
DF

Integrated system enables remote vehicle monitoring

Development of a scalable telematics platform for electric scooters
Bachelors’s thesis in Computer science and engineering

Eva Bergsten
Albin Brovina

Department of Computer science and engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden 2020

Bachelor’s thesis 2020

Integrated system enables remote vehicle
monitoring

Development of a scalable telematics platform for electric scooters

Eva Bergsten
Albin Brovina

DF

Department of Computer science and engineering
Chalmers University of Technology

University of Gothenburg
Göteborg, Sweden 2020

Integrated system enables remote vehicle monitoring
Development of a scalable telematics platform
Eva Bergsten, Albin Brovina

© Eva Bergsten, Albin Brovina, 2020.

Supervisor: Pedro Petersen Moura Trancoso, Niels Boardman Jonsson
Examiner: Peter Lundin, Department of computer science and engineering

Bachelor’s Thesis 2020
Department of computer science and engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Göteborg
Telephone +46 31 772 1000

Cover: A Xiaomi M365 Electric Scooter with the system mounted in a box.

Typeset in LATEX, template by David Frisk
Printed by Chalmers Reproservice
Göteborg, Sweden 2020

ii

Integrated system enables remote vehicle monitoring
Development of a scalable telematics platform for electric scooters
Eva Bergsten, Albin Brovina
Department of computer science and engineering
Chalmers University of Technology
University of Gothenburg

Abstract
In recent years it has become important to put more and more technology in vehicles
in order to satisfy the user. When introducing all this technology in the vehicles it is
important to be able to analyze the data that becomes available. In this thesis work
it is investigated if it is possible to build a reliable platform that can extract data
from multiple electric vehicles, in this case electric scooters, and send it wirelessly
to a web client using existing technology. The possibilities such a platform opens
up for and how it could be used in the future is discussed.

To make a platform functional with existing technology it was required to learn
about and integrate different tools with each other. Which solution to be used for
which part of the system and to investigate and combine them into a complete sys-
tem.

The thesis work resulted in a fully functional telematic platform that can extract,
decode, send and display data from a scooter. The platform consists of a Raspberry
Pi equipped with 4G and GPS using MQTT, Telegraf, InfluxDB and Grafana. It
is designed to be scalable for usage on multiple scooters at the same time. With
a few minor changes, the platform enables to present data from different vehicles
and not just an electric scooter, which means that this project opens up for many
possibilities when analyzing data.

Keywords: IoT, MQTT, electric scooters, decoding, wireless transmission

Integrated system enables remote vehicle monitoring
Development of a scalable telematics platform for electric scooters
Eva Bergsten, Albin Brovina
Department of computer science and engineering
Chalmers University of Technology
University of Gothenburg

Sammanfattning
På senare år har vikten av att implementera mer och mer teknik i fordon för att
göra användaren nöjd ökat. Det är även viktigt att analysera datan som blir till-
gänglig på grund av all denna teknik. I detta examensarbete undersöks det om det
är möjligt att, med existerande teknik, bygga en pålitlig platform som kan extra-
hera data ur elektriska fordon, i detta fall scootrar, och skicka datan trådlöst till en
webbklient. Det diskuteras även vilka andra möjligheter en sådan plattform öppnar
upp för samt vad den kan användas till i framtiden.

För att plattformen skulle fungera med existerande teknik var det nödvändigt att
lära sig om och integrera olika verktyg med varandra. Bestämma vilken lösning
som skulle användas till vilken del samt att undersöka och kombinera dem till ett
komplett system.

Examensarbetet resulterade i en fullt fungerande telematikplattform som kan ex-
trahera, avkoda, skicka och visa data från en scooter. Plattformen består av en
Raspberry Pi utrustad med en 4G- och GPSmodul, den använder sig av MQTT,
Telegraf, InfluxDB samt Grafana. Den är designad för att vara skalbar för att
kunna användas på flera scootrar samtidigt. Med några små ändringar kan plat-
tformn även visa data från andra fordon än scootrar vilket innebär att detta projekt
öppnar upp för många möjligheter vad gäller analys av data.

Keywords: IoT, MQTT, electriska scootrar, avkodning, trådlös överföring

Acknowledgements
This thesis project was performed at Chalmers University of Technology at the de-
partment of computer science and engineering. The practical work was made at the
company Infotiv in Göteborg.

First we want to thank our supervisor Pedro Petersen Moura Trancoso for his sup-
port throughout the project. We also want to thank Infotiv for believing in us and
letting us do our thesis work there. We give a special thanks to our supervisors at
Infotiv Niels Boardman Jonsson, Olle Norelius and Hugo Frost, for their help and
expertise. Last but not least we want to thank all the other thesis workers at Infotiv
for much needed moral support.

Personally I would like to thank my family and friends for the patience, love and
support throughout this thesis work. You truly gave me much needed strength when
things were being difficult. - Albin Brovina

I would like to thank my family and my partner Johan for standing by me and
giving me love and support when things didn’t go as planned. - Eva Bergsten

Eva Bergsten, Albin Brovina, Göteborg, June 2020

Terminology
• RPi - ’Raspberry Pi’, a small computer. The one used in this project is of

type 4B and runs the operating system Rasbian Buster February 2020.
• 4G - The fourth generation of broadband cellular network technology, i.e a

protocol for transferring data wirelessly.
• SD - ’Secure digital’, a non-volatile memory card format.
• PCB - ’Printed circuit board’
• Arduino - An electronics platform based on easy-to-use hardware and software.
• GPS - ’Global Positioning System’
• IoT - ’Internet of Things’, the concept of connecting electronic devices to the

internet.
• MQTT - ’Message Queuing Telemetry Transport’, a protocol for sending mes-

sages between devices.
• TCP - ’Transmission Control Protocol’, protocol used for most transmission

across the internet.

vi

Contents

List of Figures ix

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 1
1.3 Project questions . 1
1.4 Demarcations . 2
1.5 Goals and requirements . 2

2 Technical background 4
2.1 Technical Description . 5

2.1.1 XIAOMI M365 Scooter . 5
2.1.2 MQTT . 6
2.1.3 Telegraf . 6
2.1.4 GPS/4G module . 6
2.1.5 UART . 7
2.1.6 InfluxDB . 7
2.1.7 Grafana . 7

3 Methods 8
3.1 Different methods used . 8
3.2 Gates . 8
3.3 Research . 9

3.3.1 Hardware . 9
3.3.2 Software . 10
3.3.3 Previous work . 11

4 Implementation 12
4.1 Software design . 12
4.2 Phase One - Protocol confirmation and setup 14

4.2.1 Front end . 15
4.2.2 4G implementation . 15
4.2.3 GPS implementation . 15
4.2.4 Store data locally . 16

4.3 Phase Two - Raspberry Pi Implementation 16
4.3.1 Connecting the scooter to the RPi 17
4.3.2 Decoding . 19

vii

Contents

4.3.3 Retrieval of desired data . 19
4.3.4 Start on boot . 21

4.4 Phase Three - Telecommunication . 21
4.4.1 Scalability . 22
4.4.2 Telegraf . 23
4.4.3 Attaching the RPi on the scooter 23

4.5 Phase Four - The Final Version . 24

5 Results 26

6 Conclusion 27
6.1 Discussion of questions . 27
6.2 Future work . 28
6.3 Ethics . 28
6.4 Environmental impact . 29

Bibliography 30

A Appendix 1 - Time plan I

B Appendix 2 - Decoding protocol II

C Appendix 3 - Arduino code V

D Appendix 4 - Python script reading default data from the scooterVII

E Appendix 5 - Python script that extracts, decodes and sends scoo-
terdata VIII

F Appendix 6 - Python script that collects and sends GPS positionsXV

viii

List of Figures

2.1 Flow chart of the system . 5
2.2 Simplified visualisation how a GPS position is obtained from satellites. 7

4.1 Main function of the platform . 12
4.2 How the data is extracted and saved on the RPi 13
4.3 How the Rpi sends data . 13
4.4 How Grafana chooses the data from InfluxDB 13
4.5 How Grafana displays the data . 14
4.6 First draft of front end in Grafana . 15
4.7 GPS tested for coordinate data . 16
4.8 Output showing the extracted default data from the scooter in hex-

adecimal values . 17
4.9 Schematics of how the scooter and RPi are connected 18
4.10 How the scooter and Rpi are connected 18
4.11 Decoding script flowchart . 20
4.12 Balcony test rig . 21
4.13 Output showing battery and speed being sent from one client to another 22
4.14 How the temporary attachment looked like. Very much prototype-

looking. 23
4.15 How the RPi is mounted on the scooter 24
4.16 Data from two scooters displayed in Grafana. 25

ix

1
Introduction

In this chapter the background for the project will be presented as well as the
purpose, limitations and goals.

1.1 Background
As we put more and more technology into our vehicles, we also connect them to
the internet to enable remote assist to the user and run troubleshooting on demand.
Data from vehicles can be useful to analyze. For example, to make further develop-
ment of the vehicle more efficient or monitor environment variables.

One kind of vehicle that has recently become important when analyzing data is
the electric scooter. For example when renting a scooter it is necessary to know
where it can be picked up and how much battery is left. When buying a scooter
from a store or a factory, the equipment for collecting this data is not included. This
means that if a private person or a company wants to analyze their own usage of
the scooter, for example how fast they are driving and a history of where they have
been, they need a platform for sending and receiving data wirelessly.

This thesis work is an investigation in whether it is possible to integrate existing
tools to assemble a scalable platform for vehicle fleets to produce useful information
and centralize that in a meaningful way.

1.2 Purpose
The purpose of this thesis work is to explore the possibility of combining existing
telematic technology with existing electric scooters to develop a platform for electric
vehicle fleet monitoring.

1.3 Project questions
Therefore some questions are to be answered:

• Is it possible to build a platform, with available tools, that extracts information
from an existing scooter and sends it to a web client?

• Can the platform be scalable and used on several scooters at the same time?

1

1. Introduction

• Does the platform open up for any further possibilities?

1.4 Demarcations
Due to cost limitations on hardware, the platform will only be implemented on two
scooters. Previous work done by Infotiv on how to implement 4G will be used.
The main focus will be collecting, sending and receiving the data and not on the
user interface. Finally there will be no focus on optimization or making the system
energy efficient.

1.5 Goals and requirements
With the help of the company Infotiv with headquarters in Göteborg, the platform
developed will be implemented as a system for monitoring their fleet of electric
scooters.

The aim of this thesis work is therefore to deliver a system containing of:
Hardware:

• A processing module consisting of a Raspberry Pi or similar.
• Attached to the processing unit, a module for wireless communication through

an internet connection.
• Attached to the processing unit, a module for retrieving location information

through GPS satellites.
Software:

• Back end system for hardware to database communication.
• Implemented scalability to enable unlimited amount of scooters connected.

Web:

• Basic graphical user interface using Grafana or similar.

The requirements for the system were set together with Infotiv and are as follows:

1. Hardware consisting of a computer with communication modules should be
installed in a scooter.

2. Data being displayed on the scooter display and GPS location should be ob-
tainable by the hardware module through UART at an acceptable rate.

3. Software back end and front end in a database to visual presentation should
be able to display data.

4. Hardware should communicate with the web server with a maximum latency
of two seconds.

5. Duplicating the system should be demonstrated by installing the system in
two scooters.

6. Retrieved data should be stored permanently on an SD-card.

2

1. Introduction

7. Display of final data in the front end should be with a latency of under 10
seconds.

8. At power loss or reboot, the system shall be able to re-initiate without user
intervention.

3

2
Technical background

The scooters communicate with their RPi on the UART bus. The RPi then sends
data using the MQTT protocol to a scooter specific topic. The Telegraf tool listens
to the topics and then inserts the data into the InfluxDB database where it is ordered
chronologically. Grafana displays the data stored in InfluxDB. See Figure 2.1 below.

The receiving end consists of a server computer at the company office. It runs
a linux based operating system called Ubuntu and has MQTT, Telegraf, InfluxDB
and Grafana installed. It acts as the centralized "broker" in the MQTT[1] protocol
and is configured according to company standards with TLS[21] encryption in order
to receive the data in a secure way. With the data being on the server database it
is easily accessible for presentation on a company display.

4

2. Technical background

Figure 2.1: Flow chart of the system

2.1 Technical Description
Here follows the technical background and description of the software and hardware
used in this project.

2.1.1 XIAOMI M365 Scooter
The electric scooters used in this project is of type XIAOMI M365, the reason for
using these scooters is that they were the only ones available at Infotiv. The scooter
consists of a system of three microcontrollers communicating with eachother on a
UART half-duplex line. One of the microcontrollers is attached to the motor con-
troller, another to the Battery Management System (BMS) and the third is on the
bluetooth communication board.

A message on the bus always include a header indicating the beginning of a message,
the length of the message and checksums to confirm message integrity. One byte in
the message indicates destination of that message. Between which microcontrollers

5

2. Technical background

the message is being sent.

2.1.2 MQTT
Message Queuing Telemetry Transport, MQTT, is a lightweight network protocol
for sending messages between devices [1] based on the TCP protocol. It is also
designed for connections with remote locations where the network bandwidth is
limited, which fits this project.

The protocol consists of three main parts, a broker, a publisher and a subscriber. A
client can either be a subscriber, a publisher or both. The publisher publishes one or
more topics to the broker, the subscriber can then listen to these topics and send a
reply. The system can have multiple publishers and subscribers that communicates
with each other.

The broker acts as the middle man in the ’conversation’ between the publisher and
the subscriber. All messages from both sides go through the broker. The broker also
monitors the status of all connected clients, eliminates vulnerable client connections
and tracks all client connections.

2.1.3 Telegraf
Telegraf is a tool for collecting and sending metrics to and from different systems,
databases or IoT-sensors [2]. It is a plugin-driven service that can collect wide arrays
of inputs and write to outputs. Telegraf is a standalone service that can be used on
any system and therefore has no need of other external packages.

2.1.4 GPS/4G module
Global positioning system is a navigation method that calculates a geographical
position by using the satellites orbiting the earth [3]. When the GPS receives a
signal from at least three satellites at the same time it can calculate its position on
earth. The position is where the signals from all three satellites intersect, see Figure
2.1 below. The RPi is connected to a 4G module that also has a GPS antenna.

6

2. Technical background

Figure 2.2: Simplified visualisation how a GPS position is obtained from satellites.

2.1.5 UART
UART stands for Universal Asynchronous Receiver/Transmitter [4] and is the bus
the scooter is using to send data. The UART bus converts parallel data to serial
data by taking one byte and sending it bit by bit. Another UART receives the data
bits and puts them back together to one byte parallel data. The receiving UART
knows which bits belong to which byte by looking at the start and stop bits that
are sent with the data. The data can be sent both ways, meaning that one UART
can both transmit and receive data.

Half-duplex UART [5] is when data is transmitted according to the UART procotol
but on one wire and in one direction at a time.

2.1.6 InfluxDB
InfluxDB is an open source database that is specifically designed for time series
data [6]. The database can handle high write rates and query loads which makes it
ideal for storing large amounts of timestamped data. InfluxDB requires no external
dependencies but supports plugins for other data protocols.

2.1.7 Grafana
Grafana is a graphical tool for displaying and analyzing metrics and other data [8].
Grafana works dynamically with a variety of databases to turn the data stored there
into, for example, graphs for easier visualization. Grafana can show both live feed
data from the database or all data from a chosen time span. There are different
plugins that can be used to display data in different ways such as graphs, tables,
GPS positions on a map and much more.

7

3
Methods

This chapter presents the methods used for accomplishing this project.

3.1 Different methods used
The Engineering Method [15] was implemented in a collaborative sense with Info-
tiv. The idea and the concept phase were discussed early on, before the thesis work
started. Then followed the design process while research was being conducted on
existing solutions and different communication protocols. The company aided the
project team in the early stages with ideas about the system design and options for
software/hardware but toward the design/development process of the prototype the
work was more independently executed by the team.

Scrum [14] is "a simple framework for effective team collaboration on complex prod-
ucts". It was used in this thesis work as an iterative method with daily reflection
and weekly planning/feedback. Every day, what was currently being worked on and
what had been done the previous day was presented in a smaller group of people
working on different projects at the company. Any obstacles preventing develop-
ment could be addressed and discussed. The daily feedback was unfortunately not
possible to maintain during the ongoing global pandemic but the weekly ones were
continued. Every week there were also a short meeting where progress and current
issues were documented.

Disciplinary method. The Pomodoro Technique [16] is a technique for working
effectively. The basic concept is a strict working schedule with intervals of 25 min-
utes working, 5 minutes break and for every fourth working session there is a longer
break. Often during, especially software development, there is a risk of losing fo-
cus due to long periods of sitting down and looking into a screen. This technique
helped by promoting taking short breaks to stretch, drink some water and become
motivated for another session of focusing on tasks.

3.2 Gates
The end goal was divided into 5 main parts, here called gates, to help structure the
work. Each gate was set to a date where that part of the project had to be done.
These gates were then divided further into smaller blocks to make the project more
perspicuous. The gates were decided together with Infotiv and were as follows:

8

3. Methods

• Gate 1: Project description approved
Developers, Infotiv and Chalmers have all agreed on a Project Description and
the development can begin.

• Gate 2: Research done and reused code tested
Already developed foundation for Telematic platform will have been reviewed
and adjusted to suit the scooter which has been examined. Developers should
have succeeded in extracting data from the scooter to present that the code
works with the hardware. If there is unexpected delays on either part of the
prerequisites for this gate to be reached in time, this will be communicated
and Gate 3 postponed if need be.

• Gate 3: Basic functions testing and data presentation
Developers have figured out how to retrieve, send and receive data from the
scooter to the database for visualization and presentation. A functional front
end has been developed and can display the data.

• Gate 4: Final Presentation Chalmers
Final presentation at Chalmers for the developers.

• Gate 5: Final Presentation Infotiv
All project goals have been met and a scooter is equipped with hardware and
ready to go for a test ride. Developers demonstrate each part of the system
for everyone and an in-depth presentation of the HW/SW is held.

A more detailed time plan can be found in appendix 1.

3.3 Research
To establish a good foundation for decision-making, the project started with a lot of
research on which hardware and software to choose for implementation in the system.

Research was also conducted on previous Infotiv projects and open source public
projects regarding parts of the system. All research is presented below.

3.3.1 Hardware
It was decided early in the project to use a RPi for extracting and sending the data.
The RPi was chosen because it has on board memory, a great community and is
rather fast which is important for further development. It also fit the workflow of
Infotiv better than the other alternatives. The 4G and GPS module was chosen
because it had been confirmed to work with the RPi and tests had been done on
the same type of module earlier at Infotiv.

However, an investigation in hardware options before coming to a final decision
was made. The research was based on the hardware requirements and the overall
software functionality. One consideration that was taken into account when looking
for suitable hardware option was the physical dimensions of the unit itself. It was

9

3. Methods

desirable to have a device which could fit inside of the frame of the scooter.

The Icarus IoT board [9] turned out to be a very promising small size contestant
since it provided a 4G internet connection, GPS and a fast processing unit.

Two of the drawbacks of this unit in particular were that it had to be programmed
in ZephyrOS and that the community support was smaller compared to the RPi.
Adding to the drawbacks was a steep learning curve which combined with the rea-
sons for going with the RPi led to the conclusion that this was a good option and
that fitting it inside of the frame would be desirable, however the time needed to
learn a new programming language was estimated to not suffice. Lastly, the Icarus
board was over budget.

Another option that was looked into was using a development board from Arduino
family but since most of them required memory modules and operated at relatively
low clock frequencies they had to be excluded. However, the Arduino was used for
the initial serial bus readings coming from the scooter to confirm communication
protocol functionality.

The final decision was to use a RPi[17] equipped with peripheral units for 4G and
GPS features. A 4G "hat"[18], 4G module[19] with a tripple antenna[20] and a SIM-
card. A cable for splitting the UART for half-duplex implementation was needed
and was constructed with a high speed switching application signal diode for general
purposes, the 1N4148 and a ceramic 1/4W resistor with a value of 120 or 220 ohms.
Both values are viable options. See figure 4.9

3.3.2 Software
When choosing which method to use for sending the data from the scooter to the
database, some different protocols were compared. The final choice, MQTT, was
chosen because of its low bandwidth footprint which is good for minimizing data
rates through 4G. Additionally because of being publish/subscribe based which is
a messaging method developed from the IoT perspective with mobile light weight
application in mind. It was seemingly rather easy to get up and running. Its’ fea-
ture to handle multiple clients at the same time was crucial since the platform was
required to be scalable.

A lot of research went into which database solution to use. InfluxDB was finally
chosen primarily because it is open source, operates a time series model and is push
based. Time series means it stores the data in the order it enters the database[7].
Therefore centralizing time stamping from the unit transmitting data, in this case
the scooter. The timestamp is needed when displaying the data in chronological
order to track certain parameters. Push based means data has to be pushed into
the database unlike a pull based model works by pulling data to the database on
set intervals or other events. Finally InfluxDB is very compatible with Grafana and
therefore the two in combination were chosen.

10

3. Methods

Table 2.1 shows what the investigation of different databases led to. The database
was required to be open source, be able to receive data frequently, have good docu-
mentation available and have known synergy with MQTT.

Database Most important notes

InfluxDB Open source, Written in GO, SQL-like queries, push based, time
series model

Prometheus Written in GO, pull based, time series model, XML support
CrateDB No free version
MongoDB No free version

RethinkDB Seemed overall pretty good, good python integration and com-
munity

SQLite Public domain, low memory usage, reliable, support available
Apache
Cassandra Only free trial

Table 3.1: Summary of investigation results

The small tool Telegraf is required as it pushes data from MQTT to InfluxDB and
is how it is used in this project. InfluxDB cannot subscribe to MQTT topics by
itself.

3.3.3 Previous work
During the research process, different existing solutions for decoding the scooter data
stream were looked into to get an understanding of how they work and how they
are structured. This research resulted in the finding of a protocol, see appendix 2,
for what data could be extracted from a scooter and how to decode it. The protocol
was made by Camilo Ruiz [10]. Arduino code was used to confirm the protocol as
described in section 4.3.

11

4
Implementation

Here follows a description on how every part of the project was implemented, from
start to finish, in order to reach the goals.

4.1 Software design
A software design was drafted to better understand and describe exactly how the
platform was planned to work. This was done in order to speed up the programming
process and to keep on track.

The main function, Figure 4.1, describes how the platform is supposed to work,
from scooter to Grafana.

Figure 4.1: Main function of the platform

The RPi extracts data from the scooter. This is accomplished as shown in Figure

12

4. Implementation

4.2. The RPi sends a request to the scooter to send a message including the desired
data. The scooter then sends a message back containing that data, in this case
speed and battery.

Figure 4.2: How the data is extracted and saved on the RPi

The data is sent as explained in Figure 4.3 below. The RPi creates different topics for
the speed, battery and GPS coordinates as shown in Figure 2.1. The RPi connects
to the 4G network and publishes velocity and battery percentage on separate topics
to MQTT. Telegraf subscribes to the topics and pushes the data into InfluxDB. How
the data is sent is explained further in chapter 4.4.

Figure 4.3: How the Rpi sends data

Figure 4.4 below shows how Grafana gets the data from InfluxDB depending on
what type of data is supposed to be displayed, history or live feed. The time span
is chosen by the user from a menu in Grafana.

Figure 4.4: How Grafana chooses the data from InfluxDB

13

4. Implementation

Every scooter gets it data displayed in Grafana. This is done as shown in Figure 4.5,
a specific scooter is chosen and the data is presented with the help of a speedometer,
a bar graph and a map.

Figure 4.5: How Grafana displays the data

4.2 Phase One - Protocol confirmation and setup
How to receive the serial data coming from the scooter needed to be tested. This
was accomplished by confirming the scooter protocol [10] found during research.
As explained in chapter 2, the platform was supposed to consist of a RPi. Since
the developers had previous experience with Arduino and serial communication on
that device, an Arduino was connected to the scooter and a code for reading the
serial port, see appendix 3, was tested. With this code the scooter protocol could
be validated and relied on for further development. The scooter was continuously
transmitting default messages in hexadecimal numbers. The messages consisted of a
destination address, contents and a checksum to confirm the integrity of the message.

The contents of the message are different scooter variables. Two of these variables
in the default message were the brake and throttle values. When actuating the
brake or the throttle on the scooter it was clearly visible that the expected variables
changed.

14

4. Implementation

4.2.1 Front end
Grafana was intended to be running on the centralized server to simulate that the
software was installed locally. Sample data was displayed through different precon-
figured visualization tools to give a first draft picture of how the end result should
look like.

Figure 4.6: First draft of front end in Grafana

4.2.2 4G implementation
The 4G module and the triple antenna was attached to the RPi. A SIM card with a
prepaid data plan was inserted into the hat. To confirm that a reliable 4G internet
connection could be established the PPP installer guide [11] was used and after WiFi
connection was disabled the 4G symbol appeared and an internet connection could
be confirmed through the web browser.

4.2.3 GPS implementation
The GPS feature of the 4G module had to be tested. An example python script was
used for this purpose and the RPi was brought outside to be exposed to open air
for better connectivity. The test was successful and GPS position was obtained.

15

4. Implementation

Figure 4.7: GPS tested for coordinate data

4.2.4 Store data locally
All the data that is sent from the scooter to the RPi was saved locally on the RPi’s
SD card. This is to make sure that no data will be lost due to internet connection
loss and for data logging purposes. This was accomplished by implementing a small
Python script, that collects data from the scooter and then writes it to files on the
SD card. The data is initially stored in three different files, one for GPS coordinates,
one for the battery status and another one for speed parameters.

4.3 Phase Two - Raspberry Pi Implementation
Since the Arduino had only been used to test and validate the scooter protocol, it
had to be replaced with a RPi. The scooter was connected to the RPi according
to the explanation in section 4.3.1. A simple Python script, see appendix 4, was
implemented that listened to the serial data communication on the scooter’s bus.
No data was written to the bus at this point. The purpose was to read the data and
confirm that the protocol could be used with a RPi as well. The test showed that
the scooter was transmitting the default messages according to the protocol.

Figure 4.8 below shows the output of the default messages sent from the scooter
where the hexadecimal numbers corresponds to values sent from the scooter accord-
ing to the decoding protocol, see appendix 2. The message goes from 0x55 to 0x20.
0x55 marks the start of a new message, 0x55 and 0xaa are fixed headers that signals
that a message is being transmitted and 0x7 equals the length of the message. Then
follows other values sent from the scooter where 0x28 and 0x27 are the throttle
and break values respectively. When actuating the break or throttle on the scooter
is was clearly visible that both of the values behaved as expected, increasing and
decreasing. It was confirmed that the UART was configured correctly.

16

4. Implementation

Figure 4.8: Output showing the extracted default data from the scooter in hex-
adecimal values

4.3.1 Connecting the scooter to the RPi
The RPi is connected to the scooter as seen in Figures 4.9 and 4.10 below. Ground
on the scooter is connected to ground on the RPi. To be able to recieve data from
the scooter and read it on the RPi, a split wire is connected between the scooters
UART bus data output and the RX and TX pins on the RPi. The RX and TX pins
on the RPi are connected to each other with a resistor and a diode in between. This
creates a conversion needed for half duplex one wire UART data communication.

17

4. Implementation

Figure 4.9: Schematics of how the scooter and RPi are connected

Figure 4.10: How the scooter and Rpi are connected

18

4. Implementation

4.3.2 Decoding
The next step was to interpret the data stream coming from the scooter and "talk"
to the scooter. That means that in order to retrieve the information, code was
required that enabled writing data to the bus.

4.3.3 Retrieval of desired data
Since the speed and battery status were not sent by default, the scooter had to
be "told" to send the desired data according to the protocol. This was done by
adding a function to the python script. The function sends a specific message to the
scooter containing information about what data is requested, the scooter then sends
a reply message containing that data. The decoding script can be seen in appendix 5.

During implementation of this functionality all went well except at first the data
was expected to be located in the first retrieved message following a request. How-
ever this was not the case, and after some trial and error the system was adapted
accordingly.

The raw data was processed and calculated to presentable values. Battery level
to a percentage and velocity to km/h.

19

4. Implementation

Figure 4.11: Decoding script flowchart
20

4. Implementation

4.3.4 Start on boot
Since the RPi had to be connected to a screen and a power cord it was cumbersome
to do the iterative programming outside. However the GPS module had to be outside
to be able to pick up signals from the satellites, therefore a test of the system was
executed on one of the project members’ balcony. See Figure 4.12.

Figure 4.12: Balcony test rig

During development the system had been powered by a power adapter but was now
in need of being mobilised. A way of starting the scripts without user interference
was researched and implemented. Initially this was implemented using the RPi
crontab[12] utility, which is a time based job scheduler. The scripts were to start on
boot up. Crontab worked but was not stable enough which led to finally using the
"rc.local"[13].

4.4 Phase Three - Telecommunication
A test to send the correct values from the scooter, i.e battery status, speed and GPS
position, using the MQTT protocol via 4G to another client was set up.

This test was performed by one of the developers taking a test ride outside on
the scooter, with the RPi and 4G/GPS module connected and publishing data to
MQTT. The other developer was sitting inside on another RPi subscribing to the
published topics. This resulted in successfully retrieving live feed data being sent
from one client to another. The subscriber could in real time observe the speed,
battery status and GPS position of the publisher. It was observed that the latency
between the hardware and the web server was with good margins below required
threshold of two seconds.

21

4. Implementation

Figure 4.13: Output showing battery and speed being sent from one client to
another

However in this test it was also discovered that when cutting power to the system,
the function that stores the data locally on the SD card didn’t work as intended.
The data was being corrupted due to sudden power loss from turning the RPi off
by abruptly pulling the cord.

Another discovery was that sending data from the scooter to InfluxDB and then
displaying it in Grafana would take longer time than was set in the requirements.

The result from this test was discussed and evaluated at the Gate 3 meeting. Ac-
tions to improve the system were taken and two new requirements were added, see
point 7 and 8 in section 1.4.

4.4.1 Scalability
One of the goals for this project was to make the platform scalable for usage of more
than one scooter at a time. To make this possible each scooter had to send a unique
message or ID to the database, so when displaying the data in Grafana it would be
clear which data belonged to which scooter. This was accomplished by making each
scooter publish a unique topic when sending the data. For example, the first scooter
would send topics that looked like scooter1/battery or scooter1/speed, the second
scooter would then send topics like scooter2/battery, and so on. This way, when the
Telegraf receives the data it will know which scooter sent the data by looking at the
topics. The data can then be stored and ordered in the database according to which
scooter sent it and Grafana can display data from multiple scooters simultaneously.

22

4. Implementation

4.4.2 Telegraf
Telegraf is used as described in section 2.2.2 as a middleman plugin between MQTT
and InfluxDB. Telegraf is set to subscribe to the topics published by each scooter’s
RPi. Telegraf inserts the data into the database, this enables Grafana to use that
data for visual presentation in real time.

4.4.3 Attaching the RPi on the scooter
At first the scooter was temporarily equipped with the RPi with its 4G hat and
antennas and a powerbank. See Figure 4.14.

Although for the platform to be attached safely and look better, the RPi, 4G mod-
ule and the coupling deck were installed in a coupling box. The box is strapped to
the scooter below the handlebars with cable ties. The cables were drawn from the
scooters bluetooth board out trough the same hole as the brake wire goes through
and in to the coupling box, see Figure 4.16 below. The reason for this solution is
that Infotiv did not want a permanent solution, or for any holes to be drilled in
their scooters to attach the coupling box.

Figure 4.14: How the temporary attachment looked like. Very much prototype-
looking.

23

4. Implementation

Figure 4.15: How the RPi is mounted on the scooter

4.5 Phase Four - The Final Version
The final test was made with two scooters to test both the whole chain and scala-
bility. This test was successful and speed, battery status and GPS positions from
two scooters could be sent to InfluxDB and then displayed in Grafana, see Figure
4.16 below. This test showed that the platform works as intended and described in
Figure 2.1. This final test also included the systems ability to re-initate itself on
powerloss or reboot, which worked exactly as planned.

24

4. Implementation

Figure 4.16: Data from two scooters displayed in Grafana.

25

5
Results

The project resulted in a fully functional IoT-platform that can extract serial data
from an electric scooter and send it wirelessly to a database and then display the
data in a graphical user interface. The majority of the goals and requirements set up
in the beginning of the project were met. Meaning it is possible to combine existing
technology into a system for electric vehicle fleet monitoring.

The back end can extract data from the scooter and decode it, it can also send
the data to the database over MQTT via 4G. The data can then be displayed in a
basic front end made in Grafana.

In the final test it was confirmed that it takes a maximum of 9 seconds to send
the data and display it in Grafana.

In phase 3, the rate at which the hardware communicates with the web server was
tested and confirmed to be below two seconds.

Scalability is confirmed by two scooters equipped with a Rpi and a 4G and GPS
module. Both are fully functional and can extract data from the scooter and find a
GPS position.

The system can reinitiate itself on power loss or reboot.

During testing it was discovered that the GPS module had trouble finding the re-
quired satellite fix to get an exact position. This resulted in the module believing it
was in Kungsbacka, around 26 Km south of Göteborg which was its actual position.

It is not implemented any functionality for storing the data on the SD card since
the discovery of data corruption due to sudden power loss.

26

6
Conclusion

This chapter presents a discussion of the result and the questions asked in the
beginning of the project. It also presents future work that could be done to improve
the platform and how this project relates to ethics and sustainable environment.

6.1 Discussion of questions
• Is it possible to build a platform, with available tools, that extracts information

from an existing scooter and sends it to a web client?

If the right tools are used in an efficient way it is possible to build such a platform.
However it takes a lot of research and decision making on what hardware and soft-
ware would be best to use.

• Can the platform be scalable and used on several scooters at the same time?

As said in chapter 5, the system has only been tested on two scooters. However it
should not be a problem to add more scooters to the system as the python scripts
should work on any scooter of the same model. Furthermore, as MQTT is designed
to use more than one publisher, sending data from multiple scooters at the same
time should work as long as each scooter publishes a unique topic. The subscriber
can then listen to the different topics, store the data in InfluxDB and display it in
Grafana.

• Does the platform open up for any further possibilities?

Yes, this platform opens up for a lot of different possibilities. The data extracted
from the scooters in this projects is limited to speed and battery status, but the
scooter can send a variety of different values. For example the scooter can measure
cell voltage and the temperature of the battery, it also has an odometer. All these
different values can be used in different projects in the future.

27

6. Conclusion

6.2 Future work
This platform can be improved in many ways, below follows some suggestions for
future work.

The python scripts are not optimised. An optimisation of the code could speed
up the process of extracting and sending data. Storing the data on the SD card can
most probably be solved by applying routines for safely writing to the SD card and
then test robustness against power loss. A function that stores the data in a buffer
and then writes it to the SD when the buffer is full could also be implemented. This
would reduce the number of writes to the non-volatile SD card which would give it
a longer life.

More data could easily be extracted by sending more request messages to the scooter
bus in a similar way of how it is already done. The publishing to the database can
be tested for speed and robustness.

One of the requirements for this project was to install the RPi and 4G module
on the scooter. This was done as explained in section 4.5.3. However this solution
could be improved by designing and 3D-printing a case that fits all the equipment
better than the coupling box. If made correctly the 3D printed case would also be
better suited for outdoor usage and be attached to the scooter in a good-looking way.

Another improvement could be connecting the RPi to the scooters internal bat-
tery. That way when the scooter is turned on, the RPi will automatically turn on
as well and start collecting data without user interference. It would also mean that
it would not be necessary to use a power bank for the RPi, which is currently needed.

Alternatively a platform could be implemented using the device most people carry
around today. The smartphone already has GPS functionality which could be com-
bined with scooter data sent through bluetooth and publishing the data from the
phone instead of from the scooter. Then the scooter would be detached from the
sending part of the system, this could be benefitial if the system is to be used by
different users and could also be more energy efficient.

Another approach to the issue is to completely replace one of the scooters’ micro-
controllers, for example the bluetooth board, then the added system would perhaps
fit in the frame and more options and customization could be added. A potentially
viable microcontroller similar to the one used in this work is the Raspberry Pi Zero
which is smaller.

6.3 Ethics
When someone is moving around, either on foot or in a vehicle, where they have
been and when they were there is their personal information. This means that when

28

6. Conclusion

the RPi is sending data to the database it has to be encrypted and with a secure
connection. In this case, the MQTT broker helps with encryption and makes sure
that only the subscriber can read the data sent from the publisher.

Furthermore, the scooter should be password protected to prevent unauthorized
people from accessing the RPis’ internal SD card where all extracted data could be
stored. This would also prevent unauthorized people from sending data back to the
database as the the scripts start running as soon as the RPi is turned on.

6.4 Environmental impact
The development of this platform is from an environmental aspect a good and sus-
tainable project. The platform itself has no effect on the environment, but using it
makes it easier and more fun to ride electric scooters. This may lead to more people
choosing to ride their scooters to and from places instead of taking the bus. This
could reduce the amount of carbon dioxide in the air due to less exhaust from buses.

However, if this platform is to be used on a large amount of scooters it can have a
bad impact on the environment. Since each scooter will need to be equipped with a
RPi and a 4G and GPS module these components will need to be manufactured in
a bigger scale. This is not good for the environment since they contain a lot of rare
metals. Also, these electric components are seldom recycled.

29

Bibliography

[1] MQTT.org, "Frequently asked questions" [Online]. Available:
http://mqtt.org/faq [Used: February 2020]

[2] Influx data, "Telegraf" [Online]. Available: https://www.influxdata.com/time-
series-platform/telegraf/ [Used: May 2020]

[3] physics.org, "How does GPS work?" [Online]. Available:
http://www.physics.org/article-questions.asp?id=55 [Used: May 2020]

[4] Circuit Basics , "Basics of UART communication" [Online]. Available:
https://www.circuitbasics.com/basics-uart-communication/ [Used: May 2020]

[5] Half Duplex UART, "Universal asynschronous receiver transmitter" [Online].
Available: https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-
transmitter [Used: June 2020]

[6] Influx data, "InfluxDB 1.8 documentation" [Online]. Available:
https://docs.influxdata.com/influxdb/v1.8/ [Used: February 2020]

[7] Time Series Database, "Time series database" [Online]. Available:
https://en.wikipedia.org/wiki/Time_series_database [Used: June 2020]

[8] Grafana Labs "What is Grafana" [Online]. Available:
https://grafana.com/docs/grafana/latest/getting-started/what-is-grafana/
[Used: February 2020]

[9] Actinius "Icarus IoT Board" [online]. Available:
https://www.actinius.com/icarus [Used: Mars 2020]

[10] GitHub "M365-BLE-PROTOCOL" [Online]. Avail-
able: https://github.com/CamiAlfa/M365-BLE-
PROTOCOL?fbclid=IwAR21xJmMdB8FCzFbmjA0DF9jkIGYNuG4XDlfjfoia
RZJAVwOtzV2gH2fa-M [Used: February 2020]

[11] Internet installer "PPP installer for Sixfab Shield/Hat" [Online]. Available:
https://sixfab.com/ppp-installer-for-sixfab-shield-hat [Used: June 2020]

[12] Crontab "Cron" [Online]. Available: https://en.wikipedia.org/wiki/Cron [Used:
June 2020]

[13] RC Local "Rc.local" [Online]. Available: https://www.raspberrypi.org/
documentation/linux/usage/rc-local.md [Used: June 2020]

[14] Scrum Methodology "What is Scrum?" [Online]. Avaiable:
https://www.scrum.org/resources/what-is-scrum [Used: June 2020]

[15] Engineering Method "Engineering Method" [Online]. Available:
https://sites.tufts.edu/eeseniordesignhandbook/2013/engineering-method/
[Used: June 2020]

30

Bibliography

[16] Pomodoro Disciplinary Technique, "The Pomodoro Technique" [Online]. Avail-
able: https://francescocirillo.com/pages/pomodoro-technique, [Used: June
2020]

[17] Raspberry Pi 4, "Raspberry Pi 4" [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/ [Used: June
2020]

[18] 4G hat, "Raspberry Pi 3G/4G LTE Base Hat" [Online]. Avail-
able: https://sixfab.com/product/raspberry-pi-base-hat-3g-4g-lte-minipcie-
cards/ [Used: June 2020]

[19] 4G Module "Quectel EC25 Mini PCle 4G/LTE Module" [Online]. Available:
https://sixfab.com/product/quectel-ec25-mini-pcle-4glte-module/ [Used: June
2020]

[20] 4G Antenna "LTE Main Diversity GNSS Triple Port u.FL Antenna – 100mm"
[Online]. Available: https://sixfab.com/product/lte-main-diversity-gnss-triple-
port-u-fl-antenna-100mm/ [Used: June 2020]

[21] TLS "Transport Layer Security" [Online]. Available:
https://en.wikipedia.org/wiki/Transport_Layer_Security [Used: June 2020]

31

A
Appendix 1 - Time plan

I

B
Appendix 2 - Decoding protocol

II

B. Appendix 2 - Decoding protocol

III

B. Appendix 2 - Decoding protocol

IV

C
Appendix 3 - Arduino code

V

C. Appendix 3 - Arduino code

VI

D
Appendix 4 - Python script
reading default data from the

scooter

VII

E
Appendix 5 - Python script that

extracts, decodes and sends
scooterdata

VIII

E. Appendix 5 - Python script that extracts, decodes and sends scooterdata

IX

E. Appendix 5 - Python script that extracts, decodes and sends scooterdata

X

E. Appendix 5 - Python script that extracts, decodes and sends scooterdata

XI

E. Appendix 5 - Python script that extracts, decodes and sends scooterdata

XII

E. Appendix 5 - Python script that extracts, decodes and sends scooterdata

XIII

E. Appendix 5 - Python script that extracts, decodes and sends scooterdata

XIV

F
Appendix 6 - Python script that
collects and sends GPS positions

XV

F. Appendix 6 - Python script that collects and sends GPS positions

XVI

	List of Figures
	Introduction
	Background
	Purpose
	Project questions
	Demarcations
	Goals and requirements

	Technical background
	Technical Description
	XIAOMI M365 Scooter
	MQTT
	Telegraf
	GPS/4G module
	UART
	InfluxDB
	Grafana

	Methods
	Different methods used
	Gates
	Research
	Hardware
	Software
	Previous work

	Implementation
	Software design
	Phase One - Protocol confirmation and setup
	Front end
	4G implementation
	GPS implementation
	Store data locally

	Phase Two - Raspberry Pi Implementation
	Connecting the scooter to the RPi
	Decoding
	Retrieval of desired data
	Start on boot

	Phase Three - Telecommunication
	Scalability
	Telegraf
	Attaching the RPi on the scooter

	Phase Four - The Final Version

	Results
	Conclusion
	Discussion of questions
	Future work
	Ethics
	Environmental impact

	Bibliography
	Appendix 1 - Time plan
	Appendix 2 - Decoding protocol
	Appendix 3 - Arduino code
	Appendix 4 - Python script reading default data from the scooter
	Appendix 5 - Python script that extracts, decodes and sends scooterdata
	Appendix 6 - Python script that collects and sends GPS positions

