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Abstract
This thesis aims to investigate whether machine learning can be used to diagnose
whether a bacteria is resistance towards a certain antibiotic or not. This will be done
by building a prediction model for prediction of minimum inhibitory concentration.
Minimum inhibitory concentration is defined as the minimum dosage of a drug
needed in order to inhibit a infection or disease.
To do this, a labeled dataset consisting of 4964 genomes from Salmonella bacteria

with corresponding minimum inhibitory concentrations for up to 15 antibiotics where
used alongside a unlabeled dataset of Salmonella genomes taken from ncbi GenBank.
Further, due to the small size of the dataset compared to the length of a Salmonella

genome, more than 4 000 000 nucleotides, we divided each genome into k-mers and
viewed each k-mer as a word. The genome can then be viewed as a document and
the problem at hand becomes to classify this document w.r.t antibiotic resistance.
To classify this document we took a bag-of-word approach, counting the occurrence
of each k-mer and then producing a vector based on the count for each genome.
The bag-of-word approach resulted in an information loss regarding the context of
certain k-mers but made further processing feasible.
Furthermore, we considered two different machine learning model for the given

task. A standard feedforward neural network trained in a supervised setting and
a ladder network trained in a semi-supervised setting. We trained the networks
for prediction of inhibitory concentration for all the 15 antibiotics simultaneously.
To handle missing labels in the data we constructed a customized output layer
consisting of 15 softmax layers concatenated. Given a missing label we simply
ignored to gradient from the corresponding softmax layer. The training set was also
over-sampled using two different techniques based on bootstrapping and synthetic
minority over-sampling.
Moreover, it was found, through hyperparemeter tuning using the Parzen Tree

estimator, that the semi-supervised learning did not improve the accuracy and a
standard feedforward neural network had the best accuracy when it came to pre-
dicting exact minimum inhibitory concentration. Our feedforward neural network
was then compared to baseline model, which was based on the distribution of la-
bels in the dataset, and an already existing machine learning model trained on the
considered dataset.
It was found that our feedforward neural network outperformed both these mod-

els when it comes to prediction minimum inhibitory concentrations. The average
accuracy for prediction of exact minimum inhibitory concentration where 0.78 and
when the result was translated to the labels sensitive, intermediate and resistance
towards an antibiotic the model got an average accuracy of 0.97.
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In addition, we evaluated our model with respect to the error rates defined by
the National Antimicrobial Resistance Monitoring System and the error rates where
found to not be low enough to be used in a clinical setting. We think that this is a
combination of the limitations with a bag-of-word approach and the lack of data.
Nevertheless, from this work we can conclude that machine learning is an intrest-

ing and prominent approach to autonomous prediction of of minimum inhibitory
concentration and diagnosis of antibiotic resistance. However, several problems like
the interpretability of the models and skewness in the datasets are yet to be solved
before a machine learning model can be used on a clinical setting for this purpose.
We end this thesis with a discussion regarding future work that could solve many

of the problems encountered throughout this thesis.

Keywords: Machine Learning, Salmonella, Antibiotic Resistance, Minimum In-
hibitory Concentration, Neural Network, Ladder Network, Bayesian Optimization
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1
Introduction

Antibiotic resistance is, alongside the climate changes and lack of freshwater, the
most serious threat against mankind according to WHO [1]. Alexander Flemming,
who found the pencillin in 1928, predicted that mal-use and over usage of antibiotics
would lead to a post-antibiotic era where minor infections can no longer be treated
and become lethal[2]. This era is approaching, already now there are pan resistant
superbugs present in the population, and we need new technology in order to halt
this negative development.
To successfully treat an resistant infection and to control the spread, fast decisions

have to be made when it comes to diagnosis and treatments. However, to diagnose
antibiotic resistance today one often cultivate the bacteria on agar-plates and then
expose it to different antibiotics. In many cases this is a very time-consuming
process and inadequate when fast decisions must be made. For example, the bacteria
Tubercolosis takes about two weeks to cultivate on a agar-plate [3]. Going two weeks
with no or wrong treatment might be devastating for a patient. Hence, there is a
need for faster methods when it comes to antibiotic resistance profiling and virulence
factor detection.

1.1 1928 Diagnostics
1928 Diagnostics is a Gothenburg based start-up tackling the growing problem of
antibiotic resistance. The company provides a cloud-based platform which hospitals
can upload the genome of a bacteria in order to get antibiotic resistance profile of the
bacteria. By matching the digital representation of the genome with other genomes
in a curated database can 1928 Diagnostics provide fast classification and analysis
of bacteria genomes. This enables faster diagnosis and a more rigorous infection
tracing then before possible at hospitals.

1.2 Antibiotic Resistance and Machine Learning
Many of the more prominent algorithmic methods regarding antibiotic resistance
detection are based matching towards a database, like 1928 Diagnostics is doing.
An other example is ResFinder [4]. These methods can be said to be “memory”
based since they mimic the human trait memorization. This becomes a limitation
since, unlike the human mind, these methods cannot learn and generalize from their
memories. It would be a great advantageous if the methods instead where able to
find patterns and make general conclusion based on their memories.
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1. Introduction

Machine learning is a field within computer science focusing on developing algo-
rithms able to perform advanced tasks without being explicit programmed to do so.
This is done by letting mathematical models extract knowledge from datasets and
can be viewed as the opposite of algorithms matching towards a database. Instead of
just memorizing the data, a machine learning algorithm tries to find patterns within
the data and in the extension gain some general knowledge based these patterns [5,
p. 1-5].
Moreover, several approaches using machine learning in order to predict antibiotics

have lately been made. A very prominent approach where made by Daniel Veltri et
alt. in the paper Deep Learning improves antimicrobial peptide recognition [6]. The
authors present a sequence based machine learning model, using both convolutional
layers and embedding layers. The model is trained on 1424 peptide sequences with
a length varying from 10 to 150 aminoacids. The authors shows that the model
outperforms several state-of-the-art classification algorithms. However, the dataset
used is quite small and tests performed on larger datasets would be intresting in
order to investigate the robustness of the algorithm further. The length of the
sequences trained on are also quite small in comparison to the raw output from
different sequencing methods. Thus, in order to use this method on an entire bacteria
genome some a priori information or pre-processing step is probably needed.
Furthermore, the paper Using Machine Learning To Predict Antimicrobial MICs

and Associated Genomic Features for Nontyphoidal Salmonella by Marcus Nguyen
et alt. presents a machine learning model trained on 4500 Salmonella genomes. This
is, to our knowledge, the largest machine learning study performed for on whole-
genome sequenced data for prediction of antibiotic resistance. The authors trains a
extreme gradient boosted decision tree and are able to extract features correlated to
resistance from the trained model. This makes the model somewhat interpretable
which is important in a clinical setting.
In addition, the article DeepARG: a deep learning approach for predicting antibiotic

resistance genes for metagenomic data by G. Arango-Argoty et alt. presents a
method for prediction of resistance genes in genetic material directly taken from
some environment [7]. This means that the model is able to take genetic material
from several different species at the same time and detect antibiotic resistance for
that set which require minimal pre-processing. The model is based representing an
input as a vector of similarities between the input and known antibiotic resistance
genes. The similarity vector is then feed into a machine learning model which tries
to classify the input.

2



2
Aims

This thesis aims to investigate how machine learning and especially neural networks
can be used in order to predict antibiotic resistance for the bacteria Salmonella using
DNA-sequences as input. The thesis can be divided into three parts

1. Developing a pre-processing step that facilitates learning for machine learning
models.

2. Constructing a prediction model based on neural networks
3. Investigating whether it is possible to improve the prediction model using

semi-supervised learning
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3
Theory

In this chapter we present the theory needed in order to understand the methods
used and conclusions in this thesis. We assume the reader to be familiar with multi
variable calculus, linear algebra and optimization.

3.1 DNA and Antibiotic Resistance
In the following section we present the biological theory needed to follow the reason-
ing throughout this thesis. We start by introducing DNA, genetic mechanisms and
NGS. We then present more problem specific theory such as antibiotic resistance
and minimum inhibitory concentration.

3.1.1 DNA

Figure 3.1: The DNA double helix.
Figure taken from PlosOne with a CC
BY license [8].

Offsprings tends to have similar traits as
their parents. This is called genetic inheri-
tance and plays a keyrole in evolution. The
inheritance is caused by genes being trans-
ferred from the parent to the offspring.
The total genetic material in an organism
is referred to as the genome [9].
Further, genes are composed of a molecule
called deoxyribonucleic acid (DNA) which
is shown in figure 3.1. It is the DNA
molecule who carries all the genetic infor-
mation of an organism and this is encoded
by base pairs. Each base pair consists of
two nucleotides.
Furthermore, there exist four different nu-
cleotides in the DNA : cytosine (C), gau-
nine (G), adenine (A) and thymine (T).
These nucleotides forms the basis of the bi-
ological programming language [10].
Moreover, most processes in an organism is in need of proteins. To construct a
protein, the DNA is used as a instruction book. A sequence of nucleotides can be
viewed as a sequences of operation which leads up to the construction of a protein.
To be more precise, a triplet of succeeding nucleotides forms a codon. Each codon
encodes an amino acid and a chain of amino acids forms a protein [9].
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3. Theory

However, it might happen that parts of the DNA changes and this is called a muta-
tion. For example, certain parts can be deleted, a single nucleotide might change or
an entire gene can be added. This might in the extension change functions within
the bacteria.
Mutations serves as a fuel for evolution. A mutation can be devastating and have
a deadly outcome for the organism. On the other hand can a mutation, in rare
cases, provide a significant advantages compared to other organisms. For example
by making a bacteria resistant towards antibiotics.
A certain state of the DNA molecule is referred to as genotype and the resulting
effect is referred to as phenotype [11]. An example of this is a mutation causing
antibiotic resistance. The mutation changes the genotype which makes the bacteria
resistance, i.e the phenotype has changed.

3.1.2 Analyzing DNA
The DNA encodes most of the processes within an organism. Investigating and
analyzing DNA is therefore interesting in order to, for examples, treat diseases or
find out whether a bacteria is resistance or not towards a certain antibiotic.
However, in order to make rigorous analysis we would like to extract the information
within the DNA molecule somwhow. In recent year it has become much easier
to extract this information and get a digital representation of the DNA by using
something called Next Generation Sequencing (NGS) [12].
NGS is a collection of techniques that first breaks down the genome in smaller
fragments, so called reads. It is then possible to make digital representations of
these reads based on the letters A, C, G, T [12]. These fragments are then pieced
together in a process called assembling. In many cases one is not able the retrieve
the entire DNA molecule through an assembling and one instead get several longer
sequences called contigs. Contigs may cover one or several genes and are therefore
often sufficient when it comes to analyzing single genes.

6



3. Theory

Figure 3.2: Illustration of the assembling process of a genome.

In addition, k-mers are a common tool in the field of genomics. A k-mer is sub-
string of length k and given k there exist 4k different k-mers. Hence, a k-mer becomes
a sub-sequence of nucleotides and one often considers overlapping k-mers. In table
3.1 we illustrate how to compute overlapping 3-mers of a DNA-sequence.

DNA-sequence: AGATTCAA
3-mers: AGA GAT ATT TTC TCA CAA

Table 3.1: Illustration of how overlapping k-mers are calculated.

Computing the k-mers of a DNA-sequence does not require much computational
power and provides a signature of the DNA-sequence. For example, given two
individuals from the same species we can consider the distribution of k-mers in each
genome to roughly estimate how similar the individuals are. If we in the extreme
considers k-mers of the same size as the entire genome, all individuals will have its
own unique k-mer. Therefore, by increasing k we increase to number of possible
k-mers which in turn makes it easier to distinguish between different individuals,
but this comes to an increased computational cost.

3.1.3 Antibiotic Resistance
Antibiotics are drugs used for treatment of infections caused by bacteria. Since
Alexander Flemings discovery of penicillin in year 1928, and the dawn of the antibi-
otic era, countless of lives have been saved by antibiotics and many, before deadly,
diseases have become treatable [13].
Moreover, like some humans are naturally more resistant towards certain diseases

than others, individual bacteria within a species may be more resistant towards an
antibiotic compared to the average bacteria within that species. When an antibiotic

7



3. Theory

is used against a bacterial infection, those bacteria not resistant will die while the
resistant bacteria may thrive and potentially produce offspring that also carriers the
resistant phenotype. This drives the natural selection within the infection. An over
usage and misuse of an antibiotic in large scale might therefore lead to a resistant
strain taking root in a society [14].

Figure 3.3: Picture of horizontial gene transfer. Courtesy of Charles C. Brinton Jr
[15].

Furthermore, resistance may not only be spread by bacteria producing offspring.
It is also possible for a bacteria to transfer DNA to to another bacteria. This is
called horizontial gene transfer and makes it possible for one species of bacteria to
pass a gene linked to antibiotic resistance to a different species.

3.1.3.1 Minimum Inhibitory Concentration

Minimum Inhibitory Concentration, or MIC-value, is defined as the lowest concen-
tration of a drug(µg/mL) such that the growth of the bacteria is inhibited [16].
Hence, the MIC-value becomes a continuous measure of how resistant a bacteria is
towards a particular antibiotic and therefore suitable when it comes to optimizing
treatment.
Further, MIC-values are often expressed as a two-fold dilution. This means that

MIC-values often occurs on the form 2n, n ∈ Z.
However, MIC-values of different antibiotics are not directly comparable. This

since antibiotics might have different recommended maximum dosage or different
biological mechanisms. Instead, control authorities like the U.S Food and Drug
Administration (FDA) distributes guidelines from National Antimicrobial Resistance
Monitoring System (NARMS) for how to translate a MIC-value to one of the labels,
sensitive (S), intermediate (I) or resistance (R) based on how large the MIC-value
is and the antibiotics of interest.
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3. Theory

We present the guidelines used throughout this thesis for translating MIC-values
into their corresponding labels for the bacteria Salmonella enterica in table 3.2.
Note that all values are expressed on a two-fold dilution level, this is in line with
FDAs guidelines for susceptibility tests [17].

MIC Breakpoints (µg/L)
Antibiotic R≥ I S≤
Aminoglycosides
Gentamicin(GEN) 16 8 4
Kanamycin(KAN) 64 32 16
Streptomycin(STR) 64 - 32
Penicillins
Amoxicillin(AUG) 32 16 8
Ampicillin(AMP) 32 16 8
Macrolides
Azithromycin(AZI) 32 - 16
Cephems
Cefoxitin(FOX) 32 16 8
Ceftriaxone(AXO) 4 2 1
Cefttifur(TIO) 8 4 2
Folate Pathway

Inhibitors
Sulfidoxazole(STR) 512 - 256
Trimethoprim(COT) 4 - 2
Phenicols
Chloramphenicol(CHL) 32 16 8
Quinolones
Ciprofloaxin(CIP) 4 2 1
Nalidixic acid(NAL) 32 - 16
Tetracyclines
Tetracycline(TET) 16 8 4

Table 3.2: MIC-value thresholds for the different antibiotics considered throughout
this thesis[17]

3.2 Machine Learning
Machine learning is branch of artificial intelligence which aims to design algorithms
that can perform specific tasks without explicit instructions [5]. This is achieved by
a data-driven approach where the algorithm learns a mathematical model from a
training dataset.
To give a more mathematical description, consider a function

g : X → Y . (3.1)

9



3. Theory

For example let X be the set of all possible genomes of a bacteria and Y the space
of MIC-values. Then g is the biological function determining the MIC-value for
each antibiotic given a bacteria genome x. Our goal in machine learning is to learn
the function g, but in practise this is impossible since we know nothing about the
functional space that g lies in. Instead, we try to find a function in some functional
space, f ∈ F , that serves as a good approximation of g. Hence, we would like to
solve the optimization problem

min
f∈F
||f − g||. (3.2)

Unfortunately, this optimization problem is intractable since we do not know any-
thing about g.
However, assume that we have a set of genomes S ⊂X for which be have observed

the corresponding MIC-values, i.e g(S) ⊂ Y. For a given functional space F we could
then solve

min
f∈F

∑
x∈S
||f(x)− g(x)||. (3.3)

Our optimization - or learning-problem thus have two phases. Phase 1 is picking
the space F this is equivalent to picking a model and its hyperparameters. In phase
2 we train our chosen model, i.e finding the optimal f ∈ F . Optimization over a
set S where g(S) is known is called supervised learning within the field of machine
learning.
Further, we can also perform unsupervised learning. In unsupervised learning, we

search for structures and correlations in a dataset U but in contrary to the supervised
learning we have no observation g(U) to work with. Instead, we perform clustering
and feature extraction [18]
Furthermore, one can combine the ideas behind supervised- and unsupervised

learning into semi-supervised learning. Consider the two sets S, U ⊂ X where g(S)
is known and g(U) is unknown. We try the utilize the dataset U when learning g
by considering the following minimization problem

min
f∈F,f∗∈F ∗

CS
∑
x

∈ S||f(x)− g(x)||+ CU
∑
x∈U
||x− f ∗(f(x))||, (3.4)

where F ∗ is some space of functions satisfying f ∗ : Y → X. The first term is the
standard supervised learning presented in equation 3.3, in the last term we first use
our machine learning model, or function, f to predict a vector in Y. We then use
this vector as an input to another machine learning model f ∗ trying to reconstruct
the input to the first model f . Tuning the scaling factors CS and CU is crucial for
this learning to succeed. Consider the example with MIC-values, it is reasonable
to assume that the genome have a lot of influence on the MIC-values, we should
therefore have a relatively high CS term. On the contrary, we cannot expect the
reconstruct the entire genome very well from just knowing the MIC-values. This
since the genome codes for many phenotypes of the bacteria and MIC-value is only
one of them, thus the CU term should be low in relation to CS. One can think of
equation 3.4 as the supervised learning guiding the unsupervised learning towards
the "right" clusters and features.

10



3. Theory

In practise we are not bounded to optimize the norm as we do in equation 3.3
and 3.4 and using other functions, like cross-entropy, might be more beneficial and
computationally tractable. Thus, our optimization problem in a supervised setting
becomes

min
f∈F

LS(f(x),y) (3.5)

and in a semi-supervised setting

min
f∈F

LS(f(x),y) + LU(f ∗(f(x)),x), (3.6)

where LS(., .) and LU(., .) are arbitrary loss functions measuring the difference be-
tween the predicted outputs and the true outputs.

3.2.1 Neural Network

We define a neural network as a graph G = (V,E), where V is a set of nodes and
E a set of edges. Each node ni ∈ V has a state hi ∈ R and a bias θi ∈ R and each
edge eij has a weight wij ∈ R. We will refer to the nodes in a neural network as
neurons.
The state of a neuron nj is determined by the states of the neighbouring neurons

in the following way
hj = σ(

∑
wijhi + θj), (3.7)

where σ(.) is a non-linear function referred to as the activation function. Hence, the
neural network becomes a dynamical system. Equation 3.7 can also be expressed
on matrix-form

h = σ(Wh + θ), (3.8)

where σ is applied element-wise.
In order to make use of a neural network we require that the dynamical system

converges. However, it easy to see that the above definition along with equation 3.7
does not ensure convergence. Consider a network of two neurons with initial states
of h1 = h2 = 1 and the following parameters w1,2 = w2,1 = θ1 = θ2 = 1 with an
activation of σ(x) = x2. The states of the neurons would tend to infinity.
However, one can ensure convergence of a neural network by considering a special

type of neural network called feedforward neural network.

3.2.1.1 Feedforward Neural Network

Consider a neural network having the form of a directed acyclic graph. We initialize
the top layer of the acyclic graph as our input vector and interpret the bottom layer
as the output of the neural network, see figure 3.4, we can then ensure convergence
of the neural network. This is called a feedforward neural network [18, pp. 165-172].

11



3. Theory

Figure 3.4: A feedfoward neural network with one hidden layer

Further, we denote an output-node in the feedforward neural network as Oi and
treat this as a dimension in our output space Y. Thus, we can interpret the feed-
forward neural network as a function:

fw,θ : X→ Y, (3.9)

where each layer, l, of the acyclic graph can be interpreted as a function

f lw,θ = σ(Wl−1,lhl−1 + θl), (3.10)

where Wl−1,l denotes the weights between layers l-1 and l in the network and θl
denotes the biases at layer l. Hence, a feedfoward neural network with L layers
becomes a chain of functions going from the input space, through several latent
spaces, and ending in the output space

fw,θ = fLw,θ(fL−1
w,θ (...f 1

w,θ(x))). (3.11)

The internal layers, or latent spaces, in the feedforward neural network are referred
to as hidden layers. The parametersWl−1,l and θl becomes the parameters to learn
for each layer l.
It can be shown that feedforward neural networks with one hidden layer can ap-

proximate any continuous function on a compact set using a sigmoid non-linearity
as activation in the hidden layer [19]. There exists other results showing that the
same is true for other non-linear activation functions [20]. This is known as the
universal approximation theorem.
Approximating any continuous function arbitrary well is a strong property and a

good argument for using feedforward neural networks in general. Assuming that
antibiotic resistance, and especially MIC-values, follows some continuous function
which takes the genome as input is however not a good assumption. Antibiotic
resistance depends, among many things, of mutations in the genome of a bacteria.
Hence MIC-values might depend on the present or absence of certain nucleotides
or k-mers. Thus, treating the genome as a sequence of binary or integer variables
might be a good approach, rather than as continuous variables.
Nevertheless, feedforward neural network might still be a good approach for build-

ing a prediction model for antibiotic resistance and especially MIC-values. Any
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3. Theory

continuous function g can be approximated arbitrary well by a feedforward neural
network, more formally ∀g ∈ C([0, 1]n)

∃{f (t)}∞t=0 ⊂ F : lim
t→∞
||f (t) − g|| = 0, (3.12)

where F is the set of all feedforward neural networks with one layer. Hence, F
becomes dense in C([0, 1]n).
Further, C([0, 1]n) is dense in Lp([0, 1]n) which implies that F is dense in Lp([0, 1]n)

[21]. Hence,

∃{f (t)}∞t=0 ⊂ F : lim
t→∞
||f (t) − g||p = 0, ∀g ∈ Lp, p ∈ [1,∞). (3.13)

Now, assume that ∃g : ||g||p < ∞, p ∈ [1,∞), only depending on the DNA of a
bacteria, that perfectly determines the MIC-value. We observe that a DNA-sequence
of maximum lengthm can be perfectly described by a one-hot encoding x ∈ {0, 1}4m,
g can thus be described as a discrete function over the set {0, 1}4m. We can think
of a step-function ĝ ∈ Lp[0, 1]4m satisfying ĝ(x) = g(x) for x ∈ {0, 1}4m and by 3.12
we know that F is dense in Lp([0, 1]n) for any n ∈N and 1 ≤ p <∞ so there exists
a sequence of feedforward neural networks {f (t)}∞t=0 ⊂ F satisfying

lim
t→∞
||f (t) − ĝ||p = 0. (3.14)

3.2.1.2 Training a Feedfoward Neural Network

Training a feedforward neural network done by using a backpropagation algorithm.
Backpropagation algorithms recursively updates the weights and biases layerwise
in a feedforward neural network by exploting the chain-rule and then applying a
stochastic gradient descent method.
The fact that the network has the form of a acyclic graph gives that the derivative

of the loss function with respect to some weights between two layers l − 1 and l,
L

Wl−1,l
, only depends on weights later in the network [18, pp. 200-208]. The updating

rule for the weights and biases becomes

W t+1
l−1,l = W t

l−1,l − ηtl−1,l � δtl (htl−1)T (3.15)

θt+1
l = θtl − ηtl � δtl (3.16)

We define δtl as

δtL = ∂L

∂f tw,θ(x) � σ
′(ztL) (3.17)

δtl = (W t
l,l+1)Tδtl+1 � σ

′(ztl ), l < L (3.18)

Where ηtl−1,l is the learning rate for each weight in W t
l−1,l and where we denote the

Hadamard product by � and let ztl denote the latent state of the layer l before the
activation function is applied, ztl = W t

l−1,lh
t
l−1 + θtl . For the full derivation of the

backpropagation algorithm on matrix-form we refer the reader to appendix B.1.
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Given an “easy” loss-function, L, the derivative ∂L
∂fw,θ(x) becomes easy to compute.

For a square-loss function

L(fw,θ(x),y) = 1
2 ||y − fw,θ(x)||2L2 . (3.19)

We have
∂L

∂fw,θ(x) = −(y − fw,θ(x)) (3.20)

and for a cross-entropy loss-function

L(fw,θ(x),y) = −yT log(fw,θ(x)) (3.21)

the resulting derivative becomes

∂L

∂fw,θ(x) = −(fw,θ(x)−1)Ty. (3.22)

Moreover, when training a neural network with gradient descent we take the gra-
dient with respect to the average loss over the entire training set S

min
w,θ

1
|S|

∑
(x,y)∈S

L(fw,θ(x),y). (3.23)

Stochastic Mini-batch Gradient Descent

Stochastic mini-batch gradient descent is extension of the classical gradient descent
method where the training data is divided into randomly chosen small batches of size
n for each epoch. The parameters are updated with the gradient descent scheme,
equations 3.15 3.16, after each pass of a mini-batch through the network [18, p.
274-276].
To motivate the stochastic mini-batch gradient descent we notice that the loss-

function can in many cases be locally approximated by a quadratic function given
that the weights of the neural network is not to large [5, p. 237-239]. A problem can
then occur with a crude gradient decent approach since the negative gradient will
not point directly to a minimum if the level set does not form a sphere around the
minimum. Given a too large learning rate, the algorithm can then start oscillating
and in the extreme iterate between to states and never converge. We illustrate this
for two dimensional level sets in figure 3.5.
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3. Theory

(a) Gradient descent for a
circular level set

(b) Gradient descent for an
elliptic level set

Figure 3.5: Illustration of gradient descent on two different level sets. In (b) we
can see how a too large learning rate can make the algorithm oscillate for an

elliptic level set.

In order to break this oscillating behavior we use stochastic mini-batch gradient
descent. Since the parameters will be updated after each pass of a mini-batch the
resulting gradient used for updating may look different depending on the mini-batch
used. Thus periodic oscillation between several states are not as possible as for a
standard gradient descent algorithm.
The stochastic element for the optimization algorithm might also help to escape

shallow local minima. This since a local minima for the standard gradient descent
methods not necessarily must be a local minima for a mini-batch in the stochastic
mini-batch gradient descent method. In figure 3.6 we illustrate how the stochastic
behaviour helps breaking the oscillation behaviour of the standard gradient descent.

Figure 3.6: Stochastic mini-batch gradient descent on an elliptic level set.

15



3. Theory

Momentum

Further, we can make the training process more stable by introducing inertia in the
parameter update by implementing a technique called momentum [22].
In the standard momentum method we accumulate the gradients from previous

steps and adds this sum to the current updating term

W t+1
l−1,l = W t

l−1,l − (ηtl−1,l � δtl (htl−1)T + αM t−1
l−1,l) (3.24)

M t
l−1,l = ηtl−1,l � δtl (htl−1)T + αM t−1

l−1,l (3.25)
M 0

l−1,l = 0 (3.26)
θt+1
l = θtl − ηtl−1,l � δtl − αM t−1

l (3.27)
M t

l = ηtl � δtl + αM t−1
l (3.28)

M 0
l = 0 (3.29)

by doing this, gradients pointing to towards opposite direction may cancel each other
and we will dampen oscillations leading to a consensus direction, i.e the direction
gradients for different mini-batches have in common [23].

Batch Normalization

Batch normalization is a technique used to increase stability and reduce training
time for a neural network. Given a mini-batch of data B we propagate a data point
xi ∈ B through the feedforward neural network and achieve a latent state zl,i, before
the activation function, at each layer 0 ≤ l < L. We normalize zl,i with respect to
the batch B as follows

µl,B = 1
|B|

∑
B

zl,j (3.30)

σl,B = 1
|B|

∑
B

(zl,j − µl,B)� (zl,j − µl,B) (3.31)

ẑl,i = σ−1
l,B � (zl,i − µl,B) (3.32)

z̄l,i = γl � ẑl,i + βl (3.33)

where γl and βl is a scale respective shift vector for layer l [24].
Moreover, we do batch normalization in order to reduce the internal covariance

shift [24]. When training a neural network the parameters in one layer, l is updated
each training iteration towards some local minima w.r.t the mini-batch considered
but so are also the weights in all layers before l. Hence, the distribution of the
input to layer l is dependent on the parameters in previous layers and will change
when these parameters are updated. This can be problematic since we updated the
parameters in layer l w.r.t. to one distribution of input data, but layer l will in
next training iteration achieve another distribution of the input data. In the next
training iteration the parameters in layer l will again be updated to compensate for
this but so will the parameters in the previous layers as well, potentially causing the
same issue again. This can slow done the training process a considerably amount
[24].
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If we instead perform batch normalization, we first normalize zl,i w.r.t. to the
current mini-batch. We then perform a affine transformation using the parameters
γl and βl. These parameters will be updated throughout training and can be viewed
to model a variance and mean of the entire training set in each hidden layer. Thus
we are enforcing the same mean and variance for all mini-batches.

Regularization Techniques

Machine learning and especially neural networks are prone to overfitting. Overfitting
means that the model start memorizing training data instead of learning from it and
generalizing that knowledge. This happens when the models explainatory capacity
is to high compared to the problem at hand. The model will then tend to learn
noise in the dataset believing it has to do with the underlying problem.
In order to avoid overfitting several regularization techniques can be applied. A

regularization technique aims to penalize or make complex models more unlikely, i.e
regularization aims to restrict the explainatory capacity of a machine learning and
improve the models ability to generalize [5, p. 256-271].
Further, a well used regularization technique is dropout [25]. In dropout we assign

a probability p to each neuron and for each propagation through the network we will
temporary remove a neuron from the network with a probability of p, i.e we “drop”
that neuron. This will make the neural network unable to use its full capacity and
we can train exponentially many smaller neural networks at the same time [25].
In addition, when the training step is finished we can exploit the stochastic behav-

ior in the neural network enforced by the dropout in order to get a more sophisticated
prediction model. The dropout regularization can be seen as a a Bayesian approxi-
mation of the probabilistic Gaussian process [26]. Hence, we can view training with
dropout as an approximation of complex probability distribution, rather than an ap-
proximation of a deterministic function. Therefore, we can use our neural network
to sample several predictions for the same data point and use the sample mean as
our final prediction and the sample variance as a uncertainty measure [26].
Furthermore, another common regularization technique is weight regularization

[18, p. 226-233]. This technique adds a penalty term for large weights, with respect
to some norm, to the loss function. The resulting problem becomes

min
W ,θ

L(fw,θ(x),y) + λ||W ||2, (3.34)

here W denotes the tensor containing all weight matrices between the layers in the
neural network and λ the importance of the regularization. Penalizing the network
based on the size of the weights will force “unnecessary” weights to zero since they
are not contributing to minimzing the loss function. Encouraging small weights have
also been linked to a better generalization.
However, it is also possible to perform regularization by changing the data. This

can be done by adding noise to each data point, either just in the input phase or in
every hidden layer as well [18, p. 236-239].
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Weight Initialization

The biases in a neural network is often initialized to zero while the weights are drawn
from some distribution. It is important to have some random element in the weight
initialization in order to break symmetry. If all weights are initialized to the same
value then the error associated with each weight in the gradient descent will be the
same and the weights will be symmetric in all updates [27].

3.2.1.3 Ladder Network

A ladder network is a latent variable method making it possible to train a neural
network in a semi-supervised setting [28].
In order to understand the idea behind the ladder network we first introduce

the concept of an autoencoder. An autoencoder is a neural network trained in a
unsupervised setting with the goal to copy its input to the output, i.e approximating
the identity function. However, the number of neurons in the hidden layers of the
autoencoder are strictly less than the number of neurons in the input and output
layer. Consequently, the autoencoder first maps the input to a latent space of a lower
dimensionality and then back to the original input space. This latent space can be
viewed as a more compact representation of the data, often called code. Hence,
the goal with an autoencoder is often to achieve a more compact representation
of data and at the same time minimizing the loss of information. The part of the
autoencoder mapping to the compact representation is often referred to as encoder
while to part going from the compact representation back to the original space is
the decoder [18, p. 499-506].

Figure 3.7: Illustration of the autoencoder structure. Courtesy of Chervinskii,
figure published under CC BY-SA 4.0 [29].

We know briefly describe the overarching structure of the ladder network
1. Two encoders are created sharing the same weights and biases. One with a

gaussian noise addition in each layer and one without any noise addition. The
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encoder with noise is called the corrupted encoder and the one without is called
the clean encoder.

2. We view the code produced by the encoders as predictions and given a data
point x and we assign a supervised loss function, Ls, to the corrupted encoder

3. From the output layer of the corrupted encoder we add a decoder in order to
form a autoencoder.

4. Between each layer in the corrupted encoder and the decoder we add skip
connections in form of a denoising function between corresponding layers in
the corrupted encoder and the decoder.

5. For each layer in the decoder we now define a unsupervised loss being the
square loss between the reconstructed state in the decoder and the corre-
sponding state in the clean encoder. For each layer we also assign a scaling
factor ul to corresponding unsupervised loss. The scaling factor ul becomes
the importance of the unsupervised loss in each layer. We refer to ul as the
denoising cost.

We can train the ladder network in a semi-supervised setting by evaluating the
supervised loss on a annotated dataset S and the unsupervised loss functions on
a unlabeled dataset U . For a detailed derivation of the ladder network we refer
the reader to the original paper Semi-Supervised Learning with Ladder Networks by
A.Rasmus et alt. [28]. The paper Deconstructing the Ladder Network Architecture
by M.Pezeshki et alt. gives a thorough review of the elements in a ladder network
[30].

Figure 3.8: Illustration of a two layer ladder network. Note that we first compute a
prediction ŷ and then tries to reconstruct the input x from ŷ. The reconstruction
loss is calculated by comparing the reconstruction to the internal states of the

clean encoder.
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3.2.2 Bag-of-Words
Bag-of-words is a concept from the field of natural language processing and is a
simple method to get a vector representation of a text. Given a vocabulary of
words, {wordi}ni=1, of length n and a text T . The corresponding vector, x, of the
text is created in the space Nn by letting each dimension, i ∈ [n], representing a
word, wordi, in the vocabulary and setting xi to be the number of occurrences of
wordi in the text T [31].
The bag-of-word approach has its limitations since it does not consider the position

of the words in the text when computing the vector representation. Instead it
provides us with information regarding the overarching theme of the text.
When computing the bag-of-word vector for the DNA of a bacteria, viewing k-mers

as words, we will refer to the resulting vector as k-mer profile.

3.2.3 t-distributed Stochastic Neighbor Embedding
The algorithm t-distributed Stochastic Neighbor Embedding (t-SNE) is used for
non-linear dimensionality reduction and is well suited for visualization of high di-
mensional data [32].
The algorithm starts by computing a similarity between all points in the dataset.

This similarity is based on the probability p(xj|xi) of a point xj being drawn from
the dataset based on its probability density under a gaussian distribution centered
at xi. The algorithm then computes a representation x̂i in a lower dimensional
space of each point xi. The similarity between each point in the lower dimensional
space is then computes as above, but under a Student t-distribution. The algorithm
then tries to minimize to Kullback-Leibler divergence between the similarities in the
original space and to lower dimensional space by adjusting the coordinates of the
representations x̂i [32].
We can use t-SNE to get a representation of high dimensional in a space of lower

dimension since the minimization of Kullback-Leibler divergence makes the t-SNE
search for structures and clusters in the data.
However, the t-SNE do not preserve distance nor density [33]. Thus, the dimen-

sions of the resulting space becomes hard to interpret due to the non-linear nature
of the algorithm and t-SNE should only be used as a visualization tool.

3.3 Principal Component Analysis
Principal Component Analysis (PCA) is a linear dimensionality reduction technique
used in order to map high dimensional data into a feature space of lower dimension
[5, p. 566-570].
In PCA the data is first normalized w.r.t to each feature. The covariance matrix, C,

of the dataset is then computed and decomposed into eigenvectors and eigenvalues.
These eigenvectors are referred to as principal components and forms a orthogonal
basis of the space (or subspace) in which the data lies. Each eigenvalue will represent
the fraction of the variance in the dataset explained by the corresponding principal
component [34].
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Given some threshold α < 1 we can sort the eigenvalues and only keep the k first
principal components satisfying

α ≤
k∑
i=1

λ2
i . (3.35)

Mapping the original dataset onto these k principal components will yield a dimen-
sionality reduction of the dataset keeping at least α of the variation in the dataset
[34].
Calculating the principal components with corresponding eigenvalues can be done

with the power method [35].
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Methods and Material

In the following chapter we present the datasets and methods considered during the
thesis work. The models considered will be based on a bag-of-word approach where
the input will be a k-mer profile for each genome. We do this since the number of
genomes available is much smaller than the actual size of a Salmonella genome. Due
to this we cannot expect a model with a high resolution like a sequenced based model,
long short-term memory or gated recurrent unit, to capture long term dependencies
over the genomes and perform well. Calculating k-mer profiles will cause a loss in
information regarding the context of each k-mer but given the size of the dataset
this information loss might end up having a regularizing effect.
In addition, the machine learning models considered will be the following two
1. Feedforward Neural Network and
2. Ladder Network.
We will restrict our work to only consider models prediction the MIC-values for all

antibiotics at the same time. Our justification for this is the present of missing labels
in the labeled dataset which at first glance might seem as a contradiction. However,
for some antibiotics the number of labeled datapoints is drastically smaller than
the total number of datapoints and by considering all antibiotics on the same neural
network we can possibly utilize correlations between antibiotics with a small count of
labeled datapoints and antibiotics with a high count. The standard neural network
does not provide a solution for missing labels so we present a custom softmax layer
in section 4.6 solving this problem.

4.1 Datasets
Throughout this thesis-work we will consider one labeled dataset and one unla-
beled dataset. Furthermore, we will restrict the work to only consider the bacteria
Salmonella enterica.

4.1.1 Labeled Dataset
The labeled dataset we will use consists of 4964 Salmonella enterica samples and are
collected from the dataset originally presented in the article Using Machine Learning
To Predict Antimicrobial MICs and Associated Genomic Features for Nontyphoidal
Salmonella[36]. This dataset consists of raw sequencing reads for each bacteria and
we assemble them using the IDBA-UD assembler [37].
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Further, the MIC-values in the dataset have a two-fold resolution, i.e all MIC-
values and bounds are expressed as a 2n, n ∈ Z. The labels in the dataset is
somewhat inconsistent. For some samples the exact MIC-value is stated while for
other samples we are instead given an upper-bound or a strict lower-bound. To
handle this we set MIC-values stated with an upper-bound, y ≤ 2n, to be equal to
the upper-bound y = 2n. For the lower-bound 2n < y we say that y = 2n+1. These
bounds are only at the thresholds presented in table 3.2 so by rounding them will
not cause a miss classification with respect to the labels resistant or sensitive.
We now have 17 different MIC-values present in our dataset and we present the

distribution of these for each antibiotic in table 4.1. The accession number for
each bacteria along with its MIC-values are presented in supplementary file 2 of
the article Using Machine Learning To Predict Antimicrobial MICs and Associated
Genomic Features for Nontyphoidal Salmonella [36].

0.007813 0.015625 0.03125 0.0625 0.125 00.25 0.5 1 2 4 8 16 32 64 128 256 512 Total
AMP 0 0 0 0 0 0 0 2950 479 27 3 2 2 1501 0 0 0 4964
AUG 0 0 0 0 0 0 0 3229 230 28 407 336 132 602 0 0 0 4964
AXO 0 0 0 0 0 4226 12 1 1 24 152 351 153 39 5 0 0 4964
AZI 0 0 0 0 0 0 0 12 517 1618 219 9 7 0 0 0 0 2382
CHL 0 0 0 0 0 0 0 0 42 1687 2988 87 8 152 0 0 0 4964
CIP 2154 1941 779 35 9 18 21 6 1 0 0 0 0 0 0 0 0 4964
COT 0 0 0 0 4543 328 35 2 1 3 52 0 0 0 0 0 0 4964
FIS 0 0 0 0 0 0 0 0 0 0 0 509 1306 1303 69 14 1508 4709
FOX 0 0 0 0 0 0 0 193 2460 1386 194 93 289 349 0 0 0 4964
GEN 0 0 0 0 0 1484 2413 355 31 10 67 171 433 0 0 0 0 4964
KAN 0 0 0 0 0 0 0 0 0 0 794 12 3 2 80 0 0 891
NAL 0 0 0 0 0 0 0 14 1247 3496 144 24 9 30 0 0 0 4964
STR 0 0 0 0 0 0 0 0 44 168 478 182 107 820 895 0 0 2694
TET 0 0 0 0 0 0 0 0 0 2207 27 22 152 2556 0 0 0 4964
TIO 0 0 0 0 0 9 1194 2895 149 8 135 574 0 0 0 0 0 4964

Table 4.1: The MIC-value distribution for each antibiotic in the dataset .

4.1.2 Unlabled Datasets
The unlabeled dataset is the GenBank Salmonella enterica dataset downloaded from
www.ncbi.nlm.nih.gov the 2019.03.20 and consists of 17 674 assembled samples.

4.2 Predicting MIC-values
The output of our models will be non-parametric probability distributions over the
present MIC-valuess in the labeled dataset

p(yi = n|x), i ∈ A, n ∈ Z : n ∈ [−7, 9] (4.1)

We choose to work probability distributions since they tends to contains more
information than a single prediction.
Further, we only consider categorical distributions over the set n ∈ Z : n ∈ [−7, 9].

This is due to the fact that the dataset only contains integer values within this
interval and because working with 2 fold-dilutions is conventional within the field
of clinical microbiology [38]. Hence, there is no need to predict a MIC-value not on
this form in practise.
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4.2.1 Accuracies
In this section we define the metrics used to evaluate the models. We choose to con-
sider three different accuracies in order to capture the models ability to understand
resistance on different levels of abstraction.

4.2.1.1 Exact Accuracy

The strictest metric will be what we refer to as “exact accuracy” and considers the
models ability to predict the exact MIC-values. A prediction will be classified as
correct if the model assigns most probability to the true MIC-value.
With this metric we want to evaluate how hard the problem of predicting exact

MIC-values is and to get a hint of how complex the patterns between genotype and
antibiotic resistance really are.

4.2.1.2 ±1 2-fold Dilution

The second metric we consider is the model’s ability to predict the correct MIC-
values within a ±1 2-fold dilution step. A predicted MIC-value ŷ = 2n is classified
correctly if the true y satisfies y ∈ [2n−1, 2n+1].
We consider this accuracy since it is used to evaluate the model in the article Using

Machine Learning To Predict Antimicrobial MICs and Associated Genomic Features
for Nontyphoidal Salmonella [36].

4.2.1.3 3-class accuracy

In many cases one is more interest in knowing whether or not a bacteria is resistant to
an antibiotic rather than knowing the exact MIC-value. Thus, we will also consider a
metric where we translate the output of a model to the labels sensitive, intermediate
and resistant based on the clinical guidelines presented in table 3.2 and compare
whether or not the label is the same for the true MIC-value.

4.2.2 U.S Food and Drug Administration Error-rates
The U.S Food and Drug Administration recommends evaluating a automated pre-
diction model using three different error-rates [38]. These are based on the confusion
matrix in table 4.2 and are defined as follows

1. Very-Major error-rate

Evmj = FN
FN + TP , (4.2)

2. Major error-rate

Emaj = FP
FP + TN , (4.3)

3. Minor error-rate

Emin = FIN + IN + IP + FIP

FN + TN + FP + TP + FIN + IN + IP + FIP . (4.4)
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Predicted Label
Sensitive Intermediate Resistance

Sensitive TN FIN FP
True Label Intermediate IN TI IP

Resistance FN FIP TP

Table 4.2: Confusion matrix used for calculating the error-rates defined above.

Given a double sided confidence interval of 95%, The U.S Food and Drug Ad-
ministration standards indicates a lower bound of the interval below 1.5% and a
upper bound the interval of at most 7.5% for the very-major error-rate . The major
error-rate should be below 3% [38].

4.3 Baseline

In order to evaluate and discuss around the models we have to set them in relation
with something else and study the distribution of the data. For example, a very
complex model might have an accuracy of say 95%, but is this a good accuracy?
Maybe 95% of the targets in the dataset are the same? Hence, just considering the
magnitude of an accuracy is not interesting and in order to interpret the accuracy
and we need further information.
To create a baseline, which we consider our model in relation to, we will first

investigate the distribution of the MIC-values in the training set, see table 4.1.
A baseline model will then be created, that for each antibiotic predicts the most
occuring MIC-value.
To conclude that a machine learning model as actually learned to correlate variance

in the input space with variance in the output space we require that the accuracy is
strictly above the baseline. This since a accuracy strictly above the baseline model
shows the machine learning model has made a active decision based on the input.

4.4 Pre-Processing

The given data contains both raw reads and assembled contigs. We start by assem-
bling the raw reads using the idba assembler [37]. We then for, all contigs, calculate
the occurence of overlapping k-mers of size 10 using the kmer-counting program
KMC [39]. The kmer count is then used to produce a bag-of-word, or kmer profile,
vector for each sample, see algorithm 1.
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Algorithm 1: Computing the k-mer profiles
kmer_dictionary
Dataset = zeros(nbr_samples, 4k)
for sample in samples do

present_kmers, kmer_counts = KMC(sample)
initialize kmer_profile
for kmer in present_kmers do

i = kmer_dictionary.get_key(kmer)
kmer_profile[i] = kmer_counts[kmer]

end
Dataset[sample, :] = kmer_profile

end

Due to the exponential space-complexity, O(4k), of the corresponding vector space
we perform dimensionality reduction through principal component analysis (PCA),
see section 3.3.
First we randomly split the labeled dataset into three parts, training-, validation-
and test-set. We learn the PCA transform using only the labeled training-set with
the explainability threshold set to α = 0.995. The unlabeled dataset where not
included in learning the PCA transform due to computational restrictions. In algo-
rithm 2 we present the psuedocode for the dimensionality reduction.
Algorithm 2: Dimensionality reduction
Ds

Du

random_seed
α = 0.995
Dtrain, Dvalidation, Dtest = random_split(Ds, random_seed)
µtrain = feature_mean(Dtrain)
σ2
train = feature_var(Dtrain)
Xtrain = Dtrain−µtrain

σ2
train

Xvalidation = Dtrain−µtrain

σ2
train

Xtest = Dtrain−µtrain

σ2
train

transform = learn_pca_transform(Xtrain, α)
Dtrain = transform(Dtrain)
Dvalidation = transform(Dvalidation)
Dtest = transform(Dtest)
Dnon = transform(Du)

4.5 Oversampling the Training Data
As stated in section 4.1.1, the distribution of the MIC-values are highly skewed for
certain antibiotics. This might obstruct the learning process since predicting the
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mode becomes a local minima. In order to avoid this we would like the training
appear uniformly distributed.

4.5.1 Bootrapping
One way to make the data uniformly distributed is to apply bootstrapping in order
to even the count for all MIC-values. This is done by first computing the count
of the most occurring MIC-value for each antibiotic. We then for each antibiotic
computes the subset of samples corresponding the the MIC-values not occurring as
much as the most common MIC-value. From these sets we start randomly drawing
new samples to the training dataset until the corresponding MIC-value occurs in the
same amount as the most occurring MIC-value for the corresponding antibiotics.
However, naively sampling from these subsets will not balance the distribution

of MIC-values since the dataset contains missing data. Thus, when sampling for a
specific antibiotics and MIC-value we set all the other MIC-values for the auxiliary
antibiotics to be missing.
Moreover, oversampling might amplify the effects of outliers if not done correctly.

Consider a MIC-value that only occur once and which is a product of some error
in the measurement equipment. Oversampling would increase the occurrence of
this MIC-value and thus amplify the error. To prevent this, we require the subset
sampled from to contain at least 10 different samples.

4.5.2 Synthetic Minority Over-sampling Technique
In order to create a more sophisticated oversampling procedure than bootstrapping
we will use mathematical reasoning.
We assume that the function g which we will try to approximate using machine

learning is locally constant in the feature space. This is reasonable since the DNA is
a discrete structure and mutations are binary events. A genome can thus not contain
a fraction of a mutation and only vectors having only integral elements corresponds
to a possible true bacteria.
Thus, given a dataset D we assume that for any x1 ∈ D with g(x1) = y the

following is true

∃ε > 0 : g(xnew) = y, ∀xnew ∈ {x ∈X : ||x− x1|| < ε} (4.5)

Hence, we can sample new data points to our dataset from the set defined in equa-
tion 4.5. Our hypothesis is that this will enhance topological structures for the
underrepresented MIC-classes in our dataset.
In practise, this done by applying Synthetic Minority Over-sampling Techniques

(SMOTE) [40]. For each antibiotic we compute the subset of samples corresponding
to each MIC-value in the training set

Di
j = {x ∈ Dtraining : g(x)i = j}, i ∈ A, j ∈ Z : j ∈ [−7, 9] (4.6)

We then draw a random sample x1 from a set Di
j corresponding to a underrepre-

sented MIC-value, j, of an antibiotic i. For x1 we then compute the setK containing
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the k-nearest neigbors of x1 in Di
j with respect to the euclidean norm. From the set

K we randomly draw another point x2 ∈ K and construct an new sample by

xnew = x1 + (1− r)(x1 − x2), r ∼ U(0, 1). (4.7)

We set ynew,i = j and treat the MIC-value for all other antibiotics as missing in order
to ensure a uniform distribution in the end. We loop this process until the MIC-
values are uniformly distributed for all antibiotics. A toy example using SMOTE is
presented in figure 4.1.
To not amplify the effects of outliers we require a MIC-value to occur at least 10

times in order be enhanced by this process.

(a) Original dataset (b) Dataset after SMOTE

Figure 4.1: Illustration of how the dataset changes when SMOTE is applied. The
dashed lines are the ones from which we sample new datapoints.

4.6 Training and Evaluation
We will implement the standard feedforward neural network along with its extension
ladder network, which we present in section 3.2.1.3.
Further, we set the activation function to be Rectified Linear Unit (ReLU)

σ(x) =

x if x ≥ 0
0 if x < 0

(4.8)

The activation in the output layer will be the softmax activation function

hi =
∑
j

wj,izi + θi, (4.9)

fw,θ(x)i = ehi∑dim(Y )
j=1 ehj

. (4.10)

where hi is the sum of the input signals to the output node i as defined in section
3.2.1. The softmax activation will squeeze the output to fw,θ(x)i ∈ [0, 1] such that∑
i=1 fw,θ(x)i = 1, i.e we can interpret the output as a probability distribution.

The ouput layer will be a concatenation of 15 softmax layers. This since we are
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considering the MIC-values for 15 different antibiotics and by using one neural net-
work to predict them all we might be able to capture correlation between different
antibiotics.
Further, the labeled dataset is not complete. For many samples there are missing

MIC-values. To handle this we will ignore the gradient from the corresponding
softmax layer whenever a missing MIC-value is encountered.
As a loss-function we choose the cross-entropy between the output distribution

and the true distribution

L(fw,θ(x),y) = − 1
|S|

∑
(x,y)∈S

yT log(fw,θ(x)), (4.11)

where y is one-hot encoding of the true MIC-value. Since our labeled dataset is
quite small we restrict our neural network to have at 2750 neurons and a maximum
of two hidden layers (the number of maximum neurons is roughly the number of
dimensions after the dimensionality reduction).
Moreover, we will train our model using the regularization techniques presented in

the chapter 3. The norm for the weight regularization will be the Manhattan-norm
||w||L1 . Noise will be added to the input layer and the hidden layers and we choose
to use gaussian noise N(0, σ2). Dropout will be implemented in all layers of the
neural network. For the prediction step we will sample 100 predictions for each
input and output the average over these predictions as our final prediction.
We will also test whether training the feedforward neural network as a ladder

network can improve the accuracy of the model. The importance of the unsupervised
learning will be decided by the denoising cost for each layer in the network.
To find a good set of hyperparameters we will use Bayesian optimization and es-

pecially the Tree-structured Parzen Estimator algorithm w.r.t to the exact accuracy
on the validation set [41].
When a good set of hyperparameters have been found we evaluate the oversam-

pling methods compared to using no oversampling method using a nested 5-cross
validation, illustrated in figure 4.2.
We will refer to a network trained with no oversampling method applied as no-

sampling model, a model trained using bootstrap on the training set will be referred
to as bootstrap model and when SMOTE is used on the training set we refer to the
resulting neural network as SMOTE model. We will pick the best performing model
of these three and refer to it as DeepMIC. The DeepMIC model will then be further
analyzed with respect to the 2-fold accuracy, 3-class accuracy and the error-rates
presented in section 4.2.
Furthermore, the DeepMIC model will also be compared to the model presented

in Using Machine Learning To Predict Antimicrobial MICs and Associated Genomic
Features for Nontyphoidal Salmonella [36] we refer to their model as XGBoost and
to 1928 Diagnostics pipeline which we refer to as 1928D.
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Figure 4.2: Illustration of the nested 5-fold cross validation.

4.7 1928 Diagnostics pipeline
The algorithms 1928 Diagnostics uses today are based on curated databases. This
makes direct comparison with our prediction model impossible since our model pre-
dicts a MIC-value while 1928 Diagnostics model outputs genes, which can be linked
to antibiotic resistance, found in the bacteria genome. In order to do some compar-
ison we run 1928 Diagnostics model for the antibiotics ampillicin, streptomycin and
tetracycline. For these antibiotics we say that 1928 Diagnostics model outputs the
label resistant if one of the genes presented in appendix C.1 where found.

4.8 Miscellaneous
The computations were performed on resources at Chalmers Centre for Computa-
tional Science and Engineering (C3SE) provided by the Swedish National Infras-
tructure for Computing (SNIC).
The programming language used is Python version 3.6.7 and in table 4.3 follows

the packages used and where in the process there where used.
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Python Package Where?
Scikit-Learn [42] Pre-processing, Visualization
Matplotlib[43] Visualization
Tensorflow [44] Neural Network Implementation
OLCTools KMC Python Support
Numpy [45] Data representation
Pandas [45] Visualization

Table 4.3: Python packages used and where in the process we used respective package
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Results

In this section we present the result of our models. We start by presenting the
result of the pre-processing step, followed by a comparison of models trained on the
different oversampling techniques. We then pick the best performing model as our
final model and compare it to the XGBoost model and 1928 Diagnostics platform.
This is followed by a illustration of how different hyperparameters affects the model.
We end this chapter by visualizing how our neural network is able to detect antibiotic
resistance.

5.1 Pre-Processing and Visualization of the dataset

Depending on the random split, the resulting feature spaces after PCA dimensional-
ity reduction ended up have a dimensionality within the interval [2617− 2701] with
a median at 2621 dimensions.

In order to explore the dataset we plot the three principal components explaining
most of variance against each other in figure 5.1. All samples seems grouped together
and we cannot distinguish any clusters. For these three principal components the
explainability on average is

• principal component 1: 0.30,

• principal component 2: 0.05,

• principal component 3: 0.04.

Hence, the cumulative explainability of these components is 0.39 meaning that
0.61 of the variance is explained by other components in the feature space with
each of these components having an explainability of at most 0.04. Thus, the
variance in the data is distributed over many components in the feature space.
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(a) Principal component 1 and 2 (b) Principal component 1 and 3

(c) Principal component 2 and 3

Figure 5.1: The three principal components explaining the most variance in the
data. We cannot distinguish any clear clusters.

34



5. Results

Nevertheless, when applying t-SNE to the space of principal components clusters
emerges, see figure 5.2. In figure 5.3 we have colored each sample w.r.t to tetracycline
resistance and we can clearly see structures form containing resistant or sensitive
samples. The presents of clusters of resistant samples points towards that our pre-
processing step uncovers patterns linked to antibiotic resistance. For figure 5.2
colored w.r.t each antibiotic see appendix A.1.

Figure 5.2: Annotated data visualized using the manifold learning-algorithm
t-SNE. The perplexity was set to 50.
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Figure 5.3: Annotated data visualized using the manifold learning-algorithm t-SNE
and each datapoint colored with respect to tetracycline resistance. The perplexity
was set to 50. The k-mer profiles from resistant bacteria seems to form cluster.

Hence there is a signal to learn in the dataset.

5.2 Model Evaluation
The hyperparameters found through the Parzen Tree estimator are presented in
table 5.1. The optimal denosing costs where found to be 0, i.e the semi-supervised
learning where found to not improve the accuracy. In section 5.3 we present the
result for the semi-supervised learning in more detail.
Moreover, the weight regularization where found to be redundant in the present of
dropout and noise addition.

Hidden Layers 1
Neurons Hidden Layer 2250
Dropout Input 0.05
Dropout Hidden 0.3
Dropout Output 0.1
Initial Learning Rate 0.0005
Batch Size 500
Denoising Cost Input 0
Denoising Cost Hidden 0
Weight Regularization 0
Noise Addition σ2 0.03

Table 5.1: The optimal parameters found by the Parzen Tree Estimator
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In table 5.2 we present the mean accuracy on the test set for each oversampling
technique along with a 95% confidence interval .We observe that there is no signif-
icant difference between the different oversampling methods and training without
oversampling. However, from figure 5.4 we observe that the neural network trained
on data over-sampled with SMOTE converges faster. Therefore, we will choose that
approach to be our final model and we will from now on refer to it as DeepMIC.
The average accuracy for prediction of exact MIC-values is 0.78 for the DeepMIC
model.
Additionally, the oversampling boosted the training set from an average of 3176
samples to an average of 99 916 samples.

Figure 5.4: Accuracy averaged over antibiotics and runs for the SMOTE, bootstrap
and no sampling model, ploted against epochs.
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No Sampling model Bootstrap model SMOTE model
Antibiotics Mean Accuracy 95% Confidence Mean Accuracy 95% Confidence Mean Accuracy 95 % Confidence
AMP 0.85 [0.84–0.86] 0.85 [0.84–0.86] 0.84 [0.83–0.85]
AUG 0.85 [0.85–0.85] 0.85 [0.84–0.86] 0.85 [0.84-0.86]
AXO 0.93 [0.93–0.93] 0.93 [0.93–0.93] 0.93 [0.93-0.93]
AZI 0.70 [0.68–0.72] 0.71 [0.70–0.72] 0.69 [0.67-0.71]
CHL 0.76 [0.75–0.77] 0.76 [0.76–0.77] 0.76 [0.75-0.77]
CIP 0.77 [0.76–0.78] 0.77 [0.76–0.78] 0.79 [0.78-0.80]
COT 0.91 [0.90–0.92] 0.93 [0.92–0.94] 0.92 [0.91–0.93]
FIS 0.66 [0.66–0.66] 0.66 [0.66–0.66] 0.66 [0.65-0.67]
FOX 0.71 [0.70–0.72] 0.71 [0.70–0.72] 0.71 [0.70-0.72]
GEN 0.61 [0.60–0.62] 0.60 [0.59–0.61] 0.61 [0.60–0.62]
KAN 0.92 [0.92–0.92] 0.91 [0.90–0.92] 0.92 [0.91-0.93]
NAL 0.74 [0.73–0.75] 0.76 [0.75–0.77] 0.76 [0.75-0.77]
STR 0.62 [0.60–0.64] 0.59 [0.57–0.61] 0.61 [0.58–0.64]
TET 0.93 [0.93–0.93] 0.93 [0.92–0.94] 0.93 [0.93-0.93]
TIO 0.74 [0.73–0.75] 0.74 [0.73–0.75] 0.73 [0.71–0.75]

Table 5.2: The result for different oversampling methods in the nested 5-cross fold
validation with a 95% confidence interval.

Moreover, in table 5.3 we present the error-rates defined by the FDA. We remind
the reader that FDA recommends a very major error-rate with an lower confidence
bound under 1.5% and a major error-rate below 3% in order for the model to be
suitable for use in a clinical environment. The DeepMIC model struggles with the
very major error-rates and is for no antibiotic significantly below the FDA recom-
mendation. For the major error-rate, the DeepMIC are below the recommendation
for 10 of the 15 antibiotics.

Very Major error-rate Major error-rate Minor error-rate
Antiobiotics Mean error-rate 95% Confidence Mean error-rate 95% Confidence Mean error-rate 95% Confidence
AMP 0.116 [0.099-0.132] 0.036 [0.023-0.048] 0 [0.000-0.000]
AUG 0.108 [0.087-0.129] 0.006 [0.003-0.009] 0.011 [0.006-0.016]
AXO 0.152 [0.135-0.168] 0.006 [0.005-0.007] 0 [0.000-0.000]
AZI - - 0 [0.000-0.000] 0 [0.000-0.000]
CHL 0.139 [0.127-0.152] 0.004 [0.002-0.006] 0.004 [0.002-0.006]
CIP - - 0 [0.000-0.000] 0 [0.000-0.000]
COT 0.805 [0.704-0.905] 0.001 [0.000-0.003] 0 [0.000-0.000]
FIS 0.058 [0.043-0.073] 0.031 [0.017-0.044] 0 [0.000-0.000]
FOX 0.121 [0.106-0.134] 0.005 [0.004-0.006] 0.003 [0.001-0.005]
GEN 0.122 [0.101-0.134] 0.013 [0.011-0.015] 0.003 [0.002-0.004]
KAN 0 [0.000-0.000] - - 0.033 [0.030-0.036]
NAL 0.867 [0.791-0.943] 0.002 [0.000-0.004] 0 [0.000-0.000]
STR 0.046 [0.038-0.054] 0.153 [0.099-0.206] 0 [0.000-0.000]
TET 0.042 [0.036-0.047] 0.043 [0.034-0.051] 0.001 [0.000-0.002]
TIO 0.099 [0.088-0.109] 0.006 [0.005-0.007] 0 [0.000-0.000]

Table 5.3: Error-rates for the DeepMIC model. For azithromycin and ciprofloxacin
there were no resistant sample in the dataset. For kanamycin there was no samples
within the intermediate region.
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5.2.1 Comparisons with other Prediction Models
In table 5.6 we present the comparison between DeepMIC, the baseline method used
and the XGBoost model. For 12 of 15 antibiotics we observe an accuracy significantly
larger than the baseline which means that given an input, the DeepMIC model makes
an active decision regarding these 12 antibiotics. We summarize the result presented
in table 5.6 in table 5.4.

Baseline XGBoost model DeepMIC
Average Accuracy 0.59 0.59 0.78

Table 5.4: Weighted average accuracy over all antibiotics for prediction of exact
MIC-values.

Further, the DeepMIC model outperforms the XGBoost model on 14 of the 15
antibiotics considered. Only for the antibiotic Kanamycin have the two models an
accuracy within the same confidence interval. If we regard the baselines accuracy
for Kanamycin we observe an average of 0.89 which is comparable to the accuracy
of the two machine learning models. Hence, predicting a MIC-value for Kanamycin
in the given dataset is a trivial task.
Furthermore, in table 5.7 we present a comparison for the 3-class accuracy between
the baseline model and the DeepMIC model. From the Baseline method we conclude
that there is a significant skewness in the dataset towards a certain label for the
antibiotics azithromycin, chlotamphenicol, ciprofloaxin, trimethoptim, kanamycin
and nalidixix acid. The 3-class accuracy for these antibiotics are therefore not so
intresting to study. We summarize table 5.7 in table 5.5

Baseline DeepMIC
Average Accuracy 0.80 0.97

Table 5.5: Summary of the result in the 3-class comparison

Baseline XGBoost model DeepMIC
Antibiotics Mean Accuracy 95% Confidence Mean Accuracy 95% Confidence Mean Accuracy 95% Confidence
AMP 0.58 [0.57-0.59] 0.33 [0.29-0.36] 0.84 [0.83–0.85]
AUG 0.65 [0.64-0.66] 0.48 [0.45-0.51] 0.85 [0.84-0.86]
AXO 0.85 [0.84-0.86] 0.80 [0.78-0.83] 0.93 [0.93-0.93]
AZI 0.68 [0.66-0.70] 0.58 [0.55-0.62] 0.69 [0.67-0.71]
CHL 0.59 [0.58-0.60] 0.72 [0.70-0.73] 0.76 [0.75-0.77]
CIP 0.41 [0.40-0.42] 0.42 [0.41-0.43] 0.79 [0.78-0.80]
COT 0.92 [0.92-0.92] 0.87 [0.86-0.88] 0.92 [0.91–0.93]
FIS 0.33 [0.32-0.34] 0.57 [0.54-0.59] 0.66 [0.65-0.67]
FOX 0.50 [0.49-0.51] 0.58 [0.56-0.59] 0.71 [0.70-0.72]
GEN 0.48 [0.47-0.49] 0.46 [0.45-0.48] 0.61 [0.60–0.62]
KAN 0.89 [0.87-0.91] 0.91 [0.88-0.94] 0.92 [0.91-0.93]
NAL 0.70 [0.69-0.71] 0.62 [0.60-0.64] 0.76 [0.75-0.77]
STR 0.34 [0.33-0.35] 0.51 [0.49-0.52] 0.61 [0.58–0.64]
TET 0.51 [0.50-0.51] 0.47 [0.45-0.49] 0.93 [0.93-0.93]
TIO 0.59 [0.58-0.60] 0.73 [0.72-0.74] 0.73 [0.71–0.75]

Table 5.6: The DeepMIC model compared to the Baseline and XGBoost model w.r.t
to exact accuracy. Accuracies for the XGBoost model taken from supplementary
file 2 in the article Using Machine Learning To Predict Antimicrobial MICs and
Associated Genomic Features for Nontyphoidal Salmonella. [36]
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Baseline DeepMIC
Antibiotics Mean Accuracy 95% Confidence Mean Accuracy 95% Confidence
AMP 0.69 [0.68-0.70] 0.94 [0.93-0.95]
AUG 0.78 [0.77-0.79] 0.94 [0.93-0.95]
AXO 0.85 [0.84-0.86] 0.98 [0.98-0.98]
AZI 1 [1.00-1.00] 1 [1.00-1.00]
CHL 0.95 [0.94-0.96] 0.97 [0.97-0.97]
CIP 1.0 [1.00-1.00] 1 [1.00-1.00]
COT 0.99 [0.99-0.99] 0.99 [0.99-0.99]
FIS 0.34 [0.32-0.34] 0.96 [0.96-0.96]
FOX 0.85 [0.84-0.86] 0.96 [0.96-0.96]
GEN 0.87 [0.87-0.87] 0.96 [0.96-0.96]
KAN 0.91 [0.88-0.93] 0.94 [0.92-0.96]
NAL 0.99 [0.99-0.99] 0.99 [0.99-0.99]
STR 0.63 [0.62-0.64] 0.92 [0.90-0.94]
TET 0.55 [0.54-0.56] 0.95 [0.95-0.95]
TIO 0.86 [0.85-0.87] 0.98 [0.98-0.98]

Table 5.7: 3-class accuracy for the Baseline and DeepMIC model. The XGBoost
model was not evaluated w.r.t to this accuracy in the original article.

In table 5.8 we present the error-rates for the prediction model built around 1928
Diagnostics pipeline for the antibiotics ampillicin, sulfidoxazole and tetracycline.

Very Major error-rate Major error-rate True Positives True Negatives
AMP 0.077 0.007 1501 3442
STR 0.088 0.080 1713 973
TET 0.106 0.010 2722 2197

Table 5.8: The output from the prediction model built around 1928 Diagnostics
pipeline.
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5.3 Importance of Denoising Cost
The average accuracy over the antibiotics is ploted as a function of the denoising
costs in figures 5.5 5.6. We can clearly see that an increased denoising cost corre-
sponds to a decreased average accuracy.

Figure 5.5: Accuracy averaged over antibiotics ploted against the denoising cost in
the input layer for the ladder network. All other parameters where as in table 5.1.
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Figure 5.6: Accuracy averaged over antibiotics ploted against the denoising cost in
the hidden layer for the ladder network. All other parameters where as in table 5.1.
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5.4 Peeking into the Mind of an AI
The DeepMIC model is a chain of non-linear mappings between very high-dimension
spaces. To visualize this chain of mappings, we propagate the annotated dataset
through the network, performing a 2-dimensional embedding using t-SNE in each
layer. In figure 5.7 we illustrate the result, coloring each sample with respect to
resistance towards amoxicillin. We can clearly see how samples with the same label
are grouped together as the dataset traverse through the neural network. For figures
colored w.r.t to other antibiotics see appendix A.1.

(a) Input layer (b) Hidden layer

(c) Output layer before softmax

Figure 5.7: Visualization of each layer in the DeepMIC neural network using
t-SNE. Colored w.r.t amoxicillin resistance. The perplexity was set to 50. This

shows that bacteria having the same label activates the same neurons in the neural
network.
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6
Discussion

In this chapter we start by discussing around the DeepMIC model and then proceed
to talk about general limitations for machine learning models within the field of
antibiotic resistance. We end this chapter by presenting possible future work and
how this can contribute to the field.

6.1 Model Performance
In this thesis we present a neural network based machine learning model for predic-
tion of minimum inhibitory concentration for 15 different antibiotics with an overall
average accuracy of 0.78 for prediction of exact MIC-value and 0.97 when the MIC-
values are translated to labels. By comparing to a baseline model we can ensure
that our network must do an active decision for 12 of the 15 antibiotics in order to
achieve their respective accuracy.
The model outperforms the already existing extreme gradient boosted model pre-

sented by Marcus Nguyen et al. [36]. The biggest difference occurs for the antibiotics
ampillicin(AMP), amoxicillin (AUG) and tetracycline (TET) for which our model
has a mean accuracy of 0.84, 0.85 respectively 0.93 compared to 0.33, 0.48 and 0.47
for the gradient boosted model.
The result for ampillicin and tetracycline is somewhat expected. For both these

antibiotics most of the data is distributed over two MIC-values, one corresponding
to sensitive and one to resistance. Thus, for these two antibiotics the problem
of predicting MIC-values becomes somewhat equivalent to just predict whether a
bacteria is resistance or not. The resistance mechanisms for these two antibiotics
are well studied and have been found to be rather easy to detect, often depending on
the presence or absence of certain genes rather than single mutations[46, 47, 48, 49].
Detecting genes can be assumed to be an easier task compared to detecting single
mutation within the genome for the neural network.
Moreover, for amoxicillin we found in the literature that the resistance mecha-

nisms seems to be more complex and depending on several genetic factors compared
to ampillicin and tetracycline[50, 51, 52, 53, 54]. The DeepMICs performance for
amoxicillin is therefore interesting and illustrates the neural networks ability to cap-
ture non-linear patterns in our feature space. In figure 5.7 we illustrate how the
network detects amoxicillin resistance and we can clearly see that the network is
able to group resistant samples together.
Nevertheless, even though the 3-class accuracy is remarkably high for the Deep-

MIC model, the very major error-rate is over the minimum recommendation for
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all antibiotics. An explanation to this might be the bag-of-word approach which
neglects the context of k-mers present in the genome and only considers the count.
Hence, the model does not account for in which gene a certain k-mer appear.
Additionally, due to the high-dimensional feature space and the many non-linear

mappings involved in our model there is no easy way to explain the output of the
model. This becomes a drawback for our model since we cannot justify a output,
which makes it inadequate for clinical usage. To extend our work and to interpret
the DeepMIC model one can investigate the clusters visualized in figure 5.7 and
explore how clusters disappears and changes throughout the different parts of the
network. Linking the result back to the corresponding DNA-sequences might give
an indication of which genes the DeepMIC model base its decision on.
A more direct approach would be to use shapley sampling to compute importance

for each kmer in the feature space before dimensionality reduction. This approach
will however require extensive computational resources in order to before a sufficient
number of shapley samplings for each k-mer.
Further, we propose a synthetic minority oversampling approach to generate more

training data. However, more studies is needed in order to verify whether this is a
good approach to generate synthetic data. A possible limitation with our approach
of generating data is that the method is build around generating randomly drawn
data-points on the line between two data-points in a neighborhood of each other
with the same MIC-value. This will only enhance already existing structures in
the annotated dataset and if the neighborhood is defined to be too large, we will
generate artificial structures.
Furthermore, we applied semi-supervised learning and implemented a ladder net-

work in order to utilize unlabeled data. This approach was not found to boost
the accuracy of the model and increasing the importance of the unlabeled data was
found to instead decrease the models accuracy. One reason for this might be the fact
that the Salmonella genome has a normal length of over 4 000 000 nucleotides and
encodes an enormous amount of phenotypes for each bacteria. Antibiotic resistance
is only one of these phenotypes and research have found that antibiotic resistance
can be linked to just one or a few genes and sometimes just a single mutation [48].
Despite this, semi-supervised learning is still an interesting approach to investigate,
especially in combination with a sequence based model. One could think of a model
learning the structure of different genes by using unlabeled data and then learning
the resistance mechanisms within these genes using a labeled dataset.

6.2 Limitations with Machine Learning
A limitation with training a machine learning model for prediction of antibiotic
resistance is the small datasets in comparison with the large feature space. In this
thesis we have 4964 annotated bacteria genomes in contrast to a feature space with
410 dimensions without dimensionality reduction and about 2600 dimensions after
PCA based dimensionality reduction. Learning very complex patterns in the genome
is therefore very unlikely.
Another limitation with training a machine learning model, within this domain,

is the skewness in the dataset. There exists a bias towards sequencing resistant
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bacteria since they are more intresting from a clinical perspective which leads to
a difficulty for a machine learning model to learn the “standard” genome. This is
illustrated by the good performance of our baseline model.
Besides, antibiotic resistance is an always changing landscape. New types of antibi-

otics results in new types of antibiotic resistances and this dynamics makes building
robust prediction models a challenge.

6.3 Future Work
For future work we first propose a sequence based approach using some reccurent
neural network structure. This will not cause a loss in information like the bag-
of-word approach do and taking the context of k-mers into account might yield
better results. This approach is however more data thirsty than a bag-of-word
approach and hence larger datasets are needed. Therefore, we still believe that
semi-supervised learning is intresting with this domain. One can vaguely think of a
model that uses unlabeled data in order to learn genes, since genes are structures
that probably clusters well in a feature space, and then utilize labeled data in order
to find resistance mechanisms within these genes. In more detail, a deep belief
network or reccurent ladder network might be appropriate for this purpose.
Additionally, our visualization of the data shows that structures occurs within the

dataset both after the pre-processing step but also within the latent spaces of the
neural network. An emerging field is topological data analysis and applying this
to the genome of a bacteria in a search for topological structures is an interesting
research question.
Further, antibiotic resistance is a always changing landscape. Even if the cost

of sequencing DNA would be zero is it possible to easily acquire a diverge set of
antibiotic resistant bacteria towards a new type of antibiotics. Thus, in order to
build robust machine learning models that can handle the dynamics of evolution
transfer learning is needed. Transfer learning aims to transfer knowledge from some
learning problem into a new but related problem.
Moreover, generative adverisal models (GANS) have lately gain success when it

comes to generate artificial faces1 [18, p. 606-609]. Using GANs to generate re-
alistic data is a appealing idea. Even if mutations are assumed to be uniformly
distributed over the genome the observed mutations within a population are proba-
bly not uniformly distributed since a mutation might alter processes in the bacteria.
Advantageous mutation might gain a foothold in the population while disadvanta-
geous ones does not. Hence, the resulting distribution might be complex due to
these latent factors. GANs are well suited for modelling complex probability distri-
butions and an intresting research question is whehter it is possible to use them to
generate realistic DNA-sequences.

1https://thispersondoesnotexist.com/

47



6. Discussion

48



7
Final Words

From this thesis work we can conclude that machine learning is prominent approach
for prediction of antibiotic resistance.
However, several problems are yet to be solve before autonomous prediction models

can be implemented in a clinical setting. Therefore, if you want to predict resis-
tance today we recommend a curated database approach since machine learning for
antibiotic resistance is not fully mastered and understood today. But if you want to
predict antibiotic resistance tomorrow we think that a mixture of machine learning
models and curated databases is the way to go. This since they are the opposite of
each other, a curated database is a memory model where we memorize everything
but do not learn from it. In machine learning we instead try to generalize from the
data at hand and thus have the possibility to learn the underlying structure of the
problem. Combining them would give the predictive power of a machine learning
model and the explainability and robustness of a curated database.
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Appendix 1

A.1 t-SNE plots for each antibiotic

Figure A.1: Annotated data visualized using the manifold learning-algorithm
t-SNE and each datapoint colored with respect to ampillicin resistance
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Figure A.2: Annotated data visualized using the manifold learning-algorithm
t-SNE and each datapoint colored with respect to amoxicillin resistance

Figure A.3: Annotated data visualized using the manifold learning-algorithm
t-SNE and each datapoint colored with respect to ceftriaxone resistance
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Figure A.4: Annotated data visualized using the manifold learning-algorithm
t-SNE and each datapoint colored with respect to azithromycin resistance

Figure A.5: Annotated data visualized using the manifold learning-algorithm
t-SNE and each datapoint colored with respect to chlotamphenicol resistance

III



A. Appendix 1

Figure A.6: Annotated data visualized using the manifold learning-algorithm
t-SNE and each datapoint colored with respect ciprofloaxin resistance

Figure A.7: Annotated data visualized using the manifold learning-algorithm
t-SNE and each datapoint colored with respect trimethoptim resistance
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Figure A.8: Annotated data visualized using the manifold learning-algorithm
t-SNE and each datapoint colored with respect sulfidoxazole resistance

Figure A.9: Annotated data visualized using the manifold learning-algorithm
t-SNE and each datapoint colored with respect cefoxitin resistance
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Figure A.10: Annotated data visualized using the manifold learning-algorithm
t-SNE and each datapoint colored with respect gentamicin resistance

Figure A.11: Annotated data visualized using the manifold learning-algorithm
t-SNE and each datapoint colored with respect kanamycin resistance
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Figure A.12: Annotated data visualized using the manifold learning-algorithm
t-SNE and each datapoint colored with respect streptomycin resistance

Figure A.13: Annotated data visualized using the manifold learning-algorithm
t-SNE and each datapoint colored with respect tetracycline resistance
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Figure A.14: Annotated data visualized using the manifold learning-algorithm
t-SNE and each datapoint colored with respect ceftiofur resistance

A.2 3-class Accuracy and ±1 2-fold Dilution Ac-
curacy

No Sampling model Bootstrap model SMOTE model
Antibiotics Mean Accuracy 95% Confidence Mean Accuracy 95% Confidence Mean Accuracy 95% Confidence
AMP 0.95 [0.94-0.96] 0.95 [0.94-0.96] 0.94 [0.93-0.95]
AUG 0.94 [0.94-0.96] 0.94 [0.93, 0.95] 0.94 [0.93, 0.95]
AXO 0.98 [0.98-0.98] 0.98 [0.98, 0.98] 0.98 [0.98, 0.98]
AZI 1.00 [0.99-1.00] 1.00 [0.99-1.00] 1 [1.00-1.00]
CHL 0.97 [0.97-0.97] 0.97 [0.97-0.97] 0.97 [0.97-0.97]
CIP 1.00 [1.00-1.00] 1.00 [1.00-1.00] 1 [1.00-1.00]
COT 0.99 [0.99-0.99] 0.99 [0.99-0.99] 0.99 [0.99-0.99]
FIS 0.96 [0.95-0.97] 0.97 [0.96-0.98] 0.96 [0.96-0.96]
FOX 0.96 [0.96-0.96] 0.96 [0.96-0.96] 0.96 [0.96-0.96]
GEN 0.96 [0.96-0.96] 0.95 [0.95-0.95] 0.96 [0.96-0.96]
KAN 0.94 [0.93-0.95] 0.93 [0.92-0.94] 0.94 [0.92-0.96]
NAL 0.99 [0.99-0.99] 0.99 [0.99-0.99] 0.99 [0.99-0.99]
STR 0.92 [0.91-0.93] 0.92 [0.91-0.93] 0.92 [0.90-0.94]
TET 0.95 [0.95-0.95] 0.95 [0.95-0.95] 0.95 [0.95-0.95]
TIO 0.98 [0.98-0.98] 0.98 [0.98-0.98] 0.98 [0.98-0.98]

Table A.1: 3-class accuracy for the oversampling methods and the network trained
without oversampling
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Baseline XGBoost DeepMIC
Antibiotics Mean Accuracy 95% CI Mean Accuracy 95% CI Mean Accuracy 95% CI
AMP 0.69 [0.69-0.69] 0,92 [0.90-0.93] 0.94 [0.93-0.95]
AUG 0.69 [0.69-0.69] 0,93 [0.93-0.94] 0.93 [0.93-0.93]
AXO 0.85 [0.85-0.85] 0,95 [0.95-0.96] 0.97 [0.97-0.97]
AZI 0.99 [0.99-0.99] 0,97 [0.96-0.98] 0.99 [0.98-1]
CHL 0.96 [0.96-0.96] 0,99 [0.98-0.99] 0.99 [0.99-0.99]
CIP 0.82 [0.82-0.82] 0,97 [0.97-0.98] 0.92 [0.91-0.93]
COT 0.98 [0.98-0.98] 0,98 [0.97-0.98] 0.98 [0.98-0.98]
FIS 0.33 [0.33-0.33] 0,95 [0.95-0.96] 0.92 [0.91-0.93]
FOX 0.82 [0.82-0.82] 0,96 [0.96-0.97] 0.96 [0.95-0.97]
GEN 0.86 [0.86-0.86] 0,91 [0.90-0.92] 0.95 [0.95-0.95]
KAN 0.90 [0.90-0.90] 0,98 [0.97-1.00] 0.94 [0.92-0.97]
NAL 0.99 [0.99-0.99] 0,96 [0.95-0.97] 0.99 [0.99-0.99]
STR 0.63 [0.63-0.63] 0,93 [0.92-0.94] 0.91 [0.89-0.91]
TET 0.55 [0.55-0.55] 0,90 [0.90-0.91] 0.96 [0.96-0.96]
TIO 0.85 [0.85-0.85] 0,99 [0.99-0.99] 0.98 [0.98-0.98]

Table A.2: Comparison between DeepMIC, the baseline and the XGBoost model
w.r.t ±1 2-fold dilution accuracy
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B.1 Backpropagation on Matrix-form
In a gradient descent algorithm we iteratively update our solution with respect
to the first order derivative. For a feedforward neural network this becomes [18,
pp.200-209]

W t+1
l−1,l = W t

l−1,l − ηtl−1,l �
∂L

∂W t
l−1,l

, (B.1)

θt+1
l = θtl − ηtl �

∂L

∂θtl
, (B.2)

where, η denotes the learning rate vector, or updating factors.
Given a loss function L, the derivatives of L w.r.t. the parameters of the feedfor-

ward neural network can easily be obtained by exploiting the chain-rule. For weights
Wl−1,l between arbitrary layers in the feedforward neural network we have

∂L

∂Wl−1,l
= ∂L

∂fw,θ
� fw,θ
∂Wl−1,l

. (B.3)

We compute the last derivative

∂fw,θ
∂Wl−1,l

= ∂σ(zL)
∂Wl−1,l

= σ
′(zL)� ∂zL

∂Wl−1,l
= σ

′(zL)� ∂(WL−1,LhL−1 + θL)
∂Wl−1,l

. (B.4)

If L = l we get
∂(WL−1,LhL−1 + θL)

∂Wl−1,l
= hL−1 (B.5)

otherwise,

∂(WL−1,LhL−1 + θL)
∂Wl−1,l

= W T
L−1,L �

∂σ(zL−1)
∂Wl−1,l

= σ
′(zL−1)� ∂zL−1

∂Wl−1,l
(B.6)

This holds for arbitrary q, l satisfying l < q

∂(Wq−1,qhq−1 + θq)
∂Wl−1,l

= W T
q−1,q �

∂σ(zq−1)
∂Wl−1,l

= W T
q−1,qσ

′(zq−1)� ∂zq−1

∂Wl−1,l
(B.7)

and for l = q we have
∂(Wl−1,qhl−1 + θl)

∂Wl−1,l
= hTl−1 (B.8)
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In the case of l > q we notice that hq is not depending on Wl−1,l and hence

∂h1

∂Wl−1,l
= 0 (B.9)

For a more compact notion we set

δL = ∂L

∂fw,θ
� σ′(zL) (B.10)

δl = W T
l,l+1δl+1 � σ

′(zl), l < L (B.11)

The updating rule for the weights then becomes

W t+1
l−1,l = W t

l−1,l − ηtl−1,l � δtl (htl−1)T (B.12)

Deriving the updating for the biases θl follows by the same argument as for the
weights

θt+1
l = θtl − ηtl � δtl (B.13)
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C.1 Genes linked to Antibiotic Resistance in the
dataset

Resistance Genes for Ampillicin

1. CARB-1
2. CARB-
3. CMY-130
4. CMY-132
5. CMY-15
6. CMY-16,
7. CMY-2
8. CMY-22
9. CMY-2b
10. CMY-33
11. CMY-94
12. HER-3
13. TEM-1
14. TEM-104
15. TEM-116
16. TEM-117
17. TEM-163
18. TEM-183
19. TEM-192
20. TEM-206
21. TEM-209
22. TEM-214
23. TEM-217
24. TEM-234
25. TEM-30,

Resistance Genes for Streptomycin

1. ant(3”)-Ia
2. aph(6)-Ic
3. aph(6)-Id
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Resistance Genes for Tetracycline

1. tet(A)
2. tet(B)
3. tet(C)
4. tet(G)
5. tet(M)
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