

Regulations for the Development of Medical

Device Software

Master of Science Thesis

ANDREAS MAGNUSSON

Department of Signal and Systems

Division of Electrical Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden, 2011

Report No. EX004/2012

Regulations for the Development of Medical Device Software

ANDREAS MAGNUSSON

© ANDREAS MAGNUSSON 2012

Technical report no. EX004/2012

Department of Signal and Systems

Chalmers University of Technology

SE-412 96 Göteborg

Sweden

Telephone +46 (0)31-7721000

Acknowledgments

I would like to thank Integrum AB for giving me this opportunity to assist them
in their expansion into medical software development and for their patience with
me throughout this process. I have learned a lot through this project concerning
medical software development and the regulatory requirements that a medical
device manufacturing and developing company faces.

I would speci�cally want to thank my supervisor, Max. J. Ortiz C., for his

input, support and assistance during this project.

I would also want to thank my examiner, Professor Bo Håkansson (Depart-
ment of Signal and Systems at Chalmers University of Technology), for having
me as his student and for his assistance and input during the project.

Lastly, I would like to thank my family and friends for their continued sup-

port during the project.

3

Abstract

Today, most medical devices contain software to some extent. As the use of
software in medical devices has increased, a need to govern the development of
the software used in these devices has been identi�ed. In order to ensure that
all medical devices that are released does not present any unnecessary risk to
the end user, regulatory requirements has been created that govern how these
medical devices should be developed.

When developing software that is to be used as part of a medical device, or
software that is a medical device on its own, there are speci�c medical software
regulatory requirements that need to be considered.

This thesis is about the adaptation of such regulatory requirements into
a software development procedure that is to be implemented into the quality
management system at Integrum AB.

The result of the thesis is the development of a set of software development
procedures in order to assure compliance with the regulatory requirements of
IEC 62304 Medical device software - Software life cycle processes.

Abbreviations

CDRH Center for Device and Radiological Health

CFR Code of Federal Regulations

CVS Concurrent Versions System

EC European Commission

FDA Food and Drug Administration

IDE Integrated Development Environment

IEC International Electrotechnical Commission

ISO International Organization for Standardization

MDD Medical Device Directive

NCAL-Soft Natural Control of Arti�cial Limbs Software

OHMG Osseointegrated Human-Machine Gateway

OPRA Osseointegrated Prostheses for the Rehabilitation of Amputees

OPRA-NCAL Osseointegrated Prostheses for the Rehabilitation of Amputees
with Natural Control of Arti�cial Limbs

PMA Premarket Approval

SOP Standard Operating Procedure

SDE Software Development Environment

SVN Apache Subversive

QMS Quality Management System

1

Contents

1 Introduction 4

1.1 Purpose . 4
1.2 Scope . 4
1.3 Integrum AB . 5

2 Medical Device Regulations Background 6

2.1 Device Regulations in the US . 6
2.2 Device Regulations in the EU . 7

3 Medical Software Development Background 8

3.1 Software Validation and Veri�cation 8
3.1.1 Quality Planning . 9
3.1.2 Software Safety Classi�cation 9
3.1.3 Software Requirements . 10
3.1.4 Software Design . 11
3.1.5 Software Coding . 11
3.1.6 Software Testing . 12
3.1.7 Software Maintenance and Software Changes 13

3.2 Software Life Cycle Development Models 13
3.2.1 Waterfall Development Model 14
3.2.2 Iterative and Incremental Development Model 14
3.2.3 Agile Development Model 15

3.3 O�-the-Shelf Software . 16
3.3.1 Software of Unknown Pedigree 17

4 Methods 19

4.1 Literature Studies . 19
4.2 Requirements Identi�cation . 19
4.3 Veri�cation . 19

5 Problem Description 20

5.1 Problem Description . 20

6 Design and Implementation 22

6.1 The OPRA-NCAL Project . 22
6.1.1 OPRA-NCAL Classi�cation According to European Union 23

6.1.1.1 De�nition of medical device 23
6.1.1.2 De�nition of accessory 23
6.1.1.3 Medical software 24

2

6.1.1.4 Conclusion . 24
6.1.2 OPRA-NCAL Classi�cation According to the United States

of America . 24
6.1.2.1 De�nition of medical device 24
6.1.2.2 Conclusion . 25

6.1.3 NCAL-Soft . 25
6.1.3.1 Classi�cation of NCAL-Soft 25
6.1.3.2 Conclusion . 26
6.1.3.3 Evaluation of Safety Classi�cation Reduction . . 26

6.2 NCAL-Soft . 26
6.2.1 Intended Use . 26
6.2.2 Risk Assessment . 27
6.2.3 Software Safety Classi�cation 27
6.2.4 Software Development Environment 27

6.3 Software Development Procedure 28
6.3.1 Proposed Software Development Procedure 29
6.3.2 Creating a Software Development Procedure 30

7 Veri�cation 35

7.1 Veri�cation of Performance . 35
7.2 Veri�cation of Compliance . 35

8 Discussion 36

8.1 NCAL-Soft Safety Classi�cation 36
8.2 Software Development Procedure 36
8.3 Future Work . 37

3

Chapter 1

Introduction

Development of software for medical devices are controlled through international
regulatory requirements de�ned by regulatory standards, such as International
Organization for Standardization (ISO), or International Electrotechnical Com-
mission (IEC).

As with other devices intended for medical applications, regulatory require-
ments for medical software are centered around risk analysis. This is to ensure
that the software does not present any risk of harming the user(s). It is also to
ensure that identi�able risks are properly controlled to minimize the potential
harm, in the event of an accident.

1.1 Purpose

The purpose of this masters thesis is to establish a medical software develop-
ment procedure that complies with current medical device software regulatory
requirements and implement this procedure into the quality management system
at Integrum AB.

1.2 Scope

The following activities make up the basis for this thesis

� A study of medical software development activities

� A study of commonly used software development models in order to prop-
erly implement development activities into a quality management system

� Determination of medical software safety classi�cation based on a prelim-
inary hazard analysis

� Implementation of regulatory requirements into an existing quality man-
agement system through a medical software development procedure

4

1.3 Integrum AB

Integrum AB is a Swedish company that develops implant systems for bone
anchored amputation prostheses and was founded by Dr. Rickard Brånemark
in 1998 at Sahlgrenska Science Park in Gothenburg, Sweden. The implant sys-
tem, developed by Integrum AB, consists of a titanium device that is surgically
inserted into the bone, protruding through the skin of the amputation stump.
A prosthesis can easily be attached to the anchorage by the patient, giving no
direct contact with the skin. This solution improves functionality and comfort
to the patient compared to the traditionally used socket prostheses. It implies
reduced problems with sores, pain and pressure, as well as easier attachment
and detachment, improved stability and better walking ability. Integrum's im-
plant system is called OPRA (Osseointegrated Prostheses for the Rehabilitation
of Amputees). The ability of titanium to integrate with bone is called osseoin-
tegration. In this process, bone tissue is formed around the implant causing
the bone tissue and surface of the implant to anchor together. The concept
of osseointegration was presented in 1977 by Per-Ingvar Brånemark, who has
developed the technique primarily for prosthetic replacement of teeth, but also
for orthopedic applications.

5

Chapter 2

Medical Device Regulations

Background

All devices that are used on the market have gone through some level of testing,
depending on the type of device, to verify that the device is safe to use. For
medical devices, these tests are stricter as a medical device can be in direct
contact with a patient or be located inside a patient, such as a pacemaker.
Depending on the type of medical device, there are di�erent regulations which
govern what tests are needed to be conducted and the level of documentation
needed to prove that the device is safe to use. The regulations also govern that
the device's intended use is such that it means an improvement of life quality
in order to validate the potential risks inherited with the device.

2.1 Device Regulations in the US

Within the United States (US), the governing agency for medical devices is
Food and Drug Administration (FDA) within the Department of Health and
Human Services. Within the FDA, the Center for Devices and Radiological
Health (CDRH) handles the regulatory concerns for companies who manufac-
ture, repackage, relabel and/or import medical devices which are to be sold
within the US. Any regulation for medical devices is published in the Federal
Register under the Code of Federal Regulations Title 21 �820.

The FDA has created three regulatory classes which are based on the level
of control necessary to assure the safety and e�ectiveness of the device, which
are Class I, Class II or Class III, with Class III being for medical device with
the highest risk. A medical device classi�ed as Class I or Class II will require a
premarket submission or 510(k) whilst a Class III medical device is required to
get a premarket approval unless special circumstances are given, for which only
a 510(k) is needed [1]. A 510(k) is a premarket submission which demonstrate
that the medical is at least as safe and e�ective as a medical device already on
the market and that is not subject to a Premarket Approval (PMA) [2].

When needing to do a 510(k), the medical device manufacturer is required to
submit documentation to the FDA. The submitted documentation must prove
that the device is at least as safe and e�ective as a similar device which is already
on the market [2].

6

2.2 Device Regulations in the EU

In the European Union (EU) the governing organ for legislation's is the Euro-
pean Commission (EC). The EC publishes directives which serves as the regu-
latory framework, for medical devices this directive is simply called the Medical
Device Directive (MDD). The MDD divides medical devices into either Class I,
Class IIa, Class IIb or Class III, with Class III being for medical devices with
the highest risk. In addition, there are a number of noti�ed bodies which acts as
a third party controller for medical devices. These noti�ed bodies ensure that
the medical devices that are released on the market complies with the MDD as
well as other applicable directives through quality system inspections, certi�ca-
tion and classi�cation assessments. The noti�ed bodies also review the technical
documentation for the medical devices. It is also the noti�ed bodies that issue
the CE-marking, which is required in order to get a product onto the European
market [3].

7

Chapter 3

Medical Software

Development Background

As mentioned in the previous section, all medical devices are subjected to reg-
ulations intended to ensure safety for the operator and patient. As the use of
software in medical devices has increased, the need for speci�c regulations for
medical device software has increased. An indicator of this need was shown
by an analysis performed by the FDA between 1992 and 1998 of 3140 medical
device recalls. The analysis revealed that 242 (or 7.7%) of the recalls could be
attributed to software failures. Out of those recalls, 192 (or 79%) were caused by
software defects which had been introduced when changes were made to the soft-
ware after its initial production and distribution [4]. Another example is from
the mid 1980's, where coding errors in a radiation therapy device contributed
to the lethal overdose of a number of patients [5].

In 2006, a new international standard was released for medical device soft-
ware and has been developed by a joint working group from IEC and ISO[12].
This new standard has, since its release, become fully harmonized in both the
EU and the US.

3.1 Software Validation and Veri�cation

When developing software, the software validation and software veri�cation are
the two main elements to achieve acceptance with. Where software validation
is the activity of proving that the software product does what it is stated by the
intended use. Software veri�cation is what is continuously performed through-
out the development process by performing testing to ensure that the software
code is working properly. At the end of the software development process, given
that a su�cient level of software testing (veri�cation) has been conducted, the
software product can be viewed as validated through the veri�cation e�ort.

The process of software validation is a requirement of the quality system
regulation, which was published by the FDA in the Federal Register on October
7, 1996 and took e�ect on June 1, 1997.

The main component of software validation is what is described as the soft-
ware validation plan in [4], or as the software development plan in [12], which

8

speci�es areas within the development process such as scope, approach, re-
sources, schedules and types and extent of activities, tasks, and work items.

In the following sections, I will go over some of the main components of the
software development plan and what they require from a developer of medical
software.

3.1.1 Quality Planning

The software development plan is, as mentioned above, not the only compo-
nent of the software validation. The software validation is handled through,
what is called, Quality Planning and this includes plans for risk management,
con�guration management and problem resolution as well as the development
plan.

The risk management for medical software is governed by ISO 14971 Medical
devices - Application of risk management to medical devices and additional reg-
ulatory requirements de�ned in IEC 62304 Medical device software - Software
life cycle processes. These standards handles the identi�cation and evaluation
of possible hazards which are documented in a risk analysis document along
with possible risk control measures.

The con�guration management plan should guide and control multiple par-
allel development activities and ensure proper communications and documenta-
tion. There should also be controls in place to ensure that all approved versions
of the speci�cations documents, source code, object code, and test suites that
comprise the software system is kept updated and correct.

The problem resolution procedure handles all reporting and evaluation of
anomalies found during the validation or after the software product has been
released as well as the resolution of identi�ed anomalies. Both the con�guration
management and the problem resolution is governed by IEC 62304 Medical
device software - Software life cycle processes.

Finally, the software development plan handles the entire development of the
software product and connects to the plans described above at di�erent stages
throughout the development process.

3.1.2 Software Safety Classi�cation

As with standard medical devices, software embedded in medical devices or
software that are medical devices in their own right are subject to safety clas-
si�cation. The regulatory requirements that a software development plan must
comply with is determined by the software safety classi�cation of the software
product. The classi�cations and the supporting de�nitions are:

� Class A - No injury or damage to health is possible

� Class B - Non-serious injury is possible

� Class C - Death or serious injury is possible

where serious injury is de�ned as an injury or illness that:

� directly or indirectly is life threatening,

� results in permanent impairment of a body function or permanent damage
to a body structure, or

9

� necessitates medical or surgical intervention to prevent permanent impair-
ment of a body function or permanent damage to a body structure

The hazardous situations are determined through a risk analysis of the software,
until a risk analysis has been performed the software is to be considered as a
Class C medical software. A medical software, that is composed of multiple
parts, is classi�ed based on the part with the highest potential hazard. Each
separate part of the medical software, given that su�cient segregation can be
shown, can be classi�ed individually so that only the high risk software parts
will require the extra veri�cation e�ort.

The software safety classi�cation should be performed at the start of the de-
velopment and repeated as the software design and requirements change and/or
are implemented.

There are ways for a developer to reduce the safety classi�cation through risk
control measures, but these must be performed through hardware modi�cations
or additions. Risk control measures that are done through additional software
functions or user instructions are not su�cient to reduce the safety classi�cation
as they are deemed less e�ective and secure.

3.1.3 Software Requirements

At the start of software development, there is a need to de�ne system require-
ments based on the intended use of the software. These initial system require-
ments may change during the development process, but they will help in creating
a good framework for which the software is to be kept within. Based on the
system requirements, sets of software requirements needs to be de�ned that de-
�nes how the system requirements is to be implemented into source code. The
software requirements will develop as new performance or system requirements
are identi�ed, analysis of the software requirements are conducted, and as the
intended use for the software becomes more detailed. All system and software
requirements is to be documented in a software requirements speci�cation doc-
ument.

Software requirements speci�cation should include all the software system
inputs and outputs as well as all the functions that the software system will
perform. Every performance requirement for the software, such as reliability,
data throughput, timing etc), should also be included. Within the software re-
quirements, it should also be mentioned how users will interact with the system,
what is classi�ed as an error and how errors should be handled. In extension,
the intended operating environment for the software system, such as hardware
platform or operating system, should be stated if this is a design constraint.

A software requirements traceability analysis should also be conducted to
trace software requirements to (and from) system requirements and to risk anal-
ysis results.

Before proceeding, the software requirements needs to be evaluated to verify
that:

� There are no internal inconsistencies among the requirements;

� All of the performance requirements for the system have been spelled out;

� Fault tolerance, safety and security requirements are complete and correct;

10

� Software requirements are appropriate for the system hazards; and

� All of the requirements are expressed in terms that are measurable or
objectively veri�able.

3.1.4 Software Design

Once the software requirement speci�cation has been created, the next step is
to transform the requirements into an architectural design of the software. The
purpose of the design speci�cation is to describe what the software should do
and how it should do it. The design speci�cation should aim to reduce the
probability of use errors due to the software design being to complex or act
contrary to the user's intuitive expectations.

The software requirements as well as coding guidelines and the development
procedure should be included in the software design speci�cation. It should
also include information concerning any supporting software, such as operating
system, drivers or other application software as well as which hardware is to be
used. Systems documentation describing the context in which the program is
intended to function should also be included along with a risk analysis for the
software system. Additionally, information concerning error, alarm, and warn-
ing messages should be mentioned as well as what security measures (physical
and logical) that have been implemented. If the software does not include alarm
or warning messages, it is recommended that this be mentioned as well.

Once a software design speci�cation has been created, an evaluation is needed
to verify that the design is complete, correct and possible to be maintained. A
traceability analysis should also be conducted as part of the evaluation to verify
that all of the software requirements have been implemented in the software
design.

As the software design speci�cation is based on the software requirements
speci�cation, the design speci�cation is subject to change during the software
development as the requirements are updated.

3.1.5 Software Coding

The software coding activity is where the software programmers translate the
design speci�cations into source code, or assemble previously coded software
components from code libraries or from o�-the-shelf software (described further
in section 3.3) for use in the new software. Prior to starting the coding activ-
ity, decisions are to be made concerning the selection of which programming
language to be used as well as which software development tools, such as as-
semblers and compilers, should be used. When selecting either which language
to use or which tools to use, consideration needs be taken to the impact on the
future testing and evaluation activities that will follow. The coding also needs
to follow a pre-de�ned coding standard to ensure that all developed source code
is uniform.

Before implementing developed source code into the software system, a thor-
ough level of error checking is needed to be performed to minimize the amount
of residual errors. For every encountered error that is left unresolved a rationale
must be documented with a risk evaluation of the error.

11

To aid in the error checking and tracing down errors, code comments need to
provide useful and descriptive information such as expected inputs and outputs,
variables referenced, expected data types and operations performed. The code
comments should also be used to aid with the source code traceability analysis.
The source code traceability analysis veri�es that all requirements has been
implemented in the code and that all the modules and functions implemented in
the code can be traced back to a requirement as well as to the risk analysis. The
same traceability analysis should also be documented for the tests conducted to
verify that the modules and functions work as intended.

3.1.6 Software Testing

As touched upon in the previous section, in order to verify that the software
program functions according to its intended use and design speci�cations, test-
ing is needed to be performed. The extent of the tests is determined largely
by the software classi�cation, as software which could cause death or serious
injury if malfunctioning has to have a higher integrity than software found in
an electronic thermometer. While in development, the software program will go
through an iterative process which includes testing of the actual code to verify
that the software behaves according to the predetermined design requirements.
The testing itself consists of running the software under known conditions with
documented inputs and outcomes that can be compared to their prede�ned
expectations.

It is important to realize however, that software cannot be tested for every
possible input as it is a complex system. In order to achieve full coverage of
every possible input/output combination, the time requirement would be much
to long for a sustainable development from a �nancial aspect. Instead prior-
ity should be placed on ensuring that all the critical functionalities and safety
related functionalities are su�ciently tested. Further, as mentioned in General
Principals of Software Validation [4], testing of all program functionality does
not mean all of the program has been tested, neither does testing all program
functionality and all program code mean that the program is 100% tested. It
just means that no errors were found using that set of tests, which could be due
to that the testing in itself was super�cial.

As a software developer, it is important to create a software test plan that
include the particular testing activities that are to be performed during each
stage of the development process. These selected testing activities should be di-
rected to verify speci�ed cases based on the software product's internal structure
and external speci�cation. They should also provide a thorough examination
of the software product's compliance with its functional, performance and in-
terface de�nitions and requirements. The software test plan should also include
justi�cation for the level of e�ort represented by the selected testing activities
and the corresponding acceptance criteria.

Following the software testing performed during development, the software
needs to be tested in the actual environment where it is intended to be used.
This can be done either through simulation or actual use of the software by the
intended end users.

When conducting user site testing, there should be a pre-de�ned plan con-
taining a summary of testing and a record of acceptance. Documentation of
testing procedures, test results and test input data should also be retained

12

along with documentation proving that the software and supporting hardware
is installed and con�gured as speci�ed in accompanying documents of the soft-
ware. It should also be ensured that all software system components are tested
and that these are of the correct version. The user site testing plan should spec-
ify the full range of operating conditions for which the software is to be tested
under as well as specify a duration su�ciently long as to allow possible condi-
tions or events to occur that could trigger detection of previously undetected
bugs. There should also be an evaluation performed on the end users ability to
understand and correctly use the software.

3.1.7 Software Maintenance and Software Changes

Following the software testing activity, changes are commonly needed to be
made to the software due to identi�ed errors. As mentioned previously in chap-
ter 3.1.1, the activity of software changes is handled by the con�guration man-
agement plan. As part of the con�guration management, all potential software
changes needs to be evaluated to determine if the change is necessary and how
the change will a�ect the software as well as the organization. Once a decision
has been made, the software change is either implemented into the software code
or the rationale for why the change was not implemented is documented as part
of the risk management documentation.

Software maintenance, which handles the post-release activity of software
development, is also part of the con�guration management. Software mainte-
nance primarily handles any received feedback, either from end users or internal,
and performing evaluation e�orts to analyze the feedback to determine the re-
sponse to the feedback. If required, changes to the released software will be
performed and depending on the nature of the changes, it is classi�ed as ei-
ther corrective, perfective or adaptive maintenance. Changes made to correct
errors and faults in the software are corrective maintenance. Changes made to
the software to improve the performance, maintainability, or other attributes of
the software system are perfective maintenance. Software changes to make the
software system usable in a changed environment are adaptive maintenance.

When changes are made to a software system, either during initial devel-
opment or during post release maintenance, su�cient regression analysis and
testing should be conducted to demonstrate that portions of the software not
involved in the change were not adversely impacted.

3.2 Software Life Cycle Development Models

The activities that make up the software development plan can be used di�er-
ently depending on the approach of the developer. These di�erent approaches
are commonly expressed as development models or life cycle models.

This section will brie�y cover some of the more common software develop-
ment models though there are several more development models available, such
as Evolutionary Systems Development and Spiral Development, but these are
not the focus of this report.

13

3.2.1 Waterfall Development Model

The Waterfall development model is credited to Dr. Winston W. Royce due
to his article Managing the Development of Large Software Systems [7] and
originates from an earlier development model called the Stagewise model. The
Waterfall development model uses a linear approach, where each activity is only
performed once and a project may not proceed into the next activity until the
current activity has been completed.

Figure 3.1 shows a graphical illustration of a basic Waterfall development
model. Although it does not represent the �nished development model proposed
by Dr. Royce, it gives a good indication to how the Waterfall model is being
implemented.

Figure 3.1: Graphical illustration of the Waterfall model [7]

For a software development, this kind of model is not optimal, as the require-
ments (both system and software) can change during the development process.
The software design can also change which means that there is a direct need
for a more iterative approach to ensure that both the requirements fully de-
scribe the software design but also that the software design fully describes the
requirements.

The �nished model described in Managing the Development of Large Soft-
ware Systems [7], includes feedback loops between the di�erent phases to correct
initial errors as well as a �Do it twice� methodology.

3.2.2 Iterative and Incremental Development Model

The development model described by Dr. Royce is closer to how the Iterative
and Incremental Development (IID) model is designed[8].

At the start of an IID project there is a need to subdivide the project into
binary deliverables. This is done by performing a high level analysis of the
project with the output of �slices�, or increments. Each slice should meet a
number of criterias, such as;

14

� implement a use case, or part of a use case,

� represent features,

� be executable and demonstrable, and

� have completion and acceptance criteria.

as described in Iterative and Incremental Development [8]. Once the project has
been subdivided into slices, each slice is developed in isolation from the other
slices until all slices have been completed.

Figure 3.2 shows a graphical illustration of the Iterative and Incremental
development model, where the project is iteratively improved through testing,
re-planning, re-analyzes and evaluations until the criterias have been met for the
program to be deployed. The �Initial Planning� shown in the �gure represents
the initial subdivision of the project and other, company speci�c, activities (such
as �nancial analyses). The iterative process represents the development of each
slice.

Figure 3.2: Graphical illustration of the Iterative and Incremental model [14]

However, this development model does invite the developer to stay too long
in the iterative process to reach a perfect program. But releasing software
without any bugs is near impossible which would lead to the software staying
in development for too long and delivery dates being missed. As such, it is
important to recognize that not all bugs has to be �xed for the software to be
released and not to set the completion criterias to high. A well conducted risk
analysis during the development will help identify which bugs are required to
be �xed and which that can be left for a later software update.

3.2.3 Agile Development Model

The Agile development model is a continuation of the IID model and the most
commonly used Agile development model is called SCRUM [9]. Due to this, I
will here describe SCRUM as an example of Agile development.

Similar to how the IID divided the project into slices, the Scrum model
uses �Sprints� which commonly last for 2-4 weeks. During these sprints, the
development is carried out like the model shown in �gure 3.2. Each day within

15

these sprints also follow this model, leading to nestled iterative development,
which is depicted in �gure 3.3.

Figure 3.3: Graphical illustration of SCRUM [13]

The daily iteration starts with a SCRUM meeting where the team of devel-
opers go over what each of them will be doing during the day and bring up if
there are any blockers that prevent them from performing their assigned tasks.
This ensures that everyone within the developing team knows what the rest are
doing and resources can be allocated to quickly deal with blockers to minimize
possible delays in development.

The product backlog contains the requirements that should be implemented
into the �nal product whilst the sprint backlog contain the di�erent functional-
ities or tasks that should be completed during that sprint to achieve a working
increment of the �nal software product.

This gives the project leader a complete overview of the development and
makes it easier to get a good sense of the progress.

3.3 O�-the-Shelf Software

Manufacturers of medical devices that use software can choose to buy com-
mercially available or open-source software instead of developing the needed
software themselves. The software, which is not developed by the manufacturer
and for which the manufacturer can not provide a complete software life cycle
control, is then classi�ed as �O�-the-shelf software� or OTS software. Using
OTS software allows the medical device manufacturer to focus on developing
their device without having to spend resources on software already existing on
the market. However, the manufacturer needs to ensure that the OTS software
will not introduce any risks towards the patient. It is also important to state
that although the manufacturer has not developed the software used, the re-
sponsibility to ensure that the software's performance is maintained safe and
e�ective remains with the developer [11].

As a general guidance on how much documentation the manufacturer needs
to provide when using OTS software the schematic shown in �gure 3.4 can be

16

used, which takes into account the level of concern presented by the OTS soft-
ware. Level of concern is a measurement of the severity of potential hazardous
situation that the OTS software is implemented to prevent, or if the OTS soft-
ware in itself can cause a potential hazardous situation.

3.3.1 Software of Unknown Pedigree

As an extension to the OTS software, Software of Unknown Pedigree (sometimes
Software of Unknown Provenance), or SOUP, is used to referred to software ob-
tained from a third party and for which documentation is di�cult to obtain.
As documentation is essential when submitting a PMA to the FDA or to the
EC, this would make all devices using third party software illegible for market
distribution. Instead, by classifying a third party software as an SOUP, the
documentation requirements decreases to enclose motivation to the use of the
software, explaining the origin as well as presenting what documentation is avail-
able. Further, the risk analysis of the software being developed should include
the risks associated with the use of the SOUP in regards to lack of documen-
tation prior to testing the SOUP within the software device. As mentioned in
Guidance for the Content of Pre-market Submissions for Software Contained in
Medical Devices[6], the responsibility for adequate testing of the device and for
providing appropriate documentation of software test plans and results remains
with the developer issuing the PMA.

17

Figure 3.4: OTS Software Decision Schematic [11]

18

Chapter 4

Methods

This chapter describes the methods used during the master thesis project.

4.1 Literature Studies

First a literature study was conducted to gain a better understanding for soft-
ware development in general and medical software development speci�cally. A
focus was placed on obtaining guidance documents from the FDA and the EC
as acceptance from these organizations is one of the main goals. The literature
study also included gaining a basic understanding of the software development
models described in chapter 3.2. Lastly, the literature study involved identify-
ing current medical software regulatory standards to which compliance would
be required.

4.2 Requirements Identi�cation

Through the literature study, needed activities were identi�ed that would make
up the medical software development procedure.

The identi�ed regulatory standard, IEC 62304 Medical device software, were
used identify the di�erent processes required to be established to provide a
framework for the procedure that were to be created. The FDA guidance doc-
ument to software validation were used to provide a foundation of software
development practices to the framework.

Lastly, existing procedures in Integrum's quality management system were
reviewed to determine if these could used for the medical software development
procedure as well as to identify if there were any restrictions within the quality
management system that needed to be taken into consideration.

4.3 Veri�cation

Veri�cation of the medical software development procedure was needed to en-
sure that the procedure meet the regulatory requirements. The procedure also
needed to be understandable to the software development team and that the
activities described in the procedure were free of redundancies.

19

Chapter 5

Problem Description

This chapter describes the task assigned to be performed and the di�erent con-
siderations that were taken into account.

5.1 Problem Description

The task was to establish a medical software development procedure to be im-
plemented into the quality management system at Integrum AB.

Prior to this master thesis project, there were no procedures or experience
on medical software development at Integrum AB. As such, the master thesis
project also came to involve the selection of supportive software development en-
vironment, safety classi�cation of the medical device software and classi�cation
of the di�erent medical device components connected to the medical software.

This thesis is concerning the development of the Software Development, Soft-
ware Validation and Software Classi�cation Guidelines as well as the selection
of the software development environment as shown in �gure 5.1.

20

Figure 5.1: Problem Description

21

Chapter 6

Design and Implementation

This chapter describes the design and implementation process performed in
order to complete the assigned task. In the chapter, the di�erent components
that make up the project for which the medical software development procedure
is to be used are considered and described in how they a�ect the overall project
at Integrum AB.

6.1 The OPRA-NCAL Project

The OPRA-NCAL project at Integrum AB concerns the development of a
robotic prosthesis that use the muscle and nerve signals of the patient to control
the arti�cial limb. For this purpose, a medical software is needed to be devel-
oped which requires the establishment of quality management procedures for
handling the development process in order to pass existing regulatory require-
ments.

Figure 6.1 shows how the OPRA-NCAL project is divided into its di�erent
parts. The Osseointegrated Human-Machine Gateway, OHMG, is the mechan-
ical �xture that is implanted into the patient's bone, the Arti�cial Limb Con-
troller, ALC, is the electrical component that controls the robotic prosthetic
and lastly the NCAL-Soft which is the software that is used both by the ALC

Figure 6.1: OPRA-NCAL Breakdown

22

as well as used on a PC for training and �tting purposes.
As the OPRA-NCAL project consists of di�erent parts, one of the initial

steps that needed to be performed was to investigate the regulatory classi�cation
of these parts according to current EU and US directives.

It had already been previously been established that the complete OPRA-
NCAL system is a medical device but, at the same time, the OPRA-NCAL
is comprised by three parts which potentially can be classi�ed separately with
only the main part being a medical device and the other two as accessories. The
bene�ts for doing this would be a decrease in documentation, veri�cation and
overall resources required to drive the OPRA-NCAL project through develop-
ment, the regulatory classi�cations and onto the market.

The medical software classi�cation for the NCAL-Soft project was also inves-
tigated in order to determine the optimal safety classi�cation for the NCAL-Soft.
This was due to a higher safety classi�cation would require more resources from
Integrum AB.

6.1.1 OPRA-NCAL Classi�cation According to European

Union

6.1.1.1 De�nition of medical device

Within the EU a medical device is de�ned as follows from the medical device
directive (MDD) 93/42/EEC:

�a 'medical device' means any instrument, apparatus, appliance,
software, material or other article, whether used alone or in com-
bination, together with any accessories, including the software in-
tended by its manufacturer to be used speci�cally for diagnostic
and/or therapeutic purposes and necessary for its proper applica-
tion, intended by the manufacturer to be used for human beings for
the purpose of:

- diagnosis, prevention, monitoring, treatment or allevia-
tion of disease,

- diagnosis, monitoring, treatment, alleviation of or com-
pensation for an injury or handicap,

- investigation, replacement or modi�cation of the anatomy
or of a physiological process,

- control of conception,

and which does not achieve its principal intended action in or on
the human body by pharmacological, immunological or metabolic
means, but which may be assisted in its function by such means;�

6.1.1.2 De�nition of accessory

The MDD de�nes a medical device accessory as:

�an `accessory' means an article which whilst not being a device is
intended speci�cally by its manufacturer to be used together with
a device to enable it to be used in accordance with the use of the
device intended by the manufacturer of the device.�

23

6.1.1.3 Medical software

In the de�nition of active medical device, the following amendment was imple-
mented in 2010 through the directive 2007/47/EC:

�Stand alone software is considered to be an active medical device.�

Further amendments concerning medical software was in regards to requirements
for medical devices connected to or equipped with an energy source, where the
following addition was made:

�For devices which incorporate software or which are medical soft-
ware in themselves, the software must be validated according to the
state of the art taking into account the principles of development
lifecycle, risk management, validation and veri�cation.�

6.1.1.4 Conclusion

In accordance with the MDD de�nitions above, it would be possible to label
the main part of medical device product as `medical device' while labeling any
attachment parts as `accessory' to that medical device as long as the attachment
on its own does not ful�ll the requirements for a 'medical device'. Table 5.1
shows the devices and the di�erent cases which would classify a device as a
'medical device'. It should also be noted that only the device on its own is
taken into concideration and the functional capabilities of the device.

Device name Case 1 Case 2 Case 3 Case 4

OHMG No No Yes No
ALC No No No No

Table 6.1: Medical device classi�cation comparison. Case 1: Diagnosis, pre-
vention, monitoring, treatment or alleviation of disease; Case 2: Diagnosis,
monitoring, treatment, alleviation of or compensation for an injury or handi-
cap; Case 3: Investigation, replacement or modi�cation of the anatomy or of a
physical process; Case 4: Control of conception

As seen, the OHMG ful�lls one of the medical device classi�cations due to
being implanted and thus modifying the anatomy of the patient. The ALC
however does not ful�ll any of the cases on its own, and can be classi�ed as an
'accessory' to the medical device, which would be the OHMG. This means that
the OPRA-NCAL medical device can be broken up into a medical device com-
ponent (the OHMG) and an accessory (the ALC). NCAL-Soft is, in accordance
with the 2007/47/EC directive, an active medical device and is therefore not
included in table 6.1.

It should �nally be mentioned that, while the OHMG, ALC and NCAL-Soft
all treat a handicap when combined, they do not ful�ll this case when isolated.

6.1.2 OPRA-NCAL Classi�cation According to the United

States of America

6.1.2.1 De�nition of medical device

The FDA's de�nition of a medical device is as follows:

24

�an instrument, apparatus, implement, machine, contrivance, im-
plant, in vitro reagent, or other similar or related article, including
a component part, or accessory which is:

- recognized in the o�cial National Formulary, or the United States
Pharmacopoeia, or any supplement to them,

- intended for use in the diagnosis of disease or other conditions, or
in the cure, mitigation, treatment, or prevention of disease, in man
or other animals, or

- intended to a�ect the structure or any function of the body of
man or other animals, and which does not achieve any of its pri-
mary intended purposes through chemical action within or on the
body of man or other animals and which is not dependent upon be-
ing metabolized for the achievement of any of its primary intended
purposes.�

6.1.2.2 Conclusion

This would mean that if a medical device consists of multiple parts, all those
parts would be labeled as medical devices due to that the product they form is a
medical device. For the OPRA-NCAL product, both the OHMG and the ALC
would be labeled as medical devices as they together form the actual medical
device product.

6.1.3 NCAL-Soft

The NCAL-Soft is the software component to the OPRA-NCAL project and is
separated into two parts. One part to be installed on a PC for training and
�tting purposes and another intended to be installed into the ALC component
of the OPRA-NCAL medical device. NCAL-Soft is described further in chapter
6.2.

In accordance with IEC 62304 Medical device software - Software life cycle
processes, all medical software being developed for use in a medical device or to
be used as a medical device in its own right must be given a safety classi�cation
based on the potential hazardous situation that could arise from a software
failure.

6.1.3.1 Classi�cation of NCAL-Soft

As the two parts of NCAL-Soft are installed in separate devices and does not
interface with each other, they can be given an individual safety classi�cation
as mentioned in chapter 3.1.2.

ALC Following a preliminary hazard analysis of the ALC component for
the NCAL-Soft, the worst potential risk associated with a hazardous situation
would result in bruising. Other identi�ed potential risks would result in a delay
of prosthetic movement or no movement at all.

However, there are possibilities to reduce the safety classi�cation through
hardware implemented risk control measures. The e�ects of these hardware
changes would need to be analyzed to determine the impact it would have on the

25

performance of the medical device before a decision can be made to implement
them or not.

PC For the PC component of the NCAL-Soft the only concern would be
during the sessions where the patient is training the ALC software through the
PC, but this should not give rise to any risks unless the patient deliberately act
against the user instructions.

6.1.3.2 Conclusion

Based on the preliminary risk analysis it is determined that the ALC compo-
nent of the NCAL-Soft will have a Class B safety classi�cation while the PC
component of the NCAL-Soft will have a Class A safety classi�cation.

6.1.3.3 Evaluation of Safety Classi�cation Reduction

The gain of a reduced safety classi�cation for Integrum AB would be the re-
duction in documentation and veri�cation e�ort. This reduction could save
resources and possibly result in a faster project closure.

In order to reduce the safety classi�cation of a medical device software, as
described in chapter 3.1.2, risk control measures have to be implemented through
hardware changes or adding additional hardware to the medical device. So when
considering a reduction of safety classi�cation, it is needed to take the impact
of hardware changes on the medical device performance into consideration.

One of the identi�ed risks would be accidental bruising due to the prosthesis
performing an unintentional action, such as closing of prosthetic hand while
holding another person's hand. A possible hardware solution to this problem
would be to change the prosthetic motor to a less powerful motor, but it would
need to be veri�ed that the intended use can still be met.

6.2 NCAL-Soft

The NCAL-Soft is a training and �tting software designed for the OPRA-NCAL
medical device currently being developed by Integrum AB. The project leader
is Max J. Ortiz C., who also is the project leader for the OPRA-NCAL project.
Here, there di�erent tasks concerning the development of NCAL-Soft are de-
scribed.

6.2.1 Intended Use

De�ning a medical device's intended use is a critical part and is one of core
aspects taken into consideration when performing the risk assessment. The
intended use should clearly de�ne what the product is designed to do as well as
any restrictions in how it is to be used.

One of the �rst tasks was to de�ne the intended use for NCAL-Soft and
the ALC. Due to con�dentiality, these de�nitions can not be presented in this
thesis.

26

6.2.2 Risk Assessment

The risk assessment of medical software must, like any other medical device,
comply with the ISO 14971:2007 standard for risk management for medical
devices. The major di�erence, however, between performing a risk assessment
on a software medical device contra that of a classic medical device, is that
the probability of a risk or hazard occurring can not be estimated in the same
statistical way due to software's unpredictability. As such, any foreseeable risk
or hazard has a 100% chance of occurring.

As previously stated, the outcome of the risk assessment of NCAL-Soft was
a worst case risk of bruising.

6.2.3 Software Safety Classi�cation

As covered previous in chapter 3.1.2, software safety classi�cation needs to be
performed at the start of the software development. With NCAL-Soft marking
the �rst software development project at Integrum AB, there were no exist-
ing procedures for how the software safety classi�cation should be performed.
As such, a classi�cation strategy document for how the software classi�cation
should be performed in compliance with the IEC 62304 standard needed to
be created. The safety classi�cation for the NCAL-Soft medical software was
generated at the same time and documented as NCAL-Soft Classi�cation.

The safety classi�cation strategy includes the identi�cation of the di�erent
software entities that comprise the software system and how they interface. It
also includes performing risk analysis on the identi�ed entities and the speci�-
cation of risk control measures.

The software safety classi�cation strategy is documented as Software Clas-
si�cation Guidelines procedure which is to be implemented into the quality
management system at Integrum AB and used to determine the software safety
classi�cation of any medical software project that Integrum AB initiates.

6.2.4 Software Development Environment

When developing a software, the choice of a suitable software development en-
vironment (SDE) needs to be considered. For Integrum, the requirements on
a SDE was based on the compliance requirements for the IEC 62304, features
such as traceability (risk assessment to code and design requirements to code),
revision control, activity planning and document sharing between the develop-
ers.

Di�erent SDE's that could be of use to Integrum in the development of
NCAL-Soft needed to be identi�ed and evaluated.

The �rst possible solution was from Mortice Kerns Systems which solution,
MKS Integrity, o�ers full SDE solutions including integrated risk management
and quality management but also includes features that were not desirable for
the NCAL-Soft project. The cost for the license was another factor which played
a part in looking for a di�erent solution.

A second solution was found in IBM Rational SDE which, like MKS In-
tegrity, includes integrated risk management, quality management as well as
the possibility of creating a full traceability between implemented software re-
quirements, risk analysis and actual source code. The biggest perk for IBM

27

SDE
Trace-
ability

Revision
control

Integrated
RM

Integrated
QM

License

MKS
Integrity

Yes Yes Yes Yes -

IBM
Rational

Yes Yes Yes Yes Free

rt:collabs Yes Yes No No -

Table 6.2: SDE Feature Comparison

Rational is that it is free as long as there are 10 or less developers using it,
making it a very attractive choice for small companies, the downside of that is
that there is no IBM support included in the free license.

A third solution found is the rt:collabs SDE which includes the possibil-
ity of having traceability between source code and risk analysis or software
requirements through the use of tags and comments, increasing the manual re-
sponsibility. It is designed to use a SVN client for revision control and has a
web based user-interface that is built on TracWiki [15].

Table 6.2 shows a breakdown comparison of the three possible solutions
described above.

The decision of SDE ended up being between IBM Rational and rt:collabs.
Both could o�er similar features, with IBM having some additional features over
rt:collabs as well as being free. The trade-o� would be that the rt:collabs license
would include support whilst Integrum would be without support with the IBM
solution.

The rt:collabs platform was ultimately selected due to its high level of con-
�guration, that it can be used as a platform for more than just software devel-
opment and that support would be available.

Following the choice of rt:collabs came the need of identifying a suitable SVN
client. A number of di�erent SVN clients were identi�ed, such as Visual Studio
SVN and Tortoise SVN. Tortoise SVN was selected as it works well with any
�le type and does not require a speci�c programming environment.

6.3 Software Development Procedure

As the NCAL-Soft marks the �rst software product being developed by Inte-
grum AB, there was a need to create a software development procedure to be
implemented into Integrum's quality system which would ensure that the de-
velopment is conducted in accordance with current regulatory requirements for
medical software.

The �rst aspect to consider was which of the software development models
described in chapter 3.2 would �t Integrum AB as an organization, its devel-
opment team and their quality system. The development model would have
to work with a very small team and require as little additional resources from
Integrum AB as an organization also if it has a similar structure to the existing
development procedure in place at Integrum AB for their non-software products
would make it easier to implement but that is of lesser importance.

28

The main task of this thesis project was the development of a set of software
development procedures to assure compliance with the regulatory requirements
of IEC 62304 Medical device software - Software life cycle processes.

This was done by initially performing a quick review of the quality manage-
ment system in place and compare the implemented standard operating pro-
cedures, SOP, present in it, with the requirements within the standard. From
there, it could determined if new SOP's were needed to be created, or if changes
to present SOP's would be su�cient.

6.3.1 Proposed Software Development Procedure

The software development procedure described in this section is that of an itera-
tive development model. This is due to that software development is an iterative
process but also due to that it is the basis for the proposed software develop-
ment procedure for Integrum AB. It is also easy to verify that this development
procedure follows the general principals of software validation by comparing the
activities described in Chapter 3.1 with the processes described below.

The software development would start with an initial planning process, as
shown in �gure 3.2 on page 15, before the actual development starts. The devel-
opment outline is shown below with a brief description of each of the processes.

� Initial Planning

� Requirements

� Implementation

� Testing

� Evaluation

� Release

Initial Planning

The initial planning deals with all the di�erent tasks that are needed to be
performed before starting a project. It covers initial risk analysis, initial soft-
ware designs and establishing software system requirements. But also �nancial
estimates and other factors that a�ect the company.

Requirements

As mentioned in Chapter 3.1.3, the requirements activity should identify and
de�ne the various software and system requirements and ensure that any addi-
tional requirements that are identi�ed during the development process is prop-
erly de�ned for a successful implementation.

Implementation

This activity is where all the requirements (system and software), as well as any
identi�ed risk control measures, are implemented into actual source code.

29

Testing

The testing activity is the veri�cation e�ort to ensure that the source code
ful�lls its intended function, and that any new code or functions implemented
into the software does not cause con�icts. It is through this veri�cation e�ort
that the software will be validated for completeness at the end of the project.

Evaluation

The activity of evaluation is where the test results are analyzed and decisions are
made on how the software architectural design shall be re�ned, if additional risk
control measures shall be implemented and if an implemented functionality has
reached the acceptance criteria. During this activity, the software development
plan is updated to include the results of the iteration ending as well as add
appropriate documentation concerning the iteration that is to start.

Release

Once the evaluation activity shows that all requirements and risk control mea-
sures have successfully been implemented and that the software has reached the
acceptance criteria, it will enter the release activity. Documentation shall be
created identifying any known software anomalies that has not been corrected
along with a motivation for why this has not been done. An evaluation e�ort
shall also be performed to ensure that all created documentation supports that
the software has been completed.

6.3.2 Creating a Software Development Procedure

After deciding on software development model to use, the next step was to
create the necessary operating procedures for software development based on
the requirements set by the IEC 62304 standard.

The �rst step was to identify the procedures required to be established,
followed by de�ning what these procedures should cover in terms of clauses of
the IEC 62304 standard. This resulted in the following list of procedures that
needed to be de�ned and developed:

� Software Development Process

� Software Design Process

� Software Integration and Testing Process

� Software Con�guration Management Process

� Software Problem Resolution Process

� Software Maintenance Process

� Software Release Process

� Software Risk Management Process

30

Activity: Process:

Initial Planning -

Requirements Software Development, Software Design

Design Software Design

Implementation Software Integration and Testing

Testing Software Integration and Testing

Evaluation
Software Con�guration Management,

Software Problem Resolution

Release Software Release

Table 6.3: Connection between development activity and development processes

Comparing this list of procedures with the Iterative and Incremental develop-
ment model shown on page on page 15, each process is connected to a corre-
sponding activity. This connection is shown in table 6.3.

As can be seen in this table, the risk management process and the mainte-
nance process does not have a dedicated development model activity but exist
outside of the illustrated model shown in 3.2. It is also shown that the initial
planning activity is not covered by the IEC 62304 standard, but it is described
in the General Principals of Software Validation [4].

Once these processes had been identi�ed, the work of creating and re�ning
them to ensure that they were clear in what is required to be done and how
this is to be done began. As part of this process, the software design, software
maintenance and software release process were merged into one single process
labeled software design and release process. Further, the requirements activity
was integrated into a separate document labeled IEC 62304 Implementation
that serves as a guiding document to how the IEC 62304 regulatory requirements
should be implemented into the rt:collabs TracWiki platform that is used by
Integrum AB.

At this point, there were several documents describing the di�erent processes
involved in medical software development but there were no clear step-by-step
procedure that described how these processes could easily be used by the pro-
grammers at Integrum AB. Bearing that in mind, an e�ort was made in re-
writing the existing processes, listed in table 6.3, into a step-by-step procedure
called Software Development. The re-write also included the addition of refer-
ences to the IEC 62304 Implementation document in the cases where a more
detailed description would be needed, i.e. for the de�nition of requirements.

As Integrum AB already has an existing risk management procedure, there
was a concern of how the software risk management would best be implemented
into the quality management system. After going over the process with the
quality manager for Integrum AB, it was decided that a new separate procedure
should be created which would cover the software risk management as well as
the software release and software maintenance. This new procedure was labeled
Software Validation.

The �nal software project development process is described by the �owchart
shown in �gure 6.2.

The Software Development procedure is described in detail by �gure 6.3. It
should be noted that the last step in the �owchart is the same step described
in 6.2 and does not indicate a need to repeat the activities described in the

31

Figure 6.2: Software Development Procedure Flowchart

Software Product Release process de�ned in the Software Validation procedure.
The integration plan described in �gure 6.3 refers to the process that is de-

scribed by �gure 6.4. This �owchart describes the integration testing process
that all source code is required to go through before being implemented into the
software product and the testing of the software system before being submit-
ted to the Software Product Release process de�ned in the Software Validation
procedure.

32

Figure 6.3: Software Development Method Flowchart

33

Figure 6.4: Software Integration Testing Flowchart

34

Chapter 7

Veri�cation

This chapter describes the veri�cation e�ort that was performed to ensure that
the medical software development procedure works as intended and ful�ll the
regulatory requirements set by IEC 62304 Medical device software. The veri�-
cation was performed in two di�erent ways, one through the actual use of the
procedure and another by verifying that each required regulatory clause was
met.

7.1 Veri�cation of Performance

This veri�cation was initially conducted by running a dummy project through
the procedure to catch any inconsistencies or redundancies.

When all identi�ed redundancies and inconsistencies had been corrected, the
procedure was handed to the medical software development team for �live� test-
ing. Although the use of the software development procedure was highly limited
during this test, new issues that needed to be resolved were still identi�ed.

7.2 Veri�cation of Compliance

This veri�cation stage was performed at the end of the project and consisted
of going through each regulatory clause and verify that the clause had been
met. This was done over the course of several meeting between myself and the
medical software development team. It was completed up to clause 7 of the IEC
62304 standard, Risk Management Process.

35

Chapter 8

Discussion

8.1 NCAL-Soft Safety Classi�cation

The NCAL-Soft safety classi�cation is based on a preliminary risk analysis that
will be needed to be repeated once a more detailed design of the NCAL-Soft
project has been established. It is also of importance that a risk analysis is
performed continuously throughout the development process to ensure that no
potential hazardous situations are missed.

Also, it was determined that Integrum AB will not be developing any medical
software that would be classi�ed as a Class C medical software given their
current projects. However, in the event that Integrum AB start developing
medical software that will actively stimulate biological tissue this needs to be
evaluated.

8.2 Software Development Procedure

The proposed software development process created for Integrum AB is highly
based on the IID model described in section 3.2.2 but adapted to �t the small
development team at Integrum AB and the TracWiki development platform. It
consists of a software development procedure, a software validation procedure
and IEC 62304 Implementation guidance document.

The software development procedure provides a step-by-step method for how
a medical software development project should be performed for compliance with
IEC 62304 Medical software standard and includes �owchart representations of
the software project development process and integration testing process. The
software validation procedure provides instructions for performing validation
prior to releasing the software product to the market, post-release activities
for handling feedback and product maintenance as well as software risk man-
agement. The IEC 62304 Implementation guidance document provides more
detailed explanations for why di�erent activities needs to be performed by ref-
erencing directly to the IEC 62304 regulatory clause that activity complies with.
It also o�ers additional information concerning de�nition of requirements and
software design documentation.

As previously mentioned, it was evaluated that Integrum AB will not develop
any Class C medical software. As such, the software development procedure is

36

restricted to only comply with the regulatory requirements for Class A and
Class B medical software. In the event that Integrum AB will be developing
Class C medical software, additions will be needed to be made to the software
development procedure to include the regulatory requirements for Class C.

8.3 Future Work

As with most development work, there is always room for further work and
improvements.

The veri�cation of compliance needs to be completed by verifying that re-
maining clauses are met. Further, the software development procedures need
to be used in a real development instead of simulated development projects.
Although the software development procedures were used as part of the NCAL-
Soft project, it was not used to a wide extent and the use could not give any
qualitative feedback on the procedure's performance.

I also believe that Integrum AB would bene�t from looking into obtaining
guidance documents concerning software requirement speci�cation and software
system requirement speci�cation. Though it is not required by the medical
software standard, I believe it will aid Integrum AB in their expansion into a
medical software development company. Example of these guidance documents
is the IEEE STD 830-1998 for software requirement speci�cation and the IEEE
STD 1233-1998 for software system requirement speci�cation. Although I be-
lieve these documents would result in changes needed to be made to the software
development procedure. They should also result in better documented require-
ments which will lead to a smoother software development, as well as decrease
the FDA processing.

37

Bibliography

[1] Device Classi�cation. Food and Drug Admin-
istration [cited 2012-06-07]; Available from:
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/
Overview/ClassifyYourDevice/ucm2005371.htm

[2] Premarket Noti�cations (510k). Food and Drug Ad-
ministration [cited 2012-06-07]; Available from:
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/ How-
toMarketYourDevice/PremarketSubmissions/PremarketNoti�cation510k/
default.htm

[3] Guide to the implementation of directives based on the New Approach and
the Global Approach, European Commission, 2000

[4] General Principles of Software Validation; Final Guidance for Industry and
FDA Sta�, Center for Devices and Radiological Health, Food and Drug
Administration, January 2002

[5] A Formal Methods-based veri�cation approach to medical device
software analysis. EE Times [cited 2012-06-07]; Available from:
http://www.eetimes.com/design/embedded/4008888/A-Formal-Methods-
based-veri�cation-approach-to-medical-device-software-analysis

[6] Guidance for the Content of Pre-market Submissions for Software Con-
tained in Medical Devices, O�ce of Device Evaluation, Center for Devices
and Radiological Health, Food and Drug Administration, May 2005

[7] Royce, Winston, Managing the Development of Large Software Systems,
Proceedings of IEEE WESCON 26:1-9, August 1970

[8] Martin, Robert, Iterative and Incremental Development, Engineering Note-
book Column, April 1999

[9] Sutherland, Je�, Agile Development: Lessons Learned From the First
SCRUM, Cutter Agile Project Management Advisory Service. Executive
Update, Vol. 5, No. 20, October 2004

[10] Boehm, Barry, A Spiral Model of Software Development and Enhancement,
TRW Defense Systems Group, May 1988

[11] Guidance for Industry, FDA Reviewers and Compliance on O�-the-Shelf
Software Use in Medical Devices, O�cer of Device Evaluation, Center for

38

Devices and Radiological Health, Food and Drug Administration, Septem-
ber 1999

[12] IEC 62304, Medical device software - Software life cycle processes, Interna-
tional Electrotechnical Commission, May 2006

[13] Scrum (development). Wikipedia [cited 2012-06-07]; Available from:
http://en.wikipedia.org/wiki/Scrum_(development)

[14] Iterative and incremental development. Wikipedia [cited 2012-06-07];
http://en.wikipedia.org/wiki/Iterative_and_incremental_development

[15] TracWiki - The Trac Project. Trac [cited 2012-06-07]; Available from:
http://trac.edgewall.org/wiki/TracWiki

39

