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Computationally Efficent Real Time Embedded Computer Battery Simulator
JOHN SANDGREN
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Automotive vehicles are a key part of how modern society meets many of the transport
related challenges it faces, but this is problematic as a vast majority of the vehicles in use
today are driven by combustion engines that produce pollutants that affects our planet
in many ways. One of the solutions that the automotive industry is moving towards are
electrified vehicles (EVs) that are propelled entirely through electricity stored onboard the
vehicles in the form of batteries. Lithium-Ion (Li-Ion) batteries are the most prevalent in
modern battery electric vehicles (BEVs), which presents a new set of engineering tasks to
solve, as the Li-Ion battery chemistry can become volatile due to many factors such as
high temperatures or abusive usage. To ensure safe and optimal operation of the battery,
BEVs use control systems that focus solely on the battery, called the battery management
system (BMS).

This project is a collaboration between Chalmers University of Technology and Volvo Cars
Torslanda, with the goal of developing a battery simulator that would make the testing
and further development of Volvos’ BMS easier and less time consuming. The model
was developed to run on a Raspberry Pi embedded computer and for this purpose the
Python programming language was used. The chosen battery model was an equivalent
circuit model (ECM), which describes the battery as a circuit consisting of a resistors
coupled in series with one or two resistance-capacitance (RC) circuits, depending on the
order of the model. To simulate a battery, circuit parameters were extracted from Hy-
brid Pulse Power Characterization (HPPC) tests for different temperatures and States
of Charge (SoC). The accuracy was measured in relation to avaiable test data while the
performance was measured by performing simulations on a Raspberry Pi 4B.

Both the first and second order models show promise in the voltage output domain, achiev-
ing better accuracy in higher temperature ranges. The simple implemented temperature
model was inaccurate for all tests, having large errors at all temperatures except for at
25◦C. The performance difference between the first- and second-order models was about
5.5%, with both models being able to achieve real time updates on the Raspberry Pi4B.

From the obtained results, the conclusion drawn was that for development purposes, the
first order model should be used as the accuracy gain was minimal in relation to the lost
performance. It was also concluded that more extensive HPPC tests will lead to a much
more performant model. The temperature modeling should also be split into a separate
program, to allow for more complex thermal modeling.

Keywords: battery, BMS, ECM, simulation, HPPC.
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1
Introduction

The prevalence of automobiles has made transportation of people and goods more con-
venient and quick during the 20th century. As the number of automotive vehicles has
increased their importance has also increased in turn, which now makes them an inte-
gral part of how modern society operates and functions on a day-to-day basis. Despite
the advantages provided by the vehicles there are negative consequences to the increased
dependence on automotive vehicles. Chief among these consequences are the effects that
the pollutants released by the vehicles have on the environment and these effects are of
great concern and require appropriate actions if an environmental crisis is to be avoided.
The chemical reactions that are used within diesel- and gasoline-engines lead to the gen-
eration of few different carbon-equivalent substances, primarily carbon dioxide (CO2) and
methane (CH4), which are both greenhouses gas that lead to increasing global tempera-
tures [1]. Within the EU, the transport sector is responsible for about 30% of the total
CO2 emissions, where personal vehicles are responsible for 60.7% of the transportation
emissions [2]. This means that the car industry has a large environmental effect which has
to be curbed if global environmental change is to be stopped, and hopefully be reversed.

1.1 Background
As alternatives to the carbon dioxide generating combustion engines are being researched,
electrified vehicles (EVs) have become more widely adapted and developed. Two of the
more common EV-types are HEVs (hybrid electrified vehicles) which generates its propul-
sion energy through a combustion engine but optimizes the fuel efficiency with the aid of
electrical systems and PHEVs (plug-in HEVs) which can store electricity from the grid and
can partly be driven using the stored electricity. BEVs (battery electric vehicles) is a fully
electric alternative to combustion vehicles, where the engine is driven entirely the stored
electricity, and BEV have become more and more common place over the last decade. The
reason behind the explosive growth of the BEV market is twofold. Firstly, it is due to the
very active research within battery storage, specifically in regards to lithium-ion (Li-Ion)
batteries, which has seen immense increases in the possible energy density of a battery as
well as much lower production costs. [3]. Secondly, all the needed energy for propulsion
as well as vehicle operation is taken from the on board battery units, which are charged
through the electrical grid, which means that the usage of the car is as environmentally
clean as the power source charging it is. This makes them a very promising solution to
the amount of pollution being released by the automotive industry.

Among the different battery technologies, Li-Ion batteries have largely become popular
in the automotive applications due to their high energy efficiency, long life cycle, high
energy density and high power density [4]. However Li-Ion batteries have a few draw-
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1. Introduction

backs that require handling and management during use, as the batteries chemistry are
prone to become volatile if the battery is abused, such as if the battery is overcharged.
This type of abuse can in the best cases lower the life-span of the battery and in the
worst cases lead to thermal runway, which is a rapid expulsion of thermal energy or in
gentler terms, an explosion. To combat these negatives and ensure that the batteries are
being used in a safe manner, Battery Management Systems (BMS) are often employed.
The BMS oversees the battery, keeping track of the state with different sensors, including
the an estimate of the charge left in the battery, and making sure it is operating in an
optimal manner, giving the battery both a longer life and making it safer to use. The
importance of a well developed BMS for usage with EVs cannot be understated and a
crucial part of this development is thoroughly testing the many different parts of the BMS.

Testing of a BMS is complicated, as the software interfaces with sensors and different parts
of the vehicle, and it is not reasonable to perform all tests on a production or prototype
vehicle. An alternative to this is Hardware-in-the-loop simulations (HIL) which utilizes
mathematical and software representations of everything that is not the hardware which
is being tested, i.e. the BMS. A HIL-solution for a BMS could for example include
emulations of the temperature and voltage of the battery, a driving cycle for the vehicle
as well as environmental aspects such as outside temperature. HIL simulations are a great
tool for extensive and proper testing, but as they require setup and as HIL-rigs can be
expensive, the amount of testing each developer or engineer can perform on it is often
limited.

1.2 Thesis Motivation and Aim
The thesis will be performed as a joint project between Chalmers University of Technol-
ogy and Volvo Cars in Torslanda. The project will be used for testing of BMS software
and hardware that is being developed at Volvo Cars.

The aim of the thesis is to develop a battery simulation model, which is meant to be used
for verification for if a first or second order ECM model is best used on an embedded
computer chip for BMS development.

1.3 Project Concept
The expanding research and developments in the battery technology has encouraged many
organisations to come up with their own software and tools to develop batteries and the
control systems for the battery management system. With the batteries being a complex
problem due to their non-linear functioning the simulation and testing becomes a vital
part of design and optimization of battery performance for an electric vehicle.

The functionality of the battery management is vast which includes managing the current
drawn from the battery to the amount of coolant that needs to flow to cool the battery.
This varied functionality holds an importance on understanding the working of the battery
model. The purpose of the project is to develop a battery model that helps in testing and
advancement of ECU that would run in real time on a microcontroller and to validate
how closely the model mimics the behaviour of the battery.
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2
Theory

2.1 Chemical Battery Theory

2.1.1 Electrochemistry and Redox reactions
A battery is an electrical power storage device that charges and discharges using elec-
trochemical reduction-oxidation (redox) reactions. A battery consists of at least one
electrochemical cell, where a cell contains at minimum two electrodes, a separator and
an electrolyte. Electrodes are polarized solids that are submerged within the electrolyte
fluid, which contains dissolved ions that makes the fluid electrically conductive through
the movement of the ions, but not through the movement of electrons [5]. The electrodes
are either an anode, which are charge givers, or cathodes that are charge receivers. Ei-
ther of the electrodes can act as anode or cathode depending on whether the battery is
charging or discharging. Electrical power is then charged or discharged from the battery
based on how the electrons move between the electrodes. This work is characterised by
the potential difference between the anode and cathode, according to

∆Ecell = Vcathode − Vanode (2.1)

where ∆Ecell is the electric work (sometimes called electromotive force) in volts [V] with
the standard potentials for the electrodes as Vcathode and Vanode in volts [V].

Redox reactions are a subset of reactions that occur when the oxidization number of a
chemical species changes. When a species experiences a loss of electrons, the species is
said to have been oxidized and when it experiences an increase of electrons it has been
reduced. This means that for each redox reaction, at least one reductant i.e an element
that gains electrons and one oxidant that losses electrons is needed. The Nernst equation,
see equation 2.2, can be used to evaluate how much electrical work that can be expected
from the redox reactions occurring in the battery cell.

∆Ecell = −∆Gr

nF
(2.2)

where ∆Gr is the change in Gibbs energy due to the redox reaction in joules [J], n is the
number of electrons that are exchanged in the reaction and F = 96485.3329 s·A

mol
is the

Faraday constant.

2.1.2 Lithium-ion batteries
Lithium-ion batteries are a type of battery which contains lithium-ions as one of the main
electrodes, as the name implies, and they have been heavily studied and developed over
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2. Theory

the past few decades. These batteries are primarily used for tasks where a high energy
density is required, as Li-Ion cells are very energy dense, meaning that the contain a high
amount of energy per unit of mass, while also being capable of delivering high voltages
(3.6V) in comparison to many contemporary batteries [6], [7]. In figure 2.1 we can see
how the energy density of different batteries compare [8].

Figure 2.1: Ragone plot for a selection of batteries. From: Miao, Y., Hynan, P., von
Jouanne, A., & Yokochi, A. (2019). Current Li-Ion Battery Technologies in Electric
Vehicles and Opportunities for Advancements. Energies, 12(6), 1074. MDPI AG.

Retrieved from http://dx.doi.org/10.3390/en12061074

Li-Ion batteries are categorized depending on which type of lithium metal oxide is used,
which acts as the cathode or positive electrode in the battery [9]. The four most prevalent
Li-Ion batteries for use within EVs are listed below.

1. Lithium Cobalt Oxide
Lithium Cobalt Oxide (LCO) batteries are commonly used for handheld or
small electronic devices [10]. LCO batteries have a high nominal voltage of
3.9V, but are thermally sensitive which means that they require proper thermal
management systems [9].

2. Lithium Manganese Oxide
Batteries of the Lithium Manganese Oxide (LMO) variety are commonplace
due to the lower cost of manganese, as it abundant in nature while having a
good nominal voltage of 3.7V [9]. LMO batteries have a lower capacity than
their LCO counterparts but are more thermally stable while having equal to
longer lifespans [9], [10].

3. Lithium Nickel Manganese Cobalt Oxide
Lithium Nickel Manganese Cobalt Oxide (Li-NMC or NMC) batteries com-
bines many of the advantageous factors of LCO- and LMO-batteries. The
performance is slightly worse than LCO counterparts, having a lower nominal
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2. Theory

voltage of 3.7V but a higher capacity [9], [10]. The thermal stability of NMC
variety batteries land somewhere between LCO- and LMO-batteries, which
makes them stable enough for more intensive and/or heat generating tasks
[10].

4. Lithium Iron Phosphate
Li-Ion batteries of the Lithium Iron Phosphate (LFP) type are stable and
tolerant to abusive behaviours, such as overcharging and short-circuiting, and
are very thermally stable [9]. This comes at the cost of middling capacity and
a lower nominal voltage than other battery counterparts at 3.4V [9], [10].

The performance of Li-Ion batteries comes at a cost of additional complications. They
are temperature-sensitive and can depending on the usage situation need either cooling
or heating solutions. Short circuiting and overcharging are another set of problems that
have to be handled when using Li-Ion battery solutions. The events mentioned above
change the chemical structure of the anode within the battery cells, which can lead to
thermal runaway occurring, during which the temperature of the cell increases rapidly
due to the stored energy in the battery being released all at once [11], [12].

2.2 Battery Modeling
Battery behaviour is dynamic and non-linear, meaning that accurate mathematical mod-
eling is hard. The hard to predict behaviour can lead to models that are to erroneous for
practical use cases. Nevertheless, there are several models that can capture the different
phenomenons happening within a battery, often at the cost of giving less accurate pre-
dictions or the models becoming increasingly complex, leading to longer computational
times. One common approach is to use coupled differential equations derived from electro-
chemical relations, which describe how the concentrations of ions change within the cells,
and equations describing the thermal energy change these concentration gradients cause.
These equations are solved in many different ways, with Finite Element Methods being
among the more prevalent. This gives accurate solutions, at the cost of computation time
as well as the need for a large amount of accessible memory, since the solutions requires
large numbers of constants and variables [13]. Another model that is widely used is the
Equivalent Circuit Method (ECM), as it is easier to implement than differential equation
approaches, while still offering good accuracy in relation to computation time [14].

2.2.1 ECM model
The Equivalent Circuit Method (ECM) is a battery model type that assumes the battery
properties can be described as a circuit. The circuit contains a resistance coupled in series
to a number of resistor-capacitor (RC) circuits, the number of RC-circuits is often either
one or two. The resistance and RC-circuits are also coupled (in series) to a voltage source,
the open circuit voltage (OCV). What the OCV entails is described in subsection 2.2.2.
ECM models are divided into different orders, where the order of the model is determined
by the number of energy storing components (capacitors) in the circuit. The RC-circuits
are added to the circuit to capture the aforementioned non-linear behavioural aspects,
specifically time-transient effects. In a first order ECM, all transient effects are captured
within the single RC-circuit while second order ECM models can divide the behaviour
into short- and long-term behaviours, represented by a separate RC-branch.
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2. Theory

The accuracy of ECM models are determined by the circuit parameters used. To accu-
rately simulate a battery, the parameters have to be extracted from data that describes
how the battery behaves. Battery performance is tied to both the temperature and state
of charge (SoC) of the battery, which means that the circuit parameters such as the OCV,
resistance and capacitance values have to be extracted for a range of SoC-values for a few
temperatures for optimal performance [14]–[16]. The OCV specifically has been shown
to vary quite largely depending on the current state of the SoC and temperature of the
battery [17]

2.2.1.1 First-Order ECM

The first-order ECM has one RC branch connected to the internal resistor which handles
the whole battery dynamics. The figure 2.2 depicts a first-order ECM model where the
OCV (V) varies non-linearly with respect to the SoC. RΩ (Ω) is the ohmic resistance which
predicts the resistance produced by the electrolyte and the RC chain that is connected
in series with the internal resistance depicts the non-linear polarization behaviour of the
lithium-ion battery where R1 (Ω) and C1 (F) is the polarization resistance and capacitance
respectively. The I (A) gives the direction of the direction of the current with the applied
load [18].

Figure 2.2: First-Order cell circuit

2.2.1.2 Second-Order ECM

In the second-order ECM model in comparison with the first-order has one more RC
branch connected in series with internal resistor and RC branch. The figure [2.3] where
the additional resistance and capacitance is represented by R2 (Ω) and C2 (F) respectively.
The second RC branch gives higher levels of accuracy, with the direct consequence of being
more computationally expensive due to the added complexity.
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Figure 2.3: Second-Order cell circuit

2.2.2 Parameters Terminologies
The OCV is the voltage difference that is measured between the negative and positive
terminal of a circuit when it is disconnected, i.e. no current that is not native to the
circuit is flowing between the terminals. The SoC is a measure of how much of the total
capacity the battery currently contains. Accurately tracking the SoC is hard, due to
the earlier mentioned non-linearities of battery behaviour, but assuming that there are
minimal current sinks and loses within the battery, the method of coulomb counting can
be used [19]. The governing equation for coulomb counting is defined as

SoC(t) = SoC(t = 0) +
∫ t

0

I(t)
Qn

dt (2.3)

where Soc(t = 0) is the initial state of charge, I(t) is the current curve as a function
time in Amperes [A] and Qn is the nominal capacity of the battery in Ampere-hours [Ah].
Equation 2.3 can be updated to account for discrete timesteps and this rewrite takes the
form

SoCi = SoCi−1 + Ii
Qn

·∆t. (2.4)

The discretizied formula allows for updates based on the timestep ∆t, which is useful in
simulation.

For a given current I, the potential change for a discrete first order ECM model is given
by

U = UOCV + IRΩ + I ·Rτ

1 +Rτ · Cτ
(2.5)

In equation 2.5, RΩ corresponds to the instant voltage change when a current is applied
to the cell, while Rτ and Cτ correspond to the transient response of the cell [20]. The
sign of the current I determines if the cell is charging or discharging, with a positive sign
corresponds to the former. The second order ECM model is similar, with the discrete
voltage change expression being

U = UOCV + IRΩ + I ·R1

1 +R1 · C1
+ I ·R2

1 +R2 · C2
(2.6)

In equation 2.6 above, the terms R1 and C1 now correspond to short term transient effects
while R2 and C2 correspond to the longer term effects, as well as the diffusion happening
within the cells [20], [21].
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Equations 2.5 and 2.6 refer to discretized models, but continuous equations can also be
formulated. For the first order, the new equation becomes

U(t) = UOCV + I(t)RΩ + V1e
−t
τ (2.7)

where V1 is the saturated capacitor voltage corresponding to capacitor Cτ in equation 2.5,
t is time in seconds and τ is the relaxation time in seconds [22]. The relaxation time is an
approximation of the time needed for the battery cell to reach a steady-state or chemical
equilibrium. For the first order model, τ corresponds to all time transient effects.
Making equation 2.6 continuous we get

U(t) = UOCV + I(t)RΩ + V1e
−t
τ1 + V2e

−t
τ2 (2.8)

where τ1 encapsulates short term time transient behaviour and τ2 the long term behaviour.

2.2.3 ECM heat generation
As was previously mentioned, the batteries behaviour are vary depending on two primary
factors, the SoC and the cell temperature. This means that accurate tracking and predic-
tion of temperature changes will lead to a more accurate battery simulation. The simplest
heat model for a battery is described in equation 2.9

Q = Qi +Qr (2.9)

where Q is the total heat generation, Qi is irreversible heat generation and Qr is reversible
heat generation [23]. This description is is severely lacking in detail, so equation 2.9 is
expanded into

Q = Qi +Qr = R · I2 + T∆S (2.10)

where the irreversible heat is described by the ohmic heat generation term R · I2 and the
reversible heat is handled by the reactions entropic change in the term ∆S. As the cell
temperature is the term that is of interest, the total heat term Q can be rewritten as
Q = m · cp dTcelldt

, where m is the mass of the cell and cp is the heat capacity of the cell [24].
Assuming that the battery cells temperature is always uniform in its geometry the heat
exchange between the cell and and a still environment, meaning no forced convection, can
be written as

m · cp
dTcell
dt

= RI2 + T∆S + Ah(T∞ − Tcell) (2.11)

where A is the area of the cell exposed to environment in [m2], which can be assumed to
be the cells surface area in rough estimation, h is the convection heat-transfer coefficient
in [ W

m2K
] and T∞ is the surrounding environment temperature in [K]. Equation 2.11 can

be further expanded to cover any heating or cooling efforts as a single Qo term. By noting
that the irreversible heat generation is the largest contribution factor in the total heat
generation process, the T∆S term can be removed without a large loss in accuracy [25].
Equation 2.11 can now be discretized and modified to yield

Ti = Ti−1 + (RI2 + Ah(T∞ − Ti−1) +Qo)
∆t
m · cp

(2.12)

8



2. Theory

where Ti is the cell temperature at timestep i and ∆t = ti − ti−1 is the timestep or time
difference between steps i and i− 1.

2.3 Parameter Fitting - Least Squares Method
Given a dataset (yi, xi), where yi is data dependent on the in turn independent data xi
and i is the indexation of the dataset, it is often of interest to fit this data onto some
model function f(xi, β) ≈ yi, where β are the function parameters that are to be fitted
onto the dataset. A common approach to this type of problem is to apply the method of
least squares (LSM), which is a regression model that optimizes the function parameters
β by minimizing the square-sum of the residuals (RSS),

RSS =
n∑
i

r2
i (2.13)

where the residuals ri are described by

ri = yi − f(xi, β). (2.14)

An example of this can be seen in figure 2.4, where a function f(x, β1, β2) = xβ1 +β2 was
fitted onto data that was generated along the line y = x but then displaced with values
drawn from a uniform distribution. This is an example of a linear least squares regression
model, as the function f can be broken down into a linear combination of the optimization
terms β according to f(x, β) = ∑

j βjφj(x). Linear LSM problems can be solved explicitly
by means of finding the minimum of equation 2.13. This is done by taking the partial
derivatives of the expression with regards to the optimization parameters βi and setting
them to zero. The parameters can then be solved from the resulting equation system.

Figure 2.4: Plot of a linear line with fitted parameters using the least squares
methods. The generated data was generated along the line y = x and then randomly

displace based on a uniform distribution.
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When non-linear functions are used it often becomes necessary to find the optimal β
values through the use of iteration. By setting βn = βn−1 + δβ, where the superscript
n represents the iteration number, the parameters can be updated continuously, but this
requires setting initial values for the parameters. As the β values have to be numerically
found through iteration, there are many different algorithms for this. A few methods
uses an approach similar to that of the linear-case, where the goal is to minimize the
gradient of the RSS. One of the more prevalent algorithms for non-linear LSM parameter
determination is the Levenberg–Marquardt algorithm, which uses the assumption

f(xi, β + δβ) ≈ f(xi, β) + Jiδβ (2.15)

which is equivalent to approximating f by means of a first order Taylor expansion [26].
Here Ji is a row in the Jacobian matrix (or gradient row-vector) with respect to β, i.e

Ji = ∂f(xi, β)
∂β

. (2.16)

Inserting the assumption defined in equation 2.15 into the RSS equation as defined in
2.13 the following expression is obtained

RSS =
n∑
i

(yi − f(xi, β)− Jiδβ. (2.17)

Equation 2.17 can then be vectorized, becoming

RSS = ||y− f(β)− Jδβ||2.

Taking the gradient of the expression above with respect to δβ and setting the gradient
to zero the following can be obtained after simplification

(JTJ)δβ = JT [y− f(β)].

This expression yields an equation consisting of n linear equations, from which δβ can be
solved for. The process then repeats, until either some threshold is meet, such as having
reached a number of iterations or the RSS is below some limit.
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3.1 Software and hardware choice
The model was developed for usage within Volvo Cars Corporation, which limits the
hardware that the model is supposed to run on to what was available from the company.
The chosen embedded computer was a Raspberry Pi Model 4B (RPi4B), which in turn
informed the choice of programming language. The RPi4B natively runs an operating
system (OS) called Raspberry Pi OS (RPOS), which is a port/fork of Debian, which in
turn is an open-source OS developed on the Linux Kernel. RPOS has built-in support
for the Python programming language, which is one of the reasons that the language was
chosen.

Python was also chosen for the fact that it is dynamically typed and memory safe, which
makes the development process quicker. Python is written in the C-programming lan-
guage, which has a rich history and is used for tasks that require efficiency, at the cost
of being ’harder’ to develop for due to the low-level granted to developers. Python is
also widely supported, with libraries for static memory handling and computation with
the NumPy library and data-analysis tools using the Pandas and Sci-Py libraries. The
aforementioned NumPy library allows for the usage of static memory arrays, which are
faster to access at the cost of being harder to expand, as the data has to be copied into
a new allocation of memory if the need arises.

As Python is an Object-Oriented programming language (OOP), the main development
focus is on creating and using Objects of different Classes. Classes act as a template
of sorts for the objects which tells the program what each object must contain. Classes
contain attributes, which in very general terms can be described as information of different
types, and methods, which perform operations on or onto information. OOP is a very
powerful tool for quickly developing frameworks for programs that require the usage of
many similar ’packs’ of information, while keeping the information for each instance of
an object seperate.

3.2 ECM model parameters

3.2.1 Parameter extraction
In the equations describing the ECM models, 2.5 for the first order and 2.6 for the second
order model, the equations are dependent on the circuit parameters and these parameters
are in turn dependent on temperature and the SoC of the battery cell. To sufficiently
use the ECM model, the accompanying parameters have to be extracted at different tem-
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peratures for a range of SoC-levels. A common approach for extracting the required
parameters is to use Hybrid Pulse Power Characterization (HPPC) [27]. During a HPPC
test, the battery is kept in an environment with a fixed temperature and a current at a set
C-rate is then applied to the battery for a limited time. The voltage is measured during
the entire experiment, but the interval between measurements is much smaller when a
current pulse is applied. Figure 3.1a presents how a HPPC current pulse will affect the
voltage, for the dataset described in [28].

In figure 3.1a, the triangle marker represents the extracted OCV value, the cross marks
where the instantaneous voltage drop ends and the circle marks where the current is
turned off. The corresponding current pulse can be seen in figure 3.1b, where the mark-
ings correspond to the same events as noted in the previous figure. The figures are created
based on data extracted from tests performed by Dr. Phillip Kollmeye at the University of
Wisconsin-Madison [28], [29]. This dataset was also used to develop and verify the model.

To extract the parameters each pulse and its corresponding relaxation time, which is the
time it takes for the battery to reach a steady-state with regards to the voltage, was found
by finding all points that roughly have the same applied current as the C-rate which is
being examined. This was to a C-rate of 1, which for the dataset being used corresponds
to a current of 2.9 Amperes as the nominal capacity of the battery is 2.9 Ah. After the
data has been divided into smaller ’chunks’, which contain a single pulse each, as the
extracted data is time-dependent, equations 2.7 and 2.8 will be used for data extraction,
where the equations are fitted onto the data using least-squares. Taking the first order
case as an example, we simplify the terms by combine some of the terms, see equation 3.1
below. The combination is done to make the fitting process easier.

U(t) = d0 + d1e
−tA, (3.1)

where U(t) is the voltage across the battery cell at time t, d0 = UOCV + RΩI represents
the instantaneous voltage change due to application of a current to the cell, V1 is changed
into d1, where d1 = R1I and finally the relaxation time τ1 is rewritten as A = 1

R1C1
. In

the same way equation 2.8 also needs to be rewritten into equation 3.2.

U = d0 + d1e
−tA + d2e

−tB (3.2)

where d2 = R2I and B = 1
R2C2

.
Equation 3.1 or 3.2 is then fitted onto a pulse, such as in figure 3.1a, using the least-squares
method. After the fitting process the circuit parameters can be extracted if the applied
current I and the OCV at the current SoC and temperature is known. The current is ob-
tainted through the known C-rate of the pulse. The OCV was obtained by assuming that
the battery had reached a steady-state before each pulse, which means that the voltage
that was measured just before the pulse is set to be the OCV, represented by the triangle
in figure 3.1a.

The first order model parameters are fitted onto the HPPC data, as presented in figure
3.1a all at once, as the terms in equation 3.1 are different (one linear and one exponential
term), which means they encapsulates different behaviour and are easy to fit at the same
time.
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(a) Voltage-time curve for a pulse during HPPC testing.

(b) Current pulse during HPPC testing.

Figure 3.1: Shows how a Panasonic 18650 batteries voltage will drop according to an
applied current pulse during a HPPC test, as well as the required time for the cell to

reach a steady-state.
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The second order model requires another scheme for fitting the parameters. The two
exponential terms in equation 3.2 makes it more prone to overfitting. Overfitting would
mean that the model would work well only on the data from which the parameters are
extracted. To generalize the model, we need to use the fact that one of the exponential
terms encapsulates long term behaviour and the other short term.

Figure 3.2: Displays the different regions of the HPPC curve that the parameters are
fitted onto.

In figure 3.2 the yellow region represents the part of the HPPC curve from which the
OCV, ohmic resistance and short-term transient effects are approximated. To achieve
this, it is assumed that the long-term effects during this part of the curve are negligible,
which is done by setting d2 = B = 0 in this region. In the cyan region only the long term
effects are considered, which means that d0, d1 and A are kept constant during this second
region. The line between the short-term and long-term region is drawn immediately after
the current is turned off.

3.2.2 Model parameter handling

The parameters were extracted for a set of different temperatures and for different SoC
values for each of the temperature values. The data was organised by creating multi-
dimensional arrays, where indexation was done by creating key-value pairs. Firstly, the
model compares the current battery cell temperature to the temperatures at which the
data was extracted and finds which one is closest to it. The model then repeats this
process for the SoC, comparing the internal cell SoC and the values of SoC from where
the parameters were extracted. After both the update temperature and SoC have been
found, the cells parameters are updated. As each cell can have different values of SoC
and temperature, this process is repeated for each cell.
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(a) Battery Cell (b) Battery Module (c) Battery Pack

Figure 3.3: Generalized layout of a battery cell, module and pack. A module consists
of cells and a pack consists of modules.

3.2.3 Panasonic 18650PF Li-ion Battery Thermal Properties
To simulate the battery cells temperature some physical properties are needed. In equation
2.12, the needed properties are the convection area A, the heat transfer coefficient h, the
battery mass m and the specific heat capacity CP . From Panasonic’s datasheet for the
18650PF series of batteries, the diameter d = 18.55 mm, the height hl = 65.1 mm and the
approximate massm = 47 g can be obtained [30]. It is assumed that the entire surface area
of the cell is in contact with air, which means that the convection area can be calculated
as A = πdhl +π d

2

2 as the cell is assumed to by cylindrical. The thermal characteristic are
approximated to be the following: CP = 960 J

kg·K and h = 22.46 W
m2K

. This was done by
taking the mean value from a range of empirical values found in literature [31].

3.3 ECM model program
The program simulates the battery by grouping up a number of battery cells within a
battery module. This approach of encapsulating the cells within the modules allows the
program to minimize how often the circuit parameters have to be saved into memory,
as they can now be saved and accessed from the module objects. The simulation uses
standard SI units, with the largest change from the norm being that the nominal capacity
Qn in equation 2.3 is given in terms of Ampere-seconds [As] instead of the normative
Ampere-hours [Ah]. The implemented model uses discrete time-steps defined in units of
seconds, so all time dependent quantities are converted to reflect to utilize seconds. This
eliminates the need for unit conversions after the initialization of the model.

3.3.1 Battery Cell class
Objects of the battery cell class are the base foundation of the simulation, as the actual
simulation primarily occurs within these objects. The cells only contain data which is
related to itself, which are either constant or dynamic data features. The constants
consists of physical aspects which are not changed during the simulation, such as the
area or mass of the cell, as well as ECM order. Data which is updated through out the
simulation, such as the OCV, circuit parameters and temperature belong to the dynamic
data type.
As mentioned earlier, the ECM order is set when the cell is initialized. The initial tem-
perature, SoC and all the constant values are also set during the initialization. After the
order has been set, the cell then looks up and stores the neccessary circuit parameters
based on the order of the cell as well as SoC and temperature values. To make the simu-
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lation easier to create while also removing a few repeated logic-checks (checking the ECM
order of the cell for each simulation step in the runtime) the cell will then also set the
voltage calculation function depending on the ECM order during the initialization. This
is done by creating a reference to one of the two possible update functions depending on
the cell order.

3.3.2 Battery Module class
The battery module class is written as an object that contains multiple Battery Cell class
objects. The module creates and initializes the cells and stores references to all these
cells within a list. Each module contains the data which is used to update the circuit
parameters. The circuit parameters are stored as lists within a dictionary. A dictionary in
Python is a data structure that uses key-value pairs for accessing the stored information,
instead of the regular indexing. The key for the dictionaries is the temperature at which
the parameters where extracted in units of degrees Celsius in a string format. The mod-
ule looks at the cells temperature and identifies which of the temperature keys is closest
to it. After this, the module is given access to an array which contains all the needed
parameters for different SoC values. To access the correct list of parameters, the index
is calculated by examining the cells SoC value and finding which extracted data point
it is closest to. This process is repeated for each cell within the module, meaning that
different cells can have very different temperature and SoC values, and therefore have
wildly different voltage behaviour.

During the simulation, the module is sent a current that is to be applied to it and therefore
the cells that it contains. The calculations are described in greater detail in 1 for a first
order cell. The module uses the voltage change function defined within the cell, extracts
the needed potentials and then calls on the cell to update its internal parameters. The
potential change is summarized and after all cells have been updated, this potential is
sent out as an output to the overhanging simulation program.

3.3.3 Battery Simulation and Update
During the update stage of the model a current is applied to all cells that being simulated.
Based on this current, the appropriate voltage change is calculated and summed with the
OCV value held by each cell. Each module keeps track of the voltages from each cell while
also summing them together. After the voltages have been calculated, the cells dynamic
parameters (SoC and temperature) are updated. The SoC update is done as described
by equation 2.4 while the temperature update is done by a modified version of equation
2.12, where the irreversible heat is calculated by all the voltage changes within the model
circuit.

Ti = Ti−1 + (|UΩI|+ |U1I|+ hth(T∞ − Ti−1) +Qo)
∆t
Cth

. (3.3)

As the outputs are directly linked to the dynamic parameters, the needed calculations are
performed before updating the internal state. The circuit parameters are then updated
as needed based on the newly calculated SoC and temperature values, according to the
scheme described in subsection 3.2.2.
Equation 3.3 is the temperature change for a first order ECM cell. The absolute sign
ensures that no matter what notation is used for the current (negative for discharge or
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charge), the temperature increases due to either the exothermic nature of the discharge
reaction. As equation 2.12 assumes that the ohmic resistance R is known, but the ab-
straction of the ECM models spread the effect of the ohmic resistance across the different
battery parameters. This is why equation 3.3 is used instead.

Algorithm 1: Potential calculation and cell internals update
Data: ti > ti−1
Result: ∆Utot = ∑

cells ∆Ucell
1 ∆t← ti − ti−1;
2 ∆Utot ← 0;
3 I ← Iinput;
4 for Cell in Module do
5 QCell ← Acellhcell(T∞ − TCell);
6 [UΩ, Uτ ]← Equation 2.5;
7 ∆Utot ← UCell

OCV + UΩ + Uτ ;
8 if I < 0 then
9 QCell ← QCell + |UΩI|+ |UτI|;

10 end
11 SoCCell ← Equation 2.4;
12 TCell ← TCell + QCell

m·cp ∆t;
13 end

The process described in Algorithm 1 is used for each of the different modules within
the simulation and is essential tool for getting knowledge of how the cells are performing.
It also generates the two primary outputs, namely the total potential across the battery
module as well as the temperatures of the cells. The module temperature is naively
calculated to be the mean value of the internal cell temperatures. This is then repeated for
each step in time. The update of the circuit is run less often, as the SoC and temperature
don’t change rapidly for the small timesteps used for simulation, as ∆t ∈ [0.1, 1] seconds
for all of the simulations used in this paper.
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4.1 Extracted ECM Model Parameters
Based on the scheme laid out in subsection 3.2.1, the ECM parameters were extracted
based on HPPC data from the dataset developed by Dr. Phillip Kollmeyer at the Uni-
versity of Wisconsin-Madison [28]. The first order parameters can be found in subsec-
tion A.1.1 and the second order parameters can be found in subsection A.1.2 within the
Appendix. Parameters that could not be extracted at certain combinations of tempera-
ture and SoC are encoded as the shebang symbol, #!.

The extracted OCV values at different SoC are presented in table 4.1. The OCV-SoC
relation was extracted for the temperature of 25 ◦C, as this was the most complete part
of the data.

Table 4.1: Extracted OCV values at different SoC values at 25 ◦C.

SoC OCV
1.0 4.17176
0.95 4.10356
0.9 4.05723
0.8 3.94528
0.7 3.86164
0.6 3.77092
0.5 3.66348
0.4 3.60236
0.3 3.55088
0.25 3.51228
0.2 3.45695
0.15 3.38875
0.1 3.34436
0.05 3.23112

4.2 Model Results
In figure 4.1 we see how the model compares to the experimental data for a driving cycle.
As the the time spans for the driving cycles are large, in the range of 10000 seconds, in
comparison to the time steps for the model, which are on the scale off being between 0.1
and 0.5 seconds, the rest of the results will be presented on a smaller timescale.
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Figure 4.1: Comparison between model and data for a driving cycle. The red dashed
line is the voltage data [28] and the black full line is the first order simulation for the

same current pulse.

Using the extracted parameters, the model was examined in terms of accuracy over a
range of tests. These tests were done for both the first and second order ECM models.
The accuracy was measured in terms of the absolute difference between model output and
data value, according to equation 4.1

Ei = |yi − f(xi)|
yi

. (4.1)

In equation 4.1, yi is the experimental data that arose due to some input data xi. The
input data is then fed into the approximate model function f . By taking the absolute
difference and dividing by the expected output yi the error, or divergence, from the
expected output is found. This is then used as a measure of the accuracy of the model,
where a lower Ei value means that the model lies closer to the experimental data.
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Figure 4.2: The figure shows how the models (black line) voltage simulation compares
to the experimental voltage data (gray dotted line). The light blue line is the error

between model and data.

Figure 4.2 is zoomed in on an area of figure 4.1 and shows the voltages. This allows for
a clearer view between the differences of the model and data. The black and gray-dotted
lines are plotted against the left y-axis, representing the voltage outputs resulting from
the current, which can be seen in figure 4.4. The light blue line is plotted against the
right y-axis and is the error, as calculated by equation 4.1.

Figure 4.3: Shows how the model and data differ from each other, and are represented
by the black line and gray dotted line respectively. The light blue line is the error

between the model and data.

The same approach as for figure 4.2 was used for the temperature plot in figure 4.3. The
black line and dotted gray line are plotted against the left y-axis, which represents the
temperature in terms of degrees Celsius. The right y-axis is the error.
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Figure 4.4: The applied current during a small time span of a driving cycle.

Figure 4.4 is the current that is applied during the time span of the driving cycle which is
represented in figures 4.2 and 4.3. A negative current implies a discharge and a positive
current results in the charging of the battery, according to the standard used for the
model.
In figures 4.5 and 4.6 the first and second order ECM models are plotted against each
other, along with the experimental data that corresponds to the correct output.

Figure 4.5: First Order (brown dashed line) and Second Order (gray dashed line)
ECM models plotted with experimental voltage output.

Figure 4.5 shows how the two different ECM-models output voltages based on the current
input shown in figure 4.4.
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Figure 4.6: First Order (brown dashed line) and Second Order (gray dashed line)
ECM models plotted with experimental temperature.

In figure 4.6 above the simulated temperatures for the first and second order ECM models
are plotted along with the measured cell temperature. The second order model has slightly
higher temperature values than the first order model.

Figure 4.7: The upper figure is temperature from the model and temperature data
along with the error between the two. The lower figure is the driving cycle current.

In figure 4.7 the upper figure shows how the battery temperature develops over time for
the first order ECM model (brown dotted line) in comparison to the experimental data
(black line), along with the error between these two (blue dashed line). This figure shows
the output from the first order ECM model. The lower figure is the current for the plotted
driving cycle.
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Figure 4.8: The upper figure is temperature from the model and voltage data
temperature along with the error between the two. The lower figure is the driving cycle

current.

Figure 4.8 is the voltage equivalent to figure 4.7, with the same description being true for
this figure as well.

Figure 4.9: The upper figure is model and actual temperature values, plotted with the
error between the two. The lower figure is the current that gave rise to the temperatures.
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Figure 4.10: The upper figure shows how the model and experimental voltages vary,
along with the error between these two. The lower figure is the current from the driving

cycle used to plot.

Figures 4.9 and 4.10 are equivalent to 4.7 and 4.8 for the second order ECM. The first
figure shows how the temperature varies for the model and the second figure how the
voltage varies from the experimental data.

Figure 4.11: The upper figure shows how the actual voltage compares to the output
from the first and second order ECM models for an ambient temperature of 10 ◦C.
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Figure 4.12: First and second order ECM model temperatures compared to the
experimental temperature data for a driving cycle.

Figures 4.11 and 4.12 show how the two ECM models output (temperature and voltage)
based on the current graph shown in the lower part of the figures. The black line shows
the recorded voltages and temperatures from the dataset, while the brown dashed line is
the first order and the gray dashed line is the second order ECM models, respectively.
This description is true for all figures between and including figures 4.13 and 4.18.

Figure 4.13: The upper figure shows how the actual voltage compares to the output
from the first and second order ECM models for an ambient temperature of 0 ◦C.

In figure 4.13 both of the ECM models overlap each other during the entire presented
timespan.
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Figure 4.14: First and second order ECM model temperatures compared to the
experimental temperature data for a driving cycle.

Figure 4.15: The upper figure shows how the actual voltage compares to the output
from the first and second order ECM models for an ambient temperature of -10 ◦C.

26



4. Results

Figure 4.16: First and second order ECM model temperatures compared to the
experimental temperature data for a driving cycle.

In figure 4.18 it can be seen that both of the models are displaced from the temperature
data.

Figure 4.17: The upper figure shows how the actual voltage compares to the output
from the first and second order ECM models for an ambient temperature of -20 ◦C.
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Figure 4.18: First and second order ECM model temperatures compared to the
experimental temperature data for a driving cycle.

In figure 4.19 and 4.20 boxplots for a set of driving cycles at different room temperatures
are plotted. The orange line within the boxes represents the median error accross all the
simulated driving cycles at the corresponding temperature (shown by the x-axis), with
the upper and lower bounds of the box are the third quartile (Q3) and first quartile (Q1)
respectively. The whiskers (the black vertical lines) are represented by the interquartile
range (IQR) which is formulated as IQR = Q3 − Q1. The upper whisker lies at Q3 +
1.5IQR and the lower whisker is at Q1−1.5IQR. Points that lie outside this range (often
called fliers) are removed, as the fliers can be extreme and make the figures hard to read.
The temperature error for the ambient temperature was −10◦C was removed due to bad
measurements.

Figure 4.19: Voltage (left) and temperature (right) box-plots for the errors of a set of
driving cycles at set room temperatures for the first order ECM model.
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Figure 4.20: Voltage (left) and temperature (right) box-plots for the errors of a set of
driving cycles at set room temperatures for the second order ECM model.

4.3 Model Performance

The performance of the two different orders of ECM models were examined by performing
repeated simulations for different number of battery cells within a single battery module.
The number of cells (nc) varied between [1, 135], where 135 was used as this is the number
of cells within the battery used in modern Volvo personal vehicles.

The purpose of the test was to see how many updates the model can perform during a
second as well as to see the average time it takes for the model to update for different nc
values. To do this, the model was feed a constant current I = 4A with a fixed timestep
∆t = 0.1 for a single second. It is important to note that ∆t does not correspond to
real-time, but instead simulation time. The model was initialized anew before each test
to ensure the same starting conditions and therefore a fair test. The test was repeated 10
times for each value of nc and the results from these 10 runs where averaged. The data
that was recorded during these tests where the number of updates achieved during the
second and the time each update took.

4.3.1 Raspberry Pi4B - 8GB RAM

These tests were performed on a Raspberry Pi Single Chip computer of model 4B with
8GB of RAM. The Pi4B has a quad-core CPU with a clockspeed of 1.5 GHz. The computer
was run without graphical output and accessed remotely using Secure Shell (SSH).
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Figure 4.21: Average time for an update of all the cells within the module for different
numbers of cells when using the first order ECM.

In figure 4.21 the average update time of the entire battery module is plotted against the
number of cells within the module. The red point is marked, as this is the update time
for a module consisting of a single cell.

Figure 4.22: Updates per second depending on the number of battery cells within the
module, for the first order ECM.

Figure 4.22 plots the average number of updates per second for a battery module consisting
of a varying number of battery cells, represented by the x-axis. The marked points show
the average updates per second for modules consisting of 1 cell and 135 cells respectively.
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Figure 4.23: Average time an update takes for a battery module consisting of the
number of cells represented by the x-axis. This figure is for the second order ECM.

Figure 4.23 is the same plot as 4.21 but for the second order ECM model instead.

Figure 4.24: Average number of updates per second for a second order ECM battery
module containing the number of cells as represented by the x-axis.

Figure 4.24 is the as figure 4.22 above, but once again for the second order ECM instead
of the first.
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Discussion

The goal of the thesis was to develop a battery model that is able to run on embedded
computers which are often lacking in ’horsepower’ in comparison to other types of comput-
ers, while being accurate enough in its predictions as to be able to use it for development
of a BMS.

To evaluate this goal two primary questions have to be asked. Firstly, is it accurate
enough? If the model is not accurate enough or if the model responds in ways that break
the ’logic’ of a battery, it cannot be used to ’fool’ a BMS. Secondly, is the model quick
enough to be able to run the simulations in real time? It is paramount for the model
to be able to simulate quickly enough to fool the BMS into thinking that it is being fed
actual sensor data.

5.1 Model Accuracy
The verify the accuracy of the model, the error of the model compared to the experimen-
tal data was used (see equation 4.1) as the primary way of confirming the accuracy. By
looking at figures 4.19 and 4.20 we can see that both the first and second order models
simulate the voltage response based on some applied current pull well for the cases where
the ambient temperature is above or at 0 ◦C, but the performance starts to degrade below
these temperatures. The second order model also has a slight advantage in median error
for all temperature ranges, which is to be expected due to the second exponential term,
as it allows the model to more accurately capture the non-linear behaviours of a battery.

In figure 4.5 we can see that first and second order models almost completely overlap,
with there being small differences along the way. This is to be expected, as the difference
between the two boxplots of the errors (see figures 4.19 and 4.20), as the results for the
ambient temperature of 25 ◦C are very similar. If we look at figure 4.2, we see that the
model seems to mimic the behaviour of the experimental data very well. The major dif-
ference (and source of error) seems to be some displacement on the voltage values. This
can be explained by the extraction of the OCV-values being imperfect, as the assumption
that battery has reached a chemical steady-state before each pulse seems to be faulty.
This can be rectified by performing experiments that specifically extract the OCV-values,
instead of the OCV values being extracted in tandem with the model parameters. An-
other possible problem is that the models only use OCV-values extracted at the ambient
temperature 25 ◦C. This is due to the fact that the OCV has been shown to vary with
both SoC and temperature, which means that the model might be able to encapsulate
the right behaviour, but the output is wrong to due to the OCV-data [17].
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When looking at figure 4.2, it can be seen that at around the 310 second mark there is
a spike in error. This spike in error seems to be related to how quickly the model reacts
to the current change as compared to the actual battery. Seemingly, the model reacts
quicker by some margin, leading to a spike which then rapidly disappears. This might
be connected to the intrinsic resistance (RΩ), as the instantaneous voltage change is con-
nected to this term. Another possibility is that some type of delay has to be implemented
into the model, if this spike is to be removed.

On average, the models perform admirably well in regards to the voltage simulations but
seem to lack the same precision for the temperature simulation. This is possibly due
to the used parameters in combination with a naive solution for the heat model. For
example, in figure 4.18 it can be seen that the temperature plot mimics the behaviour of
the experimentally found data to some degree, while being displaced in the y-axis. It can
also be seen from this figure that while the simulation mimics the behaviour, it is also
more ’extreme’, as the applied current gives rise to higher increases in temperature within
the model as compared to the experimental data. The first order model has a slightly
lower temperature, which implies that ∆Q1 ≤ ∆Q2, where

∆Q1 = |UΩI|+ |UτI|

for the first order model and

∆Q2 = |UΩI|+ |U1I|+ |U2I|

for the second order model. This implies that the sum total of the potentials generated
for the second order model is slightly higher at points compared to the first order model.
As the model seems to be running hot in comparison to the data, the exclusion of the
reversible heat generation term might come into question. This could theoretically cool
down the output temperatures from the model, which would present better values. The
thermal parameters were also rather naively extracted as the mean of a range of possible
values. The convection term h is also dependent on temperature, which is not taken into
account within the model.

Due to problems with the emulation software at Volvo, the model could not be tested in
conjunction with the BMS, which means that any discussion about if the obtained results
are accurate enough for BMS development will be speculation instead of verifiable. The
voltage outputs obtained and presented in the previous chapter shows that the general
’logic’ or ’behaviour’ of the battery is encapsulated, with the differences lying in the
amplitude of change due to the applied current and in displacement due to the imperfect
OCV value extraction. Without reference to the input data the obtained results seem
fully reasonable, as the simulation does not display erratic or volatile behaviour. From
this, it can be speculated that the model portrays the behaviour accurately enough (even
if the actual values are wrong) that the model can fed the BMS with data that will not
trigger any of the fail safes, unless that was the purpose of the data.

5.2 Model Performance
From figures 4.21 and 4.23 it can be seen that the update time increases linearly with the
number of cells within the module. From this we can reason that the simulation model is
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not being bottle-necked for performance on the Raspberry Pi 4B. If the behaviour had not
been linear, this would imply that the model does not scale properly in the performance
domain, i.e that the model needs a more computationally powerful computer.

As expected, the slightly more complex second order model is more computationally ex-
pensive. Each second order cell is on average 4 µs or 5.5% slower per update. When
simulating the maximum number of cells used within Volvo car batteries (135 cells total,
with 9 modules with 15 cells), the first and second order models reach 136.6 and 131.3
updates per second on average, respectively. As the performance tests were performed on
a single module containing all the cells, the actual performance will be slightly slower due
to the fact that more memory locations will have to be accessed.

To determine if the simulations have achieved real time simulation, the meaning of what
’real time simulation’ means has to be defined. One way of doing this is by examining
the purpose and use cases from the situations the simulation was developed. For this
project, the simulation was developed for BMS testing. The BMS is connected to a set
of emulators, which emulate the computer chips that measure the voltage, current and
temperature. The simulation will be feeding these chip emulators with the needed data.
According to the engineers and developers of Volvo, the chips update at 50 and 100 ms,
leading to 20 and 10 updates per second, respectively. As the simulation will be giving
information to both chips at the same time, irrespective of when they need the informa-
tion, the lower bound (20 updates per second) will be used as a reference.

The update frequencies that were obtained from the naive testing show that both of the
models surpass the lower bound of 20 updates per second easily, with both orders of the
model being over 6 times faster than the needed speed. From this, we can state that the
model runs at or faster than real time for the use case presented in this thesis.

5.3 Future Work and Model Expansions
There are a few key points that could be improved or expanded upon. Firstly, performing
separate experiments to determine the SoC and temperature dependence of the param-
eters and OCV, with additional measuring points for the OCV especially. This could
possibly eliminate the displacement seen from the performed simulations, while allowing
for better accuracy due to the added granularity in terms of SoC and temperature.

Secondly, the thermal model can be expanded. For car battery simulation, there are
cooling/heating systems install that add or remove heat to battery cells based on the
environment the car finds it self in. This would mean further investigation into how the
heating systems work, with heat transport happening through cooling fluid or heating
through electrical engines in cold environments.

The effects that adding the reversible heating back into the temperature modeling could
also be examined, especially in terms of how the error would change.

As the model runs above what is needed, another possibility would be to downscale the
equipment that is being used, i.e. use a less powerful and expensive embedded computer.
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The embedded computer will need to have some type of OS (some Linux distro possibly)
due to the fact that Python code is not compiled and translated into machine code, but
requires the use of a Python interpreter, which adds both CPU and RAM requirements.
Other than this, it is entirely possible that the model is able to run at real time on
a significantly less powerful computer. One possibility is that the model will not scale
linearly for these weaker machines, but this would have to be tested.

5.4 Ethical Concerns
Due to the nature of batteries, as they use sometimes rare or hard to extract materials, it
is important to make sure that the materials are ethically sourced. Battery performance
will degrade over time and with use, but the use of a BMS ensure that the battery’s
lifetime is as long as possible, while ensuring maximum performance. This means that
the materials are used for a much bigger part of their total potential, which in turn means
that there will be less potential material waste.

The battery management systems that are used within EVs are not only for better perfor-
mance and efficiency of the employed battery solution, but also for the safety of the user.
Li-Ion batteries are more thermally volatile than other types of batteries, and there have
been many cases of the batteries exploding or frying the electronics attached to them. To
minimize and manage the risks of these types of situations, safety measures and systems
have to be thoughtfully implemented, as the consequences for these types of failures can
in the context of EVs be lethal.
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Conclusion

The accuracy of the model varies based on which circumstances that are being simulated,
with the best performance being for ambient temperatures between 10◦C and 25◦C. The
second order model performs slightly better in voltage accuracy as it is able to capture
non-linear behaviours with the secondary exponential term, but it also has slightly worse
behaviour in the temperature simulation as total sum of the simulated voltage is higher
for the second order model in comparison to the first.

The behaviour of both the first and second order models seem very similar to that of the
experimental data, with there being displacements in the voltage curve and that the am-
plitude of the current response varies from the found data. No erratic or illogical voltage
spikes have been observed during testing, which lends us to conclude that the model can
be used for BMS development, even if this cannot be verified due to problems with the
emulated software at Volvo.

The parameters that have been extracted work well, with there being a slight deviation
in the OCV-values. The assumption that the battery reaches chemical-equilibrium before
each pulse in the HPPC test seems to be not entirely true, as the voltage values are
slightly shifted in comparison to the experimental data when simulated.

The computational performance of the model is good, as it is able to update at frequencies
higher than 100 Hz for both types of the model running on a Raspberry Pi 4B. There
were no detected bottlenecks, neither in computational performance or in memory on
the device and with the high update speed, the model is able to run in real time within
BMS development context, as both of the models update quicker than the required 50 ms.

Based on the obtained accuracy and performance, the first order ECM is the better
choice for BMS development, when running on an embedded computer. The performance
gained from using the first order model is much larger than the accuracy increases that
is achieved by using the second order model. The additional performance could allow for
a more complex thermal model, while ensuring that the model can still update in real
time.
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A
Appendix 1

A.1 Extracted ECM model parameters

This part of the appendix contains all the parameters that were extracted from the battery
data that was used for the creation and testing of the model [28]. Parameters which could
not be extracted are (due to the lack of measured data) are symbolized by the shebang
symbol #!.

A.1.1 First Order

Table A.1: Extracted values for the RΩ parameter in the first order ECM.

RΩ
SoC ◦ C 25 10 0 -10 -20
1.0 0.040 0.081 0.133 0.195 0.272
0.95 0.036 0.063 0.105 0.160 0.234
0.9 0.034 0.055 0.091 0.146 0.220
0.8 0.033 0.049 0.077 0.127 0.195
0.7 0.032 0.048 0.074 0.118 #!
0.6 0.032 0.045 0.070 0.114 0.187
0.5 0.030 0.043 0.069 0.115 0.190
0.4 0.031 0.045 0.074 0.122 0.201
0.3 0.032 0.050 0.086 0.141 0.220
0.25 0.034 0.056 0.100 0.156 0.228
0.2 0.037 0.073 0.121 0.168 #!
0.15 0.046 0.098 0.135 #! #!
0.1 0.068 0.114 #! #! #!
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Table A.2: Cτ for ECM first order.

Cτ
SoC ◦ C 25 10 0 -10 -20
1.0 1252.909 1157.572 868.526 442.292 221.151
0.95 1254.288 1100.527 961.104 601.517 313.225
0.9 1157.803 939.777 820.834 618.103 358.046
0.8 1049.284 867.400 764.421 644.337 388.778
0.7 1025.603 867.400 778.229 673.325 #!
0.6 1075.103 1026.114 884.584 673.034 392.141
0.5 1457.127 1156.533 960.529 693.864 369.769
0.4 1456.108 1156.648 940.058 601.337 273.389
0.3 1410.000 1074.781 716.450 317.711 107.356
0.25 1328.404 884.760 421.646 146.007 39.638
0.2 1187.518 518.664 149.396 52.730 #!
0.15 885.379 149.396 51.661 #! #!
0.1 313.509 55.750 #! #! #!

Table A.3: Rτ for the first order ECM.

Rτ

SoC ◦C 25 10 0 -10 -20
1.0 0.008 0.009 0.012 0.023 0.045
0.95 0.008 0.009 0.010 0.017 0.032
0.9 0.009 0.011 0.012 0.016 0.028
0.8 0.010 0.012 0.013 0.016 0.026
0.7 0.010 0.012 0.013 0.015 #!
0.6 0.009 0.010 0.011 0.015 0.026
0.5 0.007 0.009 0.010 0.014 0.027
0.4 0.007 0.009 0.011 0.017 0.037
0.3 0.007 0.009 0.014 0.032 0.093
0.25 0.008 0.011 0.024 0.069 0.097
0.2 0.008 0.019 0.067 0.148 #!
0.15 0.011 0.067 0.161 #! #!
0.1 0.032 0.171 #! #! #!
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A.1.2 Second Order

Table A.4: Extracted R0 values for second order ECM.

R0
SoC ◦C 25 10 0 -10 -20
1.0 0.044 0.084 0.136 0.204 0.295
0.95 0.039 0.067 0.109 0.167 0.250
0.9 0.038 0.060 0.097 0.153 0.233
0.8 0.037 0.054 0.083 0.133 0.207
0.7 0.037 0.053 0.080 0.124 #!
0.6 0.037 0.050 0.075 0.120 0.198
0.5 0.034 0.047 0.073 0.121 0.202
0.4 0.034 0.049 0.078 0.129 0.218
0.3 0.035 0.054 0.092 0.157 0.244
0.25 0.037 0.061 0.112 0.188 0.238
0.2 0.041 0.082 0.155 0.198 #!
0.15 0.052 0.132 0.169 #! #!
0.1 0.084 0.152 #! #! #!

Table A.5: R1 for second order ECM model.

R1
SoC C 25 10 0 -10 -20
1.0 1.63e-08 1.86e-08 2.56e-08 7.34e-08 3.66e-08
0.95 1.61e-08 1.98e-08 2.38e-08 4.21e-08 4.25e-08
0.9 1.76e-08 2.27e-08 2.71e-08 4.09e-08 3.88e-08
0.8 1.94e-08 2.55e-08 3.11e-08 3.98e-08 3.33e-07
0.7 2.03e-08 2.68e-08 3.16e-08 3.86e-08 #!
0.6 1.98e-08 2.16e-08 2.57e-08 4.06e-08 4.01e-08
0.5 1.37e-08 1.83e-08 2.28e-08 3.94e-08 5.35e-04
0.4 1.40e-08 1.82e-08 2.37e-08 6.73e-08 1.32e-02
0.3 1.45e-08 2.10e-08 4.34e-08 1.37e-07 2.38e-01
0.25 1.60e-08 2.89e-08 2.95e-08 5.05e-02 1.36e-01
0.2 1.85e-08 2.22e-08 2.20e-02 3.71e-01 #!
0.15 3.50e-08 1.48e-02 3.95e-01 #! #!
0.1 1.03e-04 4.13e-01 #! #! #!

IV
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Table A.6: R2 for second order ECM.

R2
SoC C 25 10 0 -10 -20
1.0 5.05e-15 1.29e-14 3.59e-13 4.21e-13 2.16e-12
0.95 2.28e-15 1.26e-14 1.54e-13 7.84e-13 2.05e-12
0.9 1.78e-15 6.53e-15 1.77e-14 2.32e-13 2.21e-12
0.8 1.33e-14 1.37e-14 2.15e-13 5.37e-13 6.21e-12
0.7 1.36e-13 1.70e-13 4.40e-13 7.31e-13 #!
0.6 4.04e-13 4.61e-13 2.93e-13 3.16e-13 2.06e-12
0.5 5.86e-11 6.10e-15 5.54e-16 3.86e-13 1.68e-12
0.4 1.12e-14 1.04e-14 2.29e-13 6.32e-13 2.86e-12
0.3 6.69e-11 8.96e-14 1.23e-13 6.78e-13 6.68e-12
0.25 1.38e-10 1.14e-13 8.23e-14 1.09e-12 1.09e-11
0.2 5.56e-15 1.80e-14 5.40e-13 6.96e-10 #!
0.15 9.15e-11 1.80e-13 1.19e-09 #! #!
0.1 1.48e-13 2.35e-09 #! #! #!

Table A.7: Extracted C1 values for the second order ECM model.

C1
SoC C 25 10 0 -10 -20
1.0 6.76e+12 7.64e+12 6.56e+12 1.53e+12 1.66e+13
0.95 6.50e+12 5.91e+12 5.87e+12 3.15e+12 5.58e+12
0.9 5.83e+12 4.71e+12 4.44e+12 3.07e+12 6.03e+12
0.8 5.11e+12 3.80e+12 3.34e+12 2.92e+12 1.22e+11
0.7 4.72e+12 3.50e+12 3.13e+12 2.88e+12 #!
0.6 4.90e+12 4.57e+12 4.21e+12 2.62e+12 4.98e+12
0.5 7.66e+12 5.73e+12 5.00e+12 2.79e+12 9.03e+21
0.4 7.48e+12 5.81e+12 4.86e+12 1.23e+12 1.03e+19
0.3 7.28e+12 4.88e+12 2.10e+12 1.50e+12 4.36e+15
0.25 6.33e+12 3.24e+12 6.77e+12 1.03e+17 2.61e+13
0.2 5.43e+12 9.04e+12 2.67e+17 2.78e+15 #!
0.15 2.26e+12 4.11e+17 1.21e+15 #! #!
0.1 1.73e+18 4.31e+14 #! #! #!

V
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Table A.8: Extracted C2 values for the second order ECM model.

C2
SoC C 25 10 0 -10 -20
1.0 8.51e+14 3.33e+14 1.25e+13 1.06e+13 2.07e+12
0.95 1.89e+15 3.41e+14 2.89e+13 5.70e+12 2.18e+12
0.9 2.42e+15 6.58e+14 2.43e+14 1.93e+13 2.02e+12
0.8 3.24e+14 3.13e+14 2.08e+13 8.32e+12 7.21e+11
0.7 3.28e+13 2.63e+13 1.02e+13 6.11e+12 #!
0.6 1.11e+13 9.68e+12 1.52e+13 1.42e+13 2.17e+12
0.5 8.37e+10 7.05e+14 6.91e+15 1.16e+13 2.65e+12
0.4 3.85e+14 4.12e+14 1.95e+13 7.07e+12 1.56e+12
0.3 7.33e+10 4.99e+13 3.64e+13 6.59e+12 6.69e+11
0.25 3.55e+10 3.93e+13 5.43e+13 4.10e+12 4.49e+11
0.2 7.73e+14 2.39e+14 8.27e+12 8.23e+09 #!
0.15 5.36e+10 2.47e+13 4.82e+09 #! #!
0.1 3.01e+13 2.44e+09 #! #! #!

VI
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