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Abstract

State-of-the-art control of hand prostheses is conventionally done by using a simple
threshold technique; one output from one input. Two input signals are necessary to
control the two directions of one degrees of freedom (DoF), and to switch between
different predefined functions either co-contraction or a physical switch is used.
However, this serial operation is unnatural and slow. The purpose of this project
was to develop advanced control systems for high-end prosthetic devices with the
pattern recognition platform BioPatRec to allow more sophisticated control schemes.
Two systems considering three different hands were developed: One system for the
MyoHand VariPlus Speed or the SensorHand Speed from Ottobock, and another for
the i-limb hand from Touch Bionics. In addition to these two systems, a previously
proposed framework was further developed to specify a standard on how to interface
a motor driven device with BioPatRec. This framework guide developers how to
define their devices in BioPatRec and guide the development of the control firmware.

Keywords: Pattern recognition, Hand prosthesis, Control system.
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1

Introduction

The hand is a powerful tool and its loss causes severe physical and psychological
drawbacks. A hand prosthesis is an artificial device that is used as a replacement
for the lost hand. A highly desirable feature for the control of artificial hand limbs
is prediction of simultaneous limb motions.

In clinics around the world, the state-of-the-art technology for rehabilitation of am-
putees is commonly a dual-site controlled myoelectric prosthesis [1]. The method for
activating such a device is simply controlled using a threshold detection technique,
one output signal from one input signal which is the myoelectric signals (MES) of
a group of muscles. Two input signals are necessary to control the two directions of
one degree of freedom (DoF), and to switch between different predefined functions
either co-contraction or a physical switch is used. However, such a serial opera-
tion is unnatural and slow. The lack of intuitive control is one of the reasons that
these devices are not used regularly. Surveys reveal that 30% to 50% of upper limb
amputees do not use their prosthetic devices regularly [2].

1.1 Background

Despite the impact of losing a hand and the functionalities that a hand prosthesis
offer; the numbers of amputees requiring a prosthesis is too small to motivate rapid
development. This is one reason why control interfaces and mechanisms barely have
changed in the past 40 years [3]. Robotic hand prostheses with one or two DoF with
the functionality to open/close or pronate/supinate the wrist have been commer-
cially available since early 1970’s [3].

Products with several DoF have been developed in relatively recent years and are
today commercially available. The i-limb hand from Touch Bionics [4], the bebionic
hand from RSL Steeper [5], the Michelangelo hand from Ottobock [6] and Vincent
from Vincent systems [7] are the most used multifunctional prostheses with several
DoF. These hands, as devices with only one DoF, are controlled using the standard
control interface with two input control signals. Even though these hands offer so-
phisticated functionality they are currently controlled in an unnatural manner. This
is where the research take place today; control methods to achieve intuitive control
and feedback to the user. Instead of using the two input signals to only control
one DoF at a time, a communication protocol could be applied to select functions
individually or simultaneously.



The Azzura hand project [8] [3] is one example that aim to achieve such a system.
This hand is in a prototype stage design to be controlled through serial communi-
cation. The embedded controllers in the hand are arranged in a hierarchical archi-
tecture consisting of one high level controller and five lower level motion controllers,
one for each finger. Each low level motion controller controls the position, and
current movement speed of its connected finger. A memory is integrated enabling
memorization of grasps. Communication to the high level controller can then use
the memory to launch automatic grasps.

A system with intuitive control of individual or simultaneous functions require pat-
tern recognition from the user to be able to determine which function to select. Re-
search lead by Dr. Ortiz Catalan at Chalmers University of Technology, Sahlgrenska
University Hospital, and Integrum AB, has resulted in pattern recognition algo-
rithms that can provide intuitive control over several degrees of freedom [1] [9].

1.2 Goals

The assignment of this project was to interface, high-end commercially available
robotic hand prostheses, with the pattern recognition platform BioPatRec [9] to al-
low more sophisticated control schemes to access individually powered joints. Elec-
tronics, printed circuit board (PCB) design and communication protocols are the
areas that are involved in the project. The goals of this project are the following:

o Implement hardware communication protocols to interface between the hand
prosthesis device and pattern recognition platform.

o Implement PC interface using BioPatRec [9].

o Implement real-time control for individual and simultaneous movements within
BioPatRec.

The i-limb hand from Touch Bionics [4], the VariPlus Speed [10] hand and the
SensorHand Speed [11] from Ottobock are three hands that were evaluated in this
project. It was expected that the hands differ in communication methods; different
prototypes were therefore produced for each hand. The aforementioned goals are
applied for each hand in an iterative manner, where all three points are first applied
to one hand before the next hand is evaluated.

In the case of the i-limb hand, the interface to the pattern recognition platform was
already implemented. The task involving this hand was to refine this interface by
designing a common PCB for all the motor drivers and implement the interface on
another microprocessor platform.



2

Development methods

In this chapter, the challenges are analyzed and solutions are proposed to address
them. The chosen development tools are listed and the advantages of their utilization
are described in addition to the testing methods.

2.1 Analysis of problems

The project comprises different disciplines ranging from PCB design and electronics,
to software programing and communication protocols. Because of the high level of
dependencies between different disciplines and modules, it is necessary to define clear
interfaces and specifications. Limitations in hardware because of constraints in func-
tionality and performance and, the other way around, functionality and performance
demand certain support by the system. One of the main problems is to identify these
dependent relations and to integrate all modules into a well-functioning system.

The project also concerns the end users, although the goal is to design prototypes
that are not meant for commercial usage; each prototype has to provide sophisti-
cated functionality as an amputee want to use it. This means that real-time control
for individual and simultaneous movements should be implemented.

Providing low latency, reliable control and low power consumption are three specific
technical challenges that are considered in this project. Different analyses of the sys-
tem considering the different parts is necessary, identifying the sources of variance
and make decisions for the design. Decisions concerning compromises between inde-
pendent optimal solutions and also compromises between subsystems. An example
of such a source in this project is the firmware that is a critical sub-system of the
design that comprises of several components which are non-trivial to implemented.

2.2 Requirement specification

The goal of this project was to interface, high-end commercially available, robotic
hand prostheses with the pattern recognition platform BioPatRec [9] to create more
sophisticated control schemes. The design, implementation and development of the
prototype systems need to consider medical requirements since the systems use,
and are meant to be used, as medical devices. In this project the requirements
are divided into four groups: Functionality, Development, System performance and



Prototype design.

Each prototype system that is built upon different robotic hand prostheses should be
able to provide real-time control for individual and simultaneous movements within
BioPatRec. Priority was given to implement individual movements and then simul-
taneous movements.

The development of medical devices containing software requires knowledge of what
the software is intended to achieve and that the use of the software fulfill those
intentions with acceptable risks. Integrum’s implementation of the IEC 62304 stan-
dard is used in this project to provide a framework of the development process of
software for medical devices.

Power consumption and system latency are the two parameters that are considered
for performance. Since the pattern recognition platform BioPatRec [9] is not yet
portable to be implemented on a stand-alone microprocessor, this sub-system is
not considered for performance in this project. However, the control and interfac-
ing firmware coupled with its respective robotic hand prosthesis is expected to be
driven by a 7.4V 2200mAh lithium ion battery and be able to operate 24h before
the battery need to be recharged. Approximately 30ms is considered as acceptable
system latency for the system to send a control command and then receive feedback
if the command is accepted or not.

The design of the prototype systems is considered as low priority in this project
where design to achieve functionality is the main focus rather than cosmetic design.
The systems should be easy to setup consisting of one connection to a PC and the
control signals should be grouped to match the standard interface for robotic hand
prostheses.

2.3 Ethical aspects

Since this project didn’t use any human data nor did any experiments with patients,
we don’t consider any ethical aspects.

2.4 Development tools

This section describes the tools that has been used for development of the software
and hardware in this project.

2.4.1 MATLAB

MathWorks MATLAB [12] is a useful tool for pattern recognition processing whereas
BioPatRec [9] is implemented using this tool. In this project, MATLAB is chosen
as the main tool for designing, testing and implementing the interface between
BioPatRec and the robotic hand prostheses. MATLAB provides a direct and simple
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way to handle data and algorithms using a combination of functions, scripts and
command-line control. The broad selection of built-in functions that are accessi-
ble at an abstract level makes it convenient to design without considering target-
specific implementation details. The graphical user interface design environment
(GUIDE) [13] is used in this project to create GUIs to interact with the various
control parameters.

2.4.2 TIVA LaunchPad and CCS

The Tiva C Series LaunchPad Evaluation Kit [14] is a low-cost evaluation platform
from Texas Instruments (TT). This platform, together with the integrated develop-
ment environment (IDE) Code Composer Studio (CCS) [15] provides tools to de-
velop and debug embedded applications with C/C++ programming. Configurable
modules with pre-defined function libraries allow development at a high abstraction
level that is easy to use. Considering the limited timeframe of this project, it is
important to save development time. This platform is therefore useful to implement
the control systems in this project with acceptable performance. Modules used for
serial communication and signal generation are particularly useful in this project
for the communication interfaces from the microprocessor to the PC interface and
connected hand prosthesis.

2.4.3 EAGLE

EAGLE PCB design software [16] is a tool that is commonly used by engineers
worldwide. The schematic editor, layout editor and library editor allows the user to
customize components and design with precision to meet their individual require-
ments. The free version of EAGLE that allow two-layer designs is used in this
project to create a BoosterPack [17] for the Tiva LaunchPad platform.

2.5 Design Methods

Each prototype system was created considering the requirements from its connected
hand prosthesis. Interfacing the different sub-systems was a major part in the design.
The basic building blocks in BioPatRec [18] for communication and control is used,
where the interfaces to the systems in this project are designed to be as modular as
possible. Reuse of functions and settings allow flexibility in the development, where
changes in one part of a prototype system don’t have a large impact on the rest of the
system. MATLAB and CCS is used to create the communication interface between
BioPatRec and the control firmware. Basic serial communication and experiences
from the TI and MathWorks communities were combined to create high-level com-
munication interfaces between the BioPatRec platform and the microprocessor. In
the case when creating the interface between the hand and the microprocessor, the
communication requirements of the hand control the configuration of the interface
that is made using CCS.



2.5.1 Control firmware

The control firmware for each prototype system was designed, as for the interfaces,
to be as modular as possible. The firmware translates the commonly used control
commands from BioPatRec [18] to the corresponding specific commands to its con-
nected hand. The communication requirements of the connected prosthesis hand and
BioPatRec determine implementation of the firmware, since these are both stand-
alone products. CCS was the tool used when created the firmware, where hardware
modules and function libraries were used to design at a high hardware abstraction
level. This tool also provides detailed debugging tools for the firmware to analyze
system behavior.

2.5.2 PCB design

The free version of EAGLE PCB design software [16] was used in this project.
Certain objectives were considered when designing with this tool, as shown in the
following listing.

e No 90 degrees wires are used.

o 24mil wide wires are used for the input supply source and 12mil wide wired
are used in the rest of the design.

o Wires are routed to utilize the available space.

» Using bottom and top ground layers.

2.5.3 Graphical user interface

The graphical user interface design environment (GUIDE) [13] in MATLAB was
used to create user interfaces. This tool uses a drag and drop concept for the design
and generate files where the functionalities of the GUI can be specified. Each GUI
for each prototype system was designed using the same structure for connecting
and disconnecting to the microprocessor. The functionalities of the connected hand
determine what parameters that can be controlled and what feedback that can be
captured and visualized to the user.

2.6 Testing

Verifying a system can be carried out in several ways and has to be done thoroughly,
since it is the only way to guarantee quality. The most efficient option, both in
software and hardware, is formal verification, but due to its complicated and time-
consuming nature this project uses sets of test cases most of the time. If the design is
verified against a good coverage of possible inputs, then it is a high probability that
the system is functioning without a failure during its operation can be guaranteed.
In this project, different sub-systems were first tested separately and then together
as a whole system.



2.6.1 Embedded application

The embedded application consisting of the control firmware and interfaces imple-
mented on the microprocessor are testing thoroughly using the CCS debugger. This
tool was used to analyze the behavior of the application to verify that each hardware
module and function was implemented and functioning as intended.

This method confirms that the application is configured correctly and observe the
state of the implementation at specific stages. Although this is a powerful tool to
find errors, it is still hard to capture timing issues. Timing issues are considered
by execution the firmware in segments, verifying the behavior up to a specific point
before continuing the execution.

2.6.2 Communication

The serial communication between BioPatRec and the microcontroller was tested
using the MATLAB debugger and the CCS debugger. Verifying that the connection
is configured as intended was done by comparing the sent and received value on
both ends. On the other end, the serial communication between the hand and the
microcontroller was tested using the CCS debugger. Before testing the connection
to the hand, the microcontroller was tested using an oscilloscope to verify the signal
levels and if the messages are constructed as intended according to the communi-
cation protocol requirements of the connected hand. The connection to the hand
was then verified by observing how the hand behave according the command that
is sent and, if applicable, analyzing the given feedback.

2.6.3 PCB

Two methods were used in this project when testing and verifying the functionality
of the PCB design. First, the design was tested if it is manufacturable using the
standard design rule check (DRC) in EAGLE. Second, when the board is manu-
factured and all the components are mounted, the design is connected to a Tiva
LaunchPad [14] configured with the intended firmware where the functionality is
tested by verifying the correct output to a given input.

2.6.4 Performance

System delay and power consumption are the two parameters that are considered
for performance in this project. Timers in MATLAB are useful to measure the exe-
cution time of segments in the system. More specific, timers were used to measure
the execution time of sending a command and to measure the response time from
the microprocessor.

Power consumption was measured for the hand and the embedded application, sep-
arately and all together using a multimeter to get an indication how much power
the system is consuming. A BoosterPack for the motor controllers was designed and
manufactured for the prototype system with the i-limb hand from Touch Bionics [4].
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In this case, the power consumption of the BoosterPack is included with the system
all together.



3

Theory

3.1 BioPatRec: Processing and pattern recogni-
tion of myoelectric signals

The simple one-muscle one-function approach for ordinary prosthetic control is un-
sophisticated considering the complexities of Electromyography (EMG) crosstalk,
muscle co-activation, and the contribution of deep muscles [19]. This has motivated
the use of a pattern recognition approach for prosthetic control, by processing mul-
tiple myoelectric signals to achieve control of many more movements.

BioPatRec is introduced as an open source software as an effort to provide a com-
mon research platform for development and evaluation of algorithms in prosthetic
control [9]. All the required functions for myoelectric control, ranging from data
acquisition to real-time evaluation, are included in BioPatRec. In order to facili-
tate utilization, the functionalities are available through GUIs. These functions and
GUIs are implemented and divided in the following modules:

« Signal Recordings

o Signal Treatment

o Signal Features

o Pattern Recognition

« Control

The modular architecture of BioPatRec provide flexibility for implementation of new
algorithms, by allowing modification, enhancement, or replacement of any module
without affecting the others. Fig 3.1 shows how these modules are linked and struc-
tured together. The following sections briefly describes these different modules,
further details can be found in the online hosting platform [18].

3.1.1 Signal Recordings

Recording of bioelectric signals is the first step in the pipeline. Three different
ways of signal acquisition can be performed, each serving different purposes [9]:
(1) One-shot recordings are mainly used to verify the functionality of the hardware
and inspecting the signal quality. (2) Recording session, the user is provided with
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Figure 3.1: BioPatRec flow diagram. BioPatRec is organized in different modules
that allows replacement or modifications without affecting each other, given that
the structure is preserved.

visual instructions to perform pre selected movements and the signals from the user
are recorded. (3) Recordings for real-time control, the settings from the recording
session are stored in order to reproduce the setup in real-time control.

3.1.2 Signal Treatment

The recording session intend to capture as much information of the recorded signal
as possible. The signal treatment module aim to optimize this information to be
used for pattern recognition [9]. The BioPatRec wiki [18] list these optimizations
and show how they are implemented in routines that allow: removing channels and
movements that are of no interest, removing transient periods of the contraction,
filtering the signals, and order the signal into segments.

3.1.3 Signal Features

The majority of pattern recognition algorithms require discrete values of the recorded
signals, commonly known a signal features [9]. BioPatRec include 27 signal fea-
tures that are extracted from the treated signal segmentation, handled by the signal
treatment module. The result can then be used as input data to various pattern
recognition algorithms.

3.1.4 Pattern Recognition

The pattern recognition module is organized in two classifications; Offline classifi-
cation and Real-time classification. This separation offer utilization and flexibility
during implementation and testing of new algorithms, were recorded sessions can be
used to ease the process flow [9].

The Offline pattern recognition is implemented in three phases: training, validation,
and testing [9]. Independent data sets are created for each of these phases using
pre-recorded recording sessions. The training and validation sets are used for the
learning process [18] to specify a classifier. After the completion of this process, the
testing set is used to evaluate the performance of the trained classifier [9].

The Real-time pattern recognition constantly delivers predictions of movements [9].
These movement predictions can then be coupled with a prosthetic device or a
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virtual reality. The routines that are used to achieve these predictions require a
classifier that is specified from the offline phase [18].

3.1.5 Control

BioPatRec is initially released with two control algorithms: Majority voting and
Buffer output [9]. The majority voting method provide stability by filtering sporadic
misclassifications at the cost of delayed response. This method uses a buffer to
determine which movement that should be controlled, by choosing the movement
with the most predictions within the buffer window. The Buffer output method uses
a similar strategy. A threshold is set to determine if a predicted movement should be
performed. In comparison the Majority voting method, the Buffer output methods
allow control of simultaneous movements. In addition to these two algorithms, other
control strategies or post-processing methods can be applied in order to achieve
further sophisticated control of the system [9].

3.2 Serial Communication and Control

Serial point-to-point communication is preferable to transfer data when communica-
tion speed is not of high concern for performance. A serial communication protocol
that is commonly used between embedded systems is the UART protocol [20]. This
protocol is, in most cases, simply configured by four parameters: baud rate, parity
bit, the number of data bits included in one package and the number of stop bits.
The baud rate specify the modulation rate of data transmission as bits per second.
The parity bit is used as a form of error detecting code and is added at the end
of the package. This bit indicate if the summation of the bits within a package is
even or odd. The number of data bits in a package is usually set to eight, but can
be configured by the user depending on what UART module that is used. Fig 3.2
shows the structure of a UART package.

Start bit Data bits Parity bit Stop bits

Start

Figure 3.2: This figure show the general structure of a UART package. The number
of Data bits may vary depending on how the connection is set up, as well as the
parity bit that can be disabled if error checking is not needed.

3.3 Motor driven devices used in this work

Communication and control requirements as well as technical details of a robotic
hand prosthesis determine the implementation of its connected control systems.
Since digital control of such devices is relatively unexplored where different hands
have different requirements, these control systems need to be tailored for each device.
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Section 3.3.1-3.3.3 describes the technical details of the motor driven devices that
are used in this project.

3.3.1 MyoHand VariPlus Speed and SensorHand Speed

The MyoHand VariPlus Speed from Ottobock [10] is one of the most commonly used
prosthetic hand. This hand is design for robustness and performance rather than
flexibility or several degrees of freedom. Its high gripping force (up to 100N) and
speed (up to 300mm/s) make it possible to grip objects precisely and quickly [10].
Since the electronics of the hand doesn’t readjust the gripping strength automati-
cally, the targeted muscles for control have to hold and position the gripped item.
Because of this feature, this hand is recommended for active patients with a low
amputation level in particular.

The SensorHand Speed from Ottobock [11] feature the same features as the Myo-
Hand VariPlus Speed. In addition as the name indicate, this hand feature a more
sophisticated sensor system.

3.3.2 The i-limb hand

The i-limb hand from Touch Bionics [4] is a prosthetic hand with five individually
powered and architectured fingers. The hand is programmed with 14 predefined grip
patterns. These patterns are controlled and selected through the two input signals
and by manually rotating the thumb to create different grasping options. The hand
is design for proportional control; the stronger the input signal, the faster the fingers
move. Auto grasp is another feature of this hand. This feature can sense when a
gripped object is slipping and adjust the grip to secure it.

3.3.3 Servo motors

Two servo motors are integrated in a device that is used to tilt and rotate a connected
hand. The angle of each motor is determined by the pulse width of its connected
control signal. This signal modulation is called Pulse width Modulation (PWM).
These two PWM signals are configured at 50Hz and can be generated with a pulse
width ranging from 1ms(min) to 2ms(max), according to the specification of the
motors, Fig 3.3. This device including the two motors was created at Integrum AB
and is called the PanTilt.

12
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Figure 3.3: This figure show how the pulse width of the control signal determine the
angle of the motor. [21]
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4

Design and implementation

Two control systems have been developed in this work. One that is used for control
of the MyoHand VariPlus Speed [10] or the SensorHand Speed [11], and the other
is used for control of the i-limb hand [4]. Both these systems are built up by several
parts where each part is necessary to achieve the desired functionality and fulfill
the requirements. Fig 4.1 shows a general overview of the structure and major
components of these systems. A description of the design and implementation of
each part within the two systems is given in this chapter.

PC Communication Communication ‘g g
interface interface \

Control Unit
BioPatRec

Figure 4.1: This figure show a system overview of the control system, including
the three major parts: Pattern recognition, control firmware, and the connected
prosthetic device.

4.1 The system for the MyoHand VariPlus Speed
and the SensorHand Speed

The purpose of this system was to create a control interface between BioPatRec and
a MyoHand VariPlus Speed [10] or a SensorHand Speed [11]. The data flow starts
with predicting a movement using BioPatRec. Control commands of this movement
is then sent to a control firmware which translate the information to send the cor-
responding control signals of the connected hand. These signals are in the end sent
to the hand to perform the intended movement. Fig 4.1 shows the structure and
components of this data path.

This system also feature a feedback data path. Both the MyoHand VariPlus Speed
and the SensorHand Speed include sensors. The information from these sensors are
captured by the firmware and then used to generate a feedback signal and visual
feedback to the user. Fig 4.2 shows the structure and components of this feedback
data path.
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Figure 4.2: This figure show the data path of the sensor information. The feedback
data can be used to generate feedback directly to the user and it can be used as
input back to BioPatRec.

4.1.1 Control unit

The control unit was implemented using the TIVA LaunchPad [14] platform. As
mentioned in section 2.4.2, the TIVA LaunchPad platform is a useful tool with
configurable modules and pre-defined function libraries. In this system, the system
clock is configured at 1MHz.

Communication interface between a PC and the firmware

In this system the UART module is used to create the communication interface
between a PC and the firmware. Section 3.2 describes what parameters that need
to be considered when using the UART protocol. Table 4.1 shows the setup of these
parameters for the UART module in this system. These values were chosen as they
are setup in BioPatRec to be able to establish a connection.

Parameter Value
Baud rate 115200
Number of data bits 8

Number of stop bits | None
Parity bit None

Table 4.1: This table shows how the parameters used for serial communication is
configured.

The TIVA LaunchPad platform feature several UART modules that can be used
for multiple connections. In this system, the module called UARTO is used for the
communication interface between a PC and the microprocessor. This module use
the debugging port to send and receive data. The debugging port uses a micro-USB
connector, which can easy be connected to a PC with a micro-USB to USB cable.

Communication interface between the firmware and its connected hand

A communication interface between the firmware and its connected hand is imple-
mented. Due to confidential information of the control of the hands I'm not allowed
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to describe the design of this interface, nor the communication protocol that is ap-
plied.

A PCB was created for the necessary circuitry combined with the connectors for
the control signals to the hand. This PCB was designed as a BoosterPack to be
attached to the TIVA LaunchPad platform. It includes few components and have
space to be combined with other designs.

Sensor feedback

The feedback signal that is generated using the information from the sensors in the
hands is modulated as a PWM signal. The frequency of this signal reflects the
value that is capture from the sensors; the frequency range up to 10Hz. Two timer
modules are used to generate this signal: one determine the duty cycle, and the
other determine the period. Fig 4.3 shows how these timers are used to generate
the signal. The intended usage of this signal is discussed in section 6. If selected,
the feedback data is also sent to the connected PC.

\

Timer 0 t
o0—————
Timer 1

Figure 4.3: This figure shows how the timers are used to generate the PWM signal.
Timer0 is used to determine the pulse width of the signal and Timerl is used to
determine the period if the signal.

Software
The firmware is divided into the following functions:
o main(): The main function.
 Devicelnit(): This function initialize the modules that are used in this system.

« UARTIntHandler(): This function handle interrupts from the UART module
when data is available.

« OBHand sendCommand(): This function send commands to the connected
hand.

o TimerIntHandler(): Each timer has its own interrupt function. These func-
tions are used to generate the feedback signal.

Fig 4.4 shows how the functions are structured and connected to each other.
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Control Firmware
Main()

Devicelnit()

; \J
PC Main loop \% ’
BioPatRec \ UARTIntHandeler()

- Feedback signal
OBHand_ | | to the user
sendCommand()

y
TimerintHandler() |

Figure 4.4: This figure show how each function of the firmware is used and how
they depend on each other. The function main() initialize the modules by calling
the function Devicelnit(). The function UARTIntHandles() handles the data re-
ceived from the UART. This function also configure the timers and call the function
OBHand sendCommand() according to the received data.

Communication protocol between BioPatRec and the Firmware

When a UART connection is established between a PC and the firmware; this system
communicate using five different types of messages. Each message start with an
identifier to determine what function that should be performed. Depending on the
type of the message, more parameters may follow after the id.

o ‘C’: The message with this id is used to test the connection. The PC send the
character ‘C’ and the firmware, upon successful connection, acknowledge the
connection by responding with 0x1.

e ‘D’: The motor control of the connected hand is performed by sending a
message with this id from the PC. In addition to the id, this message include
three more parameters: motor index, speed value 1, and speed value 2. The
motor index is used to determine which motor to control. The two speed
variables are used, as the name indicate, to set the speed of the selected motor.
Two speed variables are used to determine the direction ot the motor. The
firmware acknowledge receiving this message by responding with 0x1.

e ‘s”: The firmware will start to send the sensor data when a message with this
id is received.

e ‘z’: The firmware will stop to send the sensor data when a message with this
id is received.

o ‘f7: After the PC have processed the data from the sensors a message with
this id is sent to generate the feedback signal to the user.
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Test GUI

A MATLAB GUI was made for this system which is used for simple control of
the connected hand using buttons to send the control messages. This GUI was
designed specifically for the the MyoHand VariPlus Speed and the SensorHand Speed
which include confidential information of the hands. Therefore, no further detailed
description can be presented in this report.

4.2 The i-limb system

An interface between BioPatRec and the i-limb hand have already been developed
at Integrum AB. This interface was implemented on the Picollo platform [22] and
use external motor driver boards, and a separate breadboard to connect the compo-
nents. The i-limb hand was re-engineered to enable control of the motors by these
external drivers.

The task involving the i-limb hand was to refine this interface by developing a com-
mon PCB for all the motor drivers and implement the control firmware on the TIVA
LaunchPad platform.

Similar as in the system for the Ottobock hands, the data flow starts with predicting
a movement using BioPatRec. Control commands of this movement is then sent to
a control firmware which translate the information to the corresponding control
signals. These signals are sent to the PCB which include the drivers for the motors
of the hand. Fig 4.5 shows the structure and components of this data path.

PC Communication kg g
interface Control PCB for motor \
BioPatRec Firmware control N

Figure 4.5: This figure show a system overview of the control system, including the
four major parts: Pattern recognition, control firmware, the motor driver, and the
connected prosthetic device.

4.2.1 Control unit

The control unit was implemented using the TIVA LaunchPad [14] platform as it
is a useful tool with configurable modules and pre-defined function libraries. The
system clock is configured at 1MHz in this system.

Communication interface between a PC and the firmware

Similar as in the system for the Ottobock hands, this system also use the UART
module to create the communication interface between a PC and the firmware. This
module is configured using the parameters shown in Table 4.1. These values were
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chosen as they are setup in BioPatRec to be able to establish a connection.

The UART module called UARTO is used for the communication interface in this
system. This module is simple to connect to a PC since it use the debugging port
to send and receive data.

Communication interface between the firmware and its connected hand

A communication interface between the firmware and its connected hand is imple-
mented using the PWM modules of the TIVA LaunchPad and the external motor
driver PCB, which will be described in section 4.2.2. The system include seven
motors: five DC motors for each finger of the hand, and two Servo motors for the
PanTilt device (described in section 3.3.3).

Each DC motor require two PWM signals to set the speed of the motor and deter-
mine the direction. The direction of a DC motor is chosen by activating one of the
signals, and the speed is controlled by the duty cycle of the signal where higher duty
cycle result in higher speed. These 10 PWM signals for the five motors of the hand
are configured to operate at 1kHz.

In contrast to the motors of the hand, the two servo motors of the PanTilt device
interpret the duty cycle as a position instead of a speed. The two motors of this
device is used to rotate and tilt the hand. These two PWM signals are configured
and control according to the specification described in section 3.3.3. Table 4.2 list
the 12 PWM signals and show how they are connected to the motors.

Motor TIVA LaunchPad name | TIVA LaunchPad pin
Thumb M1PWM2 PAG6
M1PWM3 PA7
Index finger | MOPWM3 PB5
MOPWM4 PE4
Middle finger | MOPWM5 PE5
MOPWM2 PB4
Ring finger MI1IPWMO PDO
M1PWMI1 PD1
Pinky finger | MOPWMG6 pPC4
MOPWMT PC5
Rotate MI1PWMG6 PF2
Tilt M1PWMT PF3

Table 4.2: This table lists the PWM signals and show how they are connected to
the motors.

Software

The firmware is divided into the following functions:

19



o main(): The main function.
« initPWM(): This function initialize the PWM modules.

« initConsole(): This function initialize the UART module that is used for com-
munication with a test GUI or BioPatRec.

o UARTIntHandler(): This function handles the interrupts that are triggered
by receiving data on the UART.

« handleData(): This function handles the data from the UART to control the
PWM signals that are connected to the motors.

Fig 4.6 shows how the functions are structured and connected to each other.

Control Firmware

Main()

initPWM()

PC initConsole() “ g
PCB for motor _\

BioPatRec i control
Main loop

UARTIntHandeler()

handleData()

Figure 4.6: This figure show how each function of the firmware is used and how
they depend on each other. The function main() initialize the modules by calling
the functions initPWM() and initConsole(). The function UARTIntHandles() cap-
ture the data that is received from the UARt and send it to the function called
handleData().

4.2.2 PCB for motor control

A PCB was made to combine all the external circuitry that is used to drive the
motors into a common board. This PCB was designed to be connected on top if the
TIVA LaunchPad as a TIVA BoosterPack [17]. It consists of three motor drivers,
two voltage regulators and connectors to the hand. Fig 4.7 show the layout of this
PCB where the red figure is the top layer and the blue is the bottom layer.

The components to the right named OUTA,OUTB,0UTC in the red figure are the
connectors for the DC motors of the hand. The components in the upper right in
the same figure with the label S1 and S2 are the connectors for the servo motors.
Table 4.3 show the connections between the PCB and the motors.
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Figure 4.7: These figures shows the layout of the PCB design. The red layout is the
top layer and the blue layout is the bottom layer.

Motor BoosterPack connector
Thumb OUTB

Index finger | OUTA

Middle finger | OUTA

Ring finger ouTC

Pinky finger | OUTC

Rotate S1

Tilt S2

Table 4.3: This table lists the the connections between the motors and the PCB
connectors.

As in the original setup, the DRV8833 [23] motor driver chip was chosen. Each of
these drivers are able to drive up to two DC motors.

The DC motors of the hand have different voltage requirements: the motors for
the thumb, index finger and middle finger require 4.5V, while the other two fingers
require 3V. Instead of using two separate power supplies as in the original setup, two
voltage regulators was implemented to regulate a common external voltage source.

4.2.3 Communication interface between BioPatRec and the
Firmware

When a UART connection is established between a PC and the firmware; this sys-
tem communicate with three different types of messages. As in the system for the
Ottobock hands, each message start with an identifier to determine what function
that should be performed. Depending on the type of the message, more parameters
may follow after the id.

21



e ‘C’: The message with this id is used to test the connection. The PC send the
character ‘C’ and the firmware, upon successful connection, acknowledge the
connection by responding with 0x1.

‘D’: The motor control of the DC motors of the hand are performed by sending
a message with this id from the PC. In addition to the id, this message include
three more parameters: motor index, speed value 1, and speed value 2. The
motor index is used to determine which motor to control. The two speed
variables are used to, as the name indicate, set the speed of the selected motor.
Two speed variables are used to determine the direction of the motor. The
firmware acknowledge receiving this message by responding with 0x1.

*S’: The motor control of the Servo motors of the PanTilt device are per-
formed by sending a message with this id from the PC. In addition to the id,
this message include two more parameters: motor index and position. The

firmware acknowledge receiving this message by responding with 0x1.

4.2.4 Test GUIs

The system was design to be compatible with the two test MATLAB GUIs from the
original interface. One GUI is used for the DC motors of the hand, and the other is
used for the servo motors of the PanTilt device. They both share the same functions
to set up a connection to the firmware. Then each motor is controlled individually
using the buttons to sent different control commands. Fig 4.8 show these GUIs.

[ GUI Test 1 limb [o @ [ ]| |4 6ur Test panTitt [=] = =]
Connect COM4 SpEEd 50 Connect CoM4 Step 1
Test connection Test i-limb Length | 0.01 Test connection -
Disconne ct Disconne ct eSt
Open 2 _
Thumb ﬁ [linverse Cent Pan [Clinverse  Position| 50
m . Flex
Index finger - E [ center | Tilt [ rex ] inverse  Position 50
[ ciose Extend
Middle finger [ inverse
Close
[ open
Ring finger 4 [ inverse
Open o
Little finger [l inverse
Close

Figure 4.8: These figures shows the two GUIs that are used to control the motors.
The GUI to the left control the DC motors and the GUI to the right control the

servo motors.

The GUI for the DC motors of the hand have two parameters that is used to de-
termine the speed and duration of the selected movement. The parameter “Speed”
determine the speed of the motor and the parameter “Length” determine the dura-
tion the selected motor will be active.
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The GUI for the Servo motors can control the angle of the motor step-wise or
directly. The parameter “Step” is used to determine the distance each step result
in. The boxes with the label “Position” change the motors directly according to the
entered value. The buttons with the label “Center” return the motor to its starting
position.

4.3 A proposed standardised interfacing frame-
work

The two previously described systems, that were developed in this work, differ in
design due to different requirements from the hand considered for each system.
It is expected that the control signals of the firmware differ since the systems are
implemented considering its connected hand. However, the communication interface
between BioPatRec and the firmware can be improved with a common protocol.
With this is mind, we created a framework which specify a standard on how to
interface a motor driven device with BioPatRec. This framework guide developers
how to define their devices in BioPatRec and guide the development of the control
firmware.

4.3.1 Defining a new device

Movements and how each motor is used in each movement need to be defined when
interfacing a new device. This is achieved using two ".def" files in BioPatRec: one
that lists the motors ("motors.def") of the device, and another that lists the move-
ments ("movements.def') that the device can perform. A third ".def" file ("sen-
sors.def") is used if the device is equipped with sensors.

The ".def" file for the motors is specified considering three parameters for each motor:
a motor index, the motor type, and the motors speed or position. Depending if the
type of the motor is specified as a DC motor or Servo motor the third parameter will
be interpreted as speed or position, respectively. It is expected that the firmware
is implemented using the same indices for each motor since these are used in the
control commands from BioPatRec. The format of this definition is shown in Fig
4.9.

Motor definition

Speed/

lidex 172 Position

Figure 4.9: Parameters and structure of a motor definition.

The movements that the device can perform is defined in a separate ".def" file ("move-
ments.def"). Each movement is defined considering five parameters: a movement
index, the name of the movement, a virtual reality (VRE) operation connected to
this movement, the direction of the VRE operation, and a list of each motor with
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its direction that is used to perform this movement. The format of this definition is
shown in Fig 4.10.

Movement definition

Index Name | VRE byte | VRE dir | [(Motor X, dir X), (Motor Y, dirY), ..]

Figure 4.10: Parameters and structure of a movement definition.

Sensors are defined in a similar way in a separate ".def" file ("sensors.def"). Each
sensor is defined considering two parameters: a sensor index, and the unit of the
sensor data. It is expected that the firmware is implemented using the same indices
for each sensor since these are used in the control commands from BioPatRec. The
format of this definition is shown in Fig 4.11.

Sensor definition

Index Unit

Figure 4.11: Parameters and structure of a sensor definition.

Fig 4.12 shows an example how to define the i-limb hand following this framework
with the movements to open and close the hand. In this pseudo code the direction
to open a motor is specified with "1’ and close is specified with '0. In the motor
definition, a DC motor is specified with 0" and a servo motor with ’1’. The third
parameter that is used for speed/position in the motor definition can range from 0
to 100. For a DC motor, this parameter is used as the percentage of the motor’s
speed, where 100 means 100% speed.

i-Limb hand definition Motors.def

Movement.def

B.0.0
1, Open, VRE byte, VRE dir, [(A1), (B1), (C,1), (D.1), E,1)] | | S 0.0
2. Close, VRE byte, VRE dir, [(A.0). (B.0). (C.0). (D.0), (E.0)] E= g= g

F150

Figure 4.12: This figure show an example how to define the i-Limb hand and the
PanTilt device following this framework.

4.3.2 Control structure and communication protocol

The features of BioPatRec is accessible to a new device which is defined according
to the definition standards of this framework. Movements are predicted from the
pattern recognition of BioPatRec. These movements are sent to a control algorithm
which controls the speed of the movements and select what sensors that should be
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red. When the motors and sensors are selected, according to the predicted move-
ments, messages are sent to the control firmware using the serial communication;
one message for each motor or sensor. This data flow is shown in Fig 4.13.

Control messages

Prediction » Movements > Con.trol —>
algorithm

Motor

Serial
communication

A

\ 4

Control Firmware

Figure 4.13: This figure shows the data flow of the framework.

There are two different types of messages: one for motor control, and another for
sensor reading. The motor control message is five bytes long where each byte is one
parameter. The firmware is expected to acknowledge with the received motor index
when this message is received. Fig 4.14 shows the structure of this motor control
message and its response.

Motor control message

Motor message lelE7 Motor Direction| Speed/Position
type index

Response message

Motor index

Figure 4.14: Parameters and structure of the motor message and the corresponding
response message.

The sensor control message is two bytes long: the first byte is the message type,
and the second is the sensor index. The firmware is expected to reply by sending
the received sensor index and the current value of that sensor. Fig 4.15 shows the
structure of this sensor message and the expected response.
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Sensor control message

Sensor message | Sensor index

Response message

Sensor index | Value

Figure 4.15: Parameters and structure of the sensor message and the corresponding
response message.
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Results

All the goals, presented in section 1.2, for each of the two systems are achieved.
Three parameters were considered when evaluating each system: execution time,
power consumption, and functionality. This chapter present these parameters of
each of the two systems.

5.1 The system for the MyoHand VariPlus Speed
and the SensorHand Speed

The control interface for the MyoHand VariPlus Speed and the SensorHand Speed
achieve real-time control of the connected hand using either BioPatRec or a test
GUI. The system is implemented to control the hand using 100 different speeds to
open or close the hand. The feedback signal, that is intended to be connected to
the user, can be generated at 90 different frequencies up to 10Hz. As described in
section 3.3, these hands only feature one DoF. Therefore, simultaneous movements
cannot be evaluated.

The execution time from sending a control command to receiving the response was
measured from 10 samples resulting in a mean value of 6.40ms. Changing the speed
and duration parameters had no effect on this execution time.

The method described in section 2.6.4, was used to measure the power consumption
of the control unit and its connected hand. Two states of the system was tested: idle
and operating. The current drawn by the system in the idle state was measured to
51mA. The current drawn was measured to approximately 400mA when operating
the hand by closing or opening it. A 7.4V 2200mAh battery was used as the power
source. This results in the system consuming 0.38W and 2.96W in the two states
respectively. Table 5.1 shows these results.

System latency 6.40ms
Power consumption: idle state 0.38W
Power consumption: operating state | 2.96W

Table 5.1: This table shows the results of the interface system for the Ottobock
hands.
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5.2 The i-limb system

The refined control interface for the i-limb hand achieve the same functionality as
the original setup. Real-time control of the connected hand is done by either using
BioPatRec or the test GUIs. Each motor is controlled one at a time when using
the test GUIs. Simultaneous movements of the hand is handled by the control algo-
rithms within BioPatRec. As described in section 4.3, these algorithms control each
motor according the predicted movements. Each PWM signal that is connected to
the DC and Servo motors are implemented to be generated with 100 different duty
cycles. As described in section 4.2, the duty cycle of the signal set the speed or
position a motor. This result in 100 different speeds for the DC motors and 100
different positions for the servo motors.

The same method, as in the system for the Ottobock hands, was used to measure
execution time. From 10 samples a mean value of 19.87ms was measured. Changing
the speed and duration parameters had no effect on this execution time.

The same method, as in the system for the Ottobock hands, was used to measure
power consumption of the control unit and its connected hand. 37mA was measured
as the drawn current when the system was in the idle state. Approximately 200mA
was measured when operating one of the motors by closing or opening one finger.
An external power supply providing the system 5V was used as the power source.
This results in the system consuming 0.19W and 1W in the two states respectively.
Table 5.2 shows these results.

System latency 19.87ms
Power consumption: idle state 0.19W
Power consumption: operating state 1W

Table 5.2: This table shows the results of the interface system for the i-limb hand.
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Discussion

In this chapter, improvements, trade-offs, and the results of the two systems will
be discussed and evaluated with the previous sections as reference. In addition, the
proposed framework and its importance for future work is also evaluated.

6.1 System latency and Power consumption of the
MyoHand VariPlus Speed and the SensorHand
Speed

The priority when we implemented both control system was to achieve the intended
functionality using a digital control platform. Although we manage to achieve this
functionality we did not optimize for power efficiency. There are several parameters
that affect both power consumption and performance of the systems. The question
is: where it is beneficial to increase performance and what impact on the power
consumption would the change have? For instance, the clock frequency of the TIVA
LaunchPad was reduced from the maximum value of 80MHz, which is the standard
configuration, to 1MHz. This was done to simplify calculations of the other mod-
ules and be able to use functions that may give strange results at high frequencies.
This parameter may attract to gain more performance. However, is the performance
of calculations on the TIVA LaunchPad platform the bottleneck of the system? I
would say probably not; since only a handful of arithmetic operations are needed to
translate the received control command to change the control signal of each motor.
It is more likely that the communication interface and prediction of the movements
dominate the performance of the system.

Although the presented system latency of 6.40ms and 19.87ms for the system of the
Ottobock hands and the system for the i-limb hand respectively seem promising;
there are other parts that need to be considered in an actual field test. Pattern
recognition and other more advanced components are expected to affect the perfor-
mance.

The measured idle drawn current of each system is acceptable. Robotic hand pros-
theses are usually driven by a battery with a capacity of 2200mAh. Considering
such battery as the power source for theses systems it would result in an estimated
idle life time of 30h and 40h for the system of the Ottobock hands and the system
for the i-limb hand respectively.
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The PCB including the motor drivers for the i-limb system was first design to use
the 5V power source directly from the TIVA LaunchPad. This source turned out
not to be able to provide enough current to certain motors of the hand. Therefore,
the PCB was redesigned to use an external source instead. As mentioned in the
description of the design and implementation, the motors of the i-limb hand require
two different voltage levels, 4.5V and 3V, where two regulators are used to regulate
the input voltage to these levels. The latest design still use two regulators and
require the input voltage to be greater or equal to the highest output voltage, which
is 4.5V in this design. This can be further improved; one of the regulators can
be removed, since the PCB is not limited of the voltage levels from the connected
TIVA LaunchPad anymore. This improvement would reduce approximately % of
the components of the PCB which would result in less power consumption. However,
this improvement was discovered late in the project and is therefore not implemented
because of limited time.

6.2 The proposed standardised interfacing frame-
work

After developing two control interfaces with BioPatRec we realised that a standard-
ized method would be useful. The purpose of the interface framework is to guide
developers to interface with BioPatRec and also guide the implementation of the
corresponding firmware. A new device is simply defined by following the movement,
motor and sensor structures; instead of implementing separate control functions as
a definition is made in the current version.

Separate control functions implemented in a high level language, with a tool such
as MATLAB, may simplify the control logic of the firmware. This is often the case
preferable when developing a system. However, since BioPatRec is meant to be
used for many different kind of motor devices this structure would grow more and
more complex as more devices are added to the platform. Therefore, we decided
to create this framework to standardise the interface to BioPatRec as one common
structure that only consider the motors and sensors of the connected device. All
control functionality is instead guided to be implemented in the firmware using the
data from this interface.

Another benefit of using the framework is that functionality of individual and simul-
taneous movements are ensured. The prediction mechanisms and control algorithms
of BioPatRec determine which movements to perform and is able to activate the mo-
tors of the connected device accordingly by using the motor definition of the selected
movements.
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6.3 Future development

The two prototype systems developed in this project are both implemented for test-
ing purposes to elaborate digital control of robotic hand prostheses. The first thing
to improve, if continuing with this project, would be to modify the two systems ac-
cording to the proposed framework. In the current versions, this is not implemented
because the framework was developed based on the complexity that was discovered
after designing the two control systems.

Further future development of similar systems might be interested in integrating the
control system into a single product. To achieve this, BioPatRec would need to be
portable so it can be implemented on a stand-alone device. In the current version,
BioPatRec has many configurable options which are setup using the various GUIs. I
think it would be useful to use a similar structure to configure a hardware platform
where each function of the platform have a corresponding pre-defined hardware
block. The configuration of the platform can then be programmed to some external
hardware, for example an FPGA, using these blocks. In addition, the firmware for
the device to be controlled would need to be implemented on the same hardware.
At last, this hardware consisting of the BioPatRec configuration and the control
firmware would need to be integrated with the device.
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Conclusion

A hand prosthesis is an artificial device that is used as an replacement for a lost
hand. A highly desirable feature for the control of artificial hand limbs is prediction
of simultaneous motions. State-of-the-art control of such devices is done by using
a simple threshold technique; one output from one input. Two input signals are
necessary to control the two directions of one DoF, and to switch between different
predefined functions either co-contraction or a physical switch is used. However,
this serial operation is unnatural and slow.

The purpose of this project was to develop advanced control systems for high-end
prosthetic devices with the pattern recognition platform BioPatRec to allow more
sophisticated control schemes. Electronics, PCB design and communication proto-
cols are areas involved when developing these systems.

Two systems considering three different hands was developed. One system for the
MyoHand VariPlus Speed [10] or the SensorHand Speed [11] from Ottobock, and
another for the i-limb [4] hand from Touch Bionics. Both systems achieve accept-
able performance with a system latency of 6.40ms for the system considering the
Ottobock hands and 19.87ms for the system considering the i-limb hand. A 7.4V
2200mAh battery is commonly used as the power source for robotic hand prostheses.
If a source with this capacity is used for each of these control systems; they are both
estimated to be operational longer than a day.

Creating an interface between BioPatRec and a control unit require specific functions
on both sides to achieve a control system. After developing the two systems in this
project we discovered that interfacing more devices became more and more complex
on the software side. To address this, a proposed framework was developed to
specify a standard on how to interface a motor driven device with BioPatRec. This
framework guide developers how to define their devices in BioPatRec and guide the
development of the control firmware.
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