
Bidirectional Testing
of Communicating Systems
Master’s thesis in Computer Science

MAXIMILIAN ALGEHED

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
Gothenburg, Sweden 2017

Master’s thesis 2017

Bidirectional Testing
of Communicating Systems

Maximilian Algehed

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2017

Bidirectional Testing of Communicating Systems
Maximilian Algehed

c© Maximilian Alghed, 2017.

Supervisor: Koen Claessen, Computer Science and Engineering
Examiner: Mary Sheeran, Computer Science and Engineering

Master’s Thesis 2017
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2017

3

Bidirectional Testing of Communicating Systems
Maximilian Algehed
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

This report presents a new tool called SessionCheck. This tool helps programmers write distributed
applications that work correctly. SessionCheck is designed to help rid programmers of the tedium
of maintaining more than one specification and test suite for multiple application components.
SessionCheck does this by borrowing ideas from session types [14] and domain specific languages in
order to provide a simple yet expressive and compositional specification language for communication
protocols. Specifications written in the SessionCheck specification language can be used to test both
client and server implementations of the same protocol in a completely language-agnostic manner.

Keywords: SessionCheck, Testing, Communication Protocols

4

Acknowledgements

First and foremost I would like to thank my supervisor, Koen Claessen, for his insightful comments
on this work and most of all for his timely advice on when to stop hacking and start writing.
I would also like to thank Andreas Ekeroot, for inspiring this work after an especially intense
lemonade drinking session at the student pub, and Sólrún Halla Einarsdóttir, for always being
great fun around the office.

Maximilian Algehed, Gothenburg, November 2017

6

Contents

1 Introduction 9

2 SessionCheck in Action 12
2.1 Checking that protocols are coherent . 12
2.2 Testing protocol end-points . 14
2.3 Shrinking . 17

3 The SessionCheck specification language 19
3.1 The Predicate type . 21
3.2 The dual of a specification . 22

4 The implementation of SessionCheck 24
4.1 The Spec type . 24
4.2 Modularity . 24
4.3 Checking coherence . 26
4.4 Shrinking . 27

5 Case study: The SMTP protocol 29
5.1 Testing Implementations . 31
5.2 Bugs found . 34
5.3 Lessons Learned . 34

6 Related work 36
6.1 Session Types . 36
6.2 Mocking . 37
6.3 Contracts, Chaperone Contracts, and Monitors . 37
6.4 The Scribble Specification Language . 38

7 Conclusions, Discussion, and Future Work 40
7.1 Discussion . 41
7.2 Future work . 41

8

Chapter 1

Introduction

Imagine you wanted to build a client-server application for storing files in the cloud. The func-
tionality, at least initially, of the application is simple. The client, running on the user’s computer
either as a standalone application or a web-page, should allow the user to upload files to the server
where the files will be stored for later retrieval. In this scenario your client and server parts of the
application would most likely be two different programs, perhaps written in two different program-
ming languages. In order for the two programs to work together, they need to co-ordinate their
operation using some form of communication protocol. The first protocol you design allows the
application to only provide functionality for file retrieval, allowing the client to retrieve files stored
on the server. A simple sketch of the communication protocol looks something like this:

client: Send login information

server: Send ok/not ok

client: Send filename

server: Send file contents

Having established how the client and server are supposed to interact, the next question is how to
ensure that your two programs are correct, and, more importantly, that the entire application works
as expected when they are put together. Maybe you would write a few test cases, perhaps using
something like the mocking combinators of Svenningsson et al. [29], which let you simultaneously
specify the accepted behaviour of one component while giving an example of the other’s. In this
notation a test case for the client would look similar to the example below.

sendLogin (username, password) 7→ ok . sendFilename (filename) 7→ "Hello, test." . ε

If you carefully construct your test cases they should guarantee that if the server and the client
both pass their respective tests in isolation, then they will work flawlessly together. Or rather, any
errors in the application will not be down to errors in the communication protocol implementation.

9

Having implemented and thoroughly tested your application you might feel satisfied with the process
you have gone through to get here. The protocol was carefully specified and test cases were designed
to exercise your application components to their fullest. But what happens when, later on, you
want to add new functionality to your application? Say you wanted to add functionality which lets
the client retrieve the files she has stored in the could. The first thing you need to do is to update
the communication protocol. The new version of the specification reads something like this:

client: Send login information

server: Send ok/not ok

client: Either send a filname to download, or a file to upload

server: Either send some file contents or send a status message

Next you have to change some, if not all, of your test cases to work with the new version of
your application. It is not unlikely that you end up getting one or more of the new test cases
wrong, or at least that the labour required is on par with the labour required to change the actual
application code you are testing. Writing test cases by hand is hardly the ideal solution to the
problem of specifying and verifying communicating code. The approach is susceptible to error as
any inconsistency between the client and server test cases means that code which is correct with
respect to its tests may still not work correctly with the rest of your application. Furthermore, as
argued above, it can be a labour intensive process to keep specifications up to date.

Technology like QuickCheck [9] exists to reduce the labour involved in specifying and testing code
by prompting the programmer to write code which generates thousands or sometimes millions
of random test cases to test specific functionality. QuickCheck may be used together with the
type of mocking library mentioned previously to significantly reduce the labour involved in testing
communication protocols. However, this approach traditionally means we end up with two different
QuickCheck specifications, one for the server and one for the client. As a consequence it is still not
possible to guarantee that if the client and the server pass their tests in isolation, they will work
correctly when put together. What’s more, a specification might be inconsistent with itself, there
is nothing guaranteeing that your two specifications, even when correct with respect to each other,
can not deadlock, making it impossible for one party to satisfy the protocol under all circumstances.

In this report we present our tool SessionCheck. In essence, SessionCheck extends QuickCheck
to solve both of these problems. With SessionCheck, maintaining multiple facets of the same
specification is a thing of the past! In SessionCheck each specification is written only once, either
from the point of view of the client or the server. From the point of view of the client the specification
above would look something like the code below.

10

protocol :: Spec MessageType ()
protocol = do

send anyLoginData
ok ← get anyBool
when (¬ ok) stop
choice ← choose ["upload", "download"]
case choice of
"upload"→ do

send anyFile
"download"→ do

send fileName
get fileContents

The specification above can be used to derive multiple test cases for the client and the server
implementation in our example. Furthermore, SessionCheck specifications can be automatically
tested to ensure they are coherent, reducing the possibility for the problem alluded to above.
Concretely, this report makes the following contributions.

• We present the SessionCheck specification language and show examples of how it may be used
to specify a variety of protocols.

• We present a method for making SessionCheck specification bi-directional. The same specifi-
cation in effect specifies both the client and server behaviour in a protocol.

• We show how to use SessionCheck to find faults in communication protocols before writing a
single line of implementation code.

• We show how to use the SessionCheck tools to derive test-suites for both a client and a server
implementation of a protocol using a single SessionCheck specification.

• We use SessionCheck to specify the SMTP [23] protocol and test example code taken from
popular SMTP libraries for the Python programming language.

11

Chapter 2

SessionCheck in Action

A SessionCheck specification can be used in two different ways. The specification may be used to test
implementations of the protocol end-points. It is possible to use the same SessionCheck specification
to test both a client and a server implementation of a protocol. This mode of operation is illustrated
in Figure 2.1 As seen in the figure, both client and server code may be individually tested, and
should they both be deemed correct (O.K.) by SessionCheck, we expect them to work correctly
together. SessionCheck can also test if a specification is coherent, that locally correct choices made
by protocol end-points do not make it impossible for either party to satisfy the obligations of the
protocol. This mode of operation is illustrated in Figure 2.2. In effect, the specification S is made
to test itself. This chapter explains the use of SessionCheck as a language and a tool by giving
examples of both modes of operation mentioned above.

2.1 Checking that protocols are coherent

To understand the idea of incoherent protocols consider the following protocol specification

protocol :: Int v t ⇒ Spec t Int
protocol = do

a ← send anything
b ← send anything
get (inRange a b)

The first line is a type signature, telling us that protocol is a specification over a channel where
messages of type Int can be transmitted (Int v t). The protocol requires one end-point to transmit
two Ints, a and b, and the other end-point to respond with an Int which is in the range [a, b].
The problem with the protocol is that local choices at the first two send anything actions may

12

Server SessionCheck

Client SessionCheck

O.K.

O.K.
Server Client

O.K.

Figure 2.1: Using SessionCheck to test both client and server implementations of the same protocol.

S

SessionCheck

S

SessionCheck

Figure 2.2: Checking that a specification is coherent.

13

result in the protocol end-point performing the sends making it impossible for the other end-point
to be compliant with the protocol. If we run checkCoherent protocol SessionCheck will print the
following:

Failed with:

Timeout: Timeout on {get (inRange 22 -30)} and channel is

dead with reason:

"Timeout: Failed to satisfy {inRange 22 -30}"

With trace:

Output {22}

Output {-30}

Telling us that if the messages 22 and −30, both valid messages according to the specification, are
sent then the protocol obligation get (inRange 22 − 30) times out. We are also provided with an
explanation of the timeout, SessionCheck failed to generate a value satisfying the predicate.

2.2 Testing protocol end-points

SessionCheck features a modular back end system which allows the user to test different implemen-
tations of the same protocol written using different communication substrates in different languages.
At the time of writing SessionCheck supports two different back ends, one for testing Erlang pro-
grams by incorporating SessionCheck into the existing BEAM message passing system, and one for
testing protocols like SMTP [23] and POP3 [20] which communicate using <CR><LF> terminated
string messages transmitted over TCP.

As an example of testing protocol end-points we consider the following protocol, called echo:

echo :: String v t ⇒ Spec t String
echo = do

msg ← get anything
send (is msg)

To test the Python [31] implementation in Figure 2.3 of the echo protocol we will use SessionCheck’s
TCP backend. The function tcpMain :: Mode → String → PortNumber → Spec TCPMessage a →
IO () takes as arguments the role which SessionCheck is to take (Client or Server), the shell
command which launches the program being tested ("python EchoServer.py" in our example),
the IP port number which will be used for communication, and the specification of the protocol
implemented by the system under test.

main :: IO ()
main = tcpMain Client "python EchoServer.py" 10000 echo

14

import socket

HOST = ’localhost’

PORT = 10000

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.bind((HOST, PORT))

s.listen(1)

while True:

conn, addr = s.accept()

data = conn.recv(1024)

conn.sendall(data)

Figure 2.3: The EchoServer.py implementation of the (dual echo) protocol

As the implementation in Figure 2.3 is correct running the piece of code above will make Ses-
sionCheck print Ok, passed 100 test, telling us that the protocol was tested 100 times without
protocol violation. If we alter the implementation of EchoServer.py to make it buggy, by inserting
the statements

if data == "":

data = "BUG!"

before the line conn.sendall(data), and run SessionCheck again we get the following output:

Failed with:

Bad: get {is ""}

With trace:

Output {""}

InputViolates {is ""} "BUG"

SessionCheck now tells us it has found a bug in the implementation of the server. It tells us that
after producing the output (sending) the message containing the empty string, it received back the
string "BUG", rather than the expected empty string.

To see another example of testing server code we will briefly explore using SessionCheck to test
an Erlang [8] implementation of a small protocol describing an online book shopping service. The
protocol we will be working with specifies the interaction between the client and server side of a
service where the user, who is communicating with the server using the client program, maintains
a shopping basket of books to be purchased. The SessionCheck specification can be seen below:

15

bookShop :: (Int v t ,String v t , [Int] v t)⇒ Spec t ()
bookShop = bookShopLoop []

bookShopLoop :: (Int v t ,String v t , [Int] v t)⇒ [Int]→ Spec t ()
bookShopLoop books = do

choice ← choose ["buy", "request", "stop"]
case choice of
"buy"→ do

book ← send anyInt
bookShopLoop (book : books)

"request"→ do
get (permutationOf books)
bookShopLoop books

"stop"→ do
stop

The client begins by choosing one of three actions (choice ← choose...), to "buy" a book, to
"request" to see their basket, or to "stop", terminating the communication. The behavioural
specification is simple, if the client buys a new book that book is added to the basket and if the
client wishes to see their basket they should receive a list of books which is a permutation of their
current basket. The case choice of expression gives the specification for each choice the client has.
If the client has chosen to "buy" a new book, the client must transmit the book identifier (an Int),
and the protocol resumes with the book added to the basket (bookShopLoop (book : books)). If the
client has chosen to "request" to see their current basket, the client should receive a permutation
of the current basket from the server (get (permutationOf books)). Finally, if the client has decided
to terminate the communication "stop" the session ends with stop.

The Erlang implementation of the server can be seen in Figure 2.4. Using SessionCheck we can test
the implementation against the specification using erlangMain "bookShop:main" bookShop. Run-
ning this program SessionCheck finds the following trace demonstrating a bug in the implementation
of the Erlang server.

Failed with:

Bad: {get permutationOf [3, -25]}

With trace:

Output {ErlString "buy"}

Output {ErlInt 3}

Output {ErlString "buy"}

Output {ErlInt (-25)}

Output {ErlString "request"}

InputViolates {permutationOf [-25]} {ErlList [ErlInt 3]}

What we have is an inconsistency between the specification and the implementation of the pro-
tocol. There is good reason to consider the ”bug” to be in the specification rather than in the
implementation, as there is no good reason why a book identifier should be a negative integer.

16

main() -> loop([]).

loop(Books) ->

receive

{Hs, "buy"} ->

receive

{Hs, B} -> if B >= 0 -> loop([B | Books]);

true -> loop(Books)

end

end;

{Hs, "request"} -> Hs ! Books, loop(Books);

{Hs, "stop"} -> exit(done)

end.

Figure 2.4: An Erlang implementation shell for the bookShop server

Fixing the bug in the specification is a simple case of swapping out the anyInt predicate in the line
book ← send anyInt for the posInt predicate.

2.3 Shrinking

The counterexample demonstrating the fault in the book shop server implementation above was
needlessly complicated. While it did demonstrate that the number−25 was not included in the list of
books the client received after sending a "request" message, it also included the irrelevant messages
"buy" and 3. In this example the bug is easily spotted, but generally counterexamples containing
redundant information, like the two messages "buy" and 3 above, make it more difficult to find the
cause of the failure. Following QuickCheck, SessionCheck produces minimal counterexamples by
means of shrinking existing ones. When asked to shrink the counterexample above SessionCheck
will produce the following:

Failed with:

Bad: get {permutationOf [-1]}

With trace:

Output {ErlString "buy"}

Output {ErlInt -1}

Output {ErlString "request"}

InputViolates {permutationOf [-1]} {[]}

While the example above demonstrates that SessionCheck is indeed capable of finding minimal
counterexamples, the algorithm is far from perfect. If we alter the bug in the implementation of the
server to instead of discarding negative book identifiers discarding all book identifiers if the basket

17

is not empty we may get the following counterexample:

Failed with:

Bad: get {permutationOf [-1, 22, 13]}

With trace:

Output {ErlString "buy"}

Output {ErlInt -1}

Output {ErlString "buy"}

Output {ErlInt 22}

Output {ErlString "buy"}

Output {ErlInt 13}

Output {ErlString "request"}

InputViolates {permutationOf [-1, 22, 13, -10]} {[-1]}

In this case SessionCheck does not always manage to shrink it down to the minimal failing test
case, which would be the following:

Failed with:

Bad: get {permutationOf [0, 0]}

With trace:

Output {ErlString "buy"}

Output {ErlInt 0}

Output {ErlString "buy"}

Output {ErlInt 0}

Output {ErlString "request"}

InputViolates {permutationOf [0, 0]} {[0]}

Instead, we sometimes get counterexamples containing more than two "buy" messages as well as
not all book identifiers being 0. However, in our experience SessionCheck does produce what one
might call ”small-ish” counterexamples after shrinking.

In essence, there are two reasons why SessionCheck’s shrinking does not always produce the minimal
counterexample. The first reason is that local changes, sending a "buy" instead of a "request",
change the rest of the protocol and any information that can be obtained from a previous failing
counterexample may no longer be relevant to the current run. The second reason is that the
higher-order nature of SessionCheck means that while a specification might have implicit states
and two different sends can be said to be ”the same” send , there is no way to observe this in
the implementation of SessionCheck (see Chapter 4 for details). Improvements to the shrinking
facilities in SessionCheck are noted as future work.

18

Chapter 3

The SessionCheck specification
language

We begin with an example. Consider a simple protocol between a server and a client which re-
quires the client to transmit two positive integers and receive back from the server their sum. In
SessionCheck, this specification would be written as follows:

protocol :: Spec Int Int
protocol = do

a ← send posInt
b ← send posInt
get $ is (a + b)

SessionCheck specifications are written from the point of view of a particular party, in this case the

send :: a v t ⇒ Predicate a → Spec t a
get :: a v t ⇒ Predicate a → Spec t a
stop :: Spec t a
fail :: String → Spec t a
return :: a → Spec t a
(>>=) :: Spec t a → (a → Spec t b)→ Spec t b

-- Derived combinators
choose :: (Eq a, a v t)⇒ [a]→ Spec t a
branch :: (Eq a, a v t)⇒ [a]→ Spec t a

Figure 3.1: The SessionCheck specification language

19

client. We may as well have written the same specification from the point of view of the server, in
which case it would look like this:

protocol ′ :: Spec Int Int
protocol ′ = do

a ← get posInt
b ← get posInt
send $ is (a + b)

It is no coincidence that the two specifications are very similar, and SessionCheck can work equally
well with both, as we will see shortly.

The SessionCheck specification language is a domain specific language embedded in the Haskell
[16] programming language. Being an embedded language means that the language primitives in
SessionCheck are implemented as Haskell data types and functions. The language primitives in
SessionCheck can be seen in Figure 3.1. The type argument t in the type Spec t a denotes the
type of messages being delivered on the channel on which the system under test is communicating
with SessionCheck. The send and get primitives represent obligations for the respective party to
send a message which is compliant with the given Predicate, more on this soon. The constraint
a v t denotes a subtyping relation between a and t . That is, any value of type a is also a value
of type t , and a value of type t may be a value of type a. Included in the interface are also
the fail and stop functions. The stop primitive specifies that the protocol session is terminated.
Unlike send , get , and stop, fail does not directly correspond to an action in the protocol. Rather
it allows the user to specify conditions for when the system being tested by SessionCheck fails
which are not directly coupled to direct constraints on messages. The choose and branch primitives
are not actually primitive operations, rather they are derived from the rest of the interface. The
specification choose xs reads ”send one of the values in xs”, while branch xs reads ”get one of the
values in xs”.

The primitives described above do not permit small specifications, like send anyInt and get anyBool ,
to be composed to form more complex specifications. For this purpose SessionCheck also supports
the standard Monad interface [32], which contains the two primitive operations return and (>>=)
(pronounced ”bind”). The bind operator allows specifications to be composed by taking a specifi-
cation, s, and a function which creates a specification from a value, f , and composing them to form
the specification s >>= f which means ”first the protocol behaves like s, then whatever value is pro-
duced at the end of s is fed to f to produce a new specification to follow”. As an example, consider
the case where s = send anyInt and f x = send (greaterThan x), here s >>= f is a specification
which first requires the end-point to send an Int and then to send another Int which is greater than
the first one. The do... notation in the above examples are syntactic sugar for successive uses of
(>>=) and lambda abstraction λx → e, where the expression λx → e denotes a function where the
variable x is used to bind the input of the function in the output e. When written using explicit
(>>=) the specification of protocol would look like this:

20

data Predicate a = Predicate {apply :: a → Bool
, gen :: Gen a
, name :: String }

Figure 3.2: The Predicate type

anything :: Arbitrary a ⇒ Predicate a
is :: (Show a,Eq a)⇒ a → Predicate a
anyOf :: [Predicate a]→ Predicate a
pairOf :: Predicate a → Predicate b → Predicate (a, b)
unfailing :: (Arbitrary t , a) v t ⇒ Predicate a → Predicate (Either t a)
bimap :: (a → b)→ (b → a)→ Predicate a → Predicate b

Figure 3.3: Some Predicates in SessionCheck

protocol :: Spec Int Int
protocol =

send posInt >>= λa →
send posInt >>= λb →
get $ is (a + b)

Supporting the generic Monad interface means that we get several useful combinators ”for free”,
like (>>) :: Spec t a → Spec t b → Spec t b which sequences two independent specifications,
and forever :: Spec t a → Spec t a which repeats a specification indefinitely. Finally, the return
function simply wraps a value in a specification. It represents no obligation on either part of the
communication protocol, but rather is part of the standard monad interface.

3.1 The Predicate type

The Predicate a type in Figure 3.2 represents predicates which may be used both to test a condition
on a value of type a and to generate a random value satisfying that property. Note that the
type variable a appears in both positive and contrapositive position, as witnessed by the bimap
function. This dual functionality of the Predicate a type is crucial in order to make it possible
to use the same specification for both mocking and monitoring of protocol end-points at the same
time. SessionCheck features multiple combinators for constructing predicates, some of which can
be seen in Figure 3.3. The anything predicate will accept any value, representing the predicate
p x = True. The is predicate combinator is more restrictive, accepting only precisely the value
provided to it, is a represents the predicate p x = x ≡ a. Another important predicate is anyOf ,
it takes a list of predicates and accepts any value accepted by at least one of the input predicates.

21

dual (send p) = get p
dual (get p) = send p
dual (fail s) = fail s
dual stop = stop
dual (return a) = return a
dual (s >>= λx. e) = dual s >>= λx. dual e

Figure 3.4: Duality of specifications

3.2 The dual of a specification

One important property of SessionCheck specifications is that each specification admits a dual . An
equational specification of the dual operation can be seen in Figure 3.4. If the role of a specification
s is to specify one party in a two party protocol, dual s is the symmetric specification of the other
party in the same protocol. The cases for send , get , fail , stop, and return are self-explanatory,
however the case for >>= is interesting. It says that in order to be symmetric to a specification
which first requires the behaviour s, the result of which creates a new specification according to
g , it is sufficient to first be symmetric to s and to then be symmetric to whatever specification
is produced by g . The reason for this is that >>= encodes sequencing of protocols, therefore if
two protocols are sequenced using >>= the dual should be the dual of each protocol in sequence.
If the client does s then t , the server should do dual s then dual t . This is perhaps simpler to
see when considering the (>>) :: Spec t a → Spec t b → Spec t b operator, which is defined as
s >> t = s >>= λ → t . By the definition of dual we obtain dual (s >> t) = dual s >> dual t , which
encodes precisely the reasoning above. The definition for >>= is simply a generalisation of this
reasoning to deal with dependency.

One important property to note about dual is that it is an involution. That is to say that
∀ x. dual (dual x) ≡ x . The proof of this property is straightforward and we leave it as an
exercise for the reader. As simple as this statement is, it informs us that the behaviour of dual is
what we expect, it describes the inverse of the input protocol and nothing else.

We will now see dual in action, recall the echo protocol from Chapter 2, given below:

echo :: String v t ⇒ Spec t String
echo = do

msg ← send anything
get (is msg)

Consider now the dual specification:

22

dual echo :: String v t ⇒ Spec t String
dual echo = do

msg ← get anything
send (is msg)

The structure is preserved but the send has been exchanged for a get and vice versa. To see why
this makes sense we consider echo written using explicit >>= notation:

echo = send anything >>= λmsg → get (is msg)

We can compute the dual of echo to get anything >>= λmsg → send (is msg) (see below) using
the definition of dual in Figure 3.4. When written using do notation get anything >>= λmsg →
send (is msg) is precisely the definition of dual echo above.

dual (send anything >>= λmsg → get (is msg))
≡ dual (send anything)>>= dual ◦ λmsg → get (is msg)
≡ get anything >>= dual ◦ λmsg → get (is msg)
≡ get anything >>= λmsg → dual (get (is msg))
≡ get anything >>= λmsg → send (is msg)

23

Chapter 4

The implementation of
SessionCheck

This chapter presents an overview of the implementation of SessionCheck, focusing on some key
design decisions that enable large portions of the software infrastructure to be reused for testing,
shrinking, and coherence checking.

4.1 The Spec type

The Spec type, see Figure 4.1, is implemented as a Generalised Algebraic Data Type (GADT) [28].
The monadic structure of Spec is explicitly represented in the type using the constructors Return
and Bind . The technique is originally due to Svenningsson and Svensson [30]. One benefit of this
representation of specifications is that the dual operation is simple to implement, as can be seen in
Figure 4.2. It is trivial to see that this implementation of dual is true to the specification in Figure
3.4. In the interest of completeness we also give the definition of the v type class in Figure 4.3.

4.2 Modularity

The implementation of SessionCheck consists of two primary parts, the evaluation engine and the
back end driver. The interaction between the two can be seen in Figure 4.5. In order to implement
a new back end for SessionCheck one essentially only needs to provide an instance of the Interface
data structure in Figure 4.4. The outputChan and inputChan channels are used to communicate the

24

data Spec t a where
Get :: (a v t ,NFData a)⇒ Predicate a → Spec t a
Send :: (a v t ,NFData a)⇒ Predicate a → Spec t a
Stop :: Spec t a
Fail :: String → Spec t a
Return :: a → Spec t a
Bind :: Spec t a → (a → Spec t b)→ Spec t b

Figure 4.1: The Spec type

dual :: Spec t a → Spec t a
dual (Get p) = Send p
dual (Send p) = Get p
dual Stop = Stop
dual (Fail s) = Fail s
dual (Return a) = Return a
dual (Bind s f) = Bind (dual s) (dual ◦ f)

Figure 4.2: The implementation of dual

class a v t where
inj :: a → t
prj :: t → Maybe a

Figure 4.3: The implementation of v

25

data Interface t = IFace {outputChan :: TChan t
, inputChan :: TChan t
, isDead :: MVar ()
, isDone :: MVar ()
, run :: IO ()}

Figure 4.4: The interface between the SessionCheck evaluation engine and a back end

● Test data generation

● Type checking

● Protocol compliance
checking

● Timeouts

● Predicate satisfiability
checking

TCP

Erlang

dual spec

Modular back ends

send

get

Choice of back endEvaluation driver

get

send

get

send

get

send

Figure 4.5: The SessionCheck software architecture

values which will be transmitted back and forth between the system under test and SessionCheck.
The isDead and isDone fields are used to communicate that the channel has either been broken or
that the specific run of the protocol has been completed. The run io-action is the most interesting
as it is what is used to start a new session and to manage the communication. When testing simple
TCP clients like in the Echo example above, this action consists of starting the program under test
and connecting to it via a TCP socket.

4.3 Checking coherence

Checking that a protocol is coherent is a straightforward instance of the modularity described
above. It works by running the specification against its own dual. In essence, the Interface consists
of standard values for the channels and communication MVars as well as the run action run =
sessionCheck (dual spec). Duality of specifications does not only give a conceptual method by

26

data DynamicShow = DynShow String Dynamic

instance Show DynamicShow where
show (DynShow s) = s

instance (Typeable a,Show a)⇒ a v DynamicShow where
inj a = DynShow (show a) (toDynamic a)

prj (DynShow dyn) = fromDynamic dyn

Figure 4.6: Dynamic values for testing a specification against itself

which it is possible to check for coherence, it also results in a simple procedure by which it can be
achieved.

However, one issue is left to resolve. What should the type of messages be? For this we use a
variant of the Dynamic type [21]. The type Dynamic has a single constructor, Dyn :: ∀ a ◦ a →
TypeRep a → Dynamic, where a is an existentially quanitifed type variable (written ∀ a...) and
TypeRep a is a concrete representation of the type of a. While there is an instance of Show
for Dynamic, it simply prints the type representation, rather than the value. As a consequence,
show (Dyn (5 :: Int) (typeOf 5 :: TypeRep Int)) is "<<Int>>", rather than "5". If we were to simply
use Dynamic as the type of messages the resulting counterexamples presented by SessionCheck
would be on the form:

Failed With: ...

Output: {<<Int>>}

Output: {<<String>>}

rather than the more instructive:

Failed With: ...

Output: {5}

Output: {"Hello"}

Our variant of Dynamic, called DynamicShow , can be found in Figure 4.6. It resolves the issue
above by representing messages as both a Dynamic value and a String . The String component of
a value of type DynamicShow is obtained by using show when a value is injected into the type,
which happens when the message is sent.

4.4 Shrinking

Shrinking in SessionCheck is significantly more difficult to implement than in traditional property-
based testing of pure functions. In essence, the combination of dependency and external choice in

27

shrink fuel spec trace = do
when (fuel ≡ 0) (abortWithTrace trace)
trace ′ ← runTest spec trace
if length trace ′ 6 length trace then

shrink (fuel − 1) spec trace ′

else
shrink (fuel − 1) spec trace

runTest spec trace = do
if spec ‘matches‘ head trace then

do
spec′ ← step spec (head trace)
runTest spec′ (tail trace)

else
do

spec′ ← step spec (lookAhead spec trace)
runTest spec′ (dropLookAhead spec trace)

Figure 4.7: The algorithm for shrinking in SessionCheck

SessionCheck specifications makes shrinking more difficult than in the usual setting. Dependency,
introduced by the monadic >>= operator, and external choice, introduced by the get primitive,
mean that the structure of the communication required by the protocol may change and make it
impossible to follow the trace which exhibits the bug. Figure 4.7 outlines the algorithm for shrinking
in SessionCheck.

The primary function for shrinking is the shrink function. It takes three arguments, fuel , spec,
and trace. The fuel parameter is the maximum number of shrinking attempts to be made, spec is
the specification of the system under test, and trace is the trace witnessing the current smallest
counterexample. The interesting function is runTest , which runs one complete test of the system,
using the trace as a guide for the values to send . It works by attempting to match the obligation of
the specification, a send or a get , with the first element in the trace. If the first event in the trace
matches the obligation in the spec, a ”sent” event matches send p if the sent value is accepted by
p and likewise for ”got” and get , the test will take one step attempting to shrink that value (if the
obligation is a send). Otherwise, the algorithm looks ahead in the trace to find the first, if any,
event which matches the specification and proceed from that point in the trace.

28

Chapter 5

Case study: The SMTP protocol

In this chapter we briefly present our attempt at formalising the minimum required subset of the
SMTP protocol, specified in RFC821 [23], in SessionCheck. The SMTP protocol is a client server
protocol where the client sends commands like MAIL FROM:<algehed@chalmers.se> and QUIT and
the server replies with status codes like 250 OK or 500 Syntax Error. In this case study we focus
on specifying the minimal required subset of the protocol. Apart from the MAIL FROM: command
a minimal implementation also needs to support the following commands

• HELO for establishing a handshake between the client and the SMTP server.

• RCPT TO: for adding mail recipients.

• DATA for starting a mail text transfer.

• RSET for aborting a session.

• QUIT for exiting a session with success.

• NOOP for doing nothing.

The first thing that happens when an SMTP client connects to a server is that the server sends a
220 Service Ready status code message. The client then replies with a HELO message, after which
the server is supposed to send the status code 250 OK. After the handshake between the client
and the server has been completed the client begins by issuing commands. In the minimal SMTP
protocol this consists of either sending RSET, QUIT, NOOP, or MAIL FROM: commands. If the MAIL

FROM: command is sent the client proceeds by giving a number of recipients by successively issuing
the RCPT TO: command, finally the client issues the DATA command and transmits the content of

29

data SMTPCommand = HELO Domain
| MAIL FROM ReversePath
| RCPT TO ForwardPath
| DATA
| RSET
| NOOP
| QUIT
deriving (Ord ,Eq ,Generic,NFData)

Figure 5.1: Minimal grammar of messages in the SMTP protocol

data SMTPReply = R500
| R501
| R502
| R503
| R504
| R211
| R214
| R220 Domain
| R221 Domain
...

Figure 5.2: Some of the replies to commands in the SMTP protocol

the email line by line, finishing with a line containing a single full stop. After this DATA transaction
is completed, the communication returns to the state where the server can accept commands from
the client.

The SessionCheck formalisation of the protocol is centered around two data types, SMTPCommand
for describing the possible commands the client may call, and SMTPReply for describing the pos-
sible reply codes. Figure 5.1 gives the implementation of the SMTPCommand . In the interest of
simplicity the Domain, ReversePath, and ForwardPath types are all equal to String . Figure 5.2
outlines the implementation of STMPReply . Every reply code is given its own constructor, note
that this type could also have been implemented as a simple tuple (Int ,Maybe Domain).

Figure 5.6 shows our specification of the SMTP command loop from the point of view of the
server. The protocol begins with the RFC 821 handshake specified in Figure 5.3. The server starts
by sending a 220 Service Ready greeting, the client and server then exchange HELO and 250 OK

messages. After the handshake is complete, the server proceeds to accept MAIL TO, QUIT, and RSET

commands. In the case of the latter two the session is terminated, in the case of the former a
mail transaction begins. The mail transaction is specified in Figure 5.4 and consists of the client
specifying multiple recipients and finally transitioning to the DATA phase of the transaction. In the
DATA phase, specified in Figure 5.5, the client proceeds by sending a number of lines of text, finishing

30

handshakeRFC821 :: (SMTPCommand v t
,SMTPReply v t)⇒ Spec t ()

handshakeRFC821 = void $ do
-- Handshake

send r220Message
get heloMessage
send (is R250)

Figure 5.3: Specification of the RFC821 handshake

mail :: (String v t ,SMTPReply v t ,SMTPCommand v t)⇒ Spec t ()
mail = do

msg ← get $ anyOf [rcptMessage, dataMessage, is RSET]
case msg of

RSET → stop
RCPT TO → do

send $ anyOf [is R250 , is R550]
mail

DATA→ do
send $ is R354
dataRecv

Figure 5.4: The command loop in the SMTP protocol

with a single line containing only a full stop. Note that the predicate constructed using anyOf to
specify which messages are legal explicitly contains the predicate is ".". This redundancy shows a
mismatch between the pure specification, in which anything would suffice to specify the behaviour
of the client, and a specification which can be used to effectively test real implementations, in which
case being explicit about the introduction of the case for "." helps SessionCheck to generate the
special case message which will terminate the transmission.

5.1 Testing Implementations

The SessionCheck specification described above has been used to test both a client and a server
implementation of the SMTP protocol. The client implementation, see Figure 5.8, was taken from
the documentation of the python library ”smtplib” [6]. The server implementation, see Figure 5.7,
was taken from the documentation of the python library ”smtpd” [5].

31

dataRecv :: (String v t ,SMTPReply v t)⇒ Spec t ()
dataRecv = do

line ← get $ anyOf [anything , is "."]
case line of
"."→ void ◦ send $ is R250
→ dataRecv

Figure 5.5: Specification of the data transmission phase of the SMTP protocol

smtp :: (String v t ,SMTPReply v t ,SMTPCommand v t)⇒ Spec t ()
smtp = do

-- Perform the handshake
handshakeRFC821
forever $ do

-- Choice of operations
op ← get $ anyOf [mailMessage, is QUIT , is RSET]
case op of

RSET → stop
MAIL FROM → do

send (is R250) -- Approximation
mail

QUIT → stop

Figure 5.6: Specification of the SMTP protocol in SessionCheck

import smtpd

import asyncore

class CustomSMTPServer(smtpd.SMTPServer):

def process_message(self, peer, mailfrom, rcpttos, data):

print ’Receiving message from:’, peer

print ’Message addressed from:’, mailfrom

print ’Message addressed to :’, rcpttos

print ’Message length :’, len(data)

return

server = CustomSMTPServer((’127.0.0.1’, 1025), None)

asyncore.loop()

Figure 5.7: The implementation of SMTPServer.py

32

import smtplib

import sys

def prompt(prompt):

return raw_input(prompt).strip()

fromaddr = prompt("")

toaddrs = prompt("").split()

Add the From: and To: headers at the start!

msg = ("From: %s\r\nTo: %s\r\n\r\n" %

(fromaddr, ", ".join(toaddrs)))

while 1:

try:

line = raw_input()

except EOFError:

break

msg = msg + line

server = smtplib.SMTP()

server.connect(’localhost’, 252525)

server.sendmail(fromaddr, toaddrs, msg)

server.quit()

Figure 5.8: The implementation of SMTPClient.py

33

5.2 Bugs found

Several inconsistencies between the client implementation and our initial specification were dis-
covered. It is important to note that some of the inconsistencies found were due to errors in our
formalisation of the SMTP protocol from RFC821 [23], while others were due to what we would de-
scribe as strange, but not necessarily incorrect with respect to the library documentation, behaviour
on the part of the client.

• Our first specification of the handshake procedure incorrectly required the client to send the
first HELO message, according to the RFC document this is the task of the server.

• The documentation for the example claims that the implementation is consistent with RFC821,
however a bug was discovered where the client used the EHLO message from RFC1869 instead
of the HELO message required by RFC821 during handshake.

• The document RFC821 and its successors specify that ”Command codes are four alphabetic
characters. Upper and lower case alphabetic characters are to be treated identically.” Our
initial specification did not take this in to account and assumed all commands were upper
case only.

• Our specification incorrectly looped back to the start of the protocol upon a successful email
transmission attempt.

• The document RFC821 and its successors specify that an RSET message can be sent at any
point in the communication. This was not captured in our specification.

The testing of the server implementation went more smoothly, due in no small part to the fact that
it occurred after ironing out the bugs in the specification while testing the client implementation.

• The RFC821 specification requires that the server send a 220 Service Ready message. Our
specification did not account for this and SessionCheck reported an error when receiving it
as the specification called for a HELO message.

5.3 Lessons Learned

The first, and most important, thing to take away from this case study is that SessionCheck works.
We developed a formalisation of the SMTP protocol with which we were able to test both a client
and a server implementation of the protocol.

The second lesson learned is that translating specifications from prose to SessionCheck is an error
prone process. This is hardly surprising. English is not a formal language and it is easy to make a

34

mistake in the details. Interestingly, one of the bugs in the formalisation was not discovered when
testing the client implementation of the protocol but only at the time of testing the server. We put
this down to correct implementations being defensively written. That is to say that the code will
do its best to work well even when communicating with a faulty implementation of the protocol.

35

Chapter 6

Related work

This chapter presents a brief overview of related work and provides accounts of how SessionCheck
relates to them as well as how we may incorporate some of the ideas present in the literature in
future work.

6.1 Session Types

Using types as a method for formalising and verifying the implementation of protocol end-points has
a rich history in the literature on Session Types [14, 33]. These systems generally work by forcing
the programmer to implement their protocol end-point in a typed language which features built-in
support for typing communication end-points. In these languages the specification of the protocol
is generally formulated as a type. In return for implementing their code in a specific language the
programmer receives a proof that the implementation adheres to the specification, that is to say
that the program is type correct.

SessionCheck on the other hand does not require the implementation to be written in any particular
language. Furthermore, SessionCheck specifications may be dependent, something requiring a very
sophisticated type system to be able to express. However, SessionCheck does not provide a formal
proof of correctness but rather the ability to gain confidence in the correctness of an implementation
by means of testing.

While SessionCheck is heavily inspired by session types, we have made some pragmatic decisions
motivated by real-world constraints. Specifically, we have omitted the choice ⊕ and branch &
constructions from session types in favour of implementing them as the derived operations choice
and branch. This decision is motived by the fact that the way these primitives are used in real-

36

world applications varies between protocols. Protocols are commonly described in terms of explicit
message passing rather than implicit integration into the underlying communication substrate (as
is common in the session types literature).

6.2 Mocking

Mocking refers to the practice of creating software components specifically in order to exercise the
functionality of a system under test. As an example of a mockup consider testing the functionality
of a software component, which we will call dashboard , in a vehicle computer which is meant to
read the speed of a vehicle and update the dashboard display appropriately. The computer has
a simple interface consisting of two functions, readSpeed and updateDisplay . A mockup designed
to test the dashboard component would consist of a sequence of expected calls to readSpeed and
updateDisplay as well as their respective arguments and return values. In a notation similar to that
of Svenningsson et al. [29] a mockup which expects the readSpeed and updateDisplay functions to
be called sequentially may look like the following:

readSpeed () 7→ 5.833 . updateDisplay (speed , 21) 7→ () . ε

This mockup specifies that the call to readSpeed will return 5.833 and that the subsequent call
to updateDisplay will be called with the arguments speed and 21. In this case the speed returned
by readSpeed is in m/s and the speed indicated on the display is meant to be in km/h. Previous
work on frameworks for mocking for testing communicating parties in two-party and multi-party
protocols by Svenningsson et al. [29] as well as the GoogleMock [2] and EasyMock [1] tools for C++
and Java respectively focus on mocking individual components. SessionCheck improves on the state
of the art in mocking by introducing both the possibility of checking consistency of specifications
as well as mocking both parties of a two-party protocol using a single specification.

6.3 Contracts, Chaperone Contracts, and Monitors

Contracts [18] are a way of extending functions to provide runtime monitoring of pre- and post-
conditions and assigning blame to code which violates these conditions. In their implementation of
typed contracts Hinze et al. [13] treat contracts as refinements of ordinary Haskell types. As an
example consider the partial head function which takes a list and returns the first element:

head :: [a]→ a
head (x : xs) = x

In the scheme of Hinze et al. a contract of head which specifies that head may only be called on a
non-empty list is specified as:

37

headContract :: Contract ([a]→ a)
headContract = prop (λxs → ¬ (null xs)) _ true

Where prop :: (a → Bool)→ Contract a takes a predicate and lifts it to a contract, (_) combines
two contracts to form a contract for functions, and true is the contract which is always satisfied,
equivalent to prop (const True). Finally, associating head with its contract headContract is done
using the function assert :: Contract a → a → a:

headWithContract :: [a]→ [a]
headWithContract = assert headContract head

When a programmer uses the new headWithContract function the input is dynamically checked and
an error is reported in case the contract is violated, that is to say when headWithContract is called
on the empty list. Crucially, the programmer can also specify location information for each call
to headWithContract , which will extend contract violations errors with specific information about
which call to headWithContract failed.

Melgratti and Padovani [17] introduce Chaperone Contracts, as a method for specifying higher-order
two-party protocols (protocols which include transmitting protocol endpoints over the network).
While this work is similar to SessionCheck it does not address the problem of mocking protocol end
points. Furthermore, while the interface for contracts is very similar to ours, providing primitives
similar to our send and get , the interface is not monadic. Rather, specifications need to be explicitly
sequenced using the (@@)::Spec → Spec → Spec combinator. As a result of this dependent contracts,
where the constraints in send and get depend on previous sent and received values, are specified
using special send d :: (a → Bool)→ (a → Spec)→ Spec and get d :: (a → Bool)→ (a → Spec)→
Spec combinators. This introduces additional syntactic noise by making dependency more explicit
than it already is.

One important benefit of Melgratti and Padovani’s work over ours is the ability to write higher order
specifications, that is to say specifications where protocol end-points, themselves having associated
specifications, may be transmitted on the communication channels.

We also believe that modest extensions to SessionCheck would allow us to use our specifications as
contracts in a way similar to Melgratti and Padovani. Doing this would effectively provide a more
convenient (monadic) language for specifying contracts for the subset of protocols which are first
order.

6.4 The Scribble Specification Language

The Scribble specification language [34] is a stand alone language which permits specification of
multi-party protocols. Scribble specifications can be used to derive monitors which monitor com-
municating parties to find protocol violations, and to derive skeleton code for implementing the

38

protocol in the Java language [12]. Scribble also features an analog of the dual operation, project ,
which turns a global specification into a local one. Both dual and project have their origins in the
literature on session types [14] and the π-calculus [19].

Our work differs significantly from Scribble. SessionCheck is focused on testing and simulating
protocols, while the language leverages as much of the Haskell host language as possible, making the
implementation simple and succinct. The SessionCheck language being embedded means generating
skeleton code from a specification is more difficult. However, we have techniques in mind for a
version of SessionCheck which can handle both testing, use as a monitor, and generating skeleton
code, bringing SessionCheck up to speed with Scribble.

39

Chapter 7

Conclusions, Discussion, and
Future Work

In this report we have defined and implemented a language for specifying communication protocols
called SessionCheck. It combines the idea of typed channels and duality from the literature on
session types with mocking and property based testing in a style similar in part to chaperone
contracts. As SessionCheck specifications have duals, meaning each specification describes both
sides of a protocol, and are language agnostic they can be used to specify and test implementations
of protocol end-points written in different languages.

We have shown how SessionCheck is implemented as an embedded domain specific language in
Haskell. The implementation allows us to produce multiple interpretations of a single SessionCheck
specification, including testing protocol end-points, shrinking examples of protocol violations, check-
ing protocol self-consistency, and generating concrete examples of the protocol in action.

The case study in Chapter 5 demonstrates that SessionCheck can be useful for developing specifi-
cations for real world protocols. We were able to use SessionCheck to test both client and server
implementations of the SMTP protocol, finding inconsistencies between the specification and the
implementations and even something which could be argued to be a minor bug in one of the im-
plementations. While we consider our work on SessionCheck successful, there are some limitations
that need to be addressed in future work. Included in these are improvements to the shrinking
algorithm as well as more thorough case studies. Ultimately, we believe it would be useful to have
a large repository of SessionCheck formalisations of common protocols that programmers could use
to verify their own implementations as well as the libraries that they use against.

40

7.1 Discussion

The decision to implement the SessionCheck specification language as an embedded domain specific
language had significant impact on the usability of the tool. On the one hand it allows for a very
convenient syntax and expressive semantics, with a simple implementation to match. On the other
hand, the higher-order nature of a monadic embedding means that we were severely limited in the
implementation of our shrinking algorithm. For example, the monadic implementation makes it
impossible to implement a shrinking algorithm which can take advantage of any ”automata-like”
structure in the protocol to eliminate redundant loops and make intelligent choices at branching
points et cetera. Having a first-order representation of the protocol specification could even have
made it possible to use techniques from the property based testing literature [25, 11] which eliminates
the need for shrinking entirely by enumerating test cases in order of size.

Another important consequence of the design decisions in SessionCheck, and especially the goal of
having fully bi-directional specification and testing, is the presence of both intrinsic and extrinsic
choice. Intrinsic choices are choices that may influence the run of a test suite which made by the
mocking party, in our case SessionCheck. Extrinsic choice on the other hand denotes choices made
by the system under test. Svenningsson et al.’s [29] mocking combinators are an example of a
system with only extrinsic choice. That is, the combinators allow for the system under test to make
different API calls depending on the situation, but the mocked party is always deterministic. As
a consequence of the lack of intrinsic choice Svenningsson et al. are forced to use QuickCheck to
generate several instances of each specification to exercise the system under test. In SessionCheck,
however, the presence of both intrinsic and extrinsic choice complicate the semantics of the lan-
guage in favour of making the specifications both bi-directional and self-contained. A SessionCheck
specification is not a piece of QuickCheck code which generates a mockup, the specification is
the mockup. We believe that the choices made in SessionCheck favour the programmer, making
specifications both easy to write and to read.

7.2 Future work

Real world distributed systems often involve more than two parties, Honda et al. [15] present ”Multi
Party Session Types”, session types for multiple actors in a distributed system. These are used by
the Scribble [34] protocol specification language. In multi-party session types, instead of the notion
of duality, there is the more general notion of a projection of a global specification to a local actor
project ::GlobalSpec → Actor → LocalSpec. Unlike two-party session types, multi-party session types
are difficult to express in the monadic style of SessionCheck due to the risk of inadvertent sharing
of information between actors without explicitly specifying messages. As an example showing why
this might be problematic consider the following specification in an imagined multi-party version
of SessionCheck where we have send :: a v t ⇒ Predicate a → String → String → Spec st t a and
send p x y denotes sending a message satisfying p from x to y

41

spec :: Int v t ⇒ Spec t Int
spec = do

a ← send anything "A" "B"

send (greaterThan a) "C" "D"

The specification requires C to know about the value exchanged between A and B without any
message being sent between B and C. This example illustrates that extending SessionCheck to multi-
party protocols is not a simple generalization of the current implementation but rather requires some
care to be taken in implementation. The literature on information flow control [10] provides some
interesting approaches for handling problems of this kind. Including using monads parameterised
by the security level or binding time of values, in both dynamic [27] and static contexts [7, 26].
However, implementing such extensions to SessionCheck is left as future work.

The greedy shrinking algorithm presented in chapter 2 works well for some examples but as demon-
strated in the same chapter it is not perfect and works poorly for some bugs. There are multiple
possible approaches to solving this problem. One approach is to provide a method for the program-
mer writing a SessionCheck specification to guide the shrinking algorithm in a way similar to the
shrink method in the Arbitrary type class in QuickCheck [9].

Many communication protocols, including TCP [22], IP [24], and the BitTorrent protocol [4] are
asynchronous, meaning that the order of send and get messages is not necessarily deterministic.
Writing specifications of such protocols in SessionCheck is currently not possible and extending
SessionCheck to support it poses several challenges which we intend to work on in the future. One
such challenge is finding a semantics of interleaving specifications. Our initial tentative experiments
suggest that incorporating an interleave :: Spec t a → Spec t () combinator into the specification
language provides sufficient syntactic power to write what could intuitively be seen as a specification
for the BitTorrent protocol. However, a choice needs to be made when choosing the semantics of
interleave. One possible semantics of interleave simply interleaves the two specifications at random,
for example turning:

do
interleave $ do

get anything
send anything

get (is ())
send (is ())

into

do
get (is ())
get anything
send anything
send (is ())

42

effectively implementing a random, non-preemptive scheduler. Another possible semantics is to
treat interleaved specifications and threads which may be preempted. Which semantics is the
easiest to reason about? Which semantics is more convenient to specify protocols with? These are
questions which we are excited to continue working on.

Client side applications like mail clients or graphical user interface applications require some form
of user input to perform some form of communication with a server application. In order to test
such applications thoroughly this user input also needs to be generated by the testing tool. In the
case of the SMTP client case study this was achieved by creating random emails using QuickCheck
and providing these as input to the client program. In the case of GUI applications this can be
done using a tool like Selenium [3]. We consider the integration of SessionCheck with such tools an
interesting avenue for future work.

43

Bibliography

[1] Easymock. http://www.easymock.org.

[2] Google c++ mocking framework. http://code.google.com/p/googlemock.

[3] The selenium tool. http://www.seleniumhq.org/projects/.

[4] The BitTorrent protocol specification. http://www.bittorrent.org/beps/bep_0003.html.

[5] The smtpd library. https://docs.python.org/3/library/smtpd.html.

[6] The smtplib library. https://docs.python.org/2/library/smtplib.html.

[7] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon G Riecke. A core calculus of de-
pendency. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 147–160. ACM, 1999.

[8] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf,
2007.

[9] Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random testing of haskell
programs. SIGPLAN Not., 35(9):268–279, September 2000.

[10] Dorothy E Denning. A lattice model of secure information flow. Communications of the ACM,
19(5):236–243, 1976.

[11] Jonas Dureg̊ard, Patrik Jansson, and Meng Wang. Feat: functional enumeration of algebraic
types. ACM SIGPLAN Notices, 47(12):61–72, 2013.

[12] James Gosling. The Java language specification. Addison-Wesley Professional, 2000.

[13] Ralf Hinze, Johan Jeuring, and Andres Löh. Typed contracts for functional programming. In
FLOPS, volume 6, pages 208–225. Springer, 2006.

[14] Kohei Honda. Types for dyadic interaction. In CONCUR’93, pages 509–523. Springer, 1993.

[15] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
ACM SIGPLAN Notices, 43(1):273–284, 2008.

44

http://www.easymock.org
http://code.google.com/p/googlemock
http://www.seleniumhq.org/projects/
http://www.bittorrent.org/beps/bep_0003.html
https://docs.python.org/3/library/smtpd.html
https://docs.python.org/2/library/smtplib.html

[16] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn, Joseph Fasel,
Maŕıa M Guzmán, Kevin Hammond, John Hughes, Thomas Johnsson, et al. Report on the
programming language haskell: a non-strict, purely functional language version 1.2. ACM
SigPlan notices, 27(5):1–164, 1992.

[17] Hernán Melgratti and Luca Padovani. Chaperone contracts for higher-order sessions. Proceed-
ings of the ACM on Programming Languages, 1(ICFP):35, 2017.

[18] Bertrand Meyer. Eiffel: the language. Prentice-Hall, Inc., 1992.

[19] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, i. Infor-
mation and computation, 100(1):1–40, 1992.

[20] John G. Myers and Marshall T. Rose. Post office protocol - version 3. STD 53, RFC Editor,
May 1996. http://www.rfc-editor.org/rfc/rfc1939.txt.

[21] Simon Peyton Jones, Stephanie Weirich, Richard A. Eisenberg, and Dimitrios Vytiniotis. A
Reflection on Types, pages 292–317. Springer International Publishing, Cham, 2016.

[22] Jonathan B. Postel. Transmission control protocol. STD 7, RFC Editor, September 1981.
http://www.rfc-editor.org/rfc/rfc793.txt.

[23] Jonathan B. Postel. Simple mail transfer protocol. STD 10, RFC Editor, August 1982. http:
//www.rfc-editor.org/rfc/rfc821.txt.

[24] Jonthan B. Postel. Internet protocol. STD 5, RFC Editor, September 1981. http://www.

rfc-editor.org/rfc/rfc791.txt.

[25] Colin Runciman, Matthew Naylor, and Fredrik Lindblad. Smallcheck and lazy smallcheck:
Automatic exhaustive testing for small values. SIGPLAN Not., 44(2):37–48, September 2008.

[26] Alejandro Russo. Functional pearl: two can keep a secret, if one of them uses haskell. In ACM
SIGPLAN International Conference in Functional Programming (ICFP), volume 50, pages
280–288. ACM, 2015.

[27] Deian Stefan, Alejandro Russo, John C Mitchell, and David Mazières. Flexible dynamic in-
formation flow control in haskell. In ACM Sigplan Notices, volume 46, pages 95–106. ACM,
2011.

[28] Martin Sulzmann, Manuel MT Chakravarty, Simon Peyton Jones, and Kevin Donnelly. System
f with type equality coercions. In Proceedings of the 2007 ACM SIGPLAN international
workshop on Types in languages design and implementation, pages 53–66. ACM, 2007.

[29] Josef Svenningsson, Hans Svensson, Nicholas Smallbone, Thomas Arts, Ulf Norell, and John
Hughes. An expressive semantics of mocking. In Proceedings of the 17th International Con-
ference on Fundamental Approaches to Software Engineering - Volume 8411, pages 385–399,
New York, NY, USA, 2014. Springer-Verlag New York, Inc.

[30] Josef David Svenningsson and Bo Joel Svensson. Simple and compositional reification of
monadic embedded languages. In ACM SIGPLAN Notices, volume 48, pages 299–304. ACM,
2013.

45

http://www.rfc-editor.org/rfc/rfc1939.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc821.txt
http://www.rfc-editor.org/rfc/rfc821.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt

[31] Guido Van Rossum and Fred L Drake. Python language reference manual. Network Theory,
2003.

[32] Philip Wadler. How to declare an imperative. ACM Computer Survey, 29(3):240–263, Septem-
ber 1997.

[33] Philip Wadler. Propositions as sessions. SIGPLAN Not., 47(9):273–286, September 2012.

[34] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble proto-
col language. In International Symposium on Trustworthy Global Computing, pages 22–41.
Springer, 2013.

46

	Introduction
	 SessionCheck in Action
	Checking that protocols are coherent
	Testing protocol end-points
	Shrinking

	The SessionCheck specification language
	The Predicate type
	The dual of a specification

	 The implementation of SessionCheck
	The Spec type
	Modularity
	Checking coherence
	Shrinking

	 Case study: The SMTP protocol
	Testing Implementations
	Bugs found
	Lessons Learned

	Related work
	Session Types
	Mocking
	Contracts, Chaperone Contracts, and Monitors
	The Scribble Specification Language

	Conclusions, Discussion, and Future Work
	Discussion
	Future work

