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Abstract
With the development of technology and the increasing need of advanced control
theory, MPC (Model Predictive Control) is receiving more and more attention from
industry and academic field nowadays. Due to the constraints arising from physi-
cal limit or safety, MPC used in industry usually faces the problem of infeasibility.
However, the commonly used solution which is the soft-constrained MPC is costly
and time consuming in tuning for the weights of constraints to reach an ideal per-
formance.

To solve the problems mentioned above, a hierarchical MPC algorithm is proposed
in this thesis. By grouping the constraints according to their importance and solving
the QP (Quadratic Programming) problems hierarchically, this new algorithm let us
have more control over the performance of the controller without spending time on
tuning the weights of slack variables. In addition, due to the introduction of slack
variables, this algorithm is recursive feasible all the time.

An example autonomous driving vehicle problem is introduced in this thesis for il-
lustrating the proposed design methodology. By comparing the performance of the
proposed algorithm against a soft-constrained MPC, it can be concluded that the
hierarchical MPC behaves better w.r.t constraints with higher priority and guar-
antees the smallest violation in constraints with higher priority . However, these
advantages are achieved at the cost of increased computational complexity. Further
research on reducing the calculation cost is needed to make the hierarchical MPC
more practical and have a wider application field.

Keywords: Model Predictive Control, recursive feasibility, constraints, hierarchical,
autonomous driving, priority
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1
Introduction

Model predictive control (MPC) originated from the process industry in the 1970s to
deal with optimal control problems with constraints, and today is a well-established
control field. The success of predictive control in solving complex industrial pro-
cesses over the past 30 years has fully demonstrated its great potential in handling
complex constrained optimization control problems. A large body of literature on
predictive control has pointed out that the greatest attraction of predictive control
lies in its ability to explicitly handle constraints. This capability stems from the re-
formulation of the constrained control problem into an optimization problem, where
constraints are naturally enforced. Successful applications indicate that predictive
control, as a practically available constraint control algorithm, has been widely ac-
cepted by process control industry [12].

In recent years, in many fields such as advanced manufacturing, energy, environment,
aerospace, and medical care, there have been many reports that use predictive con-
trol to solve constrained control problems. For example supply chain management
in semiconductor production, materials manufacturing with high pressure, build-
ing energy-saving control, urban sewage treatment, flight control, satellite attitude
control, etc [13].

1.1 Model predictive control
Since the beginning of 21st century, with the advancement of science and tech-
nology and the development of human society, control engineers have placed higher
and higher demands on control that cannot be satisfied with the classic design tools,
but hope that the control system can achieve better performance by optimization.
However, at the same time, optimization has been constrained by more factors. In
addition to the constraints of physical conditions, safety, economy (quality, energy
consumption, etc.) and societal aspects (such as environment friendly) must also
be considered. These two requirements placed new challenges on the constrained
optimization control of complex systems.

Although predictive control has achieved success in industry worldwide, it still has
the following limitation. From the perspective of existing algorithms, it is mainly
applicable to systems with slow dynamics and high-performance computers, which
greatly limits its promotion in a wider field [3].
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1. Introduction

In addition, while solving MPC in practical work, infeasibility problems sometimes
pop out because of the overly conservative constraints or the effect of disturbances.
The most common way to solve this problem is to soften some or all of the con-
straints by introducing slack variables. Engineers could adjust the performance of
the controller by tuning the weights of these slack variables, but it usually requires
profound experience and takes a lot of time to obtain an desired behavior when
there are a lot of constraints in the system.

In summary, although the application of predictive control technology has achieved
great success in industry and is considered as the only advanced technology that
can effectively solve the optimal control of multivariable constraint systems in a
systematic and intuitive way in the process control field, its application fields and
objects are still limited by the drawbacks of existing algorithms. For a wider range
of application areas and more complex objects, MPC is far from being a systematic
methods and techniques.

1.2 Literature review
The increasing need of constrained optimization control in various application field
which arises from the development of science and technology drives the research on
predictive control theory. The number of papers related to model predictive control
which are published in the conference and academic journals increases greatly in
the past 10 years. The research field carried out these years can be summarized as
following.

1.2.1 Computational aspects
The online computation cost for solving constrained optimization problems greatly
limits the application of MPC in industrial area and people have carried out a wide
range of research on structures, strategies and algorithms to solve this problem.
For example: hierarchical and distributed control structures, offline design/online
synthesis and input parameterization strategy and approximate optimization algo-
rithms [5].

In recent years, more attention has been paid to the use of distributed structures
to reduce computational complexity in large-scale systems. By decomposing the
large-scale optimal problems into multiple small-scale problems, distributed model
predictive control not only reduces the computational complexity greatly, but also
improves the robustness of the overall system. The research focus of distributed
model predictive control includes the handling of coupled dynamics and constraints,
the guarantee of global stability and the evaluation of optimality [15].

The improvement or appropriate approximation of the standard optimization algo-
rithm is also a kind of attempt to reduce the online calculation complexity of model
predictive control. Proposed in the literature [8], by replacing the commonly used
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1. Introduction

quadratic programming and semi-definite programming with the extended Newton-
Raphson algorithm, the calculation complexity can be reduced greatly in linear
MPC. In addition, there is new development in using neural network for quadratic
programming. Compared with previous work, the simplified dual neural network
has achieved good results in ensuring convergence to the global optimal solution
and reducing the computational complexity [10].

1.2.2 Robust predictive control
Since mid-1990s, robust predictive control theory has become the focus of predictive
control theory research since the beginning of this century. Most of the early robust
predictive control studies are based on the assumption that the states are measur-
able, but it is not true in a large number of practical systems. Therefore, in recent
years, many studies have been conducted on robust predictive control using output
feedback instead of state feedback. However, the error of the state reconstruction
brings new challenge to ensure the feasibility and stability of the system [11].

In robust predictive control, the requirement of feasible areas, online calculation
complexity and controller performances often conflicts with each other. Considering
that the constraints in the practical system usually have linear and asymmetrical
forms, the literature [9] replaces the traditional ellipsoidal invariant set with polyhe-
dral invariant set since it is more practical and less conservative. The performance
can be improved since a larger stabilizable set and extra degrees of freedom is pro-
vided by the algorithm.

1.2.3 Nonlinear system
It is common in process industry that the system is nonlinear or stochastic. In re-
cent years, in order to improve the practical application of MPC, new developments
in predictive control theory for nonlinear systems and stochastic systems have been
made such as nonlinear predictive controller design and stochastic predictive control
theory [2].

For nonlinear systems, the modeling method has developed a lot in using the Takagi-
Sugeno (T-S) model to characterize its dynamic characteristics. Based on the non-
linear system described by the T-S model, the literature [4] proposed a control law
depending on the membership function that guarantees the recursive feasibility of
the convex optimization problem and the the closed-loop stability.

The robust predictive control is no longer applicable for a constrained system that
are subject to stochastic uncertainty. The literature [1] proposed the concept of
probability invariant set to provide a method of handling probabilistic constraints
and ensuring closed loop stability.

3
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2
Preliminaries

Vehicle dynamics and MPC used in the thesis are introduced in this section.

2.1 A car model of lateral vehicle dynamics
A car model with 2 df (degrees of freedom) is showed in Figure 2.1. The 2 df are
the vehicle lateral position y and the vehicle yaw angle ψ respectively. The vehicle
lateral position y is the distance from the vehicle to the center of rotation of the
vehicle which is denoted by O along the lateral axis of the vehicle. The vehicle yaw
angle ψ is the angle from the global x axis to the direction of the vehicle. And Vx
is the longitudinal velocity of the vehicle [14].

Figure 2.1: Autonomous driving vehicle [14]
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2. Preliminaries

By applying Newton’s second law of motion along the vehicle’s lateral axis, we have

may = Fyf + Fyr, (2.1)

Where ay = V̇ is the vehicle’s inertial acceleration along y axis and Fyf and Fyr are
the lateral tire forces provided by the front and rear wheels respectively. ay consists
of two parts: the acceleration ÿ which arises from the vehicle’s movement in y axis
and the centripetal acceleration Vxψ̇. Hence

ay = ÿ + Vxdotψ, (2.2)

By using the expression of ay from Eq.(2.2) in Eq.(2.1), we get the following equation

m(ÿ + Vxdotψ) = Fyf + Fyr, (2.3)

The torque balance along the z axis yields the following equation

Izψ̈ = lfFyf − lrFyr. (2.4)

where lf and lr are the distances from the axis of the front tire and the rear tire to
the gravity center of the vehicle respectively.

It can be shown that the lateral tire force provided by a tire is proportional to the
“slip-angle” when it is small. The slip angle of a tire is defined as the angle between
the steering direction of the tire and the direction of the vehicle’s velocity.

Figure 2.2: Vehicle model [14]

αf = δ − θV f , (2.5)

The slip angle of the front wheel in figure 2.2 can be expressed as Eq.(2.5), where
θV f is the angle between the vehicle’s velocity and its longitudinal direction and δ
is the front wheel steering angle.

Similarly, the slip angle of rear tire can be approximated as

αr = −θV r, (2.6)

6



2. Preliminaries

Therefore, the lateral tire force provided by the front wheels can be written as

Fyf = 2Caf (δ − θV f ), (2.7)

where the coefficient Caf is called the cornering stiffness of the front tire. Since there
are two front wheels in the vehicle, the expression is timed by 2.

Similarly the lateral tire force provided by the rear wheels can be written as

Fyr = 2Car(−θV r). (2.8)

where Car is the cornering stiffness of the rear tire and the same reason for the factor
2.

The following equations can be used to calculate θV f and θV r:

tan(θV f ) = Vy + lf ψ̇

Vx
, tan(θV r) = Vy − lrψ̇

Vx
. (2.9)

Applying small angle approximations and substituting ẏ for Vy,

θV f = ẏ + lf ψ̇

Vx
, θV r = ẏ − lrψ̇

Vx
. (2.10)

Substituting Eqs.(2.5), (2.6), (2.9) and (2.10) into Eqs.(2.3) and (2.4), the state
space model can be written as

d

dt


y
ẏ
ψ

ψ̇

 =


0 1 0 0
0 −2Cαf+2Cαr

mVx
0 −Vx − 2Cαf lf−2Cαrlr

mVx

0 0 0 1
0 −2Cαf lf−2Cαrlr

IzVx
0 −2Cαf l2f+2Cαrl2r

IzVx



+


0

2Cαf
m

0
2Cαflf
Iz

 δ.
(2.11)
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2. Preliminaries

2.2 State-space model of lateral deviation and ori-
entation error

It would be much more convenient if the states are lateral deviation and orientation
error with respect to the road when the goal is to develop a control system of the
vehicle for path-following. Therefore the vehicle model we get in section 2.1 will be
rewritten with following states. [14]

e1: the distance from the vehicle to the center of path
e2: vehicle orientation with respect to the road.

In order to derive an LTI system, the vehicle speed and the curvature of road are
set constant. It is assumed that the radius of the road R is large enough so that the
small angle assumptions can be used. The rate of change of the desired orientation
of the vehicle is defined as

˙ψdes = Vx
R
, (2.12)

The desired acceleration of the vehicle is defined as
V 2
x

R
= Vx ˙ψdes. (2.13)

ë1 and e2 are defined as following

ë1 = (ÿ + Vxψ̇)− V 2
x

R
= ÿ + Vx(ψ̇ − ˙ψdes)

e2 = ψ − ψdes,
(2.14)

and
ė1 = ẏ + Vx(ψ − ψdes), (2.15)

Eq.(2.15) is consistent with Eq.(2.14) if the velocity Vx is constant. Otherwise, by
integrating Eq.(2.14) we obtain

ė1 = ẏ +
∫
Vxe2dt. (2.16)

Eq.(2.16) gives us a model that is nonlinear and time-variant which makes it very
difficult to design a controller for it. So the longitudinal velocity is assumed to be a
constant and thus gives us an LTI model.

Substituting Eq.(2.14) and (2.15) into (2.3) and (2.4), we have

më1 =ė1(− 2
Vx
Cαf −

2
Vx
Cαr) + e2(2Cαf l + 2Cαr)

+(ė2 + ˙ψdes)(−
2
Vx
Cαf lf + 2

Vx
Cαrlr) + 2Cαfδ,

(2.17)

and

Iz ë2 = 2Cαfδl1 + (e2 −
ė1

Vx
)(2Cαf lf − 2Cαrlr)

+ (ė2 + ˙ψdes)(−
2Cαf l2f
Vx

− 2Cαrl2r
Vx

)− Iz ¨ψdes.
(2.18)
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2. Preliminaries

The state space model can be written as

d

dt


e1
ė1
e2
ė2

 =


0 1 0 0
0 −2Cαf+2Cαr

mVx

2Cαf+2Cαr
m

−2Cαf lf+2Cαrlr
mVx

0 0 0 1
0 −2Cαf lf−2Cαrlr

IzVx
−2Cαf lf−2Cαrlr

Iz
−2Cαf l2f+2Cαrl2r

IzVx




e1
ė1

e2
ė2



+


0

2Cαf
m

0
2Cαflf
Iz

 δ +


0

−−2Cαf lf+2Cαrlr
mVx

− Vx
0

−2Cαf l2f+2Cαrl2r
IzVx

 ˙ψdes.

(2.19)

The path-following problem of the autonomous driving vehicle can therefore be
expressed as a state-space equation with dynamics given in Eq.(2.19). Note that
the lateral velocity Vx and the road curvature ˙ψdes are both assumed to be constant
to obtain an LTI system.

2.3 Model predictive control
MPC uses the current plant measurements, the current state, the model, and the
constraints to calculate future input that minimize the cost function while satisfying
the constraints on both states and input. The MPC typically sends out only the first
element of the control sequence, and repeats the calculation when the next input is
required [17].

The core of the MPC approach, the receding horizon idea can be expressed as fol-
lowing:

1. At time k, predict the process response over a finite prediction horizon N; this
response depends on the sequence of future control inputs over the control horizon M.

2. Calculate the optimum control sequence that gives the minimum cost function
while fulfilling the constraints.

3. Apply the first element in the control sequence as input to the system in time k,
k→k+1, and return to step 1 [6].
Below is an example of MPC for an LTI system. Consider the following discrete
Linear Time-Invariant(LTI) system

x(k + 1) = Ax(k) +Bu(k) + Ld(k), (2.20)

Where x ∈ Rdimx, u ∈ Rdimu are the state and input vectors respectively. d is the
unknown input disturbance.

The system is subject to a set of inequality constraints that usually come from the
physical limitations.

Cxx ≤ Dx, Cuu ≤ Du, Cfx(N) ≤ Df . (2.21)

9



2. Preliminaries

A regular MPC scheme for system (1) can then be formulated as following

1. At sampling time k, solve the following optimization problem for the optimal
control sequence u = [u0(0;x), u0(1;x), . . . , u0(N − 1;x)]T with a control horizon of
N . Here we assume that the prediction and control horizon are equal.

V ∗(x) = min
u

N−1∑
i=0

l(x(i), u(i)) + V f (x(N))

s.t x(i+ 1) = Ax(i) +Bu(i) + Ld(i)
Cxx ≤ Dx, Cuu ≤ Du

Cfx(N) ≤ Df .

(2.22)

V is the objective we want to minimize which usually consists of two parts: the
stage cost and the terminal penalty. They are usually defined as

l(x(k), u(k)) = 1
2(‖x‖2

Q + ‖u‖2
R),

V f (x(N)) = 1
2‖x(N)‖2

p.
(2.23)

2. Apply the first control input to the system

u(k) = u0(0;x). (2.24)

3. Let k := k + 1 and go to (1).

However, it is usually impossible to guarantee that the optimization problem is fea-
sible at every sampling instant. Due to the presence of state constraints or noise, it
is very usual that the optimization problem is infeasible for some initial states, i.e.
there is no solution that fulfills all constraints.

Assume x ∈ XN is a feasible state which means that there is a solution to the op-
timization problem for that x. The following question is then natural to ask: after
having applied the computed input, will the next state x+ still within the feasible
set XN? This is clearly a property we want to see in the algorithm which is known
as recursive feasibility. The definition of it is as following [6]

Definition: The model predictive controller is feasible for the closed-loop system
x+ = f(x, kn(x)) if

x(0) ∈ XN ⇒ x(k + 1) = f(x(k), kN(x(k))) ∈ XN ,∀k ∈ N. (2.25)

where XN is the feasible set.

The somewhat disappointing answer is, however, that there is no general guarantee
for recursive feasibility in MPC, even in the nominal case with a perfect model
and no disturbances. One of the most commonly used method that ensures this
characteristic is introduced in the next section.

10



2. Preliminaries

2.4 Soft-constrained MPC
A method that guarantees the recursive feasibility of MPC is to soften its constraints
so that they can be violated if necessary. A straightforward way for softening con-
straints which is called soft-constrained MPC is to introduce slack variables which
are defined such that they are non-zero only if the corresponding constraints are
violated. The new soft-constrained MPC can be formulated as

V ∗(x) = min
u

n−1∑
i=0

l(x(i), u(i)) + V f (x(N)) + f(ε)

s.t x(i+ 1) = Ax(i) +Bu(i) + Ld(i)
C[x, u]T − ε ≤ D

ε ≥ 0.

(2.26)

where the C,D matrices are the corresponding inequality constraint matrices in
Eq.(2.22). ε is the slack vector. f(ε) is the penalty function for constraint viola-
tions. Generally, it has two types [18]

Quadratic form:
f(ε) = 1

2ε
TSε, (2.27)

Where S is the weight matrix.

Linear form:
f(ε) = sT ε. (2.28)

Where s is the vector with positive units.

If the original, hard-constrained MPC is feasible, we would like the soft-constrained
problem to produce the same control action. In order to guarantee this, the weights
in the cost function have to be chosen large enough such that the QP solver will try
to keep the slack variables at zero if possible.

2.5 KKT Conditions
In optimization problems, the KKT (Karush–Kuhn–Tucker) conditions are the first-
order necessary conditions for a solution to be optimal. The KKT conditions are
usually not solved directly, except in some special cases a closed-form solution can
be derived analytically [16].

In the beginning, the KKT conditions were named after Albert W. Tucker and
Harold W. Kuhn, who first published the conditions in 1951. However, it was dis-
covered later that this necessary conditions for the optimization problem had been
proposed by William Karush in his master’s thesis in 1939.

11



2. Preliminaries

Consider the following optimization problem

minimize f(x)
s.t h(x) = 0

g(x) ≤ 0.
(2.29)

where x is the optimization variable, f is the cost function, hj(1, . . . , l) and gi(1, . . . ,m)
are the equality constraints and inequality constraints respectively. The optimiza-
tion problem has a total of l equality constraints and m inequality constraints.

Assume x∗ is a local minimum. Then there exists unique vectors µ∗ and λ∗ that
fulfill

∇f(x∗) +∇g(x∗)µ∗ +∇h(x∗)λ∗ = 0
µ∗ ≥ 0

g(x∗) ≤ 0, h(x∗) = 0
µ∗i gi(x∗) = 0, i = 1, . . . ,m.

(2.30)

Eq.(2.30) are referred to as the KKT conditions. In this equation, λ and µ are the
Lagrange multipliers for the equality constraints and inequality constraints respec-
tively. The difference between them is that µ has to be non-negative. The KKT
condition Eq.(2.30) can be expressed conveniently as a condition on the Lagrangian
L.

∇xL(x∗, µ∗, λ∗) = 0, where L(x, µ, λ) = f(x) + µTg(x) + λTh(x). (2.31)

The last equation of Eq.(2.30) is called the complementary slackness condition. The
purpose of this equation is that if gi(x∗) < 0 (inactive constraint), then µi = 0.
Conversely, if gi(x∗) = 0 (active constraints), then µi > 0 (the constraint is strictly
active) or µi = 0 (the constraint is not strictly active) [6].

The KKT conditions are very useful for searching local optimum, and they are also
the basis of many optimization algorithms. However, since KKT conditions only
provide necessary conditions for a solution to be optimal, the following sufficient
conditions for a local optimum is introduced.

Consider x∗, µ∗, λ∗ that is found by using KKT conditions with all active constraints
being strictly active, then for all d 6= 0 such that

[∂g(x∗)
∂x∗

,
∂h(x∗)
∂x∗

]T ∗ d = 0, (2.32)

The following equation must hold

dT∇2
xL(x∗, µ∗, λ∗)d > 0. (2.33)

Then x∗ is a local minimum.

12



3
Algorithm

The hierarchical MPC scheme which is the core of this thesis is proposed followed
by discussions about its limitations and drawbacks.

3.1 Main result
Consider the following minimization problem

Si =argmin
x∈Ω
‖w‖2

s.t Cx− w ≤ D

w ≥ 0.
(3.1)

The solution set Si is nonempty since the minimization problem is coercive.

For the new set Si we have the following proposition:

Proposition 3.1: Given a solution x∗ ∈ Si and consider each linear inequality
cjx ≤ dj in Eq.(3.1), we have

Si = Ω ∩
{
cjx ≤ dj if cjx∗1 ≤ dj

cjx = cjx∗ if cjx∗1 > dj.
(3.2)

Which means that all optimal solutions deactivate the same set of inequality con-
straints and violate other active inequality constraints by a same amount [7].

Proof : Let us consider an optimal solution x∗, w∗ to the minimization problem 3.1
within the set Ω. The KKT optimality conditions give that for every vector v not
exceeding the boundary of Ω from x∗, we have

w∗TCv ≥ 0. (3.3)

This inequality obviously holds when w∗ = 0. If w∗ > 0, due to the definition of
optimum, all the other points within the set Ω have a w that fulfills w > 0, thus we
have

w∗TCv = w∗TC(x1 − x∗) = w∗T (Cx1 − d)− w∗T (Cx∗ − d)
= w∗Tw1 − w∗Tw∗ = w∗T (w1 − w∗).

(3.4)

13



3. Algorithm

Suppose Eq.(3.3) is invalid, which means that there exists x1, w1 fulfills w∗T (w1 −
w∗) < 0. Consider a point x2 = θx∗+ (1− θ)x1, θ ∈ (0, 1) between x∗, x1, since the
set Ω is convex, x2 ∈ Ω. Thus, we have

w2 = Cx2 −D = C(θx∗ + (1− θ)x1)−D
= θ(Cx∗ −D) + (1− θ)(Cx1 −D) = θw∗ + (1− θ)w1

‖w2‖2 − ‖w∗‖2 = (θw∗ + (1− θ)w1)T (θw∗ + (1− θ)w1)− w∗Tw∗

= (θ2 − 1)w∗Tw∗ + (1− θ)2wT1 w1 + 2θ(1− θ)w∗Tw1

= (1− θ)[2θw∗Tw1 + (1− θ)wT1 w1 − (1 + θ)w∗Tw∗]
= (1− θ)[(1− θ)(wT1 w1 − w∗Tw1) + (1 + θ)(w∗Tw1 − w∗Tw∗)]

= (1− θ)2[(wT1 w1 − w∗Tw1) + 1 + θ

1− θ (w∗Tw1 − w∗Tw∗)].

(3.5)

Since w∗Tw1 − w∗Tw∗ < 0 and 1+θ
1−θ ∈ (1,+∞), we can always find a θ that makes

‖w2‖2 − ‖w∗‖2 < 0 which contradicts the assumption that x∗ is optimum, so in-
equality 3.3 is proved.

If the QP(Quadratic Programming) problem 3.1 has only 1 optimum solution, propo-
sition 3.1 holds. Next, suppose that it has two optimal solutions, x∗1, w∗1 and x∗2, w∗2.
If w∗1 = w∗2 = 0, it is obvious that the proposition 3.1 holds. If not, since the set Ω is
convex, the vector x∗2 − x∗1 is still within the range of Ω from x∗1, therefore, we have

w∗T1 C(x∗2 − x∗1) ≥ 0, (3.6)

which is equivalent to

w∗T1 (Cx∗2 − d)− w∗T1 (Cx∗1 − d) ≥ 0, (3.7)

which is actually
w∗T1 w∗2 − ‖w∗1‖2 ≥ 0, (3.8)

The same be be written from x∗2

w∗T2 w∗1 − ‖w∗2‖2 ≥ 0, (3.9)

By combining 3.7 and 3.8 we have

‖w∗2 − w∗1‖2 = ‖w∗2‖2 + ‖w∗1‖2 − 2w∗T2 w∗1 ≤ 0. (3.10)

but the squared norm cannot be negative which means it is zero, i.e w∗1 = w∗2. The
proof is the same for multiple optimum solutions bigger than 2.

Therefore, if w∗j1 > 0 ⇒ w∗j2 = w∗j1 > 0 which means cjx∗1 = cjx∗2, if cjx∗1 > dj.
And w∗j1 = 0 ⇒ w∗j2 = 0 ⇒ cjx∗2 ≤ dj which means cjx∗2 ≤ dj, if cjx∗1 ≤ dj. The
proposition 3.1 is proved.
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3. Algorithm

3.2 Hierarchical MPC for an LTI system
The core of hierarchical MPC is to solve QP problems by grouping its inequal-
ity constraints and do the calculation recursively. We have following scheme with
constraints’ priority decreasing with k,

S0 = Rn

Sk+1 = argmin
x∈Sk
‖ε‖2

s.t Ckx− ε ≤ dk, ε ≥ 0.
(3.11)

ε is the slack variable introduced in this algorithm to guarantee its recursive feasi-
bility and Ckx ≤ dk is the inequality constraints with priority level k.

Consider an LTI problem in 2.22 and follow the steps in 3.10, a hierarchical MPC
scheme can be developed as following by applying the proposition 3.1 directly.

Algorithm 1 Hierarchical MPC scheme
1: Input state space matrices A,B,C,D and cost function V
2: Sort constraints according to their importance, priority decreasing with k
3: Set c̄, d̄ to empty matrices
4: for k = 0 to k = p− 1 do
5:

solve min
x∗
‖ε‖2

s.t Ax = B,

[
c̄
Ck

]
x− ε ≤

[
d̄
Dk

]
, ε ≥ 0

6: for all cj in Ck do
7: if cjx∗ ≤ dj then
8:

c̄ =
[
c̄
cj

]
, d̄ =

[
d̄
dj

]
9: else

A =
[
A
cj

]
, B =

[
B
cjx∗

]
10: end if
11: end for
12: end for
13:

solve min
x∗

V

s.t Ax = B, c̄x ≤ d̄

14: return x∗
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3. Algorithm

3.2.1 Some remark of the algorithm
Remark 1: In the algorithm above it is assumed that the equality constraints have
the highest priority while the objective V has the lowest one. However, the equality
constraints can be put somewhere else other than the top of the priority pyramid.
By rewriting the equality constraints into inequalities, it can treated in the same
way as other inequality constraints.

Remark 2: It can be observed from the algorithm above that the number of QP
problems needs to solved in each for loop is equal to the number of priority levels.
The trade-off between the performance and calculation speed should be considered
carefully before grouping the constraints.

Remark 3: Due to increase of calculation time, this hierarchical MPC should only
be used when the original MPC problem is infeasible and the number of inequality
constraints exceeds a certain value.
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4
Simulations

Simulation results of the hierarchical MPC are showed in this chapter and a com-
parison is made between the new algorithm and the common soft-constrained MPC
to show their difference in performances and calculation speed.

4.1 Vehicle model
The model in figure 4.1 we applied the algorithm to is an autonomous vehicle driving
on a road with cliffs on both sides. As mentioned in chapter 2, the vehicle speed
and the curvature of the road are set to a constant to make the whole problem an
LTI system. In addition, a white noise is added to the input. Table 4.1 shows all
the parameters we need to formulate the problem.

Figure 4.1: Vehicle model

As the magnitude of the speed of vehicle is fixed to 60km/h, the only input to the
vehicle is the steering angle of wheels.
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4. Simulations

Parameter name Value
Velocity 60km/h
Curvature of road 0.018
Sampling time 1/40s
Vehicle mass 2164kg
Moment of inertia 4373kg/m2

Distance from front wheel axis to center of gravity 1.3384m
Distance from front wheel axis to rear wheel axis 2.984m
Cornering stiffness of front tire 142590
Cornering stiffness of rear tire 228080
Lateral position error constraints [-0.4m, 0.4m]
Orientation error constraints [−π/18, π/18]
Lateral speed constraints [-3m/s, 3m/s]
Steering angle constraints [−π/36, π/36]
Predict horizon 10
Control horizon 10
mean of input noise 0
variance of input noise 0.16

Table 4.1: Vehicle parameters

By applying the equation (2.19) directly, an continuous LTI system can be formu-
lated from the vehicle model as follows

ėy
ÿ
ėψ
ψ̈

 =


0 1 16.6667 0
0 −10.2774 0 −11.5515
0 0 0 1
0 2.5313 0 −11.9789



ey
ẏ
eψ
ψ̇



+


0 0

65.8919 0
0 −1

43.6411 0


[
δ + σ
γ

]
.

(4.1)

Where ey, eψ are the lateral and orientation error respectively, ẏ is the lateral ve-
locity, ψ̇ is the yaw rate, δ is the steering angle, γ is the road curvature and σ is the
white noise added to the input.

The position error and the steering angle are the most important in the system since
they are both directly connected to the vehicle’s safety, therefore the cost function
is set to be:

J = 1
2(e2

y + ψ2). (4.2)
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4. Simulations

4.2 Hierarchical MPC
Before we apply the algorithm to the model, the inequality constraints of the system
must be ranked first.

The highest priority is given to the position error. The reason is that there are cliffss
on both sides of the road and a small violation in position might lead the vehicle
fall off the cliff which will threaten the life of passengers.

The second highest priority is given to the input constraint. The steering angle of
wheels is limited by the vehicle’s design and the violation of it will reduce the life
of the vehicle or cause safety problems.

The lateral speed and the orientation error are on the bottom level of this priority
pyramid. They are less important than the previous two states since they have no
direct influence on safety but only affect the feelings of the passengers on the vehicle.

The simulation result is showed as following
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Figure 4.2: Simulation result of the position error and input over a time of 10s

It can be seen clearly from figure 4.2 that the position error stays within the range
of [-0.4, 0.4] during the whole simulation period. And although the input violates
its constraints from time to time, the total violation time is about 1/5 of the total
simulation period. And these violations are due to the introduce of a big input noise.

As can be seen from figure 4.3, the other two states angle error and lateral speed
behave well during the whole process. Although a bit noisy, they manage to stay
within the range.
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Figure 4.3: Simulation result of the angle error and lateral speed over a time of
10s

4.3 Soft-constrained MPC
To make a comparison with the regular soft constrained MPC, a Simulink model is
made in matlab as follows. The two algorithm share a same input noise so that the
comparison is meaningful.

Figure 4.4: Soft-constrained MPC

The ratio between the slack variables of ey, ẏ, eψ, δ is set to 10000 : 1 : 1 : 1000,
the simulation results are showed in following figures.

It can be seen in figure 4.5 that the most important constraint which is the con-
straint on position error is violated 5 times during the whole simulation period of 10
seconds. There is no doubt these violations can be eliminated by tuning the weights
of slack variables, but it requires time and is not guaranteed that the violation won’t
happen again with a new input noise due to its uncertainty.
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Figure 4.5: Simulation result of regular soft constrained MPC with the same
input noise σ

The input behaves quiet similarly to that of hierarchical MPC. They both have 5
peaks during the whole simulation period. A further analysis will be taken in the
next section.
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Figure 4.6: Simulation result of regular soft constrained MPC with the same
input noise σ

The angle error and lateral speed also succeed in staying within their constraint
during the whole process as can be seen in figure 4.6.
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4.4 Comparison
A total of 50 different input noise is used to compare the performance of the two
algorithms on position error and input.
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Figure 4.7: Sum of violation of the position error

As can be seen in figure 4.7, the blue line which is the sum of the violation of posi-
tion error in soft-constrained MPC varies between 0 and 1 during the 50 simulation
times, while the red line which is the hierarchical MPC always stays close to zero. In
other words, it can be concluded that hierarchical MPC behaves much better than
soft-constrained MPC in keeping states of highest priority within constraints.
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Figure 4.8: Sum of violation of the input
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In figure 4.8, it’s clear that although the blue line and red line share a similar trend,
the red line which is the hierarchical MPC is still about 10% smaller than the blue
line in total violation of the input.

However, these two advantages don’t come without price. The calculation speed
of hierarchical MPC is much slower than that of soft-constrained MPC as can be
seen in figure 4.9. The reason behind this is that while soft-constrained MPC only
have one QP problem to solve each time, the number of QP problem need to be
calculated in hierarchical MPC is equal to the number of its priority level, not to
mention the time it spend on grouping active constraints and inactive constraints.
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Figure 4.9: Calculation time
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5
Discussion

5.1 Priority level of constraints
The first thing we need to do before applying this algorithm is to group the inequal-
ity constraints and put them in different priority levels. The inequality constraints
of the vehicle model in this thesis is sequenced based on their influence on passen-
gers’ safety. However, there is no correct answer to what should be relied on while
doing the sequencing. People are free to adjust the orders according to their own
needs, e.g. cost, user experience, exterior.

Although in most cases, the equality constraints are the last thing we want to violate
which is the reason they are given the highest priority in this thesis, they can be put
somewhere other than the top of the priority pyramid if necessary. The method to
do this is quite simple, we just need to rewrite the equality constraints as inequality
constraints like following

Ax = B ⇒ Ax ≤ B & − Ax ≤ −B. (5.1)

However, people should be careful while doing so since it will not only increase the
calculation time, but might also make the solver deliver impossible results.

5.2 Application field of the algorithm
In a system that is originally recursive feasible for a regular MPC controller, ap-
plying the hierarchical MPC to it will deliver the same result but cost much more
time. In addition, consider the sacrifice of calculation speed of this algorithm, it
will be more time-efficient to use the soft-constrained MPC and tune the weights if
there are only a few inequality constraints. Last but not least, due to its calculation
speed, this hierarchical MPC can only be used in system with slow dynamics right
now.

In conclusion, the hierarchical MPC is suitable for controlling infeasible systems
constrained by many inequalities with slow dynamics. With the advancement in
technology and academic breakthrough, it is without doubt this algorithm will have
a wider application field in the future.
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5. Discussion

5.3 Future research
Some future research based on the algorithm that is worthwhile to investigate is
discussed in this section.

5.3.1 Reducing computation cost
The biggest drawback of this algorithm is the calculation speed. However, it can be
seen from the algorithm chart that each QP problem is nothing but the last QP prob-
lem further constrained with some new inequality constraints. This characteristic
makes it possible to reduce its calculation cost in the future.

5.3.2 Tuning the weights
Another way to save the time in tuning slack variables of soft-constrained MPC
is using KKT conditions to calculate the differentiate of violation with respect to
the corresponding weight. Then by applying Newton’s method, the weight that is
needed for the required performance can be reached in a limited time.
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6
Conclusion

In this paper we have proposed a new MPC scheme for LTI systems. The scheme
is based on solving hierarchical QP problems and is recursive feasible even with the
presence of noise. The inequality constraints and cost function of the LTI system
are grouped according to their importance and then solved hierarchically in the al-
gorithm. After the simulation on a practical problem, it is clear that this scheme
is superior to regular soft constrained MPC in the way that no tuning work for the
slack variables is needed and has a better performance in the constraints with higher
priority.

However, these advantages don’t come without price. One drawback of the scheme is
that it will sacrifice the constraints with lower priority to get a better performance
on the constraints with higher one. In addition, the calculation time of the new
scheme is longer than regular soft constrained MPC and it is proportional to the
number of the groups of constraints. Consider the calculation cost, this new scheme
is suitable when the system has a large noise and constrained to a bunch of inequality
constraints.
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