

HMI Toolsuite for Android

Master of Science Thesis in the Programmes Networks and Distributed

Systems and Interaction Design

JAKOB STRÖM

JONATAN BROWN

Department of Applied Information Technology

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden, 2012

Report No. 2012:84

ISSN: 1651-4769

October 4, 2012 HMI tool suite for Android

Sammanfattning

Allt eftersom antalet datorer och prestandan p̊a dessa ökar i bilar, ökar ocks̊a kraven p̊a och
möjligheterna till att presentera relevant information p̊a ett attraktivt sätt för föraren och
passagerare. För att tillmötesg̊a dessa krav har Mecel tagit fram Populus - en produktsvit
för att designa, utveckla och driftsätta användargränssnitt (HMI - Human-Machine Interface)
för inbyggda system.

För att öka tillgängligheten p̊a Populus ska denna uppsatsen ta reda p̊a möjligheterna att köra
gränssnitt skapade med Populus p̊a en Android-plattform. P̊a s̊a sätt skulle det vara möjligt
att använda sig av resurser som b̊ade Android samt tredjepartsapplikationer utvecklade för
Android erbjuder och därigenom öppna Populus för en större marknad.

I metoden ing̊ar att undersöka möjligheten och sv̊arigheterna med att porta en C/C++-
applikation till Android, samt att designa ett interface som p̊a bästa sätt demonstrerar den
portade funktionaliteten.

Page 1 of 34

October 4, 2012 HMI tool suite for Android

Abstract

As the number of computers and their performance continues to increases in cars, so too do
the demands and possibilities to present information in an attractive and relevant way for
both drivers and passengers. To face these demands Mecel has developed Populus, a toolsuite
to design, develop and run HMIs (Human-Machine Interface) for embedded systems.

To increase the availability of Populus this master thesis will explore the possibility of running
user interfaces developed with Populus on an Android platform, using resources published by
both Android and third party applications developed for Android.

The method contains an examination of the possibilities and difficulties of porting a C/C++
application to Android, and designing an interface that presents the ported functionality as
well as possible.

Page 2 of 34

October 4, 2012 HMI tool suite for Android

Acknowledgements

We would like to thank our supervisor Fang Chen for steering us in the right direction as well
as helping us with the structure of this master thesis report.

We would also like to thank Mecel for providing us with a development and testing envi-
ronment and equipment in their office in Göteborg and their employees. Special thanks to
Anders Arnholm, who has been our technical supervisor on the company, as well as the rest
of the Populus-team.

Page 3 of 34

October 4, 2012 HMI tool suite for Android

Contents

1 Background 7

2 Introduction 8
2.1 Objectives . 8
2.2 Research Questions . 8
2.3 Limitations . 8
2.4 Glossary and Abbreviations . 9

3 Literature Studies 10
3.1 Populus Editor . 10
3.2 Populus Engine . 10
3.3 Eclipse IDE . 10
3.4 Android SDK/NDK . 11
3.5 Using NDK to Build an Android Application 11
3.6 JNI . 12
3.7 Native Activity . 12
3.8 CMake . 13
3.9 Shared libraries vs Static libraries . 13

4 Method 14
4.1 Development for Android . 14
4.2 Designing Demonstration . 14

5 Porting Process 15
5.1 Compiling Populus for Android . 15

5.1.1 Standard C++ Libraries . 16
5.2 Making Populus Run on Android . 17

5.2.1 Using JNI . 17
5.2.2 Using NativeActivity . 18
5.2.3 Conclusion . 19
5.2.4 Porting an OpenGL application . 19

5.3 Making Populus talk to Android . 20
5.3.1 Android FU . 20

5.4 Results of the Porting . 21

6 Demonstration 23
6.1 Requirements . 23
6.2 Design Guidelines . 23
6.3 Designing a demonstrational interface . 25
6.4 Testing the interface . 26

6.4.1 Method . 27
6.5 Test Results . 28
6.6 Second Version . 29

Page 4 of 34

October 4, 2012 HMI tool suite for Android

7 Discussion 30
7.1 First Objective - Porting . 30
7.2 Second Objective - Integration . 30
7.3 Third Objective - Demonstration . 31
7.4 Further Work . 31

8 Conclusion 31

9 Bibliography 33

Page 5 of 34

October 4, 2012 HMI tool suite for Android

List of Figures

1 The compilation and building process . 16
2 JNI . 18
3 NativeActivity . 19
4 The Android FU . 21
5 Sketch of the interface . 26
6 The first version of the interface . 27

Page 6 of 34

October 4, 2012 HMI tool suite for Android

1 Background

The Populus[1] suite is a set of tools developed by Mecel to develop user interfaces, or HMIs
(Human Machine Interface), for embedded systems, e.g. the dash board in cars. The suite
consists of an editor to create and verify the HMIs and an engine to run them on the target
environment. Android is a major platform in many areas of technology and is becoming
increasingly used in the automotive industry for e.g. infotainment systems.

Since Android as a system is emerging as a popular choice of platform in the automotive in-
dustry it would be very rewarding to make the Populus Engine run on Android. The Populus
editor will not need porting since all HMI design can still be done on PC and exported to the
Android platform.

This would also enable running Populus on tablet devices for demonstration purposes. An-
droid also has a large third party application market[2] where a wide range of informative
applications can be downloaded. It is highly desirable to find a way to integrate these ap-
plications’ way of displaying information with Populus displaying of HMIs resulting in an
improved user experience.

Page 7 of 34

October 4, 2012 HMI tool suite for Android

2 Introduction

2.1 Objectives

The first objective of this master thesis is to develop a reliable method to port large existing
software to Android, running as a native application (an application coded specifically to run
on a target platform). The method is intended to aid developers that seek to extend the
availability of their software by making it compatible with the Android operating system.
This will include adopting the software to work satisfactory, both with respect to usability as
well as functionality, in the Android environment. It is preferred to preserve as much of the
original code as possible to avoid having to maintain several versions of the software.

The second objective will explore how to integrate Populus with Android. The first goal
is to connect Populus touch and window-handling to the corresponding events provided by
Android. The second goal is to allow the HMI designers using Populus Editor to be able to
design HMIs intended for Android without consideration for platform specifics.

The results from completing the first and second objective will result in an Android app which
will be demonstrated in the third objective.The third objective is to demonstrate the results
by running a prototype in a target environment simulation consisting of the Populus Engine
on an Android tablet device, viewing an infotainment system connected to a car game.

2.2 Research Questions

The objectives, being primarily of practical nature, are the method for attempting to answer
the following research questions:

Is it possible to port any large C++ application to Android?
Answering this question will help determine what makes an application eligible for porting.

How is it best done?
The answering of this question will result in a set of guidelines aimed at aiding in both porting
and integrating software.

How to best demonstrate the ported functionality?
This question will explore differences in user interface development when primarily intended
for demonstrational use, as opposed to user interfaces for everyday use.

2.3 Limitations

The ultimate future goal of the project is to have Android running in a car, with all the
necessary software. This means that the requirements on the ported software will also apply
to the operating system itself. To be able to meet these requirements, it is very likely that
Android will have to be profoundly modified by reducing kernel and package features to speed
up the boot time. This is potentially a very complicated task and it will not be addressed by
this master thesis.

Page 8 of 34

October 4, 2012 HMI tool suite for Android

Furthermore, functionality not strictly necessary for running the final demonstration will be
less prioritized.

2.4 Glossary and Abbreviations

• API - Application Programming Interface

• CMake - A cross-platform open-source build system available for Linux and Windows.

• EGL - An embedded systems graphics library, used for connecting APIs such as OpenGL
ES and OpenVG to the underlying native platform windowing system.

• Functional Unit (FU) - Small program providing data for the HMI. Can be run in a
distributed way or on the same hardware as the Engine. The FU communicates with
the Engine using ODI over TCP/IP.

• HMI - Human-Machine Interface

• IDE - Integrated Development Environment

• IL - Interface Layer

• JNI - Java Native Interface. A interface that makes it possible to use Java code together
with native code.

• NDK - Native Development Kit

• ODI - Protocol used for communication between the Engine and its Functional Units.

• SDK - Software Development Kit

• VM - Virtual Machine

Page 9 of 34

October 4, 2012 HMI tool suite for Android

3 Literature Studies

To create a knowledge foundation to be able to port and integrate Populus, literature studies
were conducted on topics related to our task, as well as on documentation on the Populus
suit provided by Mecel and Android provided by Google.

The attempts made at finding previous related work from which to gain basic knowledge of
the field did not yield satisfying results. As it turned out, the research done on this subject
is scarce at best. This resulted in most of the information being gathered from official speci-
fications and various Internet forums dedicated to the subject.

The result of these studies is a base of knowledge allowing to explore and find the best way
to port a C/C++ application to Android.

3.1 Populus Editor

The Populus Editor is used to create HMIs - the interfaces that the Populus Engine will
display. To create the HMIs no code has to be written, instead the design and logic are
defined in an XML database structure which simplifies verification. When the HMI is verified
the database is converted into a binary file and downloaded to the target system on which
the engine resides.

3.2 Populus Engine

The Populus Engine is the part of the Populus tool suite that handles the displaying of HMIs
and their connection to Functional Units (FU). FUs are programs that handle the non inter-
face related program logic as well as user input.

All communication between an FU and the engine is done using a protocol called “Open
Display Interface” or simply ODI. There are four types of messages that can be used to
transfer data between an FU and an engine.

• Events An Event is sent from an FU to the Engine, and contains the ID of a certain
event that has occurred, for example a popup that should be shown. The Engine looks
up the ID in the database to be able to carry out the appropriate action.

• Actions Sent to an FU from the Engine, and contain control input to the FU. For
example, user input such as ’Next track’ is sent as an Action-message.

• Indications Contain True or False, and are used to notify the Engine of state changes
in the FU.

• Dynamic Data A richer form of message, able to carry special information such as a
certain time, number or text.

3.3 Eclipse IDE

Eclipse is an open source IDE, with support for a wide range of programming languages and
frameworks. It is the recommended tool for developing Android applications as it has good

Page 10 of 34

October 4, 2012 HMI tool suite for Android

integration with the Android SDK. Eclipse can be used for developing everything that comes
after building the native code - bundling code and libraries to an installation package (apk)
and launching the application in an emulator or physical device for testing.

3.4 Android SDK/NDK

The Android SDK is a framework that allows developing applications for Android using a
Java API. The application runs through Android’s own Virtual Machine - Dalvik[7]. This
is a safe way of developing - memory management is automated, debugging is easy and the
productivity of the programmer is high. The SDK allows the use of a wide range of system
resources, and this tool is enough for most situations. However, in some cases there are ben-
efits in being able to write unsafe, native code.

Android NDK was developed to allow developers to program their applications against a
C/C++ API. It enables the developer to write performance-critical code as C/C++ mod-
ules. This thesis was written during revisions 7 through 7c of the NDK.

When coding C and C++ code on Android this is referred to as native code. This can be
slightly confusing as Java applications for Android can also be called native applications. But
for the remainder of this report, native code means C/C++ code.

The NDK comes with a toolchain (a set of tools used in conjunction to create a final re-
sult), which in this thesis will be used together with CMake[10]. There are disadvantages
to using the NDK as opposed to the SDK only. Developing and especially debugging the
application will always be more complex. Faults in the native code can cause the Virtual
Machine(VM) to behave unexpectedly, especially if the bugs are a result of conflicting use of
system resources[23].

3.5 Using NDK to Build an Android Application

Android NDK is intended to work in conjunction with the SDK. In fact, the main process of
building and deploying the application is almost the same, with the exception of a few steps:

• Creating a ’jni’-folder in the project directory which contains the native source-files that
should be included with the application.

• Specifying what libraries should be compiled from what source files in a Makefile-like
file called Android.mk.

• Invoking ndk-build, a script that comes with the NDK-package. This will be run on
the directory of the Eclipse-project. It determines what version of the Android API is
used and selects the appropriate headers and toolchain bundled with the NDK-package
to use when compiling the source-files.

After these steps, the resulting libraries end up in a ’lib’ folder in the project root, and is
automatically included when building the apk-package.

Page 11 of 34

October 4, 2012 HMI tool suite for Android

3.6 JNI

The Android NDK makes use of the Java Native Interface (JNI)[8]. Using JNI, the devel-
oper can declare native functions in Java, and implement these in native code. The libraries
containing these functions can then be loaded in runtime. The JNI provides two means of
communication between the VM and the native code. The first one is downcalls, where
C/C++ functions can be called from Java code. The second is upcalls, with which the native
code can make use of Java. Whenever a native function is called, a Java Native Interface
environment pointer (JNIEnv*) is passed along.

Declaring a native method in Java can look like this:

public native void nativeString();

The implemented function in native code would then look like this:

jstring Java_the_package_name_ClassName_nativeString(JNIEnv* env, jobject o)

If the method would have an argument on the Java side, that argument would be the third
argument in native code. The first argument env is a pointer to the VM environment. Using
this, the native code can ’upcall’ different methods in the VM to be able to work with Java
objects.

By using JNI, the entry point of the application will be a Java Activity. An Activity can
be loosely translated into a part of a program that allows user interaction. Whenever a user
wants to use a specific part of an application, Android will call the corresponding Activity.
This means that it is not uncommon for a simple single purpose application to have only one
Activity.

3.7 Native Activity

As of Android NDK r5, it is possible to write an Activity completely in native code. This
effectively eliminates the need for Java as an entry point for the application. The application
can and should still be developed as an Eclipse project, and the building procedure is done as
normal. Changes need to be done in the manifest-file to specify that the entry point activity
is native instead of a Java-class.

The application will still be run in Dalvik - the only thing that has changed is that the ini-
tialization of the application has been moved across JNI to the native side. JNI can still be
used to access Java objects if needed. Creating a native activity can be done in two ways:

Using native activity.h. This header-file defines an interface that must be implemented to
create a native activity. It contains several callback-methods that are called from the VM on
events such as input, low memory, and other information from the system. These callback
methods must be implemented, and should be non-blocking to prevent the application for
being shut down by Android due to being unresponsive.

Using android native app glue.h. This a static helper library that implements native activity.h.
When using this library rather than native activity.h directly, a thread separate from the main
program is created that takes care of all callbacks.

Page 12 of 34

October 4, 2012 HMI tool suite for Android

3.8 CMake

CMake is a cross-platform open-source build system available for Linux and Windows. It
is used to manage and configure the building process of software using compiler and target
environment independent configuration files. Depending on the target platform, CMake can
generate e.g. Unix makefiles[9] or Visual Studio-solutions. In this thesis, Populus is built
using CMake, and as one of the goals is to make use of the original source code to as great
extent as possible, the porting-method will include configuring CMake to build for Android.

CMake makes use of one or more configuration files called CMakeLists.txt, written in a sim-
ple language specific to CMake. In this way, it is possible to specify platform-independent
configuration options for the building of the application. The execution of CMake begins with
reading the top-directory level, and recursively traversing subdirectories.

As an optional input to CMake, it is possible to specify a toolchain file, also written in
CMake notation. In this way, it is possible to factor out platform-specific configuration from
the CMakeLists.txt files. In this case, it will contain references to the specific tools required
to compile and link native libraries from Populus, to make it able to run on Android.

3.9 Shared libraries vs Static libraries

In Linux there are two different types of libraries, shared libraries (.so) and static libraries
(.a). Static libraries are statically linked to the application and the library code has to be
included into the executable. If several programs are using the same libraries this requires
unnecessary hard drive space. It also means that whenever a static library is updated all
programs relying on it need to be recompile. The linker is however smart enough to only
include the parts of the static library that are actually used into the executable, this way
avoiding including a lot of unnecessary code.

When a program uses a shared library, all the executable contains is a reference to the shared
library. Then whenever the program is run, the library is loaded into memory along with the
program. The library is then referenced directly at run time. This allows several programs
to use the same library file, but also allows libraries to be updated without recompiling the
programs using them. Shared libraries do however have some overhead during runtime due
to the referencing that static libraries avoid.

As Android only accepts shared libraries, any static libraries need to be linked together to a
shared before being used in the application.

Page 13 of 34

October 4, 2012 HMI tool suite for Android

4 Method

This section will cover which methods will be used during the thesis project.

4.1 Development for Android

The Populus Engine is ported to Android using the Native Development Kit (NDK)[3] instead
of the easier-to-use Android SDK[4]. There are two reasons for this. The primary reason is
that using the NDK allows writing the applications in C++[5] and C instead of solely Java[6].
Since Populus is originally written in C++, this minimizes the amount of code that needs to
be rewritten. The secondary purpose is that the NDK makes increased functionality available
to the developer. Since the goal was to make Populus as integrated as possible with Android,
the interface made available by the SDK is not enough. The application is supported by
Android API 14, for Android 4.0.

The first step is the actual cross-compiling where the source code of Populus is compiled using
the stand-alone toolchain provided with Android NDK. This is done using CMake.

The second step is making the compiled code actually run on Android. This involves imple-
menting the required callback methods provided by Android and connecting these to Populus.

The last step is creating an FU which is the interface for communication between Android
and the Engine. This is done by using a pre-existing FU SDK provided by Mecel.

4.2 Designing Demonstration

The final part of the thesis is to demonstrate the implemented functionality. An interface is
developed in two stages with a user test in between. The interface needs to be designed to
in an as good way as possible show all the implemented functionality. Special considerations
need to be taken due to the fact that the interface is purely for demonstration and will only
be used for a short period of time.

Page 14 of 34

October 4, 2012 HMI tool suite for Android

5 Porting Process

The porting process means making the application run on Android. It can be further divided
into two steps. The first is compiling all the Populus code into libraries for the Android
platform, the second is to make this code actually run in Android.

5.1 Compiling Populus for Android

The end result from the compilation step is a shared library (.so file) to be loaded onto the
device. It cannot be a static library since it needs to be loaded at runtime. Since Populus
consists of a number of internal libraries the easiest way to get this working in this project
was to build these libraries as static libraries. Then, these were built into one single shared
library which was finally used as the one and only native library in the application.

Using this method there would only be one shared library or executable referencing the in-
ternal libraries, this means the most efficient way to build them is as static libraries.

Normally when building libraries using the Android NDK, the easiest way to go is to use
the ndk-build script included with the NDK. It allows specifying a number of options and
then passes these to the regular GNU Make that builds the program using the NDK build
scripts. However, Populus is already being built for various systems and architectures. In
these cases CMake is used to be able to use one platform-independent language for specifying
all build options. To be able to build Populus for Android, there are three steps (See figure 1):

Step one is to use the existing CMake-system with a specified toolchain. When running
CMake on a project, it is possible to specify a toolchain-file that contains all platform de-
pendent information needed to cross-compile. The toolchain file selects compilers and linkers
among the pre-built executables that comes with the NDK-package. The toolchain file can
also contain paths to needed header files and libraries, defined pre-processing variables, and
other configurations. This will build the Populus source into different static libraries which
can be used by ndk-build in the next step.

A toolchain file for CMake is small in relation to the entire CMake-system of Populus, and it
will not have to be modified unless there is a new version of the NDK (and maybe not even
then).

Step two is to use ndk-build, a program provided with the NDK that uses the Android
Makefile language. Using a specific make file called Android.mk, the libraries and source files
that should be included in the build are specified. This ensures that the final shared library
will be compiled in a correct manner.

Step three aims at using the Android Manifest to package libraries and Java-source code
into an installer that is used to install the app on the device.
When compiling code to different platforms a common problem is the fact that some things
are implemented differently on different platforms, even though both follow the same basic
standard. An example of this is fpos t, an object used to uniquely specify a position within
a file. It is implementation dependent and so needs to be handled differently on different

Page 15 of 34

October 4, 2012 HMI tool suite for Android

Figure 1: CMake is used to create static libraries. The toolchain-file is the only input that
needs to be specific for Android. The static libraries are then input to the next step, where a
single shared library is created, which in turn is packaged into an Android installer (.apk).

platforms. In Android it is implemented as an int that simply holds the position value, in
other cases it is implemented as a struct with a member variable pos containing the position.
Since the code in some places uses a function that accesses the pos variable of fpos t that
function was redefined to access the value of fpos t directly instead. This was done in the
preprocessing stage and only when compiling for Android.

Another example of this is the way shared memory is handled. Shared memory is used in
Populus but only when external programs want to draw things into Populus. Due to this
feature not being necessary for the basic functionality of Populus it was disabled entirely
when building for Android.

5.1.1 Standard C++ Libraries

The standard C++ library provided with the Android platform is is a minimal library
with limited capabilities. It does not provide exceptions, Run Time Type Information (RTTI)
or standard C++ library support. Luckily a number or other libraries are included in the
NDK and can be used instead. These are Gabi++, STLport and gnustl.

Gabi++ is a recent addition to the NDK containing the same headers as the standard sys-
tem library with the addition of RTTI support.

STLport is an Android version of the C++ library with the same name. It contains all
standard C++ library headers and RTTI but lacks exceptions support.

GNU STL is the standard GNU C++ library. It has RTTI, exceptions and also complete
C++ standard library support.

Even though the NDK toolchain does support exceptions they are turned off by default. This
due to backwards compatibility issues. If exceptions are needed they can be turned on with

Page 16 of 34

October 4, 2012 HMI tool suite for Android

the ”-fexceptions” flag to the compiler. This however will only work when using the GNU
STL library since it is the only one that supports exceptions.

Populus for Android will not work using the standard library since it uses both exceptions and
wide characters which is something the standard library does not support. The GNU STL
library therefore seemed like the correct library to use and the first attempts at compiling
Populus used this library.

It turned out this did not work. Even though GNU STL supposedly has full standard library
support it could not compile any code depending on wide characters, due to wide characters
not being supported by Android. However, using STLport the code is able to compile despite
the presence of wide character types. This is because it contains stubs which make it possible
to create wchar types and store them, but not use them in any way. This means that the
application will fail at runtime and workarounds have to be made whenever wide characters
are used.

Since exceptions in Populus are only used for testing, no unit tests were compiled from this
point and STLport was used instead. This allowed all of the libraries to compile correctly
and then be combined into the wanted result, a shared library.

5.2 Making Populus Run on Android

There are two ways of turning Populus into an Android application, using JNI with Java as
an entry point - or using NativeActivity to avoid Java all together.

5.2.1 Using JNI

One of the largest disadvantages with using native code in Android is the increased difficulty
in debugging. The layer that JNI is between the Java code and the native code also serves as
a rather effective barrier for any debugging. For example, when debugging through Eclipse,
if there is a problem in the native code, the closest point in the code that will be shown is
the declaration of the native method - the debugger does not cross over to step through the
native code itself. For this reason, especially if the application to be ported is very large, it is
important to have means of debugging that does not go through the JNI. This can be done
in two ways:

• Having tests written in native code, that can run without the help of the VM.

• Having executables in native code for the program, so that it is possible to run the
application completely in C/C++. This will not be possible on Android as it requires
JNI to function (and can therefore not be used to get rid of bugs related to JNI).

In this thesis, both of these cases are present. Since Populus was originally a standalone
application written in C++, it can run by itself without the use of a VM. Because of this, it
is desired to keep the original code as intact as possible, to maintain the ability to debug and
test the program this way.

Creating the Initialization Layer

Page 17 of 34

October 4, 2012 HMI tool suite for Android

Figure 2: Visual discription of how JNI would be used for the IL.

The Interface Layer (IL) is an addition to the ported application that serves as an entry point
for Android. When using the JNI approach (see figure 2), the IL is a thin start-up class
written in Java. Its purpose is to set up necessary resources needed to start Populus as an
application in Android. The class will be a subclass of Activity, just like any normal Android
application, and the goal is to make it as transparent as possible. The best case would be
to simply load the re-compiled library, declare a native main method, and call this method
when the Activity loads. After this point, the application will load and run completely using
its original native code, except for when handling events from Android, like touch input etc.

5.2.2 Using NativeActivity

When using NativeActivity[11] the largest difference will be in the IL - which will now be
fully in native code (see figure 3). There are several advantages with this approach:

• No Java code is required, which simplifies maintenance.

• Every object that is initialized with an application (listeners, windows etc) will be avail-
able natively, and no explicit conversions of objects have to be done between C/C++
and Java.

• Without limitations from JNI, the developer has increased ability to integrate Android-
specific functionality in the native code.

The major disadvantage is that the code becomes more complex. The developer will have
to take care of many things that are implicit or very simple in Java. An example of this
are the callbacks from Android. When developing in Java, the developer rarely has to take
threading into account as this is managed automatically, and only has to actually implement
the callback methods. When developing in C/C++ however, one must make sure not to block
the callback thread or the application will be forced to exit by Android.

Page 18 of 34

October 4, 2012 HMI tool suite for Android

Figure 3: Visual discription of how NativeActivity would be used for the IL.

5.2.3 Conclusion

In this thesis, both approaches were tried and NativeActivity was found to be the better
choice for one primary reason.

When using NativeActivity, all functionality for allocating Android resources to the applica-
tion is made available natively. This includes touch input, display changes and many more
callbacks from Android. By having access to these objects and signals natively, integrating
them with the application was tremendously simplified. For example, when the application
is started or resumed, a new Window-object is handed to the Activity. The native applica-
tion uses this window and EGL to create an OpenGL-context and drawing surface to enable
the rest of the Engine to draw on it. Substituting this initialization for Java to create such
a context introduced many architectural problems that seemed impossible to solve without
rewriting a large portion of the Engine.

In addition, JNI is more suited for applications written majorly in Java with a few methods
written natively to enhance performance. [22][14] Porting existing applications in C/C++
using JNI is easiest if the application was written knowing it would be ported to Android,
thus being able to avoid the architectural problems mentioned earlier.

Although there is some overhead involved when making JNI calls, this overhead is so small
that it had no practical effect on the decision as there would only be very few calls back and
forth between C/C++ and Java during initialization. [14]

5.2.4 Porting an OpenGL application

When developing an OpenGL[12] application for Android there are two APIs to choose from.
OpenGL ES 1.1 or OpenGL ES 2[13]. Populus has support for drawing both via OpenGL

Page 19 of 34

October 4, 2012 HMI tool suite for Android

ES 1.1 and 2, however the support for 1.1 is not as up to date as the support for the newer
OpenGL ES 2. OpenGL ES 2 was therefore the choice for graphics API going forward in the
porting process. OpenGL ES 2 does however have the limitation that it does not work on the
Android Emulator and must therefore be tested on a physical device. This is however a good
idea anyway since even when using OpenGL ES 1.1 the emulator support of OpenGL is not
optimal.

When using the JNI approach with a Java layer above the C/C++ there are two classes in
the Android framework that are used, GLSurfaceView and GLSurfaceView.Renderer. The
renderer has a method onDrawFrame() that is repeatedly called when the screen needs re-
drawing. This is done automatically by the system and this is where the actual drawing code
should go. Either by doing it directly in Java or via a call to a native method and do the
drawing in C/C++ as would be the case when porting an existing C/C++ application.

It is however quite possible that the application being ported already has its own update and
draw loop, which would create conflicts and some code restructuring would be needed. This
is where the benefits of an entirely native solution becomes the most apparent. Doing it this
way allows processing input and draw commands on each iteration of the existing render-loop,
avoiding any large structural changes in the code.

5.3 Making Populus talk to Android

Android uses Intents as its way for different applications to communicate with each other and
the operating system. For example to open the contacts of the phone an Intent is brodcasted
that tells the operating system that it should run the application currently bound to that
intent. Thus, to be able to further integrate Populus with Android, a specialized FU for
Android has to be developed.

5.3.1 Android FU

The Android FU functions as a kind of middleware between Populus and Android allowing
Populus to access Android resources by translating information between Populus and Android
(see figure 4). An example of this is allowing an Android application to be opened by sending
a Populus action to the FU, which in turn translates it into an Android intent. In addition
to allowing Android applications to be launched from Populus, the FU can make available
all information that Android publishes (such as time, location or accelerometer data), and
translate it into a “Dynamic Data” message that Populus can make use of. This requires the
FU to have permissions to access those resources.

The FU is run as an Android service, meaning it is basically an activity but without user
interaction or a window (or in more general terms, simply a background process).

As previously mentioned the communication between the Populus Engine and FUs are done
with ODI, and there is no difference here. When the FU starts, it waits until the engine starts
up and then establishes a TCP/IP connection with it and then communicates through ODI.

Page 20 of 34

October 4, 2012 HMI tool suite for Android

Figure 4: When designing an HMI in the Editor, one works against a Functional Unit Inter-
face Layer (FIL) that specifies the functions and data that will be available through the FU.
These can be used to generate Java-stubs that when implemented and wrapped in an Android
Service makes up for a FU able to run on Android, and communicate with the Engine.

The FU was built using a a Java FU SDK developed by Mecel. This generates a number of
Java files, amongst them an interface with methods corresponding to the different functions
the FU should provide. These methods were then implemented to be able to provide the link
between Android and Populus.

5.4 Results of the Porting

The porting process was successful and a resulted in Populus being runnable as an Android
application. The following is a summary of the changes and additions that were made:

Wide Characters (wchar)

Since the wchar functionality in the standard libraries for Android are simply stubs and not
actually functionally supported, the way Populus converted from and to wchars needed to
be redefined in every place this was done. This was accomplished using the preprocessor to
redefine a few lines of code to do the conversion using a different function.

Input and Callback Handling

Taking care of callbacks from Android required an addition to the main loop, that linked the
signals from Android to appropriate actions within Populus.

Entry Point

To make Populus become a NativeActivity, some additions need to be made to turn the
main()-function into the Activity’s entry point.

Page 21 of 34

October 4, 2012 HMI tool suite for Android

Native Window

The OpenGL-initialization (and re-initialization) had to be adjusted so that it would use the
window object provided by Android for the Activity to draw on.

Summary

Table 1: Code Adjustments and Additions

Lines of Code
wchar 200

Input and Callback 55
Entry Point 15

Native Window 40
Miscellaneous 50

Total 360

There are additional files for building the shared library (Android make-files and manifest)
that are separate from Populus and should need little maintenance. The total number of lines
of code in Populus is 186000 (excluding header-files) of which 0.19% was changed to make
Populus run on Android (see table 1). Note: The largest of these changes involved wchar
workarounds, which is naturally only a problem if the application to be ported uses wchar.

Page 22 of 34

October 4, 2012 HMI tool suite for Android

6 Demonstration

The final part of this thesis concerns designing the best way to display the possibilities of
running Populus on an Android platform.

6.1 Requirements

Together with Mecel a number of features were decided upon as being the most interesting
to show during a demonstration. These were: Launching third party applications, time, lo-
cation, compass information, information about next calendar event and some car related
information provided by a separate FU. Other than that these features needed to be present,
there were no restrictions on how the interface needed to look or behave. (Other than the
restriction that it needed to be possible to create in the Populus Editor).

In addition to this, the demo should run well on the tablet provided (An ASUS Transformer
TF101).

6.2 Design Guidelines

Since the demonstration application was to be run on a mobile device, following design guide-
lines for creating mobile interfaces seemed like a good starting point. However, since most
design guidelines are pertaining only to applications meant for actual practical usage, some
might not be entirely applicable to the specific situation at hand. This section will outline
a number of common design guidelines (both general and mobile specific) and finally discuss
which of these might be more or less applicable for designing a purely demonstrational appli-
cation.

Avoid excessive scrolling

One of the largest hurdles when designing for a mobile device is the lack of screen real estate.
This leads to a lot of scrolling when presenting a large amount of content on the same screen.
There is a high likelihood this will cause the user to “get lost” on the page and not remember
where that interesting piece of information was located after looking at the entire page. [15]

The importance of Colors

Colors are a great tool to convey the intention or meaning of an interface item. It is useful
for establishing relations between different parts of the interface so the user immediately can
connect a certain action to its result. Colors should however only be used as a secondary
cue, the interpretation of its meaning can differ between context and people. [16] It is also
very important to follow color coding conventions, although these may vary culturally, there
are a few colors that have the same meaning globally. These are primarily red, yellow and
green. [17] To avoid putting too much emphasis on colors to convey information, the best way
to design an interface is to do it monochromatically, and then later add colors to emphasis
certain parts of the UI. [16][17]

Page 23 of 34

October 4, 2012 HMI tool suite for Android

Design Consistency

It is extremely important to maintain consistency when designing interfaces. This allows
users to create a mental model and predict what will happen when taking certain actions.
A good example of this is colors. Colors need to be used consistently throughout the entire
application or the user might misinterpret the meaning of a message or UI element. [18]
Care also needs to be taken to make sure that similar buttons are placed in similar locations
throughout the application.

Reduce Latency

This guideline concerns avoiding unnecessarily long responses to user input. If the response
to an action can possibly be instant, prolonged visual acknowledgement should be avoided.
[16] An example of doing this wrong is drop down menus or popups that take too long to
display.

Match with the real world

Most interfaces have some connection with real world information, this connection should be
used since it means the user can have some idea what effect different actions can have without
having used the interface previously. This is probably most relevant when designing icons
that should immediately let the users know what it is for. In for example Microsoft Word
the save icon is a floppy disk to represent the fact that documents were often saved on floppy
disks. (It is however a bit interesting why they still have a floppy disk as their save icon when
most younger users probably haven’t ever seen one in reality, but that is a discussion for a
different paper)

Order visibility by importance

One of Constantine and Lockwoods [19] UI design principles is the visibility principle, it states
that

“Your design should keep all needed options and materials for a given task visible without dis-
tracting the user with extraneous or redundant information. Good designs don’t overwhelm
users with too many alternatives or confuse them with unneeded information.”

What can be taken from that is that the currently most important interface options should
be very easily available and less important options should be secondary, or somehow hidden
altogether. It also dictates that the most frequently used options should be the most easily
available.

Appropriate level of response

All meaningful actions in an interface should have some kind of feedback to let the user know
they interacted with the application somehow. This feedback should be on level with the
frequency of the action. (20) Keeping frequent feedback to a low level, such as a discrete
sound, will prevent the user from getting annoyed by its frequent repetition. A good example

Page 24 of 34

October 4, 2012 HMI tool suite for Android

of this is the click sound when using the scrollwheel from old iPods.

Visual Appeal

This guideline states that the visual appeal of UI elements or the UI as a whole is important
to the apparent usability of a UI. Interface elements should be inviting and make the user
feel a desire to use them. A study by Phillips and Chaparro [20] suggests that visual appeal
affects the users opinion on an interfaces usability to a large degree. A bland and boring
interface will feel less usable than a aesthetically pleasing one.

6.3 Designing a demonstrational interface

The above mentioned design guidelines are guidelines formulated while having the design of
“real world interfaces” in mind rather than the kind of demonstrational interface developed
during this thesis. This does not mean that these guidelines do not apply, most of the theory
should still be sound. There are however a few differences that need to be considered in the
design of a demonstrational interface compared to a regular application UI.

The first of these is the fact that users will never use the interface for a prolonged period of
time, they will use it for a short duration during a demonstration or at a conference just to
quickly get a grasp of what it is about and what possibilities it has. This primarily impacts
three of the mentioned design guidelines, Reduce Latency, Visual Appeal and Appropriate
Level of Response.

Reducing Latency is not at all as important when designing an application that will never be
used during regular work. The users simply won’t have time to get tired of slow animations
or transitions when they are only using the application for a short time, this is much more of
an issue when you have to sit through the same animation time and time again during day
to day work.

Visual Appeal becomes even more important when the user only has a very limited time to
use the interface. The limited time means that the first impression will be the only thing that
ever counts and should therefore be highly prioritized.

Appropriate Level of Response as a guideline makes sure the user does not get annoyed by the
application feedback. Much like reducing latency this will mostly be a problem when using
an application for a prolonged amount of time. The short time should allow some more lee-
way when giving feedback to the user, allowing more bombastic feedback for rather common
actions.

Secondly, the demonstrational interface exists only to showcase a number of functions and
does not necessarily have to be practically usable.

This consideration makes the Match with Reality guideline quite important. The user needs
to understand what is being demonstrated since the demonstration can be run in an envi-
ronment very different from where it would be practically used. The demonstration in this
thesis is an application that is meant to be run in the infotainment system in a car, and it’s

Page 25 of 34

October 4, 2012 HMI tool suite for Android

important for the interface to convey this clearly.

The Order Visibility by Importance guideline is also affected by this. It’s very likely the case
that the most emphasis should not be put on the most commonly used interface elements,
but rather on the ones you care the most about showing off.

With all this in mind an initial version of the interface was developed (see figure 5). The
goal of the interface was to in an as good way as possible show off the features previously
mentioned. A number of sketches were done and presented at a meeting. Where one was
decided upon as the one to go forward with.

Figure 5: The first sketch of the interface that was chosen.

6.4 Testing the interface

To ensure that the first version of the interface (see figure 6) really demonstrated the intended
functionality, and to find ways to improve it a test was run. The test was designed to con-
firm that the interface really presented the functionality, but also that the users understood
and reflected on the presented possibilities. And failing this, hopefully some conclusions that
could help us improve upon it in a second version.

The intended subjects for the test was someone with at least some knowledge of Populus, how
it works and what limitations it has. At least basic knowledge of what Android is was also re-
quired. This should reflect the intended audience of the final demonstration in a realistic way.

Page 26 of 34

October 4, 2012 HMI tool suite for Android

Figure 6: This image depicts the first version of the interface. There is a large clock in the
middle displaying time and date. On the left side of it the next coming calendar event is
displayed from the user’s calendar and on the left the user’s current location is shown. There
are also bars supposed to show the speed and RPM if used in an automotive environment. At
the very bottom of the interface are two buttons, the left one brings up the Android settings
menu and the right one a menu from which to launch other applications.

6.4.1 Method

The test was carried out by letting the subjects explore the interface for two minutes, knowing
they would afterwards answer a number of questions about the available functionality. The
test subjects were five people who had some basic knowledge of Populus and Android. The
test was composed of the following questions and reasons for their inclusion:

1. Is it possible to launch a third-party Android application? (If yes, how? If no, why?)
Has the test subject understood that it is possible?

2. Is it possible to change the brightness of the interface? (If yes, how? If no, why?) Has
the test subject understood that it is the Android settings that are available through
the interface, and that changes in the settings may or may not affect the interface?

3. Where does the location data come from? Has the test subject understood that infor-
mation existing in or collected by Android can be made available in Populus?

Page 27 of 34

October 4, 2012 HMI tool suite for Android

4. Is it possible to change the information for the next calendar event? (If yes, how? If no,
why?) Has the test subject understood that by using third party apps, one can affect
information shown in the interface?

5. Is it possible to change the background of the interface? (If yes, how? If no, why?) Has
the test subject understood that it is the Android settings that are available through
the interface, and that changes in the settings may or may not affect the interface?

Table 2: Test Results

Q1 Q2 Q3 Q4 Q5

Don’t know No Android GPS Yes Yes
Yes Yes Android GPS No Yes
Yes Yes Android GPS Yes Yes
Yes Yes Google Maps Yes Don’t know
Yes Yes Android GPS Yes No

6.5 Test Results

The test clearly showed that the application launching aspect of the interface was well pre-
sented (see table 2). It was also clear that the Android settings were accessible through the
interface as all but one subject came to the conclusion that brightness could be changed.
There was however some confusion regarding whether it was the settings for Populus or An-
droid since only one subject figured out that the background could not be changed. This is
not necessarily a problem as Populus should be tightly knit with Android. The question was
included to examine whether the users would make this distinction or not. The conclusion
here then is that the settings functionality is integrated in a good enough way.

Another problem was that the location and event data was presented in an unclear way. It
was not even noticed by some of the subjects, but rather glanced over as part of the back-
ground. Also, the way this data is presented is too subtle for demonstration, as this data has
no personal connection. Had the user been the one to input this data it would be obvious
what it represented, which is not the case for a quick demonstration.

Some subjects tried to interact with the calendar and location data by tapping on them and
expecting a way of editing these - functionality that is implemented but not available in this
interface.
Suggestions for improvements

• Make it more obvious what the presented data is by adding graphics that represent the
data.

• Make it possible to interact with relevant third party applications directly by tapping
on the data.

Page 28 of 34

October 4, 2012 HMI tool suite for Android

6.6 Second Version

Based on the information gathered during the test of the first version of the interface a second
version was developed. This tried to fix the shortcomings of the first. A recurring point of
feedback was that users wanted to be able to access calendar and location applications directly
by interacting with the information shown. This functionality was implemented, so when a
user taps the calendar information, the current calendar application will be launched from
Android, and likewise, tapping the location information will bring up the maps application.

The other point of feedback was that the information was not instantly identified as actual
dynamic data. Some users glossed over it since it was not directly apparent what it repre-
sented. This would probably in part be remedied by the previously mentioned change, since
if the users try to click on the information, they would immediately realize what it represents.
As mentioned however, a lot of the users simply glossed over this information. The chosen
solution to this problem was to add some kind of graphic to give the user a hint to what the
information represents.

Page 29 of 34

October 4, 2012 HMI tool suite for Android

7 Discussion

The result of this thesis can be used as a guide when both deciding whether it is feasible
to port an existing application to Android, and when actually carrying out the porting, and
should therefore be of great use to any developer attempting this in the future.

The method used turned out to to be a good way to gather the needed information to answer
the research questions. Using a practical method ensures that any unforseen problems surface
and that solutions to these can be included in the thesis.

However, the downside of our method is that only one application is used as foundation.
Although any missing parts have been filled by also conducting a literature study, this may
cause the result to be incomplete.

7.1 First Objective - Porting

This thesis describes in some detail the tools and techniques used for porting Populus, but
also some of the options that were explored but not used. It also describes a lot of useful
tools and techniques that are helpful for porting. Even though a lot of issues surfaced during
the porting process, the ones focused on in this thesis are more general problems that most
applications should experience when being ported to Android. As expected the result was
that even though there are a lot of problems with porting that are very application specific,
there still are quite a few issues that can be generally described and solved. A number of
these have been described and discussed in this thesis and together form a kind of method
for porting, even if it is not a completely described process but more of a guide.

A problem that comes with the field is that it is constantly and rapidly changing, therefore a
method for porting has much to gain from not being too specific but rather trying to describe
issues on a higher level. There is very little previously written on the subject of porting
C/C++ applications to Android, and very little on developing applications entirely natively
in Android at all. This led to it being very hard to find reliable information on the subject.
Especially due to the fact that there is a lot of out of date and contradicting information
floating around on the Internet, another symptom of the rapidly changing field.

7.2 Second Objective - Integration

The integration was done in two areas. The first one was in the Populus Engine itself, and
this is where there can be potential problems depending on the structure of the application
to be ported.

Whenever the Engine started or resumed, Android provides a window-object that would
be used by the Engine to draw. This object needed to be inserted into the initializa-
tion/reinitialization in place of whatever corresponding object is there from the previous
architecture, without ruining any existing OpenGL-context. In addition to this, the touch
inputs from Android had to be connected to the Engines touch handlers. The touch events

Page 30 of 34

October 4, 2012 HMI tool suite for Android

are sent to a callback that must be received regularly, preferably in a main loop.

Neither of these parts provided much problem, as the touch and window-handling was sep-
arated enough from other code to allow the Android-specific insertions with relative ease.
There was also a main loop well suited to receive callbacks. However, in a more complex or
less structured application these modifications can be significantly harder, and these three
points are something that should be looked at first when assessing the portability of an ap-
plication.

The second area was to create the Android FU. Running in the background, the FU would
provide Android-specific data and functionality to the HMI. By using this FU as an interface,
HMI designers can use these resources without any need for Android development competence.

7.3 Third Objective - Demonstration

The demonstration interface was developed in a two-step process with a user test in between.
Good feedback was gained from the test and it was very helpful for the design process since
it revealed a large issue that we had not foreseen during the initial design. Namely that the
location and especially event information was not very clear to users who had not created the
event themselves or knew the exact address they are currently at.

7.4 Further Work

During this thesis Populus had been integrated with Android. However, as of now only the
most interesting Android functions and information are made available to Populus. This
means that the Android FU could be developed to provide further integration.

No effort has been made in the area of optimization. If Populus was to run on Android in an
automotive environment, it would have stringent requirements on performance, particularly
loading and startup times.

The interface displays the most important parts of integration using basic features of the
Populus editor. An improvement to this would be the addition of some more advanced
graphical effects.

8 Conclusion

This thesis presents and explores techniques and methods useful when porting existing appli-
cations to the Android platform. The experience and knowledge gathered from the process
of porting the Populus engine has been used as a base for this thesis.

Populus is an application that has been ported to many different platforms previously, this
means that even though the creators of Populus never had Android in mind, the general code
structure might have eased the porting process considerably. Very little actual code needed
to be written, meaning that, at least for programs with a good structure, porting to Android

Page 31 of 34

October 4, 2012 HMI tool suite for Android

should not be too large of a project. Also, Populus already had support for rendering with
OpenGL ES. Had this not been the case the amount of rewritten code would have increased
drastically.

A demonstrational interface was designed to display the Populus/Android integration in a
good way. A number of design guidelines were derived by studying previous work and these
were then applied to the more specific case of a demonstrational interface. A user test was
also designed and ran to ensure that the demonstration had the desired effect. Some under-
standability issues surfaced during this test and shed some light on the specific difficulties of
designing something purely for demonstration.

Page 32 of 34

October 4, 2012 HMI tool suite for Android

9 Bibliography

References

[1] q Populus (2012). Mecel Populus Suite[Online]. Available from:
http://www.mecel.se/products/mecel-populus [Accessed: May 9th 2012]

[2] App Market (2012). Android Application Market [Online]. Available from:
https://play.google.com/store [Accessed: May 9th 2012]

[3] Android NDK (2012). Android-NDK Specification[Online]. Available from:
http://developer.android.com/sdk/ndk/index.html [Accessed: May 9th 2012]

[4] Android SDK (2012). Android-SDK Specification[Online]. Available from:
http://developer.android.com/sdk/index.html [Accessed: May 9th 2012]

[5] C++ (2012). Information about C++[Online]. Available from:
http://www.cplusplus.com/ [Accessed: May 9th 2012]

[6] Java (2012). Information about Java[Online]. Available from: http://www.java.com/
[Accessed: May 9th 2012]

[7] Dalvik (2012). Dalvik VM Internals[Online]. Available from:
https://sites.google.com/site/io/dalvik-vm-internals/2008-05-29-Presentation-Of-
Dalvik-VM-Internals.pdf [Accessed: May 9th
2012]

[8] JNI (2012). JNI Specification[Online]. Available from:
http://java.sun.com/docs/books/jni/ [Accessed: May 9th 2012]

[9] Unix Makefiles. Unix make manual [Online]. Available from:
http://www.openbsd.org/cgi-bin/man.cgi?query=make [Accessed May 9th 2012]

[10] CMake. CMake website[Online]. Available from: http://cmake.org/ [Accessed May 9th
2012]

[11] NativeActivity. NativeActivity specification[Online]. Available from:
http://developer.android.com/reference/android/app/NativeActivity.html [Accessed
May 9th 2012]

[12] OpenGL. OpenGL website[Online]. Available from: http://www.opengl.org/ [Accessed
May 9th 2012]

[13] OpenGL ES. OpenGL ES website[Online]. Available from:
http://www.khronos.org/opengles/ [Accessed May 9th 2012]

[14] Lee, S. & Wook Jeon, J (2010) Evaluating Performance of Android Platform Using
Native C for Embedded Systems International Conference on Control, Automation and
Systems(Gyeonggi-do, Korea, 2010) P. 1160-1163

[15] Wobbrock, J. O., Forlizzi, J., Hudson, S. E. & Myers, B. A., WebThumb: Interaction
techniques for small-screen browsers, Proceedings of the 15th Annual ACM Symposium
on User Interface Software and Technology (Paris 2002) P. 205-208.

Page 33 of 34

October 4, 2012 HMI tool suite for Android

[16] Sajedi, A. & Mahdavi, M & Shir Mohammadi, A. & Monajjemi Nejad, M. Fundamental
Usability Guidelines for User Interface Design Department of Computer Engineering,
Azad University of Lahijan, IRAN

[17] Color Guidelines. Windows User Experience Interaction Guidelines[Online]. Available
from: http://msdn.microsoft.com/en-us/library/windows/desktop/aa511283.aspx
[Accessed May 9th 2012]

[18] Q. V. Turnell, M. & Eustáquio R. de Queiroz, J. (1996) Guidelines - An Approach in
the Evaluation of Human-Computer Interfaces Electrical Engineering Department,
Federal university of Paraiba

[19] Constantine, L & Lockwood, L Software for Use: A practical Guide to the models and
Methods of Usage-Centered Design Reading, MA: Addison-Wesley, 1999

[20] Brian Stone, R (2002) Designing Screen-Based Interfaces for Advanced Multimedia
Functionality Department of Industrial, Interior, and Visual Communication Design,
The Ohio State University

[21] Visual Appeal. Visual Appeal vs. Usability: Which One Influences User Perceptions of
a Website More? [Online]. Available from:
http://www.surl.org/usabilitynews/112/aesthetic.asp [Accessed May 9th 2012]

[22] When to use the NDK. Android NDK overview [Online]. Available from:
http://developer.android.com/sdk/ndk/overview.html [Accessed May 9th 2012]

[23] Czajkowski, G. & Daynks, L. & Wolczko, M. (2001) Automated and Portable Native
Code Isolation Sun Microsystems Laboratories

Page 34 of 34

