

Conformational B-Cell epitope prediction
Master’s thesis in Computer Science – algorithms, languages and logic

FREDRIK STRÖM

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Master’s thesis 2016

Conformational B-Cell epitope prediction

FREDRIK STRÖM

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden 2016

Conformational B-Cell epitope prediction
FREDRIK STRÖM

© FREDRIK STRÖM, 2016.

Supervisor: Graham Kemp, Department of Computer Science and Engineering
Examiner: Wolfgang Ahrendt, Department of Computer Science and Engineering

Master’s Thesis 2016
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Antigen-Antibody complex visualized in Jmol, colored the different protein
chains with different colors.

Typeset in LATEX
Gothenburg, Sweden 2016

iv

Conformational B-Cell epitope prediction
FREDRIK STRÖM
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
There is demand for higher quality therapeutic proteins in our society. Medical drug
developing companies strive for lower development cost and shorter development
time. This require faster and more reliable ways of testing the therapeutic proteins
before releasing them to the public. This project aimed to investigate one part
of this problem, the conformational B-cell epitopes which is the interface between
an foreign molecule (antigen) and an antibody. It was done by development of
two different epitope models, which then was used as a base for creation of two
training data sets. These training sets were then used to train machine learning
algorithms in order to classify areas on molecule surfaces which are prone to be an
epitope. Different problems in this research area is discussed and possible solutions
is proposed.

Keywords: epitope, conformational epitope, artificial neural network

v

Acknowledgements

Graham Kemp, Helena Lyberg, Gothenburg, 2016

vii

Contents

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Conformational B-cell epitopes . 1
1.2 Purpose and goals . 1
1.3 Method . 2
1.4 Thesis Outline . 2

2 Background 3
2.1 Immunology . 3

2.1.1 B-Cells . 3
2.1.2 Antibody-Antigen bindings . 4

2.2 Classification . 5
2.2.1 Artificial neural networks . 5
2.2.2 Training data . 6

2.3 Related work . 6
2.3.1 Discotope . 6
2.3.2 ElliPro . 7
2.3.3 Epitopia . 7

3 Epitope data 9
3.1 Gathering methods and quality . 9
3.2 Raw data . 9
3.3 Publications and databases . 10
3.4 Data sets . 10

4 Surface model 13
4.1 Antigen surface . 13

4.1.1 Solvent accessible surface . 13
4.1.2 Surface representation . 14

4.2 Surface patches . 14
4.2.1 Comparability . 14
4.2.2 Patch creation algorithms . 15

4.2.2.1 By radius . 15
4.2.2.2 N closest . 15

ix

Contents

4.2.3 Data sets . 15
4.2.3.1 Analysis . 16

5 Classification 19
5.1 Machine learning . 19

5.1.1 Neural networks . 19
5.1.2 Training . 20
5.1.3 GPU computing . 21

5.2 Training data . 21
5.2.1 By radius - Encoder . 21

5.2.1.1 Algorithm . 22
5.2.2 N closest - Encoder . 22
5.2.3 Decoder . 23

5.3 Classifier . 23
5.3.1 Evaluation . 23
5.3.2 By radius classifier . 24
5.3.3 N closest classifier . 25

6 Results 27
6.1 Classification . 27

6.1.1 By radius . 27
6.1.2 N closest . 31

7 Discussion 39
7.1 Results . 39
7.2 Model . 40
7.3 Neural network . 40
7.4 Data set . 42
7.5 Analysis . 44
7.6 Related work . 44
7.7 Further work . 45
7.8 Ethics . 45

8 Conclusion 47

Bibliography 49

A Appendix 1 I
A.1 Metadata, based on [17] . I
A.2 N closest - Data set . III

A.2.1 Small data set . III
A.2.2 Mid data set . IV
A.2.3 Big data set . VI

x

List of Figures

2.1 This figure shows the atom representation the from folded N chain
from the PDBid 1a14. The chain is colored with a gradient, one can
follow the color to follow the protein chain. 5

4.1 The Jmol illustration output from pdb id ’1a14’, showing all the atoms
in the protein complex. Where the purple part is the antigen and the
red/green part is the binding antibody. 13

4.2 The solvent accessible surface of pdb id ’1a14’, all the atoms which
peek through the orange surface are atoms which are solvent accessi-
ble to the outside. From Jmol’s built in functions. 13

5.1 The visualization of the ’by radius’ ANN from Matlab. 25
5.2 The visualization of the ’N closest’ ANN from Matlab. 26
5.3 The confusion matrix from the final 517:th iteration figure 5.4, when

evaluated with the data from ’1a14-N’ with 5 rotations. Class 0 indi-
cates a non epitope and class 1 indicates a epitope patch. 26

5.4 The performance over each iteration in the training of the ANN in
figure 5.2. Training on ’1a14-N’ with 36 rotations. 26

6.1 The performance over each iteration in the training of the ANN in
figure 5.1. Training on the first(when sorted in alphabetic order) 10
PDBs in the mid data set A.3 with 36 rotations. 29

6.2 This figure shows the surface atoms from chain N in PDB 1a14. The
colors indicate the predicted epitope sites, ranging from low (red)
to high (yellow) prediction. The blue shows the actual confirmed
epitope. This prediction is performed by the 1400-10ex-12k ANN in
table 6.1. The 1a14-N is modeled with 5 rotations (training is done
with 36 rotations) and is in the training set of the ANN. This is a
demonstration of the recall of the ANN. The prediction color range
is relative to the highest predictions, which means that the highest
prediction will be yellow even tho it might be predicted with a low
confidence. 29

6.3 This figure shows the same protein as figure 6.2. This figure uses a
set threshold for the color range, which will yield a yellow color only
when there is a high confidence of an epitope. 30

xi

List of Figures

6.4 This figure shows the surface atoms from chain V in PDB 1v7m. The
colors indicate the predicted epitope sites, ranging from low (red)
to high (yellow) prediction. The blue shows the actual confirmed
epitope. This prediction is performed by the 1400-10ex-12k ANN
in table 6.1. The 1v7m-V is not in the training set and is modeled
with 5 rotations. The prediction color range is relative to the highest
predictions, which means that the highest prediction will be yellow
even tho it might be predicted with a low confidence. 30

6.5 This figure shows the same protein as figure 6.4. This figure uses a
set threshold for the color range, which will yield a yellow color only
when there is a high confidence of an epitope. 31

6.6 The performance over each iteration in the training of the ANN in
figure 5.2 with 10 neurons in each hidden layer. Training on the mid
data set A.3 with 18 rotations. 33

6.7 The performance over each iteration in the training of the ANN in
figure 5.2 with 100 neurons in each hidden layer. Training on the mid
data set A.3 with 18 rotations. 33

6.8 The performance over each iteration in the training of the ANN in
figure 5.2 with 300 neurons in each hidden layer. Training on the mid
data set A.3 with 18 rotations. 34

6.9 The performance over each iteration in the training of the ANN in
figure 5.2 with 700 neurons in each hidden layer. Training on the mid
data set A.3 with 18 rotations. 34

6.10 The performance over each iteration in the training of the ANN in
figure 5.2. Training on the mid data set A.3 with 18 rotations. 35

6.11 The performance over each iteration in the training of the ANN in
figure 5.2 with 4000 neurons in each hidden layer. Training on the
mid data set A.3 with 18 rotations. 35

6.12 This figure shows the surface atoms from chain N in PDB 1a14. The
colors indicate the predicted epitope sites, ranging from low (red)
to high (yellow) prediction. The blue shows the actual confirmed
epitope. This prediction is performed by the 1400/1400/1400-5k ANN
in table 6.2. The 1a14-N is modeled with 5 rotations (training is done
with 18 rotations) and is in the training set of the ANN. This is a
demonstration of the recall of the ANN. The prediction color range
is relative to the highest predictions, which means that the highest
prediction will be yellow even tho it might be predicted with a low
confidence. 36

6.13 This figure shows the same protein as figure 6.12. This figure uses a
set threshold for the color range, which will yield a yellow color only
when there is a high confidence of an epitope. 36

xii

List of Figures

6.14 This figure shows the surface atoms from chain V in PDB 1v7m. The
colors indicate the predicted epitope sites, ranging from low (red)
to high (yellow) prediction. The blue shows the actual confirmed
epitope. This prediction is performed by the 1400/1400/1400-5k ANN
in table 6.2. The 1v7m-V is not in the training set and is modeled
with 5 rotations. The prediction color range is relative to the highest
predictions, which means that the highest prediction will be yellow
even tho it might be predicted with a low confidence. 37

6.15 This figure shows the same protein as figure 6.14. This figure uses a
set threshold for the color range, which will yield a yellow color only
when there is a high confidence of an epitope. 37

xiii

List of Figures

xiv

List of Tables

4.1 This table shows the correlation values [−1, 1] for a patch being an
epitope patch and the #number of atoms belonging to the corre-
sponding atom group. Each column shows the correlation for the
corresponding data set generated by the ’by radius’ algorithm. 17

4.2 This table shows the correlation values [−1, 1] for a patch being a epi-
tope patch and the #number of atoms belonging to the corresponding
atom group. Each column shows the correlation for the corresponding
data set generated by the ’N closest’ algorithm. 17

5.1 Patch dimensions, this table shows the max and min positions of
atoms in the mid size data set. 22

5.2 The validation set for the mid data set. These PDB examples were
randomly chosen from the mid data set. The chain column specifies
the antigen chain in the file. 24

5.3 This table presents the performance of artificial neural networks (ANN).
The "Layers" indicates how many layers there are and how many
neurons they are containing. The "Performance" indicates the ANNs
performance after 50 iterations of training, lower is better. The per-
formance is calculated by the mean squared error of the ANN. The
’bad’ rows is results which showed so bad performance that it was
not noted. 25

6.1 This table shows the performance of the ’by radius’ classifier. The
ANN-Iteration column shows the ANN structure (1400 means 1400/1400/1400
as in 5.1), in this table all the ANNs have the same structure. The
structure is followed by the number of examples it used in the train-
ing. 5ex is the top 5 PDB ids in the Mid data set A.3 and respectively
10 ex means the top 10 in the same data set. At the end there is the
iteration in the training. The training set of the top 10 is overlap-
ping with one PDB id ’1eo8’, therefore there is a second evaluation
with the same evaluation data set excluding ’1eo8’ which is noted in
bold. True negatives (TN), false positive (FP), false negative (FN),
true positive (TP), Sensitivity (Sens), specificity (Spes), true positive
ratio (TPr), true negative ratio (TNr), total success rate (Tot). 28

xv

List of Tables

6.2 This table shows the results from the ANNs classifying the N closest
model. There are 6 different ANN structures shown, each with at
4 different stages in training. The ANN used the A.3 as training
set, excluding the evaluation set 5.2 which is used as the evaluation
set in this table. ANN-Iterations column shows the ANN structure
followed the iteration stage in the training. True negatives (TN),
false positive (FP), false negative (FN), true positive (TP), Sensitivity
(Sens), specificity (Spes), true positive ratio (TPr), true negative ratio
(TNr), total success rate (Tot), area under the ROC (AUC). 32

A.1 The number of atoms in each patch for respectively data set III
A.2 The small data set. IV
A.3 The mid data set . VI
A.4 The big data set . VI

xvi

1
Introduction

This chapter gives an introduction to the thesis. It contains a brief background,
followed by the purpose and method of the thesis. At the end of this chapter there
is an outline of this report.

1.1 Conformational B-cell epitopes
The development of therapeutic proteins (medical drugs) is going faster and are
subject of higher quality requirements than ever before. There is demand for med-
ical drugs which can cure diseases and still leave minimal side effects. Due to the
high demand of quality there is need to rigorous testing an validation before any
therapeutic protein is approved to be used by the general population. These test
include animal and human testing, which is an ethical grey zone.

There is basically three main properties of therapeutic proteins which must be con-
sidered. They must not be toxic or harmful, effectively treat the disease and must
be accepted by the immune system of the host. These properties makes the de-
velopment process very complex and time consuming. In recent years there have
been breakthroughs in computational tools which can aid in the development. This
thesis focuses on tools which predict the compatibility of a therapeutic protein with
the host immune system. This problem is very complex and there is very limited
knowledge in the specific focus area of this thesis.

The prediction tools aim to predict whether a foreign protein (antigen) would bind
to an antibody. This binding can occur in two ways, either in a linear binding where
the antibody binds to a continuous part of the protein chain or a conformational
binding which binds to different parts in the protein chain. Both types of binding
sites are called epitopes and this project explores the prediction of conformational
antigen-antibody epitopes.

1.2 Purpose and goals
The purpose of this thesis is to develop and evaluate an algorithm to predict confor-
mational B-cell epitopes. By feeding the algorithm a protein it should output the
likelihood that there is a epitope present on its surface and a possible area where it
is present. To keep the problem feasible, the algorithm targets epitopes and antigens
in a given size spectrum.

1

1. Introduction

The aim for this algorithm is to aid in the development of therapeutic proteins. It
would make the development faster and give the end product less side effects if it is
successful.

This thesis compare the results found within related work, compare models and per-
formance, this project aims to develop its own models and classification algorithm,
based on related work. Additionally, this project uses existing data and gather no
new data.

1.3 Method
There have been multiple attempts at solving this problem with various approaches
and data. This related work are evaluated and used in design decisions and evalua-
tion.

Since data sets of confirmed conformational B-cell epitopes already have been gath-
ered by previous work, this thesis uses these existing datasets to train the classifica-
tion algorithm. These are combined in order to access a larger data set. Gathering
of any data outside existing data sets is not in the scope of this thesis.

This project develops its own models, with inspiration from the previous work. There
are several different models which have achieved similar performance, however none
of them delivers satisfying results.

The evaluation of the algorithm is revealing and comparable to the related work.
This might not be an easy task, since there is no unified definition of an epitope,
also the evaluation techniques is different from article to article. This means that
the comparison might not be fair.

1.4 Thesis Outline
Chapter 2, gives an more comprehensive background to the research area and to
the problem at hand. In addition it present some relevant related work in the topic.
Chapter 3 provides details on the available data and its availability.

Chapter 4 begins the description of design and development of the models. This is
followed by Chapter 5 which focuses on the design and training of the final classifi-
cation algorithm.

At the end of the thesis Chapter 6 provides the results gathered during the thesis
and Chapter 7 discusses the whole process and its results together with the related
work. Finally the conclusions of this thesis is provided in Chapter 8.

2

2
Background

This chapter provides insight into the conformational B-cell epitope prediction prob-
lem. It contains a brief background in immunology and classification, it is not nec-
essary for the reader to have a comprehensive understanding of the biology or the
chemistry in order to grasp the problem at hand.

2.1 Immunology
This section gives an introduction to immunology processes and terminology which
is relevant to this thesis.

The human immune system fights foreign pathogens1 invading the body, such as
bacteria and viruses. It does so in many different ways, these can be divided into
two main subsystems, the nonspecific and specific immune system.

The nonspecific part, accounts for mechanisms which do not target specific pathogens.
A few examples of such mechanisms is barriers such as the human skin and stom-
ach acids. There is also internal defence which mainly consists of white blood cells
which produces antibodies. This thesis will focus on a subset of the specific immune
system.

The specific immune system targets specific intruding pathogens. It is the part of the
immune system which gives the host a resistance to certain pathogens. This part con-
sist of lymphocytes. There are two different types of lymphocyte2, B-lymphocytes
(B-cells) and T-lymphocytes (T-cells). Both originate from the bone marrow, but
the B-cell is prepared in the bone marrow, while T-cells is prepared in the Thymus.
This thesis will focus on the B-lymphocytes also called B-cells.

2.1.1 B-Cells
Each B-cell has receptors on its surface, which can bind to pathogens. These re-
ceptors are unique to that B-cell and are not inherited by its children, which are
produced in the bone marrow. These receptors will later be a part of antibodies
which binds and tags pathogens3. While the receptors sit on the B-cell surface their

1pathogen: is anything which can produce a disease, such as bacteria and viruses.
2lymphocytes: Is a subset of the white blood cells.
3Antigens is a subset of pathogens

3

2. Background

purpose is to identify pathogens and use their findings to activate the B-cell with
the help of a helper T-cell4.

When a B-cell receptor binds to a pathogen, it will ingest it and ask for a helper
T-cell confirmation (this is not always the case, but the most common). If it con-
cludes that this is a threat the B-cell is activated. The B-cell with the successful
binding receptors will start cloning itself into plasma cells and memory cells. The
memory cells will be used for future invasions and the plasma cells are antibody fac-
tories, which start producing antibodies to respond to the immediate threat. These
antibodies has the same binding site design as the receptors from the origin B-cell.
The antibodies are then released into the blood stream to bind and tag the invading
pathogens which are then destroyed by other parts of the immune system. The ori-
gin B-cell is then acting as a memory for the immune system, waiting for the next
attack from the same antigen.

2.1.2 Antibody-Antigen bindings

The antibodies originating from a B-cell are designed to bind to a specific antigen
at a specific site on the antigen surface. This binding site on the antigen is called
epitope and is the focus of this thesis. Only the tip of the antibody is binding to
the antigen and it is this tip which is the main subject to change or evolve from
B-cell to B-cell. Even if only this small part is the core of the binding, this part has
to possibility of changing into a huge diversity of shapes and are able to bind to an
uncountable number of areas on antigens.

The surface of an antigen is the result of the folded amino-acid chain forming a three
dimensional structure. The surface is then defined by the atoms accessible to other
molecules.

There are two kinds of epitopes, linear epitopes and conformational epitopes. The
linear epitope is a binding site which runs along a continuous part of the amino-acid5

chain, while the conformational epitope contains different parts of the amino-acid
chain. In figure 2.1 the chain is colored with a gradient, a linear epitope would
contain one color while a conformational would contain multiple colors.

4A helper T-cell is basically confirming the finding of a B-cell
5Amino-acid is a reoccurring collection of atoms which is labeled with a name

4

2. Background

Figure 2.1: This figure shows the atom representation the from folded N chain
from the PDBid 1a14. The chain is colored with a gradient, one can follow the color
to follow the protein chain.

2.2 Classification

There are many ways to classify data. One major area is machine learning and this
is the focus of this thesis, specifically artificial neural networks(ANN). The main
purpose of machine learning is to construct a mathematical model which takes the
data as input and gives back a classification output. One of the core constraints
on the model is that it must be possible to optimize it, in other words ’train’ it, in
order to acquire a desired behavior.

In machine learning there are a many different approaches to take in order to create
a suitable algorithm. Some require a lot of example data for the training and
some require less. There are those which need the examples to be annotated with
respective class, these methods are called supervised learning. Some which can
discover classes within a data set of it’s own, which is called unsupervised learning.
This thesis will use a basic ANN with supervised learning, where the training requires
a lot of annotated data examples.

2.2.1 Artificial neural networks

The basic structure of an ANN has an input node which is connected with a weight
to a output neuron. This neuron has a activation function, with a threshold, which
takes the sum of the input and decides whether or not it should fire a signal. The
weight and threshold are variables and prone to the optimization. The optimization
tunes the weight and threshold until the given input gives a desired output signal.
This optimization process is called training an ANN.

5

2. Background

2.2.2 Training data
As with all training, one must have something to train on. A neural network needs a
representative data set to train on. For example, one wants to classify farm animals
such as cows, pigs and sheep. If the training data set contains 60% cows, 30% pigs
and 10% sheep, then the resulting network will be biased towards cows. It might
even over fit the cow classification which will cause the network to loose the overall
features of a cow and only learn each and every example in the data set, so when a
new cow is presented to the network, it will not be able to classify it.

When it comes to farm animals, we humans have an intuition on how many examples
are needed and which are representative. But when there is new abstract data, which
humans can not relate to, it becomes much harder to determine the quality of the
data set. One might not even know which features in the data is important or if the
data set is too small, narrow or biased.

2.3 Related work
Research in conformational B-cell epitopes is an ongoing and open area of research.
One of the first articles on 3D structural analysis and epitope prediction was pub-
lished in 1984 [13]. They discovered some correlation between segmental mobility
(temperature readings from x-ray crystallography) and epitopes, however this dis-
covery only applied to linear epitopes and not to conformational epitopes. In recent
years there have come a few more methods which attempt to predict conformational
epitopes with various results and approaches. This section will present and describe
a few influential methods.

2.3.1 Discotope
In 2006 Discotope [8] was developed as a novel method for identifying epitopes on
antigen surfaces. They use a combination of amino acid statistics, spatial informa-
tion and surface exposure. The amino acid statistics are analysed by the log odds
ratio and together with the other parameters they tuned/trained their algorithm.
For this they used a refined data set containing 75 PDB6 files containing the epitope
examples. These were then used to train their method to identify which residues
(a collection of atoms within a 10 Å radius sphere) are likely to be a part of a epi-
tope. Their results and evaluation show a specificity(true negative rate) of 95 % and
sensitivity(true positive rate) of 15%. Later in 2012, Discotope 2.0 was developed
and published [11]. This improved method combines the same log odds ratio with
different spatial information, which yields a minor improvement to the prediction
performance. They also highlight the importance of the evaluation data set as well
as the training set. They discuss the complications of having incomplete data and
evaluating the methods in a biased manner.

6PDB file: a standardized format for molecule structure information.

6

2. Background

2.3.2 ElliPro
ElliPro was developed in 2008 and is one of the methods which does not require
training. It is based on Thornton’s method [12] where it approximates the protein
shape with a ellipsoid in order to calculate a protrusion index (PI)for each residue.
Then it uses these PIs to cluster the residues as epitopes or not. The performance
of ElliPro is quite similar to Discotope, they reported specificity at 89.1% and sen-
sitivity at 16.5%.

2.3.3 Epitopia
Epitopia is one of the few methods which relies solely on one machine learning
classification method, Naive Bayes, and was developed in 2009 [14]. It divides
the surface of the given antigen into overlapping patches. These patches have the
size of a typical epitope and is used to calculate 44 physicochemical and structural-
geometrical properties which are then used as input to the Naive Bayes classification
algorithm. Just as Discotope, this algorithm requires training on a data set of
epitope examples and they used a updated version of Discotopes data set which,
after refinement, contains of 66 examples.

Epitopia can in addition to taking a PDB file as input also take a sequence of amino-
acids as input and do the B-cell conformational epitope prediction. This algorithm
tries to cluster the amino-acids and calculate the probability that they are prone to
be a part of an epitope.

The performance of this method is hard to evaluate from the published paper. They
report a 70% successful prediction rate of epitopes, however they fail to report any
rate of false predictions and specificity and sensitivity, which gives a better view of
the performance of the algorithm.

7

2. Background

8

3
Epitope data

This chapter shows the most common methods for discovering epitope data and
where it is available.

There are multiple steps in discovering an epitope. The first step is to find a potential
molecule, an antigen-antibody complex. Next there is determining the structure of
that complex, see section 3.1. Once the structure is determined and the atoms are
labeled to their corresponding protein chain, the final step is to identify the antigen
antibody binding site. Depending on the epitope definition, the atoms or amino
acid residues will be considered a part of the epitope in this complex. A common
measure, which is used in this project, is to consider all atoms in the antigen which
are within 4 Å from any atom in the antibody [8, 1].

3.1 Gathering methods and quality
X-ray crystallography is the most common way to determine the structure of a
protein and is the only method used for discovering the proteins in this thesis’s data
set. The basic idea of X-ray crystallography is to fixate the atoms in the protein by
crystallizing it, then use an intense X-ray to determine their positions. This is not a
perfect method and it works better on some proteins than other. For example this
method is well suited to analyze molecules which are stiff, because then the fixation
will not have a big impact on the structure and it is easier to reproduce the result.
But if the molecules are flexible and move around a lot, then it can be harder to
interpret the result from the X-ray and the result will not be as reliable.

A protein is not a fixed molecule. The protein chain and the bonds between atoms
is most of the time continuous, but the atoms may rotate around these bonds in
various ways. This means that it is not essential to know the absolute position of
each atom, but the resolution becomes a problem when it is too low to determine
the atom bonds in a sufficiently accurate way. One of the most important factors is
the quality of the crystallization and the resulting resolution. If the quality is low
then the resolution of the atoms will also be low, the atoms position will have a
larger error margin.

3.2 Raw data
One way of storing detailed structural data about a protein is to use the RCSB
PDB. They have an ever growing data bank of protein structures stored in the PDB

9

3. Epitope data

file format 1, where one can find information regarding each atom present in the
protein. It will contain information such as the atom position in three dimensional
space, type of atom and which protein chain it belongs to.

The information which was interesting to this project was the coordinate position in
space of each protein, the atom type (carbon, hydrogen and so on). The information
regarding the chain is also important for determining to which molecule the atom
belongs. One should not forget the atom identification number, so one can keep
track of each individual atom. In most PDB files there are a lot more meta data
and data regarding the discovery method, which was not used by this project.

3.3 Publications and databases
The Immunology Epitope Database (IEDB)2 is a ongoing project which aims to col-
lect and distribute epitope data, including both linear and conformational epitopes.
The database has modeled the epitopes as a collection of residues, which is a part
of the epitope. A residue is a small collection of atoms, which has been given a
label. This means that if a residue is a part of an epitope, then there is at least
one atom in that residue binding to the antibody and is a member of the epitope.
The database also contains references to the origin research article, in which the
discovery was made.

The RCSB protein data bank (RCSB PDB)3 provide sequence and structural data
regarding proteins. It is a part of the worldwide protein data bank, which is a
network of collaborating Protein Data Banks (PDBs) and forms a single repository
for biological molecules such as proteins.

Initially, this project investigated the IEDB to find a big qualitative data set of
epitopes. But it fell short, due to the lack of structural information and no clear
reference to any PDB. However, they did provide links to previously assembled data
sets, see section 3.4.

3.4 Data sets
The epitope data sets contains the PDB id, to download from the rcsb.org, specifies
the antibody chains and the antigen chain. In some cases it specifies the residues
which are in the epitope. The data set contains antigen-antibody complexes, where
the antibody is not exclusively human, but can also come from other species such
as mice.

Due to limited time and resources only two of the data sets listed in the IEDB
were considered and extracted. The first one was developed for Discotope 2.0 [11],
[16], this data set is one of the most recent and refined datasets freely available.

1http://www.wwpdb.org/documentation/file-format
2www.iedb.org
3www.rcsb.org

10

3. Epitope data

They started with a set of 801 PDB files, which were identified from www.pdb.org.
The analysed and filtered the data to remove data which did not contain antigen-
antibody complexes, redundant and epitopes which were too small. This resulted in
a data set containing 107 epitope examples [16].

The second data set was created from data gathered from the rcsb.org in 2007. They
used a 4 step method for assembling their data set of 65 representative examples
[10]. These two data sets were merged together to form a data set containing 126
examples.

11

3. Epitope data

12

4
Surface model

This chapter provides details on the models developed during this project and their
development process.

4.1 Antigen surface
A conformational epitope is found on the surface of the molecules, meaning that
there is only direct interaction between the surfaces of the antigen and antibody.
This is not the whole truth since there is also indirect interaction from the atoms
surrounding the epitope atoms, by changing the binding properties of the epitope
atoms allowing for the antibody to bind. This project takes this dynamic in consid-
eration when modeling the surface and epitopes, in the following section provides
details on how this was done.

Figure 4.1: The Jmol illustration
output from pdb id ’1a14’, showing
all the atoms in the protein complex.
Where the purple part is the antigen
and the red/green part is the binding
antibody.

Figure 4.2: The solvent accessible
surface of pdb id ’1a14’, all the atoms
which peek through the orange sur-
face are atoms which are solvent ac-
cessible to the outside. From Jmol’s
built in functions.

4.1.1 Solvent accessible surface
To extract the continuous accessible surface from a protein, a program developed
by Graham Kemp called ’Triominoes’ was used. Triominoes runs a probe, with set

13

4. Surface model

radius, over the protein and finds all triplets accessible by this probe. A triplet is
defined by three atoms which the probe can touch at the same time without being
within a set distance from any atom in the protein.

In addition to identifying the surface atoms, it classifies the atoms into groups.
These atom groups are based of the surrounding atoms and gives more information
on the properties of the atoms [17]. The groups are provided to Triominoes by a
meta file, the one used by this project is found in appendix A.1. This program was
also used in a thesis by W. Mehio [18].

4.1.2 Surface representation
The surface was modeled as a graph, where each node is a atom and each of its
neighbouring atoms is connected to it by an edge. Triominoes made it easy to find
all neighbouring atoms by checking the triplets for an atom. All the atoms in a
triplet are neighbouring each other.

This graph representation makes it easy to create a continuous patch of the surface,
which will be explained in more detail in the next section 4.2.

4.2 Surface patches
The surface is divided into overlapping patches. A patch is a continuous area on the
surface and they are labeled as an epitope patch or a non-epitope patch. A patch
is annotated as an epitope patch, only if it contain at least 80% of the atoms in the
confirmed epitope in that antigen. This parameter is debatable, but it seems to be a
fairly good way to increase the number of epitope patches without loosing too much
of the raw information in the epitope. All other patches in the antigen is labeled as
non-epitope patches.

A patch is constructed by selecting a starting atom and adding it to the patch,
then incrementally adding atoms neighbouring the patch until a desired patch size
is reached, which is easily done due to the graph representation of the surface where
it is easy to traverse the graph to retain the neighbouring atoms. This thesis has
considered two different approaches to patch creation which will be described in
detail in section 4.2.2.

4.2.1 Comparability
One of the biggest problems of this patch model, is to compare two patches from
different areas on the surface. They are in two different parts of the three dimensional
space and the surface which they represent is probably facing different directions.
In order to address these issues a ’normalization’ algorithm was developed. First it
calculates the orientation vector which points from the center of the protein center
of mass to the starting atom. Then it moves the patch to the origin O, centering
the starting atom at O, followed by aligning the orientation vector with the Z-axis.
This way it becomes easier to compare two different patches.

14

4. Surface model

After the ’normalization’ is performed one must also consider different rotations
around the z-axis. In addition one can consider tilting the z-axis, but this is not
considered in this project. The rotations is performed clockwise with a set degree
interval. After some testing it was found that a 10 degree interval is a good balance
in order to capture the structure of a patch and being able to recognize it with an
arbitrary rotation.

4.2.2 Patch creation algorithms
The patch creating algorithm have two implementations, described below in section
4.2.2.1 and 4.2.2.2. Both of them picks a starting atom and then creates a set of
atoms (patch). In order to cover the whole surface one has to pick several starting
nodes with a satisfying distance between each other. One could pick every atom
as a starting node, but then there might be a lot of redundant patches and a huge
amount of data.

This project developed an algorithm for creating a set of starting atoms, which first
adds all atoms on the surface to a set of nodes A. Then it picks one starting node,
adds it to a set of starting nodes B, then removes all of its neighbouring atoms in
the surface graph and itself from A. Then it picks the closest atom still in A, to be
the next starting atom. Then repeat the process until A is empty. This way there
will be a gap of one atom between each patch, it also reduces the number of patches
extracted from the surface and reduces the redundant data. With the data set used,
hardware available and time constraint this became a good compromise, as there is
not much information lost due to the extensive overlapping of the original patches.

4.2.2.1 By radius

The idea is to pick all atoms, on the surface, within a given radius to be a part of
the resulting patch.

Pick a starting atom(node) and add it to the patch. Then traverse the surface graph
and add the next node to the patch if the node has a path to the starting node which
is less than the radius.

4.2.2.2 N closest

This algorithm will always pick a set number of atoms to be a part of the resulting
patch. This implementation picks the N closest atoms.

Pick a starting atom(node) and add it to the patch. Then add the node which has
the shortest path to the starting node. Keep adding until there are N nodes in the
patch.

4.2.3 Data sets
The resulting patches have as much diversity as the surface of the proteins. There are
varying atom densities, surface shapes, deep valleys, high mountains, thin branches

15

4. Surface model

and cylinder shapes to name a few. It could be helpful to categorise them by
resemblance in order to divide them into more manageable groups, but this is no
easy task and in the end finding resemblance and correlations is the hard problem
which this project is to solve.

This project has been looking at two varying patch attributes, the protein size and
the epitope size. These two attributes have a dynamic which can be used as a base
for dividing the data set. The patch size should not cover the whole surface of
the protein, this would defeat the purpose of the patch method. Second, the patch
should cover the epitope on the given protein, if doesn’t then it would be harder to
identify the epitope patches just because there is a lack of knowledge in which parts
of the epitope is important for the antibody binding.

Analysis of the data set revealed the two attributes for each protein, the number of
epitope patches and the width ’WG’ over the graph of the corresponding epitope,
which is listed in Appendix A.2. WG is measuring the width of an epitope by
traversing the graph instead of the Euclidean distance. WG is the number of nodes
(atoms) traversed by the shortest path between the two atoms, in the epitope, which
are furthest apart. The attributes vary too much to be represented by one single
patch size, which is why the data set was split into three divisions, small, medium
and big. Each set is satisfying the dynamic described previously, that they must
cover the epitope while not covering too much of the actual molecule. In addition the
patch should cover the epitope by some margin, which provides additional epitope
labeled patches to the training set. It was not possible to draw a hard line between
the three parts and therefore there is overlap between them.

4.2.3.1 Analysis

Correlation analysis was performed on the total set of patches where the correla-
tion between the number of atoms belonging to each atom group and the epitope
patches was calculated. Table 4.1 shows the correlation values [−1, 1] from the by
radius algorithm generated patches. Table 4.2 shows the correlation values [−1, 1]
from the N closest algorithm generated patches. They do not reveal any significant
correlation.

16

4. Surface model

small mid big
S2H0 0.024 -0.003 -0.058
C4H3 -0.073 -0.022 0.003
C4H2 -0.048 0.000 -0.008
C4H1 -0.059 -0.007 -0.007
C3H1 0.011 0.015 -0.021
C3H0 -0.031 0.010 -0.008
O2H1 -0.062 0.010 0.005
N3H0 0.032 -0.008 -0.059
N3H1 -0.039 -0.005 -0.014
N3H2 -0.015 -0.003 -0.008
O1H0 -0.051 -0.014 -0.005
S2H1 -0.024 -0.011 -0.039
N4H3 -0.048 0.004 0.058
UNKN -0.031 -0.023 0.011

Table 4.1: This table shows the correlation values [−1, 1] for a patch being an
epitope patch and the #number of atoms belonging to the corresponding atom
group. Each column shows the correlation for the corresponding data set generated
by the ’by radius’ algorithm.

small mid big
S2H0 0.004 -0.023 -0.118
C4H3 -0.090 -0.063 -0.080
C4H2 -0.106 -0.052 -0.081
C4H1 -0.101 -0.065 -0.087
C3H1 -0.030 -0.017 -0.057
C3H0 -0.083 -0.048 -0.081
O2H1 -0.081 -0.017 -0.040
N3H0 0.016 -0.035 -0.124
N3H1 -0.085 -0.056 -0.087
N3H2 -0.040 -0.042 -0.072
O1H0 -0.108 -0.068 -0.077
S2H1 -0.032 -0.016 -0.053
N4H3 -0.075 -0.021 0.044
UNKN -0.034 -0.015 -0.011

Table 4.2: This table shows the correlation values [−1, 1] for a patch being a epitope
patch and the #number of atoms belonging to the corresponding atom group. Each
column shows the correlation for the corresponding data set generated by the ’N
closest’ algorithm.

17

4. Surface model

18

5
Classification

This chapter describes the classification and training algorithm used during this
thesis.

The aim of this project was to find areas on proteins which are likely to be an epitope.
This was done by classifying patches, extracted from the surface (see chapter 4), as
either a epitope patch or a non-epitope patch. The classification can be done in
many different ways, the two main approaches is scoring and machine learning.

A scoring algorithm takes some attributes from the subject and gives it to a function
which calculates a score representing a class. This requires knowledge of the subject
and its classes and how the attributes weigh in on determining different classes.
Usually these scoring functions are quite efficient and fast at classifying data, in
addition they do not require any training.

5.1 Machine learning
Machine learning techniques can be successful when the classification subject is
complex or when there is too little knowledge of the subject and the target class.
The requirement is example data. The success of any machine learning technique
mainly lies in the available data to train on.

In the case of this thesis, there is very limited knowledge about the conformational
B-cell epitopes. In addition the available data sets is also limited, it is not known
how comprehensive or biased the data is. It is however a representative data set of
the known examples. Therefore a machine learning algorithm would be a good start
and this is the direction of this thesis.

5.1.1 Neural networks
Artificial neural network (ANN) is a machine learning method which was discovered
and developed in the 70s-80s, but due to very limited computational power this
method was put on the shelf for many years, it was simply not possible to perform
all the calculations in a reasonable time. In recent years ANNs have become more
popular due to the increase in computational performance and development in par-
allel computing. Most of the computations in an ANN is matrix multiplication and
can be calculated in parallel. There are many different ANN structures, all with
different advantages. One of the most basic and efficient ANN structures is the

19

5. Classification

"feed forward neural network" (FFN) and this is the structure used in this project.
The flow of connections is going only one way, from the input neurons to the output
neurons.

5.1.2 Training
Training an ANN is basically optimizing the weights of the connections and thresh-
olds of the neurons to the given pattern and target class. There are various ways to
optimize these variables. One of the most popular is called "back-propagation". The
basic idea is to compute the error of the ANN output and then calculate the gradient
of the ANN towards the target output. Then update the weights and thresholds
proportional to the steepest gradient descent and error.

Matlab has a training function called "trainscg"(Scaled conjugate gradient back-
propagation), which takes advantage of the conjugate gradient method in order to
find the steepest descent of the gradient. This is a faster method than the ordinary
back-propagation, but it can also lead to faster convergence which can both be good
and bad, in addition it must be possible to calculate the conjugate gradient which
limits the method but works just fine with FFN. If the training method converges
too fast, prematurely, then the resulting ANN will not reach its full potential and
will give a bigger error in its output. On the other hand, if it is too slow then the
training can go on for a very long time. It can also be the case of jumping between
two or more local minimas, in such a case the weight and threshold update step is
too large and the training algorithm will have a hard time converging to any one
point. The scaled part in trainscg controls this step size in a different way than
other methods, which allows a faster convergence and training [15].

The learning ratio can also be controlled by a learning rate parameter, which is
multiplied with the weight and threshold update. For normal training the ratio is
usually in the range 0.1 − 0.001.

When training an ANN to recognize a pattern to then classify it by the ANN output,
one feeds the ANN with the given example, calculates the ANN error and updates
the weights and thresholds according to the training algorithm. Usually, there is
more than one example to train on and since there is only one ANN, the examples
has to feed to the ANN one at a time and calculate the update after each one or use
the average error and gradient to update once all examples have been be fed to the
ANN. The training will depend on the order sequence of the training examples fed,
there are sequences which gives a better results than others. These are not known
beforehand and therefore the common practice is to pick a random sequence. Such
a data set is also called a ’batch’ of training data. This is useful when there is too
much training data that it does not fit in memory at one time, it can also speed
up the training depending how the batches are processed. When using batches,
there are basically two ways to assemble them. Either to divide the data into the
batches prior to the training or to assemble the batches during the training. In both
cases it is useful to assemble them randomly for the same reasons as before. One
can argue which one is better, but it differs from case to case. In order to avoid

20

5. Classification

premature convergence when using batch training, one usually lowers the learning
rate, otherwise the initial batches will be too influential on the ANN performance.

This project used Matlab’s trainscg function together with batch training and ac-
celerated with GPU computing. The batches are assembled by randomly picking
patches from the data set, balancing the number of positive and negative patches to
50% each. This forces the ANN to prioritise the positive examples as much as the
negative. More than 90% of the examples are annotated as negative (non-epitope),
if there were no balancing in the batches it would be hard for the ANN to learn
the desired patterns. It would probably just classify all examples as negative and
receive great overall performance. The down side to the balancing is that it might
cause an over fitting to the positive examples, hard mapping each positive examples
to the positive class rather than learning the patterns.

5.1.3 GPU computing
In the training process the project used GPU acceleration instead of the standard
CPU. The GPU allows for much more efficient parallel computations than the CPU
and therefore performs the computations much faster. In ANNs, each computation
within the same layer can be computed in parallel. But since the layers are depen-
dent of each other, each layer has to be calculated in sequence. In this case the GPU
was more than 50 times faster that the CPU, which was available, at calculating the
largest ANN designed by this project.

5.2 Training data
This section shows how the two models are encoded into feature vectors which are
accepted by the classification algorithm. The classification algorithm, which in this
case is an ANN, will not accept feature vectors which change in length. It would
also prefer the features in the vector to come in a consistent order, if they change
around in a chaotic way it will become harder for the classification algorithm to
learn the desired pattern.

5.2.1 By radius - Encoder
The biggest issue with the "by radius" patches is the inconsistent number of atoms
within the patch. An ANN requires a fixed size feature vector containing the inputs,
it cannot handle a feature vector which is varying in size. Therefore these patches
must be transformed into a format which satisfies consistent size.

To solve this issue with varying number of inputs, a 3d pixel map was designed
to hold the feature vector. The project started with the mid size data set and
conducted analysis on the patches created and rotated (see table 5.1). From this
analysis the project concluded a radius of 20 Å, which will cover all possible positions.
This radius is used to create a pixel sphere, to which the patch will be mapped.
Each pixel in the sphere covers the size of a 1 cubic Å, where all the sides has the

21

5. Classification

length of 1 Å. For example: The pixel which corresponds to this position (x, y, z) =
(3.456, 12.212, −14.556) will have the map position of (3, 12, −15), all atoms in the
range ([3, 4), [12, 13), [−15, −14)) will be correspond to this pixel. In other words,
the coordinates of each atom is floored. If two or more atoms is covered by the
same pixel, information will be lost. Therefore the dimension of 1 Å was set, there
were very few examples where two atoms were closer than 1 Å from each other and
within the mid size data set, no such collisions ever occurred.

Min: Max:
Z-axis -19.16049161 18.71747987
X-axis -18.85064611 18.77314049
Y-axis -18.75570473 19.1335069

Table 5.1: Patch dimensions, this table shows the max and min positions of atoms
in the mid size data set.

This sphere of pixels is then concatenated down to one long feature vector. Each
index has either the value 0 if there were no atoms present, or a value 1 − 14
representing the different atom groups given by Triominos.

5.2.1.1 Algorithm

Given a normalized patch and a radius, create a 3d cube array A, with the side
length of 2 times the radius and the initial value 0. For each atom, take the integer
value of its coordinates (x,y,z) (floor the floating point value) and add the radius to
the (xi,yi,zi) to make them positive. Then use the integer coordinates to place its
atom group number in A[xi][yi][zi]. Create the feature vector V by iterating over
A. Start at index [0][0][0] in A, then check if its coordinates are within the sphere
with the given radius and originating at the starting atom (center) of the patch. If
it is, then add it to V, if not then discard it and continue until all indexes have been
visited.

5.2.2 N closest - Encoder
The N closest feature vector is not as complicated as the by radius feature vector.
This vector is simply a vector of the coordinates and atom groups of each atom
in the patch. It starts with the origin atom, at the center of the patch, adds the
atom group followed by x,y and z coordinates of that atom. Then it takes the atom
closest to the origin and repeats that same pattern until all atoms in the patch are
represented in the feature vector.

Compared to the by radius feature vector, this vector is much shorter, only 4 times
the number of atoms in the patch. For example the mid data set has the fixed
patch size of 200 atoms, see Appendix A.2, which gives a feature vector of length
800 nodes. While the by radius feature vector for the mid data set has a feature
vector of length 33401, see figure 5.1.

22

5. Classification

5.2.3 Decoder
There is only one output neuron from the ANN and is simply a 1 for a epitope and
0 for a non epitope. The raw output is a floating point number which is rounded to
0 or 1, there is no constraint on range of this output. When all the patches of an
antigen is classified it counts the number of times an atom has been classified as an
epitope and non-epitope, which will give the final prediction of the possible epitopes
on the surface.

5.3 Classifier
To determine the structure of the ANN one can calculate the pattern capacity(how
many patterns it can efficiently store) of an ANN or follow a trial and error pro-
cedure. Calculating the capacity of an ANN becomes very complex and inaccurate
when using more than one layer of weights, therefore the project chose to test its
way forward with different settings in order to find a suitable ANN structure.

A protein epitope example was chosen from the mid data set to be the initial testing
example, it is represented as the PDB id ’1a14’ in the chain ’N’. This was done in
order to find an ANN structure which can learn and recognize the patches of one
single example, this will be the base for continuing with more examples and finally
the whole data set. There is no point to train an ANN on the whole data set if it
cannot fit a single example. It might be the case that the ANN which can learn a
single example is too small to fit more example data, but it is a starting point.

The following two sections will present the process of finding suitable ANN struc-
tures, with some of the training results, for the two different models.

5.3.1 Evaluation
Evaluation of an ANN can be done and interpreted in many different ways. This
project has mainly looked at three types of evaluation. First, the performance of the
ANN during the training which indicates how well the ANN performs on training
data. Second, after the training is done the ANN is to classify the training examples
but with different rotations, from this one gets booth the performance(error of the
ANN) and a confusion matrix showing the ANN classification outputs against the
target values. Last, there is a test on classifying example proteins which are not in
the training data, as it is the ultimate goal to be able to classify new proteins.

The first evaluation is done during the training and is the mean of the squared errors
of the ANN output, which is called the performance of the ANN. This indicates how
well the ANN is performing at classifying the training data, in other words how big
the classification error of the ANN is.

The second evaluation tests how good the ANN is at recalling the training data but
with different rotations. The best way to evaluate this is to look at an confusion
plot, see figure 5.3, where one can see more specifically if the ANN is just very good

23

5. Classification

at classifying the negative or positive data. This evaluation of different rotations
also gives information whether or not the ANN is able to capture the structure,
regardless of the orientation of the raw data from the protein.

The last evaluation is to test whether the ANN is able to classify epitope areas in
proteins not in the training set. This can be done in a few different ways, one of
the most common ways is to exclude a percentage of the examples from the training
data set, to use as a validation set. This is usually in the range of 5 − 15% of the
total number of examples. This project has 61 examples in the mid data set and
therefore used 6 of them as a validation set for the classifiers. These were chosen
randomly, but remained consistent over the different ANN structures and training
sessions. See table 5.2 for the validation set and Appendix A.2 for the complete
data set.

PDB id chain
3b2u B
2r29 A
2dqf C
1v7m V
1ndg C
1eo8 A

Table 5.2: The validation set for the mid data set. These PDB examples were
randomly chosen from the mid data set. The chain column specifies the antigen
chain in the file.

5.3.2 By radius classifier

Initially a small ANN containing only one hidden layer with 10 neurons was con-
structed. The ANN was trained on one example protein with one epitope and aimed
to classify the epitope patches. See table 5.3 for the results. The ANN design of
three hidden layers with 1000 neurons each got the best result and is the structure
of choice.

24

5. Classification

Layers Performance
10 bad
100 bad
1000 0.32

100/100 0.067
1000/100 0.077
1000/1000 0.1

1000/1000/1000 0.07
1000/1000/1000/1000 0.09

Table 5.3: This table presents the performance of artificial neural networks (ANN).
The "Layers" indicates how many layers there are and how many neurons they are
containing. The "Performance" indicates the ANNs performance after 50 iterations
of training, lower is better. The performance is calculated by the mean squared
error of the ANN. The ’bad’ rows is results which showed so bad performance that
it was not noted.

The next step is to determine how many rotations of each example are needed. The
aim for the ANN is to identify any rotation of the epitope patches, not only those in
the training data. As before the project started with few rotations and iteratively
increased the number of rotations. The project found that 72 rotations got an ideal
result for one protein example, with a slightly bigger ANN of 1200 neurons in each
of the three hidden layers. The down side where the harddrive and memory size of
the data generated, therefore 36 rotations gave a sufficient result with manageable
data size.

Further on the ANN size was increased to 1400 neurons in each of the three hidden
layers, see figure 5.1. This is the maximum ANN size to fit in the 4 GB GPU
memory available. The main factor to the size of the ANN is the input vector, in
this case it is 33401 number of nodes. Hence there are 33, 401 ∗ 1, 400 = 46, 761, 400
number of weights from the input to the first hidden layer. One can compare this to
the rest of the weights in the ANN, 14002 + 1, 4002 + 1, 400 = 3, 921, 400. It is easy
to see that in this case the input vector is limiting the ANN size. The final results
are presented in chapter 6.

Figure 5.1: The visualization of the ’by radius’ ANN from Matlab.

5.3.3 N closest classifier
Starting off where the ’by radius’ finished, with an in-1400-1400-1400-out ANN,
then training on the same protein in ’1a14’ with chain ’N’, it got close to a perfect

25

5. Classification

recall at 36 rotations, just as the other model. It even got a perfect result down to
5 rotations.

One big difference between the two models, is the size of the input vector see fig-
ure 5.1 and figure 5.2. In the ’by radius’ model the input vector is significantly
bigger than in the ’N closest’ model. However this does not necessarily mean that
the hidden layers can be made smaller and less complex in the ’N closest’ model,
but the results so far suggest that there is no need to have such a big ANN structure
in this case.

Figure 5.2: The visualization of the ’N closest’ ANN from Matlab.

It is hard to evaluate the performance value. For example when there are few positive
values and a lot of negative values, then classifying all to be negative will give a quite
good performance value. A better measurement is to look at the confusion matrix,
where all the true positives, true negatives, false positives and false negatives are
listed. In figure 5.3 is the results from the evaluation of a ANN trained on ’1a14-N’
and the figure 5.4 shows the training progress. The training progress shows that the
performance rapidly improved in the beginning and then almost stagnated before
finishing, which can indicate that it converged to a optimum or overfitted the data.

Figure 5.3: The confusion matrix
from the final 517:th iteration fig-
ure 5.4, when evaluated with the data
from ’1a14-N’ with 5 rotations. Class
0 indicates a non epitope and class 1
indicates a epitope patch.

Figure 5.4: The performance over
each iteration in the training of the
ANN in figure 5.2. Training on ’1a14-
N’ with 36 rotations.

26

6
Results

This thesis has shown in two different ways how to model epitopes on the surface
of proteins. Then it showed to use these models to train artificial neural networks
(ANN) in order to classify the models as epitopes or non-epitopes. The result is
classifiers which can recall the proteins which it has trained on, however it was not
successful with classification of proteins outside of the training examples.

This chapter shows the results from the classification algorithms developed during
this thesis. Statistics from the validation and graphs showing the performance de-
velopment during the training of different key ANNs are shown. In addition some
examples of the recall classification will be displayed as the final epitope prediction
plot, on the protein surface.

6.1 Classification

In this section the results from the different classification algorithms will be dis-
played. Only those ANNs which are interesting and most successful have their
results on display.

6.1.1 By radius

The feature vector from ’by radius’ model became large, when modeling the mid
size data set it contained 33401 points. The ANN structures which were developed,
see section 5.3.2, became limited to the available memory in the GPU. In addition,
training this ANN was very time consuming, even on the GPU. Together these two
factors may have limited the results, for instance the project was not able to train
the ANN on more than 10 examples from the mid data set 6.1 which is suboptimal.

27

6. Results

ANN-Iteration TN FP FN TP Sens Spes TNr TPr Tot AUC
1400-5ex-4k 4998 517 325 20 0.037 0.939 0.906 0.058 0.856 0.482
1400-5ex-6.5k 4806 709 310 35 0.047 0.939 0.871 0.101 0.826 0.486
1400-10ex-8.5k 4585 930 248 97 0.094 0.949 0.831 0.281 0.799 0.556
1400-10ex-10k 4659 856 251 94 0.099 0.949 0.845 0.272 0.811 0.558
1400-10ex-12k 4691 824 250 95 0.103 0.949 0.851 0.275 0.817 0.562
1400-10ex-8.5k 3124 696 232 53 0.071 0.931 0.818 0.186 0.774 0.501
1400-10ex-10k 3178 642 232 53 0.076 0.932 0.832 0.186 0.787 0.508
1400-10ex-12k 3206 614 231 54 0.081 0.933 0.839 0.189 0.794 0.514

Table 6.1: This table shows the performance of the ’by radius’ classifier. The
ANN-Iteration column shows the ANN structure (1400 means 1400/1400/1400 as in
5.1), in this table all the ANNs have the same structure. The structure is followed
by the number of examples it used in the training. 5ex is the top 5 PDB ids in the
Mid data set A.3 and respectively 10 ex means the top 10 in the same data set.
At the end there is the iteration in the training. The training set of the top 10 is
overlapping with one PDB id ’1eo8’, therefore there is a second evaluation with the
same evaluation data set excluding ’1eo8’ which is noted in bold. True negatives
(TN), false positive (FP), false negative (FN), true positive (TP), Sensitivity (Sens),
specificity (Spes), true positive ratio (TPr), true negative ratio (TNr), total success
rate (Tot).

The training graph in figure 6.1 shows how the performance (lower is better) de-
veloped during the training of the classifier. It reveals the large initial performance
which then rapidly decreases to 0.2. The performance still improves over time but
stays in the range 0.1-0.2 for a long period. It can be hard to read details from
these graphs, however it is possible to compare the fluctuations in figure 6.1 with
the two figures from the N closes model 6.7 and 6.8, where it is observable that the
fluctuation is much lower in the N closes model. This indicates that the by radius
model is more complex to train or requires a different ANN or additional data.

28

6. Results

Figure 6.1: The performance over each iteration in the training of the ANN in
figure 5.1. Training on the first(when sorted in alphabetic order) 10 PDBs in the
mid data set A.3 with 36 rotations.

Figure 6.2: This figure shows the surface atoms from chain N in PDB 1a14. The
colors indicate the predicted epitope sites, ranging from low (red) to high (yellow)
prediction. The blue shows the actual confirmed epitope. This prediction is per-
formed by the 1400-10ex-12k ANN in table 6.1. The 1a14-N is modeled with 5
rotations (training is done with 36 rotations) and is in the training set of the ANN.
This is a demonstration of the recall of the ANN. The prediction color range is
relative to the highest predictions, which means that the highest prediction will be
yellow even tho it might be predicted with a low confidence.

29

6. Results

Figure 6.3: This figure shows the same protein as figure 6.2. This figure uses a
set threshold for the color range, which will yield a yellow color only when there is
a high confidence of an epitope.

Figure 6.4: This figure shows the surface atoms from chain V in PDB 1v7m. The
colors indicate the predicted epitope sites, ranging from low (red) to high (yellow)
prediction. The blue shows the actual confirmed epitope. This prediction is per-
formed by the 1400-10ex-12k ANN in table 6.1. The 1v7m-V is not in the training
set and is modeled with 5 rotations. The prediction color range is relative to the
highest predictions, which means that the highest prediction will be yellow even tho
it might be predicted with a low confidence.

30

6. Results

Figure 6.5: This figure shows the same protein as figure 6.4. This figure uses a
set threshold for the color range, which will yield a yellow color only when there is
a high confidence of an epitope.

6.1.2 N closest

Here is the results from various ANN structures classifying the ’N closest’ model
5.2.1. This model created a much smaller feature vector, hence the training went
much faster and it also performed better with smaller ANNs.

It is not easy to compare details in these graphs but it is possible to get a general
view of the training process. The training graphs in figures 6.7, 6.8, 6.9, 6.10 and
6.11 is quite similar, they all have low fluctuation and they show slow improvements
after their fast initial improvements. Figure 6.6 is displaying the graph in more
detail and shows more fluctuation as the graph in figure 6.1, but in general is shows
a similar curve as the other training graphs.

31

6. Results

ANN-i TN FP FN TP Sens Spes TNr TPr Tot AUC
10-1k 13537 5165 1747 647 0.111 0.886 0.724 0.270 0.672 0.497
10-3k 15223 3479 2037 357 0.093 0.882 0.814 0.149 0.739 0.481
10-5k 15427 3275 2060 334 0.093 0.882 0.825 0.140 0.747 0.482
10-7k 15783 2919 2108 286 0.089 0.882 0.844 0.119 0.762 0.481
100-1k 16475 2227 2120 274 0.110 0.886 0.881 0.114 0.794 0.497
100-3k 17204 1498 2206 188 0.112 0.886 0.920 0.079 0.824 0.499
100-5k 17594 1108 2262 132 0.106 0.886 0.941 0.055 0.840 0.497
100-7k 17707 995 2270 124 0.111 0.886 0.947 0.052 0.845 0.499
300-1k 16686 2016 2190 204 0.092 0.884 0.892 0.085 0.801 0.488
300-3k 17593 1109 2272 122 0.099 0.886 0.941 0.051 0.840 0.495
300-5k 17906 796 2305 89 0.101 0.886 0.957 0.037 0.853 0.497
300-6k 17884 818 2308 86 0.095 0.886 0.956 0.036 0.852 0.496
700-1k 14544 4158 1817 577 0.122 0.889 0.778 0.241 0.717 0.509
700-2k 16254 2448 2107 287 0.105 0.885 0.869 0.120 0.784 0.494
700-3k 16595 2107 2177 217 0.093 0.884 0.887 0.091 0.797 0.488
700-3.5k 17021 1681 2214 180 0.097 0.885 0.910 0.075 0.815 0.492
1400-1k 12947 5755 1706 688 0.107 0.884 0.692 0.287 0.646 0.489
1400-2k 15217 3485 1940 454 0.115 0.887 0.814 0.190 0.743 0.501
1400-3k 15798 2904 2039 355 0.109 0.886 0.845 0.148 0.766 0.496
1400-5k 16290 2412 2132 262 0.098 0.884 0.871 0.109 0.785 0.490
4000-1k 11688 7014 1496 898 0.114 0.887 0.625 0.375 0.597 0.500
4000-3k 13373 5329 1715 679 0.113 0.886 0.715 0.284 0.666 0.499
4000-5k 13718 4984 1763 631 0.112 0.886 0.734 0.264 0.680 0.498
4000-10k 15115 3587 1920 474 0.117 0.887 0.808 0.198 0.739 0.503

Table 6.2: This table shows the results from the ANNs classifying the N closest
model. There are 6 different ANN structures shown, each with at 4 different stages
in training. The ANN used the A.3 as training set, excluding the evaluation set
5.2 which is used as the evaluation set in this table. ANN-Iterations column shows
the ANN structure followed the iteration stage in the training. True negatives
(TN), false positive (FP), false negative (FN), true positive (TP), Sensitivity (Sens),
specificity (Spes), true positive ratio (TPr), true negative ratio (TNr), total success
rate (Tot), area under the ROC (AUC).

32

6. Results

Figure 6.6: The performance over each iteration in the training of the ANN in
figure 5.2 with 10 neurons in each hidden layer. Training on the mid data set A.3
with 18 rotations.

Figure 6.7: The performance over each iteration in the training of the ANN in
figure 5.2 with 100 neurons in each hidden layer. Training on the mid data set A.3
with 18 rotations.

33

6. Results

Figure 6.8: The performance over each iteration in the training of the ANN in
figure 5.2 with 300 neurons in each hidden layer. Training on the mid data set A.3
with 18 rotations.

Figure 6.9: The performance over each iteration in the training of the ANN in
figure 5.2 with 700 neurons in each hidden layer. Training on the mid data set A.3
with 18 rotations.

34

6. Results

Figure 6.10: The performance over each iteration in the training of the ANN in
figure 5.2. Training on the mid data set A.3 with 18 rotations.

Figure 6.11: The performance over each iteration in the training of the ANN in
figure 5.2 with 4000 neurons in each hidden layer. Training on the mid data set A.3
with 18 rotations.

35

6. Results

Figure 6.12: This figure shows the surface atoms from chain N in PDB 1a14. The
colors indicate the predicted epitope sites, ranging from low (red) to high (yellow)
prediction. The blue shows the actual confirmed epitope. This prediction is per-
formed by the 1400/1400/1400-5k ANN in table 6.2. The 1a14-N is modeled with
5 rotations (training is done with 18 rotations) and is in the training set of the
ANN. This is a demonstration of the recall of the ANN. The prediction color range
is relative to the highest predictions, which means that the highest prediction will
be yellow even tho it might be predicted with a low confidence.

Figure 6.13: This figure shows the same protein as figure 6.12. This figure uses a
set threshold for the color range, which will yield a yellow color only when there is
a high confidence of an epitope.

36

6. Results

Figure 6.14: This figure shows the surface atoms from chain V in PDB 1v7m.
The colors indicate the predicted epitope sites, ranging from low (red) to high (yel-
low) prediction. The blue shows the actual confirmed epitope. This prediction is
performed by the 1400/1400/1400-5k ANN in table 6.2. The 1v7m-V is not in the
training set and is modeled with 5 rotations. The prediction color range is relative
to the highest predictions, which means that the highest prediction will be yellow
even tho it might be predicted with a low confidence.

Figure 6.15: This figure shows the same protein as figure 6.14. This figure uses a
set threshold for the color range, which will yield a yellow color only when there is
a high confidence of an epitope.

37

6. Results

38

7
Discussion

This chapter discusses the thesis, process and related work, based of the thesis
results.

7.1 Results
This section will discuss the results from the classifiers developed during this project.
Further discussion of topics surrounding the algorithms, data and training will be
brought to light later in this chapter.

The tables in chapter 6 shows performance up to 85% correctly classified patches.
However, neither of the two models were able to successfully classify the epitopes
from the validation set, table 5.2. One can read on the last row in the table 6.1 that
the ANN was only able to classify 18.9% of the epitope patches as an epitope patch
(TPr) and 83.9% of the non epitope patches as non epitope patches (TNr). This
leaves a sensitivity of 8.1%, which means that only 8.1% of the patches classified
as an true epitope patch is an actual confirmed epitope patch. There is marginally
better results for the ’N closest’ model, shown in table 6.2, it achieved sensitivity
of around 11% which is still bad. This is illustrated in figures 6.4, 6.5, 6.14, 6.15,
where one can see the V chain from the PDB ’1v7m’. The goal is to find distinct
yellow areas as in figure 6.13, but this is clearly not the case.

The results show that the classifiers are not able to find epitopes in new subjects,
but it does show that it is good at recalling the training examples, even when they
come in different rotations than in the training set. Figure 6.12 and 6.13 illustrates
the result from the ’N closest’ classifier with the input from 1a14, which is in the
training data set. The result is almost perfect in contrast to the ’by radius’, which
is illustrated in figure 6.2 and 6.3. The later is not able to recall the epitope which
it was trained on, however when training with fewer PDB examples 1-4, this recall
becomes similar to the ’N closest’ classifier. This can indicate either that the training
is too short or that the ANN is too small to fit the patterns from the data.

One of the goals of the classifiers was to be able to identify any rotation of a patch. As
mentioned in the last paragraph the ’by radius’ classifier are successful at identifying
any rotation of the patches when trained on few examples. And it seems possible
that it actually learns the patterns at any rotation due to the tests where the training
data had fewer and more than the 36 rotations which was used in the final classifier,
see section 5.3.2. When fewer rotations were used, the performance at recalling

39

7. Discussion

the training examples also went down and vice verse. This was not the case of the
’N closest’ classifier, at least not to the same extent. When training with the ’N
closest’ model, it performed very well at recalling the training examples down to 3-5
rotations when training on few (1-4) examples. There were no testes with this few
rotations when training on the whole mid data set. It can be the case that the ANN
is learning the order of the atom groups in the feature vector, see section 5.2.2, of
the ’N closest’ model, instead of learning the relative positioning of the atoms. This
needs more investigation before any conclusions can be drawn, it is hard to analyse
which features in the vector the ANN is relying on. The analysis , see section4.2.3.1,
shows that there is very small and non-existent correlation between the atom group
count in a patch and the patch being apart of the epitope, however this analysis
does not regard the order of the atom groups. It is also possible that the order of
the atom groups in the feature vector acts as a unique identifier for the patches. For
the mid data set there are 200 atoms in each patch, each atom is labeled with one
of 14 atom groups, which yields 14200 possible atom group patterns.

7.2 Model
This thesis has shown two epitope models, the ’by radius’ and ’N closest’. They
take a similar approach of modeling the epitope as a continuous patch of atoms
on the surface of a protein, as described in chapter 4. They also have the same
basic requirements, that a patch should cover the target epitopes and not to be too
big for the target protein. Fulfilling these two requirements was done by dividing
the data into smaller overlapping subsets, where the data examples in one set have
similar epitope and protein size. It was just a matter of finding a good radius or
atom count to fulfill the requirements. In these first steps, the two models are quite
similar and they use the same data sets. However when it came to assembling the
feature vector, there are some big differences.

The algorithms for creating the feature vectors can be found in section 5.2. The ’by
radius’ model has a much more complex way of assembling the feature vector than
the ’N closest’ model. It basically creates a pixel sphere with the same dimensions
as the patch, then places each atom in the patch to the corresponding pixel in the
sphere. This could solve one of the issues which the ’N closest’ feature vector has,
which is mentioned in section 7.1, because this vector is not as sensitive to the order
of the atoms. On the other hand, it consumes much more memory space which can
limit the performance of the classifier.

7.3 Neural network
ANN was the classifier of choice, which is excellent at classifying patterns in data
when there is much example data to train on. When it is successful the algorithm
becomes robust and precise. Robust in the sense that it is quite resilient to noise
in the data and precise such that once it is trained with a suitable structure the
classifications can be very fine grained. In addition it is very adaptable, it can be

40

7. Discussion

trained with new data as it becomes available and its structure can also be changed,
there is also the possibility to merge and stack different ANNs in order to get some
control and understanding of the algorithm. The downside of ANN is its parameter
complexity (hyper parameter), there are many parameters to tune in an ANN, more
than in most other machine learning algorithms. The structure and architecture
is possibly the most complex and most important part. There is a wide range of
architectures that has been developed over the years, they have different dynamics
and are suited for different problems. This project choose one of the most general
and simplest architectures, feedforward neural network (FFN), which is usually a
good place to start for any classification problem where one has limited knowledge.
The next part to consider is the structure, how many layers and how many neurons
there are in each one of them. In itself this is an optimization problem and with
limited knowledge one has to turn to the trial and error method. As mentioned in
section 5.1, it is possible to calculate the capacity for an ANN and that this can
be very complex and it can be hard to find any reliable result. In addition one
might not know how many patterns one has to fit into the ANN or how complex
the patterns are. When it comes to deciding on the number of layers in the ANN,
it can be worth to note that one can split the problem into smaller pieces and to do
the classification in steps. As mentioned, it is possible to stack or connect one ANN
with another. This is when the output from the first goes into the next one, meaning
that the second one does another classification of the first one’s output. This way
one can solve complex classification problems without the need of solving it in one
whole sweep [7]. The downside to more layers is more neurons and weights, in a
big ANN such as the one in figure 5.1 this becomes a memory and time limitation.
Bigger ANN does not only require more space in memory but also takes more time
to process, which will in turn increase the training time of the ANN. This project
is on a strict time limit which makes it hard to evaluate complex ANNs and to
motivate additional hardware in time to be able to test bigger structures or train
additional variations.

There are more parameters and features which look less important but can have a
big impact on the performance and training time of the ANN. The neurons come in
different variants, as with the architecture there is a wide range of neurons which
gives different perks and performance to the ANN, some are more robust, flexible
or faster to train. They are usually picked together with the training method. The
training method is basically an optimization algorithm, which is specialized on opti-
mizing different ANN architectures and neurons. Usually the training methods will
use the gradient of the ANN is some way, this project choose the Scaled conjugate
gradient back-propagation, section 5.1.2, which achieves state of the art training
performance for training FFN [15].

Closely connected to the training method is the learning rate, the rate of training.
This controls how big change the training method is allowed to make to the weights
and thresholds. There is a balance where one does not want to make too big steps
where the convergence of the ANN may come too soon and become suboptimal and
stuck in a local optima. On the other hand, too small step can as well easily get
stuck in local optima and the training can take much longer time. Again there is

41

7. Discussion

need for some trial and error, one has to test what works best.

The learning rate is also dependent on how the training is done on the data. When
there is a small and manageable amount of data which can fit in memory, then the
training can be done with all the data in one batch. When there is only one batch
the learning rate can be kept quite high without being biased towards any of the
data (assuming that the data is not biased). However, when the data does not fit
in memory one has to divide the data into smaller batches which will fit in memory,
which is the case in this project see section 5.1.2. When there are several batches the
training can become biased towards the first batches in the training if the learning
rate is too high, therefore one has to lower the learning rate to avoid this issue. This
was also done in the project and one can see in the results, see chapter 6, that the
performance in the training plots fluctuate up and down. Bigger fluctuations can
mean that the learning rate is high and less fluctuation that the learning rate is
low, it can also be the case that the data is very different in the different batches
which will also cause the fluctuations. The later can also be managed with a lower
learning rate and possibly a bigger ANN to fit the data diversity.

In this project the ANNs were used for supervised learning, it means that one has
training data which is annotated with the target classes to classify. In other words,
the training is supervised and controlled. Another way to do it is unsupervised
learning, this means that the machine learning algorithm must identify patterns in
the training data on its own, without any help from the outside. One implementation
area of this is clustering, where one uses a machine learning algorithm, possibly an
ANN, to find either a set number or arbitrary number of clusters in the given data.
This was not used in this project, but it would be interesting to see if there are
any clusters within the patches in the data set. The project did some correlation
analysis on the patches, section 4.2.3.1 which will be discussed further in section
7.5.

7.4 Data set
Data is the foundation of this project and in this area of research. It is obvious that
without any qualitative data it would be hard to do any B-cell epitope prediction.
Gathering data was not in the scope of this project, therefore data sets assembled
by prior projects where a good way to access the needed data. This project has
a combined data set from [16] and [10], which contains 126 examples, see section
3.4. According to the authors these data sets are representative and of good quality
for conformational B-cell epitopes. This is true for the conformational epitopes
which have been discovered and confirmed, which is a very small part of the total
number of possible conformational epitopes. The Immunology Epitope Database
(IEDB)1 has records of just above 3000 conformational B-cell epitopes in its data
base and just over 260 000 linear B-cell epitopes. It is quite reasonable that 126
could be representative when all duplicates, low quality and redundant examples
are removed. However, "As crystallographic studies of antibody-protein complexes

1www.iedb.org

42

7. Discussion

have shown, most B-cell epitopes are discontinuous." [9], which tells another story
and indicates that no one has any idea if it is possible to create a true representative
data set of the data available. This is a huge problem for research in this area, but
due to this limited knowledge this shows even more the value of a good prediction
tool.

The problem of the limited amount of data shows throughout the whole field. [11]
discusses the issue where it is hard to evaluate the different prediction methods, due
to the lack of verification data. In most tools developed there is usually only one
confirmed epitope area on the epitope, but it is more than likely that any antigen
has a lot more than one antigen. Each human or mouse has its own immune system,
they might be similar but it is fair to say that it would be an achievement to find two
identical immune systems with the same antibodies. This means that if a prediction
tool flags more than the confirmed epitope area on the antigen, it would be difficult
to confirm it. It might be better to just evaluate the tools by checking if they found
the confirmed epitope and just disregard any other indications on the antigens. In
addition one could collect known proteins which are accepted by the immune system,
such as red blood cells, antibodies or any other molecule which the immune system
should not attack and therefore is epitope free. One could then test the prediction
tools on this data set to evaluate its performance to identify non epitope areas,
which is just as important as flagging epitopes. This project did not do this non-
epitope evaluation due to lack of assembled data sets and that gathering new data
was outside of the project scope.

The issue of non-epitope areas is also bound to the training of prediction tools,
both for this and prior projects. It is not easy to find what other researchers use as
negative examples (non-epitope), some are simply taking the same approach as this
project, to just treat all patches on the antigen which is not confirmed epitopes as
a negative example and the confirmed epitope patches as an positive patch [1]. As
mentioned above, this is a questionable approach due to the inability to confirm the
non-epitope areas. This approach will probably lead to much noise in the training
data, data which is annotated with the wrong class. In the case of this project, it is
more than probable that the data set with negative annotation contains very much
noise. A preferred way is to use confirmed data in both cases, however this would
require data gathering which again was not in the scope of this project.

Not only is the data of questionable quality, it is also very biased. More than 90%
of the training data is annotated as non-epitope, see section 5.1.2, which can make
it harder for the ANN to train on. The batch balancing done in the project is
one way to avoid biased training, but as mentioned in section 5.1.2 this can cause
over fitting the epitope patches. A minor attempt to decrease the over fitting was
done by defining the epitope patches as a patch containing 80% of the atoms in the
confirmed epitope, see section 4.2, which increases the number of epitope patches
and decreases the number of non-epitope patches. This might not be enough and
it would be preferred to find more confirmed epitope examples to even out the
positive-negative ratio.

43

7. Discussion

7.5 Analysis

The correlation analysis in section 4.2.3.1 counted the number of atoms belonging to
each atom group in each patch of the data sets. This is a different analysis method
than what other projects have used. Usually there is a log odds ratio of the amino
acid residues in the patch model, for example [8]. The problem with amino acids is
that they are man labeled collections of atoms and it is very improbable that the
whole amino acid is exposed at the surface. Usually there is a part of a single amino
acid, a few atoms which binds to the antibody, it is rare that the whole amino acid is
binding. The binding is rather to atoms exposed on the surface and that seems like
a more logical substance to count. This project did count the atom groups, which
brings more information about the atoms (see section 4.1.1). The analysis show
that there is no clear correlation between any of the atom groups and the epitope
patches, the project did however not analyse any joined atom group correlations.

7.6 Related work

The performance of an classifier depends on which statistics is considered. If we
where for example just looking at the total success rate (see table 6.2), this classifier
does perform better than the state of the art prediction tools. But this statistic is
not telling the truth, one should look at the sensitivity and specificity, those are the
statistics which can reveal the true performance of the classifier. Most other articles
measures the performance by a sensitivity-specificity ratio (ROC) and calculates
the area under the curve (AUC), this also gives a good measure of how well the
classification is performing. This AUC value is calculated using the results from
the evaluation, which means that the AUC value depends on the evaluation set.
Different evaluations sets may give different AUC values and it can also be the case
that for an individual example in the evaluation set the AUC and the performance
is much better than the average. Ellipro [1] reports a best AUC of 0.732, which is
a good performance for this problem, however the average AUC of Ellipro is 0.528,
where 0.5 is a coin flip. Discotope 2.0 [11] reports an impressive AUC of 0.731 using
their benchmark data set.

Due to the different data sets and evaluation techniques, there is a need for more
consistent benchmarking and evaluation. In 2013 a review of the current conforma-
tional B-cell prediction tools was made [5]. This review shows with their evaluation
data set that their AUC performance of the prediction tools did not exceed 0.6,
except for an meta method combining the different results. The best average AUC
of this project is 0.514, which tells us that it cannot predict anything, compared to
the results from the review this is worse but only marginally worse. 0.6 is still closer
to a coin flip than it is to a correct prediction.

44

7. Discussion

7.7 Further work
The main issue in this area is the insufficient data available. As shown by this
project the methods for recalling and identifying epitopes is available, but there is
a need for better suited data sets to get satisfying results. Therefore I suggest that
future work in this area should focus on assembling a more comprehensive data set,
for example it would be better to have 127 epitope examples on the same antigen
than having 127 different antigens with one epitope example each (as the one used
by this project). It would also be interesting to assemble a confirmed non-epitope
data set, using proteins which are accepted in the host. Another thing to note is to
only use antigen-antibody complexes which are found in humans, because it is not
the main goal to find out which antigens mice will react to.

7.8 Ethics
Being able to predict the conformational B-cell epitopes would help the development
of therapeutic proteins. This would lower the costs and the development speed for
the corresponding companies. The benefits of an accurate prediction tool for these
epitopes lies beyond economical and time gains. Shortening the development time
for new qualitative therapeutic drugs, it would benefit the end user by granting
them access to new treatments, which could minimize their suffering. In addition
the prediction tools could aid with the quality of the therapeutic proteins such that
they would induce less of an immune response and decrease the side effects for
the subject. The lower development costs would not only benefit the companies
developing the drugs but also the customer by a lower price on the product.

Calculating the prediction of possible epitopes and immune response from the human
immune system would decrease the need for accrual testing, but not remove it.
Today the therapeutic proteins undergo clinical trials on animals, such as mice,
before they are tested on humans and finally released to the open market. This
animal and human testing would be minimized if the proteins would be screened for
most of the initial possible epitopes.

One down side of predicting immune response from proteins is that it can be used
for developing biological weapons. Developing a virus, bacteria or molecule which
would be accepted by the immune system would be a disaster. This is always a
balance to weigh the gains to the danger and the weaponizing argument will come
back to haunt new research wherever it takes us.

45

7. Discussion

46

8
Conclusion

This thesis shows the development of two models for conformational B-cell epitope
prediction. It describes the classification method and the training process of different
settings in that method. The final results did not show any improvement compared
to related work in the area, however it showed that both the epitope models can be
used to identify epitopes on the surface of an antigen.

As discussed in chapter 7 the data used in this project is not suited for machine-
learning together with the desired goal of this project. The epitope models and
classification method does show some potential and should not be excluded from
future research.

47

8. Conclusion

48

Bibliography

[1] J. Ponomarenko, HH. Bui, W. Li, N. Fusseder, PE. Bourne, A. Sette, B. Peters.
ElliPro: a new structure-based tool for the prediction of antibody epitopes BMC
Bioinformatics, 9:514 2008.

[2] R. Vita, JA. Overton, JA. Greenbaum, J. Ponomarenko, JD. Clark, JR.
Cantrell, DK. Wheeler, JL. Gabbard, D. Hix, A. Sette, B. Peters. The immune
epitope database (IEDB) 3.0. Nucleic Acids Res. 2014 Available: www.iedb.org

[3] HM. Berman, J. Westbrook, Z. Feng, G. Gilliland, TN. Bhat, H. Weissig, IN.
Shindyalov, PE. Bourne The Protein Data Bank Nucleic Acids Research, 28:
235-242. 2000 Available: www.rcsb.org

[4] S. Saha, GPS. Raghava Prediction of Continuous B-Cell Epitopes in an Antigen
Using Recurrent Neural Network, Proteins, volume 65, 40-48. 2006.

[5] B. Yao, D. Zheng, S. Liang, C. Zhang Conformational B-Cell Epitope Pre-
diction on Antigen Protein Structures: A Review of Current Algorithms and
Comparison with Common Binding Site Prediction PLoS ONE 8(4): e62249,
2013.

[6] M. Baker, HM. Reynolds, B. Lumicisi, CJ. Bryson. Immunogenicity of pro-
tein therapeutics: the key causes, consequences and challenges. Self Nonself
;1(4):314-322. 2010.

[7] A. Krizhevsky, I. Sutskever, GE. Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in Neural Information Processing Systems
25: 26th Annual Conference on Neural Information Processing Systems, 1106–
1114 2012.

[8] PH. Andersen, M. Nielsen, O. Lund. Prediction of residues in discontinuous
B-cell epitopes using protein 3D structures. Protein Science, 15(11):2558–2567,
2006.

[9] P. Sun, H. Ju, Z. Liu, Q. Ning, J. Zhang, X. Zhao, Y. Huang, Z. Ma, Y. Li.
Bioinformatics Resources and Tools for Conformational B-Cell Epitope Pre-
diction. Computational and mathematical methods in medicine Computational
and Mathematical Methods in Medicine Volume 2013, Article ID 943636, 11
pages, 2013.

[10] JV. Ponomarenko, PE. Bourne Antibody-protein interactions: benchmark
datasets and prediction tools evaluation. BMC Structural Biology, 7:64. 2007.

[11] JV. Kringelum, C. Lundegaard, O. Lund, M. Nielsen Reliable B Cell Epi-
tope Predictions: Impacts of Method Development and Improved Benchmarking
PLoS Comput Biol 8(12): e1002829. 2012.

49

Bibliography

[12] JM. Thornton, MS. Edwards, WR. Taylor, DJ. Barlow Location of ’continuous’
antigenic determinants in the protruding regions of proteins. EMBO J ;5(2):409-
13. 1986.

[13] E. Westhof, D. Altschuh, D. Moras, AC. Bloomer, A. Mondragon, A. Klug ,
MH. Van Regenmortel Correlation between segmental mobility and the location
of antigenic determinants in proteins. Nature ;311(5982):123-6. 1984.

[14] ND. Rubinstein,I. Mayrose, T. Pupko A machine-learning approach for pre-
dicting B-cell epitopes. Mol Immunol. Feb;46(5):840-7. 2009.

[15] MF. Møller A Scaled Conjugate Gradient Algorithm for Fast Supervised Learn-
ing University of Aarhus, Neural Networks Volume 6, Issue 4, 1993, Pages
525–533. 1991.

[16] JV. Kringelum, M. Nielsen, SB. Padkjær, O. Lund Structural analysis of B-cell
epitopes in antibody:protein complexes Mol Immunol ;53(1-2):24-34 2012.

[17] J. Tsai, R. Taylor, C. Chothia, M. Gerstein The Packing Density in Proteins:
Standard Radii and Volumes Journal of Molecular Biology Volume 290, Issue
1, Pages 253–266. 1999.

[18] W. Mehio A Novel Method to Predict Protein-Protein Binding Surfaces Master
Thesis at Chalmers University of Technology, 2007.

50

A
Appendix 1

A.1 Metadata, based on [17]

atomic_group C3H0 1 .61
atomic_group C3H1 1 .76
atomic_group C4H1 1 .88
atomic_group C4H2 1 .88
atomic_group C4H3 1 .88
atomic_group N3H0 1 .64
atomic_group N3H1 1 .64
atomic_group N3H2 1 .64
atomic_group N4H3 1 .64
atomic_group O1H0 1 .42
atomic_group O2H1 1 .46
atomic_group S2H0 1 .77
atomic_group S2H1 1 .77

I

A. Appendix 1

ALA C C3H0 GLN CG C4H2 LEU N N3H1 SER OG O2H1
ALA CA C4H1 GLN N N3H1 LEU O O1H0 THR C C3H0
ALA CB C4H3 GLN NE2 N3H2 LYS C C3H0 THR CA C4H1
ALA N N3H1 GLN O O1H0 LYS CA C4H1 THR CB C4H1
ALA O O1H0 GLN OE1 O1H0 LYS CB C4H2 THR CG2 C4H3
ARG C C3H0 GLU C C3H0 LYS CD C4H2 THR N N3H1
ARG CA C4H1 GLU CA C4H1 LYS CE C4H2 THR O O1H0
ARG CB C4H2 GLU CB C4H2 LYS CG C4H2 THR OG1 O2H1
ARG CD C4H2 GLU CD C3H0 LYS N N3H1 TRP C C3H0
ARG CG C4H2 GLU CG C4H2 LYS NZ N4H3 TRP CA C4H1
ARG CZ C3H0 GLU N N3H1 LYS O O1H0 TRP CB C4H2
ARG N N3H1 GLU O O1H0 MET C C3H0 TRP CD1 C3H1
ARG NE N3H1 GLU OE1 O1H0 MET CA C4H1 TRP CD2 C3H0
ARG NH1 N3H2 GLU OE2 O1H0 MET CB C4H2 TRP CE2 C3H0
ARG NH2 N3H2 GLY C C3H0 MET CE C4H3 TRP CE3 C3H1
ARG O O1H0 GLY CA C4H2 MET CG C4H2 TRP CG C3H0
ASN C C3H0 GLY N N3H1 MET N N3H1 TRP CH2 C3H1
ASN CA C4H1 GLY O O1H0 MET O O1H0 TRP CZ2 C3H1
ASN CB C4H2 HIS C C3H0 MET SD S2H0 TRP CZ3 C3H1
ASN CG C3H0 HIS CA C4H1 PHE C C3H0 TRP N N3H1
ASN N N3H1 HIS CB C4H2 PHE CA C4H1 TRP NE1 N3H1
ASN ND2 N3H2 HIS CD2 C3H1 PHE CB C4H2 TRP O O1H0
ASN O O1H0 HIS CE1 C3H1 PHE CD1 C3H1 TYR C C3H0
ASN OD1 O1H0 HIS CG C3H0 PHE CD2 C3H1 TYR CA C4H1
ASP C C3H0 HIS N N3H1 PHE CE1 C3H1 TYR CB C4H2
ASP CA C4H1 HIS ND1 N3H1 PHE CE2 C3H1 TYR CD1 C3H1
ASP CB C4H2 HIS NE2 N3H1 PHE CG C3H0 TYR CD2 C3H1
ASP CG C3H0 HIS O O1H0 PHE CZ C3H1 TYR CE1 C3H1
ASP N N3H1 ILE C C3H0 PHE N N3H1 TYR CE2 C3H1
ASP O O1H0 ILE CA C4H1 PHE O O1H0 TYR CG C3H0
ASP OD1 O1H0 ILE CB C4H1 PRO C C3H0 TYR CZ C3H0
ASP OD2 O1H0 ILE CD1 C4H3 PRO CA C4H1 TYR N N3H1
CYS C C3H0 ILE CG1 C4H2 PRO CB C4H2 TYR O O1H0
CYS CA C4H1 ILE CG2 C4H3 PRO CD C4H2 TYR OH O2H1
CYS CB C4H2 ILE N N3H1 PRO CG C4H2 VAL C C3H0
CYS N N3H1 ILE O O1H0 PRO N N3H0 VAL CA C4H1
CYS O O1H0 LEU C C3H0 PRO O O1H0 VAL CB C4H1
CYS SG S2H1 LEU CA C4H1 SER C C3H0 VAL CG1 C4H3
GLN C C3H0 LEU CB C4H2 SER CA C4H1 VAL CG2 C4H3
GLN CA C4H1 LEU CD1 C4H3 SER CB C4H2 VAL N N3H1
GLN CB C4H2 LEU CD2 C4H3 SER N N3H1 VAL O O1H0
GLN CD C3H0 LEU CG C4H1 SER O O1H0

II

A. Appendix 1

A.2 N closest - Data set
The following data sets where generated and analyzed with the following number of
atoms in each patch.

Small size 110
Mid size 200
Big size 350

Table A.1: The number of atoms in each patch for respectively data set

A.2.1 Small data set

PDB id_chain # epitope patches epitope width over graph
1adq.pdb_A 2 12
1afv.pdb_A 15 13
1bql.pdb_Y 9 14
1cz8.pdb_W 12 17
1dzb.pdb_X 3 13
1e6j.pdb_P 13 13
1egj.pdb_A 14 14
1fdl.pdb_Y 15 11
1fns.pdb_A 13 11
1fsk.pdb_A 9 22
1g9m.pdb_G 6 12
1h0d.pdb_C 13 10
1hys.pdb_B 13 9
1iqd.pdb_C 1 15
1jhl.pdb_A 7 11
1jrh.pdb_I 11 14
1k4c.pdb_C 10 11
1kb5.pdb_A 12 12
1ken.pdb_A 5 10
1lk3.pdb_A 6 12
1n0x.pdb_P 17 13
1n5y.pdb_B 14 12
1nfd.pdb_B 15 13
1nfd.pdb_D 11 12
1nl0.pdb_G 14 12
1oak.pdb_A 13 10
1ors.pdb_C 19 13
1ots.pdb_A 16 12
1p2c.pdb_C 10 16
1pkq.pdb_E 5 19

III

A. Appendix 1

1qfw.pdb_A 20 11
1qgc.pdb_5 28 7
1r0a.pdb_B 12 15
1r3j.pdb_C 11 11
1rjl.pdb_C 14 12
1tpx.pdb_A 13 17
1tqb.pdb_A 14 15
1tzi.pdb_V 3 11
1wej.pdb_F 9 12
1xiw.pdb_F 10 13
1ynt.pdb_F 3 11
1z3g.pdb_A 18 12
2a0l.pdb_A 22 8
2adf.pdb_A 6 10
2fd6.pdb_U 9 11
2fjg.pdb_W 9 11
2fjh.pdb_W 18 14
2hfg.pdb_R 21 14
2i9l.pdb_I 13 13
2j4w.pdb_D 20 13
2j6e.pdb_B 16 9
2jel.pdb_P 6 14
2jix.pdb_C 10 11
2osl.pdb_Q 18 8
2qqk.pdb_A 10 13
2qqn.pdb_A 13 9
2qr0.pdb_U 17 10
2r4r.pdb_A 19 14
2vir.pdb_C 3 11
2vit.pdb_C 5 11
3c09.pdb_A 12 12
3csy.pdb_J 10 14
3d85.pdb_C 9 18

Table A.2: The small data set.

A.2.2 Mid data set

PDB id_chain # epitope patches epitope width over graph
1a14_N 18 13
1ahw_C 23 14
1ar1_B 21 12
1bql_Y 26 14
1bvk_C 32 11

IV

A. Appendix 1

1dzb_X 27 13
1eo8_A 20 12
1ezv_E 25 14
1fbi_X 16 21
1fe8_A 24 15
1fe8_B 22 14
1fj1_F 25 19
1i9r_A 15 14
1iqd_C 24 15
1jps_T 19 13
1ken_A 28 10
1mhp_A 29 14
1mhp_B 24 15
1n8z_C 38 13
1nca_N 14 13
1ndg_C 24 15
1nmb_N 17 17
1nsn_S 13 23
1oaz_A 17 16
1ob1_C 20 15
1pkq_E 28 19
1qfu_A 16 22
1sy6_A 23 18
1txv_A 32 15
1v7m_V 22 15
1xiw_A 17 19
1yjd_C 24 14
1ynt_F 28 11
1za3_R 34 13
1ztx_E 30 18
2aeq_A 18 15
2arj_R 15 13
2bdn_A 18 15
2cmr_A 17 14
2dd8_S 20 16
2dqd_Y 24 15
2dqf_C 28 11
2dtg_E 18 14
2fd6_U 22 11
2fjh_W 36 14
2nr6_A 25 12
2nyy_A 17 17
2oz4_A 24 19
2qad_A 11 15

V

A. Appendix 1

2r0k_A 19 14
2r0l_A 14 14
2r29_A 26 13
2r4r_A 27 14
2r56_A 24 14
2vc2_A 26 15
2vh5_R 31 13
2vit_C 30 11
2zch_P 20 15
3b2u_B 13 14
3bn9_B 8 17
3d85_C 30 18

Table A.3: The mid data set

A.2.3 Big data set

PDB id_chain # epitope patches epitope width over graph
1i9r.pdb_A 55 14
1ndg.pdb_C 78 15
1nsn.pdb_S 51 23
1osp.pdb_O 48 18
1rvf.pdb_1 61 23
1s78.pdb_A 23 21
1s78.pdb_B 2 21
1txv.pdb_A 62 15
1w72.pdb_A 43 16
1yy9.pdb_A 58 13
1za3.pdb_S 51 21
2aep.pdb_A 45 20
2b4c.pdb_G 33 17
2h9g.pdb_R 62 19
2r0l.pdb_A 46 14
2vc2.pdb_A 55 15
3b2u.pdb_B 51 14

Table A.4: The big data set

VI

	List of Figures
	List of Tables
	Introduction
	Conformational B-cell epitopes
	Purpose and goals
	Method
	Thesis Outline

	Background
	Immunology
	B-Cells
	Antibody-Antigen bindings

	Classification
	Artificial neural networks
	Training data

	Related work
	Discotope
	ElliPro
	Epitopia

	Epitope data
	Gathering methods and quality
	Raw data
	Publications and databases
	Data sets

	Surface model
	Antigen surface
	Solvent accessible surface
	Surface representation

	Surface patches
	Comparability
	Patch creation algorithms
	By radius
	N closest

	Data sets
	Analysis

	Classification
	Machine learning
	Neural networks
	Training
	GPU computing

	Training data
	By radius - Encoder
	Algorithm

	N closest - Encoder
	Decoder

	Classifier
	Evaluation
	By radius classifier
	N closest classifier

	Results
	Classification
	By radius
	N closest

	Discussion
	Results
	Model
	Neural network
	Data set
	Analysis
	Related work
	Further work
	Ethics

	Conclusion
	Bibliography
	Appendix 1
	Metadata, based on 18
	N closest - Data set
	Small data set
	Mid data set
	Big data set

