
DF

Trailer docking using reinforcement
learning with visual based input
Comparison of training complexity and generalisation performance

Master’s thesis in Systems, Control and Mechatronics

ANTON ÖHAMMAR & SIMON MEDBO

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Master’s thesis 2020

Trailer docking using reinforcement
learning with vision based input

Comparison of training complexity and generalisation performance

ANTON ÖHAMMAR
SIMON MEDBO

DF

Department of Electrical Engineering
Division of Signal processing and Biomedical engineering

Signal processing
Chalmers University of Technology

Gothenburg, Sweden 2020

Trailer docking using reinforcement learning with visual based input
Comparison of training complexity and generalisation performance
ANTON ÖHAMMAR, SIMON MEDBO

© ANTON ÖHAMMAR, SIMON MEDBO, 2020.

Supervisor: Andreas Andersson, Anton Öqvist, Aptiv
Examiner: Tomas McKelvey, Department of Electrical Engineering

Master’s Thesis 2020
Department of Electrical Engineering
Division of Signal processing and Biomedical engineering
Signal processing
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Agent docking a trailer in Unity showing visual input and example of different
trailer lengths.

Typeset in LATEX, template by David Frisk
Printed by Chalmers Reproservice
Gothenburg, Sweden 2020

iv

Trailer docking using reinforcement learning with visual based input
Comparison of training complexity and generalisation performance
ANTON ÖHAMMAR, SIMON MEDBO
Department of Electrical Engineering
Chalmers University of Technology

Abstract
An agent controlling a truck with an attached semi-trailer is trained to dock at a
terminal using deep Reinforcement Learning (RL). The RL neural network input
consists of pixel values coming from a top-down camera view and measured velocity
of the truck. This thesis investigates how visual input combined with other ob-
servations affect the training, the ability to generalise to unseen scenarios and how
training difficulty scales with increased complexity of the task. The RL network was
successfully trained to control a semi-trailer combination to a set of chosen targets
and to some extent also generalise to unseen scenarios in form of new semi-trailer
lengths. It was shown how visual input benefits from being combined with certain
non-visual measurements, e.g. angle between truck and semi-trailer, and how it can
be degraded by using the wrong ones. Generalisation was primarily achieved by
varying the simulation environment during training.

Keywords: Reinforcement Learning, pixel input, autonomous, docking, end-to-end,
generalisation, complexity

v

Acknowledgements
The outcome of this thesis would not have been possible without the help of our su-
pervisors, Andreas Andersson and Anton Öqvist at Aptiv, and our examiner Thomas
McKelvey. Their expertise within control and experience in carrying out projects
made sure that progress was always made and that results were reached in the end.
Also the possibility to borrow high performance simulation hardware from Farid
Kondori was essential to be able to finish within the given time frame.

ANTON ÖHAMMAR & SIMON MEDBO, Gothenburg, June 2020

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 5
1.1 Background . 5
1.2 Purpose . 5
1.3 Objective . 6
1.4 Scope . 6

2 Theory 9
2.1 Fundamental structure . 9

2.1.1 Markov Decision Process . 9
2.1.2 Reward . 10
2.1.3 Observation . 11
2.1.4 Policy . 12
2.1.5 On- vs off-policy . 12
2.1.6 Objective function and optimiser 12
2.1.7 Value functions and Bellman equation 13
2.1.8 Dynamic programming . 14
2.1.9 Monte Carlo . 14
2.1.10 Temporal Difference learning 14
2.1.11 Importance sampling . 15
2.1.12 Experience buffer . 15
2.1.13 Curriculum Learning . 16
2.1.14 Imitation Learning . 17

2.2 Algorithms . 18
2.2.1 Value-based methods . 18
2.2.2 Policy gradient methods . 18

2.2.2.1 Fundamental policy gradient - REINFORCE 19
2.2.2.2 Hyperparameters . 20
2.2.2.3 Trust Region Policy Optimisation 21
2.2.2.4 Proximal Policy Optimisation 23

2.3 Generalisation techniques . 25
2.3.1 Size of neural network . 26
2.3.2 Regularisation . 26

ix

Contents

2.3.2.1 Dropout . 26
2.3.2.2 L1 & L2 . 26
2.3.2.3 Batch Normalisation 27
2.3.2.4 Data augmentation 27
2.3.2.5 Varying Environment 28

3 Method 29
3.1 Simulation environment . 29

3.1.1 Dynamics . 33
3.1.2 Observations . 33
3.1.3 Environment scripts . 35

3.2 Training setup . 36
3.2.1 Choice of algorithm . 36

3.2.1.1 Tuning hyperparameters 36
3.2.2 Training a baseline agent . 37

3.2.2.1 Reward function - Complexity scaling analysis 39
3.2.2.2 Reward function - Generalisation analysis 42

3.3 Evaluation tools . 42
3.3.1 Convolutional neural network evaluation script 43

3.4 Experiments . 44
3.4.1 Complexity scaling - Observation 44
3.4.2 Complexity scaling - Task . 45
3.4.3 Generalisation . 45

4 Results 49
4.1 Observation complexity comparison 49
4.2 Task complexity scaling . 55
4.3 Generalisation results . 56
4.4 Best achieved performance . 57

5 Discussion 59
5.1 Observation complexity scaling . 59
5.2 Task complexity scaling . 60
5.3 Generalisation . 61

6 Conclusion 63
6.1 Observation complexity scaling . 63
6.2 Task complexity scaling . 63
6.3 Generalisation . 64

7 Future Work 65

Bibliography 67

x

List of Figures

2.1 Simplified conceptual reinforcement learning 9
2.2 Simplified conceptual deep neural network with visual encoder 11
2.3 On-policy buffer example . 16
2.4 Off-policy buffer example . 16
2.5 Value based learning . 18
2.6 Example of Minorise-Maximisation algorithm optimisation 22
2.7 Overfitting example. A good data point split represented by the black

line. The red curve is overfitted to the samples. 25

3.1 Conceptual schematics of reinforcement learning training 29
3.2 Building blocks in the environment 30
3.3 Drawing of semi-trailer combination from the left side 31
3.4 Simplified drawing of semi-trailer combination dynamic vehicle model 31
3.5 Drawing of the environment . 32
3.6 Observation in RGB . 34
3.7 Training using a curriculum . 38
3.8 Sparse reward function. Red dashed line gives −0.01 and green

dashed line +1 . 39
3.9 Red dashed line gives −0.01 in reward, green dashed line +1 and

dashed light green half circle 1
distance 40

3.10 Red dashed line gives −0.01 in reward, green dashed line +1 and
dashed light green half circle 1

distance if angle of truck is between the
black dashed lines. 40

3.11 If the angle between truck and semi-trailer was above 85 degrees, a
negative reward of -0.1 was given. 41

3.12 Example filter weights applied to a image, resulting in a feature acti-
vation map . 44

3.13 Visualisation of generalisation on different semi-trailer lengths 46
3.14 Generalisation experiment, flow chart 47

4.1 Observation complexity experiment, case 1-7 - Smoothed average cu-
mulative reward . 50

4.2 Observation complexity experiment, case 1-7 - Variance of cumulative
reward . 50

4.3 Observation complexity experiment, case 1-7 - Policy entropy 51
4.4 Observation complexity experiment, case 1-7 - Value loss 52

xi

List of Figures

4.5 Observation complexity experiment, case 1 (visual & all measured) -
Convolutional weights, all filters first layer 52

4.6 Observation complexity experiment, case 7 (visual & velocity) - Con-
volutional weights, all filters first layer 53

4.7 Observation complexity experiment, case 1 (visual & all measured) -
Activation map, all filters first layer 53

4.8 Observation complexity experiment, case 7 (visual & velocity) - Ac-
tivation map, all filters first layer . 54

4.9 Task complexity experiment, case 1-3 - Average cumulative reward . . 55
4.10 Task complexity experiment, case 1-3 - Variance of cumulative reward 56
4.11 Generalisation experiment, case 1-4 - Average cumulative reward of

policies evaluated on different lengths for 1M steps 57
4.12 Semi-trailer docking between parked trailers 58

5.1 Degrees of freedom - simple kinematic model comparison 60

xii

List of Tables

3.1 Colours converted to greyscale values 34
3.2 Hyperparameters for baseline agent. 39
3.3 Complexity scaling observation, experiment cases 45
3.4 Complexity scaling tasks, experiment cases 45
3.5 Generalisation experiment cases . 46

xiii

List of Tables

xiv

Acronyms

ADAM Adaptive Moment Estimation

ADAS Advanced Driver-Assistance Systems

CNN Convolutional Neural Network

DP Dynamic Programming

DOF Degrees of Freedom

GAIL Generative Adversarial Imitation Learning

KL Kullback Leibler

KPI Key Performance Indicator

MC Monte Carlo

MDP Markov Decision Process

MPC Model Predictive Control

ML Machine Learning

MM Minorise-Maximisation

POMDP Partially Observable Markov Decision Process

PPO Proximal Policy Optimization

RL Reinforcement Learning

SAC Soft Actor-Critic

TD Temporal Difference

TRPO Trust Region Policy Optimization

1

Acronyms

2

Nomenclature

ε Randomness factor

γ Discount-rate

E[X] Expectation of a random variable

π Policy

π∗ Optimal policy

π′ Updated policy

a Action

G Return (cumulative discounted reward)

J Objective function

Q Action-Value function

Rt Reward at time (t)

s State at time (t)

s′ State at time (t+ 1)

V Value function

3

Nomenclature

4

1
Introduction

1.1 Background
Computers are transforming our society and transportation is no exception. One ap-
parent sign is the development of autonomous vehicles. This thesis is a collaboration
with APTIV who are known for their development of Advanced Driver-Assistance
Systems (ADAS) which assist drivers while driving or parking. To stay ahead of
competitors they perform research and push towards finding better and more effi-
cient solutions. ADAS are one step in the direction of a fully autonomous system,
but further development is needed. In controlled delimited environments, such as
trailer docking terminals, absence of civilians decreases safety risks and provides
predictable environments for ADAS evaluation. Therefore it is a suitable applica-
tion to try autonomous control, of a truck reversing to a docking terminal, based on
unconventional methods such as RL with visual input.

With a known environment, including the dynamic vehicle model of the semi-trailer
combination (truck and semi-trailer), traditional methods such as Model Predictive
Control (MPC) can be applied to calculate a trajectory and control a truck. When
required data for using these methods is unknown, one could instead use RL in a
simulated environment, and get to know it by iteratively interacting with it [16]
and thereby learn to provide nonlinear state feedback. Reinforcement learning is
also well suited for using an image as input and therefore, instead of having one
individual planner and controller in each truck, we propose a solution where a stand
alone top-down camera view of a parking terminal and measured velocity is fed to a
central network providing actions in form of steering and wheel torque to the truck
in question.

1.2 Purpose
The overall purpose is to simplify autonomous terminal docking by training a policy
capable of providing control to a truck with an attached semi-trailer. It will be
done using methodology of RL, resulting in an understanding of the possibilities
but also limitations of RL. Focus will also be placed on generalisation capabilities
and complexity scaling of training in relation to the observation and task setup.

5

1. Introduction

1.3 Objective
Throughout this thesis the following three questions will be investigated:

• How well does using visual based input work in comparison to also having
non-visual measurements as input to a policy network?
- E.g. what is the training progress difference between using only pixel data
and using it in combination with measured position in two dimensions?

• How well can a trained policy network generalise and handle unseen scenarios
when using visual observation?
- E.g. To what extent can a policy network provide correct actions when
interacting with scenarios that has not been presented during training?

• How does the complexity of training scale with increasing complexity of the
agents task using visual observation?
- E.g. controlling a truck with and without semi-trailer. How much more
difficult it is for the training to converge, does it need additional techniques
and how much longer does it take to learn correct behaviour?

The questions will be answered by applying RL on a simulated docking environment.
Ensuring availability of data that can be utilised to answer our questions will be
done by gradually increasing difficulty of the task that the RL agent will perform.

1.4 Scope
The outcome of this thesis will be an end-to-end RL solution, providing all necessary
building blocks from an input top-down image of the terminal to steering and wheel
torque input to the truck. Due to the given time frame, following limitations are
specified.

The visual observation used when training the policy network will be a simplified
version of what a real top-down image would look like, namely ideal homogeneous
colours, no shadows and an orthographic projection. This implies that it will be
less challenging for the policy network to make connections based on observations.
Identification of a free terminal slot is assumed to be done on beforehand, by for
example using deep learning [15]. The goal position will be marked as a patch in
the observation image.

Overall parking terminal layout will stay the same throughout the whole thesis and
the semi-trailer combination will always be initialised at the same position. There
will be no attempt to train a policy that can provide correct actions for any arbitrary
docking situation. Although attempts of generalising the policy network to handle
changes in the environment will be carried out.

A real-world truck typically operates by steering, applying throttle, braking and
changing gear. To reduce complexity of the problem propulsion control will consist

6

1. Introduction

solely of applying torque in forward and reverse direction on the rear wheels of the
truck. Actions will be in form of a discrete vector action space with three values for
steering and torque respectively, representing negative, zero and positive input.

Accuracy of the truck and semi-trailer models created in simulations will be of
low importance, as the purpose is to analyse the usage of RL and not develop
a controller capable of providing feedback to a specific semi-trailer combination.
Although parameters and measurements such as wheelbase and weight will be in the
correct order of magnitude to get a behaviour comparable to real-world scenarios.

Design of the network and reward model will not focus on generating a policy that is
optimal when it comes to e.g. travelled distance, fuel consumption or smoothness.
Focus will instead lie on reaching goal and if there is time for optimisation more
complex parking scenarios will be prioritised.

7

1. Introduction

8

2
Theory

2.1 Fundamental structure
RL is a growing research area in Machine Learning (ML). Although there are many
different algorithms and techniques to apply, they all share the same basic theory
and mathematical framework. That is, in a simulated environment, learning how
to map state observations to actions by maximising a numerical reward leading to
a goal as visualised in figure 2.1. What states that yield high reward is explored by
an agent using a trial and error approach. What the agent has learnt is saved in
a policy, that after completed training can be used to perform the simulated task.
The policy can be compared to a controller that provides nonlinear state feedback.

Figure 2.1: Simplified conceptual reinforcement learning

2.1.1 Markov Decision Process
Markov Decision Process (MDP) is a mathematical formalisation of sequential prob-
lems focused on modeling decision taking. Each state in a sequence is described by
the symbol s. A decision maker, within RL called agent, chooses action a to transi-
tion to the next state s

′ with probability P . After performing an action and ending
up in a state, the agent receives a predetermined reward R [21, pp. 47-68]. The
model parameters can be summarised as:

• S - set of states describing the environment at different instances.

• A - set of possible actions that can be executed to transition between states.

9

2. Theory

• P - probability that action a leads to s′ from state s in the next time step.

• R - reward that the agent receives after performing action a and ending up
in a state s.

Interaction between an agent and environment can for instance be the agent provid-
ing an action in terms of wheel torque and steering to an environment in which a
vehicle moves. The environment responds with an observation of the state obtained,
as well as a certain reward decided by a reward function. By interacting, the agent
produces trajectories in the following form:

S0, A0, R1, S1, A1, R2, S2, A2, ...Rn, Sn (2.1)

where n is the final step in an episode, defined by the environment.

The sequential problem is characterised by the probability distribution P , that given
a state s and action a outputs a probability of the following state s′ with associated
reward r. In a MDP formalisation of a driving truck, an action indicating positive
wheel torque at time t − 1 will generate a high probability of a state representing
the truck located further ahead in the travel direction at time t.

p (s′, r|s, a) = Pr {St = s′, Rt = r|St−1 = s, At−1 = a} (2.2)

Being able to formalise the problem as a MDP is crucial for RL. If the finite
problem can be described by (2.2) anything in the environment can be computed,
e.g. reward for a whole trajectory or transition probability in a certain state [21,
pp. 47-68]. If the problem can be described by a MDP but the entire state is not
directly observable for the agent, which is often the case in RL, it is called a Partially
Observable Markov Decision Process (POMDP). The probability distribution then
estimated by sampling experiences from the environment.

2.1.2 Reward
Reward is the incentive that directs an agent towards a specified goal or objective.
The goal could be anything, e.g. keeping a pole upright by balancing it or reaching
a certain position with a trailer. Reward is handed out to the agent every time step
based on the state it reaches by taking an action. Reward is specified in the form
of a value Rt ∈ R.

The agent is trying to maximise reward by definition. This implies that the rewards
have to be distributed in a way such that actions leading to maximum cumulative
reward also leads to the goal or to completing some arbitrary mission [21, pp. 53-
54]. Rewards are only used during training for the agent to learn. When training is
done, it will know which states gave high reward and thereby know what action to
take to get there.

When referring to a reward function, it implies multiple different conditions based
on the current state that yield reward when met.

10

2. Theory

2.1.3 Observation

An observation describes the current state of the environment and is chosen dif-
ferently depending on problem formulation. It is essentially what the agent bases
decisions on and it is therefore vital that there is enough detail in the observation
for a network to learn.

Notice that the agent takes actions using a policy, in a deep RL scenario where a
neural network is used to estimate the policy, figure 2.2, the observation is what is
used as input for the policy network which then outputs a distribution from which
an action is sampled.

Figure 2.2: Simplified conceptual deep neural network with visual encoder

Common observations are e.g. position and rotation. When this type of data can-
not be explicitly extracted one can instead use a visual observation, which in theory
provides all above mentioned parameters but indirectly. Information is therefore
difficult to extract. Using visual observation, a snapshot of the current observable
environment state is taken, meaning that pixel intensity values make up the obser-
vation and is being fed to the neural network. As the number of input parameters
are significantly larger compared to when using non-visual observations it becomes
more difficult to train on. The policy network both has to learn how to extract
important information hidden within the pixel data and then make use of it.

To extract information a Convolutional Neural Network (CNN) is applied to the
observation as a first step. This technique is commonly used to analyse visual im-
agery within ML [3], where one applies a mathematical operation called convolution
through multiple layers. Convolutional layers are trained simultaneously with the
rest of the policy network to extract features in images on different levels. In layer
one, CNN filters are trained to extract features such as blobs or edges and in later
layers it can learn to extract whole objects. Feeding the CNN output instead of pixel
intensity values to the hidden layers, building up the rest of the neural network, then
drastically reduces complexity and enhances learning.

11

2. Theory

2.1.4 Policy
Choice of action is decided by a policy π. In a tabular case it can be a lookup
table and in deep RL it is approximated by a function or neural network. In a more
complex case, often continuous state space, it maps each observation to probabilities
of choosing different actions (2.3) [21, pp. 58-59].

Learning implies updating the policy such that actions leading to the goal has high
probability. How it is updated is specified by chosen RL algorithm.

π : St → At (2.3)

2.1.5 On- vs off-policy
The policy being optimised is referred to as the target policy. Training using an on-
policy method implies that the target policy network is used to collect experiences
while simultaneously being updated. I.e. exploration is only performed on states
that the target policy leads to. This can shorten training times if the policy is in the
process of converging to the optimal solution, but also result in local convergence as
a strong bias is introduced [21, pp. 103-116]. In off-policy algorithms the network
is optimising its target policy using experiences collected with a second behaviour
policy. It gives the advantage that even if the target policy is deterministic the
behaviour policy could be partly random and continue to explore the environment,
which counteracts bias.

2.1.6 Objective function and optimiser
RL problems have a main objective of completing tasks set up by a user. In order
to succeed, the agent will try to maximise accumulated reward during an episode.
Therefore, functions are constructed to mathematically describe what is important
in order to complete the task.

These are called objective functions and by optimising these, optimal behaviour
will be learnt. E.g. if an objective function simply describes discounted cumulative
reward, optimisation is done by maximising it throughout training. RL algorithms
can also have multiple or combined objective functions. For instance minimising
policy entropy to ensure stability by adding a separate objective function or inserting
negative entropy to the previously mentioned reward objective.

How to perform optimisation has been a subject outside of RL for many years.
One of the more popular iterative methods to optimise an objective function is
stochastic gradient ascent. In later years, to improve performance in RL, alternative
methods have been establish. As of 2014 an optimiser called Adaptive Moment
Estimation (ADAM) was introduced for deep learning [1]. It is a combination of
RMSprop (a gradient size adjustment technique) and stochastic gradient ascent with
momentum. Since the release it has gained a lot of traction and it is common within
machine learning optimisation since it in most applications drastically increases
training performance.

12

2. Theory

The main difference is that ADAM, compared to other methods estimates first and
second moments of the gradient to be able to adapt the learning rate separately for
each weight in a neural network. The first moment is the mean and the second is
non-centered variance.

2.1.7 Value functions and Bellman equation
A fundamental part of learning is to be able to evaluate a policy and the rewards
it result in, since this provides a performance measurement. One especially has
to take into account that a single action in an early stage will affect the following
sequence of states. It is therefore favorable to be able to evaluate reward for future
states based on being in a certain state. In RL one commonly uses a value function
V π(s) to do that. It estimates how good it is to be in a specific state s at time t by
accounting for the return G when following a policy π [21, pp. 58-59]:

V π(s) = Eπ [Gt|St = s] (2.4)

where the return is the future discounted reward in an episode according to

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞∑
k=0

γkRt+k+1 (2.5)

γ is a discount factor, stating what weight future rewards should have [21, pp.
58-59]. From (2.5) the return at time t can be derived as:

Gt = Rt+1 + γGt+1 (2.6)

To realise the value function and make it usable, it has to be expressed as value of
a state and its successor states. This enables optimisation of subproblems which is
one of the cornerstones in RL. For this the principle of Bellman equation is applied.
It implies that the value is calculated by estimating expected future cumulative
discounted reward. Combining (2.4) and (2.6) results in the bellman equation [21,
pp. 58-59]:

V π(s) = Eπ [Rt+1 + γV π (st+1) |St = s] (2.7)

An alternative to the value function is the action-value function Qπ(s, a).

Qπ(s, a) = Eπ [Gt|st = s, at = a] (2.8)

It indicates the overall expected discounted reward when taking action a in state
s and then following policy π until the end of an episode [21, pp. 58-59]. If the
action value function is multiplied with the policy distribution and summed over all
possible actions it translates to the value function:

V π(s) =
∑
a∈A

πθ(a|s)Qπ(s, a) (2.9)

13

2. Theory

2.1.8 Dynamic programming
Dynamic Programming (DP) is based on breaking down a complex problem into
smaller parts, optimise those and use the result to recursively solve the greater
problem. In RL a value function, section 2.1.7, is used as a tool for an organised
and structured search among sub problems in order to find the global optimal policy
π∗, solving the problem.

DP can be used when the complete MDP is known including rewards, transition
probabilities and therefore values of all states. Commonly this information is not
known in RL applications, making DP not applicable in many cases. The theory
is of high importance though as most RL methods are partially based on DP and
the theory that one can split a complete trajectory into pieces where each can be
optimised individually leading to a complete optimised trajectory [21, pp. 73-74].

2.1.9 Monte Carlo
In DP the complete MDP is known, but when it is not one has to find a way to
learn without all necessary information available. Monte Carlo (MC) methods are
a family of algorithms built on randomness. In RL they utilise an agent policy to
explore an environment by sampling trajectories to fill the gap in lack of information
[21, pp. 91-92]. Depending on what method is used to learn, the experience can
either be stored in a buffer for later usage or immediately applied as a policy update.
MC sampling suffers from high variance as episodes can be completely different from
each other. A solution to this is to implement temporal difference learning.

2.1.10 Temporal Difference learning
While the idea of MC is to run complete episodes and sample these to recursively
calculate values of each state visited, Temporal Difference (TD) enables updates
after each time step. It is applying a form of bootstrapping by combining MC and
DP. In a simple MC method the value estimate is updated using the return Gt while
following a fixed policy π, which is first known at the end of an episode:

V′ (St)← V (St) + α (Gt − V (St)) (2.10)

TD learning does instead make use of the reward received after each time step Rt+1
and the value estimate V (St+1):

V′ (St)← V (St) + α (Rt+1 + γV (St+1)− V (St)) (2.11)

Using an estimate to update the value is more sample efficient as it doesn’t require
running a full episode before performing the update [21, pp. 119-120]. It also reduces
the high variance that usually occurs when using MC. Estimated values will not
differ from each other between episodes to the same extent, resulting in more stable
training. However during initial phases of the training, value estimation can induce
bias. This is because the value function estimation will be initialised randomly or
to zero, resulting in incipient inaccuracies.

14

2. Theory

2.1.11 Importance sampling
Estimating the value function for a policy requires experience collection and is there-
fore an expensive process. Importance sampling is a method that can be applied in
order to reduce computational complexity and increase sample efficiency. Instead
of recollecting experiences after each policy update the current estimated value is
mapped to the new policy using a probability ratio. It is calculated from the ratio
between the probability distribution of the new policy π′θ and current policy πθ [13]:

V ′θ = Vθ
π′θ
πθ

(2.12)

The policy probability distribution is then stored in a neural network. Keeping
this copy in the memory is an inexpensive task compared to resampling the value
function. In practice this means that the value function is sampled using πθ and
then mapped to π′θ.

If the updated and old policy differ too much the estimation accuracy decreases. This
flaw introduces a need to sync policies and resample the value function, how often
is a parameter that has to be tuned. Compared to collecting new experiences after
every policy update this is still a considerable improvement in sampling efficiency.

Importance sampling is a major building block in more advanced policy gradient
methods such as Trust Region Policy Optimization (TRPO) and Proximal Policy
Optimization (PPO).

2.1.12 Experience buffer
Complex problems yield many states and actions to choose from, especially if the
state space is continuous. In such case one uses deep reinforcement learning with a
neural network to approximate a solution to the problem. Training a network can
be challenging with the possibility of premature local convergence. This is partly
because data used during updates can be sampled from closely related experiences
and introduce a strong bias.

Using an experience buffer one creates a buffer in which multiple episodes with state,
action and rewards are stored [5]. By sampling a small batch, called mini-batch, from
the buffer when updating the policy network, the data in use will be uncorrelated and
training becomes more stable. Having multiple uncorrelated experiences sampled
will reflect the actual problem to a greater extent, making it easier for the network
to converge to the global optimum. Since multiple samples have to be collected
before an update is performed, a drawback of the method is that it will slow down
training, although it will most likely reach good performance faster.

Depending on if the algorithm uses on- or off-policy learning there are different ways
of implementing an experience buffer, on- or off-policy is covered in section 2.1.5.
If the policy is updated in a on-policy manner it is based on experiences only from
the the current policy, therefore the buffer has to be completely emptied and refilled
after each policy update, as visualised in figure 2.3.

15

2. Theory

Figure 2.3: On-policy buffer example

In an off-policy method experiences are collected using an arbitrary policy and not
specifically the most recent one. Therefore one instead e.g. continuously stores a
buffer of fixed size by using the "one-in-one-out" principle. This is often referred to
as using experience replay. Visualised in figure 2.4.

Figure 2.4: Off-policy buffer example

The size of this buffer is a tuneable parameter. If one has a complex problem it
is important to make the buffer large enough to generate a distribution capable of
describing the problem, at the cost of using RAM.

2.1.13 Curriculum Learning

Improving of a policy is generally done by updating it in a direction that leads
to high reward. If the agents task is complicated, there is a low probability of
discovering reward that leads to the goal when initially using a random policy, as
one most often starts with. It would require a lot of training before the agent by
chance performs the correct sequence of actions, if it happens at all.

By training on a simple problem to start with and learn a basic behavior, this
behaviour can be used to increase the probability of discovering more inaccessible
rewards when making a task more difficult. Suddenly the initial problem that at first
was almost impossible is manageable. Performing changes in the problem formula-
tion and stepwise slowly increasing complexity is called curriculum learning [4, p.
324]. This can both reduce training time considerably and create new opportunities
of what an agent can learn.

16

2. Theory

2.1.14 Imitation Learning
Imitation learning is partially dealing with the same problem as curriculum learning,
section 2.1.13, i.e. complex problems with rewards that are hard to find by random
exploration. Instead of letting the agent struggle with learning from sparse rewards,
a demonstration with recorded trajectories leading to the goal is used during a chosen
number of steps, to initially help the learning process. It both enables the agent to
find a trajectory towards goal and speeds up training. An operator demonstrates by
performing the task multiple times, simultaneously state action pairs are recorded.
The agent is then partially imitating this behaviour and learns from it by observing
corresponding rewards. This is what is called imitation learning [6].

An alternative to imitation and curriculum learning would be to design a reward
function that provide rewards to the agent in all possible states, guiding the agent
when it is about to get lost, but also providing meticulous reward close to the goal
in order to reach desired precision. Developing such a competent reward function is
challenging and there are usually lots of ways for the agent to exploit it. Therefore
the two alternative methods described are very versatile and efficient.

17

2. Theory

2.2 Algorithms

2.2.1 Value-based methods
Value-based RL methods learn by estimating how good it is to be in certain states,
i.e. estimating values. With this, the policy generally selects actions transitioning
to the states with largest values. Figure 2.5 illustrates how S3 is chosen over S2 and
S4 as it has a larger value. The same concept applies for S7 and S10.

Figure 2.5: Value based learning

Using a value based method, the objective is to optimise the value function, which
a policy then follows [21, pp. 9-11]. The policy is implicitly updated by improving
value estimates of states in the environment, since this will alter decisions. It can
e.g. act greedily or epsilon-greedily upon state value estimations. Epsilon-greedy
implies that the agent explores the environment by taking partially random actions,
chosen by a parameter ε. Estimating state values can be done with various methods,
but they all suffer from one drawback. In environments with large state spaces, it is
very computationally expensive and nearly impossible to estimate values of all states,
making value based RL not suitable to solve all types of problem formulations.

2.2.2 Policy gradient methods
Instead of estimating values of all states and indirectly utilising that as decisive,
policy gradient methods are based on directly mapping state observations to actions.
The policy network is updated by following gradients with respect to the policy itself,
which gives the advantage of not having to store resource heavy value estimations
of irrelevant states. Only values useful for policy evaluation are estimated. This
increases efficiency and make continuous state spaces manageable.

Also, the policy gradient method is by default well suited to manage continuous
state and action space as it generates a probability distribution mapped to actions,
from which one samples. Finally the need for additional exploration method such as
acting epsilon-greedily in order to explore the environment vanishes as actions, either

18

2. Theory

discrete or continuous, can be stochastic through sampling and thereby enhance
exploration naturally. This leads to policy gradient methods being favorable in more
advanced, higher dimensional problem formulations. There are multiple methods to
perform the actual update of policy network weights, all attempting to generate a
policy that results in a trajectory giving maximum reward to the agent.

2.2.2.1 Fundamental policy gradient - REINFORCE

The policy πθ in a deep RL problem, is made up of a neural network containing
weights and biases, making up the model parameters θ. Improvement of πθ is done
by, during training, altering the parameters θ such that the objective function (2.13)
is maximised, more about objective functions in section 2.1.6. Using gradient ascent,
the parameters can be changed in direction of the objective function gradient with
respect to the policy ∇θJ(θ), thereby finding optimum of the objective.

The basic objective function in policy gradient methods is defined as:

J(θ) =
∑
s∈S

dπθ(s)V πθ(s) =
∑
s∈S

dπθ(s)
∑
a∈A

πθ(a|s)Qπθ(s, a) (2.13)

where dπθ(s) is the stationary distribution of policy πθ, thus probability of reaching
state s when starting from state s0 and following policy πθ. V πθ(s) is the value of
state s when following policy πθ [18], which can also be expressed in terms of the
action value function, see (2.9).

Calculating ∇θJ(θ) is tricky since it depends on the policy through both the sta-
tionary policy distribution and the value estimation. dπθ would have to be updated
each time the policy is updated, but with an unknown environment it is not possi-
ble without collecting an unreasonable large number of samples. In order to solve
this problem, the policy gradient theorem comes in handy. It enables us to remove
the derivative of dπθ when calculating the objective function gradient (2.13) using
proportionality. The theorem states that the gradient can be rewritten as:

∇θJ(θ) = ∇θ

∑
s∈S

dπθ(s)
∑
a∈A

Qπθ(s, a)πθ(a|s) ∝
∑
s∈S

dπθ(s)
∑
a∈A

Qπθ(s, a)∇θπθ(a|s)

(2.14)
Derivation of the policy gradient theorem can be found in [21, p. 324].

Multiplying (2.14) with πθ(a|s)
πθ(a|s) and using ∇ ln f(x) = ∇f(x)

f(x) the objective gradient
can be further simplified:

∇θJ(θ) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a)∇θπθ(a|s)
πθ(a|s)

(2.15)

= Eπ [Qπ(s, a)∇θ ln πθ(a|s)] (2.16)
where Eπ is the expected value following policy πθ, corresponding to s ∼ dπ, a ∼ πθ.

With an expression of the objective function gradient in place, gradient ascent and
thereby θ updates can be performed. The most basic policy gradient algorithm is

19

2. Theory

called REINFORCE. It uses the entity that the expectation of a sampled gradient
is equal to the true gradient [20]. By applying (2.8) on (2.16) the gradient becomes:

∇θJ(θ) = Eπ [Qπ(s, a)∇θ ln πθ(a|s)] = Eπ [Gt∇θ ln πθ (At|St)] (2.17)

Gt can be estimated by exploring and sampling trajectories. The update is per-
formed according to:

Algorithm 1 REINFORCE
1: Initialise the policy parameter θ randomly
2: Collect trajectory in on-policy fashion: S0, A0, R1, S1, A1, R2, S2, A2, . . . Rn, St
3: for t = 1, 2, 3, ..., T do
4: Estimate return Gt

5: Update the policy parameters θ ← θ + αγtGt∇θ ln πθ (At|St)

Since exploration is done using MC method, section 2.1.9, the gradient can suffer
from high variance. This can make it difficult for the gradient ascent to converge.
The problem originates from having a stochastic policy which may take completely
different actions and thus trajectories in each episode. By using an experience buffer,
explained in section 2.1.12, when performing one step of gradient ascent the variance
can be reduced.

Further improvements of basic REINFORCE is to calculate an advantage instead of
the action value Qπ, in the gradient ascent update. If the average action from a state
results in a cumulative discounted reward of e.g. 500 and a specific action results in
502, the majority of weight updates does not contribute to determining if the specific
action is better than the average. By subtracting a baseline the advantage becomes
2. This has a larger signal to noise ratio and is easier to make use of. Advantage,
Aπ, is calculated by subtracting the state value from the action value:

Aπ(s, a) = Qπ(s, a)− V π(s) (2.18)

as V π(s) does not depend on a, using advantage does not affect the functionality of
REINFORCE, updates just become more significant [20].

Many more improvements can be done but those are significant enough to be cate-
gorised as new algorithms. Before covering other algorithms, tuneable hyperparam-
eters that are used in most policy gradient algorithms need to be introduced.

2.2.2.2 Hyperparameters

Most policy gradient algorithms are similar. The following hyperparameters are
commonly tuned to improve learning.

• Experience sample collection related:

– Buffer Size, how many experiences that are collected before a policy
update is performed, in an on-policy method. In an off-policy method it
decides how many samples to continuously store in the buffer.

20

2. Theory

– Mini-batch/Batch Size, how many samples from the experience buffer
that are drawn for the gradient ascent.

– Horison, Utilising a buffer, the horison decides how many steps of ex-
perience to collect each episode before adding it to the experience buffer.
The future expected return outside of this horison will be estimated using
the value function. It has similar meaning as TD, section 2.1.10. This
parameter can be of different importance depending on what algorithm
is used.

– Epoch, how many passes that are run through the experience buffer
during gradient descent.

• Reward related:

– Reward discount factor γ, a weight factor of future rewards used when
estimating values and calculating return.

– Generalised advantage estimation coefficient λ, decides how much
the agent relies on current value estimate versus actual received reward
when updating the value estimate.

• Policy update related:

– Clip parameter ε, a limit of how much a policy probability distribution
is allowed to change during update.

– KL divergence coefficient β, a measurement of how much a policy
probability distribution is allowed to differ from the old one.

– Learning rate, the strength of each gradient descent update.

• General:

– Max Steps / Ending Condition, what triggers the end of an episode.
Can be set to a fixed number of steps or any other condition such as
reaching a certain reward or state.

– Network Structure, structure of the neural network including number
of convolutional layers, hidden layers and neurons in each hidden layer.

2.2.2.3 Trust Region Policy Optimisation

Ordinary policy gradient ascent does not constrain the policy updates, which can
lead to large unstable updates. Another disadvantage is that since it is an on-policy
method it has to resample the value function after each policy update. This leads to
poor sample efficiency. See section 2.1.5 for explanation of on-policy. These issues
are addressed by an algorithm called TRPO [24].

21

2. Theory

Regular gradient ascent takes update steps in direction of the objective function to
find an optimum. In TRPO a trust region that limits the step size is introduced.
It prevents updates from overshooting the optimum and potentially deteriorating
the policy. If the divergence between old and new policy is large, the trust region is
reduced and vice versa. This assures a stable but still fast convergence. Enforcing
the actual trust region is done by including Kullback Leibler (KL) divergence in the
optimisation problem. KL is a measure of the difference between two distributions
P and Q, in this case between the new and old policy:

DKL(P‖Q) =
N∑
x=1

P (x) log P (x)
Q(x) (2.19)

Sample efficiency is also improved by introducing importance sampling which is
explained in section 2.1.11. In order to optimise the policy for maximum reward the
trust region and importance sampling is combined in a Minorise-Maximisation (MM)
algorithm.

The main objective is to maximise expected discounted future reward for a complete
episode. Using equation (2.5) and summing over all time steps in an episode results
in:

max
θ
J (πθ) = Eπθ

[∞∑
t=0

γtRt

]
(2.20)

From this stage equations become more complex. To make them more compact
and readable the policy πθ that is dependent on parameters θ will be denoted by π.
Maximising the objective J(π) can also be rephrased to maximising improvement
between each policy update, the updated policy is referred to as π′:

max
π′
J (π′) = max

π′
(J (π′)− J(π)) (2.21)

The MM algorithm uses a lower bound surrogate function M(π) to optimise the
main objective J (π′) − J(π). This ensures stable improvements each iteration of
the algorithm. Since M(π) is a lower bound function it would have to break the
lower bound constraint in order to decrease the value of J (π′)−J(π). Each iteration
the policy is updated according to the optimum ofM(π) until it converges to a local
or global optimum.

Figure 2.6: Example of Minorise-Maximisation algorithm optimisation

22

2. Theory

Next step is to construct the lower bound function M(π). Instead of using future
discounted reward as in the objective, future discounted advantage is utilised. The
advantage, now being estimated using importance sampling, is calculated. It is
referred to as L:

Lπ(π′) = E
[∞∑
t=0

γt
π′ (at|st)
π (at|st)

Aπ (st, at)
]

(2.22)

Lower bound property is achieved by introducing KL divergence between the new
and old policy and setting up the following equation:

|J (π′)− (J(π) + Lπ (π′))| ≤ C
√

E
s∼dπ

[DKL (π′‖π) [s]] (2.23)

Where DKL is the KL divergence between the new and old policy, C is a tuneable
parameter and dπ is the stationary policy distribution. Derivation proving that
(2.23) assures lower-bound property in relation to the main objective can be found
in the original TRPO paper [24].

Solving for J (π′)− J(π) results in:

J (π′)− J(π) ≥ Lπ (π′)− C
√

E
s∼dπ

[DKL (π′‖π) [s]]︸ ︷︷ ︸
M

(2.24)

M is then the RHS of (2.24). By iteratively optimising M the maximum of J (π′)−
J(π) can be found. The optimisation is referred to as being KL penalised. By
tweaking the optimisation problem one can get something that is instead referred
to as KL constrained:

max
π′
Lπ (π′) s.t. E

s∼dπ
[DKL (π′‖π) [s]] ≤ δ (2.25)

mathematically the objective is the same, but instead of tuning C, δ is tuned which
is a hard constraint and therefore easier to adjust.

2.2.2.4 Proximal Policy Optimisation

Similar to TRPO, PPO aims to increase stability of the policy update by avoiding
too large parameter updates. However PPO tries to simplify the constraint. It is
usually done in two different ways, either limiting the objective gradient by clipping
it or penalising the KL divergence of the objective function [17].

PPO starts with an estimate of the advantage using importance sampling, in the
same way as TRPO. The most common strategy to reduce parameter updates is
using clipping.

J(θ) = E [r(θ)A(s, a)] (2.26)

where r(θ) is the probability ratio between old and current policy.

r(θ) = π′(a|s)
π(a|s) (2.27)

23

2. Theory

A large policy change will result in equivalent increase or decrease of the probability
ratio (2.27). A function that clips the probability ratio if it deviates more then ε
from equilibrium is introduced:

clip(r(θ), 1− ε, 1 + ε) (2.28)

By changing the objective into taking the minimum of (2.26) and (2.28) the new
objective becomes a lower bound to the original one. The incentive to make large
parameter changes has then been removed:

JCLIP(θ) = E [min (r(θ)A(s, a), clip(r(θ), 1− ε, 1 + ε)A(s, a))] (2.29)

It is not trivial how (2.29) ensures that policy changes are kept small, but by doing
some simplifications it is easier to get a better understanding:

JCLIP(θ) = E [min (r(θ)A(s, a), clip(r(θ), 1− ε, 1 + ε)A(s, a))]→
E [min (r(θ)A(s, a), g (ε, A(s, a)))]

(2.30)

where:

g(ε, A) =
{

(1 + ε)A A ≥ 0
(1− ε)A A < 0 (2.31)

for derivation of (2.30)-(2.31) see [23].

If the advantage A is positive the simplified objective (2.30) becomes:

E [min (r(θ), (1 + ε))A(s, a)] (2.32)

With a positive advantage the probability ratio r(θ) increases. If it becomes larger
than 1+ε the minimise function limits the objective function value to 1+ε. Therefore
the updated policy does not benefit from large changes. If the advantage instead
is negative the minimisation problem becomes a maximisation problem and reduces
to:

E [max (r(θ), (1− ε))A(s, a)] (2.33)

again the same mechanism limits the policy update. When both the policy and
value function are estimated with a common network, the value function loss has to
be added to the objective in order to improve value estimation which is critical when
estimating advantage. Also an entropy term is added which serves as a regulariser.
When the entropy is large all actions are equally likely and when it is low one action
is dominant. By adding an entropy term to the objective it prevents one action from
becoming too dominant, encouraging exploration. The final clipped PPO objective
becomes:

JCLIP′(θ) = E
[
JCLIP(θ)− c1 (V (s)− Vtarget)2 + c2H)

]
(2.34)

where c1 and c2 are tuning parameters for value function loss and entropy.

24

2. Theory

2.3 Generalisation techniques
Generalisation in RL is commonly defined as training a network in such a way
that it performs well on data that has not been presented during training, e.g.
colour or geometrical changes in the environment [11]. Intuitively it comes down
to learning something larger that is useful beyond the exact details shown by the
training MDPs. Training on MDPs that are representative of the real problem and
learning underlying functions one can try to learn how to perform well in scenarios
that has not been presented to the agent.

In supervised learning, something called overfitting is a well-known problem, as it
is often clearly pronounced when testing a trained neural network. It occurs when
the network fits too well to the training data and therefore does not fit the actual
data distribution. This is exemplified by the black linear trend and the overfitted
red curve in figure 2.7. Until recently, RL has mostly been applied on tasks that
are not changing and with extensive training, the state space has been covered to
a great extent. I.e. the training environment has been similar to the one used for
evaluation, such that overfitting has not been a problem. If the goal instead is to
train a policy with the possibility to generalise and it is shown to only perform well
on one specific setting of the environment, it can be seen as overfitting. A policy
network with as little overfitting as possible, while still succeeding to complete the
task, could possibly handle unseen changes in the environment. Generalisation is
therefore an overfitting problem.

Figure 2.7: Overfitting example. A good data point split represented by the
black line. The red curve is overfitted to the samples.

While learning how to dock a trailer, instead of being taught to always turn left when
e.g. observing walls in a certain position, the agent should learn a more meaningful
behaviour based on what is actually important, i.e. not crashing and reversing
towards the goal. A simplified interpretation could be that one of the data points to
which it overfits to in figure 2.7 corresponds to the wall in question. The appearance
of a wall close to the goal might just be a coincidence. If the goal is moved in the
next instance, the agent will not know how to find it because features of the wall has
stronger learning signals then the actual goal. Therefore it is of great importance
to try to decouple learning signals from irrelevant features in the observation and
make sure features that are connected to reaching the goal are heavily weighted. E.g.

25

2. Theory

observing the goal should result in actions leading to that area. Other features that
happen to be in frame should not be the main ones leading to the correct actions.

Learning such a policy and not overfitting to irrelevant features is complex since it
can not be explicitly imprinted. There are multiple methods to obtain more general
training, which can result in a more usable and robust policy. Some of them will be
covered in the following sections.

2.3.1 Size of neural network
To solve an arbitrary RL problem, a neural network architecture has to be large
enough to allow learning, i.e. have enough Degrees of Freedom (DOF). Too few
neurons will make it impossible to build consistent connections from observations to
values or actions. As can be seen in figure 2.7 more DOF also gives a network the
possibility to overfit data, although it could also allow for learning of more complex
behaviours which could benefit unseen states and scenarios. A possible approach can
therefore be to create a network with sufficient capacity, then successively decrease
network size and train, to possibly encourage generalisation as overfitting will be
less prone [10].

2.3.2 Regularisation
Different techniques to counteract overfitting are commonly gathered under the ex-
pression regularisation. In supervised learning, performance is normally measured
on a data set different from the training data. Developing methods to avoid over-
fitting to the training data have therefore been a central subject within supervised
learning. Some methods can successfully be deployed on RL problems.

2.3.2.1 Dropout

All internal connections in a policy network result in co-dependencies between neu-
rons. It can obstruct the functionality of each individual neuron and possibly cause
overfitting. By dropping (disregarding) a subset of all neurons during each parame-
ter update strong dependencies could be prevented and also the risk of overfitting [4,
pp. 224-270]. Which neurons that are dropped is decided by a dropout probability.

2.3.2.2 L1 & L2

L2 parameter regularisation, also known as weight decay is a strategy where the L2
norm of network parameters is added to the loss function. Large weights will be
penalised reducing the risk of overfitting certain features. Another method is L1
regularisation. It adds the absolute value of network parameters to the loss function
[4, pp. 227-233]. Principally both methods are the same and somewhat similar to
the idea of dropout, section 2.3.2.1.

26

2. Theory

2.3.2.3 Batch Normalisation

Batch normalisation could both have an effect on training performance and reduce
the risk of overfitting. Before feeding input to a network one usually wants to
normalise the input. This ensures that all data is the same order of magnitude which
counteracts imbalanced gradients and increases learning. The same advantages can
be gained between each layer in a neural network and similarly to dropout it will
allow independent learning [7] between each layer, which speeds up learning. Batch
normalisation of the output Hout from a hidden layer is done according to:

H ′out = Hout − µ
σ

(2.35)

where µ is batch mean and σ standard deviation.

2.3.2.4 Data augmentation

By augmenting visual observation data a greater variety in the policy network input
is obtained, which can generate a more robust policy [9]. There are many different
ways of augmenting an observation. One suggestion is to mask rectangles of varying
size and colours in the observation, according to [8] it was shown to achieve great
performance.

In another attempt to improve generalisation using visual observation it is suggested
to augment input data using an extra convolutional layer between observation and
policy network [12]. Each episode the convolutional layer is randomly initialised.
Weights are normalised in order to not disturb the observation excessively and risk
loss of important information. This method automatically creates an increased
variance in training data, which makes the policy less prone to overfitting irrelevant
visual features in observations. It is also referred to as domain randomisation and is
commonly used to bridge the gap between simulation and real-world applications.

The method has one major downside. It produces a policy that generally has a
high variance in performance. In order to compensate for this, it is suggested that a
feature matching term is added to the objective function. It is calculated by feeding
both the original observation and an augmented version to the network separately
and from this calculate mean square error between outputs from the final hidden
layers [12]. This will encourage attention to the same visual features for both the
augmented and original input and therefore reduce variance that is otherwise added
to the policy.

27

2. Theory

2.3.2.5 Varying Environment

In previous research on RL algorithms specifically designed to generalise well, it
was shown that regular RL algorithms such as PPO could outperform dedicated
generalisation algorithms. Instead, introducing variations in environments during
training gave better results [11].

Variation implies that environment parameters are changed during training, e.g.
goal position or kinematics, with an ambition to train a policy that can interpolate
between these and in that way generalise.

28

3
Method

Analysing effects of using visual input to a policy network as well as generalisation
capabilities required a thoughtful experiment setup. A lot of resources were also
needed to perform these RL experiments, a simulation environment, a RL algorithm,
tuning of the algorithm and lastly an approach to evaluate results.

The game engine Unity, was used to develop an environment containing a docking
terminal as well as a semi-trailer combination with close to realistic dynamics. A
Unity developed plugin called ML-agents was used along with the environment to
utilise a RL algorithm and train a RL agent. Training implied running the sim-
ulation, interacting with the environment and learning from gained experience, as
described by figure 3.1. Different iterations of training setups were carried out to
collect a basis for analysis.

Figure 3.1: Conceptual schematics of reinforcement learning training

3.1 Simulation environment
Many well-established research platforms in RL are based on games or game engines.
In fact, one of the most famous examples is a neural network learning to solve dif-
ferent classic ATARI games [2], which gained a lot of traction when it was published
in 2013. According to some, this was a discovery that started the exposure for deep
RL in recent years. Games are well suited for developing RL algorithms since all of
them in one way or another has an interactive environment and can give rewards
based on performance. Unity engine is a well-known platform with multiple famous

29

3. Method

game titles released. In 2017 they released a RL plugin called ML-Agents which has
gotten many updates since then and there exists a large community where lots of
information can be shared among users.

The engine supports builds with extremely detailed graphics and advanced physics.
Even though this could help train a network with the possibility of also working in a
real-world application, at an experimental stage, it would only make training more
difficult. Therefore a three-dimensional environment with a continuous state space
was designed with as simple shapes and environmental dynamics as possible. Both
truck and semi-trailer were created out of cuboids onto which wheels, steering and
propulsion capabilities were attached, as shown in figure 3.2.

Figure 3.2: Building blocks in the environment

Dimensions of the semi-trailer combination were not critical as it would not con-
tribute to the outcome of the thesis. A Volvo FH16 was used as a guideline for
proportions from which a simple truck with only one rear wheel axle, as well as a
semi-trailer with a single axle was created. Initially the semi-trailer length was set
to 13 meters but in order to perform generalisation experiments, it was changed
according to specific cases. While switching between semi-trailer lengths, the link
point was always placed 1.25m from the front of the semi-trailer and the wheel axle
1.5m from the rear, see figure 3.3.

30

3. Method

Figure 3.3: Drawing of semi-trailer combination from the left side

A simplified vehicle model of the semi-trailer combination is shown in figure 3.4.
The torque τ was limited to ±800Nm and the steering angle α1 to ±40°.

Figure 3.4: Simplified drawing of semi-trailer combination dynamic vehicle model

The dynamic vehicle motion model applied in Unity was highly complex, but it can
be simplified as in equation 3.1 to 3.3 according to [14]. These equations show how,
in principle, the applied inputs were converted to motion to the designed semi-trailer
combination where r = 0.4m and lengths were set according to figure 3.3.

Equation 3.1 shows acceleration as a result of propulsion where inertia and slip is
disregarded. Reaction force from torque applied on the wheel is transformed into
acceleration v̇1:

v̇1 = F

m
= T

mr
(3.1)

31

3. Method

Equation 3.2 shows motion of the truck:[
v1
ω1

]
=
[

v cosα1
(v sinα1)/l1

]
(3.2)

Equation 3.3 shows motion of the semi-trailer:[
v2
ω2

]
=
 (cosα2 cosα1 + l2

l1+l2 sinα2 sinα1
)
v

1
l3

(
sinα2 cosα1 − l2

l1+l2 cosα2 sinα1
)
v

 (3.3)

The docking terminal was based on a 50m x 50m plane with an initially 4m wide
rectangle marking the goal and walls acting as outer bounds, as can be seen in figure
3.5. The semi-trailer combination had a fixed starting position and the goal could
have different widths and be placed at 33 different positions, evenly spaced along
the 50m wall.

Figure 3.5: Drawing of the environment

As long as the simulation environment was adapted to the ML-Agents Python API,
there was native support for Unity Core Platform. Adaptation implied specifying
onto what object the agent should act, what actions it could take, what observation
it could use, what event triggered which reward and other parameters needed for

32

3. Method

training such as episode length etc. Environmental interactions withing Unity was
then bridged through the API to python scripts utilising TensorFlow, an open-source
machine learning software library where the neural network was trained. This way
one could observe agent behaviour in the Unity environment while simultaneously
training the policy using TensorFlow, which made training progress easy to monitor.

Providing this data to TensorFlow, the environment supplied detailed MDPs ac-
cording to

Observation,Action,Reward, ...→ S0, A0, R1, S1, A1, ... (3.4)

which is necessary to train a neural network as described in section 2.1.1.

Unity and ML-Agents run at 50Hz update rate in real time. The environment in
this thesis is relatively slow and changing input fifty times a second would result
in an unnatural and jerky behaviour. To counteract this a decision interval of fifty
was introduced, meaning that a new action was only taken every fifty steps. This
would translate to an action being taken every second in real time, which also would
translate well to a real world application.

3.1.1 Dynamics
As Unity Engine tries to mimic true physical properties, dynamics are applied to
rigid bodies by default. According to delimitations of this thesis, accuracy of the
semi-trailer combination model had low priority in order to simplify the task. With
vehicle model dynamics already in place in Unity, the impact of this was slightly
minimised by modifying tuneable parameters, e.g. reducing tire slip and vehicle
roll. Also since the truck was moving at slow speed at all time, some dynamics did
not have a substantial impact on the semi-trailer combination motion between time
steps, e.g. tire slip was naturally small.

Adding vehicle dynamics to the environment would not affect the final outcome of
the thesis as a proof of concept, but it would increase the possible state space and
stochasticity which would make the network more difficult to train. Regardless, it
was kept since a successful result with dynamics applied would show the advantage
of using RL over traditional methods.

3.1.2 Observations
Implementing visual observation in ML-Agents was intuitively done by placing a
camera in the environment positioned such that it, from a top-down perspective,
captured the docking terminal area. The resolution was set to 84x84 pixels to allow
enough detail to be captured, but still not contain too much data as the number of
trainable parameters in a CNN quickly grows with a larger input, which increases
computational load. In addition to that, the image feed was converted from RGB
to greyscale, which saved both GPU time and RAM. As long as the objects had
different colours and became separable in different shades of grey, the visual input

33

3. Method

would still provide enough information to not complicate learning. Also, greyscale
conversion could rather be seen as a measure to make the policy more robust to
slightly different coloured semi-trailers.

Figure 3.6: Observation in RGB

Table 3.1: Colours converted to greyscale values

Object Greyscale value (0-255)
Semi-trailer (Red) 125

Goal (Green) 163
Truck (Blue) 146

Walls (Light grey) 84
Plane (Dark grey) 37

In the environment, different colours represented different objects, a green goal, red
semi-trailer and blue/red truck as can be seen in figure 3.6. Red and blue coloura-
tion of the semi-trailer combination was chosen in order to make front and rear
separable. This set of colours made them translated into well distinguishable shades
of grey. The basis for learning was to make connections based on the observation,
thus different coloured pixels. A possible successful outcome from this setup could
have been e.g. learning a dependency between the greyscale versions of red and
green, leading to high reward. Separable colourations could be found in a real-world
scenario except for the green target marking. For the image input to be useful the
goal needed to be coloured, otherwise the neural network would not be able to per-
ceive what visually correlated to a large reward. A green marking, showing where
an available docking spot exists could be realised with e.g. a software drawing an
overlay on the observation image based on information from a another neural net-
work trained to detect free spots [15] or simply external sensors. Goal identification
was considered to be out of scope and the green area was therefore manually added
to the observation.

To be able to compare performance of different observation setups, a number of
normalised non-visual observations, chosen to represent the environment well, were
also introduced as input. Combining the visual input with these in different ways
during training experiments gave a basis to analyse training performance.

34

3. Method

The non-visual observations were:

• Global position of semi-trailer rear in two dimensions

• Global position of truck in two dimensions

• Local position of semi-trailer rear in two dimensions relative to target

• Global angle of truck in degrees

• Angle between truck and semi-trailer in degrees

• Velocity of truck in two dimensions

Normalisation was done to simplify training, explained in section 2.3.2.3. If the
observed value is represented by x, the normalised value x′ is calculated according
to:

x′ = x− xmin
xmax − xmin

(3.5)

3.1.3 Environment scripts
Functionality in Unity and ML-Agents was specified by different scripts that were
written in C# and linked to objects in the environment. The main script was
attached to the truck itself, on which the agent acted.

ML-Agents built-in key functions simplified scripting and enabled full focus on RL
implementation design. The following predefined functions were utilised (as of ver-
sion 0.13.1 of ML-Agents).

• Done() - Marks the end of a episode, calls the reset function and starts a new
episode.

• AddReward() - Adds reward every time the function is called, which is every
step.

• SetReward() - Overwrites the accumulated reward for the past decision inter-
val, 50 time steps in this thesis, and sets a reward for the whole interval.

The main script had three principal functions: taking actions, collecting reward and
resetting the environment when desired. To establish these functions, transformation
of objects, boolean triggers and global variables used between physical objects were
utilised. Action taking was implemented as a simple discrete vector action-space, as
continuous action greatly increases complexity. The agent was given three outputs
for wheel torque (forward, neutral or backward) and three for steering angle (left,
straight or right). Both steering and throttle action was sampled in parallel, meaning
that the agent could apply them simultaneously.

Implementation of the reward distribution was mainly based on comparing the truck
position and rotation with specifications of the reward function at every time step,

35

3. Method

the exact reward function is in described in a later section. Comparisons were done
using both continuous measurements but also booleans that were triggered if the
semi-trailer entered a specified area or collided with another object. Specifications
of the reward function can be seen in figure 3.8 to 3.10. Resetting the environment
involved moving the semi-trailer combination to initial position, resetting velocities,
forces, actions and all booleans. Booleans triggered when entering areas or crashing
into objects were handled by task-specific scripts that were linked to the objects in
question. This enabled realisation of different reward functions with great control.

3.2 Training setup
To succeed with training, focus was mainly on tuning hyperparameters and reward
functions. As there is no general rule to succeed with RL, existing implementations
and guidelines from ML-Agents were therefore used as an initial starting point.

3.2.1 Choice of algorithm
As part of ML-Agents 0.13.1 there were two different state of the art algorithms im-
plemented to work with their API. These were Soft Actor-Critic (SAC) and PPO,
both policy gradient methods that used ADAM optimiser for fast and stable param-
eter updates, see section 2.1.6.

Whereas SAC has shown to outperform [22] the older algorithm PPO in multiple
tasks, it is also known to not always be consistent in performance. To increase the
chances of stable learning, instead of learning as fast, or sample efficient, as possible,
PPO was chosen. See section 2.2.2.4 for explanation of PPO.

3.2.1.1 Tuning hyperparameters

In the ML-Agents 0.13.1 documentation there were recommendations on what order
of magnitude parameters should be set depending on chosen algorithm and if the
state and action space was continuous or discrete [25]. There were also some hints
on how one could tune them depending on certain outcomes of training, especially
when looking at learning and loss graphs. However, since the provided parameters
did not account for visual observation this had to be taken into account and tuning
had to be performed to get results from the RL algorithm.

As multiple parameters can affect the same type of behaviours during training, it
was crucial to only tune one at a time as it was otherwise hard to draw conclusions.
The course of action was to start as safe as possible when changing parameters. This
meant starting with standard values and move towards what was suppose to result
in slow and stable learning. E.g. large buffer and batch size as described section
2.1.12. Starting out too aggressive made it hard to understand what the source of
failure was.

Recall algorithm 1, REINFORCE, row 5:
θ ← θ + αγtGt∇θ ln πθ (At|St) (3.6)

36

3. Method

Each policy update is scaled by a learning rate factor α that when reduced makes
learning slow and steady. Learning rate is used in most algorithms including PPO.
It was therefore a good starting point to first decrease the learning rate and then
slowly increasing it throughout the tuning process.

Another parameter which affected training stability was the time horison. It de-
termined from which step in each episode one should bootstrap the value estimate,
see theory section 2.1.10. Bootstrapping from an early state lowers variance and
increases stability, but having it set too short introduces a strong bias making it
harder for the agent to see the goal, which can lead to local convergence. Therefore
it had to be increased to cover a complete successful episode. When performing
an experiment and manually providing actions to reach the goal, an episode turned
out to be approximately 1600 steps. With a decision interval of 50 it resulted in 32
experiences. While slowly increasing the time horison to possibly increase detection
of important information in successful trajectories, the value 32 acted as a guideline
of what could be a working parameter.

Value estimation with a time horison set to 32 would correspond to values being
updated as:

V′ (St)← V (St) + α

(32∑
k=0

γkRt+k+1 + γ33V (S33)− V (St)
)

(3.7)

With the main feature of PPO being to clip objective gradients to ensure stable up-
dates, this parameter was therefore essential to tune in order to arrive at a functional
algorithm. Recall the clip objective of PPO

JCLIP(θ) = E [min (r(θ)A(s, a), clip(r(θ), 1− ε, 1 + ε)A(s, a))] (3.8)

where ε clips the update if the new and old policy differ too much. Epsilon was there-
fore drastically decreased and from there slowly increased until training instability
was observed. One could then find out what the limit of ε was.

3.2.2 Training a baseline agent
The first step was to get a simple environment working by using close to default
parameters provided by ML-Agents. This meant having solely a truck driving for-
ward to a static goal. Once the neural network successfully learned to provide state
feedback which took the truck from start to goal, the next step was to try to make it
reverse into the goal. This initially turned out to be a lot more difficult as rewards
had to be carefully chosen for it to understand when it needed to switch from driving
forward. With a more complex manoeuvre, additional techniques were introduced
to help the agent comprehend what it had to do. Using a curriculum, theory section
2.1.13, the agent could get an easy task such as a wider goal and learn that first
until meeting performance criterion. After this succeeded one could make the task
more difficult by decreasing the size of the goal as visualised in figure 3.7 and then
continue training.

37

3. Method

Figure 3.7: Training using a curriculum

Using behaviour cloning also helped give the agent hints of what type of actions it
should take in a certain states to get a large reward, theory section 2.1.14. Starting
out with imitation learning and then letting the agent continue on its own after e.g.
15 million steps made it discover reward easier and learn faster. This way one could
also make the rewards more sparse avoiding unpredictable local minima, since it will
through these techniques still be directed towards goal.

Adding a semi-trailer complicated training even more since it introduced a new
unwanted behaviour that needed to be taken into account. Avoiding a so called
jackknife position was crucial and done by modifying the reward function.

Lastly, in order to assure that the policy was learning a meaningful behaviour and
not a sequence of actions, the goal position was moved between every episode by
sampling from the 33 discrete positions spanning the left side of the docking terminal.
It made the task more complex and therefore more training time was required to
reach previously obtained levels of accumulated episode reward.

To shorten training time while having more complex tasks, a ML-Agents tool called
"Asynchronous Environments" was implemented. It made it possible to run mul-
tiple training environment instances asynchronously, decreasing training time and
increasing sample efficiency. The functionality was based on making the neural net-
work capable of performing an action in one instance and continue with another
while the first take its step, to not have to wait for the environment to return
observations needed for the next action.

38

3. Method

Training the baseline agent resulted in the following parameters:

Table 3.2: Hyperparameters for baseline agent.

Buffer size 51200 experiences
Batch size 256 experiences

Time horison 32 experiences
Behavioural cloning 106 experiences

Epsilon 0.1
Beta 5−3

Lambda 0.95
Curiosity strength 0.02

Learning rate 1−4

Hidden units 256
Num hidden layers 2

CNN layers 2

3.2.2.1 Reward function - Complexity scaling analysis

Starting out using a complex reward function in a continuous state space can lead to
local minima convergence with unwanted behaviours. Therefore the reward started
out simple and was gradually made more complex to get the wanted behaviour.
Initially, rewards were set according to what is a succeeded task and what is a failed
one. That meant giving positive reward once the goal was reached and negative if
the truck crashed as can be seen in figure 3.8. The reward given when reaching the
goal was constrained to also having an angle of 90± 10 deg.

Figure 3.8: Sparse reward function. Red dashed line gives −0.01 and green
dashed line +1

As sparse rewards require the agent to unintentionally hit the goal for it to learn and
then "see" that reward in earlier states through the discount factor, it could easily
lead to an agent learning nothing. The reward function was therefore enlarged with
a reward which increased linearly with decreasing distance to the goal as in figure

39

3. Method

3.9. That way the agent would more often see how moving towards the goal was a
good behaviour.

Figure 3.9: Red dashed line gives −0.01 in reward, green dashed line +1 and
dashed light green half circle 1

distance .

Training RL problems are known to be unstable and with both continuous state
space and visual based input the training becomes even more difficult. It was there-
fore easy for the agent to end up in local minimum during reward improvement
iterations. To avoid that, the environment was run manually after each change to
check for unwanted possible exploitation.

Once the reward function was designed in a way that made it natural for the agent
to drive towards the goal, other extensions of the reward function had to be formed
to encourage reversing towards the goal. A natural condition for reversing is to have
a certain angle of the truck. In global coordinates it meant that an angle of 90± 45
degrees towards the goal needed to be met, as shown in figure 3.10.

Figure 3.10: Red dashed line gives −0.01 in reward, green dashed line +1 and
dashed light green half circle 1

distance if angle of truck is between the black dashed
lines.

Adding an extra condition in form of an angle constraint made the reward function

40

3. Method

more sparse, making the agent see positive reward less frequent thereby needing
more samples. To avoid having the agent exploit the function by alternating between
going backwards and forwards piling up on rewards, a negative addition at each time
step was introduced. Negative reward for each time step also gave a incentive to
complete the task faster.

With the semi-trailer attached, reward functions were mostly kept although some
values needed to be re-tuned again. Changing the angle and position to be mea-
sured at the semi-trailer instead of the truck meant that the same conditions were
applicable for it to reverse into goal. Avoiding jackknife was done by measuring the
angle between truck and semi-trailer and adding a negative reward every time the
angle got above 85 degrees, penalising such states regardless of position as in figure
3.11. Setting this reward too large could confuse the agent as it would learn to not
turn sharp at all, making it hard to maneuver the semi-trailer combination. It was
therefore iterated until a suitable value was found.

Figure 3.11: If the angle between truck and semi-trailer was above 85 degrees, a
negative reward of -0.1 was given.

The final reward function is specified in pseudo code, algorithm 2.

Algorithm 2 Reward function - Complexity experiments
SetReward(-0.0005f);
if Closer to target & Angle = 90± 45 deg then

SetReward(1f / distanceToTarget);
if Goal Reached & Angle = 90± 10 deg then

SetReward(1.0f);
if Collision then

SetReward(-0.01f);
if AngleTruckTrailer > 85 then

SetReward(-0.1f);

41

3. Method

3.2.2.2 Reward function - Generalisation analysis

For the generalisation training, a couple of modifications were done to the reward
function. In order to be able to clearly state if the goal was reached and tell dif-
ference between variations in the environment, the reward function was simplified
by removing the linearly increasing distance reward. It was a crucial part of the
reward function and as stated in section 3.2.2.1 a sparse reward function can make
it difficult to learn, but with additional imitation learning and increased training
time the agent managed to learn. Other rewards were kept unchanged, resulting in
the following reward function:

Algorithm 3 Reward function - Generalisation experiments
SetReward(-0.0005f);
if Goal Reached & Angle = 90± 10 deg then

SetReward(1.0f);
if Collision then

SetReward(-0.01f);
if AngleTruckTrailer > 85 then

SetReward(-0.1f);

3.3 Evaluation tools
Visual inspection provided a good measurement on current performance during
training as well as performance of the final policy. A simple visual snapshot during
training did however not tell what the trend was, e.g. distinguish if the agent was
still learning or if it had converged.

Therefore, a number of Key Performance Indicator (KPI) were identified to give
structure to the analysis of complexity scaling and generalisation. Monitoring the
progress of training and analysing results was thereby mainly done with the following
parameters that were plotted:

• In order to get an indication of learning, the mean cumulative reward re-
ceived during episodes spanning over 1000 experiences was plotted. An over
time steady positive gradient indicated ongoing learning while a negative trend
meant forgetting. Observing an unchanged value meant convergence. If the
reward variance was significant, the probability of converging to an acceptable
solution was fairly low and the experiment could be aborted.

• The maximum episode length was a fixed value set in the environment. As an
episode was also reset if the agent reached the goal, the logged episode length
was affected. Plotting this helped to identify when the goal was reached for
the first time and it also gave information of how frequent it managed to do
it.

• In order to tell how certain the agent was on its decisions the policy entropy

42

3. Method

was plotted. It viewed uncertainty in the discrete action probability distribu-
tion for all states. Preferably it should have a high value initially and decrease
slowly as the agent learns the correct behaviour and the need for randomness
vanishes.

• During training the agent estimates state values, according to section 2.1.7.
In order to tell if the agent had explored rewards the value estimate was
plotted. It displayed the mean value of all estimated states and increased as
the agent discovered new reward. If negative reward was given for poor states
it could also decrease.

• In order to more precisely tell if the agent was still learning, the policy loss
was plotted as it described to what extent the policy was changing. The need
for policy changes decreased when the agent captured a correct behaviour.
Therefore the magnitude of policy loss should decrease during successful train-
ing.

• As mentioned, states were estimated with a value. Mean loss of the value
function update, value loss, could be utilised to further monitor learning
progress. It gave an understanding of how well the value of each state was
predicted i.e. how much it was changing. An increasing value loss was expected
during training as reward increased. Once the accumulated reward stabilised
it lead to a decrease in value loss.

3.3.1 Convolutional neural network evaluation script

To analyse how well the visual encoder managed to extract important features from
the observation one could either look at learned filter weights, as described in theory
section 2.1.3, or a feature activation map. This map was constructed by feeding an
observation image to the trained CNN and taking the output from a chosen layer
with a chosen filter being applied. As filters in each layer activate on different
features, the output was a heat map showing what features were activated and
where, providing an important basis for analysis. Example of a feature activation
map can be seen in figure 3.12.

43

3. Method

Figure 3.12: Example filter weights applied to a image, resulting in a feature
activation map

3.4 Experiments

Many iterations, a lot of computations and many hours spent on research was needed
to get a feeling for what settings made learning better. The main research questions
were treated according to experiment plans to get as relevant results as possible.

3.4.1 Complexity scaling - Observation

Even though one can never be sure of certain results in RL, non-visual observations
are known to be more stable during training and usually more prone to converge
than using visual input. To get data from where one could draw conclusions, a list of
scenarios to test was created, see section 3.1.2 for details on observations. It started
with a scenario that was thought to yield the best result and then it was made
more difficult by removing non-visual observations. A scenario with only non-visual
observations was also used as a reference.

Not supplying a perception of velocity would make observations insufficient leading
to the theory of MDP, section 2.1.1, not being applicable since present observations
will not be enough to describe the state independent of the past. This experiment
was therefore not incorporated.

44

3. Method

Table 3.3: Complexity scaling observation, experiment cases

Case Visual Velocity
Trailer
rear
pos

Truck
pos

Rel Trailer
rear pos

Angle
truck

Angle truck
& trailer

1 x x x x x x x
2 x x x x x x
3 x x x x x x
4 x x x x x
5 x x x x
6 x x x
7 x x

With the goal of comparing learning performance, stability and convergence, all
experiments specified in table 3.3 were run until approximate convergence as time
was a limiting factor. Even though more time could yield a result where the agent
learned a better behaviour, one could after approximately 100 million steps get
enough result of training to compare the experiments. All reward graphs were at
that point either starting to level out or already flat as shown in figure 4.1.

3.4.2 Complexity scaling - Task
To analyse training differences when changing task in the environment, three cases
were used as specified in table 3.4. All parameters were kept unchanged, except
for how many steps behavioural cloning was used, for a fair comparison without
other influencing factors. Using behavioural cloning for too many steps could make
performance worse as it induced overfitting and thereby distorted results. Therefore,
the easier tasks used it for a smaller number of steps. As input visual observation
and velocity in two dimensions were given.

Table 3.4: Complexity scaling tasks, experiment cases

Case Task
1 Truck and semi-trailer docking reverse
2 Truck docking reverse
3 Truck docking forward

All experiments were trained until guaranteed convergence, visually validated by
observing unchanged reward for five million steps and all KPIs from section 3.3
describing stability and convergence e.g. losses, entropy and variance were examined.

3.4.3 Generalisation
Regardless of what environment RL is applied on, either the reward function or
algorithm is likely to differ between implementations. Same was true for this thesis

45

3. Method

and made it questionable to what degree potential generalisation discoveries was
going to be applicable on RL in general. Therefore, experiments were focused on
measurements that were not directly dependent on the algorithm or reward function.

As described in section 2.3.2.5, varying parameters in the environment can have
great impact on generalisation capabilities and it is also possible to implement on
any RL setup. To investigate how well a policy network can generalise using visual
input, analysis on how variations in the environment affected the generalisation was
performed.

In the semi-trailer docking case, a valuable generalisation property would be for the
policy to handle different semi-trailer lengths. Changing length also implied a new
distance between the semi-trailer wheel axle and link point. It created entirely new
kinematics that the policy had to generalise to. If small changes are performed in a
simulation environment a policy can normally interpolate between solutions to some
extent and manage to solve scenarios that has not been presented during training,
as illustrated in figure 3.13

Figure 3.13: Visualisation of generalisation on different semi-trailer lengths

Functionality was added to randomly change the semi-trailer length each episode
during training. The length was sampled from a predefined discrete range, table 3.5.

Table 3.5: Generalisation experiment cases

Case 10m 11m 12m 13m
1 x
2 x x
3 x x x
4 x x x x

The experiments were carried out by first training using one fixed semi-trailer length,
followed by adding more lengths to sample from according to table 3.5. To make
the four policies comparable, a reference maximum reward was elaborated. During

46

3. Method

development of experiment methods, training of case one in the generalisation envi-
ronment had an agent reaching a maximum accumulated discounted reward of 4.2
after convergence. This value was therefore chosen as a baseline. A Tolerance and
slight reduction of the maximum reward was introduced and used as a reference for
training completion. This meant that training of each policy was interrupted when
it reached a accumulated discounted reward of 4.1± 0.1 for five million steps. Also
convergence was authenticated by visually observing a number of plotted parame-
ters, decreasing entropy close to zero, constant value estimate, decrease in policy loss
magnitude and value loss approaching zero. The interpretation of each parameter
is explained in section 3.3.

The four policies were then evaluated on all possible lengths in a range between
11.5-13 meters with a resolution of 0.1 meter. Each semi-trailer length setup ran
one million steps and the mean reward over all steps was calculated and used for
evaluation. All as described in figure 3.14.

Figure 3.14: Generalisation experiment, flow chart

To put the reward into context, the success rate was also measured in the neigh-
bourhood of where the best and worst performance was expected. Success rate gave
an exact measurement of how frequently the agent completed the task but it did
not tell how well it did it. It could have crashed multiple times on its way to the
goal or possibly ended up in a jackknife situation. However, that was something the
reward revealed. Reward was therefore chosen as the main basis for analysis with
the success rate as a complement to give an understanding of what certain reward
levels correspond to in regards to completing the task.

47

3. Method

48

4

Results

4.1 Observation complexity comparison

Experiments were performed according to table 3.3 with all parameters set to fixed
values for a fair comparison. All cases were run approximately 100-130 million steps
until, or close to, convergence. Different observation setups learnt differently as can
be seen in figure 4.1. Some were more unstable, but learned faster, while some were
smoother and slower. A reward curve displays better behaviour if a large value is
gained faster, while still remaining stable.

The observation complexity experiments showed that case 4, 5, 6 and 7 overall
were learning faster and more stable compared to the other cases, see figure 4.1.
Characteristics for these cases were that they had fewer non-visual observations
available. Between case 3 and 4 the truck position was removed, this was therefore
the single observation that had the largest impact on the experiment. Case 4-7 also
showed rapid increase in value loss, see figure 4.4, further justifying fast learning.
Explicit results follow below.

49

4. Results

0 2 4 6 8 10 12 14

Steps 10
7

-5

0

5

10

15

20

25

30

35

40

R
e
w

a
rd

Cumulative Reward

Test case 1 smoothed

Test case 2 smoothed

Test case 3 smoothed

Test case 4 smoothed

Test case 5 smoothed

Test case 6 smoothed

Test case 7 smoothed

Figure 4.1: Observation complexity experiment, case 1-7 - Smoothed average
cumulative reward

The curves in figure 4.2 show variance corresponding to fluctuations in reward,
visible in figure 4.1. A lower variance indicates a more stable training. It can be
large initially, but should decrease as training starts to converge. Large peaks show
momentarily forgetting.

0 2 4 6 8 10 12 14

Steps 10
7

0

5

10

15

20

25

30

35

40

V
a
ri
a
n
c
e

Cumulative Reward Moving Variance

Test case 1

Test case 2

Test case 3

Test case 4

Test case 5

Test case 6

Test case 7

Figure 4.2: Observation complexity experiment, case 1-7 - Variance of
cumulative reward

50

4. Results

Policy entropy shows how random actions are. As an agent learns, entropy should
decrease until converging close to zero. It may fluctuate during initial phases of
learning while exploring randomly.

0 2 4 6 8 10 12 14

Steps 10
7

0

0.5

1

1.5

2

2.5

E
n
tr

o
p
y

Policy Entropy

Test case 1

Test case 2

Test case 3

Test case 4

Test case 5

Test case 6

Test case 7

Figure 4.3: Observation complexity experiment, case 1-7 - Policy entropy

The value loss shown in figure 4.4 displays how well the network is able to predict
values of each state. During training these are learnt and the loss should therefore
increase. When converging, estimation will not differ that much and the loss should
decrease. Instability leads to a high loss which will not decrease.

51

4. Results

0 2 4 6 8 10 12 14

Steps 10
7

0

2

4

6

8

10

12

14

16

18

L
o
s
s

Value Loss

Test case 1

Test case 2

Test case 3

Test case 4

Test case 5

Test case 6

Test case 7

Figure 4.4: Observation complexity experiment, case 1-7 - Value loss

Figure 4.5 and 4.6 show the difference between convolutional filter weights with all
measured non-visual observations (case 1) and only velocity (case 7). Gradients are
more distinct in case 7 where only one non-visual observation is used.

Figure 4.5: Observation complexity experiment, case 1 (visual & all measured) -
Convolutional weights, all filters first layer

52

4. Results

Figure 4.6: Observation complexity experiment, case 7 (visual & velocity) -
Convolutional weights, all filters first layer

Figure 4.7 and 4.8 show the difference between convolutional feature activation maps
again for case 1 and 7. Using fewer non-visual observations result in activation maps
that overall distinguish objects more clearly.

Figure 4.7: Observation complexity experiment, case 1 (visual & all measured) -
Activation map, all filters first layer

53

4. Results

Figure 4.8: Observation complexity experiment, case 7 (visual & velocity) -
Activation map, all filters first layer

54

4. Results

4.2 Task complexity scaling

Testing complexity scaling with changing task setups was performed according to
table 3.4. Differences in final peak reward can be disregarded as it is expected for a
simpler model to reach the goal faster and thereby accumulate a larger reward. A
steeper rise in average cumulative reward and a quicker dropping variance, without
momentary peaks, indicates better training performance.

However figure 4.9 indicates that a more complex task (case 1), both results in
decreased stability and learning speed.

0 2 4 6 8 10 12 14

Steps 10
7

-10

0

10

20

30

40

50

60

R
e
w

a
rd

Cumulative Reward

Test case 1

Test case 2

Test case 3

Figure 4.9: Task complexity experiment, case 1-3 - Average cumulative reward

55

4. Results

0 2 4 6 8 10 12 14

Steps 10
7

0

5

10

15

20

25

30

35

40

V
a
ri
a
n
c
e

Cumulative Reward Moving Variance

Test case 1

Test case 2

Test case 3

Figure 4.10: Task complexity experiment, case 1-3 - Variance of cumulative
reward

4.3 Generalisation results

Results from generalisation experiments, described in section 3.4.3, table 3.5, con-
sists of four data sets, one for each policy. To make the data transparent, mean
of the one million evaluation steps on each semi-trailer length was calculated. It
resulted in curves with 16 data points, spanning 11.5 to 13 meter, each describing
how well the policy in question generalises to different semi-trailer lengths.

Figure 4.11 displays all four curves making it easy to tell which policy generated
highest reward on intermediate semi-trailer lengths, that was not explicitly trained
on. High reward on intermediate lengths indicates good generalisation capability.
Experiment case three, trained on semi-trailer lengths 11, 12 and 13 meter and case
four, trained on 10, 11, 12 and 13 meter, generated higher reward on intermediate
semi-trailer lengths compared to the other two policies and most likely generalize
better.

The success rate for the policy generated by experiment 4, tested on 12, 12.1, 12.2
and 12.5 meter semi-trailer are also marked in figure 4.11, the relationship to reward
is not linear but it gives an indication of what different levels of reward means in
terms of completing the task. Policy four, tested with a 12.5 meter semi-trailer has
almost 60% success rate but the reward has dropped significantly, indicating that
the docking has been completed in a non-satisfactory way, e.g. crashing or taking
too long time.

56

4. Results

11.5 12 12.5 13

Trailer length

-3

-2

-1

0

1

2

3

4

5

R
e
w

a
rd

Cumulative Reward

Trained on 13m

Trained on 12m & 13m

Trained on 11m,12m & 13m

Trained on 10m,11m,12m & 13m

99,8% goals reached (trained on 10,11,12 & 13m)

98,2% goals reached (trained on 10,11,12 & 13m)

82,2% goals reached (trained on 10,11,12 & 13m)

58,3% goals reached (trained on 10,11,12 & 13m)

Figure 4.11: Generalisation experiment, case 1-4 - Average cumulative reward of
policies evaluated on different lengths for 1M steps

4.4 Best achieved performance

The following list characterises achieved performance of the most versatile fully
trained policy network:

• Successfully provide nonlinear state feedback to a dynamic vehicle model in
an environment with a continuous state space.

• Converge to a solution using only visual input and velocity of truck in 2D.

• Can manage semi-trailer lengths 10m, 11m, 12m & 13m with some generali-
sation in between according to figure 4.11.

• Able to dock at 33 different terminals with an angle of ±6° and a success rate
of 99.8%.

• Can dock between parked trailers being separated by 9.5m at a terminal 3m
wide with a semi-trailer being 2.5m wide, as visualised in figure 4.12.

57

4. Results

Figure 4.12: Semi-trailer docking between parked trailers

58

5
Discussion

5.1 Observation complexity scaling
Training a neural network using visual input is difficult and in some cases not even
possible if the data presented does not provide details from which the network can
interpret useful information. With the concept idea of this thesis being a top-down
view of a docking terminal using a stationary camera, the problem becomes hard to
solve as actions lead to less pronounced changes in the environment observation.

As a non preprocessed greyscale image is only seen as a matrix of values by the
policy, it can not make use of the information in the same way as a human can.
Convolutional layers is then a great advantage and a necessity to get any sort of
meaning out of the image. Regardless, it is still a lot less straight forward than e.g.
getting the measured position as input.

Looking at figure 4.5 and 4.6 one can see what trained weights of the first con-
volutional layers in the two extreme cases look like. With figure 4.6 showing the
case with only pixel and velocity input, one can see how sharper features with more
contrast are formed. Since filter weights are initialised randomly, this shows how
providing less measured input forms the network into learning how to make better
use of visual input.

The feature activation maps found in figure 4.7 and 4.8 follows the same pattern
as the weights, with case 7 showing how the CNN more clearly has learned to
distinguish the goal and walls, which can be seen by the greater contrast in the heat
map. This is of great importance to succeed with the task and shows how the CNN
extracts useful information from the visual input.

To evaluate the training process and understand which measured inputs that could
be useful in combination with pixel data, when providing control for a truck and
semi-trailer, figure 4.1 to 4.4 shows learning performance progress during the seven
experiment cases. In figure 4.1 one can see how removing measurements initially
improves learning performance. With different measured positions being removed
in the first experiments, it is clear that these observations does not cooperate well
with the visuals. At case 4 only the semi-trailer rear relative coordinates are used
as a positional input. This gives a lot better results, but one can also see how

59

5. Discussion

removing this and only keeping angle and velocity measurements retains the same
performance.

It is not until removing measured angle between truck and semi-trailer, and only
using velocity as measurement as in case 7, that the training performance slightly
drops again. This can possibly be solved by increasing resolution of the visual
observation to provide more details, but there are then other training difficulties
that arise. Training for a longer time is also possible, which allow performance to
get similar to that of case 6.

Training with visual observations is known to be unstable, as can also be seen in
figure 4.2 by looking at the reward variance for most experiment cases. This variance
should be small when learning is stable. Compared to when solely using measured
observations as in case 2 one can see that only case 5 and 6 using visual, velocity
and angles as input, retain similar stability while performing better. This shows
how critical it is to pair the visual input with some sort of velocity perception and
strictly selected measurements if high detail observation is needed.

5.2 Task complexity scaling
The neural network is trained to provide nonlinear state feedback on a task in a
specified environment. When the complexity of it increases it will be harder for the
network to learn connections and find combination of neurons to perform the task.
The example in this thesis is somewhat similar to what a human would experience.
Just because one can easily back a car does not mean that it is as easy to do the
same with a semi-trailer as the kinematics is completely different and also has more
DOF, which makes it harder to control. In a simplified kinematic model comparison
one can see that a truck has three DOF, where the whole semi-trailer combination
has four, as shown in figure 5.1.

Figure 5.1: Degrees of freedom - simple kinematic model comparison

Adding properties leading to a dynamic vehicle model even if they are small, as was
done with Unity Engine, drastically increases DOF as e.g. inertia on rigid bodies are
added. This does not only make both models harder to control, but it also increases
the gap in complexity between adding a semi-trailer and only controlling a truck.

As can be seen in plot 4.9 the network is able to learn how to dock the front of a
truck in approximately 20 million steps. When adding the constraint of having to

60

5. Discussion

dock with the rear, the agent instead needs around 35 million steps to converge.
This increases complexity of the task as it now needs to turn around somewhere.
With rewards being given only once the vehicle moves toward the goal, orientated
with the rear facing the goal, the agent will not see rewards as frequently since it
starts out forward, facing the goal.

There is no noticeable difficulty difference between driving forward and reversing
for the agent, with only a truck to control. One should therefore be able to learn
this task at a similar amount of steps with a highly detailed reward function. As
discussed in section 3.2.2.1 this can induce unwanted behaviours though and may
not be a feasible solution.

By also adding a semi-trailer to the truck, steps needed for convergence increases to
approximately 85 million. As the agent with this setup also needs to turn around
somewhere, the truck trajectory is somewhat similar to when not having a semi-
trailer. The difficulties in training are therefore attributed to the changes in kine-
matics, i.e. number of DOF in the vehicle model. One can also, in figure 4.10,
see how instability increases with increased task complexity, as the reward variance
settles slower. It is also visible how the agent undergoes the same phases of learning,
as moving variance patterns are similar only stretched out over a different number
of steps.

To measure pure training performance with different setups, all parameters were
kept the same. However in the experiments involving a more simple task, one could
probably e.g. decrease size of the neural network, making it converge even faster.
In such a case the comparison would have been between optimally trained networks,
which was not the idea. This would still have shown similar results though with
possibly even larger differences.

5.3 Generalisation
True generalisation means that the policy can handle unseen states, i.e. new scenar-
ios. Due to margins in what is seen as an acceptable solution, the network can to
some extent often generalise to scenarios that are close to the ones presented during
training. All experiments related to generalisation in this thesis are based on varying
the semi-trailer length according to a number of discrete lengths and in that way
create new scenarios. If the policy would have been trained on a large number of
semi-trailer lengths covering a range almost continuously, the policy network would
most likely during an evaluation perform well on any length in the range it was
trained on. However training on such a large amount of scenarios is irrational and
highly inefficient. If instead a reasonable number of training scenarios are used, one
can investigate what generalisation performance that can be achieved. There is a
long list of methods tackling the generalisation challenge but as a first step knowing
what varied training scenarios can result in is essential to achieve desired general-
isation performance. Good performance in the generalisation evaluation equals a
cumulative episode reward of at least four. In a generalisation perspective, high

61

5. Discussion

reward is achieved by performing optimal actions even though the scenario and
thereby observation input differ from what has been presented during training.

According to the generalisation experiments described in section 3.4.3 and the result
presented in figure 4.11 all policies perform relatively poor on semi-trailer lengths
that it has not specifically been trained on, i.e. intermediate scenarios. In a visual
observation setup, an intermediate scenario is a questionable concept. When refer-
ring to this, it means a scenario in-between others made up of shorter and longer
semi-trailers in a sequence. When looking at the marked goal reached rates in figure
4.11 these indicate that policy four manages to complete the task in 60% of the
episodes when evaluated on a 12.5 meter semi-trailer. Considering that the closest
scenario that the policy has been trained on is a semi-trailer that is half a meter
longer or shorter, one could argue that 60% success rate is quite good. However,
when visually examining the docking simulation it is clear that the drastically re-
duced reward is justified. The agent fails to dock correctly by crashing and then
repeatedly tries again until it either succeeds or fails within the episode time. There-
fore the success rate does not drop down to zero, since it only takes into account if
the goal was reached. In a generalization perspective this is not only bad though,
as it clearly shows that the policy is making use of experiences from other scenarios
by taking half-decent actions instead of being completely unable to act. With more
training scenarios there is therefore great potential for further generalization.

When further analysing figure 4.11 one clear trend is distinguishable. The two poli-
cies trained on the largest amount of different semi-trailer lengths perform better on
unseen intermediate scenarios. A larger number of lengths meant an increased range
between the longest and shortest while the intervals stayed unchanged. Training a
policy to perform well on a wide range of semi-trailer lengths implies that it has
to handle different kinematics. It is there therefore a more complex task to solve,
but still, performance improved over the whole range and not only for the specific
lengths that were added to the training scenario. This is most likely because it
forces the policy to understand more of the actual kinematics and dynamics and
thereby what a meaningful behaviour is, in order to be able to complete the task.
With unchanged kinematics during training, the policy could instead e.g. have as-
sociated position of the truck with when it was time to steer and any slight change
to the environment or task would then have led to failure. Even if the policies fail
to fully generalise to an extent that makes them unusable on intermediate scenarios,
most certainly they still become more robust to small changes or imperfections in
the environment when increasing the number of training scenarios. As mentioned,
the result in figure 4.11 shows average cumulative rewards that in this environment
indicate bad performance on several intermediate semi-trailer lengths. The trend
that generalisation is improved when increasing the range of lengths is not proven to
increase performance all the way to an acceptable reward level in the whole range.
Most likely there is a limit but due to time limitations, the limit was not explored.
A possible bottleneck could be that the network simply reaches its capacity limit.

62

6
Conclusion

6.1 Observation complexity scaling

It is difficult to determine exactly why visual and measured position does not collab-
orate well. It is not safe to say that this is always the case in all RL implementations.
However, if the environment setup and visual observation resolution are similar to
what is used in this thesis, it is likely.

One explanation could be that the visual input works well to estimate position, to
therefore provide position measurements could clash with the neural networks un-
derstanding of position according to pixel values, making it harder to learn patterns.
One can also conclude that the neural network struggles to extract more detailed
information such as angles from the top-down image. However, with both velocity
and angle being easy to measure, not requiring any advanced sensors, in a real-world
implementation it can be reasonable to base a RL learned network on measurements
as in case 6 if using only velocity does not provide sufficient performance.

6.2 Task complexity scaling

How to measure complexity in an environment is highly individual, but one can
from the results conclude that the largest negative impact on training performance
is found when increasing the kinematic complexity. The negative impact can not
be counteracted by simply increasing training time, since having more complex
kinematics introduces instabilities in training and puts greater demand on the neural
network. When instead changing task to something more difficult such as reversing,
but still using the same dynamic vehicle model, training stability remains similar
and convergence is reached by allowing for more training steps. As mentioned above
this can also be treated by modifying the reward function, which is not as effective
on a more complex vehicle model. To counteract instability one can instead provide
additional detailed measurements, as discussed in section 5.1.

63

6. Conclusion

6.3 Generalisation
By varying the simulation environment during training the trained policy can in-
crease its ability to handle unseen scenarios close to the ones presented during train-
ing. Performing changes that "stretches" and challenge existing kinematics in the
dynamic environment especially appear to affect generalisation in a positive way.

Even if the goal is to achieve good performance and generalisation capability in a
specific range of scenarios. Adding training scenarios outside of that range challenges
the policy and in order to succeed it is constrained to really learn mechanisms in
the environment. Generalise and learning a meaningful behaviour therefore benefits
greatly from varying the environment.

64

7
Future Work

RL is an endless topic and that is why testing and further improvements can be done
on all parts of the implementation in this thesis. There are a couple of areas that
would be especially interesting to look into further. The main limiting factor is time
since each experiment often requires days of training. Therefore, future work should
mainly be focused on expanding and continuing investigations that have already
been started to increase reliability of results. Examples could be to:

• Try other combinations of observations

• Feed stacked visual inputs, as a perception of velocity, and train without any
measurements

• Investigate generalisation performance when training on more semi-trailer lengths

In regards to performance of the policy network it is possible to develop the network
architecture, testing other training algorithms and other reward functions. It could
lead to improvement in training time as well as quality of the actual parking job
e.g. smoothness, accuracy and docking time. One could try to adapt performance
to what is needed for a real world implementation e.g. smaller maximum deviation
in docking angle and distance to dock once stopped.

The theory section 2.3 brings up multiple methods for improving generalisation that
was not tested in practice. It would be valuable to have deeper knowledge on what
effects they have, leaving a demand for further experiments. One could try:

• Implement other algorithms

• Investigate impact of neural network size

• Other regularisation techniques

When the environment used in this thesis was developed it was done to roughly
mimic a real world scenario with a vision to make findings useful in real applications.
It would therefore be interesting to investigate how the outcome of this thesis could
be transferred to reality. e.g. applying lifelike textures to the observation, train
until convergence, and then testing the policy on a real scale model of a semi-trailer
combination.

65

7. Future Work

66

Bibliography

[1] D. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization",
arXiv.org, 2017. [Online]. Available: https://arxiv.org/abs/1412.6980. [Ac-
cessed: 23- Mar- 2020].

[2] V. Mnih et al., "Playing Atari with Deep Reinforcement Learning", arXiv.org,
2013. [Online]. Available: https://arxiv.org/abs/1312.5602. [Accessed: 14-
May- 2020].

[3] A. Krizhevsky, I. Sutskever and G. Hinton, "ImageNet Classification with
Deep Convolutional Neural Networks", Dl.acm.org, 2017. [Online]. Available:
https://doi.org/10.1145/3065386. [Accessed: 23- Mar- 2020].

[4] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning. MIT Press, 2016.

[5] S. Zhang and R. Sutton, "A Deeper Look at Experience Replay", arXiv.org,
2018. [Online]. Available: https://arxiv.org/abs/1712.01275. [Accessed: 23-
Mar- 2020].

[6] J. Ho and S. Ermon, "Generative Adversarial Imitation Learning", arXiv.org,
2016. [Online]. Available: https://arxiv.org/abs/1606.03476. [Accessed: 23-
Mar- 2020].

[7] S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift", arXiv.org, 2015. [Online]. Avail-
able: https://arxiv.org/abs/1502.03167. [Accessed: 21- May- 2020].

[8] T. DeVries and G. Taylor, "Improved Regularization of Convolutional
Neural Networks with Cutout", arXiv.org, 2017. [Online]. Available:
https://arxiv.org/abs/1708.04552. [Accessed: 21- May- 2020].

[9] E. Cubuk, B. Zoph, D. Mane, V. Vasudevan and Q. Le, "AutoAugment: Learn-
ing Augmentation Policies from Data", arXiv.org, 2019. [Online]. Available:
https://arxiv.org/abs/1805.09501. [Accessed: 21- May- 2020].

[10] S. Lawrence, C. Giles and A. Tsoi, What Size Neural Net-
work Gives Optimal Generalization? Convergence Properties of
Backpropagation, 2nd ed. Queensland: Department of Electri-
cal and Computer Engineering University of Queensland, 1996.

67

Bibliography

[Online]. Available: https://clgiles.ist.psu.edu/papers/UMD-CS-TR-
3617.what.size.neural.net.to.use.pdf. [Accessed: 21- May- 2020].

[11] C. Packer, K. Gao, J. Kos, P. Krähenbühl, V. Koltun and D. Song, "Assess-
ing Generalization in Deep Reinforcement Learning", arXiv.org, 2020. [Online].
Available: https://arxiv.org/abs/1810.12282. [Accessed: 13- Apr- 2020].

[12] K. Lee, K. Lee, J. Shin and H. Lee, "Network Randomization: A Simple Tech-
nique for Generalization in Deep Reinforcement Learning", arXiv.org, 2020.
[Online]. Available: https://arxiv.org/abs/1910.05396. [Accessed: 13- Apr-
2020].

[13] J. Hui, "RL-Importance Sampling", Medium, 2020. [Online]. Available:
https://medium.com/@jonathan_hui/rl-importance-sampling-ebfb28b4a8c6.
[Accessed: 21- May- 2020].

[14] U. Larsson, C. Zell, K. Hyyppa and Å. Wernersson, Navigating an articulated
vehicle and reversing with a trailer. San Diego: Proceedings of the 1994 IEEE
International Conference on Robotics and Automation, 1994.

[15] D. Acharya, W. Yan and K. Khoshelham, "Real-time image-based parking oc-
cupancy detection using deep learning", Ceur-ws.org, 2018. [Online]. Available:
http://ceur-ws.org/Vol-2087/paper5.pdf. [Accessed: 21- May- 2020].

[16] T. Jaakkola, S. Singh and M. Jordan, "Reinforcement
Learning Algorithm for Partially Observable Markov De-
cision Problems", ResearchGate, 1999. [Online]. Available:
https://www.researchgate.net/publication/2457557_Reinforcement_Learning_Algorithm_for_Partially_Observable_Markov_Decision_Problems.
[Accessed: 08- Jun- 2020].

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford and O. Klimov, "Prox-
imal Policy Optimization Algorithms", arXiv.org, 2017. [Online]. Available:
https://arxiv.org/abs/1707.06347. [Accessed: 23- Mar- 2020].

[18] L. Weng, "Policy Gradient Algorithms", Lil’Log, 2020. [Online]. Avail-
able: https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-
algorithms.html#policy-gradient. [Accessed: 21- May- 2020].

[19] K. Cobbe, O. Klimov, C. Hesse, T. Kim and J. Schulman, "Quantifying Gen-
eralization in Reinforcement Learning", arXiv.org, 2019. [Online]. Available:
https://arxiv.org/abs/1812.02341. [Accessed: 07- May- 2020].

[20] A. Ecoffet, "An Intuitive Explanation of Policy Gradient", Medium, 2020.
[Online]. Available: https://towardsdatascience.com/an-intuitive-explanation-
of-policy-gradient-part-1-reinforce-aa4392cbfd3c. [Accessed: 21- May- 2020].

[21] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, 2nd ed.
London: MIT Press, 2018.

68

Bibliography

[22] T. Haarnoja et al., "Soft Actor-Critic Algorithms and Applications", arXiv.org,
2019. [Online]. Available: https://arxiv.org/abs/1812.05905. [Accessed: 20-
Mar- 2020].

[23] J. Achiam, Simplified PPO-Clip Objective. OpenAI, 2018. Available:
https://drive.google.com/file/d/1PDzn9RPvaXjJFZkGeapMHbHGiWWW20Ey/view.
[Accessed 7- May- 2020].

[24] J. Schulman, S. Levine, P. Moritz, M. Jordan and P. Abbeel,
"Trust Region Policy Optimization", arXiv.org, 2017. [Online]. Available:
https://arxiv.org/abs/1502.05477. [Accessed: 23- Mar- 2020].

[25] M. Mattar, A. Juliani, V. Berges, D. Pang, J. Ward and J. Shih, "Training
with Proximal Policy Optimization", GitHub, 2018. [Online]. Available:
https://github.com/gzrjzcx/ML-agents/blob/master/docs/Training-PPO.md.
[Accessed: 28- May- 2020].

69

	List of Figures
	List of Tables
	Introduction
	Background
	Purpose
	Objective
	Scope

	Theory
	Fundamental structure
	Markov Decision Process
	Reward
	Observation
	Policy
	On- vs off-policy
	Objective function and optimiser
	Value functions and Bellman equation
	Dynamic programming
	Monte Carlo
	Temporal Difference learning
	Importance sampling
	Experience buffer
	Curriculum Learning
	Imitation Learning

	Algorithms
	Value-based methods
	Policy gradient methods
	Fundamental policy gradient - REINFORCE
	Hyperparameters
	Trust Region Policy Optimisation
	Proximal Policy Optimisation

	Generalisation techniques
	Size of neural network
	Regularisation
	Dropout
	L1 & L2
	Batch Normalisation
	Data augmentation
	Varying Environment

	Method
	Simulation environment
	Dynamics
	Observations
	Environment scripts

	Training setup
	Choice of algorithm
	Tuning hyperparameters

	Training a baseline agent
	Reward function - Complexity scaling analysis
	Reward function - Generalisation analysis

	Evaluation tools
	Convolutional neural network evaluation script

	Experiments
	Complexity scaling - Observation
	Complexity scaling - Task
	Generalisation

	Results
	Observation complexity comparison
	Task complexity scaling
	Generalisation results
	Best achieved performance

	Discussion
	Observation complexity scaling
	Task complexity scaling
	Generalisation

	Conclusion
	Observation complexity scaling
	Task complexity scaling
	Generalisation

	Future Work
	Bibliography

