P3Z CLA Fdbk : n :
. d e f CNTL 3P3Z CLA Coef : n :
. d e f CNTL 3P3Z CLA DBUFF : n :
; s e t t e r m i n a l t o p o i n t t o ZeroNet

MOVL XAR2, #ZeroNetCLA
MOVW DP , # CNTL 3P3Z CLA Coef : n :
MOVL @ CNTL 3P3Z CLA Fdbk : n : , XAR2
MOVL @ CNTL 3P3Z CLA Coef : n : , XAR2

118

.endm

;====================================
IIR3P3Z .macro n
;====================================

C o n t r o l L a w 3 P 3 Z S t a r t : n :

MMOV16 MAR0, @ CNTL 3P3Z CLA Coef : n :
MMOV16 MAR1, @ CNTL 3P3Z CLA Fdbk : n :
MNOP ; can n o t use MAR0
MNOP ; can n o t use MAR1
MUI32TOF32 MR3, ∗MAR0[#2]++
MUI16TOF32 MR1, ∗MAR1
MADDF32 MR1,MR1,MR3
MMPYF32 MR1, MR1, #(1 .0L /4096 .0L)
MUI32TOF32 MR0, ∗MAR0[#2]++
MMPYF32 MR0, MR0, #(1 .0L /32768 .0L)
MSUBF32 MR0, MR0, MR1
MMOV32 @ CNTL 3P3Z CLA DBUFF : n : + 6 , MR0
MMOV32 MR0, @ CNTL 3P3Z CLA DBUFF : n :+12
MMOV32 MR1, ∗MAR0[#2]++
MMPYF32 MR3, MR0, MR1
| | MMOV32 MR1, ∗MAR0[#2]++
MMOVD32 MR0, @ CNTL 3P3Z CLA DBUFF : n :+10
MMPYF32 MR2, MR0, MR1
| | MMOV32 MR1, ∗MAR0[#2]++
MMOVD32 MR0, @ CNTL 3P3Z CLA DBUFF : n :+8
MMPYF32 MR2, MR1, MR0
| | MADDF32 MR3, MR3, MR2
MMOVD32 MR0, @ CNTL 3P3Z CLA DBUFF : n :+6
MMOV32 MR1, ∗MAR0[#2]++
MMPYF32 MR2, MR0, MR1
| | MADDF32 MR3, MR3, MR2
MMOV32 MR0, @ CNTL 3P3Z CLA DBUFF : n :+4
MMOV32 MR1, ∗MAR0[#2]++
MMPYF32 MR2, MR0, MR1
| | MADDF32 MR3, MR3, MR2
MMOVD32 MR0, @ CNTL 3P3Z CLA DBUFF : n :+2
MMOV32 MR1, ∗MAR0[#2]++
MMPYF32 MR2, MR0, MR1
| | MADDF32 MR3, MR3, MR2
MMOVD32 MR0, @ CNTL 3P3Z CLA DBUFF : n :+1
MMOV32 MR1, ∗MAR0[#2]++
MMPYF32 MR2, MR0, MR1
| | MADDF32 MR3, MR3, MR2
MADDF32 MR3, MR3, MR2 ; 1
MMOV32 MR1, ∗MAR0[#2]++
MUI16TOF32 MR0, @ EPwm: n : Regs.TBPRD
MMINF32 MR3, MR1
MMAXF32 MR3, #0 . 0
MMOV32 ∗MAR1[# 0] + + , MR3
MMOV32 @ CNTL 3P3Z CLA DBUFF : n : + 0 , MR3
MMPYF32 MR0, MR0, MR3
MMPYF32 MR1,MR0,#65536 .0L
MF32TOI32 MR1, MR1
MMOV32 @ EPwm: n : Regs.CMPA.al l , MR1

Contro lLaw 3P3Z End : n :
.endm

;−−
;====================================
IIR3P3Z DBUFF CLA INIT .mac ro n
;====================================
; I n i t i a l i z e t h e CLA w r i t a b l e DATA b u f f e r
ControlLaw 3P3Z DBUFF CLA INIT START : n :

MSETFLG RNDF32=1
MMOVIZ MR0, #0 . 0
MMOV32 @ CNTL 3P3Z CLA DBUFF : n : + 0 , MR0
MMOV32 @ CNTL 3P3Z CLA DBUFF : n : + 2 , MR0
MMOV32 @ CNTL 3P3Z CLA DBUFF : n : + 4 , MR0
MMOV32 @ CNTL 3P3Z CLA DBUFF : n : + 6 , MR0
MMOV32 @ CNTL 3P3Z CLA DBUFF : n : + 8 , MR0
MMOV32 @ CNTL 3P3Z CLA DBUFF : n : + 1 0 , MR0
MMOV32 @ CNTL 3P3Z CLA DBUFF : n : + 1 2 , MR0

ControlLaw 3P3Z DBUFF CLA INIT END : n :

.endm

B.4 CLA Code

119

. i n c l u d e ” P e r i p h e r a l A d d r e s s A S M . h ”

. c d e c l s C , LIST , ” LedDemo−CLAShared.h ”
; / / The f o l l o w i n g f i l e s have t h e assembly macros used i n t h i s f i l e
. i n c l u d e ” IIR2P2Z.asm ”
. i n c l u d e ” IIR3P3Z.asm ”
; / / As t h e macros a r e i n i t i a l i z e d by t h e C28x ,
; / / t h e n e t t e r m i n a l b e i n g used by t h e s e macros a r e r e f e r e n c e d h e r e

. r e f CNTL 2P2Z DBUFF1

. r e f CNTL 2P2Z Coef1

. r e f CNTL 2P2Z Fdbk1

. r e f CNTL 2P2Z DBUFF2

. r e f CNTL 2P2Z Coef2

. r e f CNTL 2P2Z Fdbk2

. r e f CNTL 2P2Z DBUFF4

. r e f CNTL 2P2Z Coef4

. r e f CNTL 2P2Z Fdbk4

. r e f CNTL 3P3Z CLA DBUFF5

. r e f CNTL 3P3Z CLA Coef5

. r e f CNTL 3P3Z CLA Fdbk5
CLA DEBUG . s e t 0
. s e c t ” Cla1Prog ”
. a l i g n 2

C l a 1 P r o g S t a r t :
; Th i s t a s k w i l l R e g u l a t e Boos t 1
Cla1Task1 :

MNOP
MNOP
IIR2P2Z 1
MSTOP
MNOP
MNOP
MNOP

ClaT1End :
; Th i s t a s k w i l l R e g u l a t e Boos t 2
Cla1Task2 :

MNOP
MNOP
IIR2P2Z 2
MSTOP
MNOP
MNOP
MNOP

ClaT2End :
; Th i s t a s k w i l l R e g u l a t e Buck
Cla1Task3 :

MNOP
MNOP
IIR2P2Z 4
MSTOP
MNOP
MNOP
MNOP

ClaT3End :
; Th i s t a s k w i l l R e g u l a t e S e p i c
Cla1Task4 :

MNOP
MNOP
IIR3P3Z 5 ; EPWM5A
MSTOP
MNOP
MNOP
MNOP

ClaT4End :
; n o t used
Cla1Task5 :

MSTOP
MNOP
MNOP
MNOP

ClaT5End :
; n o t used
Cla1Task6 : ; n o t used

MSTOP
MNOP
MNOP
MNOP

ClaT6End :
; n o t used
Cla1Task7 :

MDEBUGSTOP
MSTOP

120

MNOP
MNOP
MNOP

ClaT7End :
; Used f o r i n i t i l i z a t i o n , Only f o r c e d t o run once from Main
Cla1Task8 :

. i f (CLA DEBUG = 1)
MDEBUGSTOP

. e n d i f
IIR2P2Z DBUFF CLA INIT 1
IIR2P2Z DBUFF CLA INIT 2
IIR2P2Z DBUFF CLA INIT 4
IIR3P3Z DBUFF CLA INIT 5
MSTOP

ClaT8End :

Cla1Prog End :

B.5 CLA ISR used for Dimming

i n c l u d e ”LedDemo−S e t t i n g s . h ”
i n c l u d e ” P e r i p h e r a l H e a d e r I n c l u d e s . h ”
i n c l u d e ”DSP2803x EPwm . h ”
Uin t16 temp ;
c o n s t i n t 1 6 Kin= 6 5 ;
/ / Kin = Gfb ∗ Gadc s e e Exce l s h e e t
c o n s t i n t 1 6 Kinb= 2 1 ;
/ / Kinb = (Gfb ∗ Gadc) / 1 0 s e e Exce l s h e e t f o r Buck

i n t e r r u p t vo id c l a 1 i s r ()
{

EALLOW;
P i e C t r l R e g s . PIEACK . a l l = PIEACK GROUP11 ; / / Acknowledge t h e group c o n t a i n i n g CLA i n t e r r u p t s

/ / Check Boost1 OVP
temp= ((long) AdcResu l t . ADCRESULT4 ∗ (l ong) Kin)>>3;
i f (temp > B o o s t 1 T h r e s h o l d)

{
EPwm1Regs . TZFRC . b i t . OST = 1 ;
EPwm3Regs . ETSEL . b i t . INTEN = 0 ;
Boost1 OVF = 1 ;
}

/ / Check Boost2 OVP
temp= ((long) AdcResu l t . ADCRESULT5 ∗ (l ong) Kin)>>3;
i f (temp > Boost2Temp)

{
EPwm2Regs . TZFRC . b i t . OST = 1 ;
Boost2 OVF = 1 ;
EPwm6Regs . ETSEL . b i t . INTEN = 0 ;

}
/ / Check Buck OVP

temp= ((long) AdcResu l t . ADCRESULT6 ∗ (l ong) Kinb)>>2;
i f (temp > Buck Thre sho ld)
{

EPwm4Regs . TZFRC . b i t . OST = 1 ;
Buck OVF = 1 ;

EPwm3Regs . ETSEL . b i t . INTEN = 0 ;
}

/ / Check S e p i c OVP
temp= ((long) AdcResu l t . ADCRESULT7 ∗ (l ong) Kin)>>3;

i f (temp > S e p i c T h r e s h o l d)
{
EPwm5Regs . TZFRC . b i t . OST = 1 ;

Sepic OVF = 1 ;
EPwm6Regs . ETSEL . b i t . INTEN = 0 ;

}

EDIS ;
AdcRegs . ADCINTFLGCLR . b i t . ADCINT1 = 1 ; / / C l e a r ADCINT1 f l a g r e i n i t i a l i z e f o r n e x t SOC
AdcRegs . ADCINTFLGCLR . b i t . ADCINT2 = 1 ; / / C l e a r ADCINT2 f l a g r e i n i t i a l i z e f o r n e x t SOC
AdcRegs . ADCINTFLGCLR . b i t . ADCINT3 = 1 ; / / C l e a r ADCINT2 f l a g r e i n i t i a l i z e f o r n e x t SOC
AdcRegs . ADCINTFLGCLR . b i t . ADCINT4 = 1 ; / / C l e a r ADCINT2 f l a g r e i n i t i a l i z e f o r n e x t SOC
}

121

B.6 PWM Initialization

i n c l u d e ” P e r i p h e r a l H e a d e r I n c l u d e s . h ”
i n c l u d e ” DSP280x EPWM defines . h ”
e x t e r n v o l a t i l e s t r u c t EPWM REGS ∗ePWM [] ;
vo id BuckSingle CNF (i n t 1 6 n , i n t 1 6 p e r i o d , i n t 1 6 mode , i n t 1 6 phase)
{
i n t 1 6 temp ;
(∗ePWM[n]) . TBCTL . b i t . PRDLD = TB IMMEDIATE ;
(∗ePWM[n]) . TBPRD = p e r i o d ;
(∗ePWM[n]) . TBPHS . h a l f . TBPHS = 0 ;
(∗ePWM[n]) . CMPA. h a l f .CMPA = 0 ;
(∗ePWM[n]) . CMPB = 0 ;
(∗ePWM[n]) . TBCTR = 0 ;
(∗ePWM[n]) . TBCTL . b i t .CTRMODE = TB COUNT UPDOWN;
/ / s e t up−down mode f o r S y m e t r i c PWM
(∗ePWM[n]) . TBCTL . b i t . HSPCLKDIV = TB DIV1 ;
(∗ePWM[n]) . TBCTL . b i t . CLKDIV = TB DIV1 ;
temp = (p e r i o d ∗ phase) / 1 8 0 ;
/ / C o n v e r t s Degrees t o Clock Cy c l e s
i f (mode == 1) / / c o n f i g as a Mas te r
{
(∗ePWM[n]) . TBCTL . b i t . PHSEN = TB DISABLE ;
(∗ePWM[n]) . TBCTL . b i t . SYNCOSEL = TB CTR ZERO ;
/ / sync ”down−s t r e a m ”
}
i f (mode == 0)
/ / c o n f i g as a S l a v e (Note : Phase +2 v a l u e used t o compensa te f o r l o g i c d e l a y)
{
(∗ePWM[n]) . TBCTL . b i t . PHSEN = TB ENABLE ;
(∗ePWM[n]) . TBCTL . b i t . SYNCOSEL = TB SYNC IN ;
i f (0 ≤ temp ≤ p e r i o d) / / For 0 ≤ phase ≤ 180
{
(∗ePWM[n]) . TBPHS . h a l f . TBPHS = temp +2;
(∗ePWM[n]) . TBCTL . b i t . PHSDIR = TB DOWN;
}
i f (temp > p e r i o d) / / For 180 ≤ phase ≤ 360
{
(∗ePWM[n]) . TBPHS . h a l f . TBPHS = (temp+2−p e r i o d) ;
(∗ePWM[n]) . TBCTL . b i t . PHSDIR = TB UP ;
}
}

(∗ePWM[n]) . CMPCTL. b i t .SHDWAMODE = CC SHADOW;
(∗ePWM[n]) . CMPCTL. b i t .LOADAMODE = CC CTR PRD ;

(∗ePWM[n]) . AQCTLA. b i t .ZRO = AQ NO ACTION ;
(∗ePWM[n]) . AQCTLA. b i t .CAU = AQ CLEAR ;
(∗ePWM[n]) . AQCTLA. b i t .CAD = AQ SET ;
(∗ePWM[n]) . ETSEL . b i t . SOCASEL = ET CTRD CMPB ;
(∗ePWM[n]) . ETSEL . b i t .SOCAEN = 1 ;
(∗ePWM[n]) . ETPS . b i t .SOCAPRD = ET 1ST ;
(∗ePWM[n]) . TZSEL . b i t . OSHT1 = 1 ;
(∗ePWM[n]) . TZCTL . b i t . TZA = 2 ;
/ / Enab le HiRes o p t i o n

EALLOW;
(∗ePWM[n]) . HRCNFG. a l l = 0x0 ;
(∗ePWM[n]) . HRCNFG. b i t .EDGMODE = HR FEP ;
(∗ePWM[n]) . HRCNFG. b i t .CTLMODE = HR CMP;
(∗ePWM[n]) . HRCNFG. b i t .HRLOAD = HR CTR PRD ;
EDIS ;
/ / s e t CMPB t o g e r e r a t e T r i g e r f o r ADC
(∗ePWM[n]) . CMPB = 5 ;
}
vo id Dimming CNF (i n t 1 6 n , Uin t16 p e r i o d)
{
i n t 1 6 temp1 ;
(∗ePWM[n]) . TBCTL . b i t . PRDLD = TB IMMEDIATE ;
(∗ePWM[n]) . TBPRD = p e r i o d ;
(∗ePWM[n]) . TBPHS . h a l f . TBPHS = 0 ;
(∗ePWM[n]) . CMPA. h a l f .CMPA = 0 ;
(∗ePWM[n]) . CMPB = 0 ;
(∗ePWM[n]) . TBCTR = 0 ;
(∗ePWM[n]) . TBCTL . b i t .CTRMODE = TB COUNT UPDOWN;
(∗ePWM[n]) . TBCTL . b i t . HSPCLKDIV = TB DIV1 ;
(∗ePWM[n]) . TBCTL . b i t . CLKDIV = TB DIV1 ;
(∗ePWM[n]) . TBCTL . b i t . PHSEN = TB DISABLE ;
(∗ePWM[n]) . TBCTL . b i t . SYNCOSEL = TB SYNC IN ;
(∗ePWM[n]) . CMPCTL. b i t .SHDWAMODE = CC SHADOW;

122

(∗ePWM[n]) . CMPCTL. b i t .SHDWBMODE = CC SHADOW;
(∗ePWM[n]) . CMPCTL. b i t .LOADAMODE = CC CTR PRD ;
(∗ePWM[n]) . CMPCTL. b i t .LOADBMODE = CC CTR PRD ;
/ / NOTE:−−−
/ / due t o s y c h r o n i s a t i o n i s s u e between t h e egdes o f
/ / dimming pwm and t r i p i n g of main PWM i n ISR
/ / we w i l l t r i g e r i s r w e l l b e f o r e t h e edge
/ / Outpu t A of t h i s PWM module C o n t r o l
(∗ePWM[n]) . AQCTLA. b i t .ZRO = AQ NO ACTION ;
(∗ePWM[n]) . AQCTLA. b i t .CAU = AQ CLEAR ;
(∗ePWM[n]) . AQCTLA. b i t .CAD = AQ SET ;
(∗ePWM[n]) . ETSEL . b i t . INTSEL = ET CTRU CMPB ;
/ /−−
(∗ePWM[n]) . ETSEL . b i t . INTEN = 0 ;
(∗ePWM[n]) . ETPS . b i t . INTPRD = ET 1ST ;
/ / D i s a b l e HiRes o p t i o n

EALLOW;
(∗ePWM[n]) . HRCNFG. a l l = 0x0 ;
/ / s e t CMPA
temp1 = p e r i o d >> 1 ;
(∗ePWM[n]) . CMPA. h a l f .CMPA = temp1 ; / / S e t dimming PWM t o 50% du ty c y c l e
(∗ePWM[n]) . CMPB = temp1−5 ;
EDIS ;
}

123

Appendix C

Source Code for Open Loop
Measurement for Buck SMPS

C.1 CLA Code
Modified CLA code is listed below

;====================================
IIR2P2Z INIT .mac ro n
;====================================
; V a r i a b l e D e c l a r a t i o n s
; The f o l l o w i n g a r e messages from t h e main CPU t o t h e CLA These a r e o b j e c t p o i n t e r
CNTL 2P2Z Fdbk : n : . u s e c t ”CpuToCla1MsgRAM ” ,2 ; Feedback P o i n t e r
CNTL 2P2Z Coef : n : . u s e c t ”CpuToCla1MsgRAM ” ,2 ; P o i n t e r t o f i l t e r C o e f f i c i e n t s

; P u b l i s h T e r m i n a l P o i n t e r s f o r a c c e s s from t h e C e n v i r o n m e n t (o p t i o n a l)
. d e f CNTL 2P2Z Fdbk : n :
. d e f CNTL 2P2Z Coef : n :
; s e t t e r m i n a l t o p o i n t t o ZeroNet

MOVL XAR2, #ZeroNetCLA
MOVW DP , # CNTL 2P2Z Coef : n :
MOVL @ CNTL 2P2Z Fdbk : n : , XAR2
MOVL @ CNTL 2P2Z Coef : n : , XAR2
.endm

;====================================
IIR2P2Z .macro n
;====================================

C o n t r o l L a w 2 P 2 Z S t a r t : n :

MMOV16 MAR0, @ CNTL 2P2Z Coef : n : ; MAR0 = p o i n t s t o C o e f i c i e n t s t r u c t u r e
MMOV16 MAR1, @ CNTL 2P2Z Fdbk : n : ; MAR1 = p o i n t s t o f e e d b a c k
MNOP
MNOP
MNOP
MMOV32 MR0, ∗MAR0[#2]++ ; MR0 = s c a l i n g
MUI16TOF32 MR1, ∗MAR1 ; MR1 = f e e d b a c k (ADC)
MMPYF32 MR1,MR1,MR0 ; x = MR1(f e e d b a c k) − MR0(Q v o l t s)
MMOV32 MR0, ∗MAR0[#2]++ ; MR0 = s c a l i n g
MADDF32 MR1,MR1,MR0
MMOV32 MR3, ∗MAR0[#2]++ ; MR0 = Q v o l t s
MSUBF32 MR1,MR1,MR3
MUI16TOF32 MR3, @ EPwm: n : Regs.TBPRD
MMINF32 MR1, #0 . 2 8 5 ; Lower L i m i t
MMAXF32 MR1, #0 . 0 ; Upper L i m i t
; / / / / / / / / / / / / / / / / / / / PWM Update S e c t i o n /

MNOP
MNOP
MMPYF32 MR1, MR1, MR3
MMPYF32 MR1,MR1,#65536 .0L ; As CMPA i s s h i f t e d by 16 b i t s
MF32TOI32 MR1, MR1
MMOV32 @ EPwm: n : Regs.CMPA.al l , MR1

124

Contro lLaw 2P2Z End : n :
.endm

C.2 Modifications in Main Code
Modification in main.c code is listed below

Thi s F i l e d e p i t c s changes from o r i g n a l s o u r c e code n e c s s a r y t o d e v e l o p an u n d e r s t s a n d

s t r u c t inputDS2P2Z {
f l o a t s c a l i n g ; / / S c a l i n g f a c t o r
f l o a t DC bias ; / / DC o p e r a t i n g p o i n t
f l o a t Q v o l t s ;
} ;

s t r u c t inputDS2P2Z Coef2P2Z 4 ;

Coef2P2Z 4 . s c a l i n g = 0 . 0 0 0 0 3 2 ; / / S c a l i n g F a c t o r i s found by i m p e r i c a l t e s t i n g
Coef2P2Z 4 . Q v o l t s = 0 . 0 2 0 9 2 8 ; / / DC p o i n t i s chosen i n c o n t i n u e s c o n d u c t i o n mode
Coef2P2Z 4 . DC bias = 0 . 0 ;

CNTL 2P2Z Fdbk4 = &AdcResu l t . ADCRESULT2; / / p o i n t t o Buck o u t p u t v o l t a g e v a l u e
CNTL 2P2Z Coef4 = &Coef2P2Z 4 ; / / p o i n t t o f i r s t c o e f f o f Buck Loop

125

	title.pdf
	LedDemo.pdf

