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Abstract
Grid distortion is usually one of the major problems in the field of Computational Fluid

dynamics (CFD). The quality of the results obtained from the numerically modeled sim-
ulations hugely depends on grid quality. There are many instances in modeling a fluid
dynamics problem where grid distortion is inevitable. When this occurs the correspond-
ing Numerical Scheme used to approximate the fluxes must account for these opposing
changes.

A new numerical scheme called the Preferred Direction Diffusion Scheme for the cal-
culation of diffusive fluxes is presented in this thesis. The numerical scheme proposed
here is less sensitive to grid quality, therefore, the transformation of the grids is expected
to be more accurate compared to the traditional transformation techniques like central
differencing.

Initially, the scheme is implemented in MATLAB to study its Mathematical behavior.
It is further applied to an Unsteady heat Conduction equation in 3D. It is tested on a sim-
ple case-a Square duct with adverse grid conditions. The obtained results are compared
with the results obtained from an existing numerical scheme with conventional transfor-
mation technique. Later, both the results are compared to an analytical solution and
conclusions are drawn based on that.

The implemented scheme is further evaluated for its robustness and accuracy through
appropriate code verification techniques. Code verification usually involves error evalu-
ation of the numerical schemes for known benchmark results. The obvious choice for a
benchmark solution is the analytical solution but it’s usually impossible to obtain them
with a sufficient solution structure. The method of Manufactured solutions (MMS) plays
a useful role in this situation. This method is fairly straightforward and purely a mathe-
matical procedure.

MMS is implemented in CALC++ for an unsteady heat equation in 3D and Navier-stokes
equation. CALC++ is a massively parallel incompressible flow solver (written in C++)
developed at the division of Fluid Dynamics, Chalmers University of Technology. The
scheme is evaluated by subjecting it to systematic grid tests. Its performance is judged by
studying the rate of reduction of the discretization error with increasing grid resolution.

Keywords: CFD, Numerical scheme, Diffusive fluxes, PDS, CD, MMS, CALC++, MAT-
LAB .
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List of Symbols

T temperature
t time
α Thermal diffusivity
(r,Θ) radial coordinates
V volume
T cell averaged temperature
A cell face area
(x1, x2, x3) Cartesian coordinates
(ξ, η, ζ) Computational coordinates
∆t time step
V cell properties
Ψ Inverse components of preferred direction
ϕ Flow variable
ρ density
ν kinematic viscocity
P Pressure
Q unsteady term vector
F Flux vector

Abbreviations

CFD Computational Fluid Dynamics
PDS Preferred direction Diffusion Scheme
CD Central Differencing
MMS Method of Manufacured solutions
OOA Observed order of accuracy
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1
Introduction

The application of finite volume method for a domain in curvilinear coordinates usually
involves a transformation from the physical space to Computational space. This Process
itself is an approximation and involves a one to one mapping between the two coordinate
systems (1.1).

Figure 1.1: Representation of Physical and computational space

The curvilinear grid will, therefore, be transformed into a uniform grid, thereby, mak-
ing it easier to solve the finite volume equations in the physical space. If the compu-
tational domain is discretized in space using a grid with unfavourable features such as
non-orthogonality, skewness,etc., the applied numerical scheme must account for these ad-
verse conditions failing to do so will result in inaccurate solutions.

1.1 New Numerical Scheme

A new numerical scheme for the calculation of diffusive fluxes which is based on detailed
metrics and reconstructed flow quantities is used in this project. The proposed numer-
ical scheme is aimed to establish a new method to transform complex boundary-fitted
grids from physical space to computational space at a higher accuracy. This scheme will
account for the above-mentioned conditions, therefore, it is expected to be less sensitive
to mesh quality which would affect the diffusive flux calculations. In addition, this new
scheme incorporates a higher order transformation technique but still follows second order
accuracy for spatial discretization like the central differencing scheme. This finite volume
scheme is based on cell centered, structured grids with the gradients being solved at the
face centers, see figure (3.1). This scheme could be, for example, useful in the process of
shape optimization of a turbine blade during which a mesh topology is initially defined
for the blade which results in the generation of a boundary fitted grid. Based on the
given design constraints in each iteration of the procedure, reshaping of the blade takes
place continuously with constant mesh topology. This leads to a continuous change in
the mesh configuration which might result in the production of unfavorable cells in the
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1. Introduction

domain. Also, in general, CFD problems where grid skewness is predominant, the new
numerical scheme is presumed to account for it, therefore, the results obtained could be
more accurate in these circumstances.

1.2 Mesh Quality

During the calculation of diffusive fluxes some of the main mesh quality parameters
considered are cell aspect ratio, skewness, stretching and curvilinear cells [3]. The diffu-
sive gradient calculations are hugely affected by cell skewness due to non-orthogonality.
Therefore special treatments are to be conducted on the gradient terms, this aspect is
elucidated in [3]. The major mesh parameters studied in this thesis are cell skewness and
curvilinearity (1.2).

Figure 1.2: Curvilinear and skewed grids

1.3 Code Verification

A numerical scheme is usually tested for robustness and accuracy once it is implemented
in the code. This process is roughly known as code verification. In any numerical assess-
ment, three important processes are required to be understood and conducted in order to
better establish the accuracy of the obtained solutions. These processes are verification
of codes, verification of calculations and validation [4]. Verification of calculation involves
error estimation and verification of code involved error evaluation from a known solution.
Both these procedures are purely mathematical. The process of validation involves cor-
roborating physical laws with the obtained numerical results.
Code Verification is performed to make sure there are no mistakes in a CFD code and
the solution algorithm [6]. It is, therefore, useful to check if the implemented numerical
method captures a physical phenomenon accurately. For a numerical scheme to be stable,
the errors must not develop in the direction of solution calculation and the discretized
equations must approach the original governing equations as the spatial and time limits
tend to zero. This difference between the discretized equations and the original partial
differential equations is called discretization error.

DEi = fi − fexact (1.1)

2



1. Introduction

Here i represents the mesh level. In this thesis, only discretization errors are studied and
the errors affecting it, e.g. round-off and iterative convergence errors, are ignored.

1.3.1 Order of accuracy (OOA)

One of the meticulous code verification tests is the order of accuracy test, which basically
determines if the discretization error is reduced at an expected rate with increasing grid
refinement. This test is, therefore, useful to check if the formal order of accuracy of the
numerical scheme is attained in the obtained solutions. The formal order of accuracy
is usually established through the truncation error of the numerical scheme used. For
example, a central differencing scheme is formally second order accurate, which can be
derived using the Taylor series analysis. On the other hand, the observed order of accuracy
is obtained through the output of the code from a simulation. This accuracy is very
sensitive to coding mistakes, smoothness of the solution, incorrect numerical algorithms,
and solutions which are not in asymptotic convergence range, which basically means that
the lower order truncation error terms dominate [6]. Consider a series expansion of the
discretization error in terms of hi, which is a measure of an element size on some mesh
level i,

DEi = fi − fexact = gph
p
i +H.O.T (1.2)

Here, p, gp, h are the observed order of accuracy, coefficient of the leading order term,
reference grid spacing respectively. Using the assumption that the H.O.T are negligible
and equation (1.2), two discretization errors for two mesh levels can be represented as,

DE1 = f1 − fexact = gph
p
1

DE2 = f2 − fexact = gph
p
2

(1.3)

Combining the two equations,

DE2
DE1

= gph
p
2

gph
p
1

=
(h2
h1

)p
(1.4)

Taking natural log on both sides, the observed order of accuracy is obtained as,

p =
ln
(
DE2
DE1

)
ln(r) (1.5)

where r is grid refinement factor given by, r = h2/h1. When an exact solution is known,
the observed order of accuracy of the numerical scheme can be obtained. When using this
method, special care has to be taken to make sure the iterative and round-off error don’t
affect the calculations. This can be achieved by setting very high tolerance levels during
the simulations.
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2
Governing Equations and Solution

Methods

2.1 Governing Equations

This section provides a detailed description of the governing equations used in this
project. The Continuity and momentum equations for incompressible, laminar, 3D flow
in the absence of body forces are presented below.

∂ui
∂xi

= 0 (2.1)

∂ui
∂t

+ ∂(uiuj)
∂xj

= −1
ρ

∂p

∂xi
+ ∂

∂xj
(ν ∂ui
∂xj

) (2.2)

Further, the unsteady heat equation in 3D is given below,

∂T

∂t
= α

∂2T

∂x2
j

(2.3)

Here Thermal Diffusivity α is a constant and is set to 1.9×10−5 m2/s.The equation used
in obtaining the analytical solution is the 2D unsteady conduction equation in cylindrical
coordinate system,

∂T

∂t
= α(∂

2T

∂r2 + 1
r

∂T

∂r
+ 1
r2
∂2T

∂Θ2 ) (2.4)

2.2 Numerical Method

The governing equations can be in general represented as,

∂Q

∂t
+ ∂Fj
∂xj

= 0 (2.5)

For incompressible flow equations,

Q =
[

0
ui

]
, Fj =

[
uj

uiuj + 1
ρpδij − ν

∂ui
∂xj

]
(2.6)

For unsteady heat equation,

Q =
[
T
]
, Fj =

[
−α ∂T

∂xj

]
(2.7)
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2. Governing Equations and Solution Methods

2.2.1 Finite Volume Method

Equation (2.5) is integrated over an arbitrary Control Volume V,∫
V

∂Q

∂t
dV +

∫
V

∂Fj
∂xj

dV = 0 (2.8)

Further Gauss theorem is applied to the flux part thereby solving it over the Control
surface and cell average Q is used to represent the unsteady term.

∂Q

∂t
V +

∫
S
Fj . dAj = 0 (2.9)

The surface integral in equation (2.9) can be further approximated using the areas of the
control surfaces and the average face flux.

∂Q

∂t
V +

faces∑
i=1

F ij . A
i
j = 0 Aj = njA (2.10)

The following sections will describe how to discretize the unsteady and flux terms in
equation (2.10).

2.2.2 Spatial Discretization

2.2.2.1 Convective Fluxes

The convective fluxes in CALC++ environment are solved using second order upwind
scheme.

2.2.2.2 Diffusive Fluxes

The diffusive fluxes in both the MATLAB implementation and CALC++ environment
are calculated using Preferred direction diffusion scheme (PDS). Further, an implementa-
tion of Centered Difference method was done in the MATLAB script to compare with the
results obtained from PDS. A detailed explanation of PDS is provided in chapter 3. This
section gives a brief description of the Centered difference scheme. The diffusion gradients
are obtained in the computational domain and then converted into physical space using
chain rule relation given by,

∂ϕ

∂xi
= ∂ξ

∂xi

∂ϕ

∂ξ
+ ∂η

∂xi

∂ϕ

∂η
+ ∂ζ

∂xi

∂ϕ

∂ζ
i = 1, 2, 3 (2.11)

The derivatives of the flow variables are further obtained using the centered difference
approach (also see figure 3.1).

∂ϕ

∂ξ
= ϕi+1,j,k − ϕi,j,k

∂ϕ

∂η
= 1

4(ϕi,j+1,k − ϕi,j−1,k) + 1
4(ϕi+1,j+1,k − ϕi+1,j−1,k)

∂ϕ

∂ζ
= 1

4(ϕi,j,k+1 − ϕi,j,k−1) + 1
4(ϕi+1,j,k+1 − ϕi+1,j,k)

(2.12)

Further, the derivatives of physical space with respect to computational space is obtained
using the Transformation matrix. This process is further clearly explained in [1].

5



2. Governing Equations and Solution Methods

2.2.3 Temporal Discretization

A detailed description of the temporal discretization of the heat equation implemented in
the MATLAB script is provided in this section. The equation (2.10) is further integrated
over time t, ∫

t

∂ϕ

∂t
V dt = α

∫
V

faces∑
i=1

∂ϕ

∂xj

i

Aij dt (2.13)

The equation is averaged over time,

(ϕn+1 − ϕn)V = α

∫
V

faces∑
i=1

∂ϕ

∂xj

i

Aij dt (2.14)

Further first order Euler explicit method which is a forward time marching scheme is used
as the time scheme,

ϕn+1 = ϕn + α∆t
V

faces∑
i=1

( ∂ϕ
∂xj

i

)nAij (2.15)

The time step ∆t is set to 0.2 sec during the simulations. During the CALC++ simulations
a time step of 10−5 is used.

2.2.4 Solving Method

For the MATLAB implementation, the equation (2.15) after its reduction to algebraic
form is solved using Gauss-Seidel Iteration method. The Tolerance level of the iterations
is set to 1× 10−3. Further, the CALC++ enviroment utilizes solvers available in PETSc
library.

2.3 Analytical Method

The equation (2.4) is solved analytically using the separation of the variables technique
of solving Partial Differential Equations. After applying the appropriate boundary and
initial conditions, temperature T is obtained as a function in space and time as,

T (r,Θ, t) =
∞∑
n=1

∞∑
m=1

Cnmsin(νnΘ)e(−αλ2
nmt)[Yν(λnma)Jν(λnmr)− Jν(λnma)Yν(λnmr)]

(2.16)
Since the governing equation is a parabolic equation it will tend to become elliptic with
increasing time (become steady). This would be computationally expensive to achieve.
Therefore, eigenvalues comparable to the solution matrix for a particular grid size is ob-
tained and the solutions are obtained for smaller time periods. Also, the fact that the
unsteady term is exponential decaying could be exploited in order to obtain a stable ana-
lytical solution. A comprehensive mathematical description of the derivation is provided
in [2]. A detailed derivation of the equation for the presented case is provided in Appendix
B.

6



2. Governing Equations and Solution Methods

2.4 Initial and boundary conditions

Figure 2.1: Initial and Boundary conditions

For the MATLAB implementation, the initial temperature in the domain is set to a
uniform value of 30K. For the numerical analysis, the boundary conditions are prescribed
by creating ghost cells and further implementing it using Central differencing. The tem-
perature values used for the boundary conditions are shown in figure (2.1). The boundary
conditions on the other two faces in the direction normal to the plane were set to zero
gradient.

7



3
Preferred Direction Diffusion

Scheme

Figure 3.1: Representation of Flux Molecule in Computational Space

In this new numerical scheme, the diffusion gradients on the faces are evaluated using
the cell averages obtained from the surrounding ten cells as indicated in figure (3.1). Note
that, since the faces near domain boundaries are not surrounded by ten cells, they have to
be treated differently. Twenty cell properties including volume of the cell are calculated for
each of the considered ten cells per face in the physical space (A). These volume integrals
are calculated using Gauss-point Quadrature (A).

8



3. Preferred Direction Diffusion Scheme

3.1 Preferred Direction

Figure 3.2: Preferred Directions of a face

In order to calculate the gradient coefficients for each face, three unique directions for
each face inside the domain is calculated. Three planes are defined using the grid nodes.
These directions are referred to as preferred directions, see figure (3.2)
The preferred directions for each face of the flux molecule are calculated using the following
relations,

First direction, n1 = (r7−r4)×(r5−r6)
|(r7−r4)×(r5−r6)|

Second direction, n2 = (r10−r0)×(r8−r2)+(r11−r1)×(r9−r3)
|(r10−r0)×(r8−r2)+(r11−r1)×(r9−r3)|

Third direction, n3 = (r9−r0)×(r8−r1)+(r11−r2)×(r10−r3)
|(r9−r0)×(r8−r1)+(r11−r2)×(r10−r3)|

(3.1)

The directions n1, n2 and n3 are not in general normal to each other.

3.2 Local Co-ordinates

A local co-ordinate system is now established for each face using the directions obtained
in equation (3.1). This co-ordinate system relates the global co-ordinate system, the
preferred directions and the reference point (xo, yo, zo) located at the face center.

xy
z

 =

xoyo
zo

+ ξ

n1x
n1y
n1z

+ η

n2x
n2y
n2z

+ ζ

n3x
n3y
n3z


n1x n2x n3x
n1y n2y n3y
n1z n2z n3z


ξη
ζ

 = N

ξη
ζ

 =

x− xoy − yo
z − z0


ξη
ζ

 = N−1

x− xoy − yo
z − z0


ξη
ζ

 =

Ψ11 Ψ12 Ψ13
Ψ21 Ψ22 Ψ23
Ψ31 Ψ32 Ψ33


x− xoy − yo
z − z0



(3.2)
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3. Preferred Direction Diffusion Scheme

3.3 Extraction of Gradient Coefficients

The variation of the flow variable ϕ in the computational space, (ξ, η, ζ) is assumed to
be,

ϕ(ξ, η, ζ) = C0 + C1ξ + C2η + C3ζ + C4ξη + C5ξζ + C6η
2 + C7ζ

2 + C8ξη
2 + C9ξζ

2 (3.3)

The unknown coefficients [C0....C9] are obtained by solving a system of equations obtained
by integrating the equation (3.3) over the ten cell volumes of a Flux molecule (see figure
3.1).

[
ϕ0V0 . . . ϕ9V9

]
=
[
C0 . . . C9

]


∫ ∫ ∫
Ω0

dΩ · · ·
∫ ∫ ∫

Ω0
ξζ2dΩ

. .

. .

. .∫ ∫ ∫
Ω9

dΩ · · ·
∫ ∫ ∫

Ω9
ξζ2dΩ


Or

Φ =
[
C0 . . . C9

]
A

(3.4)

In equation (3.4), Φ represents the degrees of freedom in the CFD solver (cell-averages
of the considered solver variables). Since the vector Φ is known the matrix A can be
calculated from the known metric data obtained in equations (A.1 and 3.2). Thus, the
vector Φ can be represented as,[

C0 . . . C9
]

= ΦA−1 (3.5)

A detailed derivation of the integrals in the A matrix is provided in Appendix A. Also,
the procedure for obtaining the integrals in the domain boundaries is provided.

3.4 Face Gradients

Further, differentiating equation (3.3),

dϕ = C1dξ + C2dη + C3dζ + C4ξdη + C4ηdξ + C5ξdζ + C5ζdξ+
2C6ηdη + 2C7ζdζ + C8ξηdη + C8η

2dξ + 2C9ξζdζ + C9ζ
2dξ

(3.6)

Since the local coordinate system is centered at the face center, equation (3.6) results in,

(ξ, η, ζ) = (0, 0, 0)
dϕ = C1dξ + C2dη + C3dζ

(3.7)

By Differentiating the second equation in (3.2), the relationship between the derivatives
in (x,y,z) space and (ξ,η,ζ) space is obtained as,dxdy

dz

 =

n1x n2x n3x
n1y n2y n3y
n1z n2z n3z


dξdη
dζ

 = N

dξdη
dζ

 (3.8)

Finally, the equations in (3.7 and 3.8) are combined to obtain the coefficients required
for calculating the derivatives of ϕ in the Cartesian coordinate system (x,y,z) at the face

10



3. Preferred Direction Diffusion Scheme

center. 
Cx0
.
.
.

Cx9

 =


(n1xA−1

10 + n2xA−1
20 + n3xA−1

30 )V0
·
·
·

(n1xA−1
19 + n2xA−1

29 + n3xA−1
39 )V9



Cy0
.
.
.

Cy9

 =


(n1yA−1

10 + n2yA−1
20 + n3yA−1

30 )V0
·
·
·

(n1yA−1
19 + n2yA−1

29 + n3yA−1
39 )V9



Cz0
.
.
.

Cz9

 =


(n1zA−1

10 + n2zA−1
20 + n3zA−1

30 )V0
·
·
·

(n1zA−1
19 + n2zA−1

29 + n3zA−1
39 )V9



∂ϕ

∂x
=
[
Cx0....Cx9

]

ϕ0
·
·
·
ϕ9

 ,
∂ϕ

∂y
=
[
Cy0....Cy9

]

ϕ0
·
·
·
ϕ9

 ,
∂ϕ

∂z
=
[
Cz0....Cz9

]

ϕ0
·
·
·
ϕ9



(3.9)
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4
Method of Manufactured

Solutions (MMS)

Method of Manufactured solutions is one of the most sophisticated code verification
methods available in the field of computational science and engineering [4]. The main idea
behind this method is to manufacture a solution for a flow variable using a continuous
function instead of obtaining an exact solution. This manufactured solution need not be
physically realistic since code verification is purely a mathematical procedure. Using the
manufactured solution a source term is derived for the governing equation. Now, this
governing equation is solved using numerical methods and compared with the existing
known manufactured solution. Therefore, this method could also be seen as a problem
solved backward.
For example, consider a function,

F (a) = 0 (4.1)

Now, say a = u in (4.1),
F (u) 6= 0 (4.2)

It is not necessary for u to be a solution for (4.1), therefore consider (4.2) to be equal to
a source term Q,

F (u) = Q (4.3)

F (a) = Q (4.4)

Now, a = u is a solution for (4.4). This is the fundamental idea behind the method of
manufactured solutions.

4.1 General procedure of MMS
The following steps are used to obtain the observed order of accuracy required to verify

the code,

• Determine the governing equations.
• Construct a manufactured solution.
• Use the solution to compute the source term to modify the governing equations.
• Obtain initial and boundary conditions using the manufactured solution.
• Setup a case by obtaining a grid to the domain and define suitable parameters like

time step etc.
• Perform simulations for the modified equations on multiple mesh levels.
• Obtain the global discretization error of the numerical solutions.
• Conduct the order of accuracy test using the solution to determine if the observed

order of accuracy matches the formal order of accuracy.
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4. Method of Manufactured Solutions (MMS)

An example of MMS using 1D unsteady heat equation is provided in appendix C.

4.2 Manufactured Solutions
To ensure the accuracy of the code verification procedure special care has to be taken to

obtain the manufactured solution. Some of them are mentioned below,

• The considered manufactured solution should contain smooth analytic functions
which ensure that the obtained solution will match the formal order of accuracy.

• The solution should have a sufficient number of non-trivial derivatives. For example,
in momentum equation, if the manufactured solution for velocity is linear and if the
diffusion term is solved using a second-order method, it would lead to incorrect
predictions of the observed order of accuracy.

• The manufactured solution derivatives should be bounded by a constant to ensure
that the solution is not varying strongly in space and time. Also, this ensures that
the solution does not contain any singularities.

• The chosen solution should be realistic when pertaining to a particular flow vari-
able. For example, if the physics of the problem demands positive temperature, the
obtained manufactured solution must be compatible.

The following are the manufactured solutions used in this thesis,

T (x, y, z, t) = e4π2tcos2(2πx)cos2(2πy)cos2(2πz)
u(x, y, z, t) = ((0.5cos(πx)cos(πy)cos(πz)cos(πt)) + 0.5)
v(x, y, z, t) = ((0.25sin(πx)sin(πy)cos(πz)cos(πt)) + 0.5)
w(x, y, z, t) = ((0.25sin(πx)cos(πy)sin(πz)cos(πt)) + 0.5)
p(x, y, z, t) = ((cos(πx)cos(πy)cos(πz)cos(πt)) + 0.5)

(4.5)

The velocity solutions are obtained in a way as to satisfy the continuity equation.

4.3 Initial and boundary conditions

Initial solution is obtained using the manufactured solutions in (4.5). A solution for a
differential equation can be obtained using different types of boundary conditions. Using
this principle, the boundary values are obtained from the manufactured solutions. For
example, consider a case where the code obtains a solution using Dirichlet boundary
condition on one of the boundary faces. This implementation can be directly performed
and compared using the manufactured solutions. If the same solution is required using
a Neumann condition on the same face, the values can be directly obtained from the
derivatives of the manufactured solutions.

4.4 Discretization error
The normalized global discretization error of the obtained numerical solution and man-

ufactured solution is obtained by employing L2 norm,

L2,i =
(∑N

n=1 |fi,n − fexact,n|2

N

)1/2 (4.6)

Here, i is for a particular mesh level.
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4. Method of Manufactured Solutions (MMS)

4.5 Strengths and Limitations of MMS
Some of the strengths of MMS are,

• Most of the coding options can be verified using this method.
• It has the capability to handle nonlinear and coupled equations.
• It can be used to detect mistakes in the solution algorithm.
• It works equally well for finite difference, finite volume and finite element schemes.

Some of the limitations are,

• It is required to change the source code in order to accommodate the changes in the
governing equations. The changes include the source term, initial, and boundary
condition terms. Therefore, this process cannot be conducted as a black box analysis.

• To test other model options in the code, it’s required to change the source term
which can be time-consuming.

• The solutions are assumed to be smooth in the domain. Therefore, it is challenging
to obtain manufactured solutions in cases involving discontinuities (shock waves,
etc.).

14



5
Geometry and Mesh

5.1 Domain Geometry

For the geometry of the domain, a Square duct is considered throughout the thesis.

Figure 5.1: Domain Geometry

The dimension of the square is 0.5m× 0.5m and the height of the geometry is 1.5m.

5.2 Grid Generation

A 3D Structured, Curvilinear grid (figure 5.2) is initially generated using the BlockMesh
utility on OpenFOAM and later imported into MATLAB to make certain changes which
will explained in the sections below.
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5. Geometry and Mesh

Figure 5.2: Uniform Grid (50x50x50)

5.2.1 Degree of Skewness

The evaluation of the numerical scheme is performed by testing it on several grids which
includes some level of skewness.

Figure 5.3: Degree of skewness

From figure (5.3), degree of skewness (DOS) can be defined as,

DOS = |CD|
|AB| (5.1)

Using equation (5.1) the required non-orthogonality is obtained in the domain (see figure
5.4).
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5. Geometry and Mesh

Figure 5.4: Example grid for DOS-0.05 (50x50x50 grid)

5.2.2 Grids

During phase one of the thesis, three grid configurations are used.

Grids for phase one
Grid size Uniform DOS-0.02 DOS-0.05
25x25x25 YES NO YES
50x50x50 NO YES YES

During phase two of the thesis, five grids of two grid configurations are used.

Grids for phase two (uniform and DOS-0.009)
Grids Gird size Grid spacing
Grid 1 129x129x129 1
Grid 2 65x65x65 2
Grid 3 33x33x33 4
Grid 4 17x17x17 8
Grid 5 9x9x9 16
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6
Results and discussion

The Results section is divided into two parts. The first section relates to the results
obtained from the first phase which is the MATLAB implementation of the new numerical
scheme. The second section relates to the results obtained from the second phase of the
thesis i.e, MMS implementation for the numerical scheme evaluation.

6.1 Phase one

Phase one results are obtained for the grids provided in (5.2.2) with initial and boundary
conditions given in (2.4). A line plot analysis is performed to visualize the temperature
distribution obtained from PDS and CD. Further, they are compared to the line plots
obtained from the analytical results. The line plot is taken along the boundaries across
the domain as shown in figure (6.1). It is taken in a way as to obtain the temperature
variation within the boundaries through the internal domain. Even though the simulations
are performed over time, the interest of this project lies in understanding the diffusion
gradients captured by the numerical schemes and further comparing it to the analytical
solution for any particular time step. Therefore, the results presented below are for a
particular time step.

Figure 6.1: Reference Line for line plots
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6. Results and discussion

6.1.1 Uniform Orthogonal grid

0 0.5 1 1.5 2 2.5

distance (m)

16

18

20

22

24

26

28

30

T
e

m
p

e
ra

tu
re

Plot for uniform grid (25x25x25)

CD PDS

Figure 6.2: Temperature line Plot for PDS and CD with uniform orthogonal grid, t=100

The above line plot represents the temperature distribution obtained for PDS and CD
on an uniform orthogonal grid. Both the schemes overlap which shows that PDS behaves
like CD when used on an uniform orthogonal grid.

6.1.2 Test for Skewness
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Figure 6.3: Temperature line Plot for PDS and CD with DOS-0.05, t=100
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Figure 6.4: Temperature line Plot for PDS and CD with DOS-0.02, t=100

The grid (50x50x50) is subjected to two levels of skewness (0.02 and 0.05) and the plots
above represent the temperature plot for PDS, CD and the analytical solution. Plots on
the right represent a zoomed in portion of the plots on the left. In both the cases, PDS
is closer to the analytical solution but it is not significant. Also, there is a high deviation
between the numerical and the analytical solutions near the boundaries.

6.1.3 Test for mesh resolution
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Figure 6.5: Temperature line Plot for PDS and CD with DOS-0.05, t=100

The above plot is obtained for a coarse grid. When compared to figure (6.3), PDS is still
relatively closer to the analytical solution when tested for a coarse grid.

6.2 Phase two

As explained in section 4, the scheme is evaluated using method of manufactured of
solutions. The discretization error required to obtain the observed order of accuracy is
computed using L2 norm (4.6) between the numerical and the manufactured solutions.
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6. Results and discussion

The results shown below basically demonstrates if the scheme behaves in a second order
manner with increasing grid resolution. Here, diffusion gradient terms are mainly studied.

6.2.1 MMS implementation for heat equation

The results below represent the variation of the discretization error for the heat gradients.
An example plot for the manufactured solution (6.6) is provided below. It can be observed
that the numerical solution obtained from the MMS implementation in CALC++ is similar
to the manufactured solution.

Manufactured solution Numerical solution

Figure 6.6: Comparison plots for the manufactured and numerical solutions, t=100
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Figure 6.7: Discretization error plots for uniform orthogonal grid and grid with
DOS=0.0009, t=100

From figure (6.7), it can be observed that the error reduction almost follows the second
order slope but in some cases it deviates. The tables below represent the observed order of
accuracies captured with increasing grid resolution. Negative orders of accuracies basically
represent that the error is increasing with increasing grid resolution.
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6. Results and discussion

Discretization error and observed order of accuracy for uniform orthogonal grid
Grids Gird size Grid spacing ∂T

∂x
∂T
∂y

∂T
∂z

L2 norm OOA L2 norm OOA L2 norm OOA
Grid 1 129x129x129 1 0.0002 0.0005 0.00004
Grid 2 65x65x65 2 0.001 2.5 0.0002 -1.04 0.0002 2.7
Grid 3 33x33x33 4 0.008 2.3 0.002 3.2 0.001 2.4
Grid 4 17x17x17 8 0.02 1.7 0.01 2.1 0.01 2.9
Grid 5 9x9x9 16 0.007 -1.9 0.03 1.5 0.02 0.8

Discretization error and observed order of accuracy for skewed grid of DOS-0.0009
Grids Gird size Grid spacing ∂T

∂x
∂T
∂y

∂T
∂z

L2 norm OOA L2 norm OOA L2 norm OOA
Grid 1 129x129x129 1 0.0002 0.0006 0.00003
Grid 2 65x65x65 2 0.001 2.5 0.0002 -1.7 0.0002 2.9
Grid 3 33x33x33 4 0.008 2.3 0.002 3.48 0.001 2.4
Grid 4 17x17x17 8 0.02 1.7 0.01 2.1 0.007 2.2
Grid 5 9x9x9 16 0.008 -1.79 0.03 1.6 0.02 1.5

6.2.2 MMS implementation for incompressible Navier Stokes equation

A similar implementation is performed for the incompressible Navier stokes equation on
CALC++. The following results represent the behaviour of the discretization error of the
velocity gradients with increasing grid refinement.
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Figure 6.8: Discretization error plots for uniform orthogonal grid and grid with
DOS=0.0009 for u velocity gradients, t=100

Discretization error and observed order of accuracy for uniform orthogonal grid
Grids Gird size Grid spacing ∂u

∂x
∂u
∂y

∂u
∂z

L2 norm OOA L2 norm OOA L2 norm OOA
Grid 1 129x129x129 1 0.0002 0.000001 0.01
Grid 2 65x65x65 2 0.003 3.99 0.0003 8.09 0.03 1.08
Grid 3 33x33x33 4 0.01 1.9 0.0007 0.99 0.04 0.7
Grid 4 17x17x17 8 0.03 1.3 0.001 0.96 0.04 0.1
Grid 5 9x9x9 16 0.06 0.97 0.006 2.21 0.04 -0.19
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6. Results and discussion

Discretization error and observed order of accuracy for skewed grid of DOS-0.0009
Grids Gird size Grid spacing ∂u

∂x
∂u
∂y

∂u
∂z

L2 norm OOA L2 norm OOA L2 norm OOA
Grid 1 129x129x129 1 0.0001 0.0003 0.01
Grid 2 65x65x65 2 0.002 3.9 0.0006 1.1 0.02 1.05
Grid 3 33x33x33 4 0.01 2.29 0.01 4.56 0.27 3.4
Grid 4 17x17x17 8 0.01 0.45 0.02 0.36 0.07 -1.8
Grid 5 9x9x9 16 0.06 1.97 0.01 -0.43 0.03 -1.02
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Figure 6.9: Discretization error plots for uniform orthogonal grid and grid with
DOS=0.0009 for v velocity gradients, t=100

Discretization error and observed order of accuracy for uniform orthogonal grid
Grids Gird size Grid spacing ∂v

∂x
∂v
∂y

∂v
∂z

L2 norm OOA L2 norm OOA L2 norm OOA
Grid 1 129x129x129 1 0.00008 0.0003 0.009
Grid 2 65x65x65 2 0.001 3.83 0.00008 0.48 0.01 0.22
Grid 3 33x33x33 4 0.004 1.9 0.0003 0.12 0.01 -0.18
Grid 4 17x17x17 8 0.008 0.89 0.0007 -1.48 0.005 1.22
Grid 5 9x9x9 16 0.02 1.6 0.001 -2.52 0.0009 2.2

Discretization error and observed order of accuracy for skewed grid of DOS-0.0009
Grids Gird size Grid spacing ∂v

∂x
∂v
∂y

∂v
∂z

L2 norm OOA L2 norm OOA L2 norm OOA
Grid 1 129x129x129 1 0.0001 0.0003 0.01
Grid 2 65x65x65 2 0.001 3.18 0.000001 -7.97 0.03 1.46
Grid 3 33x33x33 4 0.04 5.05 0.002 10.7 0.02 -0.63
Grid 4 17x17x17 8 0.0002 -7.8 0.0006 -2.1 0.02 0.18
Grid 5 9x9x9 16 0.03 7.4 0.002 2.07 0.001 -4.1
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Figure 6.10: Discretization error plots for uniform orthogonal grid and grid with
DOS=0.0009 for w velocity gradients, t=100

From the discretization error plots it can be observed that the rate of reduction of the
error does not exactly follow the second order slope. Also, the values obtained for the
observed order of accuracies are abnormal.

Discretization error and observed order of accuracy for uniform orthogonal grid
Grids Gird size Grid spacing ∂w

∂x
∂w
∂y

∂w
∂z

L2 norm OOA L2 norm OOA L2 norm OOA
Grid 1 129x129x129 1 0.0006 0.003 0.0006
Grid 2 65x65x65 2 0.0007 0.22 0.003 -0.12 0.0004 -0.6
Grid 3 33x33x33 4 0.0006 -0.18 0.002 -0.49 0.004 3.4
Grid 4 17x17x17 8 0.001 1.22 0.0005 -2.15 0.01 1.9
Grid 5 9x9x9 16 0.006 2.2 0.0007 0.6 0.03 1.2

Discretization error and observed order of accuracy for skewed grid of DOS-0.0009
Grids Gird size Grid spacing ∂w

∂x
∂w
∂y

∂w
∂z

L2 norm OOA L2 norm OOA L2 norm OOA
Grid 1 129x129x129 1 0.0007 0.004 0.0007
Grid 2 65x65x65 2 0.0007 0.01 0.006 0.59 0.0006 -0.18
Grid 3 33x33x33 4 0.001 0.9 0.001 -2.17 0.01 4.5
Grid 4 17x17x17 8 0.003 1.1 0.001 0.3 0.001 -3.44
Grid 5 9x9x9 16 0.009 1.6 0.001 -016 0.04 5

6.3 Conclusion

Both CD and PDS perform similarly when subjected to a uniform orthogonal grid. This
can be further proved mathematically by reducing the equations in Appendix A to central
differencing equations. Based on the obtained results from phase one, it can be concluded
that the new transformation technique has a slight edge over the conventional central
differencing technique. Based on the evaluation results obtained in phase two, it can be
observed that the new numerical scheme does not exhibit a second order behavior.
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6. Results and discussion

6.4 Future Work
A conclusion of whether the new numerical scheme is good or bad cannot be drawn with
the available evaluation results. The scheme should be further subjected to several other
tests to determine its performance. Considering the implementation of MMS is accurate in
this work, the two major areas of future work could be in checking the implementation of
the numerical scheme (algorithm) in CALC++ and/or the mathematics of the numerical
scheme. Further, solution verification can be performed to estimate the formal order of
accuracy.
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A
Preferred Direction Diffusion

Scheme

This chapter provides a detailed derivation of the integral calculations to obtain the coef-
ficients in (3.9).

Cell Properties

Twenty cell properties are calculated for each cell using an uniquely defined reference node
point (xref , yref , zref ) .

Vok =
∫ ∫ ∫

Ωk
dΩ

Vxk =
∫ ∫ ∫

Ωk
(x− xref )dΩ

Vyk =
∫ ∫ ∫

Ωk
(y − yref )dΩ

Vzk =
∫ ∫ ∫

Ωk
(z − zref )dΩ

Vxxk =
∫ ∫ ∫

Ωk
(x− xref )2dΩ

Vxyk =
∫ ∫ ∫

Ωk
(x− xref )(y − yref )dΩ

Vxzk =
∫ ∫ ∫

Ωk
(x− xref )(z − zref )dΩ

Vyyk =
∫ ∫ ∫

Ωk
(y − yref )2dΩ

Vyzk =
∫ ∫ ∫

Ωk
(y − yref )(z − zref )dΩ

Vzzk =
∫ ∫ ∫

Ωk
(z − zref )2dΩ

Vxxxk =
∫ ∫ ∫

Ωk
(x− xref )3dΩ

Vxxyk =
∫ ∫ ∫

Ωk
(x− xref )2(y − yref )dΩ

Vxxzk =
∫ ∫ ∫

Ωk
(x− xref )2(z − zref )dΩ

Vxyyk =
∫ ∫ ∫

Ωk
(x− xref )(y − yref )2dΩ
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A. Preferred Direction Diffusion Scheme

Vxyzk =
∫ ∫ ∫

Ωk
(x− xref )(y − yref )(z − zref )dΩ

Vxzzk =
∫ ∫ ∫

Ωk
(x− xref )(z − zref )2dΩ

Vyyyk =
∫ ∫ ∫

Ωk
(y − yref )3dΩ

Vyyzk =
∫ ∫ ∫

Ωk
(y − yref )2(z − zref )dΩ

Vyzzk =
∫ ∫ ∫

Ωk
(y − yref )(z − zref )2dΩ

Vzzzk =
∫ ∫ ∫

Ωk
(z − zref )3dΩ

(A.1)

Tri-Linear Parametrization

The Cell properties in A are calculated for each of the ten cells per face using Gauss-
point Quadrature. Initially a local coordinate system (x′, y′, z′) is defined for each cell.
This system with respect to the global co-ordinate system is obtained using tri-linear
parametrization.

Figure A.1: Representation of local co-ordinate sytem of a cell in physical space
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A. Preferred Direction Diffusion Scheme

x = (1− x′)(1− y′)(1− z′)x0 + x′(1− y′)(1− z′)x1+
(1− x′)y′(1− z′)x2 + x′y′(1− z′)x3 + (1− x′)(1− y′)z′x4+

x′(1− y′)z′x5 + (1− x′)y′z′x6 + x′y′z′x7

y = (1− x′)(1− y′)(1− z′)y0 + x′(1− y′)(1− z′)y1+
(1− x′)y′(1− z′)y2 + x′y′(1− z′)y3 + (1− x′)(1− y′)z′y4+

x′(1− y′)z′y5 + (1− x′)y′z′y6 + x′y′z′y7

z = (1− x′)(1− y′)(1− z′)z0 + x′(1− y′)(1− z′)z1+
(1− x′)y′(1− z′)z2 + x′y′(1− z′)z3 + (1− x′)(1− y′)z′z4+

x′(1− y′)z′z5 + (1− x′)y′z′z6 + x′y′z′z7

(A.2)

Gauss-point Quadrature

Using the equations in (A.2), the volume integrals in (A.1) are calculated using Gauss-point
Quadrature numerical integration method. The general representation of the integration
is given by, ∫ ∫ ∫

Ωk
φ(x, y, z) dxdydz =

∫ 1

0

∫ 1

0

∫ 1

0
φ(x′, y′, z′)J dx′dy′dz′

where Jacobian J is defined as,∣∣∣∣∣∣∣
∂x
∂x′

∂x
∂y′

∂x
∂z′

∂y
∂x′

∂y
∂y′

∂y
∂z′

∂z
∂x′

∂z
∂y′

∂z
∂z′

∣∣∣∣∣∣∣
(A.3)

In order to use the Gauss-point quadrature, the range of the local coordinate system must
be redefined from -1 to 1.∫ ∫ ∫

Ωk
φ(x, y, z) dxdydz = 1

8

∫ 1

−1

∫ 1

−1

∫ 1

−1
φ(x′′, y′′, z′′)J(x′′, y′′, z′′) dx′′dy′′dz′′ (A.4)

∫ ∫ ∫
Ωk
φ(x, y, z) dxdydz = 1

8

n∑
i=1

n∑
j=1

n∑
k=1

wiwjwkφ(pi, pj , pk)J(pi, pj , pk) (A.5)

Where pi, pj , pk are the Gauss points and wi, wj , wk are the corresponding weights.

Volume Integrals

The integrals in matrix A is calculated using the relationship between the (ξ, η, ζ) space
and (x, y, z) space in (3.2).

ξ = Ψ11(x− xo) + Ψ12(y − yo) + Ψ13(z − zo)
η = Ψ21(x− xo) + Ψ22(y − yo) + Ψ23(z − zo)
ζ = Ψ31(x− xo) + Ψ32(y − yo) + Ψ33(z − zo)

(A.6)

The following relations are used to rewrite the integrals,

(x− xo) = ((x− xref ) + (xref − xo))
(y − yo) = ((y − yref ) + (yref − yo))
(z − zo) = ((z − zref ) + (zref − zo))

(A.7)
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A. Preferred Direction Diffusion Scheme

Introducing the constansts ∆x,∆y,∆z,

∆x = xref − xo
∆y = yref − yo
∆z = zref − zo

(A.8)

which results in,

(x− xo) = ((x− xref ) + ∆x)
(y − yo) = ((y − yref ) + ∆y)
(z − zo) = ((z − zref ) + ∆z)

(A.9)

The terms in the first column are obtained using the volume integrals in equations (A.1).
Further, the second, third and fourth columns which consists of first order terms are
obtained using the direct relations from equations (A.6-A.9).

∫ ∫ ∫
Ωk
ξ dΩ = Ψ11(Vxk + ∆xVok) + Ψ12(Vyk + ∆yVok) + Ψ13(Vzk + ∆zVok)∫ ∫ ∫

Ωk
η dΩ = Ψ21(Vxk + ∆xVok) + Ψ22(Vyk + ∆yVok) + Ψ23(Vzk + ∆zVok)∫ ∫ ∫

Ωk
ζ dΩ = Ψ31(Vxk + ∆xVok) + Ψ32(Vyk + ∆yVok) + Ψ33(Vzk + ∆zVok)

(A.10)
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A. Preferred Direction Diffusion Scheme

Further, the quadratic and cubic terms in matrix A are calculated by rewriting and ex-
panding the products of ξ, η and ζ.

ξη = Ψ11Ψ21(x− xo)2 + (Ψ11Ψ22 + Ψ12Ψ21)(x− xo)(y − yo)+
(Ψ11Ψ23 + Ψ13Ψ21)(x− xo)(z − zo) + Ψ12Ψ22(y − yo)2+

(Ψ12Ψ23 + Ψ13Ψ22(y − yo)(z − zo) + Ψ13Ψ23(z − zo)2

ξζ = Ψ11Ψ31(x− xo)2 + (Ψ11Ψ32 + Ψ12Ψ31)(x− xo)(y − yo)+
(Ψ11Ψ33 + Ψ13Ψ31)(x− xo)(z − zo) + Ψ12Ψ32(y − yo)2+

(Ψ12Ψ33 + Ψ13Ψ32(y − yo)(z − zo) + Ψ13Ψ33(z − zo)2

ζ2 = Ψ21Ψ21(x− xo)2 + 2Ψ21Ψ22(x− xo)(y − yo)+
2Ψ21Ψ23(x− xo)(z − zo) + Ψ22Ψ22(y − yo)2+
2Ψ22Ψ23(y − yo)(z − zo) + Ψ23Ψ23(z − zo)2

η2 = Ψ31Ψ31(x− xo)2 + 2Ψ31Ψ32(x− xo)(y − yo)+
2Ψ31Ψ33(x− xo)(z − zo) + Ψ32Ψ32(y − yo)2+
2Ψ32Ψ33(y − yo)(z − zo) + Ψ33Ψ33(z − zo)2

ξη2 = Ψ11Ψ21Ψ21(x− xo)3+
(2Ψ11Ψ21Ψ22 + Ψ12Ψ21Ψ21)(x− xo)2(y − yo)+
(2Ψ11Ψ21Ψ23 + Ψ13Ψ21Ψ21)(x− xo)2(z − zo)+
(Ψ11Ψ22Ψ22 + 2Ψ12Ψ21Ψ22)(x− xo)(y − yo)2+

(2Ψ11Ψ22Ψ23 + 2Ψ12Ψ21Ψ23 + 2Ψ13Ψ21Ψ22)
(x− xo)(y − yo)(z − zo)+

(Ψ11Ψ23Ψ23 + 2Ψ13Ψ21Ψ23)(x− xo)(z − zo)2+
Ψ12Ψ22Ψ22(y − yo)3+

(2Ψ12Ψ22Ψ23 + Ψ13Ψ22Ψ22)(y − yo)2(z − zo)+
(Ψ12Ψ23Ψ23 + 2Ψ13Ψ22Ψ23)(y − yo)(z − zo)2+

Ψ13Ψ23Ψ23(z − zo)3

ξζ2 = Ψ11Ψ31Ψ31(x− xo)3+
(2Ψ11Ψ31Ψ32 + Ψ12Ψ31Ψ31)(x− xo)2(y − yo)+
(2Ψ11Ψ31Ψ33 + Ψ13Ψ31Ψ31)(x− xo)2(z − zo)+
(Ψ11Ψ32Ψ32 + 2Ψ12Ψ31Ψ32)(x− xo)(y − yo)2+

(2Ψ11Ψ32Ψ33 + 2Ψ12Ψ31Ψ33 + 2Ψ13Ψ31Ψ32)
(x− xo)(y − yo)(z − zo)+

(Ψ11Ψ33Ψ33 + 2Ψ13Ψ31Ψ33)(x− xo)(z − zo)2+
Ψ12Ψ32Ψ32(y − yo)3+

(2Ψ12Ψ32Ψ33 + Ψ13Ψ32Ψ32)(y − yo)2(z − zo)+
(Ψ12Ψ33Ψ33 + 2Ψ13Ψ32Ψ33)(y − yo)(z − zo)2+

Ψ13Ψ33Ψ33(z − zo)3

(A.11)
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A. Preferred Direction Diffusion Scheme

Further, the unknown products of (x− xo), (y − yo) and (z − zo) in equations (A.11) are
obtained by expanding and rewriting them using equation (A.9).

(x− xo)2 = (x− xref )2 + 2∆x(x− xref ) + ∆x2

(x− xo)(y − yo) = (x− xref )(y − yref )+
∆y(x− xref ) + ∆x(y − yref ) + ∆x∆y

(x− xo)(z − zo) = (x− xref )(z − zref )+
∆z(x− xref ) + ∆x(z − zref ) + ∆x∆z

(y − yo)2 = (y − yref )2 + 2∆y(y − yref ) + ∆y2

(y − yo)(z − zo) = (y − yref )(z − zref )+
∆z(y − yref ) + ∆y(z − zref ) + ∆y∆z

(z − zo)2 = (z − zref )2 + 2∆z(z − zref ) + ∆z2

(x− xo)3 = (x− xref )3 + 3∆x(x− xref )2+
3∆x2(x− xref ) + ∆x3

(x− xo)2(y − yo) = (x− xref )2(y − yref )+
2∆x(x− xref )(y − yref )+

∆x2(y − yref ) + ∆y(x− xref )2+
2∆x∆y(x− xref ) + ∆x2∆y2

(x− xo)2(z − zo) = (x− xref )2(z − zref )+
2∆x(x− xref )(z − zref )+

∆x2(z − zref ) + ∆z(x− xref )2 + 2∆x∆z(x− xref ) + ∆x2∆z2

(x− xo)(y − yo)2 = (x− xref )(y − yref )2+
2∆y(x− xref )(y − yref )+

∆y2(x− xref ) + ∆x(y − yref )2+
2∆x∆y(y − yref ) + ∆x∆y2

(x− xo)(z − zo)2 = (x− xref )(z − zref )2+
2∆z(x− xref )(z − zref )+

∆z2(x− xref ) + ∆x(z − zref )2+
2∆x∆z(z − zref ) + ∆x∆z2
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A. Preferred Direction Diffusion Scheme

(y − yo)3 = (y − yref )3 + 3∆y(y − yref )2 + 3∆y2(y − yref ) + ∆y3

(y − yo)2(z − zo) = (y − yref )2(z − zref )+
2∆y(y − yref )(z − zref )+

∆y2(z − zref ) + ∆z(y − yref )2+
2∆y∆z(y − yref ) + ∆y2∆z2

(y − yo)(z − zo)2 = (y − yref )(z − zref )2+
2∆z(y − yref )(z − zref )+

∆z2(y − yref ) + ∆y(z − zref )2+
2∆y∆z(z − zref ) + ∆y∆z2

(z − zo)3 = (z − zref )3 + 3∆z(z − zref )2+
3∆z2(z − zref ) + ∆z3

(x− xo)(y − yo)(z − zo) = (x− xref )(y − yref )(z − zref )+
∆y(x− xref )(z − zref )+
∆x(y − yref )(z − zref )+

∆x∆y(z − zref )+
∆z(x− xref )(y − yref )+

∆y∆z(x− xref )+
∆x∆z(y − yref ) + ∆x∆y∆z

(A.12)

Using equations in (A.11 and A.12) together with the cell properties, the quadratic and
cubic terms of matrix A can be calculated.
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A. Preferred Direction Diffusion Scheme

Domain Boundaries

Figure A.2: Representation of Domain Boundaries

The cell faces present along the domain boundaries do not have ten cells surrounding them.
Therefore a truncated flux molecule is considered for the analysis in these cases. A general
description of the treatment which is analogous for flux molecules in other directions is
discussed below.
The first case consists of eight cells with two missing in η direction. This reflects in the
removal of the terms which includes η2 from the equation (3.3). Analogous to this case,
the terms containing ζ2 are removed in the other direction.

ϕ(ξ, η, ζ) = C0 + C1ξ + C2η + C3ζ + C4ξη + C5ξζ + C6ζ
2 + C7ξζ

2 (A.13)

The second case consists of six cells with two missing in η and ζ directions. This reflects
in the removal of the terms which includes η2 and ζ2 from the equation (3.3).

ϕ(ξ, η, ζ) = C0 + C1ξ + C2η + C3ζ + C4ξη + C5ξζ (A.14)
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B
Analytical Solution

This section provides a detailed derivation of the analytical solution for the considered
geometry in this project. The Governing Equation solved here is a 2D Unsteady heat
Conduction equation in Cylindrical Coordinate system.

∂T

∂t
= α(∂

2T

∂r2 + 1
r

∂T

∂r
+ 1
r2
∂2T

∂Θ2 ) (B.1)

The initial and Boundary conditions are,

T (r = a = 1m) = 0 T (r = b = 1.5m) = 0

T (Θ = 0) = 0 T (Θ = π

2 ) = 0

T (t = 0) = F (r,Θ) = 30K

(B.2)

Using Separation of Variables method of solving Partial Differential Equations,

let T (t,Θ, t) = R(r).χ(Θ).Γ(t)
substituting in (B.1) results in,

1
R

[R′′ + 1
r
R′] + 1

r2χ
χ′′ = 1

αΓ
∂Γ
∂t

= −λ2
(B.3)

The general solution of the unsteady term in (B.3) results in,

Γ(t) = C1.e
−αλ2t (B.4)

Further, the general solution of the χ is obtained as,

χ(Θ) = C2cos(νΘ) + C3sin(νΘ)
Applying Boundary conditions,

χ(Θ = 0) = 0 = C2

χ(Θ = π

2 ) = 0 = C3sin(ν π2 )

νn = 2n n = 1, 2, 3...

(B.5)
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B. Analytical Solution

Here νn are the Eigen values. Further, the general equation for the R term is obtained as,

R′′ + 1
r
R′ + (λ2 − ν2

r2 )R = 0

R(r) = C4Jν(λr) + C5Yν(λr)

Here Jν and Yν are Bessel functions of the first and second order respectively.
Further, applying the Boundary conditions,

R(a) = 0 = C4Jν(λa) + C5Yν(λa)

C5 = −C4
Jν(λa)
Yν(λa)

R(r) = C4
Yν(λa(Yν(λa)Jν(λr)− Jν(λa)Yν(λr))

R(r) = C6(Yν(λa)Jν(λr)− Jν(λa)Yν(λr))

R(b) = 0 = Yν(λa)Jν(λr)− Jν(λa)Yν(λr)

Yν(λa)Jν(λr)− Jν(λa)Yν(λr) = 0 λm = 1, 2, 3...

Each value of νn yields λm Eigen Values
thereby resulting in λnm of Eigen values.

(B.6)

Using the Solutions from equations (B.4-B.6), the Temperature is described as,

T (r,Θ, t) =
∞∑
n=1

∞∑
m=1

Cnmsin(νnΘ)e(−αλ2
nmt)[Yν(λnma)Jν(λnmr)− Jν(λnma)Yν(λnmr)]

Applying Initial Condition,

F (r,Θ) =
∞∑
n=1

∞∑
m=1

Cnmsin(νnΘ)e(−αλ2
nmt)[Yν(λnma)Jν(λnmr)− Jν(λnma)Yν(λnmr)]

Using the orthogonal Properties of Bessel Functions,

Cnm =
∫ b
r=a

∫ π
2

Θ=0 rF (r,Θ)sin(νnΘ)[Yν(λnma)Jν(λnmr)− Jν(λnma)Yν(λnmr)] dΘdr∫ b
r=a r[Yν(λnma)Jν(λnmr)− Jν(λnma)Yν(λnmr)]2dr.

∫ π
2

Θ=0 sin
2(νΘ]dΘ

(B.7)
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C
Procedure for MMS

This section provides a detailed procedure of the method of manufactured solutions using
1D unsteady heat equation as an example,

∂T

∂t
− α∂

2T

∂x2 = 0 (C.1)

Consider a manufactured solution for T ,

T (x, t) = e−tsin(πx) (C.2)

Applying the manufactured solution to the governing equation,

∂T

∂t
= −e−tsin(πx)

∂2T

∂x2 = −e−tπ2sin(πx)
(C.3)

Using equations (C.1 and C.3) the obtained source term is,

Q = e−tsin(πx)(απ2 − 1) (C.4)

Using (C.4) the governing equation with (C.2) as the solution is written as,

∂T

∂t
− α∂

2T

∂x2 = Q (C.5)

The initial and the corresponding boundary conditions are applied using the manufactured
solution (C.2). For example, the initial and the dirchlet boundary condition is represented
as,

T (x, 0) = sin(πx)
T (xB, t) = e−tsin(πxB)

(C.6)

The equation (C.5) is numerically modelled and run using the corresponding numerical
schemes. A set of results using systematic grid refinement is obtained and the order of
accuracy is computed using equation (1.5). Further, this method can also be used to test
different boundary conditions.
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