
A Study of Merge-Conflict Resolutions in
Open-Source Software
Master’s thesis in Software Engineering

ISAK ERIKSSON
PATRIK WÅLLGREN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

Master’s thesis 2016

A Study of Merge-Conflict Resolutions in
Open-Source Software

ISAK ERIKSSON
PATRIK WÅLLGREN

Department of Computer Science and Engineering
Software Engineering Division

Chalmers University of Technology
University of Gothenburg

Gothenburg, Sweden 2016

A Study of Merge-Conflict Resolutions in Open-Source Software

ISAK ERIKSSON
PATRIK WÅLLGREN

© ISAK ERIKSSON, 2016.
© PATRIK WÅLLGREN, 2016.

Supervisor: Thorsten Berger, Department of Computer Science and Engineering
Co-Supervisor: Julia Rubin, Massachusetts Institute of Technology
Co-Supervisor: Sarah Nadi, Technische Universität Darmstadt
Examiner: Regina Hebig, Department of Computer Science and Engineering

Master’s Thesis 2016
Department of Computer Science and Engineering
Software Engineering Division
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Sweden
Telephone +46 31 772 1000

Gothenburg, Sweden 2016

iv

A Study of Merge-Conflict Resolutions in Open-Source Software

ISAK ERIKSSON
PATRIK WÅLLGREN
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg

Abstract

In collaborative software development, conflicts often arise when merging different
versions of the code. These are often solved manually, which slows down productiv-
ity. To develop a tool that assists in the resolution process, we aim to study how
developers resolve conflicts and try to categorize the resolutions. We do this by
studying large open-source projects on GitHub.

We found that for conflicts regarding code inside methods or constructors, the cur-
rently checked out version was chosen in 77% of the cases. We found that developers
tend to choose their own version of the code when resolving merge-conflicts.

Keywords: version control system, git, merge-conflict, conflict resolution

v

Acknowledgements

We want to extend our thanks to our supervisor; Thorsten Berger at Chalmers Uni-
versity of Technology. We would also like to thank our co-supervisors; Julia Rubin
at Massachusetts Institute of Technology and Sarah Nadi at Technische Univer-
sität Darmstadt. Last but not least we want to thank Regina Hebig at Chalmers
University of Technology for being our examiner.

The Authors, Göteborg 30/5/16

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Preliminaries 3
2.1 Code-Clone Management . 3
2.2 Branching Management . 3
2.3 Resolving Git Conflicts . 5
2.4 Related Work . 6

2.4.1 Semistructured Merge . 6
2.4.2 Conflict Patterns . 6
2.4.3 Avoiding Software Merge-Conflicts 7
2.4.4 Variance in Code-Clone Management 7

3 Pre Study 9
3.1 Method - Identifying Feature Branches 9
3.2 Method - Identifying Variance Branches 10

3.2.1 Data Gathering Tool . 11
3.2.2 Find Details about Introduced Parameter 13

3.3 Result - Outcome of Pre Study . 13

4 Method - Analyzing Merge-Conflict Resolutions 15
4.1 Conflict File Tree . 15
4.2 Classify Merge-Conflicts . 17
4.3 Manual Analysis . 17
4.4 Automatic Analysis . 19

4.4.1 Repositories to analyze . 21
4.4.2 Input . 22
4.4.3 Categorizing Conflict Resolutions 23

5 Results 25
5.1 Manual Analysis . 25
5.2 Automatic Analysis . 27

5.2.1 Developers often choose one version completely 27

ix

Contents

5.2.2 Properties . 28
5.3 Discussion . 30

5.3.1 Threats to Validity . 31

6 Conclusion 33

Bibliography 35

A Appendix 1 I
A.1 Resolutions Analyzer . I

A.1.1 Running the .jar . I
A.1.2 Running it in Eclipse . II

x

List of Figures

2.1 Merging of two branches . 4
2.2 Fast-forward merge . 5

3.1 Merging of branches . 10

4.1 Structure of a Conflict File Tree . 16
4.2 Output data from Conflicts Analyzer 23

5.1 Number of chosen resolutions . 28
5.2 Resolution categorization for each property. 29
5.3 Resolution categorization for each property, where X is the left version

and Y is the right version. 29
5.4 Resolution categorization for each property, where X is the right ver-

sion and Y is the left version. 30

xi

List of Figures

xii

List of Tables

2.1 Conflict patterns . 7

4.1 Proposed properties . 18
4.2 Definition of the properties . 19
4.3 Definition of the categories . 20
4.4 GitHub repositories (As of 23/3-16)) 22

5.1 Results of the manual analysis for the properties in Table 4.1 25
5.2 Hypotheses . 32
5.3 Chi square tests for the properties . 32
5.4 Chi square test for the chosen versions 32

xiii

List of Tables

xiv

1
Introduction

When developing software products using a version-control system, branching is
often used, both to support variability [1], and to develop new features, that is “A
distinguishing characteristic of a software item (e.g., performance, portability, or
functionality”[2]. It is of vital importance that the merging of these branches works
smoothly, even when a conflict occurs.

Resolving merge conflicts, such as those arising from changes to different variants
of features, is difficult. Merging might require refactoring the class hierarchy, intro-
ducing design patterns, or adding parameters to the feature. If it would be possible
to develop a tool that can provide automated conflict resolution in this case, it
would be of great value, since resolving such conflicts is a recurring problem that is
solved manually today. The problem is that the development of such a tool requires
more understanding of how merge-conflict resolutions are currently performed by
developers. For having representative results, one would need to study the resolu-
tions in large codebases, such as from GitHub. To acquire accurate results on large
codebases, some automated analysis is required.

The goal of this work is to conduct a feasibility study that aims at investigating
whether analysis of merge-conflict resolutions in large codebases can be automated.
We focus on open-source projects, such as those being hosted on GitHub.

Understanding how merge conflicts are resolved allows for future development of an
automatic merge-conflict resolution tool, which is our long-term goal. Towards this
end, this study aims at answering the following research questions:

• RQ1. How can we statically analyze merge-conflict resolutions in real-world,
large version histories of open-source projects?

• RQ2. Can we make a meaningful categorization of how developers resolve
merge-conflicts?

Our main working hypothesis is that it is in fact feasible to automatically ana-
lyze conflict resolutions and categorize them from all the metadata available about
projects and from statically analyzing code. By studying examples of popular

1

1. Introduction

projects with many branches or forks, developing a mining infrastructure, and in-
vestigating to what extent static code-analysis tools can be utilized for categorizing
the conflict resolutions, we will work towards testing this hypothesis.

The automated analysis in this study was conducted on a total of 1964 conflicts in 20
projects on GitHub. The Preliminaries section gives the reader the knowledge needed
to grasp the content of this study. We also conducted a Pre study on the feasability
of identifying variant- and feature-branching related conflicts. The Methods section
describe how an initial manual analysis of merge-conflict resolutions were made, and
also the steps in performing the automatic analysis. Last but not least, we list the
results of our findings and discuss our conclusions.

2

2
Preliminaries

This section covers the knowledge needed in code-clone management, branching
management and Git conflicts. It also brings up related work and discusses how
this study differs from them.

2.1 Code-Clone Management

Cloning happens during all stages of a software-development process, and it is the re-
sponsibility of the developers themselves to make sure that changes between copies of
the clones are propagated correctly [1]. Because of this, there are risks that conflicts
arise during all stages of the development process. When cloning features, multiple
versions of the same feature exists and their consistency needs to be managed [3].

With the use of a version control system, cloning can be managed in a more smooth
way by using branching and merging capabilities [3]. Git is a fully distributed version
control system. It stores the whole project along with a complete development
history in a so called repository, and since it is fully distributed, one has instant
access to the repository. Often when using Git, a remote hosting server is used.
GitHub is a popular remote hosting server. It has a request limit of 5000 requests
per hour, but once a project is cloned, no request limits on project hosting sites are
a problem anymore. This makes analyzing a Git-hosted project attractive.

2.2 Branching Management

Many software projects follow a branching model when using Git, such as the one
explained by Giessen [4]. In these models, users create feature branches that pro-
vide an environment where new features can be implemented and tested without
affecting the end-user version of the software [5]. There are various ways to use
branches. A branch can be created for each new feature, in this document called
feature-branching. A branch may also be created for each new product that is to be

3

2. Preliminaries

developed, or each variant of an existing product. Such a branch is in this document
called variance-related branching [1], for example, for supporting new hardware in
an existing product.

When a new feature has been implemented in a new branch, the branch needs to
be merged into another branch, such as the main branch. Merging is the process
of joining two branches together, both in case of two local branches or a local
and a remote branch [6]. Local branches are branches in the client’s copy of the
repository, whereas the remote branches are branches in the remote repository. In
GitHub, merging is usually done using a pull request. A pull request is made to let
the collaborators in the repository know that the commits in a branch are ready
to be merged. The collaborators can review the new code and input their feedback
until it is finally approved for merging into the end-user branch [7].

The two commits that are to be merged are called the parents of the merge commit
that is created when the merge is made. In this document, the parents will often
be referred to as the left- and the right version. The left version is the commit that
was checked out at the time of the merge, and the right version is the commit that
is being merged into the currently checked out branch. For instance, when pulling
the remote branch to merge with the local branch, the left version will be the local
version and the right version will be the remote version that is being pulled. The
commit that two branches originates from is called the common ancestor. Figure
2.1 illustrates a merge and the terms common ancestor, left- and right version, and
merge commit.

Figure 2.1: Merging of two branches

Textual Merging. The most commonly used merging technique is textual merging
[8]. Textual merging is based on the history and on textual differences. It does not

4

2. Preliminaries

make use of any knowledge of the syntax or semantic. One must also distinguish
between two-way merging and three-way merging. In two-way merging, only the two
conflicting clones are analyzed to resolve the conflict. In three-way merging, also the
common ancestor is used, which is more powerful [9].

Fast-Forward. When merging two branches, Git first attempts to perform a so-
called fast-forward merge. Fast-forward is a way of simplifying merges in cases
where at least one of the branches still points to the common ancestor. Since only
one version has changed, there can not be any conflicts when merging. In such
a case, all that has to be done, is to change both branches to point at the latest
commit, as shown in Figure 2.2.

(a) Before merge (b) After merge

Figure 2.2: Fast-forward merge

Three-Way Merge. If fast forward fails, that is, when commits have been made
to both branches that are to be merged, Git has to merge all files that the commits
contain. This consists of merging the two versions of every file separately. To be
able to know what has changed in the two branches, Git considers both the two
versions and their common ancestor. If the files have not been changed at the same
places in both branches, Git is able to do this automatically.

2.3 Resolving Git Conflicts

When branches are to be merged in Git, conflicts might arise. Conflicts are the
problems that prevent Git from automatically merging two branches together. This
happens when the two parent commits have made changes to the same place in a
file. Resolving conflicts is usually done by manually merging the conflicting lines of
the two versions. To do this, one also takes the common ancestor’s version of the
file into consideration. By looking at the common ancestor and the two versions,
it becomes clear which lines each version has added, and the developer can then
choose parts from the two versions. He can choose one version completely, choose
parts from both versions and he can add or remove code.

5

2. Preliminaries

2.4 Related Work

2.4.1 Semistructured Merge

There exist merge tools that use approaches other than textual merging, such as
syntactic- and semantic merging, which have language specific knowledge [10] and
do not only compare lines of text. A combination of both textual merging, syntactic
and semantic merging is called semistructured merging [8]. Studies have shown that
the use of semistructured merge decreases the number of conflicts significantly. Cav-
alcanti et al. prove, by performing semistructured merging on 3266 merge scenarios
on 60 projects, that semistructured merging can reduce the number of conflicts by
55% [11]. Our work is different in that instead of proposing a new conflict resolution
technique, we are interested in how developers resolve conflicts arising from different
variants of features or projects.

2.4.2 Conflict Patterns

During merging, several types of conflict patterns might occur. Previous work by
Accioly [12] identified numerous conflict patterns, using her developed tool Conflicts
Analyzer.

In her study, Accioly lists conflict patterns that describe types of conflicts that might
arise during a merge. The study uses a semi-structured merge tool, called SSMerge,
which performs merges by first constructing Feature-Structured Trees (FSTs) for the
two versions of the file that are to be merged. The two trees are then merged using
superimposition. This is possible since the order of methods and class variables
inside a class does not matter. Code segments where the ordering matters in Java,
ie. method- and constructor bodies, cannot be merged this way and are therefore
placed in the leaves of the tree [8]. It is the conflicts that concern these leaves that
are of interest to our study. We will use Conflicts Analyzer and the conflict patterns
to analyze and categorize merge-conflict resolutions.

The conflict patterns are derived from the conflicts that SSMerge can detect [12].
Table 2.1 lists the patterns from Accioly’s study that is listed in the online appendix:
From Table 2.1, it is the EditSameMC- and SameSignatureCM patterns that con-
cern the leaves of the tree and they make up 84% of the total number of conflicts
[12] and this is the main reason why our study focuses only on these patterns.

6

2. Preliminaries

Table 2.1: Conflict patterns

Pattern Description
EditSameMC Different edits to the same area of the same method or

constructor
SameSignatureCM Methods or constructors added with the same signature

and different bodies
EditSameFd Different edits to the same field declaration
AddSameFd Field declarations added with the same identifiers and

different types of modifiers
ModifierList Different edits to the modifier list of the same type dec-

laration (class, interface, annotation or enum types)
ImplementsList Different edits to the same implements declaration
ExtendsList Different edits to the same extends declaration
DefaultValueA Different edits to the same annotation method default

value

2.4.3 Avoiding Software Merge-Conflicts

There exist numerous practices to reduce merge-conflicts, such as continuous inte-
gration[13] in an Agile development process. The continuous integration practice
makes sure that developers merge their code in short intervals and therefore the
conflicts does not become as many at a given time as it would if merges were done
less frequently.

Furthermore, Guimaraes and Silva[14] argues that developers do not merge as fre-
quently as desirable. They state that “Unfortunately, merging is cumbersome and
disrupts programming flow, so some developers do not merge as frequently as desir-
able — teams avoid parallel work because of difficult merges, and developers rush
their tasks to avoid being the ones responsible for the merge.” To aid developers
when merging, they present a solution that continuously merges committed and
uncommitted code in the background, and then presents detected conflicts to the
developer inside the IDE, while the developer continues developing.

While Guimaraes and Silva strive to avoid conflicts, our long term goal is to ease the
solving of merge-conflicts by automatically solving them using a tool. This study
will contribute to the long term goal by analyzing and categorizing merge-conflict
resolutions done by real developers.

2.4.4 Variance in Code-Clone Management

Dubinsky et. al. [1] have conducted an exploratory study of cloning in industrial
software product lines. In their study, they state that it is difficult to propagate
changes between clones. They have also interviewed developers who say that “If we

7

2. Preliminaries

find a bug then many times it can be here and also in other places. The new product
contains code that exists also in the old product. So, if we fix the old one then we
also fix the new or vice versa”. Moreover, they say that sometimes they find the
same bug in different variants which nobody thought about before.

We believe that our study can build on Dubinsky et. al’s. study. Identifying
variance-related branches will ease the process of propagating changes between
clones in an industrial software product line since the developers would know which
branches they should propagate.

8

3
Pre Study

We started our work with an exploratory phase, where we investigated the possibility
to limit the scope of this study. In this phase, we studied the possibilities of limiting
the scope to feature-branching-related merge-conflicts or to variance-related merge-
conflicts. The methodology used throughout the pre study was to try to identify
branches and conflicts related to either variance or features.

3.1 Method - Identifying Feature Branches

To detect feature branches, we proposed some indicators which may indicate whether
a branch is feature-related; the commit message and the branch name. A commit
message could contain the branch name. However, since commit messages might be
edited by the committee, it is unreliable to find feature branches this way.

In the Git history, branch names might indicate if it is a feature branch. However,
due to how Git handles branches, this proved to be more difficult than anticipated.
When two branches are to be merged, there are two different options: merge or
rebase. When merging, Git takes the two commits that are to be merged and creates
a merge commit. Unlike other commits, the merge commit has two parents, being
the two commits that were merged. This makes it possible to distinguish merge
commits from other forks and thus makes it possible to analyze them separately.
Sometimes, rebase is used instead of merging. This means that instead of creating
a merge commit, an ordinary commit is created. The changes that was introduced
in the branch that is to be merged are applied to the other branch. Then, both
branches are then changed to point at the new commit, which has only one parent.
That parent is the commit that was checked out at the time of the rebase. The
other commit is left as it was. Thus, there is no straight-forward way of find those
rebased commits.

To analyze historical branches and merges is more difficult than one might expect.
A question that one might ask is “In what branch was this commit made?”. A Git
branch is only a reference that points to the latest commit and does not “contain”

9

3. Pre Study

(a) The branches Branch
A and Branch B both
points at their respective
tip commit.

(b) When merged, both
branches points at the
merge commit.

(c) If Branch A is
checked out and then
committed to, Branch
B will still point at the
merge commit.

Figure 3.1: Merging of branches

commits. There is also a reference called HEAD, which points to the currently
checked out branch. When a branch is merged, the branch will point at the same
commit as the branch it was merged into, as shown in Figure 3.1. Therefore, a more
correct way to ask this is “At what branch did HEAD point during the creation of
this commit?”. That information is not stored in Git and therefore, that question is
not possible to answer. There is no information that tells which branch was merged
into which.

Moreover, using the command
1 g i t branch −−conta in s <hash>

will show the “branches whose tip commits are descendants of the named commit”1.
Therefore it is impossible to know, using this information alone, which branch was
merged into which and also which branch a commit was created on. Another problem
is that it is common practice amongst developers to delete a branch after it has been
merged, and once that happens, all information about that branch is lost from the
Git history.

3.2 Method - Identifying Variance Branches

To detect variance-related branches, we proposed the following indicators: Pull-
requests, introduced Boolean parameters, name of introduced Boolean parameters,
time in a branch’s lifetime that the parameters were introduced and the existence
of clones. In variance-related merge-conflicts, we wanted to study how variants in

10

3. Pre Study

code emerge in different branches.

We chose to analyze the GitHub project Elasticsearch. We chose this project since
it has a vast number of commits (more than 20000) and more than 5000 forks.
Elasticsearch is a distributed search engine used for analysing data in realtime.

3.2.1 Data Gathering Tool

When studying the code of Elasticsearch, we noticed that parameters were intro-
duced and loaded from an external configuration file. These parameters were then
used to set Boolean variables that usually indicate whether to use a certain block of
code or not. In Elasticsearch, the function used to set these Boolean variables was
called “getAsBoolean” and takes a string parameter name, and a Boolean default
value.

1 boolean example = getAsBoolean (" example_parameter " , true)
;

The "example_parameter" could be set by the user in the external configuration file
and if it has not been set, a default value, in this example true, will be used. The
Boolean variable would in some cases be used to indicate which block of code to
use, as in this example taken from a snippet of Elasticsearch code:

1 this . autoThrott l e = indexSe t t i ng s . getAsBoolean (
AUTO_THROTTLE, true) ;

2
3 i f (autoThrott l e) {
4 concurrentMergeScheduler . enableAutoIOThrott le () ;
5 } else {
6 concurrentMergeScheduler . d i sab leAutoIOThrott le () ;
7 }

To be able to identify the parameters and collect data about them, we developed a
tool that gathers data automatically. All data that is stored in Git is hashed using
SHA-1. The data to be gathered includes:

• The parameter name that was introduced

• The commit hash

• The if-statement that the Boolean is used in

• The code where the Boolean variable is set by the function that takes the

11

3. Pre Study

parameter name as one of its parameters.

• The commit message

• Whether or not the commit was a pull request

We gathered data by developing a Java program that uses Linux bash scripts which
execute Git commands to get the above information. As Git saves the data as
snapshots and not as changes, one needs to compare two commits in order to see
which changes were introduced in a commit. To do this, we use the built in diff
command in the following way:
1 g i t −−no−pager d i f f <hash>^ <hash>

where ˆ is a git shortcut to get the parent commit of a commit hash. We now discuss
how we extract each of the above pieces of information.

Parameter name. The parameter name was extracted from the line where the
Boolean is set by the getAsBoolean function. It is useful to include it in the data
so that it can be used when manually looking through the code to understand what
the parameter was used for.

Commit Hash. For every commit that is checked out, we search for parameters
and if there exist at least one, the commit hash is saved so that we know which
commits to check out when we want to look manually at the code.

If-statement the Boolean is used in. We extracted the newly introduced
Boolean variables that were later used in if-statements. This proved to be not
useful since the Boolean variable names were not always the same as the parameter
names used in the configuration file.

getAsBoolean line. While extracting the name of the parameter in the getAs-
Boolean function, we also save the line itself to be able to quickly see the name of
the Boolean variable as well as the default value the Boolean will be assigned to if
the parameter is not set.

Commit message. The commit message is also extracted and printed in the excel
document. In case the commit message contains important information which could
indicate that the commit contains variant related code, it is vital to look at it to
find which commits are good to analyze manually. To get the commit message for
a given hash, this command was used:
1 g i t l og −−format=%B −n 1 <hash>

Pull request.When changes on a branch in a fork of a project is to be merged
into the original project, pull-requests are used. It is interesting to know whether
or not the commit was a pull request. Finding out if variant related code is more

12

3. Pre Study

or less likely in pull requests would be interesting for the study. To know whether a
given merge commit was a pull request, the commit message was parsed to see if it
contains "Merge pull request #".

3.2.2 Find Details about Introduced Parameter

When functionality is added or changed, it is good practice to create a new branch.
When new parameters are added that decides which variant of code to use, we
believe this most often happens in a new branch, and it will be interesting for the
study to know at which point in life of the branch this happens.

Using the merge commit and the parameter name, we calculate in which commit
the parameter was introduced. We thought that it would be straight-forward to
find where in the branch the parameter was introduced, by recursively stepping
backwards from the merge commit through the commits of the branch, searching
for the given parameter. We soon found out that the possibility of analyzing commits
with regards to branches is very limited as stated in 3.1.

Another question one might ask is “How many branches does this project have?”.
That can be answered using the git command:

1 g i t branch −a

However, as it is common practice to delete branches after they have been merged,
the command is of little use as it only lists the currently existing branches. Infor-
mation about old branches may be found in commit messages but, again, as they
are often edited, they are not reliable.

In yet another attempt to find variant-related merges, we sought to find merge-
commits where a new parameter was introduced to solve conflicts. In Elasticsearch,
the parameters we looked for were fetched using “getAsBoolean”. It turned out that
there was not a single example of such a case where “getAsBoolean” was introduced
in a merge-commit in the history of Elasticsearch.

3.3 Result - Outcome of Pre Study

The pre study has shown that it is difficult to detect whether merge-commits are
related to variance or feature-branches. Thus, we conclude that we can not iden-
tify variant- and feature-branching related conflicts. Instead, we decided that the
direction of this thesis will be to identify and classify merge-conflict resolutions in
general.

13

3. Pre Study

The tool created during the pre study will be used when analyzing merge-conflict
resolutions. It will be used to parse information about commits in GitHub reposito-
ries and also be extended with new functionality to automatically be able to analyze
the resolutions.

14

4
Method - Analyzing

Merge-Conflict Resolutions

In this section we describe how we analyzed merge-conflict resolutions. A manual
analysis was conducted and the result of this, which is presented in the Result
chapter, was used in an automatic analysis. In this chapter we aim to answer RQ1
and RQ2.

The tools used throughout the method, Conflicts Analyzer [15] and Resolutions
Analyzer [16], as well as the results from the analyses [16] are available online.

4.1 Conflict File Tree

To get a better overview of how the different versions of a file look, we developed
a tool to create a file tree of all conflicts of a given project. We call this file tree
the Conflict File Tree. The leaves of the tree consist of the left-, right-, common
ancestor- and merge commit version of a conflicting file when re-creating merge
commits, as shown in Figure 4.1.

To do this, we first needed to find the two parents of a merge commit, that is, the
two commits that were merged. The following command prints the two commits:

1 g i t −−no−pager l og −−merges −−format=%p <hash> | head −n1

where <hash> is the merge commit hash. We then re-create the merge using the
following:

1 g i t r e s e t −−hard <hash o f RIGHT>
2 g i t c l ean −f
3 g i t branch <temp branch name>
4 g i t checkout <hash o f LEFT>
5 g i t merge <temp branch name>

15

4. Method - Analyzing Merge-Conflict Resolutions

In line 1, we set HEAD to RIGHT, which changes the working copy to the state of
that commit. In line 2, the working copy is cleaned to be ready for the merge. In line
3, a new branch is created which points at RIGHT. In line 4, we checkout LEFT. In
line 5, we merge the two commits by merging the newly created branch into commit
LEFT. Git will now print out the conflicting files, which we parse. Afterwards, we
abort the merge and delete the branch.

The common ancestor-, left- and right file, along with the resulting resolution file in
the merge commit, are copied and saved in the Conflict file tree. The Conflict File
Tree consist of folders and the versions of the conflicting files, structured according
to Figure 4.1.

Figure 4.1: Structure of a Conflict File Tree

Having all the conflicting file versions in a structured manner made it easier to
manually analyze how Git conflicts look like in files. To get the information about
the conflict, we use following command:

1 g i t merge− f i l e −p −−d i f f 3 <l e f t > <ancestor> <r ight>

Initially, we used the CFT to study the merge-conflicts and their resolutions. How-
ever, we found the tool Conflicts Analyzer which classifies merge-conflicts, and there-
fore we decided to use the already existing tool to analyze the merge-conflicts. We
incorporated our re-creation of merge-commits method in the Conflicts Analyzer
tool so that it analyzes only Git conflicts (see Section 4.2).

16

4. Method - Analyzing Merge-Conflict Resolutions

4.2 Classify Merge-Conflicts

To classify conflicts, we used the tool Conflicts Analyzer developed by Accioly. The
tool produces a conflict report with information of each conflict of a specified project.
We extended the tool to add additional information as follows; the merge commit
hash, the left commit hash, and the right commit hash. Since the tool uses a merge
technique different from that used in Git, it finds conflicts that are not a conflict in
Git. As we are interested in how the developers themselves solve conflicts, we are
not interested in these additional conflicts. Therefore we also modified the tool to
only analyze conflicts from merges that also yield a conflict when merged by Git.
We did this by reusing our code that re-creates merges (see Section 4.1).

The output in the conflict report contains the following information:

• Conflict type

• Merge commit hash

• Left commit hash

• Right commit hash

• Conflict body

• File path

4.3 Manual Analysis

We began by reading through the output of Conflicts Analyzer from a randomly
selected project called Blueprints. We found that for the conflict pattern SameS-
ignatureCM (see Table 2.1), the resolution was often equal to one of the versions,
i.e. the developer chose one of the versions completely, and that version was often
a superset of the other. That version was also often the more recent version. For
some observations, there were also cases where the chosen version was an intersec-
tion of the two versions. We decided to test if these types of resolutions are common
by doing a qualitative analysis. As a resolution can for example be both the most
recent version and a superset, we call them properties that a resolution can have.
Based on the observations when reading through the output of Conflicts Analyzer,
we proposed properties to check how common they are in a qualitative analysis (see
Table 4.1).

17

4. Method - Analyzing Merge-Conflict Resolutions

Table 4.1: Proposed properties

Property Description
Recent The resolution is equal to the most re-

cent version
Superset The resolution is a superset of the code

in both versions
Intersection The resolution is an intersection of the

code in both versions

We examined twenty-six randomly sampled examples of SameSignatureCM conflicts
from 9 different projects. These projects were Atmosphere, Activiti, Blueprints,
BroadLeadCommerce, Buildcraft, EventBus, android-async-http, RxJava and Elas-
ticsearch. For each conflict, we looked at the two versions of the method or con-
structor, and tried to understand why they chose the one they did. What do the
versions they chose have in common?

To be able to analyze conflicts from the output of Conflicts Analyzer, we wrote a
Bash script to automatically extract the Java-files that conflicted in the merge, as
well as the common ancestor file and the resolution file after the merge was made.

To extract the files, the script first resets the git repository so that HEAD points
to the same commit as the latest commit on the remote master branch. Since the
output from Conflicts Analyzer strip down the commit hash, our script parses the
full commit hash of the parents from the git log. From the git log, the hash of the
merge commit is also parsed. Using the git command:

1 g i t −−no−pager l og −−merges −−format=%p <hash> | head −n1

where hash is the merge commit hash. We then parse the two commits and perform
the merge using the following sequence of commands:

1 g i t merge−base <LEFT> <RIGHT>

where LEFT and RIGHT refer to the hashes of the parents. Then, the two parent
commits, the merge commit, and the common ancestor commit are checked out
respectively and the desired file is copied to a specified output folder. Finally, the
script parses the date of the parent commits and prints it to a file in the specified
output folder.

We analyzed the extracted files manually to see whether the properties described
in Table 4.1 would emerge repeatedly in many resolutions. The data gathered in
the manual analysis consisted of Project name, Function name, Merge hash, Merge
commit message, Left commit hash, Right commit hash, Left commit date, Right
commit date, Conflict pattern and Resolution properties. We also found out that

18

4. Method - Analyzing Merge-Conflict Resolutions

we can apply these same proposed properties for the conflict pattern EditSameMC
(see Table 2.1). For EditSameMC, the method existed in the common ancestor but
was modified in both versions. Since both EditSameMC and SameSignatureCM are
patterns that concern conflicts inside methods and constructors, the only difference
being that the method or constructor did not exist in the common ancestor in the
SameSignatureCM pattern. Therefore we chose to not treat them differently when
analyzing their resulutions.

4.4 Automatic Analysis

To see whether the results from the manual analysis still apply in a large-scale analy-
sis, we developed a tool, which we named Resolution Analyzer, that reads the output
of Conflicts Analyzer. The tool then filters out those conflicts we are interested in.
Those conflicts are then analyzed and the result is printed in a spreadsheet.

As aforementioned in Section 4.3, we saw that the developer in many cases choose
one of the versions completely. We also saw that sometimes the version that is
chosen has more if-statements than the other version. We decided that it would be
interesting to see whether choosing such a version recurs in many cases. It would
also be interesting to see other cases where the version chosen had more of error
handling and log printouts. From these observations, we extended and formalized
our list of properties, by adding the properties if-statements, print-instances, log-
instances and try-instances. The properties are defined in Table 4.2, where X and Y
refer to the two versions. For each property the conflict resolutions are categorized
as explained in Table 4.3.

Table 4.2: Definition of the properties

Property Description
Recent X is more recent than Y
Superset X is a superset of Y and Y is not a superset of X
Intersection X is an intersection of Y and Y is not an intersection of X
if-statements X has more if-statements than Y
print-instances X has more instances of the keyword ‘print’ than Y
log-instances X has more instances of the keyword ‘log’ than Y
try-instances X has more instances of the keyword ‘try’ than Y

19

4. Method - Analyzing Merge-Conflict Resolutions

Table 4.3: Definition of the categories

Category Description
X chosen The resolution is equal to X
Y chosen The resolution is equal to Y
None chosen Property satisfied but the resolution is not equal to any of the versions
Not applicable Property not satisfied

20

4. Method - Analyzing Merge-Conflict Resolutions

4.4.1 Repositories to analyze

We want to analyze fairly big projects that contain many commits and many forks
along with many branches. To satisfy these requirements, we chose the 20 top
starred Java repositories on GitHub.

The projects listed in Table 4.4 were cloned so that they could be analyzed for
conflict patterns by the Conflicts Analyzer tool.

21

4. Method - Analyzing Merge-Conflict Resolutions

Table 4.4: GitHub repositories (As of 23/3-16))

Name Commits Branches Forks
Elasticsearch 20712 46 5229
Android-async-http 856 3 4024
Android-best-practices 201 1 1696
Android-universal-image-loader 1025 3 5640
Curator 1050 9 304
Eventbus 404 5 2493
Fresco 494 3 2453
Guava 3372 4 1862
Iosched 129 2 4071
Java-design-patterns 1196 6 3495
Leakcanary 238 15 1291
Libgdx 12247 4 4479
Okhttp 2449 37 2518
React-native 5707 23 5609
Retrofit 1285 21 2081
Rxjava 4630 24 1919
Slidingmenu 336 8 5306
Spring-framework 11825 10 6860
Storm 1764 44 1760
Zxing 3203 3 4730

4.4.2 Input

We use the data from Conflicts Analyzer as input for our tool. As stated in Section
2.4.2, we are only interested in conflicts that are of the types SameSignatureCM or
EditSameMC. Therefore, our tool filters out conflicts that are not of these patterns.
It also removes conflicts in which any version of the function is empty, ie. the
function was removed in one version. Conflicts that contain obscure output data
from Conflicts Analyzer, such as if the conflict is not a Git conflict, are also skipped.

Figure 4.2 shows a screenshot of an example output from Conflicts Analyzer. The
data surrounded by a red border are the data we use as input for our tool.

22

4. Method - Analyzing Merge-Conflict Resolutions

Figure 4.2: Output data from Conflicts Analyzer

From the “Conflict body” in the output, the name and signature of the conflicting
function is parsed, as well as the parameter types that the function takes. The
function body of the two versions in “Conflict body” is also parsed. This information
is stored, and using the function name and the parameter types the function takes,
the tool is able to parse the resolution function in the merge-commit by checking
out the commit and reading the specified Java file from “File path”.

This information is then used to find the result from the resolution function in
the merge-commit. The different versions of the function are extracted and saved.
To filter out the conflicts that arose only due to different spacing or new lines on
different places, each line in the extracted functions are trimmed and empty lines are
removed. The conflicts in which the conflicting versions of the function thereafter
are equal, are removed.

4.4.3 Categorizing Conflict Resolutions

The automatic tool now categorizes the merge-conflict resolutions according to the
properties listed in Table 4.3. To do that, our tool first compares the left and right
version of the function, to the function in the result. First they are checked for
equality, ie. is the result equal to the left, right, both or none of the versions. This
is used to see if they chose one version completely. By doing that, we can find out
which category that version belongs to for each property.

Recent. Then, the tool extracts the commit date of the parents to see if the chosen
version was the most recent one. The date of the commits are extracted using the
command:
1 g i t l og −1 <hash> −−format=%c i

Superset. To see if the code in one version is a superset of the code in the other
versions, first consider the following example of a superset: Left version:

23

4. Method - Analyzing Merge-Conflict Resolutions

1 private int getValue (int index) {
2 return (index >= va lues . s i z e ()) ? −1 : va lue s [index] ;
3 }

Right version:
1 private int getValue (int index) {
2 return va lues [index] ;
3 }

The left version contains all code from the right version plus a check for the index
size. To detect that this is a superset it is not enough to compare them line by line.
We solved this by instead considering the set of words in the code. All code in the
left- and the right version are therefore split into words and added to a hashset. A
version is a superset if and only if the that version’s set of words is equal to the set
of all words in the left and right code.

Intersection. Similarly to how we detect a superset, we also consider the sets of
words to detect whether a version is an intersection of the left and the right versions.
A version is an intersection if and only if that version’s set of words is equal to the
intersection of the sets of words in the left and right code.

if-statements, print-instances, log-instances and try-instances. Lastly, for
each version of the method or constructor, we calculate the number of occurrences
of each keyword and the number of if-statements (see Table 4.2).

24

5
Results

For RQ1, our study has shown a way of analyzing conflict resolutions in large-scale
codebases, and this can be achieved by parsing output from Conflicts Analyzer.
Likewise, for RQ2, we have created a categorization for merge-conflicts resolved by
developers which can be used in future studies to, for instance, create an automatic
merge tool. This chapter shows the results of the manual- and automatic analysis.

5.1 Manual Analysis

For conflicts in the conflict pattern SameSignatureCM, we found that if one of the
two versions had the same code as the other version but with some additional code,
that version was often chosen as resolution. This can be seen in Table 5.1 where the
resolution was a superset in 69% of the cases. Table 5.1 lists how many resolutions,
in the 26 cases that were analyzed, were Superset, Intersection and/or Recent. As
a resolution can be both recent and a superset or an intersection at the same time,
the percentage add up to more than 100%.

Table 5.1: Results of the manual analysis for the properties in Table 4.1

Property Number of cases (total 26 cases)
Superset 18 (69%)
Recent 15 (58%)
Intersection 4 (15%)

25

5. Results

For some of the cases that were chosen as resolution, one or more if-statements had
been introduced in the version that was chosen which the other version did not have.
We also saw an example of a case where the chosen version had more error handling
than the other version.

An example can be seen from the repository Android-async-http, where two versions
that resulted in a conflict when being merged looked like this:
Left version:

1 protected void sendSuccessMessage (int statusCode , Header
[] headers , S t r ing responseBody) {

2 try {
3 Object jsonResponse = parseResponse (responseBody) ;
4 sendMessage (obtainMessage (SUCCESS_JSON_MESSAGE, new

Object [] { statusCode , headers , j sonResponse })) ;
5 } catch (JSONException e) {
6 sendFai lureMessage (e , responseBody) ;
7 }
8 }

Right version:

1 protected void sendSuccessMessage (int statusCode , Header
[] headers , S t r ing responseBody) {

2 i f (statusCode != HttpStatus .SC_NO_CONTENT){
3 try {
4 Object jsonResponse = parseResponse (responseBody) ;
5 sendMessage (obtainMessage (SUCCESS_JSON_MESSAGE, new

Object [] { statusCode , headers , j sonResponse })) ;
6 } catch (JSONException e) {
7 sendFai lureMessage (e , responseBody) ;
8 }
9 } else {
10 sendMessage (obtainMessage (SUCCESS_JSON_MESSAGE, new

Object [] { statusCode , new JSONObject () })) ;
11 }
12 }

Here, all the words in the left version are also in the right version, hence the right
is a superset of the left version. In this example, the right version was chosen as
the resolution. As can also be seen, in the right version there is a check by an
if-statement that is not present in the left version.

26

5. Results

5.2 Automatic Analysis

The automatic analysis that was conducted on the 20 top starred Java projects on
GitHub yielded, after our filtering, 1964 conflicts. For each property (see Table 4.2),
the resolutions for the 1964 conflicts was categorized according to Table 4.3 and the
results are presented in this section.

5.2.1 Developers often choose one version completely

In 1509 cases (77% of the studied cases), the left version was chosen as resolution,
that is, the version that was checked out at the time of merging. Figure 5.1 shows
how many cases where the left- and right version was chosen completely as the
resolution and in how many cases none of them were chosen completely.

27

5. Results

LEFT RIGHT NONE
0

500

1,000

1,500

Version

C
ho

se
n
re
so
lu
ti
on

s

Figure 5.1: Number of chosen resolutions

5.2.2 Properties

Figure 5.2 shows the resolution categorization, as defined in Table 4.3 for each
property, as defined in Table 4.2. The figure shows that the chosen version often is
the more recent. It also shows that if one of the versions is a superset of the other,
the version that is the superset is often chosen. On the contrary, if one version is
an intersection of the two versions, the other version is more often chosen. For the
if-statements, print-instances, log-instances and try-instances there were too many
resolutions in the Not applicable category to draw any conclusions.

Figure 5.3 shows the resolution categorization where X is the left version and Y is
the right version, and Figure 5.4 shows the resolution categorizations where X is the
right version and Y is the left version. From these figures, one can see that the left
version more often is a superset of the right version than the other way around. On
the contrary, the right version

28

5. Results

Re
cen

t

Su
pe
rse
t

Int
ers
ect
ion

if-s
tat
em
ent
s

pri
nt-
ins
tan

ces

log
-in
sta
nce

s

try
-in
sta
nce

s
0

500

1,000

1,500

2,000

Property

C
ho

se
n
re
so
lu
ti
on

s
X chosen
Y chosen

None chosen
Not applicable

Figure 5.2: Resolution categorization for each property.

Re
cen

t

Su
pe
rse
t

Int
ers
ect
ion

if-s
tat
em
ent
s

pri
nt-
ins
tan

ces

log
-in
sta
nce

s

try
-in
sta
nce

s
0

500

1,000

1,500

2,000

Property

C
ho

se
n
re
so
lu
ti
on

s

X chosen
Y chosen

None chosen
Not applicable

Figure 5.3: Resolution categorization for each property, where X is the left version
and Y is the right version.

29

5. Results

Re
cen

t

Su
pe
rse
t

Int
ers
ect
ion

if-s
tat
em
ent
s

pri
nt-
ins
tan

ces

log
-in
sta
nce

s

try
-in
sta
nce

s
0

500

1,000

1,500

2,000

Property

C
ho

se
n
re
so
lu
ti
on

s
X chosen
Y chosen

None chosen
Not applicable

Figure 5.4: Resolution categorization for each property, where X is the right version
and Y is the left version.

5.3 Discussion

The most significant result in this study is that in cases of conflicting code in methods
or constructors, in 3 out of 4 cases that we studied, developers chose the left version
when merging. The reasons for this is unclear, but there are two main scenarios;
when pulling a remote branch and when merging a local branch into another one.

The left version is the commit that the developer who performs the merge has
checked out when merging. If the conflicting merge is a result of pulling a remote
branch, the left version is likely his own code, and the right version is someone else’s
code. Figure 5.2 shows that the chosen version also often is the most recent version.
This in combination with that the left version most often is chosen indicates that
developers tend to choose their own code as resolution. This study has not gone
into why developers resolve conflicts this way, but it might be interesting for future
studies to investigate this further. If the conflicting merge is a result of merging a
local branch into another one, the left version is the branch which the other branch
was merged into.

30

5. Results

5.3.1 Threats to Validity

Construct Validity

Although the tools used throughout the study, Conflicts Analyzer and Resolutions
Analyzer, have been developed with great care, there is still the risk of the tools
containing bugs which might lead to an inaccurate result.

External Validity

Our results are based on a sample of 20 projects of different sizes, and a total of
1964 conflicts were analyzed. The results might differ if other projects were to be
analyzed. The 20 top starred projects were all Java projects. Thus we can not say
if our results hold for other languages. Also, these were all open-source projects and
may not hold for closed-source projects. The fact that the projects are the 20 most
top starred projects on Github might also affect the results.

Conclusion Validity

To show that the results are not random, we have done a statistical analysis on
the results using Chi squared tests. We tested the results to show that they are
significant. The Chi squared tests was conducted on the results, see Figure 5.2, for
each property, see Table 4.2. The expected values are here calculated by dividing
the total amount of cases in the categories X chosen and Y chosen by 2. Thus,
cases in the categories None chosen and Not applicable are not included in the Chi
squared tests and therefore, the total number of cases in the X chosen and Y chosen
categories will differ depending on the property. We also conducted a Chi square
test on the result for Left and Right versions chosen, see Figure 5.1. The expected
values are here calculated by dividing the total amount of cases where one version
was chosen completely by 2. The tested hypotheses are defined in Table 5.2. We
reject H0 if the p value is lower than 0.05. With a degree of freedom of 1, the required
Chi square is 3.84. The Chi square results are shown in Table 5.3 and Table 5.4.
Note that for the properties print-instances and log-instances, the expected values
are lower than 5, which is a limitation for the Chi square test and we do not draw
any conclusions about those properties.

31

5. Results

Table 5.2: Hypotheses

H0 Ha
Properties When a property is satisfied and

either X or Y was chosen as res-
olution, the property does not
affect what version developers
choose when resolving conflicts.

When a property is satisfied and
either X or Y was chosen as reso-
lution, the property affects what
version developers choose when
resolving conflicts.

Chosen versions Whether a version is Left or Right
does not affect which of the ver-
sions developers choose when re-
solving conflicts.

Whether a version is Left or Right
affects which of the versions de-
velopers choose when resolving
conflicts.

Table 5.3: Chi square tests for the properties

Property X chosen Y chosen Total Chi
square

Reject
H0Observed Expected Observed Expected

Recent 1201 793 385 793 1586 419.8 Yes
Superset 262 188.5 115 188.5 377 57.32 Yes
Intersection 115 188.5 262 188.5 377 57.32 Yes
if-statements 39 32.5 26 32.5 65 2.600 No
print-instances 6 4 2 4 8 2.000 No
log-instances 4 4.5 5 4.5 9 0.111 No
try-instances 17 14 11 14 28 1.286 No

Table 5.4: Chi square test for the chosen versions

Left Right Total Chi square Reject H0Observed Expected Observed Expected
1509 793 77 793 1586 1293 Yes

32

6
Conclusion

The goal of our thesis was to answer the following three research questions:

• RQ1. How can we statically analyze merge-conflict resolutions in real-world,
large version histories of open-source projects?

• RQ2. Can we make a meaningful categorization of how developers resolve
merge-conflicts?

To answer RQ1 and RQ2, we conducted a quantitative analysis based on the results
of our manual analysis, described in Section 4.3. We showed how to statically analyze
conflict resolutions in real-world, large version histories of open-source projects and
how they could be categorized by analyzing output from Conflicts Analyzer.

Our study contributes to the long term goal of creating an automatic merge tool by
increasing the understanding of how developers resolve merge-conflicts. As shown
in Figure 5.1, developers tend to choose their own code when resolving conflicts.

For conflicts regarding code inside methods or constructors, we have shown that the
currently checked out version is chosen in more than 3 out of 4 cases and that the
chosen version often is the most recent one. Therefore, we conclude that developers
tend to choose their own version of the code when resolving merge-conflicts. If
developers choose their own versions instead of choosing the best code, our long
term goal of an automatic merge-conflict resolution tool is even more important.
For future studies, it would be interesting to see if our results hold for the other
conflict patterns other than EditSameMC and SameSignatureCM, as described in
Table 2.1.

33

6. Conclusion

34

Bibliography

[1] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, K. Krzysztof, “An
Exploratory Study of Cloning in Industrial Software Product Lines”, 2013

[2] IEEE 829 Standard for Test Documentation

[3] M. Antkiewicz, W. Ji, T. Berger, K. Czarnecki, T. Schmorleiz, R. Lämmel,
S. Stanciulescu, A. Wasowski, I. Schaefer, “Flexible Product Line Engineering
with a Virtual Platform”, 2014

[4] V. Driessen. “A successful Git branching model” Internet:
http://nvie.com/posts/a-successful-git-branching-model/, Jan. 5, 2010 [Jan.
15, 2016].

[5] GitHub Inc. “Understanding the GitHub Flow”, Internet:
https://guides.github.com/introduction/flow/, Dec. 12, 2013 [Jan. 15,
2016]

[6] Atlassian, “Using Branches”, Internet: https://www.atlassian.com/git/tutorials/using-
branches/git-checkout, [Jan. 15, 2016]

[7] GitHub Inc. “Using pull-requests” Internet:
https://help.github.com/articles/using-pull-requests/, [Jan. 15, 2016]

[8] S. Apel, J. Liebig, C. Lengauer, C. Kästner, W. Cook, “Semistructured Merge
in Revision Control Systems”, 2010

[9] T. Mens. “A State-of-the-Art Survey on Software Merging”
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,VOL.
28,NO. 5, May 2002, pp, 449-462. http://uff-labgc-2010-2-
grupo5.googlecode.com/svn/trunk/seminarios/artigos/mens2002.pdf

[10] S. Apel, O. Leßenich, C. Lengauer, “Structured Merge with Auto-Tuning: Bal-
ancing Precision and Performance”, 2012

[11] G. Cavalcanti, P. Accioly, P. Borba, “Assessing Semistructured Merge in Version

35

Bibliography

Control Systems: A Replicated Experiment”, 2015

[12] P. Accioly, “Understanding Conflicts Arising from Collaborative Development”,
2015

[13] M. Fowler. Continuous Integration. [Online]. Available:
http://martinfowler.com/articles/continuousIntegration.html

[14] M. Guimaraes, A. Silva, "Improving Early Detection of Software Merge Con-
flicts"

[15] “Conflicts Analyzer” https://github.com/patwal/conflictsAnalyzer, accessed:
2016-06-17

[16] “Resolutions Analyzer” https://github.com/Isak-
Eriksson/ResolutionsAnalyzer, accessed: 2016-06-17

36

A
Appendix 1

In this appendix, we describe how to use the Resolutions Analyzer. A detailed
description of how to run Accioly’s Conflicts Analyzer is available at the forked
GitHub repository [15].

A.1 Resolutions Analyzer

Resolutions Analyzer analyzes the output of Conflicts Analyzer. Thus, it is required
that Conflicts Analyzer is run on projects of the user’s choice first (see the forked
GitHub repository for instructions [15]).

A.1.1 Running the .jar

Resolutions Analyzer takes as argument the path to the conflict reports root folder
of the projects analyzed, produced by Conflicts Analyzer. The conflicts report root
folder is called ResultData. Resolutions Analyzer also takes as argument the path to
the repository download folder (the same as in the configuration for Conflicts Ana-
lyzer, downloads.path). It can be run by executing the runnable jar file. Download
and extract ResolutionsAnalyzer.zip, available at the Resolutions Analyzer reposi-
tory [16], then run:

1 java −j a r Reso lut ionsAna lyzer . j a r </path/ to /ResultData/>
</download . path/>

It is important that ResolutionsAnalyzer.jar is executed in the same folder as scripts/
(packaged next to ResolutionsAnalyzer.jar in the zip file).

I

A. Appendix 1

A.1.2 Running it in Eclipse

Running Resolutions Analyzer from Eclipse can be done by cloning the repository
and creating a new Java project in Eclipse.
1 g i t c l one https : // github . com/ Isak−Eriksson /

Reso lut ionsAna lyzer

Then you can either import the source files from the src/ folder and the scripts from
the scripts/ folder into your newly created project, or you can create symbolic links
of the src/ and scripts/ folders into your project folder.

Resolutions Analyzer uses the JXL library. Add it to the Java build path by im-
porting jxl.jar from the repository.

Click Run -> Run configurations. . . then browse to your Resolutions Analyzer
project. Click the tab Arguments and input </path/to/ResultData/> </down-
load.path/> as Program arguments.

Running the project will create Results.xls in the project path.

II

	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Code-Clone Management
	Branching Management
	Resolving Git Conflicts
	Related Work
	Semistructured Merge
	Conflict Patterns
	Avoiding Software Merge-Conflicts
	Variance in Code-Clone Management

	Pre Study
	Method - Identifying Feature Branches
	Method - Identifying Variance Branches
	Data Gathering Tool
	Find Details about Introduced Parameter

	Result - Outcome of Pre Study

	Method - Analyzing Merge-Conflict Resolutions
	Conflict File Tree
	Classify Merge-Conflicts
	Manual Analysis
	Automatic Analysis
	Repositories to analyze
	Input
	Categorizing Conflict Resolutions

	Results
	Manual Analysis
	Automatic Analysis
	Developers often choose one version completely
	Properties

	Discussion
	Threats to Validity

	Conclusion
	Bibliography
	Appendix 1
	Resolutions Analyzer
	Running the .jar
	Running it in Eclipse

