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Abstract

Breast Cancer (BCa) is the most common cancer for women in the Western
world, and the American National Institutes of Health estimates that approxi-
mately 12.3% of American women will be diagnosed with breast cancer at some
point in their lifetime[1, 2]. Breast MRI (Magnetic Resonance Imaging) is in-
creasingly used clinically as an adjunct to traditional x-ray mammography and
ultrasound for the detection and characterization of BCa. The interpretation
of the large volume of image data acquired in a breast MRI exam is both a
complex and time consuming task for the radiologist. Moreover, while the sen-
sitivity of breast MRI to BCa is very high, its speci�city is poor to moderate
which results in large numbers of false positives. Computer automated/assisted
detection/diagnosis (CAD) systems have been developed in an attempt to ad-
dress these issues. However, a recent meta-study of breast MRI CAD systems
concluded that they have little e�ect on the sensitivity and speci�city of experi-
enced radiologists[3]. Current literature suggests that performance gains may be
achieved through 3D segmentation of suspicious lesions and the use of features
(measurements) derived from multimodal MRI.

Typically a clinical breast MRI examination includes the acquisition of anatom-
ical T1- and T2-weighted images, and a dynamic contrast-enhanced (DCE) se-
quence of T1-weighted images. In this thesis, a state-of-the-art method for
creating spatially coherent clusters of similarly enhancing voxels, or voxels with
similar signal intensity characteristics, was implemented and explored for use
in a breast MRI CAD system. The method, Simple Linear Iterative Clustering
(SLIC), generates an oversegmentation of the image into regions termed super-
pixels (2D) or supervoxels (3D). This method is an adapted k-means clustering
approach that quickly and e�ciently generates supervoxels/pixels by bounding
the search area for similar voxels/pixels, and through the use of a simple dis-
tance metric[4, 5]. Here SLIC was used: i) to develop an algorithm to segment
the breast-air boundary; and ii) to partition volumes of interest, corresponding
to mass-like lesions, into supervoxels from which quantitative features describ-
ing the lesion are extracted. These features describe the contrast enhancement
(perfusion) characteristics and di�usion characteristics of the lesion. Clinically
acquired MRI data was used to evaluate both the segmentation method and the
e�cacy of the proposed features for discriminating between benign and malig-
nant lesions.

Segmentations of the breast-air boundary were reviewed visually and found
to adhere well to the boundary. Random Forest classi�cation was used to es-
timate the classi�cation performance of the proposed features, as well as to
identify the most important subset of features. The results, based on a study of
77 subjects, show that the classi�er is able to discriminate between benign and
malignant lesions with an accuracy of 0.752 ± 0.055 (AUC±SE).

Collectively the results provide evidence that SLIC generated supervoxels
are useful for both segmentation and classi�cation in a CAD system. Further
research is needed to investigate whether the combination of the proposed SLIC-
based features and conventional features can improve the state-of-the-art in
terms of sensitivity and speci�city.

Keywords: Breast Cancer, Image Segmentation, Magnetic Resonance Imag-
ing, Classi�cation
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Chapter 1

Introduction

Breast Cancer (BCa) is the most common cancer for women in the western
world, and the American National Institutes of Health (NIH) estimates that
approximately 12.3% of American women will be diagnosed with breast cancer
at some point in their lifetime [1, 2]. In 2013, the NIH estimated that there will
be over 230 000 new cases of breast cancer, of which approximately 40 000 will
be fatal[1].

The detection of breast cancer can be made in several ways, including but
not limited to: X-ray mammography, physical examinations, ultrasound exam-
inations, or magnetic resonance imaging (MRI). X-ray mammography is the
standard modality used during screening procedures.

Recently, MRI has emerged as a complimentary imaging modality for the
characterization of lesions found in the breast. Normally, an MRI examination
of the breasts consists of several series of images of one or both of the breasts.
T1- and T2-weighted images are acquired without contrast as well as a dynamic
contrast-enhanced (DCE) series. The dynamic series normally involves the ac-
quisition of one pre-contrast and several acquisitions after the patient is injected
with a Gadolinium-containing contrast agent.

Radiologists use both the morphological features of the lesion and the con-
trast enhancement pattern to characterize the lesion in question. Using these
two criteria, breast MRI has been shown to have a very high sensitivity to the
detection of BCa, often exceeding 90%. However, the speci�city of these studies
is much lower, and has been reported between 67-72%[6, 3, 7] which yields a
high number of false-positive results.

Worldwide, there are several screening programs for women who are of high
risk for BCa, e.g. a family history of BCa. The American Cancer Society
has recommended that women who have an estimated 20-25% lifetime risk for
BCa have regular MRI screening[8]. Compounding the increase in screening for
BCa, the increasing prevalence of this disease has lead to an in�ux of medical
images that need to be acquired, processed, and analyzed by trained clinicians.
Moreover, as MRI technology advances, the size of the data sets might in-
crease further. The interpretation of these large data sets is complex, and time
consuming. This has accelerated the research and development of computer
aided/assisted detection/diagnosis systems (CAD) for use in breast MRI.
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1.1 Breast Cancer

With over one million new cases worldwide each year, BCa is the most common
malignancy in women and in total is responsible for one �fth of all female cancers
[9, 10]. In the United States, the �ve-year survival rate across all BCa diagnoses
is 89.2%[1].

There are several types of BCa, primarily classi�ed by location and invasive-
ness.

Ductal Carcinoma in situ (DCIS): DCIS is considered a non-invasive BCa.
When a patient has DCIS, it means that the cells that line the milk ducts in
the breast have changed to appear as cancer cells. At this stage, the cancer
cells have not spread through the walls of the ducts into the surrounding breast
tissue. About one �fth of new BCa diagnoses will be a DCIS [2]. The prognosis
is very good for this type of cancer and nearly all women diagnosed at this stage
can be cured.

Invasive/In�ltrating Ductal Carcinoma (IDC): This is the most common
type of BCa, accounting for 8 in 10 invasive breast cancers. IDC's originate in
one of the milk ducts of the breast, breaking through the tissue wall to grow
inside the fatty tissue of the breast. From there, it may be able to metastasize
to other parts of the body via the circulatory or lymphatic systems.

Invasive/In�ltrating Lobular Carcinoma (ILC): ILC originates in the milk
producing glands, the lobules. Similar to IDC, ILC can metastasize to other
parts of the body using the circulatory or lymphatic systems. ILC is often more
di�cult to detect through mammography than an IDC.

Other less common types of breast cancer include: In�ammatory BCa, in
which no single lump or lesion can be isolated, but the cancer cells are spread
throughout the breast; Triple-Negative BCa, named as such because this can-
cer's cells lack oestrogen receptors, progesterone receptors, and do not have a
speci�c protein marker on their surface; and Paget disease of the nipple, where
the cancer starts in the breast ducts and spreads to the nipple. Triple-Negative
BCa, as well as Paget disease of the nipple are both often associated with DCIS
or IDC.

There are a wide variety of risk factors for BCa, including: age, ethnicity,
age at menarche and menopause, family history, diet, body weight as well as
environmental causes like exposure to radiation [9, 11]. The incidence of BCa
increases with age, approximately doubling every ten years until menopause,
when the rate of increase slows. BCa is also more prevalent in more developed,
western nations.

1.2 Diagnosis of Breast Cancer

Diagnosis of BCa most often begins with the patient's medical history and
a physical exam. Here, the physician will ask questions about the patient's
symptoms, other health issues and run through potential risk factors. Often,
patients see their physician after �nding a lump in their breasts during a self-
examination. After a physical examination, a clinician often determines that
imaging studies are needed. Multiple imaging modalities can be used, including
X-ray mammography, ultrasonography, and MR imaging. Many developed na-
tions have large screening programmes designed with the goal of early detection
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Figure 1.2.1: Sample mammogram.
Reproduced from:[13]

in mind. These programmes are based on X-ray mammography.
In X-ray mammography, a two-dimensional X-ray image is captured of the

breast(s), usually using 2 orthogonal views. See Figure 1.2.1 for an example.
X-ray mammography is used most often as it is an inexpensive, and very fast
imaging study, and can often immediately determine that an abnormality is not
worrisome. It is conventionally used to both assess symptomatic patients and
for screening purposes. X-ray mammography has several drawbacks: when per-
formed optimally, the sensitivity of X-ray mammography is between 69-90%[12];
as a radiographic technique, patients are exposed to dangerous ionizing radia-
tion when they undergo an investigation; and, given that X-ray mammography
is a 2D projection-based method, the resulting image can be blurred and is di�-
cult to read. It also has poor soft-tissue contrast and cannot be used to measure
vascularity of the breasts. Often, a follow-up biopsy is recommended to con�rm
a diagnosis. Images from women who have particularly dense breasts can be
di�cult to read.

In MRI, the hydrogen nucleus, or proton is used because of its high con-
centration in biological tissues like fat and water. MR imaging uses magnetic
�elds to excite the protons and record how they respond to speci�c magnetic
�eld pulse sequences. MRI can be used in a variety of acquisition modes, creat-
ing multiple contrast patterns, such as T1- and T2-weighted, di�usion weighted
(DW), and can also be used to monitor the uptake and distribution of con-
trast material. Dynamic Contrast Enhanced (DCE) MR images are the most
routinely used MRI technique for the assessment of breast lesions [12]. Under
guidance from the American Cancer Society, breast screening is recommended
for patients in speci�c risk groups such as those with a family history of breast
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Figure 1.2.2: Schematic of Breast MRI acquisition

cancer or who face a lifetime risk of 20-25%[8]. MRI has higher sensitivity and
can �nd smaller tumours than conventional mammography [12, 8]. DCE-MRI
uses volumes acquired at several time instances, before and after the injection
of a Gadolinium-containing contrast agent, to assess the contrast uptake and
washout patterns of the tissue. A typical DCE-MRI exam will include one pre-
contrast volume followed by four to six contrast-enhanced volumes. A schematic
view of a patient lying in an MRI scanner showing the coils used for breast imag-
ing is shown in Figure 1.2.2.

In many practices, the radiologist reports �ndings using the American Col-
lege of Radiologist's Breast Imaging and Reporting Data Systems (ACR BI-
RADS)[14], which provides a standardized way for a radiologist to report �nd-
ings in the breast MRI exam1. The assessment of the lesion is provided on a
0-6 scale, where an increasing value suggests a more suspicious lesion. Category
1 reports a negative �nding, Category 2 reports a benign �nding. Categories
3 through 5 report that the �ndings are increasingly suggestive of malignancy.
Category 6 is used to report a known cancer. The assessment of the lesion is
based on several categories, including:

� Shape (for a mass-like enhancing lesion)

� Round

� Oval

� Irregular or Lobular

� Enhancement Properties

� Homogeneity

1BI-RADS has not been adopted in every country
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� Heterogeneity

� Rim Enhancement

� Margin Features

� Smooth

� Irregular or Spiculated

� Other

� Nipple Involvement

� Skin thickening

� Edema

� Enhancement Characteristics over time

1.3 Computer Assisted Diagnosis/Detection

Computer assisted diagnosis/detection (CAD) systems were �rst developed to
identify suspect lesions in the breast volume and bring them to the attention
of the radiologist, but thereafter the primary aim shifted to distinguishing be-
tween benign lesions and malignant lesions [3, 15, 16, 12]. In this arrangement,
the program aims to help decrease the number of false-negative readings by
radiologists as opposed to the former, where CAD is used as a second-reader2.
However, most suspicious lesions �agged by the CAD program were already de-
tected by the radiologist. This turned the attention of CAD developers to the
task of assisting radiologists determine if a suspect lesion is benign or malignant.

Successful implementations of CAD software would improve the accuracy
of breast MRI by cutting the false-positive rate (and possibly increasing the
sensitivity) and reduce the amount of time clinicians and technicians need to
spend on processing and interpreting the images. State-of-the-art CAD systems
have very high sensitivities and negative predictive values3 for non-calci�ed
breast lesions[3].

A recent meta-study of ten studies on how CAD a�ects radiologists both
experienced and otherwise suggests that those who have little experience can
bene�t from the use of CAD systems. However, experienced radiologists saw
little or no bene�t [3]. The meta-study reported a pooled sensitivity of 89% and
a pooled speci�city of 81% for both radiologists and residents assessing breast
lesions with the use of a CAD system, versus reported sensitivities of above 90%
and speci�cities ranging between 67%-72% without CAD.

CAD systems perform many of the preprocessing and analysis functions that
a radiologist or the MR technician would normally have to do themselves. The
software also automates the generation of kinetic curves4 for the breast tissue,

2In a second-reader scenario, the software is used as a second radiologist would be - to
analyze the images, and ensure all lesions are found.

3The Negative Predictive Value (NPV), is the ratio of the number of true negatives to the
total number of negative classi�cations in a test.

4These kinetic curves show the relative signal intensity for the lesion in question before,
and after the injection of contrast material. The lesion's kinetics describe the rate at which
contrast �ows in and out of the tissue.
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Figure 1.3.1: Schematic of time-signal intensity (SI) curves.
Type I corresponds to a straight line (Ia) or curved (Ib) and re�ects an

enhancement which continues over the whole study. Type II is a plateau curve.
Type III is a washout pattern. A type III pattern is a strong indicator of

malignancy [12].

and provides a visualization that displays the patterns of contrast enhancement
(See Figure 1.3.1) across a series of images [7, 3]. The results of this assessment
are often displayed to the user as a colour-coded map based on the uptake
strength [7].

State-of-the-art CAD software takes into account many features of the sus-
pect lesion, including it's morphology, enhancement characteristics, among oth-
ers [3]. As many analysis procedures performed by radiologists are subjective
(e.g. assessing the morphology of the lesion), there exists high inter-observer
variability that can result in di�ering diagnostic performance[17]. CAD systems
remove this variability, processing every image in the same manner. A wide va-
riety of features anecdotally described by radiologists have been collected in [18],
and work is being done to translate these qualitative descriptions to quantitative
measures [15, 19].

Several automated analysis methods are being developed to quantify the
uptake (or wash-in), and wash-out of the contrast agent, and to divide the voxels
within a lesion into spatially contiguous clusters that have similar enhancement
patterns. Using spatially contiguous clusters inside the lesion, analysis of the
temporal shape of the enhancement pattern can also be analyzed. There are
a wide range of parametric models used in literature to describe enhancement
patterns, and several are used in this thesis[6, 20, 21, 22, 23, 24].

A typical work �ow for a breast CAD system would include �rst high-level
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image enhancement techniques, such as contrast adjustments, bias �eld correc-
tions, or noise reduction algorithms. Next, areas that are not important in the
image would be removed. This may include the removal of air, and the removal
of the chest-cavity from the volume. After this large-scale segmentation is com-
plete, the volume would contain only the voxels corresponding to the breast
tissue. Next, a lesion would be identi�ed automatically, most likely from the
T2-weighted and dynamic volumes. Then, the lesion itself is segmented into
spatially coherent clusters. Next, information is gathered from these clusters
which could relate to their morphology, enhancement pattern, or di�usion char-
acteristics. Finally, the information gathered from the clusters is pushed to a
classi�cation system which analyzes the information and presents a determina-
tion as to whether or not the lesion is benign or malignant.

In this thesis, a new method for creating these spatially coherent clusters of
similarly enhancing voxels, or voxels with similar signal intensity characteristics,
was implemented and explored for use in a CAD system. The method is based
on Simple Linear Iterative Clustering (SLIC), which is a new method used to
generate an oversegmentation5 of regions with similar characteristics [4, 5]. Su-
perpixels, in the two-dimensional case, and supervoxels, in the three-dimensional
case, are the result of the oversegmentation process[25]. This method is an
adapted k-means clustering approach that quickly and e�ciently generates su-
pervoxels by bounding the search area for similar voxels, and through the use
of a simple distance metric[4, 5].

1.4 Data and Software Used

The MRI data used in this research was acquired from routine clinical exam-
inations of women performed by Queensland X-ray in Australia. The exami-
nations were used for screening, investigative purposes, or as follow up studies
after surgery. The images were acquired using a 1.5T scanner. In each case, the
reporting radiologist identi�ed at least one suspiciously enhancing lesion, and
pathology for each lesion was subsequently con�rmed by cyto- or histopathology.
Lesions were individually biopsied under either MRI or ultrasound guidance.

Each case consists of T1- and T2-weighted anatomical volumes, a two di�u-
sion weighted volumes, and �ve dynamic contrast enhanced volumes. Volumes
were spatially co-registered and bias �eld correction performed. The T1- and
T2- weighted registered images used in this work normally have size 512× 512
pixels, with on average 150 images in the stack. The detailed acquisition, and
registration protocol can be found in [15, 19]. Lesions were delineated manu-
ally by a radiographer with 12 years experience in breast MRI, guided by the
�ndings of the original reporting radiologist. Manual delineations were per-
formed on the subtraction volume of the �rst post-contrast volume from the
pre-contrast volume using a region growing tool in OsiriX. The radiographer
also classi�ed the lesion as mass-like or not, guided by the American College of
Radiology BI-RADS lexicon. All lesions have a classi�cation of BI-RADS 2+.

A subset of the database of subjects was selected for use in lesion segmenta-
tion and feature selection experiments. To be included in the subset which was

5An oversegmentation describes a segmentation which has more segments than true objects
in the image. A perfect segmentation would have the same number of segments and objects,
and an undersegmentation would therefore have fewer segments than objects.
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used:

1. The suspicious tissue must have been classi�ed as mass-like;

2. At least 4 DCE-MRI volumes were available, where the �rst volume is
before the administration of contrast material; and

3. 2 DW volumes were available, or, an apparent di�usion coe�cient map
was available as a substitute.

After these requirements were used as �lters, 77 acceptable subjects remained.
Of those subjects, 53 were diagnosed as having malignant lesions, while 24 were
diagnosed as having benign lesions. The lesion pathologies are shown in Table
1.1.

Table 1.1: Pathologies of Selected Lesions

Pathology Count Description

Benign 4 Fibrocystic change
9 Fibroadenoma
11 Other

Total Benign 24
Malignant 14 Ductal carcinoma in situ

20 Invasive ductal carcinoma
3 Invasive lobular carcinoma
16 Other

Total Malignant 53
Total Mass-like 77

Algorithm development, testing was performed in the MATLAB[26] pro-
gramming environment. The open source OsiriX (www.osirix-viewer.com) viewer
was used for visualization and exploration of the MRI volumes. The classi�ca-
tion algorithms were developed and executed using R[27].

1.5 Aim and Objectives

The aim of this research was to implement and explore the SLIC supervoxel
algorithm for use in a computer aided diagnosis system for breast cancer. To
that end, the research had the following speci�c objectives:

1. To implement SLIC for the generation of supervoxels in breast MRI data;

2. To develop and evaluate a supervoxel-based method to segment the breast-
air boundary; and

3. To develop and evaluate supervoxel-based features for classifying breast
lesions as benign or malignant.
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1.6 Scope

The focus of this research was restricted to the development of algorithms based
on supervoxels, generated using the SLIC algorithm, for use in a breast MRI
CAD system. In particular the research was restricted to the problem of seg-
menting the breast air boundary and the extraction of lesion features.

1.7 Structure of Thesis

This chapter has:

� Provided background on BCa, described several presentations of BCa, and
noted several risk factors.

� Discussed the various methods used to diagnose BCa, noting their respec-
tive advantages and disadvantages.

� Discussed the rationale for the use of CAD systems in Breast MRI.

� Described the data and software used in the thesis.

� Presented the aim, objectives, and scope of this thesis.

The remainder of the thesis is organized as follows:

Chapter 2 This chapter addresses the �rst objective of the thesis: SLIC seg-
mentation for the generation of supervoxels in breast MRI.

Chapter 3 This chapter addresses the second objective of the thesis: to de-
velop and evaluate a supervoxel-based method to segment the breast-air
boundary.

Chapter 4 This chapter presents the method used for generating supervox-
els within a volume-of-interest, and in combination with chapters 5 and
6 addresses the third objective of the thesis: to develop and evaluate
supervoxel-based features for classifying breast lesions as benign or malig-
nant.

Chapter 5 This chapter builds on the previous to address the third objective
in the thesis. Here, several features quantitative features are derived from
the supervoxels generated within the volume-of-interest.

Chapter 6 This chapter describes classi�cation experiments to determine the
discriminatory performance of the features proposed in the previous chap-
ter.

Chapter 7 This �nal chapter reviews the work that has been presented in
this thesis, and summarizes the major contributions and �ndings. The
limitations of the research undertaken, and potential future research is
also discussed.
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Chapter 2

SLIC Segmentation

This chapter addresses the �rst objective of this thesis: to implement SLIC for
the generation of supervoxels in breast MRI. Superpixels, and their 3D exten-
sion termed supervoxels, are increasingly popular in computer vision and have
been used in a variety of applications such as depth estimation, image segmen-
tation, skeletonization, and object localization [4, 28, 29, 25]. They can also be
used to reduce the complexity of image processing tasks by capturing redun-
dancy. If superpixels or supervoxels are to be used in a complexity reduction
scenario, their creation must be simple to tune and at low computational cost.
The remainder of this chapter is organized as follows. In the next section the
rationale for choosing the SLIC supervoxel algorithm is discussed. Section 2.2
provides a description of the SLIC algorithm. Section 2.3 discusses the author's
implementation in MATLAB. Section 2.4 shows example segmentations with
respect to di�erent parameter settings.

2.1 Rationale

Several algorithms can be used to create superpixels/voxels, and they can be
broadly classi�ed into two di�erent classes: graph-based, and gradient-ascent-
based. Simple Linear Iterative Clustering (SLIC) falls into the latter category
and is described as an adaptation of the k-means approach.

There are two main distinctions between SLIC and k-means. The �rst is
that the number of distance calculations during the optimization phase is sig-
ni�cantly reduced by reducing the search region to a space proportional to the
expected supervoxel size (See Figure 2.2.1). The second is that a weighted dis-
tance measure is used which combines the intensity information and the spatial
proximity to provide control over the size and compactness of superpixels/voxels.

Not all of the algorithms described in literature can be extended directly
into 3D, nor provide control over the number of superpixels/voxels. Many have
a large numbers of parameters that need to be tuned. SLIC, on the other hand,
has only one tuning parameter; control over the number of superpixels/voxels
and can be extended into 3D. It was for these reasons that SLIC was chosen for
this thesis. As this application deals with 3D MRI volumes, the supervoxel case
will be discussed from this point forward.

Most commonly, SLIC generates superpixels based on their colour similarity
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and their spatial proximity in the 2D image plane. Herein, it is adapted to
generate supervoxels based on their MRI intensities from one or multiple MRI
modalities and their spatial distance in three dimensional space. Other popular
superpixel methods can potentially be extended into 3D, including Quickshift
[30], Turbopixels [31], and graph-based algorithms[32]. However, these methods
have been shown to produce lower quality segmentations in 2D, can be orders
of magnitude slower in runtime, and require more memory [5].

Instead of generating supervoxels for the entire volume, it is also possible to
create superpixels on each level of the image stack. This approach was compared
in [33] to the true-3D supervoxel approach in brain MR image analysis. They
found that while superpixels show better boundary adherence at small levels of
complexity reduction, supervoxels show much better boundary adherence when
the reduction in complexity1 is higher. They showed that supervoxels achieved
a higher reduction in complexity (approximately 200x) than superpixels (ap-
proximately 75x) while maintaining the same levels of boundary adherence [33].
SLIC has O(N) complexity [4, 5, 34], where N is the number of voxels, com-
pared to a conventional k-means approach which has complexity on the order
of O(kN) where k is the number of clusters.

2.2 SLIC

The SLIC algorithm is straight forward, and can be broken down into several
stages.

The �rst phase is the initialization phase. The creation of cluster centres
begins with an initialization of k clusters equally spaced throughout the vol-
ume, where k represents the desired approximate number of equally sized su-
pervoxels. Taking Ini to be the MRI signal intensity for the cluster centre
i in modality n, and x,y,z, being the spatial coordinates, the cluster centres

Ci =
[
I1i I2i · · · Ini xi yi zi

]T
are sampled on a lattice spaced S vox-

els apart, where:
S = 3

√
N/k (2.2.1)

and N is the total number of voxels in the volume. Centres are moved to the
lowest gradient position within their local 3 × 3 × 3 neighbourhood to avoid
centring a supervoxel on an edge and to reduce the chance that the seed voxel
is a noisy voxel.

The next phase is the assignment phase, where each voxel i is associated
with the nearest cluster centre whose search region overlaps it. The distance
measure D determines the nearest cluster centre for each voxel. Given that the
expected spatial extent of a supervoxel is a volume of approximately S×S×S,
the search for similar voxels is performed in a region of 2S × 2S × 2S around
the supervoxel centre.

SLIC combines the intensity distance (dI) and spatial distance (ds) into a
single metric, D. In order to combine the two distances into this single met-
ric it is necessary to normalize both the spatial and intensity proximities by

1Here, complexity reduction refers to the number of elements in the image(volume) that
need to be analyzed. This can also be used as an estimate of the average size of the super-
pixel/voxel.

11



Figure 2.2.1: Diagram of SLIC search region inside an image.
A standard k-means approach searches the entire image for similar voxels

(left), whereas SLIC searches a smaller, bounded region (right). This increases
the computational e�ciency of SLIC. This idea is similarly extended into the

third dimension.

their respective maximum distances within a cluster Ns and NI . Therefore the
normalized metricD′ is formed by combining the spatial and intensity distances:

dI =
√
(I1i − I1j)2 + (I2i − I2j)2 + . . . (Ini − Inj)2, (2.2.2)

ds =
√
(xi − xj)2 + (yi − yj)2 + α(zi − zj)2, (2.2.3)

D′ =

√
(
dI
NI

)2 + (
ds
Ns

)2 (2.2.4)

The scalar factor α is used to adjust for anisotropic voxel dimensions in the
volume, and is de�ned:

α =
lx,y
lz
, (2.2.5)

where lx,y is the length and width in the xy plane, and lz is the height of the
voxel.

The maximum spatial distance expected within a given supervoxel corre-
sponds to the sampling interval,

Ns = S = 3
√
N/k. (2.2.6)

Determining the maximum intensity distance is not as straightforward however,
as intensity distances vary supervoxel to supervoxel and volume to volume. This
problem is solved by setting the normalized intensity distance to a constant m
so that the distance equation becomes:

D′ =

√
(
dI
m

)2 + (
ds
Ns

)2, (2.2.7)

which can be simpli�ed to:

D =

√
d2I +

ds
S

2

m2. (2.2.8)
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Creating the distance measure in this way allows for m to be used to weigh the
relative importance of the intensity similarity and the spatial proximity. When
m is large, spatial proximity is weighed more heavily and this produces compact
supervoxels. Conversely, when m is small the supervoxels created follow image
boundaries closely and have more irregular sizes and shapes. S and m can
be thought of as the average expected spatial and intensity distances inside a
supervoxel, respectively[34]. Compact supervoxels can be desirable becasue they
more often correspond to a lattice structure in the volume, and their boundaries
are simpler which leads to more regular neighbourhood relationships.

The compactness parameter m can also be described in relation to the in-
tensity range in the volume:

m = range% · (max(I)−min(I)). (2.2.9)

This de�nition yields a more intuitive procedure for the user as now the user
needs to input a target average intensity range for the supervoxels, and this is
scaled to each particular volume.

After each of the voxels have been assigned to a cluster, the update phase
begins. The cluster centre positions are updated to the mean[
I1i I2i · · · Ini xi yi zi

]T
vector of all of the voxels in the cluster.

The assignment and update phases are repeated iteratively until the L2 norm
error between the new cluster centre locations and the old locations converge.
Alternatively, a �xed number of iterations can be used.

The �nal phase is a post-processing phases to enforce connectivity by reas-
signing any disjoint voxels to nearby supervoxels, and ensuring that all voxels
within a label are connected components within 26-neighbour (neighbours are
de�ned through all faces, edges, and corners) connectivity. In this process, a
minimum supervoxel size can also be enforced. Other connectivity schemes can
also be used, such as 6-connectivity (all of the faces on the voxel element), or
18-connectivity (all of the faces and edges).

The resulting segmentations can be described using the average number of
voxels per supervoxel, which correspond to the reduction in complexity of the
volume:

C = Navg =
N

k
. (2.2.10)

An overview of the algorithm can be seen in Algorithm 2.1.

2.3 Implementation in MATLAB

As there were no publicly available implementations of the SLIC algorithm for
use in breast MRI, the SLIC algorithm was implemented in MATLAB by the
author. The implementation includes methods for reading in DICOM2 image
stacks, the SLIC algorithm itself, a connected-components method to enforce
supervoxel connectivity, methods to create masks used for visualization, and a
graphical user interface to allow users to explore the images. The implementa-
tion also allows for multiple MRI modalities and provides the ability to restrict
clustering to a speci�c volume of interest. Where possible, the implementation

2Digital Imaging and Communications in Medicine (DICOM) is the standard �le format
for medical images
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Algorithm 2.1 Simple Linear Iterative Clustering

Input: Breast MRI volume, approximate desired number of supervoxels (k),
compactness parameter (m)

Initialize cluster centres Ck =
[
I1k I2k · · · Ink xk yk zk

]T
by sam-

pling at regular grid intervals S

Perturb cluster centres to lowest gradient position in 3× 3× 3 region

Set labels l(i) = −1 for each voxel i

Set distance d(i) =∞ for each voxel i

Repeat

for each cluster centre Ck

for each voxel i in 2S × 2S × 2S region around Ck

Calculate distance D between Ck and i

if D < d(i) then

set d(i) = D

set l(i) = k

end

end

end

Compute new cluster centres

Compute residual error

until Error ≤ Threshold or Number of Iterations reached

Enforce Connectivity

Output: Labelled volume
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was written in a parallel manner, to take advantage of modern multi-core pro-
cessors. The implementation package is available on request from the author.

2.4 Example Segmentations

In this section the output of the SLIC supervoxel algorithm will be shown.
Figure 2.4.1 shows the supervoxel output for a range of supervoxel cluster

sizes.
As the complexity reduction decreases the homogeneity of the clusters in-

creases as the supervoxel has aggregated a much smaller number of more similar
voxels. At each level the supervoxels continue to adhere to image boundaries,
and in areas of the image where there is little to no variance in the intensity the
supervoxels form a more regular lattice.

Figure 2.4.2 shows the supervoxel output for a constant complexity reduction
level, but for a range of compactness parameters.

It can be seen that as the compactness parameter rises, each supervoxel is
allowed to have a greater range of intensity values within itself. It follows that
if an image boundary shows an intensity di�erence of larger than this expected
range, it is more likely to be excluded from that superpixel (although this is also
dependent on the spatial distance from the supervoxel centre). For example,
in Figure 2.4.2a, the supervoxel boundaries are much more complex as they
attempt to follow the internal boundaries of the breast tissue, in contrast with
Figure 2.4.2d the supervoxels have very regular shapes, even inside the breasts.
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Chapter 3

Segmentation of the

Breast-Air Boundary

This chapter addresses the second objective of this thesis: to develop and eval-
uate a supervoxel-based method to segment the breast-air boundary.

Preliminary, large-scale image processing tasks need to be carried out on
the images before further analysis can be performed in a CAD system. As
breast MRI volumes are often acquired in the axial plane, they contain large
areas that are of no use to the radiologist with respect to the diagnosis, namely
the background of air and the chest cavity. It is important to remove these
areas to be sure that any subsequent analysis tasks are performed solely within
the breasts as well as reduce computation time. A typical image in the axial
plane is shown in Figure 3.0.1, and the image includes the large background
section of air, and the chest cavity, in which the heart is visible. Isolation of
the breast tissue involves both the segmentation of the breast-air boundary and
of the chest wall. This chapter considers only the �rst segmentation problem.
The remainder of this chapter is organized as follows. In the next section the
breast-air boundary segmentation algorithm of Hayton [21, 35] is described. It
serves as a benchmark for the proposed SLIC supervoxel algorithm presented
in Section 3.2.

3.1 Hayton's Method

Several methods exist to segment the breast-air boundary in digital mammog-
raphy or MRI volumes, for example: seeded region growing [36], gradient anal-
ysis, active contours (snakes) [37], and dynamic programming [21, 35]. The
ideal method would be fully automatic, fast, and reliable1. One approach that
largely �ts these demands is the method of Hayton [21] that is based on a live-
wire boundary extraction algorithm that utilizes a graph search algorithm, a
dynamic programming technique, to �nd the path of lowest cost2 between two

1Reliable, in the sense that repeated user intervention is not needed for tuning or trou-
bleshooting.

2Cost is most often based on image gradients, where traversing a path that includes large
changes in gray-level is 'expensive'.
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Figure 3.0.1: Typical axial image from a T1-weighted breast MRI volume

points on an image (this path was then used to make a computer-assisted seg-
mentation tool). Hayton developed this algorithm further to run automatically,
�nding the lowest cost path between �ve automatically determined points on the
breast pro�le (lower extremities on each breast, the outer edges of the chest, and
a point between the breasts, see Figure 3.1.1a). Hayton's algorithm is shown in
Algorithm 3.1 and is brie�y presented below, as well as examples of its output.

First, using a simple thresholding operation, and prior knowledge of the
orientation of the breast images, a contour of the breasts is created by searching
vertically for the �rst strong edge, which should correspond to the breast-air
boundary. This contour is not a robust edge contour, as it cannot wrap around
the breast to capture the full shape of the breast, but it does provide an estimate
for the lowest point of each breast, the uppermost point between the breasts,
and the outer bounds. These points will be used as seed and target points
while searching for the optimum path. An example contour with the target
points is shown in Figure 3.1.1a. The graph search algorithm used is initialized
with a local cost map from which the algorithm determines the path with the
lowest total cost. Hayton uses an exponential local cost function which yields
low values at tissue boundaries, and tends to its maximum of 1 in regions of
uniform intensity. It is de�ned as:

C(x, y) = exp(− λ|G(x, y)|
maxx,y |G(x, y)|

) (3.1.1)

where λ is a scaling factor set experimentally, and G(x, y) is the image gradient.
Next, the algorithm computes a cumulative cost map by starting at one of the

target nodes (the predetermined points from the breast contour) and expanding
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outwards. From the local cost map C(x, y) the target point is expanded by
summing the local costs of neighbouring pixels with the expanding pixel's total
cost. The next lowest total cost pixel is then expanded to its neighbouring pixels,
and so on throughout the image. When a node N is expanded, its neighbours
consider the cost of the path back to the target point via N , and since N is being
expanded, it must have the lowest cumulative cost, and therefore its path back
to the target point must be optimal. Neighbouring pixels update their total
costs, and point to N in the path map if going through N reduces their total
costs. Therefore, from path map the minimum cumulative cost path from the
seed point to the target point can be found by following the cost map, always
selecting the neighbour node with the lowest cost as it points the route to the
target. An example cost map is shown in 3.1.1b. This can be thought of as
a concave surface, where the path rolls down the surface into the target node
along strong edges of the image.

Using the �ve predetermined points, the method runs four times, twice from
the outer boundaries to the lower breast extremities for each breast, and twice
more from the centre-point between the breasts to the extremities on each
breast. The cost map is generated separately for each breast. Once each section
of the contour has been found, they are connected and the region above the con-
tour corresponding to the breasts, is �lled in to create a binary image mask. An
example of the output binary mask is shown in Figure 3.1.1c. This procedure
is then repeated on each image in the volume. The algorithm is summarized in
Algorithm 3.1.

Two issues present themselves when using the Hayton algorithm: �rst, that
computing two full cumulative cost maps per image in the volume is not e�-
cient; and, that the output can still be somewhat unstable due to partial volume
e�ects3 or regions of low intensity. The latter can be solved to an extent by tun-
ing the threshold for each volume to be segmented, ensuring that the threshold
selected is high enough to remove noise, but low enough to capture areas on the
edge which have been a�ected by partial volume e�ects. The former however
is not as readily dealt with. There exist methods to speed up the algorithm,
such as limiting the generation of the cumulative cost map to a bounded area4,
exploiting the similarities between slices, or retooling the algorithm to run in
parallel5.

Below are several examples of problematic output from the algorithm. In
Figure 3.1.2a the path has wandered away from the breast-air boundary, follow-
ing instead an area of lower signal intensity inside the breast. In Figure 3.1.2b
the path has similarly wandered away from the breast-air boundary, although in
this more extreme case the resulting segmentation failed to capture the breast.

3.2 Proposed Method

In this section, a method for segmenting the breast-air boundary using super-
voxels is proposed. In this method, the full breast-air surface is segmented

3Near regions of large gradients in the image, the low intensity side of the gradient often
gets boosted to a stronger intensity. In particular, this is called spillover.

4For example, not generating the left breast cumulative cost map past the centre-point in
the x direction or further than the outer boundary seed point in the y direction.

5As each slice in the volume can be treated independently using the Hayton algorithm,
this algorithm is easily parallelizable, and signi�cant speed increases can be found.
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(a) Edge Contour of the Breasts (b) Cumulative cost map for right breast

(c) Output Binary Mask

Figure 3.1.1: Output from various stages of the Hayton breast-air boundary
segmentation algorithm.
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Algorithm 3.1 Hayton Breast-Air Segmentation

Input: Image stack, threshold T

For each image in the volume

Construct Estimates for breast edge locations

For each x position, �nd lowest y position that has gradient magni-
tude > threshold T to create the contour

Filter the contour to reject outliers and smooth it using median
�lter

Find Extremity points corresponding to outer bounds, the breast
extremities, and centre-point

Compute local cost map C(x, y) = exp(− λ|G(x,y)|
maxx,y|G(x,y)| )

Between each extremity

Initialize sorted list of pixels S to be expanded from the target point

Initialize Cumulative cost table Ct with Ct = 0 at the target point,
otherwise Ct =∞

Repeat until all pixels have been considered

Expand Cumulative cost table outwards from target point

Trace the path of lowest cost between seed point and target

Connect each segment of the full path

Fill above the full path to create binary mask

Output: Stack of binary masks
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(a) Common failure mode where the path wan-
ders away from the breast-air boundary, to-
wards another edge in the image with low in-
tensity.

(b) Failure to segment the right breast.

Figure 3.1.2: Failure modes of the Hayton breast-air segmentation algorithm.

simultaneously using a graph-cut method. In this method, the inherently three
dimensional problem is solved as a three dimensional problem, as opposed to
reducing the problem into two dimensional stages.

Graph cuts has become a popular method for low level processing functions
such as image segmentation and restoration. Graph cuts is an energy minimiza-
tion technique based on a combinatorial optimization. Graph cuts provides a
solution that is globally optimal, and through it's tunable energy function it
can be used widely.

In the graph cut approach, images are described as non-oriented graphs,
where the nodes on the graph correspond to voxels and the arcs correspond to
the adjacency relations between voxels (or indeed supervoxels). Two additional
nodes are added to the graph, which correspond to the source s and the sink t.
The method is initiated by the interactive or automated identi�cation of one or
more nodes on the graph which represent the object and the background. These
nodes are called seeds, and serve as hard constraints in the binary segmenta-
tion of the image. Soft constraints are also added, which represent regional
or boundary information. The s and t terminals are hard-linked to the seeds
which correspond to the the object and background respectively. Therefore,
three types of arcs are de�ned in the graph: n− links, s− links and t− links:
n − links connect neighbouring pairs of nodes whose costs are de�ned by the
regional or boundary information, while s − links and t − links link nodes to
the terminals and have costs derived from their similarity to the terminal in
question. An example graph is shown in Figure 3.2.1.

A s−t cut in graph G is a set of arcs whose removal partitions the graph into
two disjoint subsets S and T such that no path can be created between s and t.
The cost associated with this cut is the total cost of all the arcs in the cut, and
the minimum s− t cut is therefore a cut whose cost is minimal. The minimum
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Figure 3.2.1: Graph Cuts Schematic
Left: Graph shown with n − links and t − links, as well as source and sink
nodes. Right: Binary partition of the graph. Figure adapted from [38].

s − t cut problem has a dual problem, the maximum �ow problem, and these
are classic combinatorial problems that can be solved by number of di�erent
algorithms (e.g. Ford & Fulkersen, Edmonds-Karp [39]). The maximum �ow
problem can be visualized by imagining the source to be a water source like a
tap, the arcs of the graph as pipes whose cost corresponds to their capacity,
and the sink to be a drain. Then, the problem is reimagined as the maximum
amount of water that can �ow from the source through the network of pipes to
the sink. An overview of the algorithm is presented in Algorithm 3.2.

The largest bottlenecks in applying graph cuts are computational. The al-
gorithm has a worst case complexity of O(|E| · |V |2) where |E| is the number
of edges and |V | is the number of nodes. Using pre-segmented regions as op-
posed to voxels can reduce the number of nodes by several orders of magnitude
which therefore signi�cantly speeds up the processing. Similarly, the memory
requirements for graph cuts can be very large and prohibitive as the size of
the volume increases. The popular graph cuts implementations of [40, 41, 42]
requires 40V + 32E bytes to store the graph on a 64 bit machine [41, 34].

For example, using full 26-connectivity on a typical registered breast MRI
volume, this yields a memory footprint of approximately 30.85 6 gigabytes ex-
cluding any additional overhead. Performing graph cuts on a graph de�ned on
supervoxels can reduce this memory footprint by several orders of magnitude.
In a similar approach, Stawiaski et al. [43] perform graph cuts on top of an
oversegmentation generated by the well known watershed algorithm. A region
adjacency graph7 is de�ned on the watershed regions on the image. Stawiaski
et al. note the high memory requirements for the method of [41] when attempt-
ing to segment a thoracic CT volume, which in fact meant that they could not
compute the segmentation for use as a comparison to their own work. Using
the SLIC segmentation method as preprocessing, the same typical, registered
breast MRI volume was able to be reduced to a much more manageable 0.031

6Calculated using 40V+32E, on a volume with size 512 · 512 · 150
7A region adjacency graph de�nes how regions (watershed regions, mean shift clusters,

supervoxels) which correspond to nodes in the graph are connected to other neighbouring
regions.
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Algorithm 3.2 Graph Cut Segmentation

Input: Image (or volume)

Create an arc-weighted, directed graph corresponding to size and dimension-
ality of image to be segmented

Identify object and background seeds

Create two special graph nodes: source s and sink t, and connect all identi�ed
seeds with either the source or sink based on their respective background
or object label

Assign Arc costs for n− links, s− links, and t− links

Compute the optimum cut using one of the maximum �ow graph optimization
algorithms

Visualize the cut by relabelling the original image to correspond with the new
background and object labels from the cut

Output: Binary labelled image (or volume)

gigabytes 8.
The proposed method is based on that of by Stawiaski et al., except that

instead of building a region adjacency graph on 2D watershed regions, here the
region adjacency graph is de�ned on supervoxel labels and the entire operation
is performed in 3D. Another di�erence is that while Stawiaski et al. used an
interactive process to create hard-constraints, here it is automatic. Overall, the
process can be seen as a region merging method.

First, the capacities (arc costs) need to be de�ned for the n−links, s−links,
and t− links. The s− links and t− links re�ect the similarity of the node into
one of the two sets (S, T ), corresponding to the background or object. Stawiaski
et al. de�ne:

c(s, i) = dO

dO+dB
∀iε ∈ I (3.2.1)

and

c(i, t) = dB

dO+dB
∀iε ∈ I (3.2.2)

where dO = |mO −m(i)|, dB = |mB −m(i)| and I is the set of all voxels
in the volume. The values mO and mB are the average intensity levels of the
regions marked respectively as object and background, and m(i) is the average
intensity in region (supervoxel) i. The values mO and mB could be de�ned
though user input (as in Stawiaski et al) or through an automatic method.

In this case, given that air produces a near-zero MRI intensity, establishing
an estimate for the background intensity level is simple. For example, a thresh-
old percentile could identify the lowest 1% of supervoxel intensities and assume

8Using the same calculation method as before, and supervoxels generated for a complexity
reduction of approximately 710x. This estimate does not include ancillary variables needed
during the MATLAB computations and simply re�ects the reduced number of nodes and arcs
in the graph.
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this to be representative of air. Alternatively, from a histogram of supervoxel
intensities, a bimodal distribution would be expected, where the �rst mode cor-
responds to supervoxels who have an intensity near to that of air and the second
mode corresponding to the most common breast tissue signal. The proposed
method uses the latter approach, setting the average supervoxel intensity for air,
mB to the �rst mode of the distribution. The estimated intensity average for
breast tissue, mO , is estimated by using the second mode of the distribution.

Next, to create the capacities for the s− and t − links a variation on the
proposed similarity metric of equations 3.2.1 and 3.2.2 is used:

c(s, i) = α · exp(− dO

dO+dB
) ∀iε ∈ I (3.2.3)

and similarly,

c(i, t) = α · exp(− dB

dO+dB
) ∀iε ∈ I. (3.2.4)

An exponential function was found to produce better results as opposed to
the simple ratio of Stawiaski et al. α is a scalar tuning parameter, which can
be used to scale the relative weights between the capacities of s− and t− links
versus n− links.

Using the estimates in intensity for breast tissue and air, seed points which
act as hard constraints are created. These seed points are always included
in the set which they represent (i.e. air seeds are always included in the air
segment of the image). To do this, the capacity of the arc should be de�ned
in a way where it is never advantageous to cut it. Therefore, they are assigned
an in�nite capacity which provides this hard-constraint. The seed points also
¨disconnected¨ from the opposite label by assigning them a capacity of zero.
Therefore: 

c(i, s) = 0 ∀i ∈ I − {O ∪B}
c(i, t) = 0 ∀i ∈ I − {O ∪B}
c(i, s) =∞ ∀i ∈ {O}
c(i, t) =∞ ∀i ∈ {B}

, (3.2.5)

where O is the set of breast (object) seeds, and B is the set of air (background)
seeds. The air seeds are determined by selecting all nodes which have an inten-
sity less than the mB estimate. The breast seeds are chosen as the nodes that
have intensity values in the range mO ≤ m(i) ≤ 2 ·mO.

Finally, the n− links are assigned capacities. These capacities should re�ect
the dissimilarity between regions [43, 38, 41]. Many methods are available to
measure the dissimilarity between the regions, including: the average intensity,
the histogram of intensity values, the cumulative histogram, or information from
the region's boundary. In this work, a metric based o� of the region's average
intensity is used:

c(i, j) = β · exp(−| Ii − Ij
(max(I)−min(I))

|), (3.2.6)

where Ii is the intensity of the region i, and β is again a scalar tuning parameter
similar to α. The maximum intensity di�erence between any two supervoxels
in the image is used to normalize the dissimilarity metric.
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Figure 3.3.1: Sample segmentations from the proposed supervoxel-based algo-
rithm on T1-weighted images.

3.3 Example Segmentations from
Proposed Method

In this section the resulting segmentations from the supervoxel graph-cuts ap-
proach are shown. Experimentally, α and β were determined as 4 and 1 respec-
tively after testing on a range of di�erent volumes. They were selected as they
produced stable output segmentations.

Figure 3.3.1 shows sample output using the proposed method. Here, the ar-
eas representing air have clearly been removed, and the boundary of the breast
has been maintained. The nipples have also been preserved in the some of the
segmentations. Figure 3.3.2 shows a comparison between the Hayton algorithm
and the proposed method for a typical slice. In Figure 3.3.2b an area of low
intensity exists near the nipple of the left breast, and here the Hayton segmen-
tation has produced a jagged line segmentation. This type of failure mode is
common with the Hayton algorithm, because it uses a dynamic programming
technique and must search pixel-by-pixel it can be led astray. In the same
section, the proposed method did not produce such an unnatural contour.

However, the proposed method is not perfect, and similar jagged outcrop-
pings on the boundary exist as the supervoxel on the boundary is included in
the cut. These occurrences are likely because the mean intensity inside that
supervoxel is higher than what would be expected for air, and so it is kept in
the cut. This could be due to partial-volume e�ects which would increase the
intensity in the boundary region.

As the proposed algorithm relies on previously generated supervoxels, the
total runtime is similar to Hayton's method 9. If the generation of the supervox-
els was considered a separate stage, and not included in the total runtime, the
proposed method would be approximately 50x faster. The proposed method has

9 (approximately 600s for a volume of size 512x512x150, on a Mac OSX, 2.5 GHz Intel
Core i5 system)
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(a) Proposed Algorithm (b) Hayton's algorithm (c) Subtraction image of the
two binary masks

Figure 3.3.2: Comparison between Hayton Segmentation and Proposed Algo-
rithm for T1-weighted images.

a runtime of approximately 5-10 seconds if the initial segmentation is excluded.
This comparison could be fair if the large-scale segmentation used in this process
was also used for subsequent tasks. For example, this high-level segmentation
could be used in an algorithm to identify suspicious areas which are then seg-
mented again at a �ner level for further analysis. This hierarchical strategy
may become more important in the future if the size of the volumes increases,
as it will be come more di�cult to manage the large datasets. Furthermore,
as the size of the volume increases, the Hayton algorithm becomes increasingly
expensive to compute as the two cost maps are larger and the neighbour-search
stage is forced to search through more nodes as the path lengthens. From this
perspective, the ability to reduce the complexity of the volume is useful and
supervoxels may prove more valuable in the future.

The proposed method's performance may be improved by using other met-
rics for dissimilarity between regions. For example, histogram based methods
could be used, where are an approximate measurement of histogram overlap or
similarity would be used. Functions based on the boundaries of the supervoxels
could also be implemented as for example, two supervoxels are more likely to
belong to the same set if their shared boundary is very similar in intensity.

The proposed method is general and can be applied to various other problems
outside of breast-air segmentation. A similar application of supervoxels and
graph cuts has been reported in brain MR analysis [33], where the supervoxels
are later merged downwards to represent three classes of tissue in the brain
(White Matter, Gray Matter, CSF). When applying the proposed algorithm
to a T1-weighted brain volume to create a mask of the skull, Figure 3.3.3 was
obtained in approximately 45 seconds including the initial SLIC segmentation.
Graph-cuts is extensible to n − class problems, and it would be interesting to
apply this in breast MRI to segment the breast-air boundary and chest-cavity
simultaneously in 3D.
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Figure 3.3.3: Example segmentation of the skull-air boundary using the pro-
posed method.

k = 20000 and m = 20. The T1-weighted brain volume was of size
240× 240× 48.
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Chapter 4

Multimodal Segmentation of

Breast Lesions

This chapter, and the two chapters that follow address the third objective of
this thesis: to develop and evaluate supervoxel-based features for classifying
breast lesions as benign or malignant. In this chapter a method is presented for
partitioning the voxels inside a prede�ned volume-of-interest (corresponding to
a suspicious lesion) into supervoxels based on multimodal MRI values. In the
next chapter this partitioning is used to derive features for quantitatively char-
acterizing the lesion. This chapter is organized as follows. First, the multimodal
SLIC implementation used to partition a lesion into supervoxels is described.
Next the method used to tune the parameters of the algorithm for use on the
data outlined in Section 1.4 is described.

4.1 Multimodal Implementation of SLIC

In this section the multimodal implementation of the SLIC algorithm used for
partitioning a clinician-de�ned volume-of-interest (VOI) into supervoxels is de-
scribed. These VOIs are small binary masks that correspond to voxels that are
within a suspicious region of tissue. A typical VOI is shown on a T1-weighted
image in Figure 4.1.1.

The proposed algorithm takes as input the full set of DCE-MRI volumes
acquired in the axial plane. Let the vector of signal intensities at each voxel be
denoted:

Ix,y,z =
[
It0 It1 It2 It3

]T
, (4.1.1)

where It0 is the pre-contrast volume, and It1 and subsequent time-points are
post-contrast. Using this intensity vector, the intensity distance of voxel i to
cluster centre j becomes:

dI =
√

(It0i − It0j)2 + (It1i − It1j)2 + (It2i − It2j)2 + (It3i − It3j)2. (4.1.2)

Each post-contrast volume is de�ned using the procedure de�ned by Stoutjesijk
et al[16]. First the relative enhancement RE of voxel v at time t , is computed
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(a) T1-Weighted image with VOI overlaid (b) Delineation of Lesion

Figure 4.1.1: Typical lesion presentation with VOI overlays from both T1-
weighted and �rst post-contrast images.

viz:

RE(v, t) =
SI(v, t)− SI(v, t0)

SI(v, t0)
· 100%, (4.1.3)

where SI(v, t) denotes the signal intensity of voxel v at time t. Then normaliz-
ing:

RE′(v, t) =
RE(v, t)− µ

σ
, (4.1.4)

where µ and σ are the mean and standard deviation of RE(v, t) over all voxels.
Similar to [19] three di�erent cluster sizes are de�ned for analysis: small,

medium, and large. These cluster sizes are created using di�erent bandwidths
in the mean shift algorithm. Here, using SLIC's spacing parameter S, the
average number of voxels in each supervoxel is estimated as S3[4].

Next, the compactness parameterm should be determined. The compactness
parameter can also a�ect how many voxels are assigned to each supervoxel,
although it is expected that as it increases the supervoxels will become more
compact and regularly shaped as the distance metric tends to favour the spatial
distance.

SLIC segmentation for the DCE-MRI volume set is summarized in Algorithm
4.1.
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Algorithm 4.1 Multimodal Simple Linear Iterative Clustering within VOIs

Input: DCE-MRI Volumes (1 Pre-contrast, 3 Post-contrast), desired super-
voxel size (small, medium,large), compactness parameter m

Initialize cluster centres Ck =
[
It0 It1 It2 It3 x y z

]T
by sampling at

regular grid intervals S

Perturb cluster centres to lowest gradient position in 3 × 3 × 3 region from
pre-contrast t0 volume

Set labels l(i) = −1 for each voxel i

Set distance d(i) =∞ for each voxel i

Repeat

for each cluster centre Ck

for each voxel i in 2S × 2S × 2S region around Ck

if voxel is within VOI

Calculate distance D between Ck and i

if D < d(i) then

set d(i) = D

set l(i) = k

end

end

end

end

Compute new cluster centres

Compute residual error

until Error ≤ Threshold or Number of Iterations reached

Enforce Connectivity

Output Labelled Volume where voxels outside of the VOI are label #1

4.2 Application to the clinical data

This section presents the speci�c parameter values tuned to the clinical data
used in this thesis.

Spacings of 3, 5, and 7 were used for the three segmentation sizes, which
correspond to on average 27, 125 and 343 voxels per supervoxel respectively 1.
A minimum supervoxel size was de�ned as 5 voxels, and any resulting segments
which were less than this threshold were merged to the closest neighbour of

1Segmentation sizes were based o� of the work of [19] who used similar size de�nitions
while segmenting using Mean Shift.
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similar intensity. Figure 4.2.1 shows a sample segmentation for each size and
the �rst post-contrast image for comparison.

(a) First post-contrast image (b) Small

(c) Medium (d) Large

Figure 4.2.1: VOI segmentations at various supervoxel sizes.
Segmentations were performed using m = 5 at S = 3, 5, 7 (small, medium,
large). Note: each supervoxel is assigned a random colour, and the background
is black. This VOI was clustered into 567, 212, 136 supervoxels for small,
medium and large sizes respectively.

Next, the compactness parameter m was determined. To do this, a vi-
sual inspection of several segmentations was performed. Segmentations using
m = 1, 2, 5, and 10% were compared using the same spacing parameter (S = 3).
Sample segmentations performed for this inspection can be seen in Figure 4.2.2.
Here, it appears that m = 5 is the most visually pleasing with respect to bound-
ary adherence compared to the normalized post-contrast image. This value also
seems to yield the best balance between number of supervoxels, their shape, and
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their adherence to boundaries in the comparison image. Therefore, m = 5 was
selected for further use.
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Chapter 5

Supervoxel-based features for

characterizing breast lesions

This chapter builds on the previous to address the third objective of this thesis:
to develop and evaluate supervoxel-based features for class�ying breast lesions as
benign or malignant. Speci�cally, this chapter presents several features derived
from the partitioning of a lesion into supervoxel clusters using the algorithm of
chapter 4.

The features that are described in this chapter stem from cluster-based fea-
tures that have been de�ned for other partitioning schemes in the literature,
such as mean-shift [19].

The chapter is organized as follows. Section 5.1 discusses the DCE-MRI
based features that were used, and Section 5.2 discusses the DW-MRI based
features that were used.

5.1 Supervoxel-based DCE-MRI Features

Dynamic contrast enhanced imaging studies are common in breast MRI exams.
It has been well established that malignant lesions release angiogenic factors
that induce growth of new and preexisting vessels [44]. However, these vessels
exhibit a pathological wall structure, with leaky endothelial linings. The a�ect
of the angiogenic activity is twofold: there is an increased density of vessels
which leads to an increased �ow of contrast material, and an increased vessel
permeability which causes the contrast material to leak out into the surrounding
tissue. Fast uptake of contrast material, as well as fast washout are both often
anecdotally described as being signs of malignancy[18].

To describe the uptake, and subsequent washout of contrast material various
models have been proposed [6, 35, 22, 24, 23]. These models are shown in Table
5.1. These models were not �tted voxel-wise, but to clusters of voxels de�ned
by the SLIC segmentation on the relative enhancement images. They are also
calculated for each segmentation cluster size (small, medium, large).

After �tting the data to the models, the features used in classi�cation are
respectively:

� the Linear slope parameters β1, and β2,
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Table 5.1: DCE-MRI parametric models of enhancement.

Note: tj is de�ned as the time (in seconds) since contrast material injection for
the jth DCE-MRI stack, and t0 = 0. † - From Ricker Model

Parametric
Model

Equation
Initialization for

non-linear least squares
�tting

Bounds

Linear
Slope

model [24]

f(t) ={
β1t t ≤ α
β1α+ β2(t− α) t > α

β1 =
RCi

(1)−RCi
(0)

t1−t0
β2 =

RCi
(M)−RCi

(1)

tM−t1
α = t1

−∞ < β1 <∞
−∞ < β2 <∞
−∞ < α <∞

Hayton
model [35]

f(t) = A
a−b (e

−bt − e−at)
a = 0.2

60
b = 0.1

60

A =
RCi

(M)−RCi
(1)

e−bt(1−e−at2 )

0 ≤ α ≤ 0.1
−5 · 10−4 ≤ b ≤ 0.2
−0.01 ≤ A ≤ 0.01

Ricker
model [23]

f(t) = αte−βt Least Squares
0 ≤ α ≤ 1

−0.01 ≤ β ≤ 0.05
Simpli�ed
gamma
variate

model [22]

f(t) = Atαe−t/β
A = α†
α = 1

β = 1/β†

0 ≤ A <∞
0.3 ≤ α <∞
50 ≤ β <∞

Agliozzo
model [6]

f(t) = Ate−t
D A = α†

D = 0.1
−∞ < A <∞
−∞ < D <∞

� the Hayton model parameters A, α, and b,

� the Ricker model parameters α, β,

� the Simpli�ed Gamma Variate model parameters A, α, and β,

� and the Agliozzo model parameters A and D

In the case of the linear slope model parameter β1 and the simpli�ed gamma
variate model parameter α the 10th percentile is extracted. For all other model
parameters, the 90th percentile is extracted. This is done to identify the most
malignant-appearing portion in the lesion, while reducing the e�ect of outliers.
In total, 36 DCE-MRI derived features are created for each VOI, where the 12
features listed above are calculated for each cluster size (small, medium, large).
They are assigned the labels D1 − D36 where they are ordered as shown in
Table 5.2.

5.2 Supervoxel-based DW-MRI Features

It has been shown that malignant lesions have a lower mean apparent di�usion
coe�cient (ADC) than benign lesions[45, 46]. However, the calculation of ADC
is highly sensitive to noise and geometric distortions when performed on a voxel-
by-voxel basis due to eddy currents induced by strong di�usion gradients. This
is the motivation for creating features on a cluster basis. To create these cluster
based features �rst the voxel-wise ADC must be calculated as follows:

fADC(x) = −
1

b
log(

fDWb
(x)

fDW0
(x)

), (5.2.1)
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Table 5.2: DCE-MRI Features

Note: each feature triplet is ordered by cluster size, where for example: D1
corresponds to Least Squares β1 for Small Clusters, D2 for medium clusters,

and D3 for large clusters.
Label Feature

D1− 3 Linear Slope β1
D4− 6 Linear Slope β2
D7− 9 Hayton A
D10− 12 Hayton α
D12− 15 Hayton b
D16− 18 Ricker α
D19− 21 Ricker β
D22− 24 Simpli�ed Gamma A
D25− 27 Simpli�ed Gamma α
D28− 30 Simpli�ed Gamma β
D31− 33 Agliozzo A
D34− 36 Agliozzo D

where x is the list of voxels inside the VOI, fDW0
(x) , and fDWb

(x) are the
di�usion weighted stack for b-value zero and b respectively. To create features
using the less noisy cluster-based data, let Ci ⊆ V represent the ith cluster.
The mean of the values in fDWb

(x) within the cluster is given by:

µCi,fDWb
=

1

|Ci|
∑
x∈Ci

fDWb
(x). (5.2.2)

The value µCifDW0
is similarly de�ned. The ADC, α, for cluster Ci is calculated

as follows:

αCi
= −1

b
log(

µCi,fDWb

µCi,fDW0

). (5.2.3)

Now that the ADC has been computed for each cluster, the following are
calculated for each cluster size: minimum cluster ADC, the 5th, 10th, 25th, 50th
cluster ADC percentiles, the maximum cluster ADC, the mean cluster ADC, and
the mode cluster ADC.The mean ADC in the cluster of maximum initial mean
enhancement is also computed using cluster parameter information from the
DCE-MRI feature list. First the initial contrast enhancement is calculated for
each cluster using:

βCi
=
µCi,fDCE1

− µCi,fDCE0

µCi,fDCE0

. (5.2.4)

Then the cluster with maximum initial contrast enhancement is Cimax
,where:

imax = max(βCi) i ∈ {1, ..N} (5.2.5)

and this is performed identically for small, medium, and large cluster sizes.
The mean ADC in the cluster of maximum mean DW-MRI intensity is also

used as a feature for each cluster size. The cluster with the highest DW-MRI
intensity is Ckmax

where:
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kmax = max(µCk,fDW0
) k ∈ {1, ..N}. (5.2.6)

Finally, the whole lesion mean ADC is also used as a feature. This is the
only feature that is not cluster based which is used. This is trivially αV where
V is the whole VOI.

In total, 31 DW-based features are created for each VOI, where the features
listed above are calculated for each cluster size (small, medium, large). They
are assigned the labels W1 −W31 where they are ordered as shown in Table
5.3.

Table 5.3: DW-MRI Features

Label Feature

W1− 8 min, 5th, 10th, 25th, 50th %, max, mean, mode ADC
for small clusters

W9− 16 min, 5th, 10th, 25th, 50th %, max, mean, mode ADC
for medium clusters

W17− 24 min, 5th, 10th, 25th, 50th %, max, mean, mode ADC
for large clusters

W25 Whole lesion mean
W26,W28,W30 ADC in cluster of maximum initial mean enhancement

(S,M,L)
W27,W29,W31 ADC in cluster of maximum mean DW intensity

(S,M,L)
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Chapter 6

Lesion Classi�cation

This chapter together with the two preceding chapters addresses the third objec-
tive of this thesis: to develop and evaluate supervoxel-based features for class-
�ying breast lesions as benign or malignant. Speci�cally, this chapter describes
several classi�cation experiments to determine both the discriminatory perfor-
mance of the proposed features of chapter 5, and the most important subset of
features. This chapter is organized as follows. Section 6.1 describes the classi�-
cation algorithm used, Section 6.2 describes the classi�cation experiments, and
Section 6.3 presents the results of the classi�cation experiments.

6.1 Random Forest

The classi�cation algorithm chosen to evaluate the performance of the proposed
supervoxel-based features and to identify the most signi�cant subset of these is
the Random Forest (RF).

RF is a versatile classi�cation algorithm for the analysis of large data sets,
which uses an ensemble of classi�cation trees. Each classi�cation tree is built
using a bootstrap sample of the data set, and at each split in the tree the
candidate set of variables is a random subset of the larger group of variables.
Therefore, RF uses both bootstrap aggregating (bagging), which is known to
be a successful approach for aggregating weak or unstable learners, and ran-
dom variable selection for tree building. RF was created by Leo Breiman, in
2001[47]. The algorithm yields an ensemble that can achieve both low bias and
low variance (due the the averaging process over a large number of trees who
have low bias themselves, but high variance) [48, 49, 47]. RF has shown excel-
lent performance during classi�cation applications and can have performance
comparable to support vector machines[48].

RF has several very useful characteristics:

1. Can be used e�ectively when there are many more predictive variables
(or features) than observations. This reduces the e�ect of the curse of
dimensionality.

2. Can be used for binary classi�cation, or multi-class problems.

3. Has good predictive performance even when most predictive variables are
noise.
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4. Does not over�t to the training data and is relatively robust to outliers
and noise[47, 48, 49].

5. Can handle a mixture of categorical and continuous predictors.

6. Incorporates interactions among predictor variables.

7. The output is invariant to monotone transformations of predictor vari-
ables.

8. Returns measures of predictor variable importance.

9. There is little need to �ne-tune parameters to yield best performance.
There is only one important parameter to tune, mtry, which is the number
of variables tried at each split in the tree. However, it has been reported
that the default setting is often a good choice, and that the tuning e�ect is
often minimal[47, 49, 50]. Only two other parameters need to be decided
on: the number of trees to grow in the forest, ntree and the minimum size
of the terminal nodes nodesize.

10. High quality and free implementations exist, and the algorithm can be
easily parallelized.

The RF algorithm is a collection of trees (a forest) with variations in structure,
generated via two modi�cations to the well known deterministic tree growing
algorithm [47, 51].

First, the best split at each tree node is selected among a random subset
of predictor features. Secondly, the training set used to grow each tree is a
bootstrap sample of the total number of observations N , and is drawn with
replacement from the original set of samples. Most often, this random sample is
approximately 63% of the data[49]. Some observations could therefore be repre-
sented multiple times in the training set, while others may not be included. The
observations which are not included are described as being �out-of-bag�(OOB).
Those observations which are OOB are used to estimate the error in prediction.

Each of the trees in the random forest are grown to their full possible extent.
Di�erent predictor variables (features) are used at each split in each of the trees.
These predictor variables are chosen at random from the full set of variables,
and are then evaluated for their ability to split the data. The variable which
results in the largest decrease in impurity (or largest information gain) is chosen
to separate the samples at that node, resulting in two distinct child nodes.
This process continues until the �nal nodes contain only samples belonging to
the same class, or contain a speci�ed minimum number of samples. Usually a
classi�cation tree is grown until the terminal nodes are pure, even if that means
that the �nal node contains only a single sample. This process repeats until the
user speci�ed number of trees is grown, and is depicted in Figure 6.1.1.

To predict the class of an observation, the observation is assigned to an end-
node in the tree (a leaf) based on its predictor values. The class of the majority
of training set observations in the leaf is selected as the classi�cation predication
for this speci�c observation. Using the whole forest of classi�cation trees, each
tree is assigned one unweighted vote for each OOB observation, and for each
observation the class receiving the most votes is the predicted class. Ties, whose
probability of occurrence is quite low, are resolved by selecting the class with
the lowest label. This process is shown in Figure 6.1.2.
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Figure 6.1.1: Creation of a Random Forest of classi�cation trees.

Figure 6.1.2: Classi�cation of a new data point using a Random Forest of clas-
si�cation trees.
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General cross-validation1 procedures are not needed when predicting the
classi�cation performance of RF. A cross-validation scheme is already built in
as each tree in the forest has its own training (bootstrap) and test (OOB)
datasets[49, 47]. The random selection of candidate predictor variables during
the splitting procedure at each node ensures a low correlation between the trees
and prevents over-training2 of the RF to the data. An outline of the algorithm
is provided in Algorithm 6.1.

Algorithm 6.1 Random Forests

For each tree to ntrees

Draw a bootstrap sample of size N from the data, with replacement.

Grow a random-forest tree to the bootstrapped data, by recursively re-
peating the following steps for each terminal node of the tree until
minimum node size nodesize is reached, or the node is pure

Select m predictor variables at random from the full set

Pick the best predictor variable and split point among the m vari-
ables

Split the node into two child nodes

Output the forest of trees

Classify sample x as the class of the majority vote from all trees in the forest

Data sets with many weak inputs are especially common in classi�cation
problems inside the life sciences. For example, thousands of genes (predictor
variables) being used for only a few dozens of samples. In these scenarios, RF
performs very well, and since it can output measures of variable importance,
that information could be used to �lter out non-informative variables or identify
biomarkers for disease. For this reason, a randomly generated feature is created
and added to the list of predictor variables, which has no diagnostic importance.
This can be thought of as a threshold for the importance scores, as a feature that
is important should be at least more important than something which inherently
has no diagnostic ability.

6.2 Classi�cation Experiments

After performing the SLIC segmentation of the images for each supervoxel size,
the features described in Tables 5.2 and 5.3 are calculated. A randomly gener-
ated feature was created using MATLAB's built in normally distributed pseu-
dorandom number generator. The features were compiled into a spreadsheet

1Cross-Validation is a set of techniques used to assess how a model will generalize to
an independent data set. Generally, these techniques involve partitioning the data-set into
smaller subsets for testing and validation.

2Over-Training, or Over-Fitting, describes when the model has poor predictive performance
because it describes random error or noise in the data, instead of the underlying relationship.
Over-trained models often perform well using the data they were trained with, but poorly
with another independent set.

43



Algorithm 6.2 Classi�cation Experiment Script Pseudocode

Import Features spreadsheet (comma separated values)

Create Labels for DCE-MRI, DW-MRI features, random feature, and class
label

De�ne Number of experiment repetitions, mtry, ntree

Repeat

Create Random Forest without regularization using RRF package, speci-
�ed mtry, ntree, and features

Save RF importance scores

Create ROC using proc package

Save AUC

Calculate Mean AUC±SE, Mean importance scores per feature

Plot ROC

sorted by subject number, and supervoxel size. Finally, each lesion's known
classi�cation label was appended to the spreadsheet. The features spreadsheet
is read by a script creating the RF in the R software package [27]. This script
creates and saves the receiver-operating characteristic (ROC) curves in both the
raw, empirical manner and a smoothed version (default, binormal smoothing is
used). Each classi�cation experiment is run 100 times, using the speci�ed ntree
and mtry parameters, and the mean area under the curve (AUC) is reported
with the standard error (SE). An outline of the R script is shown in Algorithm
6.2. A more detailed description of the script can be found in [19].

The standard test parameters of ntree = 2000 and mtry = 3 were set by
[19] using similar data.

Five classi�cation experiments were performed:

1. Classi�cation using all features, using ntree = 2000, and mtry = 3;

2. Classi�cation as in 1) but for various values of
mtry:{2, 3, 4, 5, 10, 20};

3. Classi�cation as in 1) but for various values of
ntree:{500, 2000, 3000, 4000, 10000};

4. Classi�cation as in 1) but using only the DCE-MRI features; and

5. Classi�cation as in 1) but using only the DW-MRI features.

6.3 Results and Discussion

The results from the classi�cation experiments are presented in terms of the area
under the curve (AUC) of the receiver-operating characteristic curve (ROC).
The ROC plots the performance of a binary classi�er system as a discrimination
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rule is varied[50]. The AUC is a commonly used point-measure of the accuracy
of the test, where 1 is the maximum possible value.

6.3.1 Experiment 1

Using the full set of features, the classi�er yielded an AUC of 0.752 ± 0.055
(AUC± SE), and the ROC curves are shown in both a continuous and stepwise
manner in Figure 6.3.1. This result shows that SLIC generated supervoxels
can be used to derive features for the successful classi�cation of breast lesions.
While the performance of this system is not as high as some reported in literature
[6, 19], it is using only supervoxel-de�ned features and in this way the result is
very promising.

(a) Empirical (raw) ROC curve. (b) Smoothed ROC curve.

Figure 6.3.1: ROC curves for classi�cation experiment.
b) shows the smoothed version of a) for the classi�cation experiment when the

full feature set was used. The AUC = 0.752± 0.055.

The importance scores for each of the features used in the classi�er are shown
in Figure 6.3.2. The majority of features show an importance score greater than
the R1 random feature, which is taken to be the baseline. No DW-MRI features
rank below the baseline, while several DCE-MRI features do.

The feature scores after subtracting the baseline importance of the R1 ran-
dom features are shown in Figure 6.3.3.

The ranking of importance scores shows that features derived from the DW-
MRI modality appear to be of more importance to the classi�er than those from
the DCE-MRI modality. The ten most important scores for the classi�er are
listed in Table 6.1. The top ten importance scores are dominated by DW-MRI
based features, and the large cluster size represents �ve of the top ten. The
most important DCE-MRI feature is ranked at #21, and is feature D32 - the
Agliozzo Model parameter A, for medium sized clusters.
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Figure 6.3.2: Importance Scores Ranked.
Features are ranked in descending order, and the randomly generated feature,
R1 is marked in red. Features that have a greater importance score than R1

are deemed useful features.

Figure 6.3.3: Importance scores with respect to R1 random feature.
In this plot, the vertical axis are the scores after subtracting the score of the

random feature R1.
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Figure 6.3.4: Importance Scores grouped by feature and size

Table 6.1: Top 10 Importance Scores

Rank Feature

1 10th percentile ADC in large clusters (W19)
2 Minimum ADC in medium clusters (W9)
3 Minimum ADC in small clusters (W1)
4 5th percentile ADC in large clusters (W18)
5 ADC in cluster of max contrast uptake, large clusters (W30)
6 Minimum ADC in large clusters (W17)
7 25th percentile ADC in large clusters (W20)
8 25th percentile ADC in medium clusters (W12)
9 5th percentile ADC in medium clusters (W10)
10 5th percentile ADC in small clusters (W2)

In Figure 6.3.6 the importance scores are grouped by features and size.
Grouping the importance scores by size however does not show any clear trend
however, as only rarely is there a signi�cant di�erence between sizes. The fea-
ture where the size seems to have played the largest role is the ADC in the
cluster of maximum contrast uptake. In this feature, the large cluster model
produced drastically higher importance scores.

6.3.2 Experiment 2

Running the classi�cation experiment while varying the mtry parameter pro-
duced stable results (which concurs with the available literature). These results
are shown in Table 6.2. This result shows that RF is a classi�cation method
where little tuning is required to attain the acceptable performance, as the
variation of the main tuning parameter mtry shows little e�ect.

47



Table 6.2: Classi�cation Performance vs mtry values

mtry Mean AUC

2 0.7411
3 0.7518
4 0.7443
5 0.7438
10 0.7375
20 0.7339

Table 6.3: Classi�cation performance vs ntree values

ntree Mean AUC

500 0.7508
2000 0.7518
3000 0.7448
4000 0.7446
10000 0.7588

6.3.3 Experiment 3

Similarly, as expected the classi�cation results are stable with respect to the
number of trees generated, ntree. The mean AUC with respect to number of
trees is shown in Table 6.3. This result again demonstrates that little tuning is
required for the RF classi�cation algorithm to attain acceptable performance,
as the performance was stable across the range of ntree.

6.3.4 Experiment 4

Running the classi�cation experiment with only the DCE-MRI derived feature
set produces poorer results, as expected. This trial yielded an AUC of 0.670±
0.063. The ROC curves are shown in Figure 6.3.5.

6.3.5 Experiment 5

Similarly running the classi�cation with only the DW-MRI derived feature set
produces poorer results than the full list of features, but only marginally. This
trial yielded an AUC of 0.743 ± 0.056. The ROC curves are shown in 6.3.6.
Comparing this result to that of [19] con�rms that the cluster-de�ned features
are indeed the most valuable for use in a classi�cation experiment while using the
DW-MRI modality. This �ts the hypothesis that cluster-based features will have
lower noise as they are less impacted by noisy voxels or errors in registration.
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(a) Empirical (b) Continuous

Figure 6.3.5: ROC curves for classi�cation using only DCE-MRI features.
Using only the DCE-MRI feature set, the AUC = 0.670± 0.063.

(a) Empirical (b) Continuous

Figure 6.3.6: ROC curves for classi�cation using only DW-MRI features.
Using only the DW-MRI feature set, the AUC = 0.743± 0.056.
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Chapter 7

Summary and Conclusion

This chapter reviews the work presented in this thesis, summarizes contributions
and �ndings, details limitations in the work, and proposes future avenues for
research.

7.1 Thesis Summary

Chapter 1 This chapter provided context to the project's work, and de-
scribed the current limitations and avenues of research with respect to com-
puter aided diagnosis (CAD) systems for breast cancer. Speci�cally, it noted
that CAD systems rely on hierarchical segmentations (from large scale breast-air
boundary to inter-lesion clusters) and methods for clustering voxels that share
similar characteristics. The chapter also describes the major aim of the thesis:

�to explore the use of the SLIC supervoxel algorithm within the
context of an automatic diagnosis system for breast cancer�.

and objectives:

1. To implement SLIC for the generation of supervoxels in breast MRI

2. To develop and evaluate a supervoxel-based method to segment the breast-
air boundary.

3. To develop and evaluate supervoxel-based features for classifying breast
lesions as benign or malignant.

Chapter 2 This chapter presented Simple Linear Iterative Clustering (SLIC).
First, an overview of the uses of superpixels and supervoxels is provided, and
the reasons why SLIC was chosen for this project are noted. Speci�cally, SLIC
has the ability to be extended into 3D, can be tailored quickly for use in MRI,
is tuneable with only a single parameter m, provides control over the number
of supervoxels created, and is computationally e�cient. Next, the algorithm
is described step-by-step. Finally, sample segmentations of full volumes are
presented with ranging compactness levels and levels of complexity reduction.
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Chapter 3 This chapter presented a well-known method used to segment the
breast-air boundary in MRI, outlining its method of action, as well as noting
situations in which the algorithm fails. Next, a supervoxel based variation for
segmenting the breast-air boundary is proposed. This algorithm utilizes the
SLIC algorithm to create supervoxels, from which a region adjacency graph
is de�ned, and �nally a graph-cuts approach is used to segment the volume.
Several sample segmentations were shown, and the strengths and weaknesses of
the proposed algorithm were discussed.

Chapter 4 This chapter presented an adaptation of the SLIC algorithm for
use in a multi-modal segmentation procedure inside of radiologist de�ned vol-
umes of interest. First, the changes to the algorithm are discussed and the
input volumes are detailed. Speci�cally, the algorithm is adapted to use four
dynamically contrast-enhanced (DCE-MRI) volumes, where the �rst volume is
acquired pre-contrast injection and the subsequent three are acquired after con-
trast is administered. Sample segmentations of radiologist de�ned lesions are
presented.

Chapter 5 This chapter presented several quantitative features for charac-
terising breast lesions that are derived from the SLIC supervoxel algorithm
presented in Chapter 4. These features are derived from two MR modalities:
di�usion weighted (DW-MRI) and DCE-MRI.

Chapter 6 This chapter presented the classi�cation experiments that were
used to evaluate the e�cacy of the features presented in Chapter 5 classifying
lesions as benign or malignant. First, the chapter begins with a review of
the classi�cation method used: Random Forests (RF). A description of the
algorithm is provided, as well as the reasoning behind it's use. The results show
that using the combination of both DW- and DCE-MRI the classi�er yields the
best classi�cation performance of 0.752± 0.055 (AUC±SE).

7.2 Key Contributions and Findings

� An automated method to segment MRI volumes into spatially coherent
supervoxels based on the SLIC algorithm. The method makes use of both
the spatial coordinates of the voxel and it's signal intensity vector during
the clustering process. The method takes only one tuning parameter aside
from the desired number of supervoxels as input. This tuning parameter
can be used to control the compactness of the resulting supervoxels. The
empirical results show that the algorithm creates supervoxels that adhere
well to the image boundaries.

� An automated method to segment breast MRI volumes to create a mask
that can be used to exclude the background of air in the volume. This is
an important preprocessing in a CAD system used to ensure analysis is
performed solely on breast tissue. The proposed method is based on the
graph-cuts algorithm, where the graph is created on the basis of super-
voxels. This method, because it uses the supervoxels as a way of reducing
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complexity in the volume, will likely become more valuable if the size of
the volumes increases.

� An automated method to create supervoxels inside arbitrary volumes of
interest, created on the basis of the DCE volume time series. Clustering
the voxels based on their enhancement pattern leads to supervoxels that
contain similar tissue. This SLIC-based method can be tuned by altering
the size of the supervoxels and their compactness.

� A set of quantitative features, derived from the partitioning of a suspicious
lesion into SLIC supervoxels.

� Evidence that the proposed supervoxel-based features have e�cacy for
classifying suspicious lesions as either benign or malignant using a Random
Forest classi�er. The experimental results demonstrate an AUC of 0.752±
0.055.

� Classi�cation results using only DW-MRI concur with the �ndings of
[19],wherein a similar performance was attained using only the cluster-
based descriptors. In [19], of the top 10 most important features for this
scenario, four were cluster based. Given that DW-MRI volumes can be
particularly noisy, and are often a�ected by registration errors cluster-
based features are useful because they are less a�ected by these factors.

7.3 Conclusion

This thesis demonstrates that SLIC Supervoxels can be applied in a breast MRI
CAD system for both automated segmentation tasks and feature extraction.
This thesis shows that SLIC can be used to generate segmentations across a
range of purposes, from large-scale segmentation tasks such as the breast-air
boundary, to small-scale tasks such as creating clusters of similar tissue inside
a VOI. SLIC can be used in a single-modality situation, or in a multimodal
situation. Useful information can also be extracted on the basis of supervoxels
for use in a classi�cation system.

SLIC can be used as a pre-processing stage in order to reduce the level of
complexity, or memory requirements for other processes. In this work, this
was demonstrated through the segmentation of the breast-air boundary where
it reduced the memory requirements for a popular graph-cuts segmentation
algorithm.

Lesions can be classi�ed as either benign or malignant on the basis of fea-
tures de�ned on the supervoxel level, which opens up the possibility for further
research into supervoxel-based descriptors of lesions.

With the increasing number of MRI screenings for breast cancer, as advo-
cated for by the American Cancer Society, the need for fast and accurate CAD
systems to aid the radiologists in this increasingly complex and time-consuming
task is large. This work has contributed several proof-of-concept CAD algo-
rithms using an e�cient, and �exible algorithm based on SLIC supervoxels.
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7.4 Limitations and Future Work

One of the largest limitations of this work is that it did not consider the task of
automatically locating and delineating suspicious lesions in the breast volume.
This task is central to an e�ective and useful CAD system. This task has been
addressed in the literature using mean-shift [15, 19] and it may be possible to
implement SLIC in a similar manner. This could be an interesting avenue of
future work, because SLIC is known to be computationally e�cient and this
is an important aspect for any future commercial product. This would require
further research into methods that could be used to join supervoxels. It is likely
that the same large-scale segmentation used to segment the breast-air boundary
could be used in this process.

Another limitation of the current work is that it has only been tested on a
controlled set of MRI volumes. The data that was used was acquired using the
same acquisition protocol, and does not su�er from major artefacts, registration
issues, or other image quality problems. While the SLIC implementation here
was created in a �exible manner, compatibility or implementation issues could
arise. For example, further preprocessing scripts ensuring that no negative
intensity values exist in the volume may be necessary.

Aside from segmentation of the breast-air boundary, another large-scale seg-
mentation task is also frequently performed in a breast MRI CAD system: re-
moving the chest cavity. This task was not addressed in this work. The same
large-scale segmentation that was used to segment the breast-air boundary could
be used in this task as well, although the proposed method may need tuning.
For example, the chest wall-breast tissue boundary is not marked by as large
a gradient as the breast-air boundary, and this can cause di�culties. A graph-
cuts approach also has the potential to succeed in this scenario, although more
speci�c object and background de�nitions would likely be required. This task
could also be approached using prior knowledge of the shape of the chest cavity
and its location in the axially-acquired volumes as is done in [35]. Using this in-
formation, speci�c seed locations could be created. Thresholding of supervoxel
centre intensities using Otsu's method may even provide useful results. Alter-
natively, multi-class graph-cuts could be investigated or a sequential graph-cuts
approach where another cut is formed on the volume after the air is masked.

An interesting area for future development could be in the creation of fea-
tures derived from the shape of supervoxels, or in measures that use not only
one supervoxel to derive information but use groupings of supervoxels. An ex-
ample of this could be useful in small-scale segmentations inside VOIs, where
signs of malignancy such as centripetal or centrifugal enhancement[18] could be
described on a supervoxel basis. This could be achieved by creating a distance-
from-VOI-centre measurement, and comparing each supervoxel's mean intensity
and distance to centre. Using supervoxels aggregates voxel data and reduces
variation in the resulting features could lead to increased classi�er performance.
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