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Energy consumption prediction for heavy electric vehicles based on the operating
cycle format
MARCUS BERG & CONNY TA
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
The objective of this report is to study the energy consumption of a heavy electric
vehicle while it is on the road driving along an unknown route. The results from
this project deliver a method and a framework that can be used to estimate certain
environmental factors’ energy consumption affect on a vehicle. The focus lies on
investigating factors that can be hard to predict, or which there is no information
about before embarking on a route. The energy consumption from all factors’ is
summed up to give a final estimation. A connection between the different factors
characteristics and the energy consumption is established by running simulated sce-
narios generated by stochastic models of the investigated factors.

The findings of the project are the relations between characteristics of the factors to
its energy consumption. When the variance of the topography increases, an increase
in the energy consumption can be observed as well. This observation demonstrates
the relation between the characteristics with their corresponding influence on energy
consumption. Similar conclusions can also be observed for the two other investigated
parameters, curvature and speed bumps. The results are based on the assumption
that summing the energy contributions from each factors model gives a total energy
consumption for the vehicle along a route. The results of the project show that it is
possible to estimate the energy consumption for other parameters with similar phys-
ical properties as well. This is especially important for parameters which are hard
to calculate before starting a route. The findings consists of a series of constructed
graphs that represents the simulations. These graphs contain information to map a
set of an interval of investigated characteristics such as the variance values, mean
curvature and speed bumps intensity to an energy consumption estimate.

Keywords: energy consumption, operating cycle, heavy electric vehicle, prediction,
stochastic model, unknown route.
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Nomenclature

SYMBOL EXPLANATION

E Energy consumption
Etot Total energy consumption
E0 Base energy consumption
EZ Topography energy consumption
EC Curvature energy consumption
EB Speed bump energy consumption
λ Intensity of an event

Topography
L Total length (mission distance)
Ls Segment length
y, Y Road grade
a Topography autoregression coefficient
e Noise term
N Normal distribution
σe Amplitude error
σY Standard deviation
σ2
Y Variance
z Altitude

Curvature
x,X Location
Exp Exponential distribution
Lc Curve length
C Curvature
λC Curve intensity
R′ Shifted road radius
rturn Minimum road radius
σC Curve radius variance
µC Log-normal mean of (shifted) radius
λC Curve intensity
µL Expectation value of curve length
σL Standard deviation of curve length
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Speed bump
Sh Speed bump height
Sl Speed bump length
Sα Speed bump angle
vmin Minimum velocity
vmax Maximum velocity
v Vehicle speed
λb Speed bump intensity

Characteristics
estimation
M, X̄ Mean value
α Forgetting factor
λb Speed bump intensity
T Storing term
W Weight factor
S2 Variance
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1
Introduction

Research within the area of range estimation for road vehicles is becoming pro-
gressively important with the shift in the automotive industry towards electrically-
propelled vehicles. For electric vehicles, the range concern is of major importance
due to the limitations derived from the energy capacity of the batteries.

This thesis aims to use and expand upon the already existing operating cycle (OC)
format developed by the COVER project to better understand the effect environ-
mental factors have on the energy consumption of a vehicle [3]. To do so, the project
aims to create a framework for finding the correlation between the collected incom-
ing data for different environmental factors and the required energy consumption
of the vehicle while on the road. This will allow a prediction of the total energy
consumption.

1.1 Background
Electric vehicles (EVs) take time to charge and combined with the lack of good
infrastructure for charging stations [4] this may cause the careful driver to account
for greater planning of the route than what would be necessary for an internal com-
bustion engine (ICE) propelled vehicle. If better range estimations could be made
for routes where the environmental conditions ahead are unknown, the efficiency of
vehicle operations could potentially increase. Estimating the energy consumption
for the unknown routes with unknown environmental conditions ahead is what this
project tries to accomplish.

There are some advantages for EVs over traditional ICE vehicles, two examples
being, good energy efficiency and reduced noise pollution [5]. However, the possible
driving range of EVs is not yet close to that of ICE vehicles even though significant
advances in battery technology have been made. These include a higher energy
capacity and lower production costs [4]. The range capacity of EVs varies depend-
ing on the battery but some sources found that it may be as low as 22% of the
range of what the conventional ICE vehicle would be able to reach [5]. Because of
the uncertainty that comes with limited range, researchers have observed what is
called "range anxiety" associated with EVs. It has been observed that most drivers
currently reserve at least 30% of the total possible remaining range due to the un-
certainty of trusting the range estimation for the EV to be accurate [5]. This is not
ideal from an efficiency standpoint. By introducing more accurate predictions for

1



1. Introduction

the range estimation, the driver of the vehicle could feel more confident that it can
be used closer to its actual limit without worrying about running out of battery.

In this project, the range estimation is defined as the prediction of the range in
km that can be achieved based on the current remaining charge of the EVs bat-
tery. Having a more accurate prediction should, as stated earlier, help with route
planning and decision making to more efficiently plan transport missions. For this
project, the focus will be on heavy electric vehicles (HEVs) or more specifically elec-
tric trucks. To estimate the range of the HEVs the total energy consumption used
throughout a route has to be estimated first.

The traditional way of estimating the energy consumption for a vehicle is by using a
conventional driving cycle. A conventional driving cycle is generated by placing and
driving a vehicle on rolls (chassis dynamometer) [6]. The results are then monitored
for different speeds over some time and the energy consumption for a certain speed
can then be extracted.

For heavy-duty trucks the approach is somewhat different, where instead of the
vehicle being placed on a chassis dynamometer, it is tested by using the numerical
simulation software VECTO. The software contains properties such as the road gra-
dient, auxiliary power requests and also a set target speed. It is a more complex
approach where five different driving cycles are used, each for a different specific
type of environmental condition such as; long haul, urban, delivery, construction,
etc. This approach is instead referred to as a target speed cycle [1].

1.2 Clarification of terms and concepts
Before delving into the theory there are a couple of key expressions and concepts
which needs to be clarified.

Environmental factors that affect the vehicle such as the topography, curvature
or speed bumps, are simply referred to as parameters. These parameters are ex-
tensively covered in the report by Pettersson [1]. These parameters are subdivided
within the categories road, weather, traffic and mission, as can be seen in figure
1.1, together they make up the driving cycle format called the operating cycle (OC)
format. Both the conventional driving cycle format and the target speed cycle for-
mat lacks many of the parameters included within the OC format. The OC format
allows for a better representation of the real-world behavior and was proposed by
the results from the COVER project [3].

Every parameter can be described by several characteristics. To give some ex-
amples. For topography, it could be the variance of the slope along a route. For
speed bumps, it could be the intensity of the speed bump frequency. Both the vari-
ance and intensity are in these cases examples of what parameter characteristics are.

2



1. Introduction

The operating cycle used in this project encompasses a set distance of 152573 m.
When driving the entire distance, this is referred to as driving a "full operating cy-
cle". This distance was set because of it being a case used in [2]. The OC is used in
VehProp, which is an environment including a vehicle model and how it is exposed
to its surroundings developed by the COVER group. The remaining parameters
apart from the ones of interest, such as those included in the weather and traffic
categories of the OC format, do not matter for the results of this project since they
are set to have no influence. Another key concept is how the energy consumption
for the vehicle is defined in this project. It is defined as the energy demand from the
HEVs battery. The word energy consumption is related to the total energy drained,
subtracted with the regenerated energy, throughout the whole OC.

Another important concept is that of transport operations. In the report "Oper-
ating cycle descriptions for road vehicles" Pettersson describes transport operations
as "An enumerable number of tasks along a specific route", meaning it describes the
tasks the vehicle performs along a route [1]. Pettersson goes on to specify that the
transport operation tasks can be further broken down into certain categories such
as the traffic, weather or road categories.[1].

Figure 1.1: Graphically view of the operating cycle format [1]

3



1. Introduction

The four categories mentioned also have further subcategories where for example,
the road can be divided into further parameters, as seen in figure 1.2.

Figure 1.2: Example of the road category division [1]

This approach tries to step away from the target speed cycles and instead cre-
ate statistical models generating a complete simulation environment. The approach
strives to make a more accurate simulation of the real-world behaviour of the vehicle
performance.

1.2.1 Previous work within range estimation
The literature regarding range estimation for EVs is quite extensive but most of it
does not include one or more significant factors that are impacting the range. The
factors can for example be auxiliaries power requests, weather, traffic or road condi-
tions [4]. Below, a summary is given of the relevant literature found within the area
of range estimation when conducting a literature search at the start of the project.

In the report "A Data-Driven Method for Energy Consumption Prediction and
Energy-Efficient Routing of Electric Vehicles in Real-World Conditions" [7], the goal
is to reduce range anxiety by presenting an energy consumption estimation method
for EVs. The report also uses the idea of looking at real-time environmental param-
eters affecting the vehicle, such as weather and road properties. The authors then
combine this with collected data and connect it for several road segments, based on
the similarity between the incoming and the already collected data. To establish
an energy consumption estimate for each of the road segments, a linear regression
method is used. The linear regression model is given data from a neural network
that estimates the "unknown microscopic driving parameters over a segment before
departure, given the road segment characteristics and weather conditions". The re-
sults from the report state that it predicts the true energy consumption with a mean
absolute error of 12-14%.

However, this approach assumes that a road network is mapped before departure to
train the neural network. This is done to find the most efficient route.

4



1. Introduction

Another approach is proposed in the report "A multi-mode electric vehicle range
estimator based on driving pattern recognition" [8]. To predict the speed or driving
profile of the vehicle, the suggested approach is to beforehand calculate the energy
consumption for different driving features or patterns and thereafter categorise them
into different so-called clusters. The vehicle will in real-time use the data measured
throughout the trip and categorise it into one of these clusters to predict the energy
consumption in the following short time horizon. The proposed energy consumption
estimation gave a 9% average error when validated against real data. The approach
of the report allows the method to be implemented in a time-efficient manner but
the drawbacks are that it does not include weather, auxiliaries power requests, road
or traffic individually. The parameters are instead baked into the measurements and
models.

Yet another approach was proposed in the report "Accurate Remaining Range Esti-
mation for Electric Vehicles" [5]. The approach focuses on the vehicles model which
includes external loads, a battery model and regenerative brakes. The drawback
of the report is that it neglects the aerodynamics due to the low velocity used in
the experiments and also ignores the traffic. These two factors have a huge impact
on a more realistic scenario. The authors claim an accuracy error of the energy
consumption to be around 2.5% and pointed out there were two factors that mainly
contributed to that. These were the copper loss in the traction motor and the
non-linearity of the power consumption that did not get implemented in the model.
The result is good but lacks many parameters which have a high impact on energy
consumption.

1.3 Aim
The aim of the project is to create a framework to map the characteristics of param-
eters to the energy consumption for heavy electric vehicles. The goal is to predict
the total energy consumption with the use of mapping. This will be done while the
vehicle is on the road for an unknown route, meaning only measured data collected
during the trip is used to predict the total energy consumption. The framework will
use the operating cycle format proposed by the COVER/OCEAN project which is
based on a statistical approach. This format is explained in further detail in the
coming chapters.
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1. Introduction

1.4 Limitations
• Construction of new models for different parameters is not required since many

of the most important models already exist in VehProp.
• The prediction for the energy consumption will only focus on an unknown

route.
• The project will only focus on heavy electric vehicles, HEV, but road prop-

erties are still somewhat independent of the vehicles. This can be used for
other vehicles as well even though parameters such as the slope has a much
greater impact on heavy vehicles than smaller vehicles such as a car due to
the difference in weight/output ratio.

• Implementation of the approach will be done in the MATLAB environment.
• Tests on the approach will only be focusing on data-based stochastic models,

sOC. Testing out in the field is outside of the scope of the project.
• The driver naturally has a huge influence on energy consumption. In this

project, the behavior of the driver has not been considered and instead a
standard driver model is used.

1.4.1 Simplification
To produce the desired results of the project in a time feasible manner, some simpli-
fications have been made for the extensiveness and representation of the parameter
models used. As discussed previously, reaching the goal of accurately predicting
the vehicles energy consumption requires as many parameters as possible that affect
the vehicle to be included, such as; wind, road topography, road curvature, speed
bumps, stop signs etc. To narrow the project’s scope a decision was made to fo-
cus on certain key parameters which have a greater impact on energy consumption
and that was best in line with the proposed ideas for how to tackle the problem
differently. These parameters ended up being the topography, curvature and speed
bumps.

In theory this means that parameter models which might have a great impact on
the total energy consumption but are generally hard to model will not be included.
Such as, the drivers driving pattern, road construction, special events obstructing
traffic or battery ageing just to name a few.

1.4.2 Verification
Many literature sources use real vehicles to verify their results, which is a good
approach but it is a rather time-consuming approach and outside the scope of this
project. However, verification with simulation data has the benefit to test thousands
of scenarios straightforwardly. The drawback is that there will be some errors in-
herited from the simulations. The simulation will naturally not replicate real-world
values as good as the real vehicle already does, therefore, it becomes a trade-off
question in terms of accuracy versus time efficiency.

6



1. Introduction

In this project, there will only be verification on the powertrain and not on the
approach itself due to the time constraint. The effects will be examined when the
mass of the HEV is doubled. Although, there will be a suggestion on how to verify
the results of the mapping system between the parameters’ energy consumption and
the parameters’ characteristics.

1.5 Specification of the issue under investigation
• How can the models in the OC format be used to make an energy consumption

prediction for heavy electric vehicles in cases of unknown routes?

• How do different environmental factors affect the energy consumption of the
vehicle?

1.6 Ethical and sustainability aspects
Using fossil fuels releases lots of greenhouse gases and other emissions and con-
tributes to global warming. The road transportation sector contributes a big chunk
of the total emissions in the world. For example, Europe releases around 10% of the
total global emissions where about 25% of that comes from the transport sector [1].
Using electric vehicles could be a replacement for conventional gasoline vehicles as
electric vehicles have shown promising results in terms of growth in the sector [9].
This is however just a replacement and does not solve the problem entirely which
would be the best case, but is difficult in our fossil fuel reliant society. One of the UN
goals for sustainable development is to use more clean energy, and if heavy electric
vehicles become more popular and reliant in terms of range predictions, then the
goal is being worked towards. Also, as noted earlier, a more accurate way to predict
the range for heavy electric vehicles would lead to fewer charging sessions therefore
also benefiting the environment.

There is also the aspect of range anxiety which is discussed in several relevant
reports about range estimation [4], [5]. The uncertainty of trusting the accuracy of
the estimation of the vehicle combined with the limited infrastructure for charging
can cause range anxiety for EV drivers. This can hopefully be relieved by a more
accurate prediction of the range.

1.7 Thesis outline
Chapter 2 describes the operating cycle format and how an energy consumption
prediction is made when the history of the road is not known. In chapter 3, selected
environmental factors are described and also how to estimate the characteristics of
the factors. How the electric powertrain was modified and how it works is explained
in chapter 4. The results, simulations and verification are examined in chapter 5.

7



1. Introduction

In chapter 6 a discussion was had and conclusions were drawn from the results.
Chapter 6 also give suggestions on what the future work should focus on based on
the results from this project.

8



2
Operating Cycle

This chapter will go further into what the OC format is, its structure and how it
is used. The chapter will also discuss the theory behind reaching the goal of this
project. It will therefore discuss how the connection between some selected envi-
ronmental factors affecting the vehicle and the energy consumption associated with
them was established.

2.1 Operating cycle format
As previously discussed, the purpose of the OC format is to take into account the
surroundings of the vehicle to provide an accurate estimation of its behaviour within
it. All definitions and concepts discussed within this section comes from Pettersson’s
report [1], and should therefore be referred to for a deeper insight.

The format is separated into high-, mid-and low-level descriptions which are called
the classification, variation and simulation descriptions. The distinction between
them is the level of detail they describe for the transport operation and can be used
for different purposes.

A transport operation is by Pettersson defined as "an enumerable number of tasks
along a specific route". The transport operation can be broken down into the four
categories discussed earlier, namely the road, weather, traffic and the driver actions.
If data can be collected for all of the transport operations according to the defini-
tion above, one would then be able to construct what Pettersson calls a "transport
application", which describes a vehicle use case.

9



2. Operating Cycle

2.1.1 Operating cycle classification
The classification description. A high-level description of the vehicle surround-
ings is used to determine the similarities and differences of the transport applications
rather than describing them in detail. Another reason for the high-level description
is to give information about what parts for the vehicle best suit the transportation
applications it is used for.

The variation description. To only have information about the high-level de-
scription is not enough to determine the whole transport application, since it simply
does not include any variations. The variations will give the characteristic of the
operating cycle which in turn gives more details to label it under one of the high-
level descriptions.

To describe an OC format, there are a lot of parameters needed. Three of these
that will be covered in this project are the topography, curvature and speed bumps.
The parameters need to be defined in a statistical way to fit the variation descrip-
tion. Parameters are arranged in a hierarchical structure and are called stochastic
operating cycles, sOCs.

The simulation description. Going even deeper into detail, the next descrip-
tion is a low-level description. At this level, the OC should reflect the real world in
form of data for simulations.

Equivalent to the sOC, the simulation description will include data that the sOC
generates. This format is called a deterministic operating cycle, dOC, format.

2.1.2 Stochastic operating cycle (sOC)
The sOC format encompasses as the name suggests stochastic models for the cho-
sen parameters where dOCs are generated from. The models for the investigated
parameters are given in detail in chapter 3. The parameter models differ in type
depending on the parameter. A summary of the properties for the road can be found
in figure 2.1.

Figure 2.1: Overview of the parameter models for the road in the sOC format [1]
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2.1.3 Deterministic operating cycle (dOC)
The dOC format contains the information finally used as the input for the powertrain
model described in chapter 4. This input is represented as a data set where the first
data set is the longitudinal position and the following data set varies depending
on what parameter is being investigated. For example, the topography has its
altitude as the following data set. The structure of the dOC format for topography
is illustrated in figure 2.2.

Figure 2.2: Overview of the dOC format structure in the Matlab environment and
parameters of the road category.
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2.1.4 Operating cycle connection
For each parameter, there are one or multiple characteristics of the parameter defin-
ing how the data set will be generated. Choosing values in an interval for each one
of the characteristics gives multiple sOCs. Each sOC can in turn generate a bunch
of random dOCs, which contains a data set of what the parameter looks like, such
as altitude for topography. The dOCs varies depending on what values have been
chosen for the characteristics of the parameter. See figure 2.3 for an illustration of
such a connection.

Figure 2.3: By choosing parameter characteristics values in an interval, each char-
acteristic gives multiple sOCs which in turn can be used to generate a bunch of
random dOCs.

2.2 Energy consumption estimation for the un-
known route

For the vehicle travelling along the unknown route, future predictions will be made
based on data measured actively during the mission. This could in practice be that
while the HEV is travelling on the road, a prediction of the total energy consumption
will be made. There is also a case where the route is known, which instead relies
on historical and available data throughout a mission to determine the total energy
consumption. This is what the so-called offline case is about, which is what the
COVER project has focused on previously. For the online case, it is not however
strict that only predictions of the parameter characteristics should be made at the
current moment. For this case, some historical data can be used as an estimation.
This means that the online case could include both known and unknown routes
which could provide a more accurate solution. To start off, the focus will only be on
the approach for estimating the energy consumption for the case of unknown route.
This will include where the approach came from, how it works and how it is created.
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2.2.1 Inspiration
In the report [8], the authors identified the different driving patterns and categorised
them into different data clusters, this was described in section 1.2.1 but their method
of how it was done will be described even deeper here. Each of the clusters repre-
sents a unique set of characteristics. This was done preemptively and in a real-world
setting with real vehicles. The driving patterns were based on several set thresh-
olds, for example, if the velocity for a certain segment of the road reached above or
below the set threshold then the driving pattern for that segment was labelled as
fast, slow, hilly, flat or other labels. This way, the label could then at a later point
for a "live-case" scenario be mapped to a particular cluster based on the observed
characteristics. This cluster can then be mapped into the corresponding energy con-
sumption prediction.

Instead of using raw data and checking if it reaches above or below certain thresholds
and sorting into different clusters, this project aims to take a somewhat different
approach. The approach is to estimate the characteristics of the data and then map
them to pre-calculated energy consumption. The variance of altitude, as mentioned
earlier, is one example of such a characteristic for the topography. The benefit of
this is that it gives more general information combined with a better overview of
the whole data set.

13



2. Operating Cycle

2.2.2 Creating the mapping system
A mapping system needs to be created to map the parameter characteristics to
pre-calculated energy consumption estimates. This is done by, as briefly mentioned
earlier, selecting some values in an interval for each parameter characteristic and
then generating a bunch of dOCs, see figure 2.4. When multiple characteristics of
one parameter are being used, the mapping will be a multi-dimensional graph. For
each dOC, energy consumption can be extracted. For each bunch of the dOCs, a
mean value is then calculated to represent the general energy consumption for the
specific value of the parameter characteristic. An overview of how it would work if
just one characteristic were considered is illustrated in figure 2.4.

Figure 2.4: Choosing values in a interval for one parameter characteristic gives
multiple sOCs which in turn can be used to generate a bunch of random dOCs. The
mapping system can then be created with the mean values for each dOC bunch and
the values of the parameter characteristic

2.2.3 Computational effort of simulating Operating Cycles
The number of dOCs generated for each parameter is chosen to be 100 since this
number of dOCs gives a sufficient linear relation between the parameter character-
istics and its energy consumption. Using instead a higher number, such as 1000
dOCs, will increase the computational effort exponentially. Based on the prelimi-
nary trials, the higher number of dOCs seems to give similar results as 100 dOCs.
The decision was therefore made that 100 dOCs are sufficient enough for achieving
the desired outcome.
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2.2.4 Application to the live situation
What would the results of the project finally lead to? It is assumed that there is
already a way to measure the data needed for the parameters when travelling the
road. The next step will be to estimate the parameter characteristics and then
mapping those to the correlated energy consumption that has been pre-calculated,
see figure 2.5 for the method. All the different parameters of energy consumption
will then be summed up. Each time new data comes in, a new estimation will be
done for the parameter characteristics and a new energy consumption estimate for
the parameters will be summed up.

Figure 2.5: At each new data point measured, a new value for a parameter charac-
teristic is estimated based on the accumulated data and the old values. The energy
consumption is then found in the pre-calculated mapping system.
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Before implementing the application described above, simulated data rather than
real data will be used as the first step to try the method, see figure 2.6. It is
easier to begin with the simulated data since it is simplified and accessible without
a measurement unit system being implemented.

Figure 2.6: Similar to the live situation but uses simulated data. At each incoming
data point, a new variance is estimated based on the accumulated data and the old
variances. The energy consumption is found in the pre-calculated mapping system.
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3
Environment models and

estimation

In this chapter, the parameter models will be described thoroughly to understand
how to create new dOCs. It will also outline how the total energy consumption is
calculated and give an example of how to estimate the variance.

3.1 Investigated parameter models
Three parameters were decided upon since they have a major impact on the energy
consumption for the vehicle, these were the topography, curvature and speed bumps.
All parameters discussed within this section comes from Pettersson’s report [10].

There are also other parameters for the road, weather and traffic category which
have a significant impact on vehicles energy consumption. Including more param-
eters would naturally increase the quality of the estimation but the computational
power required would also drastically increase as stated previously. Therefore, start-
ing with a few parameters to try the approach was the first step.

3.1.1 Topography
The topography is described as an altitude for a given position, or as the road grade,
which is the percentage change between two altitude values. The small segments
between each altitude value, or the sampling frequency, is defined as Ls which was
set lower than the total length of the road. To be able to generate the topography,
road slope with an autoregressive model was used. Where the slope Yk ∈ R is
a random variable for each part, k [10]. The autoregressive model then looks as
follows:

Yk = aYk−1 + ek, ek ∼ N (0, σ2
e), (3.1)

where the parameter σe is the amplitude error and a is the autoregression coefficient.

The variance of the topography amplitude was derived from (3.1):

σ2
Y = σ2

e

1− a2 (3.2)

σY is the standard deviation of the road slope and σ2
Y is the variance of it. The

greater it is set, the more frequent a steep road slope showed up in the road, which in
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turn means a more hilly profile for the road. Converting the road slope to altitude
(zk) was necessary due to the topography in the dOC format being described as
altitude.

zk+1 = zk + yk
100Ls (3.3)

The altitude is a graph composed of straight segments of lines and is called a piece-
wise linear function. Due to the piecewise constant function Yk, the results were
mirrored to get an even comparison.

One way to choose the standard deviation, σY , for the topography was to follow
the global transport application system (GTA) constructed by Volvo Trucks. The
system is used in the COVER project and was created to find the most optimal
specification of the vehicle for the customer. σY was divided in flat, predominantly
flat, hilly and very hilly, the values are shown in 3.4. [1]

σY < 1.29 Flat
1.29 ≤ σY < 2.58 Predominantly flat
2.58 ≤ σY < 3.87 Hilly
3.87 ≤ σY Very hilly

(3.4)

The chosen σY ’s were within these intervals.

3.1.2 Curvature
Curvature is defined as the shape of a road on the horizontal plane. Each curve can
be seen as an isolated event, as it was done in [10]. The parameters to describe the
curves were the location, curvature and curve segment length with the notations X,
C and Lc respectively. Modelling each of them with a statistical approach gave the
curvature characteristics of the road.

The model for the location of the curves is given by a Poisson process. Mean-
ing that when a curve occurs, the probability of when the next curve appears is not
changed.

Xk+1 −Xk ∼ Exp(λC), (3.5)

Where λC is the intensity of how often the curves occur. The radius of a curve was
modelled as follows,

R′ = 1
C
− rturn, lnR′ ∼ N (µC , σC), (3.6)
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Where R’ is the shifted radius. The minimum road radius rturn was set to 12m,
for which real roads are designed. The shifted radius was modelled as a log-normal
distribution with µC as the mean and σC as the deviation. The length of the curve
was also modelled in the same way but with a different mean, µL, and deviation,
σL.

lnLc ∼ N (µl, σL), (3.7)
From these statistical models, a great number of dOCs with curvature could be cre-
ated and tested in a simulation environment, the powertrain represented in chapter
4. Limiting the scope, the studied curvature parameter characteristics were only µC
and σC , while the other characteristics were held constant. This way the estimated
energy consumption for the curvature could be mapped with the variances and the
mean values in a three dimensional way.

The GTA system in [1] did not included any values for the curvature, hence why
the variances and the mean values were chosen as used in [10]. Here it was divided
in 9 cases as can be seen in table 3.1.

Table 3.1: Table with value for all characteristics describing curvature

Case 1 2 3 4 5 6 7 8 9
σC 0.82 0.90 0.98 1.02 1.10 1.18 1.22 1.30 1.38
µC 0.50 1.50 2.50 3.10 3.75 4.40 4.60 5.25 5.90
λC 3 3 3 3 3 3 3 3 3
µL 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2
σL 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

To limit the scope of the project two of the five parameter characteristics were chosen
as mentioned previously. The first is the curve radius log-mean, µC , which modifies
how much the road bends. The second is the variance of the curve radius, σC .

3.1.3 Speed bumps
Constructing the speed bumps parameter model consisted of modelling the mean
number of speed bump occurrences happening within a certain distance. The inten-
sity of speed bump occurrences was set as an input to generating the dOCs. The
intensity, λb, is Poisson distributed and gives the position of when the occurrences
happen.

Xk+1 −XK v Exp(λb) (3.8)
The event of a speed bump leads to a reduced velocity of the vehicle. The speed re-
duction depends on the height (Sh), length (Sl) and angle (Sα) of the speed bump.
For this model, the simplification of setting the height and length constant was
made. The value for the height of the speed bump was set to Sh = 0.15m and the
value for the length was set to Sl = 1m.
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For every speed bump, the minimum and maximum velocity, vmin and vmax were
randomly assigned within a closed interval. The angle Sα for every speed bump
could then be calculated based on the assumption that a higher velocity over the
speed bump should be coupled with a lower angle and vice versa.

Sα = (vmax + vmin)− v (3.9)

The intensity values (λb) were uniformly distributed, as can be seen in Table 3.2.
The interval limits were chosen like that of the curvature.

Table 3.2: Speed bump parameter characteristics settings describing speed bumps
for 9 different intensity values.

Case 1 2 3 4 5 6 7 8 9
λb 0.10 0.34 0.58 0.81 1.05 1.29 1.53 1.76 2.00

vmin, vmax 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20

3.2 Parameter model connection
The method to combine all parameter models’ influence on the energy consumption
was done by assuming that each parameters model do not interact with each other,
that they can be regarded as independent. This means that if one parameters model
is removed or changed, the other parameters models energy consumption does not
get affected. When evaluating how much each parameter model is affecting the
energy consumption, all other parameter influences needs to be removed. To do
this the parameter models not being investigated are in the dOC format set to zero
or their default non-interference value, E.g 20°C for the temperature. Setting the
influences to zero can for example mean setting the curvature of the road to be a
straight road if only the topography is to be investigated. It can also represent flat-
tening the topography which means no hills will appear or removing all speed bumps.

A simulation case of a dOC in VehProp always runs with a road that is either
straight or curved. In other words, a simulation can not run if, for example, the
topography is the only parameter model which is active. Meaning that some base
conditions must be met. The energy consumption from the basic case is called E0, or
EC if curvature exists for the case being investigated. When the HEV is advancing
along the road, it is subjected to forces induced by aerodynamic and rolling resis-
tance. These forces increase the energy consumption and are always included in the
basic case. The other parameters models are called EZ and EB which are the energy
consumption estimations from the topography and speed bumps respectively.
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To summarize, to extract the energy contribution from only a specific parameter
model, it is necessary to remove the energy consumption estimate from the basic
case.

Equation (3.10) shows how all energy consumption are added up to the total energy
consumption, Etot.

Etot = E0 + Ez + EC + Eb (3.10)

3.3 Characteristics estimation
The parameter characteristics are not always the same and therefore estimation
of such can be different for each characteristic. For example, the topography was
chosen to have one characteristic which is the variance of the road slope while the
curvature parameter was chosen to have two characteristics and these were the mean
of the curve and the variance of it. All chosen characteristics, variance, mean value
and intensity, can be estimated with the proposed algorithm below.

Since the unknown route is considered, new data is measured at each distance trav-
elled. Meaning that the characteristics have to be estimated and updated each time
new data comes in. A forgetting factor is a good way to put less importance on
the old data when the characteristics of new incoming data has changed. This fac-
tor weighs the importance of low wrong adjustment and a fast convergence rate
[11]. The algorithm proposed in report [12] will be used to handle the requirement
of updating the characteristics estimation. The weighting terms ∑k

i=1 Wi, will be
interpreted as 1−αk+1

1−α , and the algorithm is as follows,

M1 = X1

Mk = Mk−1 + αk

(1−αk+1

1−α )
(Xk −Mk−1) ,where k = 2, ...,n

X̄ = Mn

T1 = 0

Tk = Tk−1 + αk

(1−αk+1

1−α )
(Xk −Mk−1)(Xk −Mk−1)1− αk

1− α

S2 = Tn
n−1
n

1−αk+1

1−α

(3.11)

Here, the M and X̄ are the mean value, α is the forgetting factor, S2 is the variance.
Mean value estimation is included in the algorithm and therefore intensity, which is
1
M
, is included as well.
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4
Electric Powertrain Model

In the coming sections VehProp, the OC system, variance estimation and energy
consumption estimation will be explained. For a further and deeper explanation
about VehProp and the OC system the reader is referred to report [13]. The purpose
of having a working powertrain model is to produce results through simulation. The
model is a central part to create the relation between OC parameters and energy
consumption. The accuracy of the powertrain model to simulate real HEV behaviour
is also important for the shapes of the relations between the OC parameters and the
energy consumption.

4.1 Fully electric powertrain model
The developed electric powertrain model is included in the vehicle model in Veh-
Prop. The VehProp environment was developed in MATLAB and Simulink and uses
statistical models to create scenarios of the surrounding vehicle environments, such
as road conditions, weather, and traffic, to simulate the vehicle dynamics.

The electric powertrain used in the project was based on Iuri Barros’s [2] hybrid
powertrain for long haul trucks. The hybrid powertrain has an ICE as the main
propulsion source, the model also has an electrified dolly which includes all parts of
an electric powertrain. The involved systems were the pedal, control, propulsion,
braking, transmission, vehicle chassis and battery.

Barros’s powertrain is a hybrid powertrain and it is rather straightforward to trans-
form the model into a fully electric powertrain model. This is done by removing the
ICE parts of the model and making necessary changes to upscale the electric part
to be used as the main power source. After transforming the hybrid powertrain into
an electric powertrain, it was possible to extract the energy consumption from the
battery when testing with different values on the parameter characteristics for the
parameter models.
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By reducing Barros’s hybrid powertrain [2] the electric powertrain in figure A.1 was
obtained, which is placed in the appendix chapter. The control system in the hybrid
powertrain was found to be intertwined and complicated for this project. Instead,
a new control system was developed, see figure 4.1.

Figure 4.1: The power demand is divided between the battery and disc brake.
When power demand shifts from positive to negative the battery shifts to regenerate.
If the negative power demand exceeds the regenerative brake limitation, the disc
brake supplies the extra brake power required.

The point of the control system is to divide the power demand into disc brakes,
propulsion and regenerative brakes. When the power demand is positive or zero,
such as when the system wants to drive forward, all power demand goes to the
propulsion. This can be seen in the switch lower down in the figure 4.1.

A negative power demand is obtained when the system (vehicle) is braking, this
causes the switches to go over to the brake system. The regenerative brakes have
a limitation implemented that only allows for values from zero to the largest neg-
ative power, which the battery can regenerate. If the power demand is less than
the amount of power the regenerative brakes can handle, then the braking power
will only be generated through the regenerative brakes. But if it is larger, the disc
brakes will complement it with its braking power, see figure 4.2.

24



4. Electric Powertrain Model

Figure 4.2: When the braking exceeds the regenerative capacity (set to 2 ·105W),
the disc brake complements it with its braking power

Looking at the state of charge plot, see figure 4.3, the battery level goes down over
time as expected. For some occurrences, the battery level increases slightly. This is
a sign of the regenerative brakes working as intended, recharging the battery as the
breaking action is enforced.

Figure 4.3: Battery level in the HEV decreases at every distance travelled except
when the regenerative brake is applied.
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The value at the end of the cycle is the energy consumption throughout the complete
dOC, as shown in figure 4.4.

Figure 4.4: Energy consumption changes throughout the travelled distance. The
endpoint of the line is the total energy consumption accumulated throughout the
road.

When the OC format only has a straight road and all other parameters are set
to zero, the energy consumption for a vehicular mass of 20 tons results in E0 =
6.7067 · 108J, likewise a mass of 40 tons results in E0 = 9.1 · 108J.

26



4. Electric Powertrain Model

4.2 Vehicle properties
When running the generated dOCs in the HEV powertrain model the results are
heavily dependent on what underlying properties the HEV system has. These prop-
erties are the electric motor, battery and road friction. The values are displayed in
table 4.1. Other general information about the vehicle is displayed there as well. The
modelling of the HEV is important since the results of the simulation will depend
on the model used.

Table 4.1: Vehicle properties

Heavy electric vehicle (HEV)
Vehicle properties Settings (case 1 & 2)
Nr. electric motors {2, 4}
Electric motor power max 18500 [W]
Electric motor power min -18500 [W]
Motor efficiency 90%
State of charge max 90%
State of charge min 20%
Assumed road friction 0.9 [-]
Wheel radius 0.49 [m]
Vehicle mass {20, 40} [ton]
Rolling resistance coefficient 0.0056 [-]

The model for the major energy consumers for the vehicle such as the aerodynamic
and rolling resistance can be viewed in figure 4.5.

Figure 4.5: Aerodynamic and rolling resistance model

27



4. Electric Powertrain Model

28



5
Simulation

The main topic of this chapter is to present the results and simulations. This chapter
covers the relationship between the parameter characteristics and energy consump-
tion for each parameter model and how doubling the mass of the vehicle affects this
relation. Also the results for the recursive variance estimation is displayed.

5.1 Topography
How to extract the energy consumption is shown in figure 4.4. Doing this for 100
dOCs for each chosen value for the investigated variances gave 900 data points. By
taking the mean value for each of the 100 dOCs, the result became as shown in
figure 5.1.

Figure 5.1: Result for how the variances are connected with the mean estimated
energy consumption.

Figure 5.1 shows how the energy consumption changed with values of the vari-
ances. With an increased variance, the expected energy consumption increased as
well. To use the result as a mapping, some sort of interpolation or function fitting
was required. In this project a function fitting method was used, polyfit in Matlab,
the function became, EZ = 107 · [1.4628(σ2

Y )2 + 0.0596σ2
Y − 0.2329].
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- What happens when the mass is doubled for the HEV? To demonstrate this, an
HEV with 40 tons was simulated for the same 900 dOCs as it was done for the
original 20 ton HEV, the results were then compared. The logarithmic relation
between the energy consumption and the variance resulted in figure 5.2. To give
an illustration of the difference in percentage, the right graph was plotted for each
variance. Note that the difference in energy consumption in percentage was around
150% when the mass was doubled.

Figure 5.2: The result for how the variances were connected with the estimated
energy consumption in a logarithmic scale and the percentage differences.

The same test was done in figure 5.3, but this time without the regenerative brake.
The results showed that when doubling the mass, the increase of energy consump-
tion was only around 50%. Meaning a drop of 100 percentage points of energy
consumption when the regenerative brake was removed.

Figure 5.3: The result for how the variances were connected with the estimated
energy consumption in a logarithmic scale and the percentage differences without
the regenerative brake.
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5.2 Curvature
Two parameter characteristics varied for curvature and these were the mean value
of the curvature, µC , and the variance of it, σ2

C . Similar to the previous parameter
model, there were 9 selected µC and 9 σ2

C . Simulating 100 dOCs for for each µC and
σ2
C generated a matrix of size 9× 9× 100, which resulted in 8900 dOCs.

Figure 5.4: The result for how the variances and mean values were connected with
the estimated energy consumption.

From figure 5.4 the observation can be made that µC has a larger impact on the
energy consumption than σ2

C . If σ2
C has the value of 0.82 which is the first se-

lected value of the variance, then the energy consumption increases with, EC =
108 · [0.311(µC)2− 0.534µC + 1.484]. To find the correct value a look-up table would
have been suitable.
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5.3 Speed bumps
The parameter characteristics for the speed bump that varied were the intensity and
the angle. The intensity is shown on the x-axis in figure 5.5. Again, as shown in
figure 5.5, when the intensity increased the energy consumption increased linearly.
Using the polyfit tool in Matlab gave the function, Eb = [3.0323·1010·λb−4.6253·105].

Figure 5.5: The result for how the intensities were connected with the estimated
energy consumption

Doubling the mass of the HEV, as done for the topography, was tested for the speed
bumps parameter model as well. The logarithmic plot on the left side of figure 5.6
demonstrates how the different masses relate to each other. In addition, the right
plot shows the differences in percentage. Meaning that when doubling the mass, the
energy consumption did not double but got only an increase of around 50%.

Figure 5.6: The result for how the intensities were connected with the estimated
energy consumption in logarithmic scale and the percentage differences.
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The same test was done in figure 5.7 but this time without the regenerative brake.
The result showed an increase of energy consumption of around 5% when the mass
was doubled.

Figure 5.7: The result for how the intensities were connected with the estimated
energy consumption in logarithmic scale and the percentage differences.

5.4 Variance estimation
To test the provided model for the variance estimation with a forgetting factor,
derived in (3.11), a dOC with a standard deviation (σY ) of 0.3225 was used. The
variance then becomes the square of it, σ2

Y = 0.104. As seen in figure 5.8, the
estimated variance found the real variance fast, just after 100 samples. However,
the variance does not converge fully even after 6202 samples. Note that there were
6202 samples in total for the topography.
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Figure 5.8: Behaviour of how the variance estimator performed against real vari-
ance

The mean value estimator shows similar behaviour as variance. The estimator comes
near conversion after 500 samples.

Figure 5.9: Behaviour of how the mean value estimator performed against real
mean value
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6
Discussion & conclusion

6.1 Discussion

Looking back at the research questions stated in the introduction.

• How can the models in the OC format be used to make an energy consumption
prediction for heavy electric vehicles in cases of unknown routes?

• How do different environmental factors affect the energy consumption of the
vehicle?

The process of making the energy consumption prediction as stated in the first
question is through the mapping between the characteristics of the considered pa-
rameters to the energy consumption. The mapping itself is a look-up table which
allows for a fast prediction rather than a bunch of heavy calculations which would
have been needed to be performed if the mapping was not created. The connec-
tion between parameter characteristics energy consumption is estimated based on a
large number of simulated scenarios generated by the models shown in chapter 3.
The next suggested step would be to more extensively verify how well the summed
energy consumption from all considered parameters relates to the real simulated en-
ergy consumption, this would be a way to assess the performance of the constructed
estimator.

The second question addresses the result of the project. For the topography, the
relation between the slope variance of the road and the energy consumption displays
a linear behavior. This means that as the slope variance increases more energy will
be consumed. A similar conclusion can be made for the speed bumps, the relation
between the intensity of a speed bump occurring and the energy consumption related
to that was also found to be linear. However, for the mean value of the curve, the
increase in energy consumption for curvature displayed different increasing behavior
and the value variance of the curve shows low impact on the energy consumption.
How much all the investigated parameters energy consumption should theoretically
increase is hard to know without a verification method and without inputs from the
real world to compare against, which future work could focus on. The only tests
done in the project was on the behaviour of the powertrain model which is described
in the next paragraph. The main tests were on how the mass the affected the energy
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consumption and also the effect of the regenerative brakes.

When the mass of the HEV was doubled for the topography model, the energy
consumption did not double but instead gave an increase of more than 150%. Why
it was not 100% is hard to pinpoint due to the complexity of the OC format and
VehProp. However, the HEV had a regenerative braking system that was set to a
limitation of regenerating 200kW regardless of the mass. Taking this into account,
the control system in the HEV used the disc brakes when the braking power demand
was greater than 200kW, which happens more frequently if the mass is higher. Thus
the reason for the 150% increase is likely due to more energy transferring to heat
rather than to regenerative energy. This was why another test without a regener-
ative brake was conducted. The result was just around 50% for that test, why it
dropped by 100% from 150%, was also not completely clear.

A similar test was done but this time for the speed bump model. The first test
resulted in a 50% increase in energy consumption when the mass doubled. By re-
moving the regenerative brakes, the energy consumption was only increased by 5%
when the mass doubled. Why it displays such a small increase in energy consump-
tion is still hard to determine.

The next step in finding the relations was to estimate the characteristics of the
parameters to map them to the corresponding energy consumption. For the estima-
tion of the variance and mean value, there was a suggestion on how to perform it in
(3.11), and in section 3.3 it shows promising results where the estimated variance
and mean value converged near the real value. More than this has not been done in
this project and the suggestion for future work for this area is described in section 6.3.

The project was primarily based on the research previously conducted by the COVER
project but the approach to use some sort of mapping or cluster in an online case
was originally derived from [8]. The authors used two different parameters, one
was the speed of the vehicle and the other was the power usage. The average error
energy consumption compared to the "real" energy consumption used resulted in a
10% difference. The proposed approach in this project has not yet been verified
and thus can not be compared to the previous literature. This project does however
provide meaningful results by providing a method on how to perform the relation
mapping between the characteristics of the parameters and the energy consumption.
Another benefit of the method presented is that before adding up all of the energy
consumption estimates for the individual parameters, they all have an inherent value
in that they could provide the driver with a suggestion on how to best adjust the
vehicle for different parameter characteristics for maximum energy efficiency.

- "Why were unknown routes even considered as done in the mentioned report and
this project? One could say that the route is already known before driving, espe-
cially for heavy trucks. Meaning all parameters are known with historical data."
This is not always the case, some parameter models are hard to predict throughout
the route because of the ever-changing environment and its uncertainty. Examples
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of parameters with high uncertainty are wind speed and road conditions. The aim of
this project was not to compete against what was already done but to complement
it. The results of the cases with unknown routes could complement the known route
at special events, such an example could be road works or sports events that were
not considered when the energy consumption was estimated for the known routes.
In the cases of unknown routes when such a thing happens on the road, it may in-
directly detect such a special event. A more frequent stop or slow down of the HEV
corresponds to a higher intensity which in turn could be mapped to corresponding
energy consumption. This method could be used at special events as mentioned
or as historical data for constructing the case of the known route. The suggested
method has not been done but there are possibilities to implement it in the future.

6.2 Conclusion
In summary of the result, the energy consumption increases with the characteristics
of the parameters topography, curvature and speed bumps. The last part for esti-
mating the characteristic is not done yet and future work within this area has to be
made before assessing the performance of the approach. In conclusion, although it
is easier to estimate the energy consumption in a predetermined and known route,
there are parameters that are hard to determine beforehand. This is why the project
for the unknown route proceeded. But to only use this method for the unknown
route could give unnecessary errors since more often than seldom, the route for an
HEV is pre-planned and the majority of parameters that make up the surround-
ings of the vehicle can be determined beforehand. Combining approaches for the
known and unknown routes can therefore complement each other’s drawbacks, which
creates a reliable online case approach.

6.3 Future work
There is already some future work mentioned in the discussion but this chapter will
focus completely on what future work could be done. This is especially important
since the verification process for the approach of the unknown routes remains to be
implemented.

As mentioned in the discussion, the verification of the estimation of the parameter
characteristic has not been fully implemented and there is room for improvement.
There are two main challenges that need to be overcome in order to complete the
estimation verification. The first one is to get a conversion to the real variance,
see figure 5.8, such as to get an example where the conversion is relatively good.
A suggestion is to dive deeper into the method and check if it is possible to fully
converge. The second achievement is to enable the variance estimation even if the
real variance changes, for example when the altitude goes from flat to very hilly
then the variance estimator results should reflect that changing behavior. The same
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goes for when evaluating for the estimation of the mean value.

The last step of the energy consumption prediction is the mapping which is de-
scribed in section 2.2.2. Performing the mapping and then calculating the error has
yet to be made to evaluate whether or not the approach performed well. As for now,
dOCs can be used to perform the evaluation. This simplifies the reality. Further
work should include real measured data.

There are other steps to improve the approach which is recommended to do after
finishing the above:

• Include more parameter models in weather, road and traffic if possible.
• Include more characteristics in the already used parameters. In the parameter

model curvature, only two out of five characteristics describing the curvature
were used. For the topography, the hill length, Lh was constant in this project
but is, in reality, a varying parameter that depends on the ever-changing slope
angle. This is described in [10]. For the speed bumps model, only the intensity
and angle of such an event was varied in the parameter model.

• There is also room for improvement in the powertrain model for the HEV. For
example, the battery model is based on an integral method that accumulates
errors every step. [2]. Improving the battery model would reflect the real
world better.

Lastly, for those who are interested, here are some ideas to investigate which the
authors of this report did not manage to within the scope of this project.

• Instead of using for example the slope variance of a data set to determine how
hilly the road is, could there be other ways to determine how hilly a road is?
Maybe one could look at the features of the road such as counting how often
steep slopes appear instead?

• The mass of a passenger car is often held constant throughout a trip while
a heavy vehicle changes it mass more often. How is the energy consumption
affected for such an application which could be the case for busses or delivery
trucks.

• One of the big energy consumers of a heavy vehicle is the rolling resistance.
The conditions on the ground are hard to determine which means the energy
consumption of it is hard to estimate. Are there other ways to tackle this
problem?
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Appendix 1

Figure A.1: Overview of the result when reducing Barros’s hybrid powertrain [2]
to a the electric powertrainII
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