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Implementation and Evaluation of a Fixed Priority Scheduler
based on Priority Promotions for the Linux Kernel
CHRISTOFFER ACKELMAN
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

Priority promotions is a mechanism to make the priorities in a fixed priority sched-
ulers more dynamic. The purpose of this thesis was to investigate whether the
Fixed Priority with Priority Promotions (FPP) scheduler, which is uses a number
of priority promotions to generate an Earliest Deadline First (EDF) schedule, is an
effective strategy for reducing the overhead of real-time EDF schedulers when im-
plemented on a real platform. To investigate, the FPP scheduler, a “standard” EDF
scheduler based on a binary heap, and an EDF scheduler based on a Red-Black Tree
were implemented. The FPP scheduler was then benchmarked against the standard
EDF scheduler, but also against the rather mature and optimized EDF scheduler
in the Linux kernel, SCHED_DEADLINE, which is based on a Red-Black Tree.
The hypothesis was that the FPP scheduler would perform better than the binary-
heap based EDF scheduler, but that it would be inferior to SCHED_DEADLINE
since this scheduler has been developed and improved over several years by many
very competent developers. The first results showed that the implemented FPP and
EDF schedulers were largely incomparable to SCHED_DEADLINE with regard to
the release and scheduling overheads. Thus, the second EDF scheduler using the
Red-Black Tree from SCHED_DEADLINE was developed. The results showed that
the FPP scheduler outperform both the heap based and Red-Black Tree based EDF
schedulers implemented in this thesis. It was concluded that FPP is an effective
strategy for reducing the overhead of EDF schedulers, even for very optimized im-
plementations of EDF, when implemented on real platforms.

Keywords: Computer Science, Earliest-Deadline-First, Multiprocessor, Preemptive,
Priority Promotion, Real-Time Scheduling.
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1
Introduction

A real-time system is a system where the correctness of tasks depend not only on
the result, but also on the time when the result is delivered. Usually, every task has
a deadline and must deliver the result before that deadline. A common example of
a real-time system is the braking system in a car, if you press the brake and the car
brakes too late, after you have already crashed, then the result is useless. In real-
time systems the tasks usually arrive (i.e. the task wants to execute) periodically
with a fixed period between arrivals. Every new arrival of a task is called a job. A
scheduling algorithm is responsible for deciding which job to execute next.

A simple scheduling algorithm is Rate-Monotonic (RM) which always schedules the
task with shortest inter-arrival time. RM is a fixed priority scheduler since the pri-
orities are assigned beforehand and never change during runtime. On uniprocessors,
the slightly more complex Earliest Deadline First (EDF) is optimal. EDF works
as follows: at every time instant, it schedules the job whose deadline is closest in
time. EDF is a dynamic priority scheduler, since the priority of a task depend on
the current time instant and thus change during runtime. Since version 3.14 the
Linux kernel implements an EDF scheduler called SCHED_DEADLINE [1].

1.1 Problem Formulation

In real-time systems, schedulability analysis is used to determine if a task set is
guaranteed to meet all its deadlines when scheduled by a particular scheduler. A
problem with the research on real-time systems is that almost all such analysis
are done in a platform-agnostic manner, where practical quirks, such as runtime
overhead, are abstracted away and overlooked.

The problem with dynamic priority schedulers, such as EDF, is that they need
to manage and sort the jobs in the ready queue, which causes considerable run-
time overhead compared to fixed-priority schedulers, such as RM. This problem
was solved in theory by Pathan in 2015 [15] by combining a fixed-priority scheduler
with priority promotions to exhibit the behaviour of a dynamic priority scheduler.

1



1. Introduction

A priority promotion point is a point in time where the priority of a task is pro-
moted/increased, see figure 1.1. If assigned carefully, such a promotion point can
promote the priority of a task when it is close to its deadline, such that it receives
higher priority than one of the currently executing tasks and thus preempts that
task. This master thesis aims at comparing the scheduling algorithm presented by
Pathan [15] to the SCHED_DEADLINE scheduler, attempt to quantify the runtime
overhead, and identify how it affects the schedulability of task sets when scheduled
by these scheduling algorithms.

Task Period WCET
T1 5 2.5
T2 8 3.5

T1 T2 T1 T2

T1, T2 T1 T2 T1

Time0 1 2 3 4 5 6 7 8 9 10
(a) Rate-monotonic scheduling

T1 T2 T1

T1, T2 T1 T2 T1

Time0 1 2 3 4 5 6 7 8 9 10
(b) Rate-monotonic with priority promotion

Figure 1.1: The execution of a task set with only two tasks, where task T1 has
a shorter period and thus higher priority under RM. Each rectangle represents the
execution of a single job of the task and the down-arrows denote the deadline of a
job. The green arrow denote a priority promotion of task T2 such that it can no
longer be preempted by T1, and thus finishes before its deadline.

In [15, 16, 17] Pathan describe the details of the Fixed Priority with Priority Pro-
motions (FPP) scheduler, and thus form the basis of the implementation that shall
be evaluated in this master thesis. These works [15, 16, 17] also describe the bench-
marks used by Pathan to empirically evaluate the scheduler on an emulated platform,
similar benchmarks shall be used when evaluating the scheduler on the Linux kernel,
see section 6.3. Pathan [15, 16, 17] indicates that FPP may cause fewer preemptions
than EDF, but none of the papers [15, 16, 17] has investigated how a time penalty,
such as the runtime overhead caused by these preemptions, would affect the per-
formance of the two scheduling algorithms. This does however suggests a possible
advantage that the FPP scheduler may have over EDF.

2



1. Introduction

The implications of runtime overhead has been investigated to some extent by Bran-
denburg and Anderson [10] when comparing different optimization strategies for
EDF schedulers, see section 4.2. Brandenburg et al. has also made a more detailed
analysis of the cache-related overheads [5]. However, so far no such analysis has
been done on the FPP scheduler presented by Pathan. As indicated by the paper
“Design of an efficient ready queue for earliest-deadline-first (EDF) scheduler” [16],
FPP can be considered as an optimization strategy for EDF, thus making it an ideal
candidate for a comparison similar to the one done by Brandenburg and Anderson
in [10]. The following example will show why it is important to consider the runtime
overhead when analyzing a real-time system.

1.1.1 Problem Example

Consider a task set with two tasks, where the utilization of the task set is nearly
100%, for example 98%. In theory this task set should be schedulable on a unipro-
cessor, which is illustrated in figure 1.2 (a). However, on real systems the scheduler
is invoked to make a scheduling decision before a new job can start executing. This
scheduling decision causes some runtime overhead, which is illustrated by the red
area in figure 1.2 (b). If the total runtime overhead is greater than 2% of the available
processing time, the second task will miss its deadline even though it theoretically
should be schedulable. To avoid deadline misses, the total runtime overhead that
a task suffers from must be factored into the Worst-Case Execution Time (WCET)
of the task before applying the schedulability analysis to determine if the task set
is schedulable or not. Since the runtime overhead does not contribute anything to
the functionality of the task, it is desirable to minimize it. As described in section
1, dynamic priority schedulers typically suffer from considerable runtime overhead,
and thus many system designers choose to implement a fixed priority scheduler in-
stead, even if the fixed priority scheduler may not be able to utilize the processor to
the same extent as dynamic priority schedulers such as EDF can.

T1 T2

Time
(a) The theoretical outcome with-
out runtime overheads.

T1 T2

Time
(b) The real world outcome with run-
time overheads.

Figure 1.2: The execution outcome of a task set with only two tasks, where the
tasks WCETs are equal to their periods. Up-arrows denote the arrival of a job, and
down-arrows denote the deadline of a job. Each rectangle represents the execution
of a single job of the task. The filled red rectangle denote the runtime overhead
caused by the scheduler, and the red down-arrow denote the (missed) deadline of
task T2.
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As discussed in section 1.1, Pathan [15, 16, 17] implies that the FPP scheduler is
able to generate the same schedule as EDF, while causing fewer preemptions and
migrations than a typical EDF scheduler. Fewer preemptions and migrations does
imply the possibility of less overall runtime overhead, but this cannot be assumed
without a proper implementation. If each preemption causes more runtime overhead,
then it counteracts the benefit of fewer preemptions, and the result may actually
be more overall runtime overhead. As was already stated, the resulting runtime
overhead when running on a real system has not been analyzed previously and this
is the aim of the master thesis.

1.2 Goals

The theoretical challenge of this master thesis is to quantify the runtime overhead
and identify how it affects the performance of the two scheduling algorithms: FPP
and standard EDF. Pathan [15, 16, 17] implies that FPP may reduce the number of
preemptions and migrations, and therefore cause fewer context switches than EDF.
Intuitively, FPP should then be able to perform even better on the Linux kernel,
where context switches are expensive compared to the emulated platform used by
Pathan. However, this has not been explored yet and remains to be seem.

The practical challenge of this master thesis is to implement the fixed-priority (FPP)
scheduler presented by Pathan, and make the interface so similar to the dynamic
priority SCHED_DEADLINE, that it can be considered as an updated version of
SCHED_DEADLINE that does not break any backwards-compatibility. Switching
between the schedulers should be as simple as using a single system call, such that
system designers can switch from SCHED_DEADLINE to the FPP scheduler, and
vice versa, with minimum effort. Preferably, every task set schedulable by SCHED_
DEADLINE should also be schedulable by the FPP scheduler.

Besides a fully functional implementation of the FPP scheduler, the goal of the
master thesis is to quantify the runtime overheads listed below and empirically
acquire an upper bound for each source of runtime overhead. These overheads are
further described in section 2.5.

• Scheduling overhead which is caused directly by the runtime scheduler when
selecting the next job to run.

• Release overhead which occurs when a new job is released and the scheduler
must either enqueue the job in the ready queue, or it may also decide to sched-
ule the job. Many papers do not distinguish between release and scheduling
overhead and simply consider the release overhead to be part of the scheduling
overhead. For our purposes, it simplifies further discussions if we distinguish
between them.
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• Context-switch overhead which is caused by switching the stack and proces-
sor registers. The scheduler indirectly cause context-switch overhead when
changing between tasks.

An additional goal of the thesis is that the implementation of the schedulers should
be fairly straightforward and simple, such that other developers can quickly become
acquainted with the source code and make use of it. The code should not contain
any premature optimizations that make it difficult to understand.

1.3 Limitations and Scope

The master thesis should implement and analyze an FPP scheduler, and two EDF
schedulers, one EDF scheduler with a binary heap and one with a red-black tree. The
implemented schedulers and SCHED_DEADLINE shall be evaluated with respect
to three different runtime overheads: release overhead, scheduling overhead and
context-switch overhead. These runtime overheads shall be quantified for each of the
schedulers by empirically obtaining upper bounds on two different Central Process-
ing Unit (CPU)s, an Intel i3-4370 x86 processor and a quad-core ARM Cortex-A53.
However, this master thesis will not provide an analytical model for these sources
of runtime overhead, as this is a difficult research question on its own. The general
performance of the schedulers shall also be evaluated by analyzing the number of
randomly generated task sets that are guaranteed to successfully meet their dead-
lines when scheduled by each of these schedulers. Finally, there shall be a discussion
about these runtime overheads, the general performance of the schedulers as well
as how the implementation details of the schedulers affect their performance with
respect to the runtime overheads.

Other tasks are out of scope for the master thesis and will not be carried out.
In particular, SCHED_DEADLINE has been optimized for several years by many
different people. This thesis does not have the time to optimize the implemented
schedulers, when they are implemented and working as intended they must be con-
sidered “done”. Otherwise it is easy to get stuck optimizing and refining the code
forever, a path that has led countless software projects into the grave.

1.4 Report Structure

The remainder of this report follows a rather traditional structure with Background,
Method, Results and Conclusion. Chapter 2 provides a background on the field of
real-time scheduling, presenting the theory and notation necessary to understand
the contents of the report. Chapter 4 continues by presenting recent advances in
the field, to get the reader up to date on the related works that this thesis builds
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upon. After that, chapter 5 describe the implementation of the scheduling algo-
rithms evaluated in this thesis, and chapter 6 describe the tests and benchmarks
used to evaluate the implemented schedulers. The results of these tests and bench-
marks are presented in chapter 7. Finally, a discussion regarding these results are
held in chapter 8 before the report ends with a few concluding remarks in chapter
9.
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2
Theoretical Background

This chapter presents the background required to follow the rest of the thesis. It
starts off with hardware fundamentals, then proceeds to explain the theoretical
model used in real-time research, followed by a short background about common
real-time schedulers, before concluding with schedulability analysis and scheduler
overheads.

2.1 Hardware Fundamentals

We begin by giving a brief refresher on hardware fundamentals. Given the extent
of the topic, a comprehensive background is beyond the scope of the thesis. Thus,
we will present only the parts that have the biggest impact on real-time scheduling,
namely multicore processors, caches and interrupts. If you as a reader want a more
thorough background about computer hardware, there are free online courses in
computer architecture offered by Harvard or MIT.

2.1.1 Multiprocessors

A multiprocessor is an umbrella term used to denote two or more processing units
connected by a communication bus. The most common type of multiprocessor is a
multicore processor where several processing cores are placed on a single CPU. From
the perspective of real-time scheduling, there is no difference between a processor
core and a single-core processor, and thus we make no difference between a four-core
processor and four separate single-core processors. The term multiprocessor can also
be used to denote several CPUs connected within a single system (for example a
motherboard with several CPU sockets), or even separate systems connected by a
communication bus (i.e. a distributed system). The remainder of this thesis will
focus on homogeneous multiprocessors, more commonly called symmetric multipro-
cessors (SMP) because all processors are identical to each other. Systems where the
different processors are not identical to each other, such as the ARM big.LITTLE
processors where powerful and power-hungry (big) processor cores are coupled with
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2. Theoretical Background

slower and battery-saving (LITTLE) ones [4], are out of scope of this thesis and will
not be analyzed.

2.1.2 Caches

To reduce the high latency of accessing the main memory, modern processors utilize
a hierarchy of smaller and faster memories called caches. The caches store a copy
of the most frequently used instructions and data fetched from the main memory
such that this data can be read and manipulated quickly without accessing the
main memory. Caches are organized in several layers where the smallest and fastest
caches closest to the execution units are denoted level-1 (L1) caches, see figure 2.1.
Most modern processors have two L1 caches per CPU core, one instruction cache
(I-Cache) and one data cache (D-Cache). Some processors also have a larger and
slightly slower level-2 (L2) cache per CPU core farther away from the execution
units. The L2 caches store both instructions and data. Finally, most processor have
a single level-3 (L3) cache shared by all cores. The L3 cache is larger and slower
than the L2 caches, but it is still very small and fast compared to the main memory.
To give you an idea of the relative speedup of utilizing caches, a L1 cache hit may
take only around 1.5% of the time required to access the main memory. The cache
latency values specific to the hardware used in this thesis is listed in section 2.1.2.1
and 2.1.2.2. For a more comprehensive summary about the memory hierarchies
of modern processors, the paper “What Every Programmer Should Know About
Memory” by Ulrich Drepper [12] is an excellent resource.

2.1.2.1 x86 processor

The x86 processor used in this thesis is a two core Intel Skylake i3-4370 with Hy-
perThreading, which is an Intel-specific technique that allows one physical core to
appear as two logical cores to the operating system, thus the i3-4370 has four log-
ical cores. By duplicating the architectural state (i.e. the registers) of each core,
one logical core can continue executing instructions while the other logical core has
stalled (which is very common). The x86 processor has three levels of cache, see
figure 2.1: L1 consists of a 32K instruction cache and a 32K data cache, L2 consists
of a 256K shared cache and L3 consists of an 8MB cache shared across all cores.
Given that the clock frequency is 3.4 Ghz, a L1 cache hit takes 1 ns, a L2 cache hit
3.5 ns, a L3 cache hit 13 ns, and main memory access 63 ns (excluding the time
it takes to transfer the actual data, which is another 32 ns to transfer a 128 Byte
block of data)[11].
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Figure 2.1: The 3-level cache hierarchy used in x86 processors with two level-1 (L1)
caches per core, one instruction cache (I-Cache) and one data cache (D-Cache), one
level-2 (L2) cache per core and a single level-3 (L3) cache shared by all cores.

2.1.2.2 ARM processor

The ARM board used in this thesis is a Raspberry Pi 3 model B, which has an ARM
Cortex-A53 processor. It has two levels of cache, see figure 2.2: Level 1 consists of
a 32K instruction cache and a 32K data cache, and Level 2 consists of a 512K cache
shared across all cores. The “Level 2” cache of the Raspberry Pi corresponds to
the L3 cache on x86 processors, thus the cache hierarchy of the Raspberry Pi is
essentially the same as the x86 processor where the L2 caches of the x86 have been
removed. Given that the clock frequency is 1.2 Ghz, a level 1 cache hit takes 2.5 ns,
a level 2 cache hit 12.5 ns, and main memory access 140 ns [3].
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Figure 2.2: The 2-level cache hierarchy used in the Raspberry Pi with two level-1
(L1) caches per core, one instruction cache (I-Cache) and one data cache (D-Cache),
and a single level-2 (L2) cache shared by all cores.

2.1.3 Interrupts

Instead of busy waiting for asynchronous events, such as accessing the main memory,
modern processors use interrupts. With interrupts, the processor continues execut-
ing other instructions while waiting and when the asynchronous event has finished,
an interrupt flag is set to notify the processor. When the processor detects an inter-
rupt, it pauses the execution of the current process, saves a copy of all register values
to the stack, and executes a special Interrupt Service Routine (ISR) instead. When
the ISR has finished, the processor pops the registers from the stack and continues
executing the previous task. Interrupts are important to us because the ISR causes
delays that must be taken into account when determining if a task set is schedulable
or not.

There are several types of interrupts, and the three main categories are Device
interrupts, Timer interrupts and Inter-Processor interrupts. Device interrupts are
generated by hardware devices, for example the main memory to indicate that data
has been read and is now available to the processor. Timer interrupts are generated
by the expiry of hardware timers that have been armed at an earlier point in time.
These hardware timers can be used to trigger job releases or enforce execution-time
budgets for example. Finally, Inter-Processor Interrupts are used in multiprocessor
systems to synchronize caches or cause another processor to reschedule.

Most interrupts can be disabled, such that the processor delays the invocation of the
ISR until interrupts are enabled again. There are however interrupts that cannot
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be disabled, such as the “watch dog” functionality that detects if the system has
hanged. In the multicore processors used in this thesis, each processor core has its
own set of interrupt flags, thus disabling interrupts on one processor core does not
disable them on the other cores.

Some multicore processors support dedicated interrupt handling, where one of the
cores receives and handles all device interrupts and most of the timer interrupts.
Inter-Processor Interrupts can not be handled by a single core for obvious reasons.
Recent versions of Linux does support dedicated interrupt handling, but the config-
uration is complicated and thus it was not used in this thesis.

2.2 Real-Time Task Model

In real-time systems, the tasks (also called processes outside of the real-time research
area) are often recurrent and have a fixed period. An instance of a task – a job of
that task – starts, executes for a short period, and then suspends itself. After
a period, denoted pi, of time, the task arrives again, meaning that the scheduler
should invoke a new job of that task. The maximum time from the start of the task
until it has finished executing and suspends itself is called the WCET, denoted ci,
of the task. This is an upper bound on the time it may take to execute the task.
In real-time systems, the tasks may also have a deadline, denoted di, before which
they must complete their execution. See figure 2.3 for a visual description of these
terms. The task set τ is the set of all tasks, each denoted Ti, where i is the index of
the task. This way of defining tasks by their worst-case execution time, period and
deadline, Ti = (ci, pi, di), is called the Liu and Layland task model or more simply
the periodic task model.

If a task does not have a constrained deadline di ≤ pi, the task is given an implicit
deadline equal to the period of the task, di = pi. This is done to prevent previous
jobs of a task from interfering with new jobs of the same task. The jobs of a periodic
task always have a fixed time interval pi between job arrivals. If the jobs of a task
arrive with a minimum time between interval pi, but may arrive less frequently,
then the task is sporadic. Sporadic tasks may be used to model external events,
for example incoming network packets. It may be the case that the system should
receive sensor data over the network every 50 ms, but if there is contention over the
network, the data may be delayed or even dropped.
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t
ci

pi

di

Figure 2.3: A visual representation of the Liu and Leyland task model. Up-arrow
denotes arrival of the task, and down-arrow denotes the deadline of the task. Each
filled rectangle represents the execution of a single job of the task. ci denotes the
worst-case execution time, pi denotes the period, and di denotes the deadline of the
task.

Based on the Liu and Layland task model, it is common to derive parameters that
are specific to each job of the task. The arrival time (denoted ai,j) of a job is the
time when the job arrives to the scheduler and can start executing. For periodic
tasks, the arrival time can easily be calculated as ai,j = (j − 1)pi. The start time
(denoted si,j) is the time when the job is assigned to a processor by the scheduler.
The difference between the arrival time and the start time of a job is that the arrival
time is the time when the job is ready to start executing, while the start time is the
time when the job is scheduled on a processor and actually starts executing. When
a job arrives to the scheduler, it may be scheduled immediately, and thus the start
time will simply be the arrival time plus the runtime overhead of the scheduler.
However, the job may also be stored in the ready queue of the scheduler to be
scheduled at a later point in time. The finishing time (denoted fi,j) of a job is the
time when it has finished execution and suspends itself. Finally, the response time
(denoted ri,j) is the difference between the completion time and the arrival time of
the job. See figure 2.4 for a visual description of these terms.

t

ai,j di,j

si,j

ri,j fi,j

Figure 2.4: A visual representation of the job parameters derived from the Liu and
Leyland task model. Up-arrow denotes arrival of the task, and down-arrow denotes
the deadline of the task. The filled rectangle represents the execution of a single
job of the task. ai,j denotes the arrival time, si,j denotes the start time, di,j denotes
the absolute deadline, fi,j denotes the completion time and ri,j denotes the response
time of the job.
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2.3 Real-Time Scheduling

A scheduler is an implementation of a scheduling algorithm and is the program
responsible for selecting which job to execute at any given time instant.

2.3.1 Uniprocessor Real-Time Scheduling

In fixed priority schedulers, the task priorities are assigned beforehand and never
change during runtime. An example of a fixed priority scheduling algorithm is
Rate Monotonic (RM) which always schedule the task with the shortest period.
The tasks are sorted by their period, and priorities are assigned depending on the
resulting order beforehand. Another fixed priority scheduling algorithm is Deadline
Monotonic (DM) which is very similar to RM, but instead of scheduling the task with
the shortest period, it always schedule the task with the shortest relative deadline.
As with RM, the tasks are sorted and priorities are assigned beforehand, but under
DM the sorting is done based on the relative deadline of each task.

In dynamic priority schedulers, the priority of a task change during runtime. An
example of a dynamic priority scheduling algorithm is EDF, which is an optimal
scheduling algorithm on uniprocessors. EDF works as follows: at every time instant,
it schedules the job whose absolute deadline is closest in time. Thus, the priority of
a task depend on the current time instant.

2.3.2 Multiprocessor Real-Time Scheduling

Multiprocessor scheduling algorithms can be implemented in two primary ways.
In partitioned scheduling each processor is considered as a separate uniprocessor
machine, where each processor has its own ready queue and the tasks are divided
among the processors beforehand. Schedulability analysis of partitioned scheduling
algorithms is rather straightforward, except for the problem of dividing the task set
among the processors, the analysis is equivalent to the uniprocessor case.

The other way of implementing multiprocessor scheduling is global scheduling, where
the processors are considered as a common pool of resources that every task may
use and where all processors share a single ready queue. Global scheduling has
the potential to better utilize the processors. In contrast to partitioned scheduling,
where the schedulability analysis is rather straightforward, global scheduling requires
new techniques for schedulability analysis. The rest of this thesis will focus on global
scheduling.
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2.4 Schedulability Analysis

As real-time systems are often safety-critical, it is important that their correctness
can be verified, not only in their logic, but also in their timing characteristics.
Schedulability analysis is a way of formally proving that a certain task set will meet
all deadline even in the worst-case scenario. Typically, schedulability tests use the
parameters of the tasks combined with the knowledge of the scheduler used to answer
the question of whether all jobs can be guaranteed to finish before their deadline.

In Hard Real-Time (HRT) systems, deadlines are firm and every job must finish
execution before its (absolute) deadline. From this follows that the maximum re-
sponse time for every task Ti ∈ τ must be less than or equal to its relative deadline
di. Thus, we can define schedulability for hard real-time systems as follows:
Definition 2.4.1. A task set τ is HRT schedulable under a scheduling algorithm A
if and only if ri ≤ di for all tasks Ti when scheduled by A.

In some cases, deadline misses are acceptable if the extend of the deadline misses
are bounded by a constant. Such systems are called Soft Real-Time (SRT), and we
can define schedulability for soft real-time systems as:
Definition 2.4.2. A task set τ is SRT schedulable under a scheduling algorithm A
if and only if there exists a constant C such that ri ≤ di + C for all tasks Ti when
scheduled by A.

A real-time system may also have a mix of both hard real-time tasks and soft real-
time tasks.

A schedulability test is sufficient if a positive answers from the schedulability test
guarantees that the task set is schedulable. A negative answer from a sufficient test
does not say anything about the task set, and it may be schedulable anyway.

2.5 Overheads

As said in section 1.1, a problem with most research on real-time systems is that
runtime overheads are abstracted away. On real platforms, there are several sources
of runtime overhead [10] and those most relevant to this master thesis are listed
below:

• Scheduling overhead which is caused directly by the runtime scheduler when
selecting the next job to run.

• Release overhead which occurs when a new job is released and the scheduler
must either enqueue the job in the ready queue, or it may also decide to sched-
ule the job. Many papers do not distinguish between release and scheduling
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overhead and simply consider the release overhead to be part of the scheduling
overhead. For our purposes, it simplifies further discussions if we distinguish
between them.

• Context-switch overhead which is caused by switching the stack and proces-
sor registers. The scheduler indirectly cause context-switch overhead when
changing between tasks.

An example showing these sources of runtime overhead can be seen in figure 2.5

r s c J1 r J1 s c J2 s c

J1 J3 J1

r s c J2 s c J3 s c

J2 J3J2

Time0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P1

P2

Figure 2.5: A more complicated execution example taken from [10] with three
jobs (J1, J2 and J3) on two processors (P1 and P2), showing the different overheads
caused by the scheduler. Each rectangle represents the execution of a single job of
the task, up-arrows denote the arrival of a job, down-arrows denote the deadlines
and small “T” represent job completions. The filled pink rectangles denote the
runtime overheads caused by the scheduler, where “r” is the release overhead, “s”
is the scheduling overhead and “c” is the context switch overhead. Note that J3 is
released on processor P1, which asks processor P2 to reschedule since J3 has higher
EDF priority than J2, but lower than J1.

The impact of runtime overheads must be considered when doing the schedulability
analysis, otherwise the task set cannot be guaranteed to meet all its deadlines. The
typical way of accounting for the runtime overheads is to inflate the worst-case
execution time of each task by the maximum amount of overhead it may experience
from the scheduler. Thus, task set designers must know the worst-case overhead of
the scheduler used, which this thesis aims to provide by quantifying the overheads
of the implemented schedulers and SCHED_DEADLINE.
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3
Practical Background

This chapter presents the practical work that this thesis builds upon.

3.1 Real-Time Scheduling in Linux

Linux uses a hierarchy of schedulers, see table 3.1. Each task has a parameter
“policy” that indicates which scheduler it wants to run under. Linux iterates over
all available scheduling classes, and lets each scheduling class decide if there are
any jobs that it wants to schedule. A lower-priority scheduling class is only invoked
if the higher-priority scheduling classes do not have any jobs to schedule. After a
scheduling class has picked a job to schedule, the iteration stops, see listing 1. For
example, SCHED_DEADLINE only schedule jobs of tasks with policy “SCHED_
DEADLINE”. If at least one job from a task with policy SCHED_DEADLINE wants
to execute, SCHED_DEADLINE will return that job and the loop will exit. If no job
with policy SCHED_DEADLINE is ready for execution, the SCHED_DEADLINE
scheduler returns NULL (i.e. false) and on the next iteration of the loop, the next
scheduling class, SCHED_RT, will decide if it has any jobs to schedule. Thus, if
no jobs from real-time tasks want to execute at the moment, the Completely Fair
Scheduler (CFS) will be invoked to schedule non real-time tasks.

1 STOP
2 DEADLINE
3 RT
4 CFS
5 IDLE

Table 3.1: The hierarchical scheduling classes in Linux.
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for_each_class(class) {
p = class->pick_next_task(rq, prev);
if (p) {

return p;
}

}

Listing 1: Source code from the Linux kernel that iterates over the available
scheduling classes and lets each scheduling class decide if it has any tasks to schedule.

The STOP scheduling class is a special scheduler that schedules a per-CPU stop task
that preempts everything and can not be preempted by anything. This scheduling
class is used to migrate a task between processors. The IDLE scheduling class is an-
other special scheduler that schedules a per-CPU idle task, which can be preempted
by everything and is used to signal that the CPU is idle.

struct sched_class {
const struct sched_class *next;

// new task arrived -> set up first job release
void (*task_woken) (struct rq *rq, struct task_struct *p);

// task woke up after sleeping or blocking for IO
// may release a new job if the task was sleeping
// while waiting for the next job release
void (*enqueue_task) (struct rq *rq, struct task_struct *p,

int flags);

// currently executing task is going to sleep or block
// -> ask the cpu to reschedule
void (*yield_task) (struct rq *rq);

// the main ``schedule'' function
struct task_struct * (*pick_next_task) (struct rq *rq,

struct task_struct *prev,
struct pin_cookie cookie);

// calculate actual execution time
// if the task exhausted its budget -> ask the cpu to reschedule
void (*task_tick) (struct rq *rq, struct task_struct *p,

int queued);
};

Listing 2: Abbreviated interface of a scheduling class in the Linux kernel.

The abbreviated interface of a scheduling class in Linux can be seen in listing 2.
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There is no need to fully understand the scheduling class interface, the only thing of
importance is the responsibility of each function. The following description may be
slightly confusing since the Linux kernel does not make a distinction between a task
and a job, and thus use the term task even when it actually refer to a job. Therefore
most function names are confusing and unless we write otherwise, all functions work
on a single job despite their name.

The first field in the scheduling class, the next field, is a pointer to the next schedul-
ing class in the linked list traversed in listing 1. The task_woken function is invoked
when a new task has arrived, and it is responsible for setting up the first job release
of the task. yield_task is invoked when the currently executing job is going to
sleep or block, in which case it should ask the CPU to reschedule. enqueue_task is
invoked when a previously sleeping/blocked job has woken up, and it is responsible
for adding the job to the ready queue or asking the CPU to preempt the currently
executing job. If the task associated with the job was sleeping while waiting for
the next job release, the enqueue_task function should release the next job of the
task. The task_tick function is invoked periodically by a timer and is used to
calculate the actual execution time of the currently executing job, it can therefore
be used to enforce execution time budget. Finally, the pick_next_task function is
the main scheduling function responsible for making all scheduling decisions, it is
invoked when the CPU detects the “reschedule” interrupt flag and it should return
the next job to schedule.

3.1.1 SCHED_RT Scheduler

The SCHED_RT scheduler in Linux uses an array of linked lists and a bitmap as
the ready queue. Every entry (linked list) in the array is associated with a fixed task
priority, i.e. the k-th linked list contains tasks with priority k. To efficiently find the
highest priority ready task, the ready queue use a bitmap with one bit per priority
level. A bit in the bitmap is cleared if the corresponding linked list is empty, and set
if the linked list is non-empty. This ready queue is illustrated in figure 3.1. Modern
processors have an instruction called ffs which finds the first bit set in a 64 bit
bitmap (on 64-bit processors). The SCHED_RT scheduler allow for 100 different
priority levels.
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Figure 3.1: The ready queue used by FPP and the SCHED_RT scheduler in
Linux. Figure taken from [15].

The SCHED_RT scheduler can schedule tasks with two different scheduling policies:
First In, First Out (FIFO) or Round Robin (RR). Regardless of which, the scheduler
first finds the highest priority non-empty linked list. For tasks with the FIFO policy,
the scheduler then executes the first task in the linked list until completion and
removes it from the list, while tasks with the RR policy are only allowed to execute
for a fixed interval of time, after which they are appended to the end of their linked
list again (unless the task finished executing during the time interval). When one
linked list becomes empty, the SCHED_RT scheduler finds the next (lower priority)
non-empty linked list and repeats the procedure. The functionality of the SCHED_
RT scheduler can be summarized by the pseudocode in listing 3.

1. Find the highest priority non-empty linked list.
2. Fetch and remove the first task in the list.
3. If the task has policy FIFO: execute the task until completion.
4. If the task has policy RR: execute the task for a short interval of time, then

append it to the end of the list again.
5. Goto step 1.

Listing 3: Pseudocode for the SCHED_RT scheduler in the Linux kernel.
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3.1.2 SCHED_DEADLINE Scheduler

The Linux kernel includes a global EDF scheduler called SCHED_DEADLINE. This
scheduler uses a red-black tree as the ready queue. The decision to use a red-black
tree instead of a heap seems to be out of convenience rather than optimization [13].
The heap data structure in the Linux kernel is implemented on top of a fixed size
array. Since the scheduler does not know how many jobs that may arrive, it needs a
data structure with dynamic size. Thus, the kernel developers chose to use the red-
black tree, which was also used by the CFS at the time, instead of adding another
heap implementation based on pointers to the Linux kernel [13].

In addition to being a global EDF scheduler, SCHED_DEADLINE also implements
a Constant Bandwidth Server (CBS) to provide temporal protection and real-time
guarantees for sporadic tasks. Every period, the task is reserved and guaranteed
a specified amount of execution time. Tasks may execute earlier and consume of
their future reserved time if the system is idle. Tasks are also assigned a server
period. By assigning an execution time larger than or equal to the WCET of the
task, and a server period smaller than or equal to the task inter-arrival time, the
task is guaranteed by the CBS to complete before its deadline without interference
from other tasks [2].

3.2 Linux Testbed for Multiprocessor Scheduling
in Real-Time System & Related Work

In Linux Testbed for Multiprocessor Scheduling in Real-Time Systems (LITMUSˆRT),
a custom LITMUS scheduling class is added at the top of Linux hierarchical schedul-
ing classes, see table 3.2. Thus, the LITMUS scheduling class will be invoked first
when picking the next job to schedule. Instead of letting each task decide which
LITMUSˆRT scheduler it wants to use, LITMUSˆRT allows only one scheduler plu-
gin to be active at a time. This simplifies the implementation of new schedulers
slightly, but it also removes the flexibility that different tasks can be scheduled si-
multaneously by different schedulers. The LITMUS scheduling class invokes the
currently active LITMUSˆRT scheduler plugin, which will schedule all tasks with
the LITMUS policy.

1 LITMUS
2 STOP
3 DL
4 RT
5 CFS
6 IDLE

Table 3.2: The hierarchical scheduling classes in LITMUSˆRT.
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LITMUSˆRT also defines a new set of task and job parameters that are not present in
Linux. Tasks with this extra set of parameters are hereby called LITMUSˆRT tasks.
This is done to make the outwards interface more similar to the Liu and Leyland
task model. However, from this follows that the Linux schedulers are not compatible
with LITMUSˆRT tasks, but also that LITMUSˆRT scheduling plugins are not
compatible with vanilla Linux task sets. In contrast to Linux tasks that have a rather
sparse set of parameters, a WCET, period, deadline and fixed priority, LITMUSˆRT
tasks also have an offset, a CPU (in the case of partitioned scheduling), and flags
that indicate if they are periodic or sporadic, soft or hard real-time. LITMUSˆRT
also add the derived job parameters (see section 2.2) which are not present at all in
Linux: job number, release time, actual execution time, absolute deadline, and the
extent of an eventual deadline miss.

3.2.1 Release Queue

To set up and queue future time-based releases, LITMUSˆRT has a release queue.
When a job of a periodic task has finished executing, it is passed to the currently
active LITMUSˆRT scheduler plugin, which is responsible for triggering the next job
release. To minimize code duplication, this is handled by a release queue shared by
all LITMUSˆRT scheduler plugins. The release queue internally use high-resolution
hardware timers to trigger the job releases. However, instead of using one timer per
job, LITMUSˆRT use one timer per (absolute) release time together with a release
heap to store the jobs if several jobs are to be released at the same time instant.
When a new job with release at time t is passed to the release queue, it checks if a
release heap and timer for time t exists, in which case the new job is added to the
existing release heap. Otherwise, a new release heap is created and a new timer is
armed for time t. When a timer expires, the corresponding release heap is passed
to the scheduler plugin via the release_jobs() function.

3.2.2 Global EDF with Synchronization Support

LITMUSˆRT includes another global EDF scheduler called Global EDF with syn-
chronization support (GSN-EDF). This scheduler use binomial heaps both as the
ready queue and as release heaps to minimize the release overhead. When new jobs
are released, the (newly) released jobs in the release heap must be merged with the
jobs already in the ready queue. Binomial heaps can be merged in O(log n) time,
while binary heaps require O(n) time. The ready queue is protected by a single
course-grained lock. The scheduler is event driven and is thus invoked when a job
is released, preempted, finishes execution, sleeps, or blocks. GSN-EDF also imple-
ments the Flexible Multiprocessor Locking Protocol (FMLP) to synchronize access
to shared resources, a detailed description of FMLP can be found in [6].
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3.2.3 Feather Trace

Feather Trace is a logging framework, that can be used to record overhead data. It
contains functions to log the start and end times of a release, scheduling decision, and
context switch. Every function writes the type of event, e.g. “SCHED_START”,
together with the current timestamp to a log file. To avoid logging data for non real-
time processes, the functions in Feather Trace only write to the log files if the current
task has policy LITMUS. Feather Trace is designed to generate less overhead than
traditional logging, which is accomplished by using one log file per CPU to avoid
the contention over a common log file that otherwise occur. It also writes the data
in binary instead text format, and writes the log file entirely into memory to avoid
accessing secondary storage [9]. In addition to the logging functions, Feather Trace
also includes a few scripts that can be used to post-process the generated log files
and extract statistics.

3.2.4 The Schedulability Test Collection And Toolkit

The Schedulability Test Collection And Toolkit (SchedCAT) is a collection of schedu-
lability tests, see section 2.4. Since one schedulability test does not necessarily
dominate another, SchedCAT includes several schedulability tests for each type of
scheduler. For EDF it includes six different schedulability tests for hard real-time
task sets, and an additional test for soft real-time task sets. SchedCAT can also
generate task parameters at random according to different probability distributions,
see section 4.2.
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Prior work

This chapter presents the theoretical work that this thesis builds upon.

4.1 Fixed Priority Scheduling with Priority Pro-
motions

A problem with dynamic priority schedulers, such as EDF, is that they cause signifi-
cant runtime overhead compared to fixed-priority schedulers, like RM. This problem
was solved in theory by Pathan in 2015 [15] by combining a fixed-priority scheduler
with priority promotions in order to exhibit the behaviour of a dynamic priority
scheduler. A priority promotion point is a point in time where the priority of a job
is promoted/increased. If assigned carefully, such a promotion point can promote
the priority of a job when it is close to its deadline, such that it receives higher
priority than one of the currently executing tasks and thus preempts that task.
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Figure 3.1: The ready queue used by FPP and the SCHED_RT scheduler in
Linux. Figure taken from [15]. (Figure repeated from page 20)

The resulting algorithm, FPP uses the same ready queue as the SCHED_RT sched-
uler in Linux: an array of linked lists together with a bitmap to quickly search the
array and find the non-empty linked lists, see section 3.1.1 and figure 3.1. What
makes FPP unique is the three ready queue operations that enables it to gener-
ate EDF compatible schedules: release_preempt(), release_no_preempt() and
idle_remove().
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Task Period WCET
T1 5 2.5
T2 8 3.5

T1 T2 T1 T2

T1, T2 T1 T2 T1

Time0 1 2 3 4 5 6 7 8 9 10
(a) Rate-monotonic scheduling

T1 T2 T1

T1, T2 T1 T2 T1

Time0 1 2 3 4 5 6 7 8 9 10
(b) Rate-monotonic with priority promotion

Figure 1.1: The execution of a task set with only two tasks, where task T1 has
a shorter period and thus higher priority under RM. Each rectangle represents the
execution of a single job of the task and the down-arrows denote the deadline of a
job. The green arrow denote a priority promotion of task T2 such that it can no
longer be preempted by T1, and thus finishes before its deadline. (Figure repeated
from page 2)

In his papers [15, 16, 17], Pathan presents three slightly different implementations of
FPP. The first two versions use timers to trigger a separate priority_promotion()
operation [15, 17]. The third and final version drops the timers and instead handles
the priority promotions in the release_no_preempt operation [16]. See figure 1.1
for an illustration, the priority promotion of task T2 is triggered by the release of
the second job of T1 at time t = 5. In this thesis work two implementations of FPP
were evaluated, one with timers and one without. The implementation without
timers quickly proved to perform better, thus the implementation with timers was
discarded and not considered further. Therefore only the ready queue operations of
the third and final version of the FPP scheduler is described below, since this is the
version of FPP that were evaluated later in the thesis.

The first ready queue operation, release_preempt() is invoked when a new job
should preempt one of the currently executing jobs. This is done by first finding the
DM priority of the currently executing job, k, and the least set bit in the bitmap, l.
If l is an invalid index, i.e. l < 0 or l ≥ n, then set l := n+ 1. It then calculates the
minimum of these, p = min(k, l), and inserts the currently executing job into the
ready queue by prepending it to the pth linked list, and setting the corresponding
bit in the bitmap, B[p] := 1, to specify that the linked list is non empty.

27



4. Prior work

The second ready queue operation, release_no_preempt() is invoked when a new
job, with DM priority k, should not preempt the currently executing job. This
operation is done in four steps:

Step 1: Find the index h of the next higher-indexed non-empty linked list after the
kth linked list, i.e. find the minimum h such that B[h] = 1 and h > k.
This is done by calling the find_next_bit() function. If h is an invalid
index, i.e. h < 0 or h ≥ n, then jump to step 4.

Step 2: If the last element in the hth linked list has a smaller absolute deadline than
the new job, then all jobs in the hth linked list must have smaller deadlines
and thus higher EDF priority then the new job. The entire hth linked list is
moved to the end of the kth linked list. This process is repeated by jumping
to step 1.

Step 3: If the last element in the hth linked list has a larger absolute deadline than
the new job, then some jobs in the hth linked list may still have smaller
deadline than the new job. Thus, we must iterate over the hth linked
list and move only the elements that have smaller deadlines to the end of
the kth linked list. As soon as an element with larger deadline is found,
this process stops since the elements are sorted according to their absolute
deadlines.

Step 4: The new job is inserted at the end of the kth linked list, and the corre-
sponding bit in the bitmap is set, B[k] := 1, to specify that the kth linked
list is not empty.

The third ready queue operation, idle_remove() is invoked when the currently
executing job has finished and the CPU becomes idle. idle_remove finds the lowest-
indexed non-empty linked list, then removes and dispatches the first element in that
linked list. If the linked list is now empty, the corresponding bit in the bitmap is
cleared, B[k] := 0.

4.2 On the Implementation of Global Real-Time
Schedulers

In [10], Brandenburg and Anderson evaluated 7 different implementations of EDF
and this evaluation forms the basis of the method used to evaluate the schedulers in
this thesis, see section 6. In [10], the runtime overhead of each of the 7 schedulers
were obtained by tracing periodic task sets with 50 to 450 tasks in steps of 50, using
Feather Trace. For each such task set size, 10 task sets were generated and traced for
30 seconds each. The periods of the generated tasks follow a “Uniform moderate”
distribution and the utilizations follow a “Uniform light” distribution, see below.
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After acquiring the runtime overheads of each scheduler, these were used to assess
how the overheads of each scheduler affects the schedulability of randomly gener-
ated task sets. Task sets were generated using three period distributions and six
utilization distributions. For each combination of period and utilization distribu-
tion, task sets were generated by generating tasks until a specified utilization cap
(in the range [0,m]) was reached, and for each such utilization level, 1000 task sets
were generated. Before testing the schedulability of a task set, the task parameters
were adjusted to account for the overhead of the currently analyzed scheduler. This
work later resulted in SchedCAT, see section 3.2.4.

The three period distributions were:

• Uniform short [3ms, 33ms]

• Uniform moderate [10ms, 100ms]

• Uniform long [50ms, 250ms]

and the six utilization distributions were:

• Uniform light [0.001, 0.1]

• Uniform medium [0.1, 0.4]

• Uniform heavy [0.5, 0.9]

• Bimodal light [0.001, 0.5] with prob. 8/9 or [0.5, 0.9] with prob. 1/9

• Bimodal medium [0.001, 0.5] with prob. 6/9 or [0.5, 0.9] with prob. 3/9

• Bimodal heavy [0.001, 0.5] with prob. 4/9 or [0.5, 0.9] with prob. 5/9

A uniform distribution means that the numbers generated by the random function
are uniformly distributed over the interval, i.e. all numbers in the interval are equally
likely to be generated by the random function. A bimodal distribution means that
the random function is first used to pick one of the two intervals, and then used to
generate a uniformly distributed number within that interval.
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5
Implementation

This chapter presents the design and implementation details of the implemented
schedulers, starting with the common functionality shared by all the implemented
schedulers. Then the implementation of the “standard” EDF scheduler is described,
followed by the second EDF scheduler implemented. The chapters end with the
description of the implemented FPP scheduler.

5.1 Common Functionality

The code to assign jobs to processors at runtime is shared by all three implemented
schedulers. They all store the CPUs in a heap sorted by the deadline of the currently
executing job on each CPU. At the top of the heap is the CPU currently executing
the lowest EDF priority job. This enables us to efficiently check if a new job should
preempt any of the currently executing jobs. If the new job has lower priority than
the current lowest-priority job, then it should not preempt any of the currently
executing jobs. If it has higher priority than the current lowest-priority job, then
that job is preempted, the deadline associated with the CPU is updated and the
heap is rebalanced. Instead of O(m) for the preemption check, where m is the
number of processors, we now get O(1) with the tradeoff that we must rebalance
the heap, O(logm), whenever a new job preempts.

All three implemented schedulers support batching of simultaneous job releases via a
release queue. The implementation of this release queue roughly follow the descrip-
tion by Brandenburg in [7], and is thus similar to the release queue in LITMUSˆRT,
see section 3.2.1. The main difference is that our release queue use unordered linked
lists instead of the binomial heaps used in LITMUSˆRT. This decision to use un-
ordered linked lists was done to simplified the implementation of the schedulers.
Instead of implementing an efficient but complicated merge operation, we simply
iterate over the linked list, decide if each job should preempt or not, and call the
corresponding release function. This design decision does however increase the re-
lease overhead of our schedulers since the release queue is not efficiently merged with
the ready queue in the same way that binomial heaps can be merged.
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Since the batching done by the release queue was added as a small optimization and
is not part of the core functionality of the schedulers, it is turned off by default and
each task must signal to the scheduler if it wants to use the release queue. With
batching turned off, the schedulers default back to the core functionality provided
by Linux, which does not distinguish between a task sleeping for a short amount of
time, or waiting for the next job arrival. The task must arm a high-resolution timer,
setting up the next job release and suspending itself by yielding the CPU. When a
job yields, the task is gone from the perspective of the schedulers. Later when the
timer expires and the task wakes up again, it is therefore treated as a completely
new task by the scheduler.

All three implemented schedulers also support budget reinforcement, which is a
subset of the functionality provided by a full CBS, and can be used to provide
temporal isolation between tasks. Similarly to a CBS, every job is allocated a
budget, i.e. reserved a specified amount of execution time. When a job has executed
for its budget, it is preempted and discarded to avoid it from interfering with the
execution of other jobs. This is done by arming a high-resolution timer when the job
starts executing, which triggers the pick_next_task() function of the schedulers
upon expiry. The pick_next_task() function determines that the job has executed
for its budget and then acts the same way as if the job finished execution. The job
parameters are replaced by those of the next job, thus reusing the allocated memory,
and then the next job is passed to the release function of the scheduler.

5.2 EDF with Binary Heap Scheduler

A “standard” EDF scheduler was implemented in order to see how the FPP sched-
uler would perform compared to an EDF scheduler implemented by the same devel-
oper. Some developers are more skilled and write better code than others, thus the
performance of a scheduler is highly influenced by the proficiency of the developer
implementing it. The purpose of the EDF with Binary Heap (EDF-BH) scheduler
is to compare the EDF algorithm to the FPP algorithm, and to avoid comparing an
implementation of EDF by a very senior developer with an implementation of FPP
by a junior developer. This is the reason for implementing the EDF-BH scheduler
instead of using one of the global EDF schedulers already available, such as the
GSN-EDF scheduler in LITMUSˆRT. To avoid influence from [10] in particular, the
EDF-BH scheduler was developed before reading the paper.

In addition, the implemented EDF scheduler will be used to assess how optimized
SCHED_DEADLINE is. Thus, the EDF-BH scheduler was developed to be as
simple and straightforward as possible. A binary heap was chosen as the ready
queue of the EDF scheduler since it seems to be the most common data structure
used by EDF schedulers in literature. The global ready queue is protected by a
single lock to avoid issues stemming from concurrent access.
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Figure 5.1: Simplified flowchart of the EDF-BH scheduler. The orange squares
denote the event driven scheduler entry points, and the blue squares denote internal
helper functions.

The EDF-BH scheduler is an event-driven scheduler. In contrast to the FPP sched-
uler by Pathan [15, 16, 17], the EDF-BH scheduler does not have a specialized
release_no_preempt() function. When a new job is released, the common release()
function check if the job should preempt any of the currently executing jobs, other-
wise it is added to the ready queue. If it should preempt, a helper function similar
to release_preempt() is invoked that does the following:

• First, the currently executing job is added to the ready queue.

• Second, the new job is “linked” to the CPU (LITMUSˆRT terminology: In
Linux only the pick_next_task() function may make scheduling decisions.
To circumvent this, other functions temporarily store the result of their most
recent scheduling decision as a “linked” job).

• Third, the scheduler asks the CPU to preempt the currently executing job by
setting the “reschedule” interrupt flag.

If the currently executing job is successfully preempted, it invokes the pick_next_task()
function. The currently executing task may be executing a critical section with pre-
emptions disabled on the local CPU, thus we cannot preempt it immediately and
instead ask the CPU to preempt by setting the “reschedule” interrupt flag. The
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CPU later preempts the currently executing job when it exits its critical section and
enables preemptions again.

Note that the name of the release() function is a bit misleading since it may be
called for jobs that have a release time in the future and should not be released
yet. If this is the case, the release() function passes the job to the release queue
instead. When the release timer expires, the release queue pass the job back to
the scheduler via release_jobs(). The difference between release_jobs() and
release() is that release_jobs() receive a release heap that may contain several
jobs, while release() only receive a single job at a time.

When the currently executing job is preempted, finished execution, exhausts its
budget, sleeps, or blocks, the job invokes the pick_next_task() function. The
pick_next_task() function first check if the currently executing job, or the next
job of the task, should be added to the ready queue. Then, if a job is linked to
the CPU, it schedules the linked job. If no job is linked to the CPU, i.e. the
processor becomes idle, then the scheduler schedules the job at the top of the heap
and removes it from the heap. This is similar to the idle_remove() operation of
the FPP scheduler, see section 4.1, except with a different data structure.

After implementing the EDF-BH scheduler, it can be concluded that it turned out
to be conceptually similar to the GSN-EDF scheduler in LITMUSˆRT. Both are
event driven, use a heap as the ready queue and protect the ready queue with a
single lock. The main difference is that GSN-EDF use a binomial heap, while the
implemented EDF scheduler use a binary heap, and that the GSN-EDF scheduler can
only schedule LITMUSˆRT tasks. The GSN-EDF scheduler also provide support
for synchronizing access to shared resources by implementing the FMLP [6], see
section 3.2.2. Any such synchronization support is not provided by EDF-BH or any
of the other implemented schedulers. Task set designers are recommended to use an
external library if synchronization support is needed.

5.3 EDF with Red-Black Tree Scheduler

The first results from the benchmarks showed that the runtime overheads differed so
much between the implemented schedulers and SCHED_DEADLINE that they were
incomparable. To identify if the performance of the SCHED_DEADLINE scheduler
is due to an efficient ready queue (a red-black tree), or if it is unrelated to the data
structure used as ready queue, a third scheduler was implemented. The EDF with
Red-Black Tree (EDF-RBT) scheduler is identical to the EDF-BH scheduler, with
the only difference that the binary heap has been replaced by the red-black tree used
by the SCHED_DEADLINE scheduler. As the SCHED_DEADLINE scheduler,
EDF-RBT cache the leftmost node in the red-black tree so that the highest EDF
priority job can be accessed in O(1) time.
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5.4 FPP Scheduler

The FPP scheduler use the same array of linked lists and bitmap data structure as
the Linux SCHED_RT scheduler. As the EDF-BH scheduler, the ready queue is
protected by a single lock. A problem with this data structure is that we can not
increase the size of the data structure at runtime, since allocating memory at runtime
is very expensive. The FIFO/RR schedulers statically allocates 100 linked lists at
compile time, but we chose to use 512 linked lists instead because each linked list in
the FPP scheduler is initially associated with a unique (relative) deadline. Before
any priority promotions have occured, the initial priorities of the tasks are assigned
in DM order, and thus each linked list is associated with a unique relative deadline.
If only 100 linked lists are used, this would allow for up to 100 tasks with unique
relative deadlines. To support larger task sets, 512, which is the number of priority
levels in LITMUSˆRT, was chosen instead. If a task set designer has an even larger
task set, the task set designer can easily change the single line in the source code
that defines the size of the FPP ready queue and recompile the kernel.

Figure 5.2: Simplified flowchart of the basic FPP scheduler. The orange squares
denote the event driven scheduler entry points, and the blue squares denote internal
helper functions.
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The FPP scheduler has two different functions that are executed when a new job
arrives depending on if the job should preempt or not. release_preempt() is
called when the new job should preempt one of the currently executing jobs, and
release_no_preempt() is called when the new job should not preempt any of the
currently executing jobs. When a new job arrives, the common release() func-
tion determines if the job should preempt and then calls the correct function. The
release_preempt() and release_no_preempt() functions closely follow the de-
scription by Pathan, see section 4.1 for a summary or [17] for complete details. The
release_preempt() function only differ from the description by Pathan in that it
does not directly preempt the currently executing job, but instead links the newly
arrived job to the CPU and asks the CPU to preempt by setting the “reschedule”
interrupt flag, just as the EDF-BH scheduler does.

The pick_next_task() function is nearly identical to that of the EDF-BH and
EDF-RBT schedulers, the only difference is that we call idle_remove() if no job is
linked to the CPU and the CPU becomes idle.
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This chapter presents the methods used to evaluate and compare the implemented
schedulers. The evaluation was done in three steps. First the schedule generated by
the schedulers was verified, second the runtime overheads caused by the schedulers
were quantified and analyzed, third and finally the acquired runtime overheads were
used to assess the schedulability of randomly generated task sets when scheduled by
the schedulers.

6.1 Schedule Verification

To verify that the FPP scheduler generates a schedule identical to SCHED_DEADLINE,
a small verification script was written. The script reads a schedule generated by each
of the schedulers when running the overhead benchmarks, see section 6.2, and check
the schedule against a simple EDF decision test. Every time a scheduling decision
was made, the verification script check that one of the current m earliest-deadline
jobs was scheduled.

6.2 Runtime Overheads

The runtime overheads caused by the schedulers were evaluated using the same
uniform moderate periods and uniform light utilizations as Brandenburg and An-
derson [10], see section 4.2 for more information.

A dummy periodic task was written that takes a pair of task parameters, waits for a
start signal, and then alternates between spinning for its WCET and sleeping until
the next release of the next job. The LITMUSˆRT User-Space Library (liblitmus)
includes a similar dummy task called “rtspin” which only works under LITMUSˆRT
plugins. However, it was deemed as more time-consuming to rewrite rtspin, such
that it works under the standard Linux schedulers than to simply write a new dummy
task from scratch.
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For each task set size between [m, 20m] in steps of m, the benchmark script calls
SchedCAT to generate the task parameters for n tasks. The periods of the tasks
are “Uniform moderate”, i.e. uniformly distributed between [10ms, 100ms], and
the utilization of the tasks are “Uniform light”, i.e. uniformly distributed between
[0.001, 0.1], see section 6.3. For each scheduler, the script initializes the n dummy
tasks with the given parameters, starts Feather Trace to collect overhead samples,
and then synchronously releases the dummy tasks. It then waits for 60 seconds before
stopping Feather Trace and killing the tasks. The procedure of calling SchedCAT to
generate a task set and tracing the task set under all four schedulers is repeated 10
times before proceeding to the next task set size. The reason for tracing 10 task sets
for each size is to decrease the influence that the randomization of task parameters
may have and therefore increase the level of confidence in the obtained overheads.
For example, since the parameters of the tasks are random, it may happen that every
task in a generated task set get the maximum period of 100ms which likely will not
cause the maximum amount of overhead since the scheduler is invoked infrequently.

Before computing the worst- and average-case overheads, so called “outliers” were
removed. When repeatedly measuring the overheads of a scheduler, some of the
obtained samples may be “outliers”, i.e. samples appear that significantly differ from
the general trend. For example, there may be a single sample showing an overhead
ten times as large as the other samples. This is likely caused by the scheduler being
interrupted by an external event during overhead measurement. Brandenburg found
four causes of outliers [8], of which two have been solved and are no longer a problem
when recording and analyzing overheads with Feather Trace. The remaining two
causes are:

• Interrupts in between recorded timestamps.

• Preemptions in user space before reporting a timestamp to the kernel.

While these have not been solved, Feather Trace does export an interrupt count
together with each recorded timestamp such that these outliers can be detected and
manually removed.

6.3 Schedulability

The schedulability of the schedulers were evaluated using randomly generated task
sets, with the same three period distributions and six utilization distributions as
Brandenburg and Anderson [10], see section 4.2. SchedCAT includes functions for
generating task parameters according to these distributions. For example, if called
with “uni-moderate” periods and “uni-short” utilizations, the resulting task set will
follow these distributions and the parameters of one task in the task set may be a
period of 3ms, a utilization of 0.001, and thus a WCET of 3ms ∗ 0.001 = 0.003ms.
For each combination of period and utilization distribution, task sets were generated
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by generating tasks until a specified utilization cap (in the range [0,m]) was reached,
and for each such utilization level, 1000 task sets were generated.

For each of the 18 different combinations of period and utilization distribution, task
sets were generated by creating tasks until a specified utilization cap (in the range
[0,m]) was reached. The initial sampling point range from 0 to m in steps of 1, and
then additional sampling points are chosen adaptively using the algorithm from “The
Yacas Book of Algorithms” [18] with a maximum depth of 10, such that the density
of sampling points is high where the curve changes rapidly. For each sampling point,
1000 task sets were generated.

As in [10], we are unlikely to capture the true worst-case overhead in a Linux-based
system. Thus, we have to interpret “HRT” as deadline are almost never missed,
and “SRT” as deadline tardiness is bounded on average. With those slightly softer
definitions, our acquired worst-case overheads can be used when testing for hard
real-time schedulability, and our acquired average-case overheads when testing for
soft real-time schedulability.

Before testing the schedulability of a task set, the parameters of each task were ad-
justed to account for the overhead of the currently analyzed scheduler using Sched-
CAT, which implements the rather complicated equations at the bottom of page
262 in Brandenburgs Dissertation [7]. After inflating the parameters of each task,
the task set was tested to see if it passed the schedulability tests. Since we can-
not know which schedulability test the task set designers may use, a task set was
deemed as “schedulable” if it passed at least one of the schedulability tests available
in SchedCAT, and “non-schedulable” otherwise. This was repeated for each of the
schedulers before a new task set was generated.

Note that SchedCAT post-process the runtime overheads in order to acquire a mono-
tonically increasing continuous function f(n) for each overhead. The first step of this
post-processing is to make the overheads monotonically increasing with respect to
task set size. A monotonically increasing function g is a function where g(m) ≤ g(n)
for all n and m where m ≤ n. In order to make a function f monotonically increas-
ing we can simply define g as g(x) = max{f(x), f(x − 1)} with g(0) = f(0). Note
that this is a recursive definition, if f has a maximum at f(0) then g will be a
constant, g(x) = f(0). This step is done because a large task set may invoke the
scheduler more frequently and thus the data structures of the scheduler are more
likely to exploit temporal locality and remain cached, which in turn may reduce
the observed overheads compared to a smaller task set. However, since caches are
largely unpredictable, we cannot depend on them to always decrease the runtime
overheads when scheduling large task sets. Therefore, we assume that when analyz-
ing the schedulability of a task set, it may suffer from the same runtime overheads
as smaller task sets.

The second step of the post-processing is to create a continuous function from the
discrete points. SchedCAT does this in the simplest possible way, by piecewise linear
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6. Evaluation Methods

interpolation between the discrete points. Piecewise linear interpolation works like
this: to get the overhead at a point x that is between two discrete points n and m,
you first calculate the slope k of the curve between n and m, and the point m where
this linear curve intercepts the y-axis. Then plug in x into the equation for a linear
curve y = kx+m to get the overhead y at the point x.

Using the methods presented in this chapter, the schedulers were evaluated and the
results are presented in the chapter 7.
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7
Results

This chapter presents the results acquired, and the structure of the chapter follows
that of the method chapter. First is the verification of the schedule generated by
the schedulers. Second is the runtime overheads caused by the schedulers, first
the overheads on the x86 without batching of simultaneous releases, second the
overheads on the x86 with batching, and third the overheads acquired on the ARM
board. Third and finally is the schedulability of randomly generated task sets when
scheduled by the schedulers.

7.1 Schedule Verification

All four schedulers, EDF-BH, EDF-RBT, FPP, and SCHED_DEADLINE generated
global EDF compatible schedules for periodic tasks with correct WCET. The only
differences were observed for task sets that were clearly not schedulable, and where
jobs missed their deadlines. Under these conditions, the schedules were no longer
equal. For example, one scheduler could successfully schedule task A and B, but not
task C, while another scheduler successfully scheduled C but not A or B. One reason
for this is that the implemented schedulers do not discard a task if its WCET is longer
than the remaining time until its deadline. Since task set designers are assumed to
use one of the available schedulability tests, and thus do not try to schedule task
sets that are definitely not schedulable, we conclude that the generated schedules
are identical for the purposes of this thesis.

7.2 Runtime Overheads

This section presents the runtime overheads of the schedulers observed on the Intel
i3-4370 without batching, on the Intel i3-4370 with batching and on the Raspberry
Pi 3 model B.
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7.2.1 x86

On the x86, approximately 15% of the recorded samples were found to be outliers
that had been disturbed by interrupts, in comparison to only 1.5 ppm outliers on the
ARM, see section 7.2.3. Thus a very large proportion of the collected samples had
to be discarded in order to compare the schedulers. The large number of interrupts
disturbing the schedulers cause implications not only for HRT scheduling but also for
SRT scheduling, see section 8.2. After filtering all the outliers, it can be stated that
the FPP scheduler perform better than the EDF-BH and EDF-RBT schedulers, see
figure 7.1. The worst-case overheads, and the average-case overheads for task sets
with many tasks, are lower for the FPP scheduler than the EDF-BH and EDF-RBT
schedulers.

The worst-case context switch overhead, figure 7.1 (a), is a chaos, most likely caused
by the caches. The average-case context switch overheads, figure 7.1 (b), are nearly
identical for all implemented schedulers, but there is a small trend for the FPP
scheduler to cause a slightly higher context-switch overhead. While the magnitude
of the runtime overheads cause by the FPP scheduler are lower than those of the
EDF-BH and EDF-RBT schedulers, the claim by Pathan [15, 16, 17] that FPP
should perform fewer scheduling decisions and context switches than EDF could
not be verified, see figure 7.2. All three implemented schedulers perform the same
number of scheduling decisions and context switches.

Except for the worst-case context switch overhead, figure 7.1 (a), the implemented
schedulers consistently perform worse than SCHED_DEADLINE with respect to
the magnitude of the overheads. This comparison is a bit flawed however, see
section 8.1. Worth noting is that while the implemented schedulers cause higher
runtime overheads than SCHED_DEADLINE, they also perform significantly fewer
scheduling decisions than SCHED_DEADLINE, and thus also incur fewer context
switches. See section 8 for a discussion.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.1: Worst-case (left), and average-case overheads (right). Note that out-
liers have been filtered before computing the worst- and average-case values.

43



7. Results

(a)

(b)

(c)

Figure 7.2: Total number of overheads experienced by the ten task sets. The y-axis
represents the total number of overheads experienced by the ten task sets over the
course of ten minutes.
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7.2.2 Batching Releases

Using the release queue to batch simultaneous releases dramatically reduce the num-
ber of times the release function is called, especially for large task sets, see figure
7.3 (c). This effectively reduces the average-case release overhead, figure 7.3 (b),
while the observed worst-case release overhead remained unchanged, figure 7.3 (a).
Because it releases a group of tasks instead of releasing the tasks one by one, this
also leads to slightly fewer scheduling decisions and context switches, see figure 7.3
(d) and (e). If 2m tasks are releases simultaneously, releasing them one by one may
cause up to 2m preemptions, while batching and releasing them as a group cause
at most m preemptions. The scheduling and context switch overheads remained
unchanged when batching was turned on.

Since it would be misleading to compare the implemented schedulers with this batch-
ing functionality against SCHED_DEADLINE which does not have batching, all
schedulability experiments were run using the overheads acquired with batching
turned off. With batching turned on, the implemented schedulers perform better
in the SRT schedulability tests because the average-case release overhead is signifi-
cantly lower, but they are still slightly worse than SCHED_DEADLINE since the
other overheads remain largely unchanged with batching turned on.
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(a) (b)

(c)

(d) (e)

Figure 7.3: Comparison of the FPP scheduler with and without batching of simul-
taneous releases. The y-axis represents time in (a) and (b) and the total number
of overheads experienced by the ten task sets over the course of ten minutes in (c),
(d) and (e). Note that outliers have been filtered before computing the worst- and
average-case values.46



7. Results

7.2.3 ARM

In contrast to the chaotic overheads obtained on the x86, the overheads observed
on the Raspberry Pi were very consistent and with extremely few outliers. Per
one million overhead samples recorded, there were only 1.5 outliers observed on the
Raspberry Pi and the magnitude of these outliers were around one minute so they
were clearly separated from the rest of the values.

Another significant difference between the x86 and the ARM processor used in the
Raspberry Pi is that the overheads observed on the x86 are in microseconds, while
the overheads on the ARM are in nanoseconds! Despite that a huge number of
outliers were filtered for the x86, the worst-case context switch overhead is still 8.5
times larger, the worst-case release overhead is approximately 60 times larger, and
the worst-case scheduling overhead is 40 timer larger than the corresponding on the
ARM. For the average-case overheads, the difference is less dramatic, the context
switch overhead is 12 timer larger on the x86, the release overheads is 16.5 times
larger, and the scheduling overhead is 8 times larger than the ARM.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.4: Worst-case overheads, on the x86 (left), on the Raspberry Pi 3 Model
B (right). Note that the graphs have different scales and that outliers have been
filtered before computing the worst-case values.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.5: Average-case overheads, on the x86 (left), on the Raspberry Pi 3 Model
B (right). Note that the graphs have different scales and that outliers have been
filtered before computing the worst-case values.
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7.3 Schedulability

The thesis generated a total of 36 schedulability graphs for the x86 processor and
another 36 graphs for the Raspberry Pi. Due to space constraints, figure 7.6 and 7.7
only present the schedulability results for task sets with uniform moderate periods
obtained using the overhead data from the x86. The schedulability graphs for the
ARM follow this same trend, except that the difference between the schedulers is
so small that no difference can be seen, see appendix B. It is already difficult to see
a difference between the schedulers in terms of schedulability with the overheads
obtained on the x86.The graphs for uniform moderate periods were selected since
most tasks at Svenskt Stål AB (SSAB) have periods in the range [10, 100] ms.
All schedulability graphs can be found in appendix A and B for the x86 and the
Raspberry Pi respectively.

As expected, the implemented schedulers perform slightly worse than SCHED_
DEADLINE since the runtime overheads cause by the implemented schedulers were
higher than those of SCHED_DEADLINE, this is most obvious in figure 7.6 (a)
and (b). Worth noting is that the overheads caused by the schedulers primarily
reduce the schedulability of task sets with many low-utilization tasks, where the
scheduler is invoked very frequently. For task sets with few high-utilization tasks,
the runtime overheads caused by the scheduler barely affect the schedulability of
the task set. It is also worth nothing that there is barely any difference between the
schedulers in terms of schedulability, not even between the implemented schedulers
and SCHED_DEADLINE, for task sets where the utilization of the tasks follow
a bimodal distribution (i.e. a mix of light and heavy tasks), see figure 7.7. That
the FPP scheduler performs worst for SRT scheduling of uni-light utilization and
uni-moderate periods, figure 7.6 (b), can be explained by the slightly higher average-
case context-switch overhead of the FPP scheduler, see figure 7.1 (b). Since figure
7.6 (b) shows the schedulability of task sets with very many low-utilization tasks,
there may be a lot of context-switches and thus a small increase in context-switch
overhead makes a large difference in schedulability.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.6: Schedulability for task sets with moderate periods and uniformly dis-
tributed utilization. Hard real-time to the left, soft real-time to the right. The black
line (G-EDF) represent the theoretical bound without overheads.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.7: Schedulability for task sets with moderate periods and bimodally
distributed utilization. Hard real-time to the left, soft real-time to the right. The
black line (G-EDF) represent the theoretical bound without overheads.
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8
Discussion

Before concluding the thesis, there are a few things that need to be discussed. First
is the chaotic runtime overheads acquired on the x86, the effect of batching simul-
taneous job releases, and the astonishing overheads acquired on the ARM board.
Second is the schedulability of randomly generated task sets when scheduled by the
schedulers, which differs significantly between the x86 and the ARM. Finally, we
present future work that could be done to improve and evaluate the schedulers, as
well as some recommendations regarding x86 versus ARM when using Linux.

8.1 Runtime overheads

The claim by Pathan [15, 16, 17] that FPP should cause fewer context switches
than EDF could not be verified, figure 7.2, since all three implemented schedulers
caused roughly the same number of context switches. This may be attributed to the
design of the implemented EDF-BH and EDF-RBT schedulers. These schedulers
were designed with FPP in mind, and thus their design is largely influenced by
the description of the FPP scheduler by Pathan. All three implemented schedulers,
including the FPP scheduler, are event-driven EDF schedulers using a coarse-grained
lock to synchronize access to the global ready queue. These design decisions, event-
driven versus quantum-driven, coarse-grained versus fine-grained locking, with or
without dedicated interrupt handling, may influence the number of preemptions
and migrations. The main difference between the implemented schedulers is only
the data structure used as the ready queue, where the EDF-BH and EDF-RBT use
a binary heap and a red-black tree respectively, while the FPP scheduler use an
array of linked lists together with the FPP ready queue operations. The conclusion
that must be drawn is that the ready queue of the FPP scheduler does not by itself
reduce the number of context switches, but it does however reduce the magnitude
of the runtime overheads caused by the scheduler, figure 7.1.

The comparison against SCHED_DEADLINE is not entirely fair since the imple-
mented schedulers perform all scheduling decisions in the five functions in listing 2.
There are another 15 functions that a scheduling class can implement and SCHED_
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DEADLINE fully utilize all of these instead of squeezing all logic into a subset of
them. When measuring for example the scheduling overhead, we only measure the
time taken to execute the pick_next_task function. This works for the imple-
mented schedulers where all scheduling decisions are made in the measured func-
tions, but SCHED_DEADLINE performs many decisions in the other function that
were not measured, and thus these decisions are not part of the observed runtime
overhead.

8.1.1 x86

The raw overheads observed on the Linux x86 system varied immensely, with fluc-
tuations that were too big to be the result of caching. A complete cache miss in all
three cache levels incur a main memory access that takes 63 ns, but the fluctuations
in observed overheads were a magnitude 1000 timer larger than that. The cause of
these massive fluctuations were traced back to interrupts in between the recorded
timestamps and it was found that approximately 15% of the recorded overhead sam-
ples had been disturbed by external interrupts and had to be filtered. The number
and magnitude of interrupts disturbing the schedulers cause implications not only
for HRT scheduling but also for SRT scheduling, see section 8.2.

8.1.2 Batching releases

Batching simultaneous job releases with the release queue effectively reduce the
average-case release overhead experienced by a job, while the worst-case release
overhead remain unchanged, figure 7.3. Since real-time schedulability analysis is
done without taking the observed number of overheads into account, batching does
not increase the schedulability of HRT task sets, and may even decrease the schedu-
lability slightly. For SRT scheduling however, it effectively reduces the average-case
release overhead while keeping the worst-case overheads bounded, and thus improve
the schedulability of SRT task sets.

8.1.3 ARM

In contrast to the overheads obtained on the x86, there were very few outliers in
the overhead samples obtained on the Raspberry Pi. These outliers were also very
large in their magnitude and may be caused by an insufficient power supply since
the Raspberry Pi was fed with exactly the minimum power required. When CPU
utilization goes up and the Raspberry Pi becomes warm, the minimum power re-
quired to boot the Raspberry Pi may become insufficient and cause the board to
hang. The Raspberry Pi not only caused very few outliers compared to the x86,
but after filtering out the outliers, the overheads observed on the Raspberry Pi were
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8− 75 times smaller than those observed on the x86, see section 7.2.3 and figure 7.4
and 7.5.

8.2 Schedulability

In hindsight, it would have been better to focus on the Raspberry Pi and evaluate
the schedulers there. The large number of outliers that had to be filtered on the x86
processor make the schedulability results unreliable and they do not reflect the true
schedulability of a four core x86 processor running Linux since we do not account
for these external interrupts in the schedulability tests. Unfortunately, we do not
know the actual worst-case overheads since we do not know how if the number of
interrupts that may disturb the scheduler can be bounded. It may even be the
case that these interrupts can starve the scheduler, in which case both the HRT
and the SRT schedulability is zero on the x86. We believe that this problem may
be alleviated to some degree on multicore processors by using dedicated interrupt
handling, see section 2.1.3. With dedicated interrupt handling, the schedulability
results in this thesis may be applicable. For a system with five processor cores,
where one of the cores is dedicated to interrupt handling, the remaining four cores
may exhibit a schedulability that match the schedulability graphs in figure 7.6 and
7.7.

The Raspberry Pi is a completely different story, the runtime overheads caused by
the schedulers are very small and thus affect the schedulability of the analyzed task
sets to a much lower extent. In order for the runtime overheads of the schedulers
to significantly reduce the schedulability of a task set on the Raspberry Pi, the task
set must contain a very large number of tasks and the tasks must have very short
periods, compare figure B.1 (many tasks and short periods) to figure B.3 (few tasks
and short periods) and figure B.13 (many tasks and long periods).

At first it may seem peculiar that the implemented schedulers perform comparably
to SCHED_DEADLINE and not better since they cause fewer overheads, figure 7.2.
However, when inflating the parameters of a task set to verify the schedulability of
the task set, the actual number of overheads is not taken into account, only the
magnitude of the overheads. Instead, a worst-case number of overheads is calcu-
lated and multiplied by the magnitude of the overheads. Given that the magnitude
of the runtime overheads were higher for the implemented schedulers compared to
SCHED_DEADLINE, figure 7.1, they are expected to perform worse in the schedu-
lability tests. It is interesting however that the difference between the schedulers
is primarily seen for task sets with many tasks, figure 7.6 (a) and (b). Since each
task in these task sets have a low utilization, many tasks have to be generated in
order to reach the fixed utilization cap, and the scheduler is invoked very frequently
for task sets with many tasks. In figure 7.6 (c), (d), (e) and (f), the utilization of
each task is higher, thus fewer tasks are needed to reach the utilization threshold,
and for task sets with few tasks the overhead of the scheduler barely matters. It is
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also interesting that no difference between the schedulers can be seen for task sets
where the utilization of the tasks follow a bimodal distribution (i.e. a mix of light
and heavy tasks), figure 7.7.

8.3 Future work

The implemented FPP scheduler can be further improved in two ways. First, the
FPP scheduler is limited to 512 unique relative deadlines. This limitation can be
more or less removed by switching from a sequential bitmap to hierarchical bitmaps,
which would allow for a much larger data structure without increasing the runtime
overhead of the scheduler [14].

The second step is to take the current implementation of SCHED_DEADLINE,
replace the red-black tree with the FPP ready queue, and evaluate it against the
original SCHED_DEADLINE implementation. The work in this thesis suggests that
FPP is an effective strategy for reducing the magnitude of the runtime overheads
caused by EDF schedulers, even for rather mature and optimized implementations
of EDF such as the SCHED_DEADLINE scheduler. Thus the modified SCHED_
DEADLINE using the FPP ready queue is expected to perform slightly better than
the original SCHED_DEADLINE implementation. Since the data structure used
by FPP is already used by the SCHED_RT scheduler, this modification should be
relatively small since it only involves the addition of the FPP ready queue operations
and the removal of red-black tree related code. The main bulk of the work is to
evaluate the modified SCHED_DEADLINE against the original implementation to
verify that it actually performs better.

Finally, future research on evaluating real-time schedulers should be done on cheap
ARM boards such as the Arduino or the Raspberry Pi. These ARM boards provide
relatively high performance while still retaining the predictability that is crucial to
real-time scheduling. Given the low price of these boards, they will quickly become
the new standard for real-time systems. This thesis used a x86 because SSAB have
traditionally used low-cost x86 consumer processors in their SRT systems. With the
release of the Arduino and Raspberry Pi boards, there are now better alternatives
available and this thesis used a Raspberry Pi since SSAB are evaluating them for use
in future real-time systems. A recommendation to the company would be to start
deploying Raspberry Pis as their new real-time systems, and to enable dedicated
interrupt handling on their current real-time systems. Without dedicated interrupt
handling, the x86 processors may cause a possible unbounded number of interrupts
in which case they cannot be safely used for real-time systems since they cannot
guarantee a schedulability larger than zero.

56



9
Conclusion

The purpose of this thesis was to investigate if FPP was an effective strategy for
reducing the overhead of EDF schedulers when implemented on a real platform. To
investigate, a FPP scheduler and a “standard” EDF scheduler based on a binary
heap, EDF-BH, were implemented. The FPP scheduler was benchmarked against
the EDF-BH scheduler, but also against the rather mature and optimized EDF
scheduler in the Linux kernel, SCHED_DEADLINE, which uses an red-black tree
as ready queue. The hypothesis was that the FPP scheduler would perform better
than the binary-heap based EDF-BH scheduler, but that it would be inferior to
SCHED_DEADLINE since this scheduler has been developed and improved for
several years by many very competent developers.

From the first results it could be concluded that the implemented FPP and EDF-
BH schedulers were incomparable to SCHED_DEADLINE. Thus, a second EDF
scheduler equal to the EDF-BH scheduler, but with the red-black tree from SCHED_
DEADLINE as the ready queue, was developed. The results showed that the FPP
scheduler outperform both the heap based and red-black tree based EDF schedulers
implemented in this thesis. It did not cause fewer context switches compared to
the two EDF schedulers, but the magnitude of the runtime overheads caused by the
scheduler were significantly smaller. The results also showed that the performance
of SCHED_DEADLINE is unrelated to the data structure used as the ready queue,
and that the FPP ready queue would most likely be an improvement over the red-
black tree used by SCHED_DEADLINE.

Evaluating the schedulers on a x86 Linux system gave a very surprising result. The
potentially unbounded number of interrupts cause implications for both SRT and
HRT scheduling, and Linux on x86 processors should only be used for real-time
scheduling with dedicated interrupt handling. Since cheap ARM boards such as the
Arduino and the Raspberry Pi are becoming increasingly common and will be the
future of real-time systems, future work should use and evaluate real-time schedulers
on these ARM boards instead. They provide good performance while still retaining
the predictability that is crucial to real-time scheduling.

Based on the runtime overheads observed both on the Intel i3-4370 (x86) and on
the Raspberry Pi 3 model B (ARM), the conclusion is that FPP does not reduce
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the number of context switches compared to similar EDF schedulers. It is however
an effective strategy for reducing the magnitude of the runtime overheads caused by
EDF schedulers, probably even for rather mature and optimized implementations
of EDF such as the SCHED_DEADLINE scheduler.
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A
Complete Schedulability Results

for x86

This appendix contains the complete schedulability results for the x86. The following 18
figures depict the schedulability results obtained for each combination of the period and
utilization distributions listed in section 4.2.

• Figure A.1 shows schedulability for uniform light utilizations and short periods.

• Figure A.2 shows schedulability for uniform medium utilizations and short periods.

• Figure A.3 shows schedulability for uniform heavy utilizations and short periods.

• Figure A.4 shows schedulability for bimodal light utilizations and short periods.

• Figure A.5 shows schedulability for bimodal medium utilizations and short periods.

• Figure A.6 shows schedulability for bimodal heavy utilizations and short periods.

• Figure A.7 shows schedulability for uniform light utilizations and moderate periods.

• Figure A.8 shows schedulability for uniform medium utilizations and moderate periods.

• Figure A.9 shows schedulability for uniform heavy utilizations and moderate periods.

• Figure A.10 shows schedulability for bimodal light utilizations and moderate periods.

• Figure A.11 shows schedulability for bimodal medium utilizations and moderate peri-
ods.

• Figure A.12 shows schedulability for bimodal heavy utilizations and moderate periods.

• Figure A.13 shows schedulability for uniform light utilizations and long periods.

• Figure A.14 shows schedulability for uniform medium utilizations and long periods.

• Figure A.15 shows schedulability for uniform heavy utilizations and long periods.

• Figure A.16 shows schedulability for bimodal light utilizations and long periods.

• Figure A.17 shows schedulability for bimodal medium utilizations and long periods.

• Figure A.18 shows schedulability for bimodal heavy utilizations and long periods.
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A. Complete Schedulability Results for x86

(a) Hard real-time

(b) Soft real-time

Figure A.1: Schedulability for task sets with uniformly distributed short periods
and uniformly distributed light utilizations. The black line (G-EDF) represent the
theoretical bound without overheads.
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A. Complete Schedulability Results for x86

(a) Hard real-time

(b) Soft real-time

Figure A.2: Schedulability for task sets with uniformly distributed short periods
and uniformly distributed medium utilizations. The black line (G-EDF) represent
the theoretical bound without overheads.
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A. Complete Schedulability Results for x86

(a) Hard real-time

(b) Soft real-time

Figure A.3: Schedulability for task sets with uniformly distributed short periods
and uniformly distributed heavy utilizations. The black line (G-EDF) represent the
theoretical bound without overheads.
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A. Complete Schedulability Results for x86

(a) Hard real-time

(b) Soft real-time

Figure A.4: Schedulability for task sets with uniformly distributed short periods
and bimodally distributed light utilizations. The black line (G-EDF) represent the
theoretical bound without overheads.

V



A. Complete Schedulability Results for x86

(a) Hard real-time

(b) Soft real-time

Figure A.5: Schedulability for task sets with uniformly distributed short periods
and bimodally distributed medium utilizations. The black line (G-EDF) represent
the theoretical bound without overheads.
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A. Complete Schedulability Results for x86

(a) Hard real-time

(b) Soft real-time

Figure A.6: Schedulability for task sets with uniformly distributed short periods
and bimodally distributed heavy utilizations. The black line (G-EDF) represent the
theoretical bound without overheads.
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A. Complete Schedulability Results for x86

(a) Hard real-time

(b) Soft real-time

Figure A.7: Schedulability for task sets with uniformly distributed moderate peri-
ods and uniformly distributed light utilizations. The black line (G-EDF) represent
the theoretical bound without overheads.
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A. Complete Schedulability Results for x86

(a) Hard real-time

(b) Soft real-time

Figure A.8: Schedulability for task sets with uniformly distributed moderate pe-
riods and uniformly distributed medium utilizations. The black line (G-EDF) rep-
resent the theoretical bound without overheads.
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A. Complete Schedulability Results for x86

(a) Hard real-time

(b) Soft real-time

Figure A.9: Schedulability for task sets with uniformly distributed moderate peri-
ods and uniformly distributed heavy utilizations. The black line (G-EDF) represent
the theoretical bound without overheads.
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A. Complete Schedulability Results for x86

(a) Hard real-time

(b) Soft real-time

Figure A.10: Schedulability for task sets with uniformly distributed moderate pe-
riods and bimodally distributed light utilizations. The black line (G-EDF) represent
the theoretical bound without overheads.
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A. Complete Schedulability Results for x86

(a) Hard real-time

(b) Soft real-time

Figure A.11: Schedulability for task sets with uniformly distributed moderate
periods and bimodally distributed medium utilizations. The black line (G-EDF)
represent the theoretical bound without overheads.
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A. Complete Schedulability Results for x86

(a) Hard real-time

(b) Soft real-time

Figure A.12: Schedulability for task sets with uniformly distributed moderate peri-
ods and bimodally distributed heavy utilizations. The black line (G-EDF) represent
the theoretical bound without overheads.
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A. Complete Schedulability Results for x86

(a) Hard real-time

(b) Soft real-time

Figure A.13: Schedulability for task sets with uniformly distributed long periods
and uniformly distributed light utilizations. The black line (G-EDF) represent the
theoretical bound without overheads.
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A. Complete Schedulability Results for x86

(a) Hard real-time

(b) Soft real-time

Figure A.14: Schedulability for task sets with uniformly distributed long periods
and uniformly distributed medium utilizations. The black line (G-EDF) represent
the theoretical bound without overheads.
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A. Complete Schedulability Results for x86

(a) Hard real-time

(b) Soft real-time

Figure A.15: Schedulability for task sets with uniformly distributed long periods
and uniformly distributed heavy utilizations. The black line (G-EDF) represent the
theoretical bound without overheads.
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A. Complete Schedulability Results for x86

(a) Hard real-time

(b) Soft real-time

Figure A.16: Schedulability for task sets with uniformly distributed long periods
and bimodally distributed light utilizations. The black line (G-EDF) represent the
theoretical bound without overheads.

XVII



A. Complete Schedulability Results for x86

(a) Hard real-time

(b) Soft real-time

Figure A.17: Schedulability for task sets with uniformly distributed long periods
and bimodally distributed medium utilizations. The black line (G-EDF) represent
the theoretical bound without overheads.
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A. Complete Schedulability Results for x86

(a) Hard real-time

(b) Soft real-time

Figure A.18: Schedulability for task sets with uniformly distributed long periods
and bimodally distributed heavy utilizations. The black line (G-EDF) represent the
theoretical bound without overheads.
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A. Complete Schedulability Results for x86
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B
Complete Schedulability Results

for ARM

This appendix contains the complete schedulability results for the Raspberry Pi 3 model
B. The following 18 figures depict the schedulability results obtained for each combination
of the period and utilization distributions listed in section 4.2.

• Figure B.1 shows schedulability for uniform light utilizations and short periods.

• Figure B.2 shows schedulability for uniform medium utilizations and short periods.

• Figure B.3 shows schedulability for uniform heavy utilizations and short periods.

• Figure B.4 shows schedulability for bimodal light utilizations and short periods.

• Figure B.5 shows schedulability for bimodal medium utilizations and short periods.

• Figure B.6 shows schedulability for bimodal heavy utilizations and short periods.

• Figure B.7 shows schedulability for uniform light utilizations and moderate periods.

• Figure B.8 shows schedulability for uniform medium utilizations and moderate periods.

• Figure B.9 shows schedulability for uniform heavy utilizations and moderate periods.

• Figure B.10 shows schedulability for bimodal light utilizations and moderate periods.

• Figure B.11 shows schedulability for bimodal medium utilizations and moderate peri-
ods.

• Figure B.12 shows schedulability for bimodal heavy utilizations and moderate periods.

• Figure B.13 shows schedulability for uniform light utilizations and long periods.

• Figure B.14 shows schedulability for uniform medium utilizations and long periods.

• Figure B.15 shows schedulability for uniform heavy utilizations and long periods.

• Figure B.16 shows schedulability for bimodal light utilizations and long periods.

• Figure B.17 shows schedulability for bimodal medium utilizations and long periods.

• Figure B.18 shows schedulability for bimodal heavy utilizations and long periods.
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B. Complete Schedulability Results for ARM

(a) Hard real-time

(b) Soft real-time

Figure B.1: Schedulability for task sets with uniformly distributed short periods
and uniformly distributed light utilizations. The black line (G-EDF) represent the
theoretical bound without overheads.
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B. Complete Schedulability Results for ARM

(a) Hard real-time

(b) Soft real-time

Figure B.2: Schedulability for task sets with uniformly distributed short periods
and uniformly distributed medium utilizations. The black line (G-EDF) represent
the theoretical bound without overheads.
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B. Complete Schedulability Results for ARM

(a) Hard real-time

(b) Soft real-time

Figure B.3: Schedulability for task sets with uniformly distributed short periods
and uniformly distributed heavy utilizations. The black line (G-EDF) represent the
theoretical bound without overheads.
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B. Complete Schedulability Results for ARM

(a) Hard real-time

(b) Soft real-time

Figure B.4: Schedulability for task sets with uniformly distributed short periods
and bimodally distributed light utilizations. The black line (G-EDF) represent the
theoretical bound without overheads.
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B. Complete Schedulability Results for ARM

(a) Hard real-time

(b) Soft real-time

Figure B.5: Schedulability for task sets with uniformly distributed short periods
and bimodally distributed medium utilizations. The black line (G-EDF) represent
the theoretical bound without overheads.
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B. Complete Schedulability Results for ARM

(a) Hard real-time

(b) Soft real-time

Figure B.6: Schedulability for task sets with uniformly distributed short periods
and bimodally distributed heavy utilizations. The black line (G-EDF) represent the
theoretical bound without overheads.
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B. Complete Schedulability Results for ARM

(a) Hard real-time

(b) Soft real-time

Figure B.7: Schedulability for task sets with uniformly distributed moderate peri-
ods and uniformly distributed light utilizations. The black line (G-EDF) represent
the theoretical bound without overheads.
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B. Complete Schedulability Results for ARM

(a) Hard real-time

(b) Soft real-time

Figure B.8: Schedulability for task sets with uniformly distributed moderate pe-
riods and uniformly distributed medium utilizations. The black line (G-EDF) rep-
resent the theoretical bound without overheads.
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B. Complete Schedulability Results for ARM

(a) Hard real-time

(b) Soft real-time

Figure B.9: Schedulability for task sets with uniformly distributed moderate peri-
ods and uniformly distributed heavy utilizations. The black line (G-EDF) represent
the theoretical bound without overheads.
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B. Complete Schedulability Results for ARM

(a) Hard real-time

(b) Soft real-time

Figure B.10: Schedulability for task sets with uniformly distributed moderate pe-
riods and bimodally distributed light utilizations. The black line (G-EDF) represent
the theoretical bound without overheads.
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B. Complete Schedulability Results for ARM

(a) Hard real-time

(b) Soft real-time

Figure B.11: Schedulability for task sets with uniformly distributed moderate
periods and bimodally distributed medium utilizations. The black line (G-EDF)
represent the theoretical bound without overheads.

XXXII



B. Complete Schedulability Results for ARM

(a) Hard real-time

(b) Soft real-time

Figure B.12: Schedulability for task sets with uniformly distributed moderate peri-
ods and bimodally distributed heavy utilizations. The black line (G-EDF) represent
the theoretical bound without overheads.

XXXIII



B. Complete Schedulability Results for ARM

(a) Hard real-time

(b) Soft real-time

Figure B.13: Schedulability for task sets with uniformly distributed long periods
and uniformly distributed light utilizations. The black line (G-EDF) represent the
theoretical bound without overheads.
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B. Complete Schedulability Results for ARM

(a) Hard real-time

(b) Soft real-time

Figure B.14: Schedulability for task sets with uniformly distributed long periods
and uniformly distributed medium utilizations. The black line (G-EDF) represent
the theoretical bound without overheads.
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B. Complete Schedulability Results for ARM

(a) Hard real-time

(b) Soft real-time

Figure B.15: Schedulability for task sets with uniformly distributed long periods
and uniformly distributed heavy utilizations. The black line (G-EDF) represent the
theoretical bound without overheads.
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B. Complete Schedulability Results for ARM

(a) Hard real-time

(b) Soft real-time

Figure B.16: Schedulability for task sets with uniformly distributed long periods
and bimodally distributed light utilizations. The black line (G-EDF) represent the
theoretical bound without overheads.
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B. Complete Schedulability Results for ARM

(a) Hard real-time

(b) Soft real-time

Figure B.17: Schedulability for task sets with uniformly distributed long periods
and bimodally distributed medium utilizations. The black line (G-EDF) represent
the theoretical bound without overheads.
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B. Complete Schedulability Results for ARM

(a) Hard real-time

(b) Soft real-time

Figure B.18: Schedulability for task sets with uniformly distributed long periods
and bimodally distributed heavy utilizations. The black line (G-EDF) represent the
theoretical bound without overheads.
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