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Abstract

Collaborative robots of today are distinguished from traditional industrial robots by
the fact that they can work safely hand in hand with humans. They can slow down
or stop when people come too close, collide without causing injuries and be guided
to move in directions directly imposed by a person. To augment the collaboration,
this thesis proves that RL can be utilized to make a robot observe patterns in the
simulated behavior of a human operator and learn how to adapt its own motions
in order to optimize the assembly process. This can be combined with learning
different optimized assembly sequences depending on the learned preferences of the
human operator. To achieve this, tabular Q-learning, linear- and nonlinear function
approximation have been evaluated. Furthermore, challenges and possibilities of
shorten training process through parallelization have been investigated.

The results suggest that tabular Q-learning finds the global optimum faster than
both function approximation methods. However, Q-learning with nonlinear func-
tion approximation has the ability to generalize to an unlimited number of human
behaviour profiles, which is unreasonable with both linear function approximation
and tabular Q-learning. Furthermore, different parallelization strategies such as cen-
tralized/distributed learning coupled with synchronized/asynchronous actors have
successfully been implemented and compared. Although some results remain incon-
clusive, it is clear that all strategies have the ability to speed up learning and increase
model accuracy while they compare differently depending on the problem complexity
and the number of parallel training instances. It has been found that faster con-
vergence using parallelization correlates with larger error, which distinguishes the
distributed synchronized learning strategy that explores more intelligently than the
asynchronous counterpart. The choice of strategy becomes increasingly important
for more complex problems and higher number of instances.

The learning algorithms have been applied to a simulated environment in Robot-
Studio. However, identical communication tools between the learning agent and
the robot controller has been found possible to use for both the virtual robot and
the real robot which simplifies transferability. The results combined are promising
and motivate continued research to advance the development of the next level of
intelligent robots.

Keywords: Artificial Intelligence, Machine Learning, Reinforcement learning, Col-
laborative robots, Closed loop manufacturing
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1
Introduction

Companies like ABB, GE, Siemens, Intel, Funac, Kuka, Bosch, NVIDIA and Mi-
crosoft are all investing substantially in machine learning (ML) approaches to make
their manufacturing processes more efficient [1], [2]. Simultaneously, a similar in-
vestment is seen in collaborative assembly stations where companies like ABB, Kuka
and Festo see this as another way to improve their manufacturing systems [3]. In
those collaborative stations, the conventional way of an operator learning how to
optimally assemble a product together with a robot is expensive since there usually
are many possible actions and finding the sequence of actions that efficiently pro-
duces a high quality product takes time and effort. Additionally, if the operator finds
an optimal solution, it will still only have been tailored for that specific operator
and other operators would have to find their own optimal strategies. However, one
can imagine a corresponding computational approach where an algorithm teaches
the collaborative robot to find optimal strategies for different kinds of operators
and products by testing actions in a simulated environment, and in effect creating
an intelligent collaborative robot. In this thesis, the use of reinforcement learning
(RL) is evaluated to achieve this, where an algorithm can learn which action to
take given a certain situation in order to maximize or minimize a numerical reward
signal [4]. Reward signals in production applications may be production lead time,
which should be minimized, or some quality measure to be maximized by choosing
different actions such as options among feasible assembly operations.

Sutton, Barto and Bach [4] write that an RL method is suitable for problems with
the following three aspects; sensation, action and goal. They explain that a learn-
ing agent, also called a learner, must sense the state of its environment, be able
to take actions that affect the state and it must have a goal related to the state.
This relates closely to what O’Hare [5] describes as key aspects of productivity
and closed loop manufacturing. He writes that in manufacturing systems, there are
three factors with vast impact on productivity; “sensing, thinking and acting”. By
integrating manufacturing intelligence tools in a strategic way, the tools assist in
collecting and understanding data, implementing changes to a manufacturing facil-
ity and effectively achieving a closed loop manufacturing system. The term closed
loop manufacturing itself carries certain ambiguity as it is widely used and different
definitions can be found. In this project the term was used when data collected
from a manufacturing facility is processed by a machine learning algorithm which

1



1. Introduction

produces a result that is implemented in the factory. While the aforementioned
aspects are defined for the physical world, this project realizes the same closed loop
process with RL in a simulated environment and builds a solid foundation for possi-
ble expansion into real world closed loop manufacturing. The reason why the closed
loop is realized in the simulated environment instead of directly to the real one, is
because of the fact that implementing new ideas and methods in physical processes
and stations frequently takes more time and money and has a high probability of
equipment errors. Furthermore, developing the solutions in a simulated environment
allows expansion and flexibility that is not possible in the real world, e.g. running
multiple simulation instances at the same time is considerably easier than building
multiple assembly stations and doing the same. It is therefore more valuable to ini-
tially develop the simulated closed loop, experiment and explore using it, and then
implement those findings in the real world.

1.1 Project purpose and overview

In accordance to the previous section, the purpose of this project is to investigate
the possibility of using RL to improve manufacturing processes by automatizing the
identification of optimal assembly sequences in collaborative stations and enabling
simulated closed loop manufacturing. Since efficiency is a key aspect of this project,
the ability to identify the optimal sequences as fast as possible is also desired. The
most promising way to do this is to use parallel simulation instances, because those
can essentially be infinitely duplicated.

To encapsulate the purpose of this project, the following three research questions
have been developed that this thesis will answer:

1. Can RL be used on a simulation model of a real assembly station to create
a simulated closed loop manufacturing system? What is required so that the
simulated closed loop can be transferred to the real system and a true closed
loop manufacturing system be achieved?

2. Is it possible to teach a collaborative robot both an assembly sequence for a
product and to recognize patterns in the behavior of a human operator and
adapt to them, finding the optimal sequence of actions to assemble a product
for different kinds of operators? Are there different strategies that are better
suited for certain scenarios? How do these strategies compare to traditional
optimization methods?

3. How much can the data gathering, learning and exploration of the RL algo-
rithm be improved by using parallel simulation instances? How should the
parallel instances communicate in order to optimize efficiency and results?

In order to answer these questions, the thesis has been divided into three intrinsically
distinct parts. In Section 3, a simulation model in RobotStudio is presented with
the purpose of evaluating product assembly optimization. In consonance with the

2



1. Introduction

aspects mentioned by Sutton et al, the simulation model allowed the agent to sense
the current state of the ongoing assembly, choose an action or an assembly operation
based on the state and its experience affecting the environment and being able to
reach the goal state which was a complete and correct assembly of the product. The
result of the RL algorithm is an optimal operation sequence that determined the
best action for each state. The second part, in Section 4, investigates parallelization
using different orchestration strategies to merge and control the parallel simulation
instances. The same model as in Section 3 was used in order to have easier modifi-
cation and implementation possibilities. Convergence time and error was compared
between 1, 5 and 10 parallel instances using the different orchestration strategies.
Section 5 is the third part of the thesis and it concerns the implementation of dif-
ferent RL algorithms to teach a collaborative robot to adapt to varying operator
profiles. For this part, a model was created based on a physical collaborative as-
sembly station developed through a strategic alliance between Smarta Fabriker and
ABB. This model was used for investigating both closed loop manufacturing sys-
tems with increased transferability to the physical assembly station, and which RL
algorithms were suitable for human behavioral adaptation.

1.2 Scope and implementation

To provide more detail to the overview of the project described in the previous
section, a basic explanation of the implementation of the project’s different parts is
presented below. These refer to sections 3, 4 and 5 respectively.

Learning optimal product assembly sequence A model consisting of a YuMi
robot with the ability to pick four boxes from different locations and place
them at one of four eligible locations was developed. The boxes are hollow
and open at the bottom so that a smaller box placed on top of a larger box
builds a tower but not vice versa. In the model there are sensors at four
different heights on solely one location and the goal is to activate all sensors.
Due to the construction of the boxes and the placement of the sensors, this can
only be achieved by picking and placing the boxes in the correct sequence on
the correct location. With no information about the sensors and the geometry
of the boxes an RL algorithm will learn how to achieve this goal.

Parallelization in reinforcement learning applications Since the simulation
of actions is the main bottleneck in the learning process, issues and possi-
bilities concerning multiple parallel training instances has been investigated.
For this, the model described above was used together with virtual machines
(VM) on Azure’s cloud service, making it easy to simulate many parallel in-
stances of RobotStudio and observe the effect of different learning strategies
for different problem complexities.

Training adaptable robot for collaborative assembly A simulation model rep-
resenting the assembly station developed and built by Smarta Fabriker was
created. In the RL algorithm for this model, states carried information about

3



1. Introduction

the assembly progression along with observations of the human operator that
cooperated with the robot in the assembly. These observations served as a
basis for the robot to choose actions best suited to the particular operator.
In the station a YuMi robot and a human operator assemble a product con-
sisting of three product parts, two springs and three screws. The product has
no practical value but was constructed to demonstrate a collaborative process
between a human and a robot.

The algorithms used in the models mentioned above have been trained on specific
products and in specific environments. They can therefore not be directly used in
other applications. However, the underlying ideas and the conclusions reached from
these specific applications may be generalized to other scenarios. Simulation speed,
number of parallel instances, data storage and processing are limited to the capacity
of the VM available in Azure within the budget given by Smarta Fabriker. Further-
more, the assembly sequences that are generated by the algorithms will be based
on factors such as maximizing the number of activated sensors, minimizing pro-
duction lead time and synchronizing simultaneous operations. Note that anything
measurable could be a possible factor to affect the outcome of the algorithms.

4



2
Background

The theoretical background for this thesis is primarily rooted in the field of RL,
however it also relates to general ML theories used in the different implementations
of the RL algorithm. Three of the most basic methods for implementing RL is
dynamic programming, Monte Carlo methods and temporal difference learning [4].
Dynamic programming requires full knowledge of the environment which makes it
impractical for the applications in this project, specially because it is difficult or even
impossible to define a complete and accurate model of how an operator behaves in
an assembly station. Further, Silver compares Monte Carlo and temporal difference
methods and points out that TD-methods are a bit biased and sensitive to the initial
values but usually more efficient than Monte Carlo [6]. TD is also fully incremental
which is advantageous in this project with tedious actions. For a more exhaustive
exposition of the models, the reader is advised to read the book Reinforcement
learning - An Introduction by Sutton, Barto and Bach [4].

More specifically, Q-learning will be explained and implemented in this project,
which is the most common TD method to implement RL. In order to evaluate the
advantages of this approach, there is a need to cover theories behind traditional
optimization and planning and place this project in the context of the field today.

2.1 Tabular Q-learning

One can implement RL in multiple ways, with one of the most established methods
being Q-learning in which each action relates to a quality value that reveals how good
it is to do that action in a certain state. To understand the algorithm, a number of
terms will be explained: reward, policy, value-function and action-value or Q-value.
This exposition can be compared to [4, Chapter 1.3 and 6.5]. The idea behind the
reward function is that the algorithm should get positive reinforcement for doing
things well as defined by the programmer. The value function describes how good a
particular state is, which in turn is decided by how much reward is attainable from
that state. The policy of the algorithm is what determines with what probability
certain actions will be conducted at certain states. One common policy is the ε-
greedy policy. The idea is that at any state with probability ε choose an action
randomly, and therefore with probability 1− ε choose an action that maximizes the

5



2. Background

Q-values. One uses this policy so as to avoid local optima and to combine both
exploration and exploitation. Finally, the Q-value function is to actions what the
value function is to states, i.e. it tells how much reward can be attained from doing
a certain action.

Q-learning is an off-policy temporal difference (TD) control algorithm which is de-
fined, with greedy target policy and ε-greedy behavior policy, in algorithm 1. Off-
policy learning means that the algorithm does not necessarily follow the policy, but
tries other actions and then compares them to the policy in order to see which ones
are better. The policy that it compares to is called the target policy and the policy
that it actually follows is called the behavior policy. TD learning, unlike Monte
Carlo where the terminal state has to be reached before evaluation, is the idea that
one can evaluate the Q-value after each action. This is called bootstrapping and
one important result is that regardless of which policy is applied, the action-value
function Q will converge to the optimal action-value function q∗, which consists of
action-values Q(s, a) that are optimal for each state and action [4].

Algorithm 1 Tabular Q-learning
Algorithm parameters: step size α ∈ (0, 1], small ε > 0
Initialize Q(s, a), ∀s ∈ S, a ∈ A, arbitrarily except that Q(terminal, ·) = 0
repeat (for each episode)

Initialize s
repeat (for each step in episode)

Choose a from s using policy derived from Q (e.g. ε-greedy)
Take action a, observe r, s′
Q(s, a)← Q(s, a) + α[r + γ max

a′
Q(s′, a′)−Q(s, a)]

s← s′

until s is terminal
until convergence of Q-values

The idea behind algorithm 1 is that it starts with predefined values for step size/learn-
ing rate α, and ε. Then the Q-values are initialized arbitrarily for all possible states
and actions, except for the terminal Q-value which must be zero, resulting in a table
of Q-values. What happens next is that the initial state is chosen and the algorithm
performs an action as defined by its behavior policy. It then updates the Q-value
for the state it came from and the action it performed based on the old Q-value, the
reward r, the discount factor γ, and a Q-value for the next state s′ from an action
chosen by its target policy. It will perform these behavior policy actions until it
reaches the terminal state, after which it will start over from the initial state but
with an updated Q-value table. This will repeat until the Q-value table no longer
changes over time and converges.

6



2. Background

2.2 Function approximation and deep Q-learning

The tabular Q-learning algorithm described in Section 2.1 is most suitable for a
small number of states and actions because in order to learn a Q-value for a certain
(s,a) pair, that element must be visited during training. For an increasing number
of states and actions, the probability of visiting a certain element in the Q-matrix
decreases and for continuous states this probability is zero. Thus many elements in
the Q-matrix will never be updated. However, it is often the case that for models
with large amount of states, the desired behavior for a state is similar to the behavior
of neighboring states. This means that it would be possible to approximate a Q-value
based on neighboring states even though it has never been visited. For example,
if a state of an inverted pendulum includes the angle of the rod and the goal is to
balance it, the best choice of direction in which to move the rod would be the same
even if the angle were a few degrees different.

More formally, instead of representing the Q-values as a lookup table they will
be represented as a parameterized functional q̂(s, a,w) ≈ qπ(s, a) where π is a
known policy and w is a weight vector. The weights can be chosen to represent
a suitable model for function approximation. They can be the weights in a linear
combination of features important for approximating the action-value function, or
they can be connection weights in a multi-layer artificial neural network (ANN)
that takes the state as input and gives the approximated Q-values as output in a
non-linear mapping. Deep Q-learning refers to the applications where deep neural
networks are used to translate states into Q-values. Linear models are efficient when
it comes to both data and computation whereas nonlinear function approximation
using multi-layer ANNs has been a vital part in many of the applications that have
gained much attention in recent years such as DeepMind’s AlphaGo [4].

According to Sutton, Barto and Bach [4], the tools discussed so far cannot be im-
plemented without the risk of instability for the updates. They denote the three
elements of function approximation, bootstrapping update targets and off-policy
training as the Deadly Triad and explain that instability can only be avoided if a
maximum of two elements of the deadly triad are used at once. This statement will
be considered and investigated in this project.

2.2.1 Linear action-value function approximation

Theory and conclusions in this section can be compared to [4, pp. 195-241]. In linear
action-value function approximation the state and action is represented as a feature
vector x(s, a) and the approximation is in turn defined as

q̂(s, a,w) = x(s, a)Tw. (2.1)

During training of the reinforcement algorithm the weights can be updated to min-
imize the mean squared error J(w) between the approximation q̂(s, a,w) and the
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true action-value function qπ resulting in

J(w) = E[(qπ(s, a)− q̂(s, a,w))2]. (2.2)

Using Stochastic Gradient Descent and taking a step ∆w in the opposite direction
of the gradient of J(w) w.r.t w, results in the update rule

∆w = α(qπ(s, a)− q̂(s, a,w))∇wq̂(s, a,w), (2.3)

where ∇wq̂(s, a,w) is the gradient of q̂(s, a,w) w.r.t w. Using equation (2.1) this
simplifies to

∆w = α(qπ(s, a)− x(s, a)Tw)x(s, a). (2.4)

Lastly, since the true action-value function qπ(s, a) is unknown it must be replaced
with a target. The target in TD-learning is r+ γq̂(s′, a′,w), where a′ is chosen to be
the action that results in the largest approximated Q-value for state s′. This results
in the final update rule

∆w = α(r + γx(s′, a′)Tw− x(s, a)Tw)x(s, a). (2.5)

Note that when using bootstrapping in RL the target r + γq̂(s′, a′,w) depends on
w. However, when calculating the gradients in the back-propagation method the
targets qπ(s, a) are considered as constants w.r.t. the weights. This means that the
effect on changing the weights is only taken into account on the estimate and not
on the targets. Therefore, this method is not by definition the true SGD and is thus
sometimes referred to as a Semi-gradient method [4].

The method is implemented according to algorithm 2.

Algorithm 2 Linear function approximation
Algorithm parameters: step size α, small ε, discount factor γ, loss threshold δ
Initialize w arbitrarily
repeat (for each episode)

Initialize s
repeat (for each step i in episode)

Choose a from s using policy derived from q̂ (e.g. ε-greedy)
Take action a, observe r, s′, a′
Form the feature vectors x(s, a) and x(s′, a′)
w← w + α(r + γx(s′, a′)Tw− x(s, a)Tw)x(s, a)
Store loss in vector J(i) = (r + γx(s′, a′)Tw− x(s, a)Tw)2

s← s′

until s is terminal
Compute mean of loss vector J(w) = mean(J)

until J(w) < δ
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2.2.2 Nonlinear action-value function approximation

(a)

(b)

Figure 2.1: Figure 2.1a shows one neuron in a hidden layer. In this case the
preceding layer has four neurons and the succeeding layer has three neurons. The
weights wi in circles are multiplied with the respective activation aLi producing zLi .
Figure 2.1b depicts an entire neural network consisting of neurons.

Instead of manually constructing the features as described in the previous section,
training the layers of an ANN provides an automatic creation of features appropri-
ate for a given application [4]. The features are represented in the hidden layers as
connection weights which usually are updated using back-propagation in order to
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minimize (or maximize) an objective function such as TD-errors, defined in equation
2.6, or expected rewards. This method is sometimes referred to as deep reinforcement
learning due to the use of multiple layers in a neural network for function approxi-
mation. Feed forward deep neural networks are used in this project. They consist of
simple computational elements called neurons, see Figure 2.1a. Each neuron exists
in one of the network’s layers and a neuron in one layer is typically connected to
neurons in the neighbouring layers. If each neuron is connected to every neuron in
the neighbouring layers the network is called Fully connected. Figure 2.1b depicts a
fully connected feed forward neural network.

In a fully connected neural network each neuron’s input is a linear combination of
the outputs aLi from each neuron in the previous layer using weights wi associated
with the particular neuron. The result z is passed through an activation function
g(z) usually a sigmoid function, hyperbolic tangent (tanh) or a rectified linear unit
(ReLU). This is necessary in order to break the linearity in the network; without
nonlinear activation functions the network would only be able to perform linear
mappings [7]. The output, often called activation are passed as input to each neuron
in the next layer. Further details about neural networks used in this project will be
covered in the upcoming sections. A more extensive introduction of feed forward
neural networks can be read in the article written by Svozil, Kvasnicka and Pospichal
[8].

Letting the network represent a nonlinear function approximating the Q-values tak-
ing the feature vector defined similarly as for linear function approximation as input
and scalar q̂ as output, algorithm 3 can be implemented.

Algorithm 3 Nonlinear function approximation
Algorithm parameters: Optimizer parameters (see Section 2.2.2.2), activation
function, #hidden layers, #hidden units/neurons in each layer, small ε, discount
factor γ, loss threshold δ

Initialize network weights arbitrarily
repeat (for each episode)

Initialize s
repeat (for each step i in episode)

Choose a from s using policy derived from q̂ (e.g. ε-greedy)
Take action a, observe r, s′, a′
Form the feature vectors x(s, a) and x(s′, a′)
Forward propagate x(s, a) and x(s′, a′) through network
Retrieve q̂(s′, a′,w) and q̂(s, a,w)
Update network weights using backpropagation (see section 2.2.2.1)
Store loss in vector J(i) = (r + γq̂(s′, a′,w)− q̂(s, a,w))2

s← s′

until s is terminal
Compute mean of loss vector J(w) = mean(J)

until J(w) < δ
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2.2.2.1 Backpropagation

The network must be trained to be able to map the input to the desired output.
This is performed by updating each neuron’s weights in the direction that reduces
the loss function J(w) that is to be minimized. The loss function in the case of value
function approximation in RL can be the same as in the linear case i.e. the mean
squared TD-error

J(w) = (r + γq̂(s′, a′,w)− q̂(s, a,w))2. (2.6)

To achieve this, Stochastic Gradient Descent (SGD) is a common method (often
referred to as optimization algorithm or optimizer) which for a sample or a batch of
the training data set updates the weights by taking a step α in the opposite direction
of the loss gradient, i.e.

wt+1 = wt − α∇wJ. (2.7)

For a certain layer L corresponding to the left side of Figure 2.1a it holds by the
chain rule that for each weight wLk in that layer

∂J

∂wLk
= ∂J

∂zLk

∂zLk
∂wLk

= ∂J

∂aL+1
∂aL+1

∂zLk
aLk = ∂J

∂aL+1
∂g

∂zLk
aLk , (2.8)

where most interestingly

∂J

∂aL+1 =
∑
i

∂J

∂zL+1
i

∂zL+1
i

∂aL+1 =
∑
i

∂J

∂zL+1
i

wL+1
i . (2.9)

This shows that the gradients in layer L depends on the gradients and the weights
of the next layer L+ 1. Hence, it is natural to start in the last layer, compute

∂J(wN)
∂wN

(2.10)

where wN are the weights in the output layer and then proceed backwards through
the network until all gradients are calculated and the full weight update can be com-
puted. As a result, the output error propagates from the output layer through the
hidden layers to the input layer which is why the algorithm is called backpropagation
[8].

2.2.2.2 Optimizers

As described above, SGD is a common choice of optimizer which is due to its simplic-
ity. For many applications, other optimizers performs much better. Ruder describes
many of them, such as Adagrad, RMSprop and Adam [9]. For many applications,
specially with large networks and sparse gradients, he recommends the adaptive
learning rate methods in general and Adam in particular. Adam has proven to be
a proper choice for this application and is thus the one explained in this section.
The name is derived from adaptive moment estimation and was designed by D. P.
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Kingma and J. Lei Ba to combine the advantages of RMSprop and AdaGrad [10].
For the algorithm, they recommend the following tuning parameters: α = 0.001,
β1 = 0.9, β2 = 0.999, ε = 10−8. The authors observed that since mt and vt are
initialized to zeros they are biased towards zero, specially in the early time steps,
and when β1, β2 are close to 1. They propose a correction for this in the way that
m̂t and v̂t are calculated below. The algorithm is presented below.

Algorithm 4 Adam
Require: α: learning rate
Require: β1, β2: ∈ [0, 1) Exponential decay rates for the moment estimates
Require: J(w): Loss function with parameters w
Require: w0: Initial parameter vector
m0 ← 0 Initialize 1st moment vector
v0 ← 0 Initialize 2nd moment vector
t← 0 Initialize time step
repeat

t← t+ 1
gt ←

∂J(wt−1)
∂wt−1

mt ← β1 ·mt−1 + (1− β1) · gt
vt ← β2 · vt−1 + (1− β2) · gt � gt
m̂t ← mt

1−βt
1

v̂t ← vt

1−βt
2

wt ← wt−1 − α · m̂t√
v̂t+ε

until w has converged
return w

2.2.2.3 Overfitting

When training the model, one wants to find weights that generalize well i.e. when the
model is presented to new data not seen during training, the input-output mapping
is still satisfying. When overfitting, the model performs well on the training data
set but bad on the test data set. This can either be a result of having built an
unnecessary complex model for the application or a result of training on a data set
that is not diverse enough, or a combination of the two.
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Figure 2.2: Visualization of underfitting (to the left): when the model is too
simple. Overfitting (to the right): when the model is too complex. A good fit (in
the middle): a model that is a proper representation of the data.

The phenomenon can be compared to a non-linear interpolation of data points in
a two dimensional problem as in Figure 2.2 [8]. On the other hand, Advani and
Saxe [11] have performed an analysis of generalization error of high-dimensional
neural networks and found some interesting results that contradicts this intuition.
They found that there is what they call a frozen subspace which is large for complex
networks. When the number of weights is much greater than the number of data
samples there are many directions in which there are no training data and as a
consequence those weights have no gradients and are never learnt. Thus, if the
initialization of the weights are set to small numbers, the impact of undesirable
high dimensions is kept negligible. The frozen subspace actually protects against
overfitting and when the network complexity increase, overfitting is often reduced.
Lastly, and less importantly in these applications, underfitting is the opposite to
overfitting. It may occur when the model is too simple for the application making
it impossible to detect the patterns present in the data set.

2.2.2.4 Choosing network architecture

The best architecture for a neural network highly depends on the application. While
there are no general methods for deciding the best architecture some rule of thumb
methods have been documented. Heaton [12] states that there are no theoretical
motives to use more than two hidden layers in a feed forward neural network because
with two layers one can represent an arbritrary decision boundary and approximate
any smooth mapping to any accuracy. He proposes further different rules for set-
ting the number of neurons in each hidden layer. One rule states that the number
of neurons should be between the input and output layer dimension while another
states that it should be less than twice the size of the input layer. Many more pa-
rameters have to be chosen, such as learning rate, activation function and optimizer.
Stathakis [13] lists four commonly used approaches to reach a proper network setup:
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Trial and error Commonly used but with risk of finding a suboptimal network
structure.

Heuristic search Use knowledge from previous experience, often in the form of
formulas estimating the number of required neurons in the hidden layers as a
function of the number of inputs and outputs. This method can also be used
to get a range of topologies to be searched and evaluated.

Exhaustive search This method is simply searching through all topologies which
is not very reasonable to do in a real application because each network takes
a long time to evaluate. Moreover, each network should be evaluated multiple
times due to the fact that neural networks performs differently even when ev-
erything is kept constant due to the randomness when initializing the weights.

Pruning and constructive algorithms Either this algorithm starts with no links
between neurons (weights) or redundantly many and incrementally adds links
or removes links until a network that produces satisfactory results is achieved.
Optimal Brain Damage [14] and Optimal Brain Surgeon [15] are two examples
of commonly used pruning algorithms.

2.3 Simulated closed loop manufacturing system

Figure 2.3: This loop shows more detailed steps of the training loop based on data
from RobotStudio.
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In the loop shown in Figure 2.3, data from the simulation (RobotStudio) is used to
calculate the Q-values which in turn affects the behavior (policy) of the simulated
process. This is what is referred to as the simulated closed loop in the first research
question in Section 1.1 and is a milestone to reach the real closed loop manufacturing
system. The loop is applied to all implementations in this thesis; from tabular Q-
learning to all function approximations. One can compare the loop to algorithms
1, 2 and 3 to see that this loop uses the same structure as those algorithms but
implemented with RobotStudio and of course generalized.

2.4 Reward shaping

When the goal is to build an AI application that generalizes well to varying en-
vironments, design of the reward function is crucial. Dewey [16] points out that
the more general and autonomous a RL agent becomes, the design of rewards that
elicit desired behaviors becomes both more important and more difficult. However,
in this project, generality when it comes to the reward function will not be a pri-
ority. Instead, reward shaping will be exploited which is a method of integrating
knowledge through a strategic design of the reward function so that the algorithm
is guided faster towards the goal [17]. First, some considerations must be taken into
account because of the risk that the engineer guides the algorithm into suboptimal
solutions and loses the optimal one that may yet be unknown to the designer of
the reward function. Since it is desired that the agent finds the optimal solution
even though (and specially if) it was unknown to the engineer, the reward function
must not force the algorithm into suboptimal solutions. Fortunately, the concept
of potential-based reward shaping can be used which has proven not to alter the
optimal policy [18]. This holds if a reward F (s, s′) is provided in addition to the
regular reward r where F is defined as the difference of some real-valued potential
function φ between a source state s and a destination state s′ according to

F = γφ(s)− φ(s′), (2.11)

where γ is the same discount factor as in the original algorithm. As a result, the
update rule in the tabular Q-learning algorithm takes the form

Q(s, a)← Q(s, a) + α[r + F (s, s′) + γmin
a′

Q(s′, a′)−Q(s, a)]. (2.12)

Similarly, for the function approximation methods, the TD-target is modified to

r + F (s, s′) + γq̂(s′, a′,w). (2.13)

One example of a potential function is φ(s) = −d(s) where d(s) is the distance from
state s to the goal state. According to the heuristic, the potential function should be
higher the closer the state is to the goal state which is why the distance is negated
[19].
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2.5 Experience replay

In general, machine learning algorithms need large amounts of data to converge
and RL, specially deep RL, is not an exception. When applying RL on simulations
that are slow, one therefore has to deal with a potential scarcity of data. One
solution is to simulate many parallel instances and orchestrate learning with some
update strategy. This is explained more in Section 2.6 and investigated thoroughly
in Section 4. However, this project also concerns possibilities and challenges when it
comes to training on a physical station. Parallel training on physical stations are of
course limited to the number of physical stations available which usually is a small
number. This means that it is hard to collect the large amount of data required. A
method that can increase data efficiency proposed by Lin [20] is called Experience
Replay in which the data collected are stored in a memory called Replay Memory.
The data in the replay memory is presented to the RL algorithm repeatedly so that
data already experienced will be re-experienced. Lin explains that the result will
be that the rewards received will propagate faster which speeds up the learning
process. A warning though, as Lin writes, is that this method can be harmful
when the environment changes rapidly. Experience replay has been successfully
implemented in several physical real-time control problems by Sander, Buşoniu and
Babuška [21] which demonstrate that experience replay RL methods can be well
suited for control of physical systems.

2.6 Parallel instance orchestration

In this application, every action is simulated in RobotStudio in order to retrieve
the reward. Hence, the simulation will be the main bottleneck in the algorithm.
A way to overcome the speed limitation in the simulation software is to run many
parallel instances where each instance simulates an action and sends the reward to
the algorithm. One important factor that makes this strategy possible is that the
update of the Q-values is independent of the update sequence. This means that the
Q-value of an action occurring late in an assembly sequence can be updated before
a Q-value of an early action. This will often be the case when multiple instances
are running in parallel. Nevertheless, the update strategy of the Q-matrix must be
considered carefully. It is often the case that a global Q-matrix is updated from
multiple training instances. As shown in the update step of algorithm 1, the new Q-
value depends on the previous one. Suppose then that instance A starts simulating a
certain action at time tA, based on a policy evaluated with the global Q-matrix, and
instance B starts simulating the same action based on the same global Q-matrix at
time tB where tA < tB. Then, instance B will overwrite the Q-value that has already
been updated by instance A and as a result the experience gathered from instance
A will be lost because the update from instance B is based on an already aged Q-
matrix. The impact of this depends on the application and hence the suitability of
different update strategies varies and must be evaluated for the specific application.
Strategies evaluated in this project are described in more detail in Section 4.
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2.6.1 Central learner and distributed learners

In this context, the terms actors and learners are often used for separating the
mechanism that actually performs the different actions in its environment and the
learning algorithm that uses the results gathered by the actors. In this project the
actors are the simulated robots. When the actors, are the bottleneck, as in this case
with tedious RobotStudio simulations, a centralized learner is preferred because this
will avoid any loss of data collected by the actors as opposed to the case described
above with one fast instance A and one slow instance B. Each actor will update
a global Q-matrix based on the latest parameters after each action. Also the the
exploration will be based on the latest updates on the global Q-matrix from all
instances. However, in a scenario where the learner is the bottleneck which might
be the case when sufficiently many parallel simulations instances run, the update
strategy is not that straight forward. It might then be more computationally efficient
to collect data in batches and distribute learning on multiple GPUs. Challenges then
arise when it comes to how to orchestrate updates from different learners.

Espeholt et al [22] propose an architecture called IMPALA (Importance Weighted
Actor-Learner Architecture) that together with the V-trace off-policy algorithm
deals with these issues. In this tool actors, i.e. instances of RobotStudio simu-
lations, gather experience and send it in the form of states, actions and rewards to
a learner which in this project corresponds to the algorithm implemented in Visual
Studio. Either the actors send minibatches of trajectories of data via a queue to
a centralized learner and the actors receive the latest policy parameters from the
learner, or the policy parameters and the data trajectories are distributed across
multiple synchronized learners. In both strategies, the actors and learners are com-
pletely decoupled; the actors collect data until a desired mini batch size is stored at
the same time as the learners update the model parameters. As a result, the policy
on the actors lag behind the policy on the learners and to correct for this devia-
tion a correction method is needed. Espeholt et al deal with this by introducing
the V-trace algorithm that compensates for the data collected by the actors being
off-policy. In their article, Espeholt et al show that their novel correction method
V-trace outperforms traditional methods.

2.7 Similar projects and their relevance

In this part, research projects that relate closely to this project are presented. They
contribute with partly answering the research questions and are reflected upon in
Section 6.

2.7.1 Tabular Q-learning and function approximation

In the assembly station model in Section 5, the learning algorithm was extended
from tabular Q-learning to function approximation for increased flexibility when it
came to the state definition. Unintuitively, using deep neural networks for function
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approximation might converge faster than tabular Q-learning. Ehn and Werner [23]
found that function approximation converged faster than tabular Q-learning due to
the fact that each update of the model updates all states (specially similar states)
instead of only one state at a time which speeds up training. Another observation
from the work of Ehn and Adam is that in order to define a problem solvable
for tabular Q-learning they had to reduce the amount information defining a state
which lead to less accurate results while all information easily could be stored when
applying function approximation. This indicates that for more complex applications
the advantages of non-linear function approximation might become more evident.

2.7.2 Offline optimization and reinforcement learning

As RL is an algorithm that updates parameters in order to minimize or maximize a
loss function it is closely related to traditional optimization. However, there are some
important differences that will be covered briefly in this section based on a compari-
son of the two methods made by Özçelikkale, Koseoglu and Srivastava [24]. In their
study, they optimize the energy allocation of an energy beacon to different sensors
and also the data transmission powers of the sensors. The loss to be minimized is
defined as the field reconstruction error at the sink. Traditional optimization meth-
ods require full knowledge of the problem or that modeling assumptions are made.
If this can be achieved then there are methods that guarantee convergence to an
optimal solution. RL methods do not require full knowledge of the system, instead
the nature of the system is automatically learnt within the algorithm. In general,
this comes with a cost of an increased number of iterations before convergence. On
the other hand, as Özçelikkale, Koseoglu and Srivastava point out, it can be argued
that since the optimization approach requires prior knowledge of the model, which
is often gained through interactions with the system, overhead training in some
sense must be conducted. As a conclusion for their application, the study shows
that if the number of iterations is disregarded, off-line optimization and RL reach
similar performance. Another interesting yet expected result is that if the assumed
model in the optimization problem differs from the actual model, the performance
decreases. In RL such discrepancies do not exist because no model assumptions
are made. A final note that they consider as future work touch upon the fact that
the RL approach can treat modeling and optimization as separate tasks. Then a
simulation model of the real world is used for initial training to achieve a plausible
model which is later transferred to the real world for final optimization.

2.7.3 Simulation gap

Simulation models are only representations of the real world and include many
simplifications. When training an RL algorithm on simulation models it is therefore
important to consider how to deal with simulation biases. J. Kober et al write that
RL algorithms exploit model inaccuracies if they are beneficial in order to maximize
the reward function which can lead to results that are overfitted and perform well
in the simulation but that cannot be implemented on the real system. However, one
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way to reduce this risk is to introduce stochastic distributions in the models [25].
In this project the gap between simulation and reality will have to be sufficiently
small so that the result can be applicable to the real station even though it has been
synthesized mainly through training on the simulation environment.

2.7.4 AI technology from video games

The core ideas, goals and methods behind this thesis are all supported by previous
research and studies. This is primarily because the setup for this thesis where an
assembly station has a limited amount of actions and a goal of assembling a product
can be viewed as a video game. One can therefore refer to research in previous RL
projects related to different gaming scenarios. For instance Firoiu et al [26] applied
RL to a video game where the algorithm had a set number of 54 actions. It then
had to beat its opponent through these actions, and would get a reward for doing
so. This is similar to the robot and the operator having a set number of actions
to assemble the product, but instead of beating an opponent, the algorithm has to
assemble the product quickly and with high quality. The famous paper by Mnih
et al [27] where they developed a RL algorithm to play many Atari games, also
shows the possibility and flexibility of these algorithms for similar scenarios. The
main difference between these papers and this project is the input model where both
Fiouiu et al and Mnih et al had input in the form of pixelated images, which meant
a great deal of data to analyze and motivated them to use deep RL. However, the
simulated model used in this thesis will have relatively few states, which simplifies
the needed methods and computing power.

2.7.4.1 GOAP

A research project by Yu et al [28] presents a method for mechanical assembly plan-
ning using AI technology from games. They used Goal-Oriented Action Planning
(GOAP) which is based on STRIPS (STanford Research Institute Problem Solver)
in order to find the optimal assembly sequence of pump components. GOAP is an
automated planner and one of the most important features is its dynamic replanning
capability which was used in the project in order to enable the system to change
the assembly sequence based on the behavior of the operator. It is argued that
this flexibility feature is what makes GOAP superior to finite state machine (FSM)
techniques. Owens [29] also compares GOAP with FSM where he points out that in
FSM all the connections between states and actions must be predefined as opposed
to GOAP where the states and actions are decoupled and the relations are learnt by
the system itself. A complex FSM can be extremely difficult to modify in order to
add or remove possible actions whereas in GOAP the absence of a fully defined con-
nected model allows the user to add and remove actions to the action space without
the need to modify the model; GOAP will learn to adapt to the new conditions.
This is a substantial advantage when working with mechanical assembly sequence
planning of complex products when it comes to the ease of building the search model
and it also allows the algorithm to find sequences that might not have been found
if it were not an obvious solution for the modeling engineer. Owens explains that
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GOAP is an artificial intelligence system that finds a sequence of actions to satisfy
a particular goal where the sequence depends not only on the goal state but also on
the current state of the agent. In an assembly application, this allows the agent to
modify the sequence adapting it to the current operator with a certain behavior.

2.7.5 Planning Domain Definition Language

Planning Domain Definition Language (PDDL) is a standardized artificial intel-
ligence planning language first deveoped by Drew McDermott et al 1998 for the
International Conference on AI Planning and Scheduling (AIPS) planning competi-
tion [30]. The language is developed with a high level of neutrality and as a result
many extensions of the first version in different directions have been developed and
released in connection with the competition. Basically, PDDL includes a problem
definition with objects, initial state and goal state, and a domain definition with
predicates (boolean properties of the objects) and actions. Finally there is a solu-
tion checker that returns a sequence of actions.
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Learning optimal product

assembly sequence

(a)

(b)

Figure 3.1: Figure 3.1a shows the RobotStudio model used to find an optimal
assembly sequence. Figure 3.1b shows how each box is hollow underneath, which
makes it impossible to stack a larger box on top of a smaller one.

Methods and algorithms covered in the previous chapter has been applied on two
simulation models in order to find answers to the research questions. The model
in Figure 3.1a was developed with the purpose of demonstrating the feasibility of
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learning an optimal assembly sequence. The idea behind the model is that the robot
can choose from one of four hollow boxes, visualized in Figure 3.1b, and has to place
them on the red pillar so as to build the highest possible tower. Since the boxes
vary in size, there is only one optimal sequence of actions. By activating the built-
in physics engine in RobotStudio, the robot can learn how the objects physically
interact with each other. For example, a large box will fall down and enclose a
small one if the robot tries to stack them in the wrong order. To learn this, tabular
Q-learning according to algorithm 1 is used.

In this specific case, the application itself is without inherit value but it is concep-
tually useful. This because it is easily scalable in difficulty as one can for example
choose how many pillars the robot can place the boxes on, if the robot can repeat
actions, or if it can place the boxes on different heights. Each increase in complexity
will result in the simulations taking more time, which limits the amount of data
that can be gathered in a given time. For that reason, this thesis will focus on
the moderately difficult case for this model and will not allow the robot to perform
the same action twice, or place the boxes on different heights. Another particularly
useful aspect of this model is that it simplifies assembly processes that can be com-
plicated and long, into something that is easy to understand and explain but still
has the same underlying idea. All product assemblies can essentially be reduced
to a deterministic chain of events in the sense of ”Do A, then do B”. One can for
example imagine that building a tower on the red pillar is equivalent to constructing
a bolted joint, where you first have to drill a hole in the sheet metal, place the bolt
and tighten the nut. Any other sequence of actions will not work, as in the case
with the described model.

The model is also reused when evaluating the effects of running multiple parallel
simulation instances, described in Section 4. This model has a small number of
states and actions which makes tabular Q-learning a suitable choice to use in the
learning algorithm. Hence, function approximation is not applied here but on the
assembly station in Section 5.
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3.1 Setup

State #Boxes on
red pillar

#Boxes on
non-red pillars Reward Optimal Q-value for

corresponding action
Initial 0 0 0 -
Error 1,2,3 >0 −50 -50
Height 1 1 0 20 116.56
Height 2 2 0 35 128.75
Height 3 3 0 50 125
Height 4 4 0 100 100

Table 3.1: State definitions and reward system for the system shown in Figure
3.1. The state relates to the number of boxes placed on the red pillar. The more
boxes placed on the red pillar, the higher the reward. A negative reward is achieved
whenever a box is placed on a non-red pillar. In the last column, approximations of
the optimal Q-value for the action leading to the respective state is given.

The actions were defined in the form ”Pick X and place on pillar Y” where X is
defined as the set of items Box 1, Box 2, Box 3, Box 4 whereas Y is defined as the
set of pillars Green, Yellow, Blue, Red.

The states were defined based on the number of items stacked on the red pillar.
Four object sensors were placed at different heights on the red pillar to determine
how many boxes have been stacked there. If an action did not lead to an additional
sensor being activated, the agent ended up in an error state. The goal state, Height
4 in Table 3.1, was reached when all four sensors were activated which only occurred
when the boxes were stacked in the correct sequence on the red pillar. If an action
put the agent in the error state, it would be punished with a negative reward of -50.
State 2 and 3 would yield positive rewards of 30 and 50 respectively because they
corresponded to states from where it was possible to reach one of the goal states. A
reward of 100 was given if the goal state was reached. These definitions are clearly
summarized in Table 3.1. The magnitude of the values were selected arbitrarily,
however their relations to each other was chosen through trial and error as they
affect convergence time.
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3.2 Convergence analysis

(a)

(b)

Figure 3.2: Figure 3.2a and Figure 3.2b show the Q-values and MSE respectively
during training of the model. For reference, the optimal Q-values are given in Table
3.1.

Using this setup, the convergence behavior in Table 3.2a and 3.2b was observed. The
model is considered converged when the largest change of any Q-value during the last
two epochs is less than 0.1. These values were chosen based on the desire to decrease
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the probability of the algorithm getting stuck in a local optimum and being satisfied
with a sub-optimal solution. In combination with an ε-greedy behavior policy, the
algorithm managed to find a solution close to the optimal values in Table 3.1 in a
short amount of time. The Q-values and the loss in the plots are updated after each
epoch i.e. each time all boxes have been picked and placed. Hence, in this case the
number of updates (on the x-axis) is equal to the number of epochs.

Figure 3.2a shows the result of each update during training. The red lines relate
to actions that did not manage increase the number of sensors activated and thus
leading to the error state, while the non-red lines correspond to actions activating
the sensor given in the legend and thus leading to a state from which the goal state
can be reached. The same definitions hold for all subsequent plots related to this
simulation model. Every action that leads to the error state will eventually converge
to −50. Since only a stack on the red pillar is rewarded, Height 1 corresponds to
placing the biggest box on the red pillar, Height 2 when the second biggest box is
placed on top of the biggest one on the red pillar etc. The difference from optimal
Q is calculated as

na∑
a=1

Qa −Q∗a , (3.1)

where na is the total number of actions, Qa and Q∗a are the calculated Q-value and
optimal Q-value for action a respectively. The simulation time is not the real time
but the the simulated time that depends on how fast the simulation runs. It is
observable from the figure that the different successful states are achieved in correct
succession, with the algorithm first learning that the largest box should be placed
on the red pillar, then that the next largest box should be placed on top of it, and
so on. Furthermore, one can also see how not all Q-values were explored as there is
at least one state with an initial Q-value. This is directly connected to the relatively
greedy behavior policy that was chosen. It is assumed that since minimization of
production lead time is the driving factor, the algorithm should finish when the
optimal solution has been found. Nevertheless, there are cases where optimal Q-
values for all actions wants to be known, see Section 5, and in those cases the policy
should be completely exploratory.

As can be seen in the plot legend of Figure 3.2b convergence was reached after 2953
simulated seconds. Furthermore, comparing both Figure 3.2a and 3.2b shows a clear
connection between the sudden and large change in loss and the discovery of a new
successful state. Looking at Figure 3.2a around the 17th update when the algorithm
locates Height 4, one can see a massive loss spike in Figure 3.2b. The loss chart also
motivates the convergence check that was chosen since it is clear that at some point
before the goal state was found the algorithm was almost at 0 loss. Not checking
convergence at every epoch increases the probability of the algorithm finding the
optimum before being satisfied with the local optimum.

The results from this model show that it is possible to use tabular Q-learning in a
simulated environment using a built-in physics engine to learn an optimal assembly
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sequence. It was noticed that for faster and guaranteed convergence, only one goal
state is preferred. Additionally, time can be saved if states that are not error states
are only reachable through a deterministic sequence of actions.
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Parallelization in reinforcement

learning applications

Figure 4.1: 10 instances of the model in Section 3 simulated in parallel using VM
on Azure.

As the experiments conducted in Section 2.1, and indeed RL experiments in gen-
eral, take a great deal of time, parallelization of multiple RobotStudio instances is
explored as a possible strategy to decrease convergence time. Different methods
of how to orchestrate parallel actors (simulation instances) and how to update the
Q-values based on experience from them are investigated. The model described
in Section 3 is used to analyze the effects of different strategies when scaling up
to learning on multiple parallel simulation instances. Hence this analysis has been
implemented with the same tabular Q-learning method as in Section 3. Figure 4.1
shows 10 instances of this model working in parallel in order to build the Q-matrix
efficiently. Furthermore, it is important to note that there is no intentional con-
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trol of the different instances, so which instance is faster or slower is unknown and
therefore the synchronous actors are, perhaps unconventionally, randomized as well.
This is however motivated by the fact that this increases the generalization of the
system as the instances can change their speeds without having to change anything
in the algorithm.

Algorithm 5 Centralized learner with asynchronous/synchronous actors
Initialize global Q-matrix
repeat

Choose actions for n instances based on global Q-matrix
for each instance i ∈ n do

Simulate action in instance i
Retrieve simulation data
Send to RL agent (global)
RL agent updates global Q-matrix


in parallel

if Synchronized strategy then
Wait for all other instances

until convergence of Q-values, checked every other epoch

Algorithm 6 Distributed learner with asynchronous/synchronous actors
Initialize global Q-matrix
Initialize n local Q-matrices based on global Q-matrix
repeat

Choose actions for n instances based on their local Q-matrices
for each instance i ∈ n do

Simulate action in instance i
Retrieve simulation data
Update local Q-matrix
if Synchronized strategy then


in parallel

Wait for all other instances
if 2 epochs have passed for instance i then

Merge global and local Q-matrix of instance i
until convergence of Q-values, checked every other epoch

Four different update strategies have been evaluated, primarily based on the theo-
retical background presented in Section 2.6.1 and algorithms 5 and 6:

Centralized learner with asynchronous actors Each actor will send collected
data to a central learner after each action. The learner updates the Q-values
as soon as it receives data. The implementation follows the pseudo-code shown
in algorithm 5.

Centralized learner with synchronized actors The updates are calculated as
soon data is received on the learner just as in the previous strategy. Here,
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however, each actor will perform all actions in an epoch and wait for all other
instances to finish before it starts the next epoch, meaning that all actors
always start each epoch at the same time. The implementation follows the
pseudo-code shown in algorithm 5.

Distributed learners with asynchronous actors Local Q-values are calculated
in each instance, and after two epochs they are inserted in a global Q-matrix
in the order in which each instance finishes every two epochs. The implemen-
tation follows the pseudo-code shown in algorithm 6.

Distributed learner with synchronized actors Local Q-values are calculated
in each instance as in the previous strategy but inserted in the global Q-
matrix first when all instances have finished two epochs. Then all instances
proceed with the next two epochs synchronously. The implementation follows
the pseudo-code shown in algorithm 6.

A tool for orchestrating updates from multiple actors called IMPALA was described
in Section 2.6 which is well-suited for multitask RL with large amounts of data.
In this project the applications are simpler and data is scarce which makes it in-
appropriate to apply IMPALA, but when the concepts in this project are scaled
sufficiently, it might be an efficient strategy. Instead of applying IMPALA and the
V-trace algorithm, the aforementioned methods were implemented.

In Section 2.6 the risk of losing data when running parallel instances was explained.
This risk is present in both the synchronizing and the asynchronous strategy. Since
the order in which instances access the global Q-matrix is random it is hard to
reach general conclusions of how the effect of this differs between the two strategies.
However, since the absolute value of the Q-values in the box model has proven to
increase monotonically this can easily be avoided by updating Q-values from an
instance only if the update would increase the absolute value of the global Q-value.
In that way, updates will only be saved if they are closer to the optimum. This
is generally not an option but in this special case it was a good way to highlight
strategy attributes that would be hard to observe otherwise.

Another problem that was noticed for one instance but caused increased disturbance
with multiple instances is that when a specific state can be reached through different
sequences of actions, instances sometimes work against each other. Then, it becomes
harder to learn what sequence is desired since the profitable sequence will increase
a certain action value while a unprofitable sequence will decrease it. For example,
Height 1 can be reached by putting any of the smaller boxes underneath the largest
box, but that would be undesirable. This emphasizes the insight that time can be
saved if states are defined so that if they belong to a desired sequence, they should
not be reachable from undesired sequences. In this project, this was realized by
sending all the actions that did not lead to an increase of the height of the stack to
an error state. Note that this is not a requirement for RL to work, however it is a
way to increase that probability while decreasing convergence time substantially.
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4.1 Parallel instance analysis

Parameter Value
Convergence tolerance, δ 0.1

Learning rate, α 0.8
Discount factor, γ 0.75
Exploration rate, ε 0.6

Table 4.1: Test parameters used for each learner in the parallel instance tests.

1 instance

Test Instances Simulation time (s) Error Avg. simulation time (std. dev.)
Avg. error (std. dev.)

1 1 2790 460.62

2902 (317.30)
491.55 (54.22)

2 1 2953 500.04
3 1 3392 448.10
4 1 2854 466.75
5 1 2521 582.26

Table 4.2: The table presents the simulation time and error (see equation 3.1) for
five runs with one instance. This serves as a reference, emphasizing the effects of
parallelizing.

Table 4.1 lists the values used in all the parallel instance tests for the parameters
corresponding to the Q-learning algorithm presented in Section 2.1. In Table 4.2
data for one instance is collected for comparison with multiple instances. Simulation
time is the simulated time in seconds passed before the Q-values have converged.
The error is defined as in equation 3.1. One notices quite large errors in this case
which is due to the fact that error states have most likely not converged. This is
seen when looking at Figure 3.2a which shows the Q-values for 1 instance as well.
The optimal values have converged but the algorithm takes too long to find the
other Q-values, which results in it converging with larger errors. The average and
standard deviation of the test runs are presented in the last column. For all tests with
multiple instances convergence is checked every two epochs and defined as reached
when the maximum difference between the present Q-values and the Q-values two
epochs before is less than δ as shown in Table 4.1. The reason why convergence is
specifically checked every two epochs, is simply because it was found that checking
convergence every epoch leads to a greater probability of getting stuck at a local
optimum.

For evaluating the strategies described above, tests with 5 and 10 instances were
conducted to observe the effects of scaling the number of instances. Moreover, tests
were also conducted where the robot was only allowed to place boxes on the red
pillar. In that way the impact of the strategies based on varying problem complexity
could be analyzed.
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5 instances

Test Strategy Simulation time (s) Error Avg. simulation time (std. dev.)
Avg. error (std. dev.)

1 Cent. async. 2262 19.44

2133 (367.25)
34.27 (24.38)

2 Cent. async. 1904 74.74
3 Cent. async. 1729 39.56
4 Cent. async. 2083 21.36
5 Cent. async. 2685 16.23
6 Cent. sync. 2169 26.45

2035 (97.04)
68.43 (38.81)

7 Cent. sync. 2004 75.63
8 Cent. sync. 1912 124.77
9 Cent. sync. 2003 77.71
10 Cent. sync. 2086 37.58
11 Dist. async. 2693 18.53

2416 (230)
33.76 (23.37)

12 Dist. async. 2538 73.41
13 Dist. async. 2080 36.64
14 Dist. async. 2334 19.78
15 Dist. async. 2435 20.47
16 Dist. sync. 1741 72.36

1858.6 (95.17)
105.37 (32.99)

17 Dist. sync. 1904 107.94
18 Dist. sync. 1994 154.59
19 Dist. sync. 1829 114.17
20 Dist. sync. 1825 77.81

Table 4.3: The table shows the results of 5 measurements for each strategy de-
scribed in Section 4 using 5 parallel instances.

As anticipated, Table 4.3 shows that using parallel instances, regardless of the strat-
egy chosen, reduces both the convergence time itself as well as its variation between
measurements. Not equally as expected is that the error reduces even more dras-
tically; converged values are much closer to the optimum when running multiple
instances. Since each of the 5 parallel instances converges approximately at the
same time, their combined simulation time is much larger than the time it took for
one instance. This means that the 5 parallel instances have explored a much larger
number of actions, even though the individual convergence time is less. By looking
at the total number of epochs explored before convergence, one can argue that it is
harder to converge with many instances. This is because the random exploration
that accompanies the ε-greedy policy increases when the number of instances in-
creases. For each state in one instance, there is an ε high probability that the action
is chosen randomly. At the same time, for each state in one instance, there are five
instances in that state in the corresponding multiple instance simulation, each of
which will explore randomly with probability ε. This increased exploration rate is
the explanation behind the dramatically reduced error and the more modest reduc-
tion in simulation time. The same tendencies is observed moving from 5 instances
to 10 instances. Lastly, it is clear that the asynchronous/synchronous strategies
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differ, both for centralized and distributed learning. Further comparison between
the strategies will follow.

10 instances

Test Strategy Simulation time (s) Error Avg. simulation time (std. dev.)
Avg. error (std. dev.)

1 Cent. async. 1488 3.45

1464.2 (42.16)
8.89 (11.31)

2 Cent. async. 1389 29.05
3 Cent. async. 1479 3.41
4 Cent. async. 1483 5.51
5 Cent. async. 1482 3.05
6 Cent. sync. 1571 3.17

1603.8 (100.83)
5.99 (5.39)

7 Cent. sync. 1643 10.64
8 Cent. sync. 1572 2.66
9 Cent. sync. 1481 0.63
10 Cent. sync. 1752 12.85
11 Dist. async. 1841 1.3

1950 (131.0)
16.06 (26.62)

12 Dist. async. 1821 0.4
13 Dist. async. 2080 62.94
14 Dist. async. 1926 1.38
15 Dist. async. 1910 12.14
16 Dist. sync. 1400 73.48

1443 (110.6)
43.62 (35.97)

17 Dist. sync. 1560 7.56
18 Dist. sync. 1309 17.14
19 Dist. sync. 1555 89.52
20 Dist. sync. 1389 30.42

Table 4.4: The table shows the results of 5 measurements for each strategy de-
scribed in Section 4 using 10 parallel instances.

The result from Table 4.3 and 4.4 proves not only that the simulation time necessary
for convergence and the error decreases with increased number of instances but also
that the result is more stable. Comparing to Table 4.2, it can be deduced that
using 10 parallel instances decreases the convergence time by 50% and reduces the
error by at least a factor of 50. Stability in this context means that the variation in
simulation time between the tests reduces and the possibility of exploring the entire
set of actions increases. It is also evident that the difference between the strategies
is larger for distributed learning compared to centralized learning. Another result
is that faster convergence correlates with larger errors and that when the number
of instances scales to 10, the errors are larger for distributed learning than for
centralized learning. Interestingly, the distributed learning with synchronized actors
is very fast and can often beat the centralized learners when it comes to simulation
time. However, the speed comes with the cost of large errors, whose importance
can be questioned since those errors are driven by not having explored all the error
states.
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10 instances, reduced problem complexity

Test Strategy Simulation time (s) Error Avg. simulation time (std. dev.)
Avg. error (std. dev.)

1 Cent. async. 430 0.16

447.2 (71.95)
0.5 (0.96)

2 Cent. async. 430 0.02
3 Cent. async. 516 0.02
4 Cent. async. 344 2.22
5 Cent. async. 516 0.08
6 Cent. sync. 344 0.1

412.8 (38.46)
0.024 (0.04)

7 Cent. sync. 430 0.02
8 Cent. sync. 430 0
9 Cent. sync. 430 0
10 Cent. sync. 430 0
11 Dist. async. 602 0.5

756.8 (112.13)
0.272 (0.218)

12 Dist. async. 860 0.52
13 Dist. async. 688 0.1
14 Dist. async. 860 0.1
15 Dist. async. 774 0.14
16 Dist. sync. 688 0.08

670.8 (38.46)
0.268 (0.21)

17 Dist. sync. 688 0.16
18 Dist. sync. 688 0.44
19 Dist. sync. 602 0.54
20 Dist. sync. 688 0.12

Table 4.5: The table shows the results of 5 measurements for each strategy de-
scribed in Section 4 using 10 parallel instances with reduced problem complexity by
only enabling the robot to place the boxes on the red pillar i.e. only the correct
stacking order is learned.

Table 4.5 shows that when the complexity of the problem decreases, the centralized
learners gain advantage over the distributed and more specifically, the distributed
learners with synchronized actors seems to lose earlier advantages.
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#Inst. Model Comparison Avg. Increased Performance

5 4 Pillars

Cent.
&

Dist.

Cent. async. 1.13 times faster than dist. async.
Dist. async. 1.01 times more accurate than cent. async.
Dist. sync. 1.09 times faster than cent. sync.
Cent. sync. 1.54 times more accurate than dist. sync.

Async.
&

Sync.

Cent. sync. 1.05 times faster than cent. async.
Cent. async. 1.99 times more accurate than cent. sync.
Dist. sync. 1.3 times faster than dist. async.
Dist. async. 3.1 times more accurate than dist. sync.

10 4 Pillars

Cent.
&

Dist.

Cent. async. 1.33 times faster than dist. async.
Cent. async. 1.8 times more accurate than dist. async.
Dist. sync. 1.11 times faster than cent. sync.
Cent. sync. 7.28 times more accurate than dist. sync.

Async.
&

Sync.

Cent. async. 1.09 times faster than cent. sync.
Cent. sync. 1.48 times more accurate than cent. async.
Dist. sync. 1.35 times faster than dist. async.
Dist. async. 2.7 times more accurate than dist. sync.

10 1 Pillar

Cent.
&

Dist.

Cent. async. 1.69 times faster than dist. async.
Dist. async. 1.83 times more accurate than cent. async.
Cent. sync. 1.62 times faster than dist. sync.
Cent. sync. 11.16 times more accurate than dist. sync.

Async.
&

Dist.

Cent. sync. 1.08 times faster than cent. async.
Cent. sync. 20.8 times more accurate than cent. async.
Dist. sync. 1.13 times faster than dist. async.
Dist. sync. 1.01 times more accurate than dist. async.

Table 4.6: A comparison between the strategies, based on the results in Table
4.3, 4.4 and 4.5. For each model, the centralized strategies are compared with
the distributed strategies and the asynchronous strategies are compared with the
synchronized strategies.

Considering the distributed learners, using the asynchronous strategies, the actors
proceed with their next epochs before the slower instances have finished their epochs.
As a result, the fast instances explore based on less experience compared to the
synchronized actors that wait for the slower instances and learn from their experience
as well. This makes the synchronized actors explore more intelligently and find the
highly rewarded sequence faster. As previously mentioned, the importance of the
fact that this leads to larger errors can be discussed since it is often irrelevant to
converge the bad action values. In some cases however, for example when learning a
human behavior as described in Section 5, it is desired to explore broadly to be sure
to cover the true characteristics of the operator, which might make the asynchronous
actors an appropriate choice. In addition, this explanation can also motivate why
the centralized learners gain advantages over the distributed in Table 4.5. Since a
simpler problem does not require as much intelligence, the advantage of exploring
with more information about the environment does not matter as much. In Table
4.6 the effect that the distributed learner with synchronized actors becomes faster

34



4. Parallelization in reinforcement learning applications

than the asynchronous actors has been observed to increase with increased problem
complexity and increased number of instances.

(a)

(b)

Figure 4.2: Figure 4.2a shows the Q-values during training of distributed synchro-
nized learners and Figure 4.2b shows the Q-values during training for the distributed
asynchronous learners.

In figures 4.2a and 4.2b some differences between the distributed synchronized and
the distributed asynchronous strategy can be highlighted. The synchronized actors
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have found the first rewarded actions by the third update while the asynchronous
actors found the first rewarded action after the fourth update. This is a general
pattern observed and can be explained by the fact that before the synchronized
actors start an epoch, they will wait for experience gathered by every instance to
be collected in the previous epoch. This waiting increases the probability that a
higher number of error states have been discovered when starting the next epoch
compared to the case where fast instances start the next epoch without waiting
for the other instances to potentially discover new error states. As a result, if the
synchronized actors act greedily, there are less potentially good actions to choose
from which increases the probability of finding the correct action earlier. The same
holds for the succeeding rewarded actions. Even though the asynchronous actors
were lucky and found Height 3 before the synchronized actors did, they ran past the
asynchronous actors by finding Height 4 earlier due to them waiting for the slower
actors to rule out some of the bad actions not yet discovered. When it comes to
speed, the synchronized actors are almost always preferred.

Finally, from Table 4.6 it is also clear that for low complexity problems, the central-
ized learner with synchronized actors outperforms the alternatives. Note that the
importance of the accuracy measure for the model with only one pillar is considered
to be very limited since the errors are extremely small for all strategies.
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collaborative assembly

(a)

(b)

Figure 5.1: Figure 5.1a shows the assembly station in RobotStudio that incorpo-
rates human and robot collaboration in order to assemble the product that is shown
in Figure 5.1b.
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While the model described in chapter 3 was used for proving the possibility of learn-
ing an assembly sequence and providing results on parallel learning strategies, the
assembly station shown in Figure 5.1a was better suited for more complex scenarios
requiring more advanced algorithms. The model uses both robot and human actions
in order to assemble the product shown in Figure 5.1b. The product consists of the
bottom red part (part A), followed by two springs, then the blue part (part B), the
yellow square part (part C), two side screws and a middle screw. One of the greatest
advantages with RL is that it can automatically learn models otherwise cumbersome
or infeasible to formulate mathematically as optimization problems. An application
with such complexity would be able to learn patterns in human behaviour and choose
actions based on those patterns such that the collaboration between the robot and
the human becomes as efficient as possible. Since the assembly station is based on a
real collaborative robot assembly station, it becomes reasonable to integrate human
attributes in its state definition and make it learn how to act in relation to them. The
previous model in Section 3 is a typical application for tabular Q-learning; other RL
methods are hard to motivate for such simple applications. However, when human
characteristics are added to the state definition, the complexity can be scaled up to
levels where tabular Q-learning must be replaced by other methods. Scalability is
important for the generality of the results in this project, hence the methods with
this ability merit investigation.

In the assembly station the robot learned the behavior of a human operator and
chose actions that suited the operator in an optimal way in order to assemble the
product in Figure 5.1b while minimizing production lead time. The first human
operation serves as a classification stage, in which the robot observes the skill of the
operator and remembers that for the rest of the assembly. The classification maps
to a certain behavioral pattern in the rest of the assembly and the goal is to learn
this pattern and adapt to it. In this project the classification stage encompassed
the placement of the springs, which could be placed at three different speeds. The
idea was that the placement of the springs at a certain speed represented a certain
operator profile which was not obvious. For instance, if the operator placed the
springs slowly, then they would place part B fast. The robot had to choose actions
that suited the operator’s profile. The actions the robot could choose from was
whether or not to help the operator by presenting a box with the relevant parts, or
at which speed the robot should perform tasks that had to be synchronized with
the operator. The task to be synchronized are in this case the robot picking the
screwdriver and screwing the middle screw while the operator places the screw in the
fixture. The robot must learn not to be too fast for the operator to prevent screwing
too early and not too slow to keep production lead time low. Tedious operations
and badly synchronized tasks were punished according to equation 5.1 and 5.2. The
synchronization step was used as a visual confirmation of the robot having adapted
to the operator, as different operator profiles required different actions from the
robot in order to be optimized. If the operator places part C slowly, then the robot
cannot screw fast because then it would attempt to screw a product without any
screw in place.
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To realize the behavior described above, the reward function was defined as

r = − ta10 − |top − trob| − 15000ξ (5.1)

for the actions involving placing and screwing the middle screw (the actions in the
bottom three states in Table 5.2). ξ = 1 if the synchronization fails (i.e. if trob < top)
and ξ = 0 otherwise. ta is the total duration of these actions i.e. the largest of the
operator action duration top and the robot action duration trob. For the rest of the
actions, which are performed alone the reward is simply defined as

r = − ta10 . (5.2)

The specific multipliers in equation 5.1 and 5.2 were chosen accordingly to achieve
a large enough ratio between the punishment of bad synchronization and the time
penalty. Of course, they can be scaled differently. The large punishment of the
synchronization can be motivated as to create a safe margin for the synchronized
operations if there are any uncertainties or randomness in the human behaviors.
Based on measurements of action times and knowledge of how the human opera-
tors are simulated, optimal Q-values were calculated for evaluation of the learning
process. They are presented in Table 5.2. Note that this would not be possible to
calculate in a more realistic application when the operator behavior is unknown.
Moreover, the values shown in the table are generated based on the largest possible
robot speed and three distinct operator speed profiles. The operator profiles were
chosen so as to make it beneficial for the robot to alternate actions depending on
the operator and are defined in Table 5.1.

Time-efficiency was chosen as the optimization parameter to be minimized in this
project due to simplicity and intuitiveness, however this could be altered to many
other factors e.g. product assembly quality. Alike the optimization parameter, the
classification stage can be defined in many different ways, e.g with more operations
or with parameters such as age, weight or years of experience. The classification
can be dynamic so that it changes on a daily or weekly basis to cover temporary
conditions such as exhaustion or sickness.

Operator profiles
Operator 1 Operator 2 Operator 3

Place springs (Classification) Slow Medium Fast
Pick and place B Fast Medium Slow
Pick and hold C Medium Fast Slow
Pick and place Midscrew Slow Fast Medium
Pick and place Sidescrews Slow Medium Fast
Place and press C on AB Slow Fast Medium

Table 5.1: Operator profiles. Based on observations of the operator placing the
springs, the skill level of the other human operations are learned.

39



5. Training adaptable robot for collaborative assembly

Optimal Q-values for each action
State Present box Do nothing
Springs placed operator 1 -1927 -2500
Springs placed operator 2 -2234 -1815
Springs placed operator 3 -1412 -1500
B placed operator 1 -2440 -2696
B placed operator 2 -2144 -1527
B placed operator 3 -1107 -1603
C held operator 1 -3049 -2808
C held operator 2 -1250 -1530
C held operator 3 -1351 -2122
Middle screw placed in C operator 1 -3296 -2583
Middle screw placed in C operator 2 -880 -1410
Middle screw placed in C operator 3 -1668 -1938

Screw slow Screw medium Screw fast
Side screws placed operator 1 -2572 -16519 -17715
Side screws placed operator 2 -5912 -2471 -1009
Side screws placed operator 3 -6616 -3175 -1713

Table 5.2: Optimal Q-values are shown for the possible robot actions in each state.
The actions are related to the three distinct operator profiles chosen for the model.
The action "Do nothing" corresponds to a passive robot, allowing the operator to
perform the operation by itself.

Many Q-values are in a close interval and thus hard to extinguish in the subsequent
plots of the Q-values. However, the actions in the last three states that risk the
large punishment if they do not synchronize with the operator are easy to verify in
the plots. Convergence was defined as reached when the value of the loss function
(MSE of the TD-error) was less than 1000 which proved to be enough for learning
the correct sequence of actions in all methods described below.

To evaluate the model and finding which methods are possible and suited to this and
similar applications, the three strategies below have been evaluated. Implementation
and results from the respective strategy are presented in Section 5.1 and 5.2.

Tabular Q-learning The Q-values are stored in a table in which each row repre-
sents a state and each column represents the eligible actions in the respective
state. The method was implemented according to algorithm 1 in Section 2.1.

Linear function approximation The Q-values are represented as a linear func-
tion. The function takes a feature vector representing a certain action in a
certain state as input, and returns the Q-value for that state and action as
a linear combination of the elements in the feature vector. The method was
implemented according to algorithm 2 in Section 2.2.1.
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Nonlinear function approximation The Q-values are represented as a nonlinear
function generated through a neural network. The input is a feature vector
as in the linear case which is fed to the network that then returns its corre-
sponding Q-value. The method was implemented according to algorithm 3 in
Section 2.2.2.

Finally, experience replay as described in Section 2.5 was evaluated for both lin-
ear and nonlinear model training. Two separate methods were developed for this
purpose, referred to as Standard and Threshold experience replay strategies. In the
Standard experience replay strategy, the data is saved to a replay memory until
the memory reaches a specified size at which point the update algorithm proceeds
to loop through the data a number of times. Afterwards, it will empty the replay
memory and wait until it has reached the specified size again. The same general
principle is applied to the Threshold strategy as well, however in this strategy the
replay memory will only be emptied if the loss is under a certain threshold. This
adds a dynamic sense to the algorithm since the emptying of the replay memory will
not be tied to a constant.

The linear model has proven to converge both with and without experience replay.
In Section 5.2.1.1, the convergence of the linear model is compared between no ex-
perience replay and the Threshold strategy. For the nonlinear model, experience
replay is required in order for the model to converge. Hence, only the Standard
and Threshold strategies are compared for the nonlinear model in Section 5.2.2.1.
The specific number of loops in the Standard strategy was chosen to be 20, and
the threshold in the Threshold strategy was set to 35000. These values were chosen
through trial and error. The number of operator profiles was limited to three be-
cause of implementation difficulty, however the number of profiles can be potentially
infinite, something that is discussed and addressed with function approximation in
Section 5.2.
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5.1 Tabular Q-learning

(a) Action Description
1 Do nothing
2 Present box with part B
3 Present box with part C
4 Present box with the middle screw
5 Present box with the side screws
6 Pick screwdriver and screw middle screw, speed level slow
7 Pick screwdriver and screw middle screw, speed level medium
8 Pick screwdriver and screw middle screw, speed level fast

(b) State Description Possible Actions
1 Springs placed operator 1
2 Springs placed operator 2
3 Springs placed operator 3

1, 2

4 B placed operator 1
5 B placed operator 2
6 B placed operator 3

1, 3

7 C picked operator 1
8 C picked operator 2
9 C picked operator 3

1, 4

10 Middle screw placed in C operator 1
11 Middle screw placed in C operator 2
12 Middle screw placed in C operator 3

1, 5

13 Side screws placed operator 1
14 Side screws placed operator 2
15 Side screws placed operator 3

6, 7, 8

Table 5.3: Table 5.3a shows the action numbering and describes the actions avail-
able in the assembly station. Table 5.3b shows the state numbering, describes them
and denotes the possible actions in each state.

All actions available for the robot are listed in Table 5.3a but only some of these
actions are possible to choose depending on the current state. The states include the
situations where the robot has to make a decision how to act and they are described
in Table 5.3b together with the actions possible to choose in each state. In this
project, learning only happens on the robot, while the operator is considered as part
of the environment, which is why only robot actions are included in the Q-learning
models.
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5.1.1 Convergence analysis

(a)

(b)

Figure 5.2: Figure 5.2a and Figure 5.2b show the Q-values and MSE respectively
during training of the assembly station using tabular Q-learning.
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Using tabular Q-learning for three operators, convergence was reached after 2152
simulated seconds (Figure 5.2). This is faster than the model described in Section
3 which is mainly due to fewer action values (34 compared to 56) but is affected by
other factors as well such as exploration rate and the reward system. Clearly, the four
values below -5000 indicate that the robot has been punished for bad synchronization
and will not repeat those mistakes when following the learned target policy.

5.2 Q-learning with function approximation

As described in Section 2.2, for problems dealing with very large state-spaces, tabular
Q-learning proves cumbersome and inefficient. Instead of having to define a Q-
matrix with a set number of states and actions, function approximation has been
used. This approach is based on defining a feature vector that contains information
of the state and action of which the Q-value is sought for. Additionally, a model
that takes the feature vector as input and produces the Q-value as output is defined.
Two model classes will be explored in this project: linear and nonlinear function
approximation, the latter implemented as a neural network. The training of the
model is performed through optimization of the model weights in order to minimize
some loss function, in this case the mean square TD error.

For this application, the feature vector was defined as in Table 5.4. Note that the
operator profile is only defined by the time it took for the operator to place the
springs and does not have to be categorized into operator 1, 2 and 3 as have been
done in the tabular approach. Hence, with the feature vector it is easy to cover an
unlimited number of operator profiles.

Element Value
1 The time in seconds it took for the operator to place the springs
2 1 if the springs are placed and the choice of action is 2, else 0.
3 1 if the springs are placed and the choice of action is 1, else 0.
4 1 if part B is placed and the choice of action is 3, else 0.
5 1 if part B is placed and the choice of action is 1, else 0.
6 1 if part C is placed and the choice of action is 4, else 0.
7 1 if part C is placed and the choice of action is 1, else 0.
8 1 if the middle screw is placed and the choice of action is 5, else 0.
9 1 if the middle screw is placed and the choice of action is 1, else 0.
10 1 if the side screws are placed and the choice of action is 6, else 0.
11 1 if the side screws are placed and the choice of action is 7, else 0.
12 1 if the side screws are placed and the choice of action is 8, else 0.

Table 5.4: Feature vector element description used for both linear and nonlinear
function approximation. It is motivated by and connected to Table 5.3
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For example, the feature vector

x(s, a) = [8.2 0 0 0 1 0 0 0 0 0 0 0]T

corresponds to part B being placed, it taking 8.2 seconds for the operator to place
the springs correctly in the product and the action chosen is that the robot presents
the box with part C to the operator. Details of how this vector is combined with
the weights and how they are optimized are described in Section 2.2.1.
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5.2.1 Linear function approximation

(a)

(b)

Figure 5.3: Figure 5.3a and Figure 5.3b show the Q-values and MSE respectively
during training of the assembly station using linear function approximation for op-
erator 1 without experience replay.

Using this model the weights converged after 23008 simulated seconds if only one
operator was simulated, as seen in Figure 5.3. Note specifically the two action
values that are considerably less than the others, which characterizes operator profile
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number one. However, simulating multiple operators, the weights never converged
while it was observed earlier that tabular Q-learning managed to converge for all
three operators simultaneously in only 2152 seconds as seen in Figure 5.2. The fact
that only one operator converged with this feature definition is logical since the
same weight must alone map different Q-values which is impossible. This is a result
of all elements except the first one of the feature vector remaining unchanged for
similar actions between different operators. Results from training only operator 1
are presented above. To obtain Q-values for operator 2 and 3 they have to be trained
separately. Results for operator 2 and 3 are presented in appendix A.1. It would
be possible to define a feature vector that can be used to train all three operators
in the same linear model but that would require separate feature elements for each
operator. In that case it would not be possible to gain the advantages over the
tabular Q-learning model that function approximation normally does.
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5.2.1.1 Convergence using experience replay

(a)

(b)

Figure 5.4: Figure 5.4a and Figure 5.4b show the Q-values and MSE respectively
during training of the assembly station using linear function approximation for op-
erator 1 with the use of experience replay.

A comparison has been made between training without experience replay (Figure
5.3) and applying the Threshold experience replay strategy (Figure 5.4). While these
graphs show the result for operator 1, corresponding graphs for operator 2 and 3
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are found in appendix A.1. It is clear that experience replay reduced the time to
convergence considerably (14563 compared to 23008 seconds) and that during these
times approximately the same number of updates were performed. Furthermore,
it can be observed that without experience replay there are negative peaks below
−20000 until around update number 100 while the corresponding limit when apply-
ing experience replay is found at around update number 70. It can also be noted
that with experience replay, both the Q-values and and the loss have a slightly more
oscillating behavior. This is an indication that experience replay tends to pass a
number of local optima before it finds the global optimum.

Replay memory strategy comparison for linear model

Test Strategy Simulation time (s) Error Avg. simulation time (std. dev.)
Avg. error (std. dev.)

1 No exp. replay 16367 3046

14632 (3084)
1683 (939)

2 No exp. replay 18731 1735
3 No exp. replay 11602 1095
4 No exp. replay 14830 570
5 No exp. replay 11628 1969
6 Threshold 4795 1018

4677 (2288)
1377 (535)

7 Threshold 7876 800
8 Threshold 1586 2134
9 Threshold 3816 1682
10 Threshold 5313 1251

Table 5.5: A comparison between training without experience replay and applying
the Threshold experience replay strategy for the linear model of operator 2.

The largest difference between the strategies was observed for operator 2. Therefore,
a more exhaustive analysis with five runs for each strategy was conducted for opera-
tor 2 presented in Table 5.5. It appears that experience replay not only reduces the
convergence time but also reduces the error i.e. the sum of the distances from the
optimal Q-values found in Table 5.2. Since the convergence limit on the loss is the
same for both strategies, this result implies that experience replay counteracts the
risk of getting stuck in local optima. This is interesting because it was noticed in
the plots for operator 1 that during training, experience replay tends to pass more
closely to local optima than in the case without experience replay. A final note is
that the results among the runs becomes less variant.

5.2.2 Nonlinear function approximation using neural net-
works

Unlike the previous case with linear function approximation, the nonlinear approach
allows multiplication of weights with each other which means that fewer feature
elements will be necessary to converge to the same optimal Q-value. With this
model it would therefore be possible to have an adaptable solution that would not
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require any specific code in order to adapt to potentially infinitely many different
operators.

As explained in Section 2.2.2.4 there are no general methods for finding an optimal
network architecture. In this project, heuristic search was used based on the rec-
ommendations from Heaton [12]. As the evaluation of each network is extremely
tedious in this application, a model for fast initial evaluation is developed where the
RobotStudio simulations are replaced by feature vectors and corresponding rewards
stored in a data file. The data is based on earlier simulations with some noise added
making the data more similar to actual simulations. This model is discussed in more
depth and presented in Section 5.2.2.2.

#Layers Hidden dim. Activation α Optimizer #Updates #Failures
2 8 ReLU 0,015 Adam - 5
2 60 ReLU 0,015 Adam 9240 2
2 100 ReLU 0,015 Adam 3400 3
2 140 ReLU 0,015 Adam 4300 1
3 100 ReLU 0,015 Adam 1620 0
4 100 ReLU 0,015 Adam 1080 0
5 100 ReLU 0,015 Adam 1360 0
4 100 ReLU 1.5e-10 SGD - 5
4 100 ReLU 0,99 RMSProp - 5
4 100 ReLU 0,001 Adam 5340 0
4 100 ReLU 0,02 Adam 1260 0
4 100 Tanh 0,015 Adam - 5
4 100 Sigmoid 0,015 Adam - 5

Table 5.6: This table list the performance of the neural networks evaluated. A
training is considered failed when the number of updates without convergence ex-
ceeds 20 000.

As opposed to the linear case, the simple feature vector as defined in Section 5.2.1
can be used as input to one single model that maps the correct output (Q-values)
for all three operators. This indicates that non-linear models have great potential of
scalability to a vast amount of operator profiles. Based on the heuristics some rea-
sonable hyperparameters of neural networks were evaluated. The result is presented
in Table 5.6. An interesting result is that the first test using the general recom-
mendations could not be used in this application. Instead a much bigger network is
necessary for convergence. Fastest convergence was achieved using four layers, each
with 100 hidden units. When implementing large neural networks, the risk of over-
fitting should be considered. However, as explained in Section 2.2.2.3 overfitting can
actually be reduced if the number of weights exceed a certain point that depends on
the number of training data samples. In this simple application, the data is scarce
and it is highly probable that the network found contains many more parameters
than data samples explored during training. Importantly, the weights have been
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initiated to small numbers which is necessary for the undesirable high dimensions
to be kept negligible.
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(a)

(b)

Figure 5.5: Figure 5.5a and Figure 5.5b show the Q-values and MSE respectively
during training of the assembly station using nonlinear function approximation with
the high performance neural network that is marked with bold figures in Table 5.6.
Here, the Standard experience replay strategy as described in the introductory part
of this section is applied.
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Convergence dynamics for the best neural network found is presented in Figure
5.5. Compared to the tabular convergence in Figure 5.2a it takes around 4 times
longer in simulation time for the nonlinear model to converge with similar level of
accuracy. It is also clear that the nonlinear Q-values are more scattered as a result
of each update affecting all Q-values. The result in Figure 5.5 comes from using the
Standard experience replay strategy.
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5.2.2.1 Comparing two experience replay strategies

(a)

(b)

Figure 5.6: Figure 5.6a and Figure 5.6b show the Q-values and MSE respectively
with the same network as in Figure 5.5 but with the so called Threshold experience
replay strategy as explained in the introductory part of this section.
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In Figure 5.6 the effect of the Threshold experience replay strategy is clear. A local
optimum is found very fast; after around 10 updates. By then the model reaches the
loss threshold at which the data trained on is erased which of course inflates the loss.
The replay memory needs to be erased a number of times, i.e. a number of local
optima have to be passed, before approaching the global optimum. This makes the
number of updates larger compared to the standard experience replay method (see
Figure 5.5). By observing the Q-values for operator 1 that are large in magnitude
it can be noticed that the global optimum is approached after approximately 40
updates in Figure 5.6a whereas it is approached already after approximately 20
updates in Figure 5.5a. However, reuse of old mini batches of data enables the
algorithm to perform a larger number of updates in less time as opposed to having
to wait for a new mini batch after each update. As a result, the simulation time
before convergence decreases considerably in this case: 5634 seconds compared to
9294 seconds.

Replay memory strategy comparison for nonlinear model

Test Strategy Simulation time (s) Error Avg. simulation time (std. dev.)
Avg. error (std. dev.)

1 Standard 5795 24181

9326 (5886)
12352 (5260)

2 Standard 18328 10147
3 Standard 2968 18336
4 Standard 6830 7921
5 Standard 19115 9921
6 Standard 14690 7264
7 Standard 4546 11949
8 Standard 5764 10568
9 Standard 5934 14123
10 Standard 9294 9114
11 Threshold 1414 67840

4105 (3090)
44101 (43631)

12 Threshold 165 149016
13 Threshold 2096 29986
14 Threshold 5634 11615
15 Threshold 7073 14133
16 Threshold 844 65109
17 Threshold 8122 9835
18 Threshold 5547 25665
19 Threshold 8017 8943
20 Threshold 2142 58869

Table 5.7: The table shows a comparison between the Standard and Threshold
experience replay strategies through 20 tests.

Since the nonlinear model has proven to have great potential of scalability, a more
rigorous analysis of the experience replay strategies was motivated. Indeed, the
observations when comparing Figure 5.5 and 5.6 are verified in Table 5.7. The
simulation time in the Threshold strategy is considerably less than the one in the
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Standard strategy. On the other hand, the threshold approach produces much larger
errors (equation 3.1). Since the convergence requirement is at the same MSE (equa-
tion 2.6) for the two strategies this implies that the threshold approach easier gets
stuck in local optima. This can be seen by looking at the measurements in Table 5.7
as one notices a few conspicuous values of the Threshold strategy. There is a mea-
surement that converges after 165 seconds with an error of 149016, and another one
that converges after 844 seconds with an error of 65109. It is possible that one could
refine the Threshold strategy to avoid such early convergence, for instance checking
convergence with larger intervals, and in that way arrive at a strategy better than
both the Standard and Threshold ones.

5.2.2.2 Model without RobotStudio

Figure 5.7: This figure shows the Q-values during training of the model that reads
data based on earlier measurements from a file instead of receiving data continuously
in real-time from the simulation.

The plot in Figure 5.7 is provided to validate that the model without the simulations
is sufficiently close to the model with the simulations so that it can be used when
searching for a suitable neural network. It also serves to show that it is possible
to solve the adaptability problem offline using predefined values. Comparing the
Q-value progress plots for both models (Figure 5.5a and 5.7) shows that this model
is valid substitute for the RobotStudio one, i.e. a noise level was found that fit well
to the one in the simulation model.
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5.2.3 Transferability to the physical station

Even though more work needs to be done for the models used in this project to be
transferable to the physical station, it has been considered during development of
the tools used. The human actions have been simulated by making objects fly along
paths with as realistic speeds as possible (using Smart Components which is a tool
in RobotStudio) as to mirror how a human would move the objects. Ideas of how
to make this even more realistic is discussed in Section 6.4.

The main issue regarding transferability to the physical station is how the RL algo-
rithm would communicate which actions the physical robot should explore. Conve-
niently, the exact same communication tools used in this project for communication
between the algorithm and the robot’s virtual controller in the simulation envi-
ronment, can be used for communication between the algorithm and the physical
controller. Both the virtual controller and the physical controller execute the same
RAPID code and it is possible to establish a server in and communicate via a Web-
Socket directly in RAPID. Syntax used for these tools are listed in appendix A.2.
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Discussion

Many applications can be solved using already existing AI tools such as PDDL as
described in Section 2.7.5. However, since this project was based on RobotStu-
dio, which is developed in C#, it was thought that using the same development
tools could make this solution and future development smoother and more modular.
Furthermore, C# has an extensive catalogue of features and documentation which
makes it easier and faster to work with. Specially when it comes to perhaps more
specialized tools such as WebSockets that might not be developed in AI tools like
PDDL. Far from saying that these tools cannot be used in this application, their
omittance is more due to time constraints and their niche nature.

In Section 1.1, three research questions are stated. The first research question con-
cerns how closed loop manufacturing can be realized using RL and challenges in
developing a simulation model that can be used to combine training on simulation
and on a corresponding physical station. In Section 5.2.3 and 6.4 issues and solutions
regarding the transferability to a physical station have been discussed. Furthermore,
in Section 5.2.2 it was explained that for quick evaluation of different neural net-
work architectures, the RobotStudio simulations were completely replaced by data
received from the simulations with some noise added. The data could of course have
been collected from the physical station instead of the simulation model for more
realistic results. One can therefore question why the tedious simulations are needed
for training in the first place. Actually, in several situations it is valuable to be
able to train on simulations instead of (or in addition to) the physical station. If
the physical station does not yet exist training can be performed on the simulation
model. Training can continue on the physical model when built if desired. Further,
the physical station might not be available for training or measurements due to risk
of injuries/damage or inaccessibility. Lastly, when the complexity of the problem is
such that it is hard to create data suitable for training, it is easier to simply interact
with the environment directly, either on the physical station, in a simulation model
or a combination. One example is that more complex human operating behavior
might be hard to measure or recreate and it would be easier to learn continuously
from simulations using VR. Another example is when the robot has to interact with
irregular objects, objects that are posed randomly or objects with unknown features.
Then it is easier to interact directly with the environment or a physics engine in
simulations to learn an optimal way of working.
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(a) (b) (c)

Figure 6.1: Three approaches to create a closed loop manufacturing system using
RL. Figure 6.1c shows training on data based on earlier measurements. Figure 6.1b
shows training based on data retrieved from simulations. Figure 6.1a shows training
based on data received directly from a physical assembly station.

In this project, three approaches that relate differently to closed loop manufacturing
have been treated as visualized in Figure 6.1. The green areas represents successfully
implemented areas in this project. The aim has been to enable future development
towards the physical implementation in Figure 6.1c or a combination of training
on simulations (Figure 6.1b) and reality. Further discussion regarding this can be
found in Section 6.4.

One of the most important frameworks successfully implemented in this project
concerns the simulated closed loop as mentioned in the first research question in
Section 1.1. It can be thought of an inner loop that enables the training process in
the central block in Figure 6.1b.

The second research question concerns what methods are suitable for learning an
optimal assembly sequence and recognizing patterns in the behavior of a human op-
erator. It has been shown that tabular Q-learning is fastest given a limited number
of states and actions. For problems with few variations yet non-trivial solutions,
tabular Q-learning is advised. This contradicts what Ehn and Werner [23] found
in their research (see Section 2.7.1). One reason is that in this project where the
size of the weights varies greatly, few weights that are far from their optimal val-
ues affect the updates of all other weights negatively which makes learning slower.
As soon as the state definition becomes more complex, the advantages of function
approximation should be exploited. Comparing Section 5.1.1 and 5.2.1, it becomes
apparent that the performance of linear function approximation does not beat tab-
ular Q-learning. It takes more iterations before convergence and it is hard to find a
scalable feature representation that works in a linear mapping from the states and
actions to the respective Q-values. However, this has successfully been solved with
nonlinear function approximation using neural networks. A compact and scalable
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feature representation maps to the respective Q-values within a reasonable amount
of iterations. The research question also asks how these strategies compare to tradi-
tional optimization methods, and this has been treated in Section 2.7.2 and 2.7.4.1.
As similar research projects have already found, for complex and unintuitive ap-
plications, when traditional optimization stops being a realistic approach, RL is a
perfect transition. As Özçelikkale, Koseoglu and Srivastava [24] pointed out, the
risk of errors due to erroneous environment assumptions is eliminated in RL since
no assumptions are required. For learning more realistic and complex human be-
havior than implemented in this project, traditional optimization is inconvenient
to implement since it would require knowledge of the environment. Another advan-
tage underlined by Owens [29] is the flexibility and scalability as possible actions and
state features can be added independently without having to redefine all connections
as would be the case of a finite state machine.

When the problem complexity is increased learning becomes slower, why techniques
for parallelizing learning have been investigated. This relates to the third research
question, which concerns how the training process can be improved by using parallel
simulation instances and how they should be orchestrated. It can be concluded that
if possible, parallelization should be applied, since any method evaluated improves
both speed and accuracy compared to using only one instance. The decision of which
orchestration strategy to implement is then a question of how to balance speed and
accuracy. For very simple problems, the centralized strategies seem to be the obvious
choice. However, for simple problems, parallelization is less necessary. Problems will
often be more complex than the model in which the robot stacks boxes on one pillar
only. Then, the distributed learning strategies should be evaluated for the specific
application. If speed is more important than accuracy, the distributed synchronized
actors might be a good choice. Contrariwise, if accuracy is a priority, one of the
centralized strategies will be a suitable choice. For the cases in this project, it is hard
to motivate the distributed asynchronous learners which is always the slowest option
and rarely the most accurate. While some of the patterns observed and commented
may seem unambiguous, parameters such as exploration rate, interval between model
updates, convergence definition and the discrepancy in speed between the instances
might direct the result differently.

6.1 Experience replay

Experience replay proved highly successful for the linear model. It not only reduced
the simulation time before convergence but also the error (or the risk of getting stuck
in a local optimum). For simpler functions such as the linear one, gradients on a
few weights have a large impact on the deviation between the function and the data.
That causes old data to be rapidly forgotten. By continuously re-experiencing old
data, the risk of forgetting them decreases which reduces the risk of converging at
suboptimal solutions. This however is contradicted by comparing figures 5.3 and 5.4,
which indicates that the algorithm passed local optima more often with experience
replay than without. It can be concluded that experience replay increases the risk
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of getting stuck in local optima but when the model complexity is low, taking
that risk is necessary in order to find the global optimum. Furthermore, the linear
approximator was only trained on one operator at a time, that is the data did not
vary much which makes it more probable that local optima coincides with the global
optimum.

In a more complex model such as the nonlinear model with neural networks, gra-
dients have a more local impact on the deviation between the model and the data.
Thus, old data are more easily remembered and the risk of getting stuck in local
optima decreases. Furthermore, the nonlinear model was trained on much more
varying data and on larger batches than the linear model which resulted in a wide
representation of the data set. Hence, the problem of forgetting old data becomes
rare. Even so, the Threshold experience replay strategy seemed to undergo a signif-
icant risk of getting stuck in local optima. As opposed to the linear model, complex
models have a larger number of local optima and overexploiting experience replay
increases the risk of updating the model towards one of them, satisfying the con-
vergence requirement too early. On the other hand, as briefly discussed in Section
5.2.2.1, one can imagine enhancing the Threshold strategy by altering the conver-
gence check or perhaps by having a dynamic threshold in order to investigate if it
is possible to find an improved strategy.

6.2 Reward strategies

In the box model potential-based reward shaping as described in Section 2.4 was
applied. The rewards in Table 3.1 are examples of a potential-based shaping function
being used and can be interpreted as some sort of inverted distance to the goal where
higher rewards are delivered the closer to the goal the learning agent gets. Instead
of only rewarding the agent once arriving at the goal state this strategy helped to
speed up the learning.

Similarly in the assembly station model potential-based reward shaping was applied
but as a function of production lead time instead of a distance. Higher rewards
were achieved the faster the goal state was reached along with a bonus reward for
successful synchronization on parallel operations.

Insofar as heuristic knowledge exists for a problem, a potential-based reward shaping
function is recommended to be used as long as it is defined according to equation
2.11 and 2.12. As proved and demonstrated by Y. Ng, Harada and Russel [18] this
can speed up the learning greatly without altering the optimal policy.

6.3 The deadly triad

As described in Section 2.2, instability in the sense of the Deadly Triad is achieved
when function approximation, bootstrapping and off-policy training are applied si-
multaneously in an algorithm. In this project however, all three elements have been
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applied simultaneously on the assembly station model which still converged. In fact,
it is not uncommon that the three elements of the deadly triad have been combined
successfully according to van Hasselt et al [31]. Compared to their study, the ap-
plications in this project are very small when it comes to the state space. At the
same time the use of reward shaping guides learning rather strongly. That might
explain why these applications have been proved to be stable even though no con-
sideration of the results from their study have had to be taken. If the application is
scaled to more complex situations it is advised to increase the number of steps be-
fore bootstrapping which van Hasselt et al found to be the clearest prevention from
divergence. Otherwise the network size in the case of nonlinear function approxi-
mation or the bootstrapping method (e.g. Double Q-learning) can be experimented
with.

6.4 Further applications and future work

Figure 6.2: The physical assembly station that has been simulated in this project
and can be used in future development.

In this project, the learning algorithms have been applied on a simulated virtual
model. However, the assembly station is a close representation of a physical station
seen in Figure 6.2. Furthermore, the tools created are in no matter bound to a
virtual model or RobotStudio. With minor modifications the learning could be
performed on the physical station as well which would be a very interesting case for
future work.

One great feature of RobotStudio is that the exact same RAPID code in the virtual
controller can be used in a real controller which makes it easy to alter between
simulation and reality. The same holds for communication between the script that
implements the algorithms and the robot. This opens up many opportunities for
combining training in simulation and in the real world. As noted by Özçelikkale,
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Koseoglu and Srivastava [24] RL can effectively treat modeling and optimization
as separate tasks. In this case, basic modelling can be performed on a simulated
environment and final model tweaks and optimization can be performed on the real
world. A challenge will be to minimize the simulation gap (see Section 2.7.3) so
that the real world learning can profit from prior learning on simulations, specially
when it comes to simulating human behavior. An intermediate task before moving
completely to the real world could be to use virtual reality tools for simulating human
behavior where an actual human interacts with the simulation environment. There
are advantages with this approach e.g. it can be used before the physical station
has been built and there is no risk for injuries in the early stages of evaluation.

The two cases built in this project serve only as examples and proof of concepts.
The application could even scale to multitasking where the agent learns assembly
sequences and human behavior patterns for many products instead of only one
product. Only ones imagination limits what actions to define, what information a
feature vector should store and what reward system to implement.
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Conclusion

RL algorithms do not require a known model of the environment and thus gain
advantage over traditional optimization techniques for complex problems such as
human behavior. Although many simplifications in this project make the problems
feasible to solve by traditional optimization, RL has the potential to manage more
realistic applications. It has been discovered that tabular Q-learning is a fast method
if the problem can be reduced to a small number of states and actions. If the problem
becomes complex, with large number of states and actions, tabular Q-learning is
impractical and in some cases infeasible. Instead, function approximation using a
deep neural network, trained using experience replay, is a perfect choice of method.
For the applications in this project, 4 layers with a large number of hidden units
together with ReLU activation and Adam optimizer had great impact on decreasing
the convergence time.

To increase speed further, training can be applied on parallel simulation instances
using an orchestration strategy best suited for the problem. The research in this
project has shown that parallel learning and environment exploration reduce con-
vergence time and the deviation from the global optimal solution. Using 10 parallel
instances on a moderately difficult problem decreased the convergence time by 50%
and reduced the error by at least a factor of 50 compared to exploring with only
one instance. It has been shown that for simple problems, centralized outperforms
distributed learning. Additionally, it has been found that synchronized is always
faster than asynchronized distributed learning. Synchronizing the actors leads to
more intelligent exploration and thus faster convergence. However, faster conver-
gence comes with the cost of larger errors in cases where error is nontrivial. Finally,
transferability to the physical station was considered by keeping the simulation gap
reasonably small and establishing a modular communication method.

The findings presented in this report are promising for future research. They show
that it would be possible to learn not only an assembly sequence of a complex product
but also how to adapt the process to a complex representation of a human operator.
Instead of a collaborative robot being guided by humans, intelligent robots will
start to guide and understand their human coworkers, enabling great possibilities
for future industries.
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A
Appendix

A.1 Linear function approximation for operator
2 and 3

The plots of the Q-values and loss, with and without experience replay, for operator
2 and 3 as referenced in 5.2.1.1 are shown in this section.
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(a)

(b)

Figure A.1: Figure A.1a and figure A.1b show the Q-values and Mean Square
Error respectively for operator 2 during training of the assembly station using linear
function approximation without experience replay.
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(a)

(b)

Figure A.2: Figure A.2a and figure A.2b show the Q-values and Mean Square
Error respectively for operator 2 during training of the assembly station using linear
function approximation with experience replay.
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(a)

(b)

Figure A.3: Figure A.3a and figure A.3b show the Q-values and Mean Square
Error respectively for operator 3 during training of the assembly station using linear
function approximation without experience replay.
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(a)

(b)

Figure A.4: Figure A.4a and figure A.4b show the Q-values and Mean Square
Error respectively for operator 3 during training of the assembly station using linear
function approximation with experience replay.

V



A. Appendix

A.2 Communication between RL algorithm and
robot controller

As referenced in section 5.2.3 the following code was used for communication between
the RL algorithm and the robot controller.

Establish a client used in the RL algorithm:

string serverIP;
int serverPort;

TcpClient myClient = new TcpClient(serverIP, serverPort);
NetworkStream nws = myClient.GetStream();

Send message to the controller from the RL algorithm:

string messageToSend;
int byteCount = Encoding.ASCII.GetByteCount(messageToSend);
byte[] sendMessage = new byte[byteCount];
sendMessage = Encoding.ASCII.GetBytes(messageToSend);
nws.Write(sendMessage, 0, sendMessage.Length);

Receive message from the controller to the RL algorithm:

byte[] buffer = new byte[myClient.ReceiveBufferSize];
int bytesRead = nws.Read(buffer, 0, myClient.ReceiveBufferSize);
string message = Encoding.ASCII.GetString(buffer, 0, bytesRead);

Establish a server in the controller:

VAR socketdev server;
VAR socketdev client;
string serverIP;
num serverPort;

SocketCreate server;
SocketBind server,serverIP,serverPort;
SocketListen server;
SocketAccept server,client;

Send message to the RL algorithm from the controller:

VAR string message;

SocketSend client,\Str:=message;
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Receive message to the controller from the RL algorithm:

VAR string message;
VAR rawbytes data;

Socketreceive client,\RawData:=data,\Time:=WAIT_MAX;
UnpackRawBytes data,1,message,\ASCII:=RawBytesLen(data);
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