
Implementation of motion capture
support in smartphones
Master’s Thesis in the Master Degree Programmes,
Computer Science: Algorithms, Languages and Logic and
Networks and Distributed Systems

Johannes Martinsson
Reimund Trost

Department of Computer Science and Engineering
Chalmers University of Technology
Göteborg, Sweden, 2010

Implementation of motion
capture support in smartphones

Johannes Martinsson
Reimund Trost

Department of Computer Science and Engineering
Chalmers University of Technology

Göteborg, Sweden, 2010

The Author grants to Chalmers University of Technology and University of Gothenburg the non-
exclusive right to publish the Work electronically and in a non-commercial purpose make it ac-
cessible on the Internet. The Author warrants that he/she is the author to the Work, and war-
rants that the Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work electronically and make
it accessible on the Internet.

Implementation of motion capture support in smartphones
Johannes Martinsson
Reimund Trost

C© Johannes Martinsson, December 2010.
C© Reimund Trost, December 2010.

Examiner: Ulf Assarsson

Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Cover:
An illustration of a leg moving during gait analysis.

Department of Computer Science and Engineering
Göteborg, Sweden December 2010

Abstract
This thesis investigates the feasibility of developing cross-platform smart
phone applications that utilize the Qualisys motion capture system. An Ap-
plication Programming Interface that implements an in-house communication
protocol is created for use on smart phones and other portable devices. Fur-
thermore, two iPhone applications that utilizes the API are implemented—a
viewfinder and a goniometer.

Keywords: motion capture, smartphone, iPhone, goniometer, visualisation

Sammanfattning
Denna rapport utreder möjligheterna att utveckla plattformsoberoende ap-
plikationer för smarta telefoner som utnyttjar Qualisys system för motion
capture. Fokus är dock inriktat på utveckling för iPhone. Ett bibliotek för re-
altidskommunikation med Qualisys Track Manager beskrivs även. Slutligen
presenteras två iPhone-applikationer som använder biblioteket—en sökare
och en goniometer.

Contents
1 Introduction . 1
1.1 Goals . 1
1.2 Purpose . 2
1.3 Scope . 3

2 Background . 5
2.1 Motion Capture . 5
2.2 Motion Capture at Qualisys . 8
2.3 iPhone application development . 10
2.4 Android application development . 11
2.5 Comparing iPhone and Android development . 12
2.6 Developing cross-platform mobile applications . 13

3 Previous Work . 17
3.1 Motion capture related applications . 17
3.2 Traditional use of goniometers . 17

4 Implementation . 19
4.1 Client library . 19
4.2 The Viewfinder . 20
4.3 The Goniometer . 22

5 Result . 29
5.1 Client library . 29
5.2 Viewfinder . 29
5.3 Goniometer . 32
5.4 Discussion . 32

6 Future work . 35
6.1 Client library and the RTP . 35
6.2 Improving the Viewfinder . 35
6.3 Improving the Goniometer . 36
6.4 Other end-user applications . 37

A Client library specification . 42

Abbreviations

AIM Automatic Identification of Markers
API Application Programming Interface
BSD Berkeley Software Distribution
CLAPI client library API
CSS Cascading Stylesheets
EMG Electromyography
GUI Graphical User Interface
HTML Hypertext Markup Language
IDE Integrated Development Environment
IR Infra-red
JNI Java Native Interface
JVM Java Virtual Machine
LED Light-Emitting Diode
NDK Native Development Kit
OHA Open Handset Alliance
QTM Qualisys Track Manager
RTP Real-Time Protocol
SDK Software Development Kit
TCP Transmission Control Protocol
UDP User Datagram Protocol
WLAN Wireless Local Area Network

1

1 Introduction
The developments made in computer hardware have made it possible for motion
capture systems to go from large stationary computers with relativly small setups,
to being able to run large setups on laptop computers. This enables more flexible and
portable installations. The next step in the development towards even more portable
systems is to take advantage of the latest technology in even smaller computers, such
as netbooks, tablet PCs and smart phones.

Qualisys1 is a company that develops camera-based motion capture systems and
are now investigating uses for current ultra-portable computers. A full implemen-
tation of the current motion capture system in such ultra-portable devices is not
being considered, much due to their small screens and limited computational power.
However, there is interest in developing end-user applications with very specific func-
tionality where the user can take advantage of the portability these devices offers.

It is mainly applications for the Apple iPhone2 that is currently wanted. Future
support for other platforms such as the Android3 platform is also under considera-
tion.

This thesis investigates the feasibility of developing cross-platform smart phone
applications that utilize the Qualisys motion capture system. The main focus is
however on iPhone applications. An Application Programming Interface (API) that
implements an in-house communications protocol is created for use on smart phones
and other portable devices. Furthermore, two iPhone applications that utilizes the
API are implemented—a virtual viewfinder and a virtual goniometer.

1.1 Goals
The thesis project have a number of goals:

For more information about Qualisys, visit http://qualisys.com.1

More information on the iPhone can be found at http://www.apple.com/iphone/.2

Android is an open source platform for mobile devices developed by the Open Handset Alliance.3

2 1 Introduction

• Implement an API that implements Qualisys’ Real-Time Protocol (RTP). The
RTP allows clients to stream data in real-time from Qualisys Track Manager
(QTM)4 software and offers some remote control features. The API should
expose the 2D position of markers from all cameras in the current setup, the 3D
position and orientation of the markers, the position of rigid bodies as well as
analog data, which for example can come from force plates.

• Develop a viewfinder application for viewing 2D markers and video in real-time,
as seen by the cameras. The purpose of the Viewfinder application is to be
a visual aid during setup and calibration of Qualisys’ motion capture system.
During setup, cameras are placed and oriented so that they cover a specific area.
In order to get optimal capture data it is important that the cameras are oriented
so that the captured objects are covered by as many cameras as possible. To
avoid occluding objects, cameras are often placed at some height where ladders
are required. When setting up cameras in such occasions, it would be of great
aid to have a portable viewfinder that shows the view of the camera currently
being set up, which is the main motivation for the viewfinder application.

• Develop an end-user application that works as a virtual goniometer. A goniome-
ter is a tool for measuring angles. It is typically used by gait analysts to measure
angles on the human body. A common task is to measure the angle at the knee
joint of a person during a walk cycle. The application should present the mea-
sured angle as well as the minimum and maximum angles recorded during a
measurement. The purpose of the gonimeter application is not to replace tradi-
tional goniometers but rather as a compliment to current tools. The goniometer
should have an intuitive GUI and the amount of preparations needed in order to
use the application should be minimized.

• Investigate how one can develop applications targeting both the iPhone and
Android platforms.

1.2 Purpose
The purpose of this thesis is:

• To learn how to design and develop an API for current handheld devices that
communicates with Qualisys real-time protocol.

• To learn how to design and develop smart phone applications, which uses the
API.

For more information on QTM, see the product sheet at http://www.qualisys.com/archive4

/product_information_pdf/PI_QTM.pdf.

1.3 Scope 3

• To fulfill the goals outlined in the Goals section.

The purpose from Qualisys’ point of view is to:

• Be able to offer clients an API for application development on smart phones.

• Make setup of the motion capture system easier by being able to view a live
stream of marker positions in a hand held device.

• Be able to offer the market’s first end-user application for a motion capture
system on a smart phone.

1.3 Scope
This project consists of a brief investigation, a large implementation part and this
report. In the investigation, available methods for developing cross-platform appli-
cation for portable devices will be explored. The implementation work makes up
the main work of this thesis and will be limited to developing a cross-platform API
and two applications for the iPhone.

5

2 Background
The purpose of this chapter is to introduce the reader to contemporary motion
capture techniques and to investigate possible methods for creating cross-platform
applications for the iPhone and Android platforms. Moreover a brief comparison
between iPhone and Android development is presented.

To conclude, some final thoughts are presented regarding the most suitable cross-
platform solution for the purposes of this thesis.

2.1 Motion Capture
Motion capture is the process of recording the position and orientation of objects
in a computer-usable form. A common task is to record the motion of humans and
animals for use in fields of medicine, sports and entertainment. The motion data can
for example be used for gait analysis in biomechanics (Cloete and Scheffer, 2008 and
Corazza et al., 2006) and movement optimization of athletes in sports applications
(Fradet et al., 2003, Nathan, 2008, Bideau et al., 2004 and Ghasemzadeh and Jafari,
2010). In entertainment, motion capture is typically used for character animation in
games and movies (see figure 2.1 for an example). Other uses for motion capture
include industrial, military and research applications.

Figure 2.1 Facial motion capture in the movie Avatar.

6 2 Background

Motion capture have attracted a lot of research interest since the 1970s and a number
of motion capture systems have since been developed. Various techniques have
been employed in these systems including mechanical, optical, magnetic, inertial,
ultrasonic and hybrids (Bachmann, 2000, Cloete and Scheffer, 2008 and Zhang et
al., 2009). The systems can be divided into two categories: marker based and
markerless (Corazza et al., 2006).

2.1.1 Marker based solutions
In marker based motion capture, special objects, called markers are placed on the
subjects. An object makes a good marker if it’s feasible to compute its position, e.g.
by applying image analysis on a captured video frame. Motion data is then acquired
by computing the position of markers over time. Marker based optical motion
capture using reflective markers (see figure 2.2) is presently the most common
technique (Corazza et al., 2006) and it is the approach used at Qualisys.

Figure 2.2 Passive, reflective markers.

A marker is said to be active if it emits a signal in order to announce its position.
For example, some active markers uses LED lights to make them more visible on
camera. Active markers typically need a power source in order to function, which
can make them unsuitable for some situations. Markers that don’t emit any signal
are called passive markers and are typically cheaper than active markers.

However, several non-optical methods exist where other means of acquiring mo-
tion data than using video cameras are used. Methods using magnetic sensors,
inertial sensors (also called inertial navigation system) or a combination of the
two (hybrid systems) are examples of non-optical alternatives. In these solutions,
sometimes referred to as magnetic/inertial orientation tracking systems, there is a
sensor in each marker that senses the position and orientation of the marker (see
figure 2.3). Eric Robert Bachmann presents a method where each sensor unit con-
tains a three-axis magnetometer, a three-axis angular rate sensor and a three-axis

2.1 Motion Capture 7

accelerometer (Bachmann, 2000). These nine-axes sensors are referred to as MARG
(Magnetic, Angular, Rate, Gravity) sensors. The main advantage of non-optical
solutions is that they are not as likely to suffer from occluding objects.

Figure 2.3 Xsens MVN motion capture solution using inertial
sensors.

However, inertial/magnetic systems have their own drawbacks, such as the drift
problem, i.e. small errors that propagate over time. To accommodate for the drift
problem, drift compensation is typically applied (Cloete and Scheffer, 2008). An-
other problem with magnetic/inertial systems is that magnetometers can suffer from
interference from metallic objects and electrical sources in the environment that af-
fect the magnetic field (Zhang et al., 2009).

2.1.2 Markerless solutions

As the name implies, there are no markers used in the markerless approach. Instead,
movements are computed by other means, e.g. by applying advanced image analysis
on regular video frames (Deutscher et al., 2002). Since markerless motion capture
can be achieved with a simple video camcorder, without having subjects wear any
extra equipment, it is a rather inexpensive method (Deutscher et al., 2002). How-
ever, it typically suffers from lower accuracy and slower update rates than marker
based solutions, such as a marker based optical system (Corazza et al., 2006). Al-
though, depending on the application, this might not be an issue. For example,
a store owner can use a markerless motion capture solution to count the number

8 2 Background

of people entering a store by using an existing surveillance camera (Björgvinsson,
2006).

2.2 Motion Capture at Qualisys
Qualisys takes the optical, marker based approach to motion capture. Their system
works with both active and passive markers which are recorded by the Qualisys
Oqus5 cameras. The passive markers consists of retroreflective spheres available
in various sizes. The Oqus camera is equipped with Infra-red (IR) LEDs that are
placed around the lens of the camera. During measurement, the LEDs are flashing
with a certain frequency. The IR-light hits the spherical markers and the light
is reflected back to the cameras, projecting bright, circular shapes on the camera’s
image sensor. The cameras compute the center point of each circle in terms of x- and
y-coordinates on its image sensor, and transmits this information in real-time to a
host computer running Qualisys Track Manager (QTM). Based on these coordinates
QTM can then compute the position of each marker in three dimensions.

Figure 2.4 Gait analysis on a horse using Qualisys’ Motion Cap-
ture System.

The cameras can also capture full-frame video with high frame rates, for example 1.3
megapixel images in 500 frames per second. There are a number of cameras available
with different resolutions, frame rate and accessories. A measurement setup consists
of one or more cameras, a computer running QTM and possibly other accessories
such as force plates, EMG equipment et cetera.

A detailed specification of the camera is available on http://www.qualisys.com/archive5

/product_information_pdf/PI_Oqus.pdf.

2.2 Motion Capture at Qualisys 9

Figure 2.5 Qualisys Oqus 300 camera.

2.2.1 Qualisys Track Manager

Qualisys Track Manager (QTM) is the host application used with Qualisys’ motion
capture hardware. The most fundamental function of QTM is real-time marker
tracking, i.e. computing each marker’s position in the three-dimensional measure-
ment space. These computations are based on the markers’ two-dimensional coordi-
nates that QTM receives from the cameras in the system, and are performed using
triangulation (Horprasert et al., 1998). The resulting 3D positions are shown in a
3D viewport (see figure 2.6) that the user can navigate through.

All common tasks like starting and stopping measurements, setting camera ex-
posure and so on can be done in QTM. In addition, the software offers various
other features such as plotting graphs and showing live video feeds from connected
cameras.

2.2.2 The Real-Time Protocol

QTM also acts as a server which implements an in-house Real-Time Protocol (RTP).
The protocol provides a variety of commands that enables third party applications
to communicate with QTM over TCP and UDP. Typically, the RTP is used to
stream tracked data for use in another application, e.g. Visual3D6 and MATLAB
(Fehlhaber and Holmberg, 2009).

The C-Motion Visual3D software is used for biomechanical motion analysis. More information at6

http://c-motion.com/products/Visual3D.htm.

10 2 Background

Figure 2.6 Screenshot of the Qualisys Track Manager applica-
tion.

In this thesis, an implementation of the RTP was created for use in smart phones
and other portable devices. This makes it possible to have smart phone applications
communicate with QTM; for instance in order to stream real-time data.

2.3 iPhone application development
The iPhone platform consists of an operating system and a set of tools developed by
Apple. The iPhone platform targets portable, multi-touch devices and is currently
only available on the Apple iPhone, iPod touch and iPad.

There are two types of applications for the iPhone: native applications and web
applications (commonly referred to as web apps). Web apps are created using web
technologies such as HTML, CSS and Javascript and are run inside the web browser
on the phone. Web apps for the iPhone are like ordinary web applications except
that they can make use of Apple’s proprietary Javascript APIs for the iPhone.

Native iPhone applications on the other hand are mostly written in Objective-C
(Wikipedia, 2010a) and compiled and are executed by the iPhone operative sys-
tem. Native applications have fewer limitations, and can potentially offer higher
performance than web applications. For example, access to device functionality like
the camera and accelerometer, are currently only available to native applications
(Apple, 2010a).

2.4 Android application development 11

2.3.1 Native applications
Native iPhone applications are mainly written in the Objective-C programming
language, which is a strict superset of the C programming language. A description
of the language is given on Wikipedia (Wikipedia, 2010a):

Objective-C is a reflective, object-oriented programming lan-
guage which adds Smalltalk-style messaging to the C pro-
gramming language.

Objective-C can be seen as a thin layer on top of C that adds object orientation to
the language. The object syntax is derived from Smalltalk7 and all of the non-object
related syntax is identical to that of C.

2.3.2 Programming environment

iPhone development is usually done in Xcode8, Apple’s Integrated Development
Environment (IDE), using the iPhone Software Development Kit (SDK)9. Xcode
contains an iPhone simulator that lets developers test their software without de-
ploying it on the device. The IDE also contains various tools for debugging and
measuring memory and cpu consumption.

Applications can also be written in C and C++. However, most iPhone APIs
are written in the Objective-C programming language. By enabling developers to
partially write applications in C and C++, parts of an application can be made
cross-platform.

2.4 Android application development
The Android platform consists of an open source10 operating system and a set of
tools and frameworks for portable devices developed by the Open Handset Alliance
(OHA). Android applications are written in the Java programming language and
are executed on the Dalvik virtual machine11.

Application developers can use the Android SDK12, which provides several APIs.
In addition to the Android SDK, the OHA also provides a Native Development

The Smalltalk programming language: http://www.smalltalk.org.7

For more information on Xcode, see http://developer.apple.com/tools/xcode/.8

The iPhone Software Development Kit is available on http://developer.apple.com/iphone/.9

Definition available on http://www.opensource.org/docs/osd10

A JVM optimzed for running on portable devices (Wikipedia, 2010b).11

The Android SDK is available on http://developer.android.com/sdk/.12

12 2 Background

Kit13 (NDK). The NDK is a companion tool to the SDK and lets developers build
performance-critical portions of their applications in C or C++, these portions will
not be executed on the Dalvik virtual machine. The use of the NDK should be
limited to certain situations— including cross-platform support—according to the
OHA (Alliance, 2010):

Typical good candidates for the NDK are self-contained,
CPU-intensive operations that don’t allocate much memory,
such as signal processing, physics simulation, and so on. Sim-
ply re-coding a method to run in C usually does not result
in a large performance increase. The NDK can, however,
can be an effective way to reuse a large corpus of existing
C/C++ code.

2.5 Comparing iPhone and Android development
An important difference between the iPhone and Android platforms is that the
former is based on proprietary software while the latter is based on and released as
open source.

2.5.1 Platform implications

At present, you can only develop applications for the iPhone using the Xcode pro-
gramming environment—which is only available on the Mac OS X operating sys-
tem—effectively limiting iPhone development to Apple computers14. The system
requirements15 for Android application development is not as severe.

In order to deploy an application on a device running the iPhone OS16, the
developer must sign-up for the Apple Developer Program, currently priced from $99
annually. In comparison, developing for the Android platform is free of charge17

Another difference is that Apple enforces strict policies on application content
and implementation, which must be adhered for an application to be accepted into
the Apple App Store. Such policies does not exist for applications submitted to the
Android Market.

The Android NDK is available on http://developer.android.com/sdk/ndk/.13

Further, the iPhone simulator is only available for Apple’s intel-based computers.14

For details see http://developer.android.com/sdk/requirements.html.15

iPhone OS is the operating system running on the Apple iPhone, iPod touch and iPad.16

Submitting applications to Android stores is not necessarily free. At present, the only existing17

Android application store, Android Market, requires developers to pay a one-time fee of $25.
However, other Android stores could have different regulations.

2.6 Developing cross-platform mobile applications 13

While the implementation specific differences of the two platforms are consider-
able—much due to the use of different programming languages—both offer similar
tools and functionality for developers. In addition, both platforms make it possi-
ble to develop applications using the native-code languages C and C++. However,
due to Objective-C’s lineage, programming in C and C++ for the iPhone has less
overhead.

2.6 Developing cross-platform mobile applications
Maintaining different versions of an application for different platforms can be ex-
pensive and cumbersome, therefore it is desirable to develop applications that are
compatible with several platforms, so called cross-platform applications. Obvious
advantages of such applications being shorter development time and lower mainte-
nance costs.

There are several ways to make cross-platform applications for mobile phones.
However, because of the different programming languages and APIs of mobile plat-
forms, developing cross-platform applications is not a trivial task. Various tools are
available to alleviate development of cross-platform applications, e.g. Appcelerator
Titanium Mobile, PhoneGap and Rhomobile Rhodes18.

2.6.1 Intermediate compatibility layers

Some of the mentioned tools facilitate development of cross-platform applications
by use of intermediate compatibility layers. These are APIs that add a layer of
abstraction on top of the APIs available for each supported mobile platform. The
compatibility layer will call different APIfunctions depending on which platform the
application is executed on.

There are several disadvantages of using such compatibility layers. One being
that they might not always be up to date with the supported platforms. Hence,
whenever a new feature is introduced by one of the platform vendors, it will take
some time before developers can take advantage of that feature. Moreover, some
features (especially ones that are not available on all supported platforms) might
not be made available at all. Relying on a third party to provide these compatibility
layers also adds a level of risk; development might be discontinued et cetera. Another
disadvantage with compatibility layers is that they are not always suitable for CPU-
intensive tasks such as signal processing and physics simulation, since it might not
be possible to fully utilize the underlying platform.

For more information about Titanium Mobile, PhoneGap and Rhodes, see http://www18

.appcelerator.com, http://phonegap.com and http://rhomobile.com.

14 2 Background

2.6.1.1 Legal uncertainty on iPhone

Recent updates to the iPhone Developer License Agreement (Gruber, 2010) have
raised a lot of attention on whether it is allowed to create applications for the
iPhone using third party frameworks such as Titanium and PhoneGap. Section
3.3.1 (Apple, 2010b) now reads:

Applications may only use Documented APIs in the manner
prescribed by Apple and must not use or call any private
APIs. Applications must be originally written in Objective-
C, C, C++, or JavaScript as executed by the iPhone OS We-
bKit engine, and only code written in C, C++, and Objective-
C may compile and directly link against the Documented
APIs (e.g., Applications that link to Documented APIs through
an intermediary translation or compatibility layer or tool are
prohibited).

At the time of this writing, it is still unclear how the new license affects the use
of frameworks such as Titanium and PhoneGap. However, it does give a hint that
the future of these tools are very much in the hands of Apple.

2.6.2 Other solutions

A possible solution to the cross-platform problem is to write applications in lan-
guages such as C and C++ using a subset of libraries available on all the target
platforms. This, however, might not always be an viable solution because the sub-
set of libraries might not be enough to develop the application. It is not uncommon
that each platform has a different API for development of graphical user interfaces,
which leaves this solution unable to implement a complete application. However, it
could still be viable to implement parts of an application that are logically separable
from other parts that are implemented in a platform specific manner.

2.6.3 Cross-platform development conclusions

All things considered, we decided not to use any intermediate compatibility layers.
Instead, a selected part of each application was made cross-platform by writing it
in the C programming language using a common subset of libraries. This approach
enabled us to develop an API that handles the communication with QTM via its
RTP. The API is provided to our applications as a static C library, which can be used

2.6 Developing cross-platform mobile applications 15

directly when developing applications for the iPhone, but which must be wrapped
in a JNI-wrapper for Android application development.

We acknowledged that it was not in our interest to invest time in learning a third
party intermediate compatibility layer framework that later might turn out to be
unsatisfactory for the purposes of this thesis.

17

3 Previous Work
This chapter describes some related work that this thesis builds upon.

3.1 Motion capture related applications
We were unable to find any smartphone applications related to motion capture
created prior to the work conducted in this thesis. Considering that motion capture
is a relatively small field of technology and that smartphones are relatively new19,
it’s rather unsurprising that no such applications existed beforehand.

3.2 Traditional use of goniometers
There are various kinds of goniometers, each with a specific area of use. For example,
there are advanced goniometers specialized in light measurements. For measuring
angles on the human body however, gait analysts often use a simple tool that consists
of two elongated shapes joined at a joint, as illustrated in figure 3.1. This tool is
used by manually rotating the enlongated shapes around the joint so they align
with two adjoining bone segments on a patient; an effective method for for static
analysis on a stationary patient—on a moving patient however— it’s difficult to get
anything more than a rough estimation of the angle in question.

To effectively get accurate data on moving patients, many gait analysts currently
take advantage of motion capture technology. The ability to have corresponding
tools in ultra portable devices such as smartphones can give greater flexibility.

The first smartphone, Simon, was designed by IBM and released in 1993 (Wikipedia, 2010c).19

18 3 Previous Work

Figure 3.1 A traditional goniometer used for gait analysis.

19

4 Implementation
This chapter describes implementation details of the client library API (CLAPI),
the viewfinder and the goniometer applications. The CLAPI enables real-time com-
munication with the Qualisys Track Manager (QTM) software, and is used by both
applications.

4.1 Client library
The client library provides an API to Qualisys’ Real-Time Protocol (RTP) and is
implemented as a C library. The library can be compiled with most C compilers
adhering to the C99 standard, and it is compatible with both the iPhone and An-
droid platforms. On the Android platform an additional JNI wrapper20 is needed
to interface with the library. On the iPhone platform the developed application
only needs to link against the library. The principal benefit of using the library is to
avoid having to implement the network communication and bit unpacking needed to
communicate over the RTP, leaving the developers able to focus on the application
in development instead.

The main use of the library is retrieving motion capture data from QTM but
offers a few other features as well. It can for instance be used to start and stop
captures remotely. Captured data is contained in data frames, which are a binary
representation of the actual data and various headers for housekeeping. Data frames
can either be retrieved one at a time or as a stream.

4.1.1 Network communication

Protocol communication is done over TCP, although streaming data frames can be
done over UDP to increase performance. The CLAPI use standard BSD sockets to
implement the network communication.

Java Native Interface is a framework that enables code running in a Java Virtual Machine to call20

and be called from code running outside of the JVM.

20 4 Implementation

The RTP is mostly plain-text and synchronous, e.g. to get the current version
of QTM one sends the command QTMVersion to the server, which responds with,
for instance, QTM version is 2.3 (build 464). However, not all communication
is plain-text and synchronous: data frames are not plain-text and can be streamed.
For example, to get the latest data frame, the command GetCurrentFrame is sent,
as described below.

GetCurrentFrame All | ([2D] [2DLin] [3D] [3DRes] [3DNoLabels]
[3DNoLabelsRes] [Analog] [Force] [6D] [6DRes] [6DEuler] [6DEulerRes])

The parameters specify which components (see table 4.1) should be included
in the requested data frame. To get a stream of data frames the command Stream-
Frames is sent upon which the server responds by starting to stream data frames.

4.2 The Viewfinder
The viewfinder application is an iPhone application that works as a virtual viewfinder
for Qualisys’ motion capture cameras. The aim of the application is to ease the setup
of a motion capture system.

4.2.1 Scope

The viewfinder implementation is limited to showing a real-time view of markers
from a camera’s point of view. An user can choose which camera to use, but only
one camera view can be seen at a time. The number of markers currently tracked by
the selected camera is presented on screen, as is the cameras identification number.

Originally, live video stream support was also planed, but due to limitations in
QTM and in the RTP, such video support has not been implemented.

4.2.2 Implementation

The viewfinder uses the CLAPI in order to receive a stream of markers with their
respective 2D position for each camera from QTM. Information about each camera’s
resolution is used so that markers can be presented in the correct position on screen.
This is because the RTP defines 2D marker positions to be in absolute pixels, and
the target resolution on the iPhone differs from the resolution of the cameras. The
markers are drawn in real-time using OpenGL ES 1.121.

There are separate threads for receiving data frames and for rendering the re-
ceived markers on screen. Users can choose between having the markers presented

OpenGL ES is a light weight version of OpenGL for use on embedded systems.21

4.2 The Viewfinder 21

Type ID Name Description

2 3DnoLabels Unidentified 3D marker data
10 3DnoLabelsRes Unidentified 3D marker data with residuals
3 Analog Analog data from one or more analog devices
4 Force Data from one or more force plates
5 6D 6D data position and rotation matrix
11 6DRes 6D data position and rotation matrix with residuals
6 6DEuler 6D data position and Euler angles
12 6DEulerRes 6D data position and Euler angles with residuals
7 2D 2D marker data
8 2DLin Linearized 2D marker data

Table 4.1 A table showing the various component types defined
by the RTP.

22 4 Implementation

in a rectangle with the same aspect ratio as the selected camera, or using the whole
screen to present markers. The latter option makes batter use of the device’s small
screen, but can be somewhat misleading when setting up the system since the mark-
ers relative position to each other is not preserved.

4.3 The Goniometer
The goniometer application is a virtual goniometer for measuring angles, its intended
use being measuring leg angles during gait analysis. It works by computing the angle
between markers tracked by Qualisys Track Manager. The marker data, is streamed
to the application via the CLAPI.

This section presents some implementation details and a few important design
decisions that affect the amount of preparation needed in order to start using the
application. The decisions also affect the range of angles that can be measured by
the application.

4.3.1 Requirements

The requirements of the goniometer application was that it should:

• Compute and show the angle between upper and lower legs of a person in real-
time.

• Compute and show the minimum and maximum angles during an ongoing walk
cycle.

• Require a minimal amount of preparation.

• Draw a graph of the measured angle that is updated in real-time.

4.3.2 Scope

The goniometer application is meant as a tool for gait analysts, as such, its main use
will be to measure the angle at knee joints of humans. However, the implementation
in this thesis is limited to compute an approximate angle and not a biomechanically
correct angle. To compute a biomechanically correct angle the true joint centre
of rotation must be found. This limitation can be considered reasonable since the
measurements made by gait analysts using traditional goniometers are also only
approximations.

4.3 The Goniometer 23

4.3.3 Unlabled markers

In QTM, markers can be either labeled or unlabeled. When a marker is labeled, it
is given a name so that it can be identified across frames. Unlabeled markers on the
other hand cannot be identified across frames in a trivial way.

In order to compute a consistent angle, markers must be properly identified. If
they aren’t, and the order of markers in a data frame22 changes, it means that at
least one marker will be mistaken for another, resulting in the wrong angle being
calculated.

Thus, the advantage of using labeled markers is obvious. However, to make use
of this advantage, an Automatic Identification of Markers (AIM) model must be
setup and used in QTM. Since this requires more preparation work for the user—
work that should be kept to keep to a minimum according to the requirements—we
decided to use unlabeled markers even though the obvious disadvantage.

Because of this decision, a method of identifying markers must be found and
implemented.

4.3.4 Marker configuration

The simplest possible marker configuration for our purposes is a three marker
setup—one marker at the hip, knee and ankle respectively. This is the minimum
requirement of our application in terms of marker configuration. The angle mea-
surement of the three-marker setup is however limited to an angle in the interval
[0, π] as only the smallest of the two possible angles are measured, as illustrated in
figure 4.1. But since some joints might bend with an angle > π it is desirable to be
able to measure such angles as well. Therefore, we decided to allow a second marker
configuration, where a fourth marker— referred to as the m control marker— is used
to determine whether an angle is in [0, π] or (π, 2π]. The control marker is placed
on the lower leg (see figure 4.2) and is used to determine the direction of the leg.

4.3.5 Identifying markers

A marker identification algorithm is executed whenever the application receives new
marker data, i.e. x, y and z coordinates. For simplicity, the algorithm will be de-
scribed for the three-marker setup, but works correspondingly for the four-marker
setup as well. The purpose of the algorithm is to find which marker corresponds to
the hip, knee and ankle markers. For the algorithm to work, it must be initialized.

With unlabeled markers the RTP gives no guarantees that the order in which markers appear is22

consistent across data frames.

24 4 Implementation

α β

knee

hip

ankle
Figure 4.1 An example of a three-marker setup on a leg. Markers
are placed on the hip, knee and ankle as indicated by the labels.
At the knee joint, there are two possible angles α and β.

control

Figure 4.2 An example of a four-marker setup on a leg, with the
addition of the control marker.

Initialization is performed by starting the measurement with all markers in an up-
right position— i.e. each marker is identified by its vertical position—the highest
marker gets assigned to the hip, the second highest to the knee and so on.

On initialization, the hip–knee and knee–ankle distances are saved. The distances
are used to identify markers by finding the marker-pairs that best matches the stored
distances. Ideally, these marker distances remain constant during a session, however
due to gliding and inaccuracies of the tracked data, there will be slight variations in
these distances over time.

Identification cannot be based solely on these distances, since for some angles,
the data can be ambiguous. Consider the situation illustrated in figure 4.3, where
the markers make up an isosceles triangle. If the algorithm were solely based on
distances, there are two possible markers that could be the knee joint. This would
not be a problem if the tracked data were impeccable, since the two angles would be
equal anyway. But due to slight tracking inaccuracies there can be jumps between

4.3 The Goniometer 25

Figure 4.3 Markers forming an isosceles triangle.

the correct knee marker and an incorrectly chosen one when markers are close to
forming an isosceles triangle. To accommodate for this, the position of the markers
is also taken into account in the identification algorithm. This works by computing
how far a marker have moved since the last frame—the further it has moved, the
more unlikely it is to be the correct marker.

The algorithm performs an exhaustive search over all possible permutations of
markers-joint combinations, and finds the one that best matches the distance and
position criterion described above. It can be summarized with the following expres-
sion

arg min
p∈P

f(p)

where P is the set of all marker permutations and f(p) is a function that computes
a fitness value of the given permutation. A fitness value of 0 is a perfect match, i.e.
the hip–knee and knee–ankle distances are equal to their initialized counterparts,
and the markers are in the same positions as the previous frame, i.e. they have not
moved. For three markers (n = 3) f(p) is defined as:

f(p) =
n∑

i=1
d(pi, bi)2 +

n−1∑
i=1

(d(pi, pi+1)− ci)2

where d is a function that computes distance between two markers, bi the best
matched marker from previous frame and ci the distances saved from the initializa-
tion.

26 4 Implementation

4.3.6 Computing the angle

In the three-marker setup, with markers a, b and c representing the hip, knee and
ankle, respectively, the angle at b is given by:

α = arccos
−→
ab ·
−→
bc

|
−→
ab||
−→
bc|

(4.1)

Using this method the computed angle φ is in [0, π] radians due to the definition of
arccos.

y

x

y

x

(xh, yh)

α

Original Transformed
Figure 4.4 Markers in original and transformed coordinate sys-
tem.

In the four-marker setup, the situation is a little more complex. Instead of using
equation 4.1 the angle is computed with equation 4.2 in a coordinate system
that is aligned with a plane spanned by the knee, ankle and control markers. This
is illustrated with a simplified example (in R2 rather than R3) in figure figure 4.4.
The angle computed in the four-marker setup is given by

α′ =
{

atan2 (xh, yh) + 2π if α< 0
atan2 (xh, yh) otherwise (4.2)

4.3 The Goniometer 27

The atan2 function23 can only be used for points in R2 but since the interesting
points are mostly in the same plane that the coordinate system is aligned with, the
third coordinate can be ignored.

One problem with this method is that it is only perfect when the markers are
placed in the same plane. It is therefore important that markers are placed care-
fully. Slightly misplaced markers will produce angles that are slightly off, which
is acceptable since the purpose of the application is only to give an approximation
of the biomechanical angle. To compute a biomechanically correct angle, a better
approximation of the true joint center is needed.

The atan2(y, x) function is a variation of the arctangent function that takes the quadrant of the23

point (x, y) into consideration. It is described at http://en.wikipedia.org/wiki/Atan2.

29

5 Result
This chapter presents the finished implementation work conducted in this thesis.
For the client library API (CLAPI), an outline of the API specification is given
(the complete specification can be found in appendix A). The finished iPhone
applications are presented with screenshots.

5.1 Client library
The essential functionality of the client library API is summarised in table table 5.1.
The client uses the qtmAPIInit function to get an initialised API struct. The
struct is used as an argument in all subsequent library calls. After initialisation,
the client connects by calling qtmConnect. If a connection is established successfully,
the client can communicate with the server via the remaining functions.

5.2 Viewfinder
The finished viewfinder application is shown in figure 5.1. The screenshot shows
two people wearing at least 58 markers in total. Each marker is represented by a
small circle, here shown in green. The number in the bottom right corner indicates
which camera’s view is displayed. In the top left corner, the current number of
markers visible to the current camera is displayed.

To change camera view, one can either use a slider that pops up when the camera
icon at the bottom left is tapped (as shown in figure 5.2), or by simply flicking to
the left or right on the touch screen.

The application supports both landscape and portrait orientation—switching is
done automatically whenever the orientation changes (as sensed by the integrated
accelerometer). The user can also change a number of settings, e.g. the stream rate
of data frames, marker size, marker colour and aspect ratio.

30 5 Result

Figure 5.1 Screenshot of the viewfinder application running in
landscape mode. The viewfinder is currently showing camera 1
which have tracked 58 markers for the current frame, as indicated
in the top and bottom left corners.

Figure 5.2 Screenshot of the viewfinder application showing the
slider used used for changing camera view. The large number indi-
cates the currently chosen camera.

5.3 Goniometer 31

Function Description

qtmAPIInit Get an initialised api struct.
qtmConnect Connects to a QTM server.

qtmShutdown Closes the current connection, if one exists.
qtmVersion Tells the server which version of the protocol it

should use.
qtmQTMVersion Gets the QTM version of the server.

qtmTakeControl Takes control of the RT interface, which is
needed for some commands. Only one client can
have control at the time.

qtmReleaseControl Releases control of the RT interface.
qtmByteOrder Gets the byte order used by the server.

qtmCheckLicense Checks if a license key for QTM is valid.
qtmNew Creates a new measurement.

qtmClose Closes the current measurement.
qtmStart Starts a new capture.
qtmStop Stops the current capture.

qtmCapture Downloads the latest capture as a C3D file.
qtmGetParameters Gets the current QTM settings.

qtmGetCurrentFrame Gets the current frame from the connected QTM
server.

qtmStreamFrames Streams data frames from the connected QTM
server.

Table 5.1 The essential functions of the client library API.

32 5 Result

5.3 Goniometer
The finished goniometer application is shown in figure 5.3 and figure 5.4. The
application have two modes; one with a dail showing the current, minimum and
maximum angles, another mode showing a graph with the current and recent angles.
Switching between the modes can done by either tapping the graph and done buttons
or by turning the device between the vertical and horizontal positions.

When a three-marker setup is used, the application can only measure angles up to
π radians. To indicate that only three markers are available and that measurements
thus is limited to the interval [0, π] radians, half of the dail graphics is greyed out.
As soon as four markers are available, the entire dail is displayed in full brightness
to indicate that an angle in the intervall [0, 2π] radians can be measured, as shown
in figure 5.3.

To reset the minimum and maximum angles, the user taps the stop button two
times (the first tap halts the measurement, the second tap starts a new measure-
ment).

5.4 Discussion
The work presented in this chapter works as expected and performs well. Most of
the original requirements are met, the only notable exception being the lack of live
video streaming support in the viewfinder application.

The client library API allows developers to write applications on portable devices
that communicate with Qualisys QTM software through the RTP (although the
client library API is by no means limited to portable devices).

Both applications uses OpenGL ES to achieve adequate frame rates. During
testing, the main bottle neck turned out to be the network communication. To get
acceptable network performance, an ad-hoc WLAN is recommended. This allows a
wireless peer-to-peer connection to be setup between the computer running QTM
and the portable device.

5.4 Discussion 33

Figure 5.3 Screenshot of the goniometer application in portrait
mode. The red band around the meter indicates the range of angles
measured.

Figure 5.4 Screenshot of the goniometer application in landscape
mode during a walk cycle. In this mode, a graph shows the mea-
sured angle for approximately the last second.

35

6 Future work
This chapter discusses possible improvements on the real-time API, the Viewfinder
and the goniometer application.

6.1 Client library and the RTP
Both the client library and the Real-Time Protocol (RTP) could be extended to
allow applications to change some settings and issue various commands in Qualisys
Track Manager (QTM). This would make it possible to develop applications that can
act as remote controls for some aspects of QTM. Support in the RTP for streaming
live video would also be desirable.

6.2 Improving the Viewfinder
Three areas of interest for further improvement have been identified: live video, 3D
view and remote control features. Some of these require extensions to both QTM
and the RTP while others are ready to be implemented.

6.2.1 Live video streaming

Live video streaming is a desirable feature in the Viewfinder application, mostly
because it would aid camera setup. The video view could also be augmented by an
overlaid marker view. However, live video streaming require extensions of the RTP.

6.2.2 Remote control features

The Viewfinder application could be improved further by implementing remote con-
trol functionality to change camera lens parameters, i.e. aperture, focus and shutter
speed. However, there is no support for this in QTM or current camera models.

36 6 Future work

(The only remote control features currently possible via the RTP is starting and
stopping measurement captures.)

6.2.3 3D view
Instead of drawing the markers in 2D, they could be drawn in a 3D view. This
would have the advantage that the user could change the view and navigate freely.
However, if a 3D view from the point of view of a camera is desired, the application
needs to be aware of the position and orientation of the camera, but this information
is only available to QTM after calibration. Hence, no real-time update of camera
position and orientation can be achieved with the current technology.

6.3 Improving the Goniometer
In this section, two possible improvements of the goniometer application are sug-
gested.

6.3.1 Estimating the true joint center
The goniometer application computes a rather rough estimation of the angle at a
given joint. For gait analysts it might be of interest to improve the application by
making it measure a biomechanically correct angle. This can be done by imple-
menting an algorithm that gives a better estimation of the true joint center. Several
such methods have been suggested (Ehrig et al., 2006, Frigo and Rabuffetti, 1998
and Andriacchi et al., 1998) and could be implemented in future versions of the
application.

6.3.2 AIM support
Support for Automatic Identification of Markers (AIM) was left out to minimise
the amount of preparations needed in order to use the application. Under some
circumstances however, using AIM can be favorable, therefore support for AIM is
desirable. When AIM is used the marker order is consistent across frames. This
means that the application doesn’t need to do any work in order to identify markers,
since that would be done by QTM.

6.3.3 Architecture
The development of the goniometer application could benefit from another archi-
tectural design, where the angle and marker calculations are done in a plugin of

37

QTM. This would ease further development of angle calculations—using estima-
tions of true joint centres, AIM models and so forth—by having a clear separation
of calculations and presentation.

Taking into account that the developers at Qualisys do not have any iPhone
expertise, it is easy to understand why moving most of the development off the
iPhone platform into a more familiar environment would be beneficial, both to
Qualisys and their costumers. As the QTM software develops the iPhone application
could be frozen while updates are done to the plugin.

The plugin would do all the angle calculations and marker identification, and the
iPhone application would communicate to this plugin to get the calculated angle.

6.4 Other end-user applications
The real-time API developed in this thesis can be used to create other interesting
applications, either for the iPhone or other devices.

One idea for an application is a virtual camera where markers are placed on the
device itself. The position and orientation of the device can then be derived and
used as a viewpoint in a virtual three-dimensional environment. Such an application
could be useful in entertainment industry applications.

38

References
Alliance, O. H. (2010). Android ndk. Last retrieved 2010-04-20. http://developer

.android.com/sdk/ndk/

Andriacchi, T. P., Alexander, E. J., Toney, M. K., Dyrby, C. and Sum, J. (1998).
A point cluster method for in vivo motion analysis: Applied to a study of knee
kinematics. Journal of Biomechanical Engineering, 120 (6), 743-749.

Apple (2010a). iphone application programming guide. Last retrieved 2010-04-19.
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual
/iPhoneOSProgrammingGuide/Introduction/Introduction.html

Apple (2010b). iphone developer program license agreement. Last retrieved 2010-
04-26.

Bachmann, E. R. (2000). Inertial and magnetic tracking of limb segment orientation
for inserting humans into synthetic environments. In Ph.D. Dissertation, Naval
Postgraduate School .

Bideau, B., Multon, F., Kulpa, R., Fradet, L. and Arnaldi, B. et al. (2004). Us-
ing virtual reality to analyze links between handball thrower kinematics and
goalkeeper’s reactions. Neuroscience Letters, 372 (1-2), 119 - 122.

Björgvinsson, T. (2006). Peocounter: people counting software. Master’s Thesis,
Chalmers University of Technology, Göteborg, Sweden.

Cloete, T. and Scheffer, C. (2008). Benchmarking of a full-body inertial motion
capture system for clinical gait analysis.. Conf Proc IEEE Eng Med Biol Soc,
2008, 4579-82.

Corazza, S., Mündermann, L., Chaudhari, A. M., Demattio, T. and Cobelli, C.
et al. (2006). A markerless motion capture system to study musculoskeletal
biomechanics: visual hull and simulated annealing approach.. Ann Biomed
Eng, 34 (6), 1019-29.

Deutscher, J., Blake, A. and Reid, I. (2002). Articulated body motion capture by
annealed particle filtering. In Computer Vision and Pattern Recognition, 2000.
Proceedings. IEEE Conference on , pages 126–133 vol.2.

Ehrig, R. M., Taylor, W. R., Duda, G. N. and Heller, M. O. (2006). A survey of
formal methods for determining the centre of rotation of ball joints. Journal of
Biomechanics, 39 (15), 2798 - 2809.

http://developer.android.com/sdk/ndk/
http://developer.android.com/sdk/ndk/
http://developer.android.com/sdk/ndk/
http://developer.android.com/sdk/ndk/
http://developer.android.com/sdk/ndk/
http://developer.android.com/sdk/ndk/
http://developer.android.com/sdk/ndk/
http://developer.android.com/sdk/ndk/
http://developer.android.com/sdk/ndk/
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html

39

Fehlhaber, K. and Holmberg, M. (2009). Implementation of a matlab based real-
time demo rig: Control of quadcopter. Master’s Thesis, Chalmers University
of Technology, Göteborg, Sweden.

Fradet, L., Kulpa, R., Bideau, B., Multon, F. and Delamarche, P. (2003). Kinematic
simulation of handball throwing. In The Society for Modeling and Simulation
International. In Proceedings of European Simulation Multiconference . Lon-
don, UK.

Frigo, C. and Rabuffetti, M. (1998). Multifactorial estimation of hip and knee joint
centres for clinical application of gait analysis.. Gait Post, 8, 91 - 102.

Ghasemzadeh, H. and Jafari, R. (2010). Coordination analysis of human move-
ments with body sensor networks a signal processing model to evaluate baseball
swings. IEEE SENSORS JOURNAL, 00 (00).

Gruber, J. (2010). Why apple changed section 3.3.1. Last retrieved 2010-04-22.
http://daringfireball.net/2010/04/why_apple_changed_section_331

Horprasert, T., Haritaoglu, I. and Harwood, D. (1998). Real-time 3d motion cap-
ture. http://citeseer.ist.psu.edu/horprasert98realtime.html

Nathan, A. M. (2008). The effect of spin on the flight of a baseball. American
Journal of Physics, 76 (2), 119-124.

Wikipedia (2010b). Dalvik virtual machine. Last retrieved 2010-05-17. http://en
.wikipedia.org/wiki/Dalvik_virtual_machine

Wikipedia (2010a). Objective-c. Last retrieved 2010-04-19. http://sv.wikipedia
.org/wiki/Objective-C

Wikipedia (2010c). Smartphone. Last retrieved 2010-05-21. http://sv.wikipedia
.org/wiki/Smartphone

Zhang, Z., Wu, Z., Chen, J. and Wu, J.-K. (2009). Ubiquitous human body motion
capture using micro-sensors. Pervasive Computing and Communications, IEEE
International Conference on, 0, 1-5.

http://daringfireball.net/2010/04/why_apple_changed_section_331
http://daringfireball.net/2010/04/why_apple_changed_section_331
http://daringfireball.net/2010/04/why_apple_changed_section_331
http://daringfireball.net/2010/04/why_apple_changed_section_331
http://daringfireball.net/2010/04/why_apple_changed_section_331
http://daringfireball.net/2010/04/why_apple_changed_section_331
http://daringfireball.net/2010/04/why_apple_changed_section_331
http://daringfireball.net/2010/04/why_apple_changed_section_331
http://daringfireball.net/2010/04/why_apple_changed_section_331
http://daringfireball.net/2010/04/why_apple_changed_section_331
http://daringfireball.net/2010/04/why_apple_changed_section_331
http://daringfireball.net/2010/04/why_apple_changed_section_331
http://citeseer.ist.psu.edu/horprasert98realtime.html
http://citeseer.ist.psu.edu/horprasert98realtime.html
http://citeseer.ist.psu.edu/horprasert98realtime.html
http://citeseer.ist.psu.edu/horprasert98realtime.html
http://citeseer.ist.psu.edu/horprasert98realtime.html
http://citeseer.ist.psu.edu/horprasert98realtime.html
http://citeseer.ist.psu.edu/horprasert98realtime.html
http://citeseer.ist.psu.edu/horprasert98realtime.html
http://citeseer.ist.psu.edu/horprasert98realtime.html
http://en.wikipedia.org/wiki/Dalvik_virtual_machine
http://en.wikipedia.org/wiki/Dalvik_virtual_machine
http://en.wikipedia.org/wiki/Dalvik_virtual_machine
http://en.wikipedia.org/wiki/Dalvik_virtual_machine
http://en.wikipedia.org/wiki/Dalvik_virtual_machine
http://en.wikipedia.org/wiki/Dalvik_virtual_machine
http://en.wikipedia.org/wiki/Dalvik_virtual_machine
http://en.wikipedia.org/wiki/Dalvik_virtual_machine
http://en.wikipedia.org/wiki/Dalvik_virtual_machine
http://en.wikipedia.org/wiki/Dalvik_virtual_machine
http://sv.wikipedia.org/wiki/Objective-C
http://sv.wikipedia.org/wiki/Objective-C
http://sv.wikipedia.org/wiki/Objective-C
http://sv.wikipedia.org/wiki/Objective-C
http://sv.wikipedia.org/wiki/Objective-C
http://sv.wikipedia.org/wiki/Objective-C
http://sv.wikipedia.org/wiki/Objective-C
http://sv.wikipedia.org/wiki/Objective-C
http://sv.wikipedia.org/wiki/Objective-C
http://sv.wikipedia.org/wiki/Smartphone
http://sv.wikipedia.org/wiki/Smartphone
http://sv.wikipedia.org/wiki/Smartphone
http://sv.wikipedia.org/wiki/Smartphone
http://sv.wikipedia.org/wiki/Smartphone
http://sv.wikipedia.org/wiki/Smartphone
http://sv.wikipedia.org/wiki/Smartphone
http://sv.wikipedia.org/wiki/Smartphone

40

Index

a
AIM 23, 36
Android 11

c
client library API
goals 2
implementation of 19
specification 29

compatibility layer 13
cross-platform 13, 14

g
goniometer 22, 32
goals 2
improvements of 36

i
intermediate compatibility layer
see compatibility layer

iPhone 10
legal uncertainty 14

m
marker
active 6
passive 6
reflective 6

markers
configuration of 23
unlabeled 23

motion capture 5
marker based 6
markerless 7

o
Objective-C 11

q
Qualisys Track Manager 9
Qualisys Real-time Protocol 9

v
viewfinder 20, 29
goals 2
improvements of 35

41

Appendices

42

A Client library specification

43

QMT RT API
0.1

Generated by Doxygen 1.6.2

Wed Jun 16 09:27:32 2010

CONTENTS i

Contents

1 Main Page 1

2 Module Index 2

2.1 Modules . 2

3 Data Structure Index 2

3.1 Data Structures . 2

4 Module Documentation 3

4.1 API . 3

4.1.1 Detailed Description . 5

4.1.2 Define Documentation . 5

4.1.3 Function Documentation . 6

5 Data Structure Documentation 12

5.1 QRA Struct Reference . 12

5.1.1 Field Documentation . 12

5.2 QTM2DData Struct Reference . 13

5.3 QTM2DMarker Struct Reference . 14

5.4 QTM3DData Struct Reference . 14

5.5 QTM3DMarker Struct Reference . 15

5.6 QTM6DBody Struct Reference . 15

5.7 QTM6DData Struct Reference . 16

5.8 QTMAnalogData Struct Reference 17

5.9 QTMAnalogDevice Struct Reference 17

5.9.1 Detailed Description . 18

5.10 QTMCamera Struct Reference . 18

5.11 QTMComponent Struct Reference 19

5.12 QTMDataFrame Struct Reference 21

5.13 QTMForceData Struct Reference . 22

5.14 QTMForcePlate Struct Reference . 23

5.15 QTMForcePlateData Struct Reference 24

5.16 QTMMsgHeader Struct Reference 24

5.16.1 Detailed Description . 24

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

1 Main Page 1

5.16.2 Field Documentation . 24

5.17 QTMParam3D Struct Reference . 25

5.18 QTMParam3DData Struct Reference 26

5.19 QTMParam6D Struct Reference . 27

5.20 QTMParamAnalog Struct Reference 28

5.21 QTMParamBody Struct Reference 29

5.22 QTMParamCamera Struct Reference 29

5.23 QTMParamChannel Struct Reference 30

5.24 QTMParamDevice Struct Reference 30

5.25 QTMParamForce Struct Reference 31

5.26 QTMParamGeneral Struct Reference 32

5.27 QTMParamLabel Struct Reference 33

5.28 QTMParamParameters Struct Reference 34

5.29 QTMParamPlate Struct Reference 35

5.30 QTMParamPoint Struct Reference 36

5.31 QTMStreamFrequency Struct Reference 36

5.32 QTMVersion Struct Reference . 36

5.32.1 Detailed Description . 37

1 Main Page

Author:

Johannes Martinsson <w@antiklimax.se>
Reimund Trost <reimund@code7.se>

Date:

2010-02-05

This API provides an interface to a QTM RT server. It is implemented in C with basic
bsd sockets.

This API implementation is intended to be compatible with both iPhone and Android
devices. The idea is to create wrappers for this API in Objective-C and Java.

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

2 Module Index 2

2 Module Index

2.1 Modules

Here is a list of all modules:

API 3

3 Data Structure Index

3.1 Data Structures

Here are the data structures with brief descriptions:

QRA 12

QTM2DData 13

QTM2DMarker 14

QTM3DData 14

QTM3DMarker 15

QTM6DBody 15

QTM6DData 16

QTMAnalogData 17

QTMAnalogDevice (Data will be layed out one float after another in the
data member) 17

QTMCamera 18

QTMComponent 19

QTMDataFrame 21

QTMForceData 22

QTMForcePlate 23

QTMForcePlateData 24

QTMMsgHeader (Header used in all packets sent to the server) 24

QTMParam3D 25

QTMParam3DData 26

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

4 Module Documentation 3

QTMParam6D 27

QTMParamAnalog 28

QTMParamBody 29

QTMParamCamera 29

QTMParamChannel 30

QTMParamDevice 30

QTMParamForce 31

QTMParamGeneral 32

QTMParamLabel 33

QTMParamParameters 34

QTMParamPlate 35

QTMParamPoint 36

QTMStreamFrequency 36

QTMVersion (Generic structure to represent a version with a major and a
minor part) 36

4 Module Documentation

4.1 API

Main API group.

Defines

• #define STREQ(a, b) (strcmp((a), (b)) == 0)
• #define DPRINT(msg, err)

Functions

• QRA qtmAPIInit (void)
Get an handle to the QTM RT API.

• QTMErrorCode qtmConnect (QRA, const char ∗, int, int)
Connect to a QTM RT server.

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

4.1 API 4

• QTMErrorCode qtmShutdown (QRA)
Shutdown the connection.

• QTMErrorCode qtmVersion (QRA, QTMVersion ∗, int, int)
Set or query protocol version.

• QTMErrorCode qtmQTMVersion (QRA, QTMVersion ∗)
Get the version of QTM connected to.

• QTMErrorCode qtmTakeControl (QRA)
Make this client the master client.

• QTMErrorCode qtmReleaseControl (QRA)
Make this client a regular client.

• QTMErrorCode qtmByteOrder (QRA, int ∗)
Get the current byte order of the protocol.

• QTMErrorCode qtmCheckLicense (QRA, const char ∗)
Check a license code against QTM.

• QTMErrorCode qtmGetLastEvent (QRA, QTMEvent ∗)
Get the latest event that occurred in QTM.

• QTMErrorCode qtmNew (QRA)
Create a new measurement in QTM.

• QTMErrorCode qtmClose (QRA)
Close current measurement in QTM.

• QTMErrorCode qtmStart (QRA)
Start a new capture in QTM.

• QTMErrorCode qtmStop (QRA)
Stop an ongoing capture in QTM.

• QTMErrorCode qtmSave (QRA api, const char ∗filename)
Save the current capture QTM.

• QTMErrorCode qtmGetCapture (QRA, char ∗)
Gets a C3D file with the latest captured QTM measurement.

• QTMErrorCode qtmGetParameters (QRA, QTMParamParameters ∗, int)
Get measurement parameters from server.

• QTMErrorCode qtmGetCurrentFrame (QRA, QTMDataFrame ∗, int)

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

4.1 API 5

Get the current frame of real-time data from QTM.

• QTMErrorCode qtmStreamFrames (QRA, int(∗w)(QTMDataFrame ∗, void ∗),
void ∗, bool, QTMStreamFrequency, int, char ∗, int)

Streams data frames from QTM.

• const char ∗ qtmErrorToString (QTMErrorCode)
Translate error codes into a error message.

• const char ∗ qtmErrorToError (QTMErrorCode)
Translate error codes into its define.

• void qtmFreeDataFrameComponents (QTMDataFrame ∗)
Free memory allocated to components in receiveFrame.

• void qtmFreeDataFrame (QTMDataFrame ∗)
Free memory allocated to a frame (including frame components).

• void qtmFree3D (QTMParam3D ∗p)
Free memory allocated by a call to qtmParse3D.

• void qtmFree6D (QTMParam6D ∗p)
Free memory allocated by a call to qtmParse6D.

• void qtmFreeAnalog (QTMParamAnalog ∗p)
Free memory allocated by a call to qtmParseAnalog.

• void qtmFreeForce (QTMParamForce ∗p)
Free memory allocated by a call to qtmParseForce.

• void qtmFreeGeneral (QTMParamGeneral ∗p)
Free memory allocated by a call to qtmParseGeneral.

4.1.1 Detailed Description

Main API group.

4.1.2 Define Documentation

4.1.2.1 #define DPRINT(msg, err)

Value:

(fprintf(stderr,\
"[DEBUG %s:%d in %s]: %s (%d)\n", \
__FILE__, __LINE__, __func__, (msg),(err)))

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

4.1 API 6

4.1.3 Function Documentation

4.1.3.1 QRA qtmAPIInit (void)

Get an handle to the QTM RT API. Use this function to get an initiated structure con-
taining function pointers to all the API functions.

Returns:

A structure with function pointers.

4.1.3.2 QTMErrorCode qtmByteOrder (QRA api, int ∗ endian)

Get the current byte order of the protocol.

Parameters:

endian Will contain the endian, BIG_ENDIAN or LITTLE_ENDIAN.

Returns:

QTM_OK on success, QTM_NO_PARSE or an error code from qtmAsciiInteract.

4.1.3.3 QTMErrorCode qtmCheckLicense (QRA api, const char ∗ licenseKey)

Check a license code against QTM.

Parameters:

licenseKey code to check.

Returns:

QTM_LICENSE_PASS, QTM_LICENSE_FAIL or QTM_NO_PARSE. (Might
also return an error code from qtmInteract.)

4.1.3.4 QTMErrorCode qtmClose (QRA api)

Close current measurement in QTM. Only possible to issue if client is master.

Returns:

QTM_CLOSING_CONNECTION on success, QTM_NO_CONNECTION,
QTM_MUST_BE_MASTER, QTM_NO_PARSE or an error code from qtmInter-
act.

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

4.1 API 7

4.1.3.5 QTMErrorCode qtmConnect (QRA api, const char ∗ host, int port, int
timeout)

Connect to a QTM RT server.

Parameters:

host Host to connect to, should be an IP address. (For now.)

port Port to connect to, should probably be 22223.

timeout Timeout in seconds.

Returns:

QTM_CONNECTED on success or QTM_NO_CONNECTION, QTM_NO_-
PARSE on error.

4.1.3.6 const char∗ qtmErrorToError (QTMErrorCode err)

Translate error codes into its define.

Parameters:

err The error code to translate.

Returns:

The define representation of the error code.

4.1.3.7 const char∗ qtmErrorToString (QTMErrorCode err)

Translate error codes into a error message.

Parameters:

err The error code to translate.

Returns:

The string representation of the error code.

4.1.3.8 QTMErrorCode qtmGetCapture (QRA api, char ∗ buf)

Gets a C3D file with the latest captured QTM measurement.

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

4.1 API 8

Parameters:

buf The buffer to write the C3D file to.

Returns:

An error code indicating the status of the call.

4.1.3.9 QTMErrorCode qtmGetCurrentFrame (QRA api, QTMDataFrame ∗
frame, int componentsToGet)

Get the current frame of real-time data from QTM.

Parameters:

frame Will contain the data components.

componentsToGet Bitmasked field of which components to get.

See also:

QTMParameter.

Returns:

QTM_OK on success. QTM_NO_MEASUREMENT, QTM_WRONG_TYPE or
an error code from qtmInteract.

4.1.3.10 QTMErrorCode qtmGetLastEvent (QRA api, QTMEvent ∗ event)

Get the latest event that occurred in QTM. This function can only deal with events
without event data.

Parameters:

event Will contain the latest event.

4.1.3.11 QTMErrorCode qtmGetParameters (QRA api,
QTMParamParameters ∗ params, int paramsToGet)

Get measurement parameters from server.

Parameters:

params Struct to hold the requested pieces of data.

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

4.1 API 9

paramsToGet Which parts to get, bitmasked bitfield.

See also:

QTMParameter

Returns:

Returns QTM_OK on success. QTM_NO_MEASUREMENT or an error code
from qtmInteract or any of the qtmParse-functions.

Here is the call graph for this function:

qtmGetParameters

qtmFree3D

qtmFreeAnalog

qtmFreeForce

qtmFreeGeneral

4.1.3.12 QTMErrorCode qtmNew (QRA api)

Create a new measurement in QTM. Only possible to issue if client is master.

Returns:

QTM_NEW_CONNECTION on success, QTM_ALREADY_CONNECTED,
QTM_MUST_BE_MASTER, QTM_NO_PARSE or an error code from qtmInter-
act.

4.1.3.13 QTMErrorCode qtmQTMVersion (QRA api, QTMVersion ∗ ver)

Get the version of QTM connected to.

Parameters:

ver Will contain the QTM version.

Returns:

QTM_OK on success or QTM_NO_PARSE if version could not be parsed. Might
also return an error code from qtmAsciiInteract.

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

4.1 API 10

4.1.3.14 QTMErrorCode qtmReleaseControl (QRA api)

Make this client a regular client.

Returns:

QTM_IS_CLIENT on success or an error code from qtmAsciiInteract.

4.1.3.15 QTMErrorCode qtmSave (QRA api, const char ∗ filename)

Save the current capture QTM. Only possible to issue if client is master.

Parameters:

filename Filename to save under, must be less than 255 characters long. If file-
name doesn’t end with ’.qtm’ it will be added.

Returns:

QTM_OK on success, QTM_NO_MEASUREMENT, QTM_MUST_BE_-
MASTER, QTM_FAIL or an error code from qtmAsciiInteract.

4.1.3.16 QTMErrorCode qtmShutdown (QRA api)

Shutdown the connection. Basically amounts to a close system call on the socket.

4.1.3.17 QTMErrorCode qtmStart (QRA api)

Start a new capture in QTM. Only possible to issue if client is master.

Returns:

QTM_STARTING_MEASUREMENT on success, QTM_NO_-
MEASUREMENT, QTM_NO_CONNECTION, QTM_MUST_BE_MASTER,
QTM_NO_PARSE or an error code from qtmInteract.

4.1.3.18 QTMErrorCode qtmStop (QRA api)

Stop an ongoing capture in QTM. Only possible to issue if client is master.

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

4.1 API 11

Returns:

QTM_STOPPING_MEASUREMENT on success, QTM_NO_-
MEASUREMENT, QTM_MUST_BE_MASTER, QTM_NO_PARSE or an
error code from qtmInteract.

4.1.3.19 QTMErrorCode qtmStreamFrames (QRA api, int(∗)(QTMDataFrame
∗, void ∗) f, void ∗ anything, bool shouldFree, QTMStreamFrequency
freq, int port, char ∗ host, int comps)

Streams data frames from QTM.

Parameters:

f Function that handles a single received frame, should return a negative number
if streaming should stop.

anything A void pointer that will be passed to |f| when called.
free Should be set to false if the streamed data frames should not be automatically

freed. If it is set to false it is imperative that the caller takes care of freeing
each data frame (e.g. using qtmFreeDataFrameComponents).

freq Stream frequency specifier,

See also:

QTMStreamFrequency

Parameters:

port If non-negative streaming will be done on UDP to this port.
host Used when streaming over UDP, specifies which host to stream to.
comps Which components to ask QTM for.

Here is the call graph for this function:

qtmStreamFrames

qtmErrorToString

qtmFreeDataFrameComponents

4.1.3.20 QTMErrorCode qtmTakeControl (QRA api)

Make this client the master client.

Returns:

QTM_IS_MASTER on success, QTM_NO_PARSE or an error code from qt-
mInteract.

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5 Data Structure Documentation 12

4.1.3.21 QTMErrorCode qtmVersion (QRA api, QTMVersion ∗ ver, int major,
int minor)

Set or query protocol version. If either major or minor is negative, only a query is
performed.

Parameters:

ver Will contain the protocol version.

major If major and minor is set to -1 let the server choose protocol, otherwise this
will be the major part of the protocol version.

minor Minor part of protocol version.

5 Data Structure Documentation

5.1 QRA Struct Reference

Data Fields

• char host [253]
The host name or IP-address of the QTM host.

• int port
UDP port to use if applicable.

• int tcpSocket
TCP socket for QTM communication.

• int udpSocket
UDP socket for streaming data frames.

• struct sockaddr_in sa
Support for network communication.

• int(∗ eventHandler)(QTMEvent, void ∗)
Event handler function.

5.1.1 Field Documentation

5.1.1.1 int(∗ QRA::eventHandler)(QTMEvent, void ∗)

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.2 QTM2DData Struct Reference 13

Event handler function. If this function is not set all events will be silently ignored. If it
is set, whenever an event is encountered in the network communication with QTM this
function will be called with the event and the void pointer given in the registerEven-
tHandler function.

5.2 QTM2DData Struct Reference

Collaboration diagram for QTM2DData:

QTM2DData

+ cameraCount

+ twoDDropCount

+ twoDOutOfSyncRate

+ cameras

QTMCamera

+ markerCount

+ markers

cameras

QTM2DMarker

+ x

+ y

+ diameterX

+ diameterY

markers

Data Fields

• int32_t cameraCount
• uint16_t twoDDropCount

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.3 QTM2DMarker Struct Reference 14

• uint16_t twoDOutOfSyncRate
• QTMCamera ∗ cameras

5.3 QTM2DMarker Struct Reference

Data Fields

• int32_t x
• int32_t y
• int16_t diameterX
• int16_t diameterY

5.4 QTM3DData Struct Reference

Collaboration diagram for QTM3DData:

QTM3DData

+ markerCount

+ twoDDropCount

+ twoDOutOfSyncRate

+ markers

QTM3DMarker

+ x

+ y

+ z

+ residual

+ id

markers

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.5 QTM3DMarker Struct Reference 15

Data Fields

• uint32_t markerCount
• uint16_t twoDDropCount
• uint16_t twoDOutOfSyncRate
• QTM3DMarker ∗ markers

5.5 QTM3DMarker Struct Reference

Data Fields

• double x
• double y
• double z
• float residual
• uint32_t id

5.6 QTM6DBody Struct Reference

Data Fields

• double x
• double y
• double z
• double angle1
• double angle2
• double angle3
• float residual
• double ∗ rotationMatrix

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.7 QTM6DData Struct Reference 16

5.7 QTM6DData Struct Reference

Collaboration diagram for QTM6DData:

QTM6DData

+ bodyCount

+ twoDDropRate

+ twoDOutOfSyncRate

+ bodies

QTM6DBody

+ x

+ y

+ z

+ angle1

+ angle2

+ angle3

+ residual

+ rotationMatrix

bodies

Data Fields

• uint32_t bodyCount
• uint16_t twoDDropRate
• uint16_t twoDOutOfSyncRate
• QTM6DBody ∗ bodies

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.8 QTMAnalogData Struct Reference 17

5.8 QTMAnalogData Struct Reference

Collaboration diagram for QTMAnalogData:

QTMAnalogData

+ deviceCount

+ devices

QTMAnalogDevice

+ deviceId

+ channelCount

+ sampleCount

+ sampleNumber

+ data

devices

Data Fields

• int deviceCount
• QTMAnalogDevice ∗ devices

5.9 QTMAnalogDevice Struct Reference

Data will be layed out one float after another in the data member.

Data Fields

• int deviceId
• int channelCount
• int sampleCount

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.10 QTMCamera Struct Reference 18

• int sampleNumber
• float ∗ data

5.9.1 Detailed Description

Data will be layed out one float after another in the data member. First comes the first
channel’s samples, then the second channel’s and so on.

5.10 QTMCamera Struct Reference

Collaboration diagram for QTMCamera:

QTMCamera

+ markerCount

+ markers

QTM2DMarker

+ x

+ y

+ diameterX

+ diameterY

markers

Data Fields

• int32_t markerCount
• QTM2DMarker ∗ markers

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.11 QTMComponent Struct Reference 19

5.11 QTMComponent Struct Reference

Collaboration diagram for QTMComponent:

QTMComponent

+ size

+ type

+ comp2D

+ comp3D

+ comp6D

+ analog

+ force

+ compData

QTMAnalogData

+ deviceCount

+ devices

analog

QTMAnalogDevice

+ deviceId

+ channelCount

+ sampleCount

+ sampleNumber

+ data

devices

QTM6DData

+ bodyCount

+ twoDDropRate

+ twoDOutOfSyncRate

+ bodies

comp6D

QTM6DBody

+ x

+ y

+ z

+ angle1

+ angle2

+ angle3

+ residual

+ rotationMatrix

bodies

QTMForceData

+ plateCount

+ plates

force

QTMForcePlate

+ plateId

+ forceCount

+ forceNumber

+ forceData

plates

QTMForcePlateData

+ forceX

+ forceY

+ forceZ

+ momentX

+ momentY

+ momentZ

+ applicationPointX

+ applicationPointY

+ applicationPointZ

forceData

QTM3DData

+ markerCount

+ twoDDropCount

+ twoDOutOfSyncRate

+ markers

comp3D

QTM3DMarker

+ x

+ y

+ z

+ residual

+ id

markers

QTM2DData

+ cameraCount

+ twoDDropCount

+ twoDOutOfSyncRate

+ cameras

comp2D

QTMCamera

+ markerCount

+ markers

cameras

QTM2DMarker

+ x

+ y

+ diameterX

+ diameterY

markers

Data Fields

• uint32_t size
• uint32_t type
• union {

QTM2DData comp2D
QTM3DData comp3D
QTM6DData comp6D

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.11 QTMComponent Struct Reference 20

QTMAnalogData analog
QTMForceData force

} compData

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.12 QTMDataFrame Struct Reference 21

5.12 QTMDataFrame Struct Reference

Collaboration diagram for QTMDataFrame:

QTMDataFrame

+ timestamp

+ frameNumber

+ componentCount

+ components

QTMComponent

+ size

+ type

+ comp2D

+ comp3D

+ comp6D

+ analog

+ force

+ compData

components

QTMAnalogData

+ deviceCount

+ devices

analog

QTMAnalogDevice

+ deviceId

+ channelCount

+ sampleCount

+ sampleNumber

+ data

devices

QTM6DData

+ bodyCount

+ twoDDropRate

+ twoDOutOfSyncRate

+ bodies

comp6D

QTM6DBody

+ x

+ y

+ z

+ angle1

+ angle2

+ angle3

+ residual

+ rotationMatrix

bodies

QTMForceData

+ plateCount

+ plates

force

QTMForcePlate

+ plateId

+ forceCount

+ forceNumber

+ forceData

plates

QTMForcePlateData

+ forceX

+ forceY

+ forceZ

+ momentX

+ momentY

+ momentZ

+ applicationPointX

+ applicationPointY

+ applicationPointZ

forceData

QTM3DData

+ markerCount

+ twoDDropCount

+ twoDOutOfSyncRate

+ markers

comp3D

QTM3DMarker

+ x

+ y

+ z

+ residual

+ id

markers

QTM2DData

+ cameraCount

+ twoDDropCount

+ twoDOutOfSyncRate

+ cameras

comp2D

QTMCamera

+ markerCount

+ markers

cameras

QTM2DMarker

+ x

+ y

+ diameterX

+ diameterY

markers

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.13 QTMForceData Struct Reference 22

Data Fields

• int64_t timestamp
• int32_t frameNumber
• int32_t componentCount
• QTMComponent ∗ components

5.13 QTMForceData Struct Reference

Collaboration diagram for QTMForceData:

QTMForceData

+ plateCount

+ plates

QTMForcePlate

+ plateId

+ forceCount

+ forceNumber

+ forceData

plates

QTMForcePlateData

+ forceX

+ forceY

+ forceZ

+ momentX

+ momentY

+ momentZ

+ applicationPointX

+ applicationPointY

+ applicationPointZ

forceData

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.14 QTMForcePlate Struct Reference 23

Data Fields

• int32_t plateCount
• QTMForcePlate ∗ plates

5.14 QTMForcePlate Struct Reference

Collaboration diagram for QTMForcePlate:

QTMForcePlate

+ plateId

+ forceCount

+ forceNumber

+ forceData

QTMForcePlateData

+ forceX

+ forceY

+ forceZ

+ momentX

+ momentY

+ momentZ

+ applicationPointX

+ applicationPointY

+ applicationPointZ

forceData

Data Fields

• int32_t plateId

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.15 QTMForcePlateData Struct Reference 24

• int32_t forceCount
• int32_t forceNumber
• QTMForcePlateData ∗ forceData

5.15 QTMForcePlateData Struct Reference

Data Fields

• float forceX
• float forceY
• float forceZ
• float momentX
• float momentY
• float momentZ
• float applicationPointX
• float applicationPointY
• float applicationPointZ

5.16 QTMMsgHeader Struct Reference

Header used in all packets sent to the server.

Data Fields

• uint32_t size
Total size of the packet including this header.

• uint32_t type
Type of the packet.

5.16.1 Detailed Description

Header used in all packets sent to the server.

5.16.2 Field Documentation

5.16.2.1 uint32_t QTMMsgHeader::type

Type of the packet.

See also:

MsgType

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.17 QTMParam3D Struct Reference 25

5.17 QTMParam3D Struct Reference

Collaboration diagram for QTMParam3D:

QTMParam3D

+ axisUpward

+ labelCount

+ labels

QTMParamLabel

+ name

+ rgbColor

labels

Data Fields

• QTMParamAxis axisUpward
• int labelCount
• QTMParamLabel ∗ labels

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.18 QTMParam3DData Struct Reference 26

5.18 QTMParam3DData Struct Reference

Collaboration diagram for QTMParam3DData:

QTMParam3DData

+ xyz

+ res

+ label

QTMParamPoint

+ x

+ y

+ z

xyz

res

QTMParamLabel

+ name

+ rgbColor

label

Data Fields

• QTMParamPoint xyz
• QTMParamPoint res
• QTMParamLabel label

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.19 QTMParam6D Struct Reference 27

5.19 QTMParam6D Struct Reference

Collaboration diagram for QTMParam6D:

QTMParam6D

+ bodyCount

+ bodies

QTMParamBody

+ name

+ rgbColor

+ points

bodies

QTMParamPoint

+ x

+ y

+ z

points

Data Fields

• int bodyCount

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.20 QTMParamAnalog Struct Reference 28

• QTMParamBody ∗ bodies

5.20 QTMParamAnalog Struct Reference

Collaboration diagram for QTMParamAnalog:

QTMParamAnalog

+ deviceCount

+ devices

QTMParamDevice

+ id

+ name

+ channels

+ frequency

+ unit

+ rangeMin

+ rangeMax

+ labelCount

+ labels

devices

Data Fields

• int deviceCount
• QTMParamDevice ∗ devices

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.21 QTMParamBody Struct Reference 29

5.21 QTMParamBody Struct Reference

Collaboration diagram for QTMParamBody:

QTMParamBody

+ name

+ rgbColor

+ points

QTMParamPoint

+ x

+ y

+ z

points

Data Fields

• char ∗ name
• unsigned int rgbColor
• QTMParamPoint ∗ points

5.22 QTMParamCamera Struct Reference

Data Fields

• unsigned int id
• QTMParamCameraModel model
• unsigned int serial
• unsigned int markerResolutionWidth
• unsigned int markerResolutionHeight

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.23 QTMParamChannel Struct Reference 30

• unsigned int markerFOVLeft
• unsigned int markerFOVTop
• unsigned int markerFOVRight
• unsigned int markerFOVBottom
• unsigned int videoResolutionWidth
• unsigned int videoResolutionHeight
• unsigned int videoFOVLeft
• unsigned int videoFOVTop
• unsigned int videoFOVRight
• unsigned int videoFOVBottom
• double positionX
• double positionY
• double positionZ
• double positionRotation [9]

5.23 QTMParamChannel Struct Reference

Data Fields

• unsigned int index
• double conversionFactor

5.24 QTMParamDevice Struct Reference

Data Fields

• unsigned int id
• char ∗ name
• unsigned int channels
• unsigned int frequency
• QTMParamUnit unit
• int rangeMin
• int rangeMax
• int labelCount
• char ∗∗ labels

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.25 QTMParamForce Struct Reference 31

5.25 QTMParamForce Struct Reference

Collaboration diagram for QTMParamForce:

QTMParamForce

+ unit1

+ unit2

+ plateCount

+ plates

QTMParamPlate

+ index

+ analogDeviceId

+ frequency

+ type

+ name

+ length

+ width

+ location

+ origin

+ channelCount

+ channels

+ calibrationMatrix

plates

QTMParamChannel

+ index

+ conversionFactor

channels

QTMParamPoint

+ x

+ y

+ z

origin

location

Data Fields

• char ∗ unit1
• char ∗ unit2
• int plateCount
• QTMParamPlate ∗ plates

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.26 QTMParamGeneral Struct Reference 32

5.26 QTMParamGeneral Struct Reference

Collaboration diagram for QTMParamGeneral:

QTMParamGeneral

+ frequency

+ captureTime

+ cameraCount

+ cameras

QTMParamCamera

+ id

+ model

+ serial

+ markerResolutionWidth

+ markerResolutionHeight

+ markerFOVLeft

+ markerFOVTop

+ markerFOVRight

+ markerFOVBottom

+ videoResolutionWidth

+ videoResolutionHeight

+ videoFOVLeft

+ videoFOVTop

+ videoFOVRight

+ videoFOVBottom

+ positionX

+ positionY

+ positionZ

+ positionRotation

cameras

Data Fields

• unsigned int frequency
• double captureTime
• int cameraCount
• QTMParamCamera ∗ cameras

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.27 QTMParamLabel Struct Reference 33

5.27 QTMParamLabel Struct Reference

Data Fields

• char ∗ name
• unsigned int rgbColor

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.28 QTMParamParameters Struct Reference 34

5.28 QTMParamParameters Struct Reference

Collaboration diagram for QTMParamParameters:

QTMParamParameters

+ general

+ param3D

+ force

+ analog

QTMParam3D

+ axisUpward

+ labelCount

+ labels

param3D

QTMParamLabel

+ name

+ rgbColor

labels

QTMParamGeneral

+ frequency

+ captureTime

+ cameraCount

+ cameras

general

QTMParamCamera

+ id

+ model

+ serial

+ markerResolutionWidth

+ markerResolutionHeight

+ markerFOVLeft

+ markerFOVTop

+ markerFOVRight

+ markerFOVBottom

+ videoResolutionWidth

+ videoResolutionHeight

+ videoFOVLeft

+ videoFOVTop

+ videoFOVRight

+ videoFOVBottom

+ positionX

+ positionY

+ positionZ

+ positionRotation

cameras

QTMParamAnalog

+ deviceCount

+ devices

analog

QTMParamDevice

+ id

+ name

+ channels

+ frequency

+ unit

+ rangeMin

+ rangeMax

+ labelCount

+ labels

devices

QTMParamForce

+ unit1

+ unit2

+ plateCount

+ plates

force

QTMParamPlate

+ index

+ analogDeviceId

+ frequency

+ type

+ name

+ length

+ width

+ location

+ origin

+ channelCount

+ channels

+ calibrationMatrix

plates

QTMParamChannel

+ index

+ conversionFactor

channels

QTMParamPoint

+ x

+ y

+ z

origin

location

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.29 QTMParamPlate Struct Reference 35

Data Fields

• QTMParamGeneral ∗ general
• QTMParam3D ∗ param3D
• QTMParamForce ∗ force
• QTMParamAnalog ∗ analog

5.29 QTMParamPlate Struct Reference

Collaboration diagram for QTMParamPlate:

QTMParamPlate

+ index

+ analogDeviceId

+ frequency

+ type

+ name

+ length

+ width

+ location

+ origin

+ channelCount

+ channels

+ calibrationMatrix

QTMParamChannel

+ index

+ conversionFactor

channels

QTMParamPoint

+ x

+ y

+ z

origin

location

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.30 QTMParamPoint Struct Reference 36

Data Fields

• unsigned int index
• unsigned int analogDeviceId
• unsigned int frequency
• char ∗ type
• char ∗ name
• unsigned int length
• unsigned int width
• QTMParamPoint location [4]
• QTMParamPoint origin
• int channelCount
• QTMParamChannel ∗ channels
• double calibrationMatrix [6][6]

5.30 QTMParamPoint Struct Reference

Data Fields

• double x
• double y
• double z

5.31 QTMStreamFrequency Struct Reference

Public Types

• enum { QTM_STREAM_FREQUENCY_DIVISOR, QTM_STREAM_-
FREQUENCY, QTM_STREAM_ALL_FRAMES }

Data Fields

• enum QTMStreamFrequency:: { ... } kind
• uint16_t value

5.32 QTMVersion Struct Reference

Generic structure to represent a version with a major and a minor part.

Data Fields

• unsigned int major
• unsigned int minor

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

5.32 QTMVersion Struct Reference 37

5.32.1 Detailed Description

Generic structure to represent a version with a major and a minor part.

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

Index
API, 3

DPRINT, 5
qtmAPIInit, 5
qtmByteOrder, 5
qtmCheckLicense, 5
qtmClose, 6
qtmConnect, 6
qtmErrorToError, 6
qtmErrorToString, 7
qtmGetCapture, 7
qtmGetCurrentFrame, 7
qtmGetLastEvent, 8
qtmGetParameters, 8
qtmNew, 8
qtmQTMVersion, 9
qtmReleaseControl, 9
qtmSave, 9
qtmShutdown, 9
qtmStart, 10
qtmStop, 10
qtmStreamFrames, 10
qtmTakeControl, 11
qtmVersion, 11

DPRINT
API, 5

eventHandler
QRA, 12

QRA, 12
eventHandler, 12

QTM2DData, 13
QTM2DMarker, 14
QTM3DData, 14
QTM3DMarker, 15
QTM6DBody, 15
QTM6DData, 16
QTMAnalogData, 17
QTMAnalogDevice, 17
qtmAPIInit

API, 5
qtmByteOrder

API, 5
QTMCamera, 18
qtmCheckLicense

API, 5

qtmClose
API, 6

QTMComponent, 19
qtmConnect

API, 6
QTMDataFrame, 21
qtmErrorToError

API, 6
qtmErrorToString

API, 7
QTMForceData, 22
QTMForcePlate, 23
QTMForcePlateData, 24
qtmGetCapture

API, 7
qtmGetCurrentFrame

API, 7
qtmGetLastEvent

API, 8
qtmGetParameters

API, 8
QTMMsgHeader, 24

type, 24
qtmNew

API, 8
QTMParam3D, 25
QTMParam3DData, 26
QTMParam6D, 27
QTMParamAnalog, 28
QTMParamBody, 29
QTMParamCamera, 29
QTMParamChannel, 30
QTMParamDevice, 30
QTMParamForce, 31
QTMParamGeneral, 32
QTMParamLabel, 33
QTMParamParameters, 34
QTMParamPlate, 35
QTMParamPoint, 36
qtmQTMVersion

API, 9
qtmReleaseControl

API, 9
qtmSave

API, 9
qtmShutdown

INDEX 39

API, 9
qtmStart

API, 10
qtmStop

API, 10
qtmStreamFrames

API, 10
QTMStreamFrequency, 36
qtmTakeControl

API, 11
QTMVersion, 36
qtmVersion

API, 11

type
QTMMsgHeader, 24

Generated on Wed Jun 16 09:27:32 2010 for QMT RT API by Doxygen

