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Abstract

Analyzing sonar images is monotonous and time-consuming but important work;
a great number of mines are placed in oceans around the world, some of them
are left over from the world wars. Sea mines are also a potential terrorist threat.
Using synthetic aperture sonar (SAS) instead of conventional sidescan increases
the spatial resolution of the sonar image and therefore also improves the use of a
CAD/CAC system based on image analysis. This thesis is a preliminary study
into the application of such a system to SAS images and gives a short intro-
duction to sonar systems. It presents two segmentation methods and proposes
a number of features to be used for classi�cation purposes. The �rst segmen-
tation method is based on region growing and uses local statistics (local mean
and standard deviation). The second method uses Markov random �elds theory.
The features discussed describe the smoothness of the object surface and object
shape and size. Some features show promise for classi�cation purpose and the
results for the segmentation schemes are also promising. However a larger test
set is needed to draw any �rm conclusions.
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Chapter 1

Introduction

1.1 Background
The �rst sea mine was invented in 1776 by the American inventor David Bush-
nell. Since then, sea mines have been used and played a major role in many
wars and the defence of di�erent areas.
During the world wars, around 165000 mines were placed in the Baltic Sea and
the West Sea, and many of these remain unexploded on the seabed [1]. One of
the reasons why sea mines have been used so much is that it is a cheap way to
cause great damage to enemy ships. For that reason, they could also present a
terrorist threat.
Mine-hunting systems employ sophisticated sonars to produce an image of the
sea�oor. Traditionally, mine-like objects are then detected and classi�ed by
a trained human operator. Mine countermeasures are often carried out over
large areas, generating large amounts of sonar data. Analysing all this data is
monotonous and time-consuming work. For this reason, and also the human fac-
tor that di�erent operators make di�erent classi�cations, there is a requirement
for automatic detection and classi�cation systems. A wide research literature
on the subject exists and some examples can be found in the bibliography.
This Master thesis is part of the SAPPHIRES project at SAAB Underwater
Systems in Motala. This project is concerned with the development of an AUV
(autonomous underwater vehicle) carrying a SAS (synthetic aperture sonar)
system. The introduction of SAS techniques, derived originally from SAR (syn-
thetic aperture radar), increases the spatial resolution of sonar images substan-
tially, and should make detection and classi�cation easier, whether automati-
cally or by human operator. The improved resolution has increased interest in
applying image analysis techniques to sonar images. In the future CAD/CAC
(computer-aided detection and classi�cation) based on image analysis will be a
major part of sonar mine-hunting systems, in parallel with other types of signal-
processing applied directly to the received signals. Perhaps the human operator
will not be eliminated for a long time to come, but image analysis will simplify
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the operator's job and increase accuracy.

1.2 Scope of this thesis
It is a major task to develop a mine classi�cation system for SAS imagery,
requiring time and e�ort well outside the scope of this thesis. Moreover a large
training set, including all the common types of sea mine plus a wide variety of
natural features is required. However the AUV itself is still under development,
which limits the available number of experimental images. Hence this thesis is
intended to be a �rst CAD/CAC study applied to SAS imagery, covering an
overview of the problem and some software tools for use in a future system.
The main focus is on the segmentation of detected objects into highlight and
shadow regions, which will have a great impact on the success of the system,
but some classi�cation features are also discussed. One physical limitation is
that the SAPPHIRE sonar frequency is too high for bottom penetration, so only
objects lying on, or projecting above, the seabed are considered. Completely
buried objects are excluded.
Chapter 2 gives a brief introduction to sonar systems. Chapter 3 discusses the
di�erent regions in a SAS image, while Chapter 4 discusses image statistics.
Chapters 5 and 6 introduce two di�erent segmentation algorithms. Chapter
7 considers several classi�cation features. Results are presented in Chapter 8.
In the last chapter, Chapter 9, are conclusions and proposals for future work
discussed.

1.3 Mine-like object (MLO)
There is no exact de�nition of a mine-like object, (MLO). They are simply
objects which look like mines to a sonar. There exist many di�erent types of
sea mines. Most countries have their own types and some of them are secret.
A list of publicly known mines can be found in [2] giving also sizes. The size
of a mine varies considerably, but it can be seen from this list that an object
smaller than 0.3 [m] in any dimension is probably not a mine. According to the
list the largest sea mine in the world measures 3.4 × 3.4 × 3.0 [m], but there
exist mines which are larger than this in one dimension. Sea mine can look
quite di�erent from one another, but many common mines are based on simple
geometric shapes such as sphere, cylinder, truncated cone or box.

1.4 CAD/CAC system
A CAD/CAC system can be structured in di�erent ways. In this thesis, the
strategy is �rstly to detect candidate objects in a large area image, following
which the highlight and shadow regions are segmented for use in feature extrac-
tion. These features are then used to classify the object as a MLO or otherwise.
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This thesis is concerned with segmentation and feature extraction, assuming the
suspicious object has been detected and framed in a much smaller area image.
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Chapter 2

Introduction to synthetic
aperture sonar

2.1 Sonar
SONAR stands for sound navigation and ranging. It is used in underwater
applications instead of RADAR because electromagnetic waves su�er great at-
tenuation in water. An active sonar system consists of one or more arrays of
transducers which convert electrical energy to sound and vice versa, acting as
transmitters (projectors) and/or receivers (hydrophones). The transmitter di-
rects a sound pulse in a speci�c frequency band at some sector of the seabed.
This is called a ping. The receiver array records the echo re�ected back towards
the sonar. In a passive sonar, no sound is projected, and only the sound origi-
nating from targets and the environment is received at the array.
By taking the relative position of the receiver array elements into account, to-
gether with the time delay of the received signals, the contribution to the re-
ceived signal from di�erent points in the sector can be calculated.
Sonar is used in di�erent modes, sometimes pointing downwards or obliquely
downwards towards the seabed for bathymetric estimation, sometimes pointing
sideways along the surface of the seabed. Synthetic aperture sonar is a version
of this latter mode, and it is the one we are concerned with here [3].

2.2 Types of echo
2.2.1 Specular re�ection and backscatter
At a perfectly smooth surface, all the energy is re�ected in the specular (mirror-
like) direction, meaning that the incident angle θi (Fig. 2.1) is equal to the
re�ected angle θr. No object encountered by a sonar is perfectly smooth, but
it will be e�ectively smooth if the roughness dimension is very much less than
the sonar wavelength. The sonar will only receive specular re�ection when
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θi = θr = 0o, i.e. when the plane of the surface is normal to the direction of the
transmitted pulse. If this direction is nearly horizontal, then the surface must
be near vertical. Hence specular re�ections are usually received from smooth
surfaces of man-made objects standing up from the seabed, but occasionally
from smooth near-vertical rock walls.
A rough surface will act both as a re�ector and a scatterer. The dominant
component depends on the roughness of the surface relative to wavelength. At
high enough frequencies, most surfaces act as pure scatterers with fairly uniform
re�ected intensities in all directions (Fig. 2.2). There is no intensity peak as
the incident angle changes. Even here, surfaces normal to the incident beam
produce stronger echoes, because there is a greater surface area contained within
each range interval.
When the surface is neither perfectly smooth, nor rough enough to act only as
a scatterer, the intensity will have the characteristic illustrated in Fig. 2.3, i.e.
the sound is scattered in all directions, but there is still a peak in the specular
direction.

Figure 2.1: Re�ection at a smooth surface

Not all the incident energy is re�ected back at a surface. Some of it, It in
Fig. 2.1 is transmitted through the surface and either absorbed by the medium
or re�ected at a further interface. The re�ected sound intensity, Ir, is given by
quantity 2.1 [3].

Ir

I0
=

Zr − Zw

Zr + Zw
(2.1)

where Zw is the speci�c acoustic impedance of the medium, in this case
water, and Zr is the speci�c acoustic impedance of the re�ector.
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Figure 2.2: Re�ection at surface rough enough to act only as a scatter

2.2.2 Seabed reverberation
Reverberation from the seabed varies signi�cantly depending of the appearance
of the seabed. The bottom will never be perfectly plane and therefore some
scattering will occur and the intensity pattern will look like Fig. 2.2 or 2.3
depending on roughness. The speci�c acoustic impedance of the bottom may
also be signi�cant di�erent, depending on bottom material. For example seabeds
consisting of soft sediment can be almost transparent, while rock outcrops return
almost all the incident energy. Hence re�ected intensity varies considerably, Eq.
2.1. A rocky seabed will re�ect more of the energy back toward the sonar,
making the detection and discrimination of MLOs harder [4]. It is therefore
more likely for a seabed containing scattered rocks to be chosen as a mine�eld.
More details on how the appearance of the seabed a�ects the CAD/CAC system
are discussed in Chapter 3.

2.2.3 Sea-surface reverberation
The sea-surface also re�ects or scatters sound, which can a�ect the sonar system
due to multipath propagation of sound in water. The sound travelling from the
sonar to an object on the sea�oor and back can take alternative paths. The
�rst possibility is the direct-direct path, Fig. 2.4. Other possibilities are the
surface-direct, Fig. 2.5, bottom-direct Fig. 2.6, direct-surface, direct-bottom,
surface-bottom etc. [4]. Multipath propagation might lead to ghost targets and
loss of image contrast by �lling in of shadows [5].
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Figure 2.3: Re�ection at rough surface

Figure 2.4: Direct - direct path

2.2.4 Object echo
The target strength, TS, is a measure indicating the relationship between inci-
dent intensity and re�ected intensity measured at some reference point, usually
1 meter from object center.

TS = 10 log
Ir

Ia
(2.2)

TS depends on target shape. For example a perfectly smooth sphere will
re�ect the sound in di�erent directions, giving a lower TS for a given direction,
while a box perpendicular to the sound wave will re�ect the energy in one
direction, since θi = θr = 0o in Fig. 2.1, resulting in a high TS for that
direction. While the TS of a sphere is independent of incident angle TS for a
box is not. If the box is not perpendicular to the sound waves no energy will be

11



Figure 2.5: Surface - direct path

Figure 2.6: Bottom - direct path

re�ected in the specular direction, meaning that TS is zero for that direction. As
discussed in the previous section, the surface roughness also a�ects the re�ected
intensity. For MLO:s this might reveal a di�erence between man-made and
natural objects. A rough object like a rock will scatter the sound more than a
man-made smoother object with the same geometrical shape [3].

2.2.5 Volume reverberation
Since both density and sound speed varies in sea, this rise refraction in the
volume. Marine life also causes scattering [4].

2.2.6 Transmission loss
Transmission loss from a source to an arbitrary point is de�ned as the ratio
between the sound intensity in that point, I1, and intensity in a reference point,
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I0, at a given distance (normally 1 meter) from the acoustic center of the source.

TL = 10log10(
I0

I1
) dB (2.3)

Transmission loss is important to consider in detection of MLOs but also in
classi�cation because �rstly absolute echo strength can be a useful classi�cation
feature, so it is important to know how to compensate correctly for attenuation
versus range. Secondly, absorption losses lead to relatively higher attenuation
of the high frequencies, which leads to an e�ective loss of bandwidth, and dete-
riorating range resolution with increasing range.
The main contributions to transmission loss are absorption and spreading losses,
both increasing with target range. There are some other losses normally classed
as transmission loss which are independent of range, for example attenuation
due to bubbles in the water column. It is worth noting that transmission losses
are two-way for an active sonar but not for a passive one [3].

Spreading loss
Assuming a homogenous and lossless medium, the power is the same in every
point in the medium, P0 = P1. If the medium also is unbounded the spreading
is spherical. Since power is given by area times intensity, transmission loss due
to spreading becomes

P = 4πr2I =⇒ {P0 = P1} =⇒ 4πr2
0I0 = 4πr2

1I1 =⇒
I0

I1
=

r2
0

r2
0

=⇒ {r0 = 1} =⇒

TLspreading = 10log10(r2
1) = 20log10(r1) dB (2.4)

Spherical spreading is a simpli�cation. When an upper and lower surface
boundary is present the spreading is rather cylindrical, and given by

P = 2πrHI =⇒ {P0 = P1} =⇒ 2πr0HI0 = 2πr1HI1 =⇒
I0

I1
=

r0

r0
=⇒ {r0 = 1} =⇒ TLspreading = 10log10(r1) dB (2.5)

Neither of these models is perfectly true. The true value probably lies some-
where between them, so sometimes TL = 15log10(r1) dB is used. However both
models shows that spreading loss increases with range [3].

Absorption
Absorption losses are due to conversion from acoustic energy to heat. The
absorption loss for a plane wave with intensity I travelling a small additional
distance dx, through an absorptive medium is given by Eq. 2.6.
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dI/I = −ndx (2.6)
Integrating between two ranges r0 and r1, and setting

α = 10n log10(e) (2.7)
gives

α =
10 log I0 − 10 log I1

r1 − r0
dB/km (2.8)

α is the absorption coe�cient and

TLabsorption = 0.01αr (2.9)

Absorption in seawater is caused mainly by viscosity and ionic relaxation, and
is frequency dependant. Di�erent models exist for this frequency dependence,
but in most models α increases with f2 [4].

2.2.7 Ambient noise
The environment give rise to acoustic noise. The noise depends on frequency
and seastate. One frequently used model for the di�erent seastates is given by
the Knudsen Spectra in Fig. 2.7 [4].
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Figure 2.7: Knudsen spectra

2.3 Sidescan sonar
Sidescan sonar is the traditional instrument for underwater minehunting. A
sidescan sonar is mounted on a tow�sh, surface vessel, or more recently on
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an UUV (unmanned underwater vehicle). The insoni�ed sector of the seabed,
the footprint, is perpendicular to the track of the vehicle. The geometry of a
sidescan system is shown in Fig. 2.8.

Figure 2.8: Geometry for a sidescan system

In sidescan systems the beam usually points in a �xed direction with respect
to the platform. In more advanced systems it can be steered to compensate for
heading variation.

With sidescan sonar (but not with SAS) there is beamforming [6], summing
signals from di�erent array elements both on transmission and reception, so
pulses are conceptually transmitted from the centre of the array and received at
the centre of the same array. If beam steering is used, the signals are delayed in
time depending on azimuth angle. Beamforming gives a signal of energy, which
can be converted to a greyscale value, versus time. A sidescan sonar image is
then built up line by line.

The energy versus time signal, or energy versus range, gives an ambiguity
- the hyperbola in Fig 2.9 showing positions at the same range that cannot be
distinguished. As can be seen, the ambiguity width is larger at long than at short
range. In order to cover the seabed continuously at close range, the distance
travelled by the platform between consecutive pings must be short enough, see
Fig 2.10. Hence the footprints for pings at long ranges will overlap. [3].

Due to this point-spread e�ect, sidescan images have the typical smoothed-
out appearance visible in Fig. 2.11. The positive aspect is that speckle, random
noise described in Section 3.4, is also smoothed out.

The down-range resolution of the resulting image depends on the bandwidth
of the sound pulse, while the along-track (azimuth) resolution depends on the
beam-width of the transmitter and receiver array, as given by Eq. 2.10. [7]

δ =
rc

Dfc
=

rλc

D
(2.10)

This equation shows that to increase azimuth resolution there are two alter-
natives, increasing the aperture length, D or reducing the wavelength λc. The
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Figure 2.9: A single ping

Figure 2.10: Overlapping pings

aperture length, D, is usually limited by the size of the vehicle. Wavelength is
inversely proportional to frequency, so reducing wavelength implies increasing
frequency and hence attenuation in the water column, reducing the maximum
useful range of the system. This trade-o� is important for mine-hunting sys-
tems, since good spatial resolution is needed to detect and classify objects, while
long range is needed to search large areas quickly.

2.4 Synthetic aperture sonar
Synthetic aperture sonar (SAS) presents a method of achieving high spatial reso-
lution without increasing frequency and sacri�cing range. SAS is an adaptation
of synthetic aperture radar (SAR) which is a mature technique used routinely in
satellite monitoring of the earths surface [8]. However for sonar, it is a relatively
new technique. The main principle is that a synthetic array is constructed from
successive locations of the physical array - see Fig. 2.12. The length of the
synthetic aperture is limited by the number of pings which insonify the same
point on the seabed. Synthesis is achieved by coherent addition of their echoes,
meaning that the phase of the echoes with respect to each transmitted pulse
must be preserved.
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Figure 2.11: Sidescan image of an anchor

In the ideal situation where the sonar platform moves along a perfectly
straight track without change of heading, this coherent addition presents little
problem. However in the real situation where the track not only deviates from
a straight line, but the deviation is not accurately known, this is a hard task.
Motion errors arise because of water movement and the hydrodynamics of the
vehicle. Image degradation occurs as soon as these motion errors exceed λ/8,
where λ is the mid-wavelength. This limit equals 1.875 mm for a 100 kHz sonar
[7].
These motion errors must be estimated and compensated to achieve coherent
addition of successive pings. Motion errors also arise in SAR, and are compen-
sated using the radar data itself, by methods termed "autofocus" [9]. However
the problem is di�erent with SAS because the motion error can change ran-
domly from one platform position to the next. The correction problem is more
di�cult, which is one of the main reasons why it has taken a long time for the
underwater community to accept the SAS technique. With SAS, methods of
correcting navigation from the sonar data are termed "autopositioning" [10] or
"micronavigation" [11]. The resolution gained by using SAS can be seen by
comparing Fig. 2.11 to Fig. 2.13, the previous is a sidescan image of an anchor
and the latter is the same anchor using synthetic aperture sonar.
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Figure 2.12: Geometry for a SAS system

Figure 2.13: SAS image of an anchor
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Chapter 3

Image regions

3.1 Introduction
One can divide a sonar image into three di�erent regions, assuming one or more
objects is present, highlights from object(s), shadow region(s) and background
(i.e bottom).

3.2 Highlight
Objects protruding from the seabed return a strong echo towards the sonar.
The reason for this is that there are more re�ectors normal to the direction of
sound propagation. Only the front surface border, the blue line in Fig. 3.1, of the
object contributes to the highlight since the rest of the object is concealed behind
this surface. The red surface will not a�ect the appearance of the highlight,
unless it is insoni�ed by a di�erent ping. This means that object size in the
across-track direction cannot be determined from the highlight.

As discussed in Section, 2.2.1 surface roughness might be a feature discrim-
inating man-made objects, often with a smooth surface, from natural objects
with somewhat rougher surfaces. In SAS images, this might be seen in the
highlight region, where the texture will di�er between surfaces with di�erent
roughness.

3.3 Shadow
The shadow area is the part of the footprint that is behind an object. The
geometrical reason for the shadow can be seen in a 2D side view in Fig 3.2
where d − a is the swath width, max (range) − min (range) in across track
direction, of the footprint. The object prevents the sound from insonifying the
area behind it, represented in the �gure by the line −→bc. In the ideal situation
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Figure 3.1: 2D side view of highlight principle

the shadow area will be totally dark. No echo can originate from this area since
no sound has excited it.

Figure 3.2: 2D side view of sonar system principle

There are di�erent reasons why the ideal situation is not realized, giving
non-zero pixels in the shadow area, for example electrical noise in the sensors
and environmental noise, Section 2.2.7. Another important reason is multipath
propagation, Section 2.2.3. There is an additional reason with synthetic aperture
sonars due to the fact that the shadow area rotates round the object as the
platform moves. The geometry changes from ping to ping and the shadow area
will be slightly di�erent, as can be seen in Fig. 3.3, eroding the edge of the
shadow area.

The across-track length of the shadow, c−b in Fig. 3.2 is given by equations
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Figure 3.3: Schematic top view of SAS:s in�uence of shadow region

3.1 and 3.2
c− b = hobject × tan(α) (3.1)

tan(α) =
c

hsonar
(3.2)

Equation 3.1 and 3.2 show that, at a �xed range, shadow length in the
across-track direction increases with decrease in sonar altitude. For an object
that is not rotationally symmetric around the altitude axis, the shape of the
shadow also changes with insoni�cation angle.

3.4 Background
The background is de�ned as the region which is neither classi�ed as highlight
or shadow, i.e. the sea-bottom. As discussed in Section 2.2.2 the seabed varies
considerably in terms of absorption and scattering depending on material and
type. Rocks and other particles smaller than the sound wavelength, randomly
distributed on the seabed, scatter the sound in di�erent directions. Constructive
and destructive interference of sound waves scattered from these particles give
the background a granular look with relative bright pixels mixed with darker
ones (termed speckle) [12].
The theoretical distribution of the absolute echo strength for random scatterers
returning normally-distributed complex echoes is a Rayleigh distribution, and
is the simplest model used for background echoes [13]. Rayleigh is a special
case of the Weibull distribution(explained in Section 6.2.6). Fig.3.4 shows the
histogram of the background region and the best �t of a Rayleigh and a general
Weibull distribution for Test Image 1, Fig. A.1.
One thing that might complicate segmentation into highlight and shadow regions
is when bottom structures, for example sand dunes, cast shadows. The di�erence

21



between shadows from sand-dunes and shadows from MLO:s is that shadows
from MLO:s tend to be extended in the across-track dimension while sand dune
shadows are extended along track.

Figure 3.4: Histogram of background pixels for Test Image 1, Fig. A.1, together
with Rayleigh and Weibull estimation
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Chapter 4

Image statistics

4.1 Introduction
Local statistics are widely used in CAD/CAC approaches to sonar images, com-
mon measurements being local mean and local standard deviation, for example
[14] and [15] for segmentation purposes. Other approaches use higher order
statistics for example in [16] for detection and in [17] for classi�cation. In this
thesis local mean, local standard deviation and normalized local standard devi-
ation are used for segmentation, Chapter 5, and classi�cation purposes, Chapter
7.

4.2 Calculation
For a set of N random variables xn variance, σ2 is given by Eq. 4.1.

σ2 =
(
∑

(xn −m)2)
N

(4.1)

where m is the local mean,

m =
∑

xn

N
(4.2)

Local standard deviation, σ, is given by Eq. 4.1 and 4.2,

σ2 =
(
∑

(xn −m)2)
N

=
(
∑

(x2
n − 2xnm + m2)

N
=⇒ {Eq.4.2}

=⇒ Nσ2 =
∑

x2
n −

∑
x2

n

N
= {m2 =

∑
x2

n

N2
} =

∑
x2

n −Nm2 =⇒

σ =

√∑
x2

n −Nm2

N
(4.3)

Standard deviation normalized with local mean, Eq. 4.4 is also used here.
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NormStd =
σ

m
(4.4)

4.3 Window size
The size of the window in which the local statistic is calculated is an important
factor. The reason is that if too large a window is used, there will be no po-
sition of the window where all pixels are highlights or shadow. Therefore the
background will a�ect the local statistics for all pixels. This is demonstrated
by Fig. 4.1 and Fig. 4.2 where local statistics for a white object (size 5x5) on a
random background are calculated with a window smaller, (size 3x3), than the
object, Fig. 4.1, and a window larger, (size 7x7), than the object, Fig. 4.2. The
mean values are not signi�cantly di�erent, the main di�erence being that the
peak-value is higher when the window smaller than the object. For standard
deviation and normalized standard deviation there are more signi�cant di�er-
ences. Since the regions in a real SAS image are never all white or all black,
the e�ect of di�erent window size will not be as large as in this simple example,
but it is still important to choose an appropriate window size for the region of
interest.

Orginal   Mean

Standard deviation Norm. std.deviation

Figure 4.1: Local statistics for a white object on a noisy background, window
size 3x3

4.4 Local statistics of SAS-images
It is discussed in [14] and in the attached references that highlight pixels have
high local mean but standard deviation with varying characteristics, while shadow
pixels have low local mean and standard deviation. Local statistics for back-
ground pixels depend on the complexity of the seabed, in terms of structures
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Orginal

Standard deviation

  Mean

Norm. std.deviation

Figure 4.2: Local statistics for a white object on a black background, window
size 7x7

visible in the sonar image. Fig. 4.3 shows the standard deviation versus mean
plane, using a 5x5 window, for Test Image 3 Fig. A.3 after manual segmenta-
tion. Here can some of the statistical properties discussed above be seen, most
of the highlight pixels, red dots in the �gure, having high local mean and high
local standard deviation while most pixels in the shadow region, blue dots in
the �gure, have low local mean and standard deviation.

The normalized standard deviation, Eq. 4.4, shows the relationship between
local mean and local standard deviation. As can be seen in Fig. 4.4 this measure
might be used as an edge detector. The �gure shows normalized standard
deviation in a 5x5 neighbourhood for all pixels in Test image 3, Fig. A.3. This
measure is also discussed as a classi�cation feature in Chapter 7.
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Figure 4.3: Standard deviation versus mean plane for Test Image 3 Fig. A.3.
Red points are for highlight pixels, blue for shadow and black for background.

Figure 4.4: Normalized standard deviation for Test Image 3 Fig. A.3
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Chapter 5

Segmentation using a region
growing approach

5.1 Introduction
For an image with a �at background it might be possible to segment the in-
teresting regions only by thresholding, but for a more complex image a more
sophisticated method is needed. The approach considered here is based on the
local statistics properties discussed in Chapter 4 and region growing, a basic
image segmentation algorithm [18]. A short theoretical introduction is given
below. For a deeper understanding an image analysis book, for example [18],
is recommend. Hereafter follows a detailed description of the di�erent steps
in the algorithm. Segmentation results for all Test Images, using the same
parameter con�guration, can be found in Appendix A and discussions and com-
parison between manual segmentation and computer segmentation can be found
in Chapter 8.

5.2 Theory
5.2.1 De�nitions
In digital image systems a square lattice of sites is used and therefore some
problems with distance might appear. A diagonal movement in the grid, a
Euclidean distance equal to

√
2, is often considered as the same distance as a

movement up and down or to either side. When this is the case the D8- or
chessboard, de�nition 1, distance is used.

De�nition 1 D8[(i, j), (h, k)] = max(|i− h|, |j − k|)

Two pixels X(a,b) and X(m,n) are neighbours if their distance apart is equal
to 1. 8-neighbours are de�ned in de�nition 2. De�nition 3 de�nes a region.
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De�nition 2 Two pixels P0 = X(a, b) and P1 = X(m,n) are 8-neighbours if
D8[P0, P1] = 1, P0 6= P1

De�nition 3 A set of pixels where there exists an 8-neighbour path between
every pair of pixels is called a region.

In region-growing algorithms, two more assumptions about regions are made.
There exists a binary homogeneity evaluation function H on the S regions Ri

H(Ri) = true, i = 1, 2, . . . , S (5.1)

H(Ri ∪Rj) = false, i 6= j Ri adjacent toRj (5.2)
Eq. 5.1 tells that a region is homogeneous, according to some measure H. 5.2

state that region segmentation is maximal. If two adjacent regions are merged
the resulting region is no longer homogeneous [18].

5.2.2 Region growing
Region growing is initiated with the image segmented into small regions, possibly
consisting of single pixels, satisfying Eq. 5.1. Adjacent regions are merged in
turn if a given criterion is satis�ed. When no more regions can be merged,
the segmentation is maximal based on the homogeneity evaluation function and
merging criterion [18].

5.3 Segmentation of sonar images
5.3.1 General idea
The idea in this segmentation approach is to use the local statistics discussed
in Chapter 4. The mean versus standard deviation plane (Fig. 4.3) shows
that some highlight pixels can be found by simple thresholding, while the re-
maining highlight pixels and the shadow pixels might be hard to segment using
thresholding alone. To solve this problem, an approach is used where �rst the
highlight is segmented, and then knowledge of the shadow position, see Section
3.3, is used together with local statistics. This approach might give some false
regions which can be removed by using a priori knowledge:

• A true highlight region from an interesting object lies within a certain size
bracket

• A true shadow region from an interesting object has approximately the
same along- track dimensions as the corresponding highlight

• A true shadow region has across-track dimensions larger than a certain
value

• A true highlight region is followed by a true shadow region.
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5.3.2 Highlight
Initiation
Examination of the standard deviation versus mean plane for all test images
shows that pixels with the highest local mean always lie within the highlight.
Hence highlight seed pixels are found by choosing a threshold for local mean,
for example the red line in Fig. 5.1.

Figure 5.1: Standard deviation versus mean plane for Test Image 3 Fig A.3.
The red line marks the threshold for �nding seed pixels. The red ellipse marks
pixels with typical shadow characteristics, i.e. low mean-value and standard
deviation

The threshold, T1 is set by a linear combination, Eq. 5.3, of the mean value
for all pixels in the original image, X, size MxN , and the maximum value in the
local mean image, XMEAN . With a structured background, for example where
small rocks are scattered on the seabed, background pixels might still be falsely
initiated as highlight pixels. This risk is addressed later in processing.

T1 = (1−A1)×max(XMEAN ) + A1 × (
∑

m∈M

∑
n∈N (x(m,n))
MN

) (5.3)

Fig. 5.2 shows segmentation step by step for Test Image 4, Fig. A.4. Initi-
ation can be seen in Fig. 5.2(a).
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Region growing
In the next step, neighbouring pixels are incorporated in the region if their
greyscale value is higher than T2, a new lower threshold, given by a linear
combination, Eq. 5.4, of the average of already classi�ed highlight pixels and
the average of all pixel values in the image.

T2 = (1−A2)× (
∑

m∈M

∑
n∈N (x(m,n) ⊂ HIGHLIGHT )

NHIGHLIGHT
) +

A2 × (
∑

m∈M

∑
n∈N (x(m, n))
MN

) (5.4)

where NHIGHLIGHT is the number of highlight pixels in the image. The
result for Test Image 4, Fig. A.4, can be seen in Fig. 5.2(b).

Final highlight regions
When no more pixels can be incorporated, holes and pixels not already classi�ed
as highlight but surrounded only by highlight pixels are �lled. Regions failing
the �rst a priori criterion are then removed. The �nal segmentation for Test
Image 4, Fig. A.4, is shown in Fig.5.2(c).

5.3.3 Shadow
Initiation
Seed pixels for the shadow regions, one for each highlight region, are found by
de�ning a window, SW, in the area behind the highlight in which the seed pixels
are found. These are pixels where the local mean and local standard deviation
are below the thresholds T3,T4 (Eq.5.5 and Eq. 5.6) respectively. The size of SW
is set by the along-track size of the highlight region and the minimum expected
width of the shadow, across-track. The shadow-segmentation steps can be seen
in Fig. 5.2(d) - 5.2(g)

T3 = (1−A3)×min(XMEAN (SW ))+A3×(

∑
m∈MSW

∑
n∈NSW

(XMEAN (m,n))
MSW NSW

)

(5.5)

T4 = (1−A4)×min(XSD(SW ))+A4×(

∑
m∈MSW

∑
n∈NSW

(XSD(m, n))
MSW NSW

) (5.6)

Region growing
For the shadow-growing step, two more thresholds T5 and T6 are de�ned, again
using linear combination (Eq. 5.7 and 5.8). These relax the requirements for a
pixel neighbouring a shadow pixel to be classi�ed as shadow. Growing of the
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shadow is accepted if a neighbouring pixel either has local standard deviation
below T5 or local mean below T6. Growth outside the previous de�ned window
is now permitted. However to ful�l the second a priori criterion, growth beyond
the along-track dimension of the highlight is forbidden.

T5 = (1−A5)×
∑

m∈M

∑
n ∈ NXSD(m,n) ⊂ SHADOW

NSHADOW
+

A5 × (
∑

m∈M

∑
n ∈ NXSD(m, n)
MN

) (5.7)

T6 = (1−A6)×
∑

m∈M

∑
n ∈ NXMEAN (m,n) ⊂ SHADOW

NSHADOW
+

A6 × (
∑

m∈M

∑
n ∈ NXMEAN (m,n)

MN
) (5.8)

Where NSHADOW is the number of shadow pixels in the image.

Final segmentation
After shadow growth, holes are �lled in the same way as for the highlight regions.
Finally, regions that don't ful�l all a priori criteria are removed.
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(a) Highlight seed pixels (b) After highlight growing

(c) Final highlight region (d) Shadow seed pixels

(e) After 1st shadow growing step (f) After 2nd shadow growing step

(g) Final segmentation

Figure 5.2: Segmentation of Test Image 4, Fig. A.4
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Chapter 6

Segmentation using a Markov
random �elds approach

6.1 Introduction
The second segmentation approach is an adaptation of the scheme proposed in
[19] and [20] for segmentation of conventional sidescan images. In the references,
MRF (Markov random �elds) theory is used to achieve an MAP (maximum a
posterior) segmentation of images heavily corrupted by noise. The algorithm is
divided into two steps, �rstly the separation of shadow from not-shadow regions
in the image, followed by separation of the not-shadow regions into highlight
and background. All required parameters are estimated from the image itself,
which makes it a promising approach for segmenting SAS images. Unfortunately
parameter estimation is computationally heavy and time consuming. However
the algorithm can be implemented on parallel processing hardware [21] which
will mitigate that problem in the longer term. Because of the long execution
times, only the �rst step - shadow segmentation - has been implemented so far.

The underlying strategy is as follows. The observed image is regarded as
a MRF corruption of the unknown segmented binary image. Then a sampling
algorithm is used to obtain a large number of realisations of the binary image,
allowing the most likely one to be selected.

6.2 Theory
6.2.1 Neighbourhood
The spatial relationship between a set of pixels, S, is de�ned via a neighbour-
hood system,η

De�nition 4 η = {ηi | ∀i ∈ S}
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where ηi are the pixels neighbouring pixel i (see De�nition 2, Chapter 5). A
neighbourhood system satis�es:

• i /∈ ηi

• i ∈ ηi′ ⇐⇒ i′ ∈ ηi

The �rst relationship states that a pixel is not a neighbour to itself. The
second states that the neighbourhood relationship is commutative. A clique is
a subset of S containing only neighbouring pixels. A pair-site clique is de�ned
as

De�nition 5 C2 = {{i, i′} | i′ ∈ ηi, i ∈ S}
As shown in Fig. 6.1 there are four types of pair-site cliques determined by

their orientation.

6.2.2 Markov random �elds
A set of random variables X = (Xs, s ∈ S) de�ned on the set, S, and taking
values in L is de�ned to be a MRF if and only if

De�nition 6
P (X) > 0 ∀x ∈ X (6.1)

and
P (xi|xS−{i}) = P (xi|xηi) (6.2)

XS−i denotes all members of S except i The second property, called Marko-
vianity states that the probability of an event xi for pixel i is determined only
by the pixel's immediate neighbourhood.

6.2.3 Gibbs random �elds
De�nition 7 A set of random variables X is a Gibbs random �eld (GRF) if
and only if its con�guration obeys a Gibbs distribution

De�nition 8 A Gibbs distribution takes the form:

P (X) =
e−

U(X)
T

∑
x∈X e−

U(X)
T

(6.3)

U(x) =
∑

c∈C

Vc(x) (6.4)

where T is a constant normally set to 1. Vc is the clique potential expressing the
contrast between the elements. U(x) then expresses the contrast between pixel x
and its neighbourhood. The expression used here will be given in Eq. 6.8

The Hammersley-Cli�ord Theorem [22] states that X is a MRF on S with
respect to η if and only if X is a GRF on S with respect to η.
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6.2.4 MAP segmentation
Considering the observed image as a noisy observation Y of the underlying
random �eld, X, the a posterior probability P(X|Y) is given by Bayes Law [22],
Eq. 6.5.

P (X|Y ) =
P (Y |X)P (X)

P (Y )
(6.5)

In our case, the underlying random �eld is the binary segmented image. Ob-
servation Y is available, so P(Y) is certain and can be ignored. The conditional
probability P(Y|X) is given by Eq 6.6 [19].

P (Y |X) =
∏

s∈S

P (ys|xs) (6.6)

where P (ys|xs) is found by �tting a Weibull distribution (Section 3.4 and
6.2.6) to the greyscale probability density function of Y for the two possible
values, xs = 0 and xs = 1 in X. By modelling X as a MRF and using the
Hammersly-Cli�ord Theorem, the probability P (xi) is shown [22] to be:

P (xs|xS−{s}) = P (xs|ηs) =
e−

∑
c∈ηs

Vc(x)

∑
L e−

∑
c∈ηs

Vc(x)
(6.7)

The local energy,
∑

c∈ηs
Vc(x), the sum of clique potentials, is de�ned as

[23]:
∑
c∈ηs

Vc(x) = Θ(xs, η)φT
x (6.8)

where φx = β1, β2, β3, β4 are a priori parameters connected to the di�erent
cliques in Fig. 6.1. Θ(xs, η) is de�ned for the neighbourhood shown in Fig. 6.2
as

Θ(xs, η) = [I(xs, u1) + I(xs, u3), I(xs, u2) + I(xs, u4),
I(xs, v1) + I(xs, v3), I(xs, v2) + I(xs, v4)] (6.9)

where

I(z1, z2) = 0 if z1 = z2, 1 otherwise (6.10)
This mean that I = 0 for neighbouring pixels if they lie within the same

segment, but I = 1 if they lie on opposite sides of a segmentation boundary.
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(a) β1 (b) β2 (c) β3 (d) β4

Figure 6.1: Cliques

v2u2v1

u3xSu1

v3u4v4

Figure 6.2: Neighbourhod

6.2.5 K-mean classi�cation
In a K-mean classi�er, every class is initiated as a seed point ci in the N-
dimensional space de�ned by the N features used. Every variable xi de�nes a
point pi with coordinates given by the feature values, pi = (feature1, feature2,
, . . . , featureN ). Every variable is assigned to the class de�ned by the nearest
point ci , i.e. the point with the lowest Euclidian di�erence to pi. When all
variables have been classi�ed, new seed points for the classes are given by the
mean values of all points assigned to the class. This procedure continues until
the seed points remain unchanged [23].

6.2.6 Weibull distribution
A regular Weibull distribution, W(α,C) is a 2-parameter distribution determined
by a scale parameter, α, and a shape parameter, C. In [19] a third parameter,
min, is introduced to shift the distribution:

W (y; min,C, α) =
C

α

(y −min)
α

C−1

e
−(y−min)C

αC (6.11)

Fig. 6.3 show the e�ects of the di�erent parameters. In Fig. 6.3(a) α = 40,
C = 2, and min is varied. In Fig. 6.3(b), min = 0, C = 2, and α is varied. In
Fig. 6.3(c), min = 0, α = 40, and C is varied. Fig. 6.3 also shows the �exibility
of a Weibull distribution, as pointed out in [19].

When C=1, W follows an exponential law, while when C=2, W is a Rayleigh
distribution. This is the theoretical distribution of the absolute echo strength
for random scatterers returning normally-distributed complex echoes, and is the
simplest model used for background echoes [13].
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6.3 Segmentation of SAS images
6.3.1 Estimation of parameters
The clique parameters φx and Weibull distribution parameters φy = (min, C, α)
are estimated by the ICE algorithm [19], whose structure is shown in Fig. 6.5.
The algorithm is divided into three stages:

1. Initiation stage to �nd approximate parameters for the given image
2. Generation of sample images with these parameters, using a Gibbs sampler

(Section 6.3.1)
3. New parameter estimation
The algorithm is iterative and terminates when the variance of the last few

iterations falls below a certain value. This section will describe the particular
implementation of the algorithm used in this research to segment SAS images.

Initiation
The initiation stage aims to obtain good initial values for the clique and dis-
tribution parameters. First, a rough segmentation is carried out, classifying
every pixel by a K-mean procedure using the two features: local mean and local
standard deviation (Section 4.2) plus a third feature: local minimum greyscale
value. The window size used here is 5× 5. Experiments in this thesis show that
using three classes in the k-mean procedure, and then merging two of them to
form the non-shadow class, gives better results then using only two. The classes
are initiated by using a priori knowledge that shadow will have low feature val-
ues while non-shadow will have higher. Parameter estimation is carried out in
the same way as in the rest of the algorithm described below. The maximum
likelihood segmentation is achieved by for each pixel in the observed image, y,
choosing the segmentation which maximises the conditional probability given
by initiation values of φy, P (ys|φ0

y).

Gibbs sampler
The purpose of the Gibbs Sampler in the ICE algorithm is to generate binary
images which obey the a posterior probability distribution P (X|Y ) given by
current parameters. A binary image of size M ×N has 2MN possible con�gura-
tions. Calculating the probability for every single one of these is impractical, so
the Gibbs Sampler uses Eq. 6.5 - 6.8 to calculate the probability of an event pixel
by pixel. One pixel of the image is changed in each step, and the probability
becomes:

P (xs|ys) = P (ys|xs)
e−

∑
c∈ηs

Vc(x)

∑
L e−

∑
c∈ηs

Vc(x)
(6.12)

This operation is carried out for a number of raster scans of the whole image.
According to [22] 50 scans su�ce for most images.
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Estimation of distribution parameters, φy

The Weibull distribution parameters (Eq. 6.11), φy = (min, C, α), are estimated
by a maximum likelihood approach. The log-likelihood, ln Py|φy

(y|φy), for M
independent samples is given by

ln Py|φy
(y|φy) =

M∏

i=1

C

α

(y −min)
α

C−1

exp
−(y−min)C

αC (6.13)

In [19] φ̂y is found by zeroing the partial derivatives of ln(Py|φy
(y|φy) with

respect to each parameter. The parameter, min, is estimated as

m̂in
ML

= ymin − 1 (6.14)

where ymin is the minimum value of y. After ˆminML is found, the distribu-
tions are shifted by setting ỹi = yi − ˆminML Then α is estimated from

ˆαML = (
1
M

∑
(ỹi

CML)
1

CML (6.15)

However Eq. 6.15 involves the parameter, C, still unknown. Hence 6.15
is combined with the result of zeroing the partial derivative of Eq. 6.13 with
respect to C to obtain

∑M
i=1(ỹi

ˆCML ln ỹi)∑M
i=1 ỹi

ˆCML

− 1
M

M∑

i=1

ln ỹi =
1
ˆCML

(6.16)

Eq. 6.16 is solved iteratively.

Estimation of Markov parameters , φx

The MRF clique parameters, φx = β1, β2, β3, β4, are estimated following a
method detailed in [23]. This method has shown good test results in the refer-
ences. Combining Eq. 6.7 and 6.8, and calculating the conditional probabilities
for xs = 0 and xs = 1 gives the equation:

[Θ(xs = 0, ηs)−Θ(xs = 1, ηs)]T φx = ln(
P (xs = 0)|ηs

P (xs = 1)|ηs
) (6.17)

The ratio on the right hand side of this equation is calculated by counting
the number of pixels in the image taking the values 0 and 1, and with a given
neighbourhood, ηs. Since there are 8 neighbouring pixels taking two alternative
values, there are 256 possible neighbourhood con�gurations. Hence the system
of equation is overdetermined, and can be solved using the least square error
method to obtain a solution for φ̂s. Θ(xs = 0, ηs) and Θ(xs = 1, ηs) do not
change, so need only be calculated once.
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6.3.2 MAP segmentation
When the required parameters have been estimated, the MAP segmentation
is achieved using one of the maximization methods discussed in [13]. Here we
have used the ICM, Iterated Conditional Modes, which seems one of the most
straightforward methods. This method uses a greedy approach of maximizing
the local probability given by Eq. 6.12 pixel by pixel, and iterating until it
converges. More about this method, and other maximization methods can be
found in [22].
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Figure 6.3: Weibull distribution
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Figure 6.4: Schematic view of ICE algorithm

Figure 6.5: Schematic view of initiation part of ICE algorithm
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Chapter 7

Classi�cation features

7.1 Introduction
Discriminating man-made objects from natural ones is a hard and important
task. To be useful the discrimination must be done with high con�dence. Usu-
ally a number of di�erent features are needed to achieve su�cient con�dence.
Alternative possible classi�cation features are proposed here. These features are
evaluated in Chapter 8.

7.2 Lines
One characteristic that might discriminate man-made from natural objects is
the presence of straight edges, regularity and corners. In some situations, boxes,
cylinders and other shapes with sharp edges will cast a shadow with straight
edges. If the object has a regular shape, the shadow will have parallel lines.
Sharp corners also imply a man-made object. For the shadow, only the region
border is of interest since any non-black pixels are due to noise. In highlight
regions, there might exist lines due to the object surface, so it could be interest-
ing to look for edges in the greyscale image. However none of the test images
has this characteristic, so this aspect is not considered here.

7.2.1 Hough transform
The standard Hough transform is designed to detect straight lines in images.
Representing a line L(x,y) with a vector s where s is perpendicular to L and
given by

s = x cos θ + y sin θ (7.1)
In the s, θ-space, the line L is represented by a single point. Line detection by
Hough Transform is based on this fact [18]. For every pixel in the region border,
every possible line in all direction is transformed to the s, θ-space. Since every
line is represented by a single point in s, θ-space, this point is incremented in the
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transform space- the accumulation matrix H. Theoretically every edge-pixel has
an in�nite number of lines intersecting it. In practice, the resolution determines
how many line directions are tested for each pixel. Finding the lines is done by
thresholding the accumulation matrix and taking the inverse transform of the
peaks.

7.2.2 Straight line detection
The Hough transform is robust and insensitive to noise since it can detect lines
even when there is missing data, or an edge pixel in the wrong location due to
segmentation errors. To be sure of �nding well-de�ned lines it is important to
choose an appropriate threshold, T. The proposition here is to determine this
threshold by:

T = γ × n, n = number of border lines. (7.2)
Where γ is a constant, γ = 0.25 was used for the results presented in next
chapter. The results of line detection for Test Image 2 are shown in Fig. 7.1

(a) Highlight (b) Shadow

Figure 7.1: Result of line detection for Test Image 2

7.2.3 Parallel lines detection
Using the Hough transform, it is straightforward to determine whether detected
lines are parallel by looking at the θ value.

θj = θi, i 6= j =⇒ Line i and j are parallel (7.3)

Due to noise, the equality should be replaced by approximate equality, ±5o

was used in the tests.

7.2.4 Right-angle corner detection
Similarly, detection of right-angled corners is straightforward, by again looking
at θ value for di�erent lines.

|θj − θi| = 90o =⇒ Line i and j forma right− angle corner (7.4)
The same inequality interval as above is used.
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7.3 Size
Object size is of great interest in classi�cation and identi�cation systems. Too
large or too small an object is unlikely to be a mine and can be ignored, or at
least given less priority in the mine countermeasure part of the system. Since the
exact size of many mines is known, an accurate size can give a good indication
of what type of mine it might be.

7.3.1 Height
The height of an object, h, is given by Eq. 7.5, see Section 3.3 for visualization
(Fig. 3.2) and derivation (Eq.3.1 and Eq. 3.2).

h =
ShadowLength×Altitude

ShadowRange
[m] (7.5)

where ShadowLength is the length of the shadow, Altitude is the height
of the sonar platform above the seabed at target range. ShadowRange is the
maximum swath distance between the sonar and the shadow. Because of the
erosion of shadows, see Section 3.3, the height can only be an approximation to
the true height.

7.3.2 Width
For an object parallel to the track of the vessel, the width of the object in the
along-track dimension is given by Eq. 7.6

w = lρ [m] (7.6)

where l is the along-track length of the highlight in pixels and ρ is the image
resolution in [ m

pixels ]. If the object is not parallel to the track, l will not be equal
to the length of the highlight region. To estimate the width of the object, by
�nding the largest elongation at any rotation, the shape is transformed using
the Hotelling/Kauren-Loeve transform [24] before calculating the width.

7.4 Shape
Many mines have shapes reminiscent of basic geometrical shapes like spheres,
cylinders, boxes and truncated cones. At some insoni�cation angles, objects
shaped like boxes and cylinders will cast rectangular shadows. A sphere lying
on the bottom will cast an elliptical shadow. For truncated cones the shadow will
look like a truncated triangle. For objects that are not rotationally symmetric,
for example boxes and cylinders lying on their side, the shadow shape depends
on the direction of insoni�cation. A shadow shape like the above and/or a
shape that is mirror-symmetric around some axis strongly indicates a man-made
object.
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7.4.1 Rectangularity
The rectangularity, R, of a region is given by comparing its area with a rectangle
of the same length and width [18].

R =
A

ab
(7.7)

where A is the area of the region, a is the maximum span of the region in any di-
rection and b is the span at right-angles to that direction. To make the measure
invariant under rotation the object is transformed using the Hotelling/Kauren-
Loeve Transform [24] before calculation.

7.5 Smooth surface
As discussed in Section 3.2, the highlight texture might be a feature that dis-
criminates man-made from natural objects. There exist many di�erent measures
which can be used to reveal texture di�erences; the ones used here were peak in-
tensity value, mean intensity and normalized standard deviation for all highlight
pixels
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Chapter 8

Results

8.1 Segmentation using a region growing approach
Fig. 8.1 shows the results of the region growing approach for Test Images 4
and 7, compared with the manual segmentation used to test the classi�cation
features.

Figure 8.1: Comparison between manual segmentation and computer segmen-
tation for Test Images 4 and 7. The left-hand images are manually segmented

It is worth noting the di�erence in the shadows for Test Image 7. In the
computer segmented version, the shadow has a straight line that is not present
in the manual segmented image. This arti�cial boundary line is due to the
second a priori criterion in the segmentation method. In Appendix A, the
result for all test images are shown together with the original images. The same
parameter set was used for all images, with good results except for Test Image
2, where di�erent parameters are needed.
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8.2 Segmentation using a Markov random �eld
approach

Fig. 8.2 shows the result of the MRF segmentation approach for Test Image
6. The result after initiation with the ICE algorithm is shown in Fig. 8.2(a),
Fig. 8.2(b) shows the result after 25 iterations and Fig. 8.2(c) shows the �nal
result. The result of the parameter estimation step can be seen in Fig. 8.3,
where 8.3(a) shows the convergence of the Markov parameters and 8.3(b) shows
the estimated probability density functions.

(a) After initation

(b) After 25 iterations

(c) Final result

Figure 8.2: Result for MRF segmentation for Test Image 6
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Figure 8.3: Result for parameter estimation

The results are promising, but not as good as the results for the conventional
sidescan images presented in the references.
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8.3 Classi�cation features
In order to evaluate the classi�cation features, the Test Images were manually
segmented. Table 8.3 lists the features describing the smoothness of object sur-
face. Intensities are given with a nominal scale factor. Some compensation for
attenuation with range is already applied in the image reconstruction algorithm,
so no further correction is applied.

As can be seen from the table, mean intensity looks the most useful as a
classi�cation feature, while standard deviation normalized by mean is promising
and might be used together with other features as an indicator for man-made
objects. These results indicate that peak intensity does not seem to be a helpful
classi�cation feature.

Table 8.3 shows the result for the shape features discussed in Chapter 7.
Test Image 1 has two highlight regions belonging to the same object, so two
values are given for the highlight-shape features. The object height given is the
maximum estimated height. The mines in Test Images 6 and 7 are box-shaped
with approximate size 1.0× 0.7× 0.7 [m].
As discussed in Chapter 7, object size is a useful feature, when it can be es-
timated accurately. As can be see for Test Images 6 and 7 object size is not
estimated su�ciently accurately to identify the mine type by itself, but might
be useful together with other features. Regarding the other shape features, rect-
angularity shows promise as an indicator for man-made objects. The line-based
features(longest line, parallel lines and corners) could also be useful, particularly
parallel lines. However there is a question whether they are su�ciently robust.
In [25] the same idea was used, but with a di�erent choice of parameters (thresh-
old and resolution). Those results showed that the line-based features were not
useful at all.
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Test Image Object Peak inten-
sity

Mean inten-
sity

Std.Deviation
Mean Range [m]

1 Anchor 6.22 1.69 0.72 38
2 Torpedo

mine
5.73 1.68 0.58 64

3 Rock 7.08 1.11 0.93 53
4 Rock 5.65 1.01 0.80 39
5 Rock 7.97 0.84 1.33 40
6 Mine 4.76 1.57 0.82 50
7 Mine 7.59 1.98 0.65 56

Table 8.1: Features describing smoothness of the object surface. The results are
for the test images shown in Appendix A after manual segmentation

Im. Object Corners Parallel Rectangularity Longest Highlight Obj.
lines lines line [m] size [m] height [m]

H. S. H. S. H. S. H. S.
1 Anchor 0 0 1 0 0.6493 0.5155 0.81 1.69 1.10 0.5

0 0 0.6664 1.00 1.01
2 Torpedo mine 0 0 1 1 0.7897 0.7166 1.44 6.10 2.96 1.1
3 Rock 0 0 0 0 0.7218 0.7243 1.00 2.06 1.30 0.5
4 Rock 0 0 0 0 0.7133 0.6841 1.06 2.44 1.84 0.8
5 Rock 0 0 1 0 0.7771 0.6420 0.75 1.31 1.13 0.2
6 Mine 0 0 0 0 0.8407 0.8395 1.06 4.63 0.92 0.9
7 Mine 0 0 0 1 0.8222 0.7819 0.88 4.94 1.23 0.8

Table 8.2: Features describing object shape. The results are for manually seg-
mented test images. Since Test Image 1 has two highlight regions, two values
are given. The mines in Test Images 6 and 7 are box-shaped with approximate
size 1.0× 0.7× 0.7[m]
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Chapter 9

Conclusions and future work

9.1 General
As a �rst study of a CAD/CAC system for the SAPPHIRES vehicle, the re-
sults are encouraging, but much more work is needed to achieve a functional
CAD/CAC system. Future work needs to be done in all three approaches dis-
cussed in this thesis. An important step is to build up a larger test set of
images for assessing the classi�cation features and �nding a more robust way of
choosing parameters. A su�ciently large test set will allow the application of
alternative classi�cation methods, for example neural nets [18]. This step would
be premature with the small amount of available data.

When the vehicle is fully developed, including autopositioning [10] and in-
terferometry [26], the image resolution can be expected to be improved, and the
methods discussed here might be even more useful.

9.2 Segmentation using a region growing approach
The results of the region growing approach indicate that the general method
might be useful. One big concern is the large number of parameters needed
to set the di�erent thresholds. For future development, it would be desirable
to estimate these parameters from the image itself, as in the MRF algorithm.
Another possibility would be to use additional statistical measures, for example
higher order statistics.

9.3 Segmentation using a Markov random �elds
approach

The results of the MRF segmentation here are not as good as for the conventional
sidescan images presented in the references but good enough to justify further
investigation. In many of the cited references, statistical snakes [20] were applied
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after the segmentation step to improve segmentation and to remove shadows
due to seabed structures. Another possibility might be to try some alternative
maximization method instead of ICM, as discussed in [13].

9.4 Classi�cation features
It is hard to draw any �rm conclusions of the value of the classi�cation features
considered from such a small test set. Some of the features discussed in the
thesis seem to be useful. For example the features describing object surface
might be used to discriminate man-made from natural objects and the shape
features can be used as indicators for man-made objects. Other interesting
features to evaluate in the future are symmetry as a continuous feature measure
discussed in [27], and higher order statistics discussed in [17].
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Appendix A

Test images

(a) Original image (b) Computer segmented image,using
same parameter set for all Test Images

Figure A.1: Test image 1. Anchor at range ≈ 38 m, altitude ≈ 9.6 m

(a) Original image (b) Computer segmented image,using
same parameter set for all Test Images

Figure A.2: Test image 2. Torpedo mine at range ≈ 64 m, altitude ≈ 16.9 m
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(a) Original image (b) Computer segmented image,using
same parameter set for all Test Images

Figure A.3: Test image 3. Rock at range ≈ 53 m, altitude ≈ 10.9 m

(a) Original image (b) Computer segmented image,using
same parameter set for all Test Images

Figure A.4: Test image 4. Rock at range ≈ 39 m, altitude ≈ 9.0 m

(a) Original image (b) Computer segmented image,using
same parameter set for all Test Images

Figure A.5: Test image 5. Rock at range ≈ 40 m, altitude ≈ 8.4 m

(a) Original image (b) Computer segmented image,using
same parameter set for all Test Images

Figure A.6: Test image 6. Mine at range ≈ 50 m, altitude ≈ 8.5 m
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(a) Original image (b) Computer segmented image,using
same parameter set for all Test Images

Figure A.7: Test image 7. Mine at range ≈ 56 m, altitude ≈ 8.5 m
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