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Abstract
Semi-active suspensions can be used to improve ride comfort in cars since the stiffness
of the four dampers can be controlled. The ride comfort can be further improved by
utilizing preview of the road height profile in the control strategy. Model Predictive
Control (MPC) is a suitable control strategy for this purpose because it can explic-
itly incorporate the road preview as well as hard constraints on the force exerted by
the semi-active dampers, which is necessary for formulating the semi-active suspen-
sion control problem. A big challenge in control of semi-active suspensions is that a
damper can only dissipate energy and this constraint makes a real-time implemen-
tation of MPC difficult to achieve. This thesis targets the real-time problem and
presents an implementation of Nonlinear Model Predictive Control (NMPC) as well
as the simplifications made to achieve a real-time implementation. The controller is
based on a vertical full-car model capable of describing the heave, roll and pitch mo-
tions of the car and minimizes heave, roll and pitch accelerations in order to improve
ride comfort. The performance of the real-time controller is compared to a reference
controller that represents the best-case performance. Simulation results show that
ride comfort is improved over a passive suspension and that the performance of the
real-time controller is close to the performance of the reference controller. A vehicle
implementation that incorporates nonlinear damper characteristics and limits on
suspension travel is also presented together with experimental results obtained with
a car equipped with semi-active dampers and a vision system for gathering the road
preview.

Keywords: Semi-active suspension, Model predictive control, Road preview, Real-
time, Full-car model
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1
Introduction

Ride comfort is an important attribute in cars. It is achieved by isolating the pas-
sengers from vibrations induced by the road. The main component that affects ride
comfort is the suspension and a comfortable ride is indicated by low vehicle body
accelerations. Improving comfort does not only increase passenger satisfaction but
it also improves safety as it reduces driver fatigue, especially during long trips, [1].
Handling is also an important attribute in cars and it is achieved by making the
wheels and car body follow the road as closely as possible. Comfort and handling
are, however, conflicting objectives when tuning passive suspensions and a trade-off
has to be made between the two, [2]. Semi-active suspensions can be used to make
the trade-off between comfort and handling less significant and thus improve the
vehicle behaviour, [2].

With semi-active suspensions it is possible to control the damper stiffness. A lim-
itation that follows is that it is only possible to dissipate energy from the system
since a damper can only generate a force that has opposite direction to its deflection
velocity. In contrast, an active suspension makes it possible to add energy to the
system, for example by lifting the car, which enables better performance. Despite
this, semi-active suspensions are more widely used because they do not require as
expensive actuators as active suspensions, [3].

The control strategy for semi-active suspensions is usually to react to some mea-
sured body motion signal and control the actuators as quickly as possible. However,
as technology in active safety and autonomous driving progresses, more advanced
sensors are installed in new cars. Various types of vision and radar systems are used
to detect the surroundings of the car, such as other vehicles and pedestrians. These
sensor systems can be used to gather information about the road surface in front of
the vehicle, i.e. a preview of the road height profile which can be incorporated in
the design of a semi-active suspension controller.

A control strategy well suited for utilizing the road preview is Model Predictive
Control (MPC). MPC uses a system model to compute the optimal sequence of
control signals over a prediction horizon, applies the first control signal and then
repeats the process at each sampling instant. It is also possible to incorporate hard
constraints in the MPC, such as constraints on the control signal and the state vari-
ables, which is necessary for formulating the semi-active suspension control problem.

Previous works have shown potential when using MPC with preview for semi-active
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1. Introduction

suspension. In [3], MPC based on a full-car model was implemented and verified
through simulations with the objective to improve ride comfort and handling. The
full-car model is suitable since it can represent the vehicle dynamics that is most
relevant for the suspension. The full-car model describes the motions of the car
body: heave, roll and pitch, and the vertical motion of the four wheels.

The drawback of MPC in general is that the computational time required to solve
for the optimal control signals tends to be large. The additional difficulty with semi-
active suspensions is that the constraints on the damper force, due to the fact that
the semi-active damper can only dissipate energy, makes the optimization problem
nonlinear. This increases the computational complexity of the problem significantly.
For semi-active suspension with MPC to be useful in practice, good performance in
simulation is not enough. A real-time implementation also has to be possible and
that has not yet been achieved when using a full-car model to describe the vehicle
dynamics in the MPC.

1.1 Purpose
The purpose of the thesis is to utilize preview of the road height profile in a semi-
active suspension in order to improve ride comfort. That is, to minimize vehicle
body accelerations as much as possible with an improved driving experience as a
result.

1.2 Objective
The objective of the thesis is to formulate and implement an MPC for semi-active
suspension that utilizes road preview. The MPC should be based on a full-car model
and the implementation should be able to run in real-time. An additional objective
is to test the implementation in a real car. Upon completion of the project, the
following research questions should be answered:

1) What is the best way to utilize road preview together with MPC for semi-active
suspension in order to improve ride comfort?

2) What simplifications or assumptions have to be made in order to make a real-
time implementation feasible?

3) How does the performance of a real-time implementation differ from an im-
plementation that does not consider the real-time constraints?

2



1. Introduction

1.3 Scope
The scope of the thesis is focused around the design and implementation of a MPC
for semi-active suspension with road preview. In order to implement the controller
in a real car, additional work is required that will be outside of the scope. The pre-
view information that is fed to the controller is assumed to be pre-processed, always
available and covering the entire distance from the back wheels until the maximum
range of the vision system. Communication with sensors and actuators in the car is
assumed to be in place.

A realistic car model to test and evaluate the controller on is available and will
be used during the project. The performance of the controller during more dy-
namic manoeuvring of the car, such as turning or breaking, will not be considered
even though a semi-active suspension can affect the performance of the vehicle in
these manoeuvres. Such scenarios will not be considered because during such ma-
noeuvring, handling needs to be prioritized and the controller will be designed to
prioritize comfort. Another reason is that the controller will not be optimal when
turning, since the calculated path of the road preview will not be followed.

The controller will be tuned and evaluated by assessing vehicle body accelerations
rather than the subjective feeling of ride comfort. It makes sense to minimize the
accelerations since that is what the driver and the passengers feels.

1.4 Outline of the report
Chapter 2 contains theory about relevant vehicle dynamics and introduces the dif-
ferent kinds of suspensions. It also introduces the control problem that needs to be
solved when trying to improve ride comfort with semi-active suspension.

Chapter 3 contains theory about linear MPC and nonlinear MPC.

Chapter 4 describes the control design of the proposed controllers and the real-time
implementation. It also contains a review of related research.

Chapter 5 presents simulation testing of the implemented controllers and obtained
results.

Chapter 6 describes further additions to the controller in order to make it work in
a vehicle implementation and presents experimental results.

Chapter 7 contains a discussion of the obtained results together with suggestions for
future work and the conclusion of the thesis.

3
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2
Vehicle model and control problem

This chapter covers the modelling of the vertical full-car model starting with the
fundamental quarter-car model, which is the building block for both the half-car
and full-car suspension models. Then the different kinds of suspensions (passive,
semi-active and active) are described. Finally, the semi-active suspension control
problem is described.

2.1 Quarter-car model

The quarter-car model describes the vertical dynamics of the interactions between
the road, the wheel and the body. The wheel mass is connected to the road through
the tire, which is almost a direct connection. Hence, this mass is referred to as the
unsprung mass. The body mass is connected to the wheel through a spring and
a damper and is therefore referred to as the sprung mass. The quarter-car model
has two degrees of freedom, one associated with the sprung mass and one with the
unsprung mass. A passive quarter-car suspension model is shown in Figure 2.1. The
variables and constants can be found in Table 2.1.

Table 2.1: Description of the parameters used in the passive quarter-car model.

Symbol Quantity Unit
ks Spring constant N/m
kt Spring constant, tire N/m
ms Sprung mass kg
mu Unsprung mass kg
bs damping coefficient N/m/s
zs Vertical displacement of sprung mass, heave m
zu Vertical displacement of unsprung mass m
zr Vertical displacement of road m

5



2. Vehicle model and control problem

Figure 2.1: Passive quarter-car model. The parameters for this model can be seen
in Table 2.1.

The dynamic equations of the passive quarter-car model describes the forces acting
on the sprung mass (2.1) and the forces acting on the unsprung mass (2.2) and are
formulated as:

msz̈s = −ks(zs − zu)− bs(żs − żu), (2.1)
muz̈u = ks(zs − zu) + bs(żs − żu)− kt(zu − zr). (2.2)

2.2 Full-car model

This section describes the full-car model that is modelled with an actuator that can
exert a force on each wheel. Using an additional force as control signal is a common
way to model an active or a semi-active suspension. The full-car model is based
on four quarter-car models that are connected to the same sprung mass and it has
seven degrees of freedom: heave, roll, pitch and vertical displacement of the four
unsprung masses. There is also a half-car model that is based on two quarter-car
models, connected to the same sprung mass. The half-car model has four degrees of
freedom: heave, pitch and vertical displacement of the two unsprung masses. The
modelling of the half-car model and the full-car model is very similar, so only the
full-car model is derived here. An illustration of the full-car model is shown in Fig-
ure 2.2 and the variables and constants can be found in Table 2.2.
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2. Vehicle model and control problem

Table 2.2: Parameters for full-car model, i ∈ {f, r}, j ∈ {l, r} which stands for
i ∈ {front, rear}, j ∈ {left, right}.

Symbol Quantity Unit
ms Sprung mass kg
muij Unsprung mass kg
Ix Roll inertia kgm2

Iy Pitch inertia kgm2

zs Vertical displacement of sprung mass, heave m
zsij Vertical displacement of sprung mass at each corner m
θ Roll rad
ϕ Pitch rad
zuij Vertical displacement of unsprung mass m
zrij Vertical displacement of road m
ksij Spring constant, sprung mass N/m
ktij Spring constant, tire N/m
bsij Damping coefficient sprung mass N/m/s
tf COG-distance front m
tr COG-distance rear m
ll COG-distance left m
lr COG-distance right m
Fij Force acting on each unsprung mass N
Ftij Tire force N
uij Control signal N

Figure 2.2: Full-car model with additional force between sprung and unsprung
mass as control signal. The parameters for this model can be seen in Table 2.2.

In order to describe the dynamics of the full-car model the following equations are
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2. Vehicle model and control problem

derived. Equations of equilibrium:

msz̈s = −Ffl − Ffr − Frl − Frr, (2.3)
muflz̈ufl = Ffl − Ftfl, (2.4)
mufrz̈ufr = Ffr − Ftfr, (2.5)
murlz̈url = Frl − Ftrl, (2.6)
murrz̈urr = Frr − Ftrr, (2.7)

Ixθ̈ = (Ffr + Frr)lr − (Ffl + Frl)ll, (2.8)
Iyϕ̈ = (Ffl + Ffr)tf − (Frl + Frr)tr. (2.9)

Forces acting on the sprung mass, located at each corner of the sprung mass:

Ffl = ksfl(zsfl − zufl) + bsfl(żsfl − żufl) + ufl, (2.10)
Ffr = ksfr(zsfr − zufr) + bsfr(żsfr − żufr) + ufr, (2.11)
Frl = ksrl(zsrl − zurl) + bsrl(żsrl − żurl) + url, (2.12)
Frr = ksrr(zsrr − zurr) + bsrr(żsrr − żurr) + urr. (2.13)

The vertical displacement at each corner zij can be described by the vertical dis-
placement at COG, roll and pitch:

zsfl = zs − tfsin(ϕ) + llsin(θ), (2.14)
zsfr = zs − tfsin(ϕ)− lrsin(θ), (2.15)
zsrl = zs + trsin(ϕ) + llsin(θ), (2.16)
zsrr = zs + trsin(ϕ)− lrsin(θ). (2.17)

The vertical displacement rate at each corner are calculated by taking the derivative
of (2.14) - (2.17):

żsfl = żs − tfcos(ϕ)ϕ̇+ llcos(θ)θ̇, (2.18)
żsfr = żs − tfcos(ϕ)ϕ̇− lrcos(θ)θ̇, (2.19)
żsrl = żs + trcos(ϕ)ϕ̇+ llcos(θ)θ̇, (2.20)
żsrr = żs + trcos(ϕ)ϕ̇− lrcos(θ)θ̇. (2.21)

Forces from the tires acting on the unsprung masses:

Ftfl = ktfl(zufl − zrfl), (2.22)
Ftfr = ktfr(zufr − zrfr), (2.23)
Ftrl = ktrl(zurl − zrrl), (2.24)
Ftrr = ktrr(zurr − zrrr). (2.25)

2.2.1 Linearization
In order to design an MPC based on convex optimization to control the dampers
of the car, the full-car model needs to be linear. The model is linearized by using
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2. Vehicle model and control problem

the small angle approximation, i.e. sin(φ) ≈ φ and cos(φ) ≈ 1. This is a good
approximation since in all normal road conditions, the roll and pitch angles of the
car will be relatively small. Then, (2.14)-(2.17) can be rewritten as:

zsfl = zs − tfϕ+ llθ, (2.26)
zsfr = zs − tfϕ− lrθ, (2.27)
zsrl = zs + trϕ+ llθ, (2.28)
zsrr = zs + trϕ− lrθ, (2.29)

and (2.18)-(2.21) as:

żsfl = żs − tf ϕ̇+ llθ̇, (2.30)
żsfr = żs − tf ϕ̇− lrθ̇, (2.31)
żsrl = żs + trϕ̇+ llθ̇, (2.32)
żsrr = żs + trϕ̇− lrθ̇. (2.33)

2.2.2 State space representation
When linearized, the full-car model can be described by a state space representation.
A state vector x, a control signal vector u and a disturbance input vector w are
defined as:

x =
[
zs, θ, ϕ, zufl, zufr, zurl, zurr, żs, θ̇, ϕ̇, żufl, żufr, żurl, żurr

]T
, (2.34)

u =
[
ufl, ufr, url, urr

]T
, (2.35)

w =
[
zrfl, zrfr, zrrl, zrrr

]T
, (2.36)

where zs is heave position and is defined as deviation from initial position. θ and ϕ
are the roll angle and the pitch angle of the car body. zufl, zufr, zurl and zurr are
the positions for the unsprung masses which are defined as the displacement from
their initial positions. The remaining states are the derivatives of the first seven
state variables. The initial values for the state vector are defined as:

x(0) =
[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]T
. (2.37)

The plant to be controlled can be written on state space form by using (2.3)-(2.9),
(2.10)-(2.13), (2.22)-(2.25), (2.26)-(2.29) and (2.30)-(2.33):

ẋ = Ax +Buu +Bww, (2.38)
y = Cx +Du, (2.39)

where A, B, C and D are appropriate matrices.
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2. Vehicle model and control problem

2.3 Passive suspension
In the full-car model, described in section 2.2, the forces from the springs and
dampers in the car are described. The control signals, which are additional forces
acting on the vehicle body is used to model an active or semi-active suspension.
The additional forces are not present in a passive suspension, which only consists of
springs and passive dampers. The purpose of the spring is to absorb shock energy
due to unevenness in the road profile and convert it into potential energy while the
purpose of the damper is to dissipate energy, i.e. absorb and damp shock impulses
caused by unevenness of the road.

With passive suspensions, the relationship between the force and the deflection
velocity of the damper can be approximated as linear with the function F = −bv,
where F is the force generated by the damper, v is the deflection velocity and b
is the damping coefficient. For a real damper, this approximation is only valid for
deflection velocities close to zero. Figure 2.3 shows a side by side comparison of the
linear approximation and the more realistic damper characteristics.

(a) Linear damper characteristics. (b) Nonlinear damper characteristics.

Figure 2.3: Force exerted by a passive damper as a function of the deflection
velocity with simplified and realistic characteristics.

2.4 Active and semi-active suspension
The initial motivations for active and semi-active damping came from the difficulties
in tuning passive suspensions due to the trade-off between comfort and handling.
The trade-off is less significant for active and semi-active suspensions since the force
that is exerted by the actuators can be controlled. The biggest performance increase
compared to passive suspension is achieved by using active suspension because the
force that is applied by the actuators is independent of the velocity of the damper
which can be seen in Figure 2.4. That means a car with active suspension can exert
an independent force on the suspension to vertically control the movement of each
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wheel in relation to the vehicle body.

Figure 2.4: Constraints of the force that can be exerted for active suspension given
as a function of the deflection velocity of the damper.

With semi-active suspensions, it is possible to change the damping force in the
suspension. However, semi-active suspensions can only dissipate energy from the
system, not add energy. This means that the controlled force always has the oppo-
site direction to the velocity of the damper and cannot be chosen independently, as
it can with active suspensions. Figure 2.5 shows both simplified and realistic char-
acteristics of the force exerted by a semi-active damper and it can be seen that the
approximation of the lower and upper bounds as linear functions, (a), is only similar
to the more realistic, piece-wise linear bounds, (b), when the deflection velocity of
the damper is small. Note that for comfort oriented vehicles, the force that is ex-
erted during rebound (positive velocity) is generally larger than during compression
(negative velocity).

(a) Simplified damper characteristics. (b) Realistic damper characteristics.

Figure 2.5: Constraints on the force that can be exerted by semi-active suspension
given as a function of the deflection velocity of the damper.
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2.5 Primary and secondary ride
Ride comfort can be divided into primary ride and secondary ride where primary ride
is associated with body accelerations with frequencies up to 4 Hz while secondary
ride is associated with body accelerations with frequencies higher than 4 Hz, [4].
General body and suspension movements when driving over large bumps, long dips
and low frequency undulations in the road results in primary ride. This accounts
for both the rebound and the compression phase and is primarily controlled by the
springs, dampers and anti-roll bars. Secondary ride is associated with driving on
roads with smaller surface imperfections such as concrete and broken tarmac. This
results in vibrations of higher frequencies and how well they are damped depends
on the tire properties and bushing together with the suspension. To investigate the
primary ride of a vehicle it is common to measure accelerations of the body and the
wheel deflection. On the other hand, to investigate the secondary ride properties
accelerations in the steering wheel and in the seat rail are usually measured. A
semi-active suspension can improve primary ride and can also minimize the accel-
erations on the lower end of the secondary ride spectrum, i.e up to around 10 Hz.
Accelerations with even higher frequencies are mainly absorbed by other parts of
the suspension and the car seats.

2.6 Semi-active suspension control problem
The semi-active suspension control problem for improving ride comfort is about
controlling the force exerted by the semi-active dampers in such a way that the heave,
roll and pitch accelerations of the vehicle body are minimized. While doing this, the
dissipative constraints of the semi-active dampers needs to be enforced, which means
that the force needs to be within the bounds shown in Figure 2.5. Additionally, a
preview of the road disturbance should be incorporated into the control problem in
order to further improve the possible performance increase over a passive suspension.
In a real car, there are also hard limits on the travel of the suspension that needs
to be incorporated. A suitable control strategy for incorporating all the described
aspects is MPC.
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3
Model Predictive Control

This chapter gives a theoretical background of linear MPC and nonlinear MPC.
First, linear MPC is explained and the formulation of a quadratic optimization
problem is derived in order to get an easier understanding of how nonlinear MPC
works.

3.1 Receding horizon idea

The core of model predictive control is to utilize the receding horizon idea. This
principle can be seen in Figure 3.1 and is described as follows:

1. At time instant k, based on the current state, the controller uses a process
model to predict the process response over a finite prediction horizon, N .

2. An optimization problem is solved for the optimal sequence of control signals
over the prediction horizon based on a defined cost function of the predicted
process response, subject to constraints.

3. The first element in the control sequence is applied to the process at the cur-
rent time instant and the rest of the control sequence is discarded.

4. Return to step 1 for the next time instant, k + 1.

Figure 3.1: Receeding horizon idea.
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3. Model Predictive Control

3.2 System model
In order to design a controller, the system matrices needs to be discretized. This
can be done by a zero order hold discretization, where it is assumed that the input
signal is constant until the next sampling instant. Assuming that the plant model
is continuous and described as in (2.38)-(2.39), it can be rewritten as:

ẋ = Ax +
[
Bu Bw

]
︸ ︷︷ ︸

B

[
u
w

]
︸ ︷︷ ︸

v

, (3.1)

y = Cx +Du. (3.2)

Then, the discretized matrices are:

Ad = eAT , (3.3)
Bd = A−1(eAT − I)B, (3.4)
Cd = C, (3.5)
Dd = D, (3.6)

and the discretized plant model is:

x[k + 1] = Adx[k] +Bdv[k], (3.7)
y[k] = Cdx[k] +Ddu[k]. (3.8)

Equation (3.7)-(3.8) can be rewritten into the following discrete linear state equa-
tions:

x[k + 1] = Ax[k] +Buu[k] +Bww[k], (3.9)
y[k] = Cx[k] +Du[k], (3.10)

where A is the state transition matrix, Bu is the control signal matrix, Bw is the
disturbance input matrix, C is the output matrix, D is the feedforward matrix,
x[k[ is the state vector, u[k] is the control signal vector, w[k] is the disturbance
input vector and y[k] is the output vector. The subscript d, used to clarify that the
matrices are discrete, are from now on neglected and the matrices are assumed to
be discrete.
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3.3 State predictions

The state predictions are given by (3.9) and are written over the horizon as:

x̂[k + 1|k] = Ax̂[k|k] +Buu[k|k] +Bww[k|k], (3.11)
x̂[k + 2|k] = Ax̂[k + 1|k] +Buu[k + 1|k] +Bww[k + 1|k]

= A(Ax̂[k|k] +Buu[k|k] +Bww[k|k]) +Buu[k + 1|k] +Bww[k + 1|k]
= A2x̂[k|k] + ABuu[k|k] + ABww[k|k] +Bu[k + 1|k] +Bww[k + 1|k],

(3.12)
...

x̂[k +N |k] = AN x̂[k|k] + AN−1Buu[k|k] + AN−1Bww[k|k] + AN−2Bu[k + 1|k]
+ AN−2Bww[k + 1|k] + ...+Buu[k +N − 1|k] +Bww[k +N − 1|k].

(3.13)

3.4 Output predictions

From the state predictions given in Section 3.3 and by the model given in (3.10),
the following output predictions can be derived:

ŷ[k + 1|k] = Cx̂[k + 1|k] +Du[k + 1|k]
= C(Ax̂[k|k] +Buu[k|k] +Bww[k|k]) +Du[k + 1|k]
= CAx̂[k|k] + CBuu[k|k] + CBww[k|k] +Du[k + 1|k], (3.14)

ŷ[k + 2|k] = Cx̂[k + 2|k] +Du[k + 2|k]
= C(A2x̂[k|k] + ABuu[k|k] + ABww[k|k] +Buu[k + 1|k]

+Bww[k + 1|k]) +Du[k + 2|k]
= CA2x̂[k|k] + CABuu[k|k] + CABww[k|k] + CBuu[k + 1|k]

+ CBww[k + 1|k]) +Du[k + 2|k], (3.15)
...

ŷ[k +N |k] = CAN x̂[k|k] + CAN−1Buu[k|k] + CAN−1Bww[k|k]
+ CAN−2Buu[k + 1|k] + CAN−2Bww[k + 1|k] + ...

+ CBuu[k +N − 1|k] + CBww[k +N − 1|k] +Du[k +N |k]. (3.16)

The output predictions can be rewritten into matrix form as:
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ŷ[k + 1|k]
ŷ[k + 2|k]

...
ŷ[k +N |k]


︸ ︷︷ ︸

ŷ

=


CA
CA2

...
CAN


︸ ︷︷ ︸

Φ

x̂[k|k] +


CBu D 0 . . . 0
CABu CBu D 0 ...

... . . . . . . . . . 0
CAN−1Bu CAN−2Bu . . . CBu D


︸ ︷︷ ︸

Γu


u[k|k]

u[k + 1|k]
...

u[k +N |k]


︸ ︷︷ ︸

û

+


CBw 0 . . . 0
CABw CBw

. . . ...
... . . . . . . 0

CAN−1Bw CAN−2Bw . . . CBw


︸ ︷︷ ︸

Γw


w[k|k]

w[k + 1|k]
...

w[k +N − 1|k]


︸ ︷︷ ︸

ŵ

(3.17)

Equation (3.17) can be written short as:

ŷ = Φx[k] + Γuû+ Γwŵ. (3.18)
In order to minimize the output of the system, a quadratic optimization problem is
formulated on the form

min
û

ŷTQŷ + ûTRû, (3.19)

where Q is the output penalty matrix and R the control signal penalty matrix.
By substituting (3.18) into (3.19) the following cost function is derived:

ŷTQŷ + ûTRû = (3.20)
(Φx[k] + Γuû+ Γwŵ)TQ(Φx[k] + Γuû+ Γwŵ) + ûTRû = (3.21)
(x[k]T ΦT + ûT ΓT

u + ŵT ΓT
w)Q(Φx[k] + Γuû+ Γwŵ) + ûTRû = (3.22)

x[k]T ΦTQΦx[k] + x[k]T ΦTQΓuû+ x[k]T ΦTQΓwŵ + ...

+ ûT ΓT
uQΦx[k] + ûT ΓT

uQΓuû+ ûT ΓT
uQΓwŵ + ...

+ ŵT ΓT
wQΦx[k] + ŵT ΓT

wQΓuû+ ŵT ΓT
wQΓwŵ + ûTRû. (3.23)

Omitting the terms not dependent on the optimization variable û gives:

x[k]T ΦTQΓuû+ ûT ΓT
uQΦx[k] + ûT ΓT

uQΓuû+ ...

+ ûT ΓT
uQΓwŵ + ŵT ΓT

wQΓuû+ ûTRû = (3.24)
ûT (ΓT

uQΓu +R)︸ ︷︷ ︸
H

û+ 2 (x[k]T ΦTQΓu + ŵT ΓT
wQΓu)︸ ︷︷ ︸

f

û. (3.25)

Problem (3.19) can be rewritten as:

min
û

1
2 û

THû+ fû. (3.26)
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Now, the problem is formulated in such a way that a quadratic programming (QP)
solver can be used. In order for the problem to be convex, the Hessian matrix (H)
needs to be positive definite. The typical optimization problem to solve in an MPC
problem is formulated as:

min
û

1
2 û

THû+ fû (3.27)

s.t. Aû ≤ b (3.28)
lb ≤ û ≤ ub, (3.29)

where the constraints can be formulated as linear combinations of the optimization
variables and also by upper and lower bounds on the optimization variables.

3.5 Nonlinear Model Predictive control
Nonlinear MPC can be used if the vehicle model is nonlinear or if the constraints
are nonlinear. The following nonlinear set of differential equations are considered
for the continuous time NMPC formulation, which is described in more detail in [5]:

ẋ = f(x(t),u(t)), x(0) = x0 (3.30)

s.t. u(t) ∈ U , ∀t ≥ 0 (3.31)
x(t) ∈ X , ∀t ≥ 0, (3.32)

where u(t) ∈ U ⊆ Rm and x(t) ∈ X ⊆ Rn denotes the input and the state vectors,
respectively. U stands for the set of feasible input values and X for the set of feasible
state values.

Then the finite horizon open-loop optimal control problem can be formulated as:

min
ū(·)

J(x(t), ū(·);Tc, Tp) :=
∫ t+Tp

t
F (x̄(τ), ū(τ))dτ (3.33)

s.t. ˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(t) = x(t) (3.34)
ū(τ) ∈ U , ∀τ ∈ [t, t+ Tc] (3.35)
ū(τ) = ū(τ + Tc), ∀τ ∈ [t+ Tc, t+ Tp] (3.36)
x̄ ∈ X , ∀τ ∈ [t, t+ Tp], (3.37)

where J is some specified cost function, Tc is the control horizon, Tp prediction
horizon and Tc ≤ Tp. The function F is called the stage cost and most commonly
defined as a quadratic function. The internal variables in the controller are denoted
by a bar (x̄, ū) to distinguish between the real system and the system model. x̄(·)
is the solution of Equation 3.34 with input ū(·): [t, Tp] → U and initial condition
x(t).
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3.5.1 Numerical integration methods
In order to solve for ẋ in (3.30) numerically, an integration method must be used.
Two commonly used integration methods are explicit and implicit methods, which
are described in detail in [6]. An explicit method calculates the next system states
based on the current states while an implicit method calculates the future system
states based on both current and future states.

Explicit method:
x(t+ ∆t) = f(x(t)). (3.38)

Implicit method:
x(t+ ∆t) = g(x(t)) + f(x(t+ ∆t)). (3.39)

Implicit methods require an extra computation step compared to explicit methods
and are usually more difficult to implement, but have a larger stability region. An
explicit method requires a small step size to prevent instability while an implicit
method can use a comparably larger step size while the solution still converges. An
explicit integration method is not well suited to handle highly nonlinear equations
since it would require a very small step size and hence increase the computation
time drastically. On the other hand, implicit methods can handle highly nonlinear
equations without reducing the step size to an impractically small value.

3.5.2 Shooting methods
Direct single shooting and direct multiple shooting are techniques used to discretize
the time-continuous formulation and are described in [7]. A shooting method solves
a boundary value problem by reducing it to the solution of an initial value problem.
Direct single shooting is a sequential approach where the differential variables are
considered as quantities dependent on the independent control variables. An initial
value problem is solved in each iteration of the optimization algorithm to compute
the derivatives with respect to control variables, the objective function and the con-
straints. On the other hand, direct multiple shooting is a simultaneous method.
The interval over which an solution is sought is divided into smaller intervals and
an initial value problem is solved in each interval. To form a solution over the whole
interval additional matching conditions are imposed.

Single shooting suffers from several drawbacks. The solution of the initial value
problem must exist on the interval and for a highly nonlinear or unstable ODE,
the initial guess must be close to the actual but unknown solution. Sometimes this
initial value may be impossible to find. In terms of numerical stability and the
significant improvement in distribution of nonlinearity, multiple shooting is superior
to single shooting.
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4
Control design

In this chapter the control design is presented. At first, related research in the field
is presented which is a followed by a description of the proposed approach for the
design of the controller. Two different controllers were designed in order to answer
the research questions: one full complexity controller without the limitations of a
real-time implementation and one controller that can be run in real time. The
latter controller thus has limitations on sampling time, prediction horizon and the
complexity of the model.

4.1 Related research
A natural choice of control strategy for utilizing road preview in an optimal way is
MPC, but other control strategies have been used as well. In [8], design of a Linear
Quadratic Regulator (LQR) for active suspension utilizing road preview was con-
ducted. A quarter-car model was considered and constraints on dynamic tire load
variation, body accelerations and suspension working space were set and minimized
in the cost function. The results showed that a fast active controller mainly tries
to improve the components in the cost function that corresponds to a higher nat-
ural frequency, i.e. the tire deflection. A slow active controller cannot reduce this
cost, but works well for improving ride comfort and suspension work space. In [9],
MPC is applied to a half-car model with active suspension using preview of the road
height profile. The results from the study showed a significant improvement in the
performance for both ride comfort and handling for active suspensions compared to
passive suspensions. The MPC solution was also robust against the occurrence of a
significant amount of noise in the road preview. The authors claims MPC to be a
superior control method for this kind of problem compared to LQR because of the
ability to incorporate hard constraints in the design process. A LQR cannot explic-
itly incorporate hard constraints, they are minimized in the cost function instead.
For active and semi-active suspensions, it is important that the limits of the suspen-
sion deflection, actuator displacements and rate of the actuator displacements are
not exceeded and therefore it is important to incorporate such hard constraints in
the control design, which is discussed in [10]. In that study, road preview was used
together with MPC for active suspension using a reduced full-car model which is a
model where the wheel dynamics are neglected. A low bandwidth actuator was con-
sidered and therefore the fast dynamics of the wheels were not taken into account,
hence the reduced full-car model. The same authors implemented the controller in
real car in [11] and thus managed to run the controller in real time.
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Control of semi-active suspensions using MPC and a full-car model was proposed in
[3]. However, preview of the road profile was not used. Instead, the authors proposed
an observer approach in order to estimate the road disturbances. Ride comfort and
handling were considered by the performance indices of heave acceleration through
the vehicle center of gravity and roll angle, respectively. A trade-off was made
between heave acceleration and roll since the two objectives are conflicting. This
trade-off was chosen by a load transfer ratio which was measured by lateral acceler-
ations. If the vehicle is exposed to lateral load transfer or roll motion, the controller
aims to minimize the roll in the cost function. On the opposite, if there is low roll
motion and low lateral load transfer the controller minimizes the heave acceleration
in the cost function. The dissipative constraints of the semi-active dampers were
transformed into input constraints as:

0 ≤ bminij
≤ bij(·) ≤ bmaxij

, (4.1)
where bij(·) is a variable damping coefficient, i ∈ {f = front, r = rear} and
j ∈ {l = left, r = right}. The other symbols correspond to those defined in Table
2.2 for the full-car model. The damping force Fdij

was defined as:

Fdij
= bnomij

żdefij
+ uij = bij(·)żdefij

=
bminij

+ bmaxij

2 (żsij
− żuij

) + uij. (4.2)

By using (4.1) and (4.2), the following input constraints were defined:

bminij
(żsij
− żuij

) ≤ Fdij
≤ bmaxij

(żsij
− żuij

), if żsij
≥ żuij

, (4.3)
bmaxij

(żsij
− żuij

) ≤ Fdij
≤ bminij

(żsij
− żuij

), if żsij
< żuij

, (4.4)

and because the force was expressed as:

Fdij
=
bminij

+ bmaxij

2 (żsij
− żuij

) + uij

=
bminij

(żsij
− żuij

) + bmaxij
(żsij
− żuij

)
2 + uij,

(4.5)

Equation (4.3) and (4.4) could be rewritten as:

bminij
− bmaxij

2 (żsij
− żuij

) ≤ uij ≤
bmaxij

− bminij

2 (żsij
− żuij

), if żsij
≥ żuij

, (4.6)
bmaxij

− bminij

2 (żsij
− żuij

) ≤ uij ≤
bminij

− bmaxij

2 (żsij
− żuij

), if żsij
< żuij

. (4.7)

By using the conventional full-car model (same as the one described in Section 2.2)
the constraints on the damping force exerted by the semi-active dampers depended
on the direction of the velocity of the dampers. In order to solve for the optimal
control sequence in the MPC formulation, either (4.6) or (4.7) needed to be chosen
for each time instant. This was formulated by introducing binary variables which
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led to the formulation of a mixed-integer quadratic programming (MIQP) problem.
The result of the study in [3] showed that the proposed controller performed very
close to a MPC with preview, even though the road disturbance was estimated.
However, the controller was only verified through simulations and the limitations of
a real-time implementation was not considered.

Since the constraints of the semi-active dampers depends on the sign of the suspen-
sion deflection velocity, it is necessary to switch between the appropriate constraints
when optimizing over the control horizon. This results in an optimization problem
that is NP-hard and hence cannot be solved in polynomial time. Thus, handling
the constraints of the semi-active dampers to solve the optimization problem in
real time is the biggest challenge with a real-time implementation. Some simplifi-
cations or assumptions have to be made to achieve this task. In [12], both active
and semi-active suspensions using MPC with road preview have been considered.
Two methods to reduce the computational complexity of the optimization problem
were proposed. The first method predicts damper velocities for a passive vehicle,
chooses an appropriate linear damper force and approximates the relative damper
velocities. Constraints for the damper force are calculated over the prediction hori-
zon which leads to a linear optimization problem. If the resulting force is not within
the bounds, maximum or minimum damping force is applied. In the second method
that is proposed, no constraints on the damping force are taken into account when
calculating the optimal damping force. The force is then clipped to the limits of the
damper characteristics. Both methods performed as good as the reference solution,
which incorporates nonlinear constraints on the damper force, for the given road
disturbances.

MPC with realistic constraints for semi-active suspension are also presented in [13],
where a nonlinear half-car model was employed. To overcome the problem with
the large computational time for the MPC for semi-active suspension the authors
utilizes a so called fast MPC method. The objective is to find the control signal as
a function of the state variables. This cannot be calculated online due to the long
computational time which is why the function is approximated using a set mem-
bership approach. Assuming that the state variables are bounded in some region,
offline calculations are performed for a set of initial conditions. Then the only on-
line calculation that needs to be done is a simple evaluation of the approximated
function that is calculated offline. However, a model with only four states was used,
i.e. two decoupled quarter-car models to represents a half-car model. For a more
complex model with a large number of states, control signals and disturbance inputs
the necessary number of offline calculations are much more difficult to cover.

In [14] the authors presents a MPC solution to the problem of controlling a quarter-
car model with semi-active suspension. This solution is stated by the authors as the
best possible solution to this problem and is used as a reference solution, assuming
that future road disturbances are known. To overcome the problem with the large
computational time to solve the optimization problem at each time instant in the
MPC solution a rule based controller was proposed that mimics the behavior of the
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MPC.

In [15] the authors proposed another method to tackle the problem with the large
computational time in a real time implementation by performing the computations
offline instead. Their solution uses a lidar system that measures the road profile in
front of the vehicle and a Fast Fourier Transform (FFT) is applied to analyze the
frequency content of the road. The road is divided into different classes of discrete
events such as potholes and bumps and random roads, based on the frequency con-
tent. The MPC optimization problem is solved offline for all classes and the results
are stored in lookup tables. During online operation, the control signal is recalled
from the lookup table based on the current state values and the frequency content of
the road. A half-car model was used in this study and the proposed method showed
a better performance regarding ride comfort compared to passive suspension and
other control methods such as Skyhook-control and H-infinity control.

4.2 Proposed approach

Based on previous, recently performed research, the chosen control strategy for the
semi-active control problem is MPC based on a full-car model. It is an effective ap-
proach to utilize the known disturbance from the road in the design of the controller
while incorporating hard constraints on the control signal. In previous research
there are few studies where a full-car model has been used because of the increase
in computation time a more complex vehicle model introduces. However, in order
to incorporate dynamics for all relevant body movements (heave, roll and pitch), a
full-car model is appropriate.

Since the force that is exerted by the semi-active damper depends on the velocity
of the damper and the upper and lower constraints switch place when the velocity
of the damper changes direction, it results in an optimization problem with large
time complexity. In [3], the authors set up a MIQP problem by switching between
the constraints depicted in (4.6) and (4.7) with the use of binary variables. This
optimization problem is NP-hard and therefore not suitable for a real-time imple-
mentation that can be run sufficiently fast.

Instead of using the conventional full-car model, where the variable force from the
semi-active damper is modelled as an additional force between the sprung mass and
the unsprung mass, we propose a full-car model with the damping coefficient as
control signal. This results in a nonlinear model where the previous assumption of
small angle approximation is not enough to make the model linear since the control
signal is multiplied with some of the states. The benefit of formulating the problem
in such a way is that the constraints on the damping coefficient only have a lower and
an upper bound and do not depend on the direction of the velocity of the damper.
However, linear MPC can no longer be used for such a model which introduces the
need for NMPC.
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4.3 NMPC Solver
In order to make a real-time implementation feasible, an optimization problem needs
to be solved online and that requires a lot of computational power. Due to increasing
popularity for using MPC in systems with fast dynamics there are solvers which are
tailored to MPC style optimization problems. As stated in the proposed approach,
NMPC will be used in this thesis. Therefore, a solver that can handle NMPC
problems needs to be used. Two frameworks that targets this type of problem are:
FORCES Pro [16] and ACADO Toolkit [17]. FORCES Pro is a commercial frame-
work for formulation of MPC and nonlinear programs (including NMPC) with its
own structure exploiting solver. ACADO Toolkit is an open-source framework for
formulating MPC and NMPC problems that is utilizing qpOASES [18], a QP solver,
as its main low level solver. In order to make a real-time implementation feasible,
the chosen solver software needs to be able to run in real-time on the hardware.
ACADO Toolkit is, like qpOASES, based on C and C++ and it has support for
exporting source code that can be run on the hardware and FORCES Pro is also
capable of generating code for that purpose.

This thesis is done in collaboration with Volvo Car Corporation which means that
an academic license is more difficult to obtain for commercial solvers (FORCES
Pro). Therefore, with respect to costs and the time it would take to arrange a
regular license, an open-source solution is highly preferred. Since ACADO Toolkit
is open-source, able to handle NMPC and supports code generation it is the solver
that is chosen in this thesis.

4.3.1 ACADO Toolkit
In order to use ACADO Toolkit, the problem should be formulated on the following
form, as described in [19]:

min
x0,...,xN

u0,...,uN−1

N−1∑
k=0

∣∣∣∣∣∣h(xk, uk)− ỹk

∣∣∣∣∣∣2
Wk

+
∣∣∣∣∣∣hN(xN)− ỹN

∣∣∣∣∣∣2
WN

(4.8)

s.t. x0 = x̂0 (4.9)
xk+1 = F (xk, uk, zk), for k = 0, ..., N − 1 (4.10)
xlb

k ≤ xk ≤ xub
k , for k = 0, ..., N (4.11)

ulb
k ≤ uk ≤ uub

k , for k = 0, ..., N − 1 (4.12)
rlb

k ≤ rk(xk, uk) ≤ rub
k , for k = 0, ..., N − 1 (4.13)

rlb
N ≤ rN(xN) ≤ rub

N , (4.14)

where the differential state is denoted by x ∈ Rnx , the control signal by u ∈ Rnu ,
the algebraic variable by z ∈ Rnz , and the current state measurement by x̂0 ∈ Rnx .
Furthermore, h ∈ Rny and hN ∈ Rny ,N are reference functions and Wk ∈ Rny×ny

and WN ∈ Rny,N ×ny,N are weighting matrices. Time-varying references are denoted
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by ỹk ∈ Rny and ỹN ∈ Rny . Equation (4.11) and (4.12) denote upper and lower
bounds on states and control signals, respectively, which also can change along the
horizon. Path and point constraints are defined by (4.13) and (4.14) with rk ∈ Rnr,k

and rN ∈ Rnr,N . The function F in Equation (4.10) defines a discretized ODE or
DAE.

ACADO Toolkit solves an NMPC problem by first discretizing the ODE or DAE by
multiple or single shooting techniques and built in explicit or implicit integrators.
Then it runs a real-time Gauss-Newton algorithm that returns a QP problem on the
same form as (3.27). The structure exploiting QP solver using interior point method
described in [20] can be used to solve the problem or alternatively, the QP can be
condensed and passed to dense linear algebra solver qpOASES which employs an
active set method.

4.4 Full complexity NMPC
In previous work, the MPC for semi-active suspension has been based on a full-car
model like the one described in Section 2.2 where the control signal is the additional
force exerted by the semi-active damper. This results in an optimization problem
where the model is linear but the constraints are nonlinear and dependent on the
deflection velocity of the damper. This thesis propose a different approach and
reformulates the model to use the damping coefficient as control signal instead of
the force. This results in a nonlinear plant model but the constraints on the damping
coefficient is linear. In this section a Nonlinear MPC using such a model, without
taking the real-time constraints into account, is described. This full complexity
NMPC is referred to as the Reference NMPC from now on.

4.4.1 Vehicle model
The plant model used in the MPC is the same as the one described in Section 2.2
with the difference that the damping coefficient is controlled instead of the force
that is exerted by the semi-active dampers. A visual representation of the model
can be seen in Figure 4.1. The variables and constants can be found in Table 2.2,
with the difference that the control signal, uij, now has the unit N/m/s.

Forces acting on the sprung mass, located at each corner of the sprung mass:

Ffl = ksfl(zs − tfsinϕ+ llsinθ − zufl) + ufl(żs − tfcos(ϕ)ϕ̇+ llcos(θ)θ̇ − żufl),
(4.15)

Ffr = ksfr(zs − tfsinϕ− lrsinθ − zufr) + ufr(żs − tfcos(ϕ)ϕ̇− lrcos(θ)θ̇ − żufr),
(4.16)

Frl = ksrl(zs + trsinϕ+ llsinθ − zurl) + url(żs + trcos(ϕ)ϕ̇+ llcos(θ)θ̇ − żurl),
(4.17)

Frr = ksrr(zs + trsinϕ− lrsinθ − zurr) + urr(żs + trcos(ϕ)ϕ̇− lrcos(θ)θ̇ − żurr).
(4.18)
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Tire forces acting on the unsprung masses:

Ftfl = ktfl(zufl − zrfl), (4.19)
Ftfr = ktfr(zufr − zrfr), (4.20)
Ftrl = ktrl(zurl − zrrl), (4.21)
Ftrr = ktrr(zurr − zrrr). (4.22)

Accelerations of the sprung mass:

z̈s = 1
ms

(−Ffl − Ffr − Frl − Frr), (4.23)

θ̈ = 1
Ix

((Ffr + Frr)lr − (Ffl + Frl)ll), (4.24)

ϕ̈ = 1
Iy

((Ffl + Ffr)tf − (Frl + Frr)tr). (4.25)

Accelerations of the unsprung masses:

z̈ufl = 1
mufl

(Ffl − Ftfl), (4.26)

z̈ufr = 1
mufr

(Ffr − Ftfr), (4.27)

z̈url = 1
murl

(Frl − Ftrl), (4.28)

z̈urr = 1
murr

(Frr − Ftrr). (4.29)

It is eligible to include the rate of change of the control signal in the cost function
since that gives the possibility to make the controller more or less aggressive. Hence,
the model is augmented so that the change of the control signals are used as control
variables, i.e. ∆ufl, ,∆ufr, ,∆url and ∆ufl. This is desirable because too rapid
changes of the damping coefficient can introduce unwanted high frequency acceler-
ations that the controller will not predict if the sampling time is too long.

Rate of change of the control signals are defined as:

u̇fl = ∆ufl

∆t , (4.30)

u̇fr = ∆ufr

∆t , (4.31)

u̇rl = ∆url

∆t , (4.32)

u̇rr = ∆urr

∆t . (4.33)

The state vector, x, for this model has 18 states, the 14 states of a normal full-car
model and the four control signals:

x = [zs, θ, ϕ, zufl, zufr, zurl, zurr, żs, θ̇, ϕ̇, żufl, żufr, żurl, żurr, ufl, ufr, url, urr]T .
(4.34)
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The control vector, u, contains the rate of change of each control signal:

u = [∆ufl, ∆ufr, ∆url, ∆urr]T . (4.35)

The road height is represented in the model as a known disturbance and the distur-
bance vector, w, contains the height of the road under each wheel:

w = [zrfl, zrfr, zrrl, zrrr]T . (4.36)

Figure 4.1: Full-car model with damping coefficient as control signal.

4.4.2 Optimization problem formulation

The optimization problem was set up to fit into the ACADO Toolkit problem for-
mulation, described in Section 4.3.1. The objective is to minimize the square of the
terms in the vector h and the vector hN . The terms in the h vector is minimized
over the entire horizon until the second to last step and the terms in the hN vector
is minimized in the last prediction step. The terms in hN can only depend on state
variables. The resulting optimization problem is:

min
x0,...,xN

u0,...,uN−1

N−1∑
k=0

∣∣∣∣∣∣h(xk, uk)
∣∣∣∣∣∣2

Wk

+
∣∣∣∣∣∣hN(xN)

∣∣∣∣∣∣2
WN

(4.37)
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s.t. x0 = x̂0 (4.38)
xk+1 = F (xk, uk, wk), for k = 0, ..., N − 1 (4.39)
ulb

fl ≤ ufl ≤ uub
fl (4.40)

ulb
fr ≤ ufr ≤ uub

fr (4.41)
ulb

rl ≤ url ≤ uub
rl (4.42)

ulb
rr ≤ urr ≤ uub

rr (4.43)

h = [z̈s, θ̈, ϕ̈, ∆ufl, ∆ufr, ∆url, ∆urr]T (4.44)
hN = [z̈s, θ̈, ϕ̈]T . (4.45)

The cost function is set to primarily minimize the accelerations for heave, roll and
pitch. However, the rate of change of the damping coefficients is also in the cost
function. An upper and a lower bound are set on the damping coefficients. The
damping coefficient can only take positive values.

The function F (xk, uk, wk) is the discretized version of the continuous model, de-
scribed in Section 4.4.1. The integration and discretization of the continuous model
is made with the implicit Runge-Kutta 4 integrator and multiple shooting technique
built into ACADO Toolkit.

4.4.3 Tuning
The controller was tuned to primarily minimize the body accelerations. The weight-
ing for the damping coefficient change rate was smaller than the weights for the
body accelerations to prioritize lowering body accelerations, but with a high enough
weight to avoid too fast changes of the damping coefficients.

The sampling time was chosen to be 10 milliseconds and the prediction horizon was
45 samples, which means that the prediction time was 0.45 seconds. For an "opti-
mal" controller one could of course choose an even lower sampling time and a longer
prediction horizon, but a trade off between good performance and convenient sim-
ulation times was made. However, further increasing the horizon did not improve
performance significantly and in most cases it did not improve the performance at all.

By examination of the values that the terms in the cost function could take, it was
seen that heave acceleration took values between −10 and +10m/s2, roll and pitch
acceleration were also typically in the range −10 to +10 rad/s2 and the damping
coefficients could take values in the range 0 to 10000 N/m/s. In order to make
the magnitude of the terms in the cost function similar, the damping coefficients
(ufl, ufr, url, urr) were scaled by a factor 1000.An overview of the tuning parameters
can be found in Table 4.1.
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The weights were set so that the heave, roll and pitch accelerations were weighted
equally. The reason for this is that the values they take have similar magnitude and
there is no clear reason to prioritize one over the other. Setting an equal weight on
each of the accelerations means that the controller will minimize them proportionally
to their current and predicted magnitude.

Table 4.1: Tuning parameter values for the Reference NMPC.

Parameter Value Description
∆t 0.01 Sampling time (s)
N 45 Prediction horizon (steps)
Wk diag(1, 1, 1, 0.7, 0.7, 0.7, 0.7) Weight matrix
WN diag(1, 1, 1) Weight matrix (last step)

4.5 Real-time NMPC

The same approach as for the Reference NMPC was used when designing the real-
time controller, but with the additional constraint that it needs to be able to run in
real time. In order to lower the execution time, the model was reduced by removing
the dynamics of the wheels and connecting the suspension directly to the road. The
sampling time was also increased which gave the additional benefit that the number
of prediction steps could be reduced without reducing the prediction time.

4.5.1 Vehicle model

In [10], the authors proposed a reduced full car model, which is a model where the
wheel dynamics are neglected. One important benefit by using a reduced full-car
model is the decreased computational complexity, since the number of states are re-
duced. However, neglecting the wheel dynamics gives a less accurate representation
of the real system. The vehicle model with a reduced number of states and damping
coefficient as control signal can be seen in Figure 4.2. The small angle approxima-
tion is also used to remove more complexity from the model. The variables and
constants can be found in Table 2.2, with the difference that the control signal, uij,
now has the unit N/m/s.

Forces acting on the sprung mass, located at each corner of the sprung mass:

Ffl = ksfl(zs − tfϕ+ llθ − zrfl) + ufl(żs − tf ϕ̇+ llθ̇ − żrfl), (4.46)
Ffr = ksfr(zs − tfϕ− lrθ − zrfr) + ufr(żs − tf ϕ̇− lrθ̇ − żrfr), (4.47)
Frl = ksrl(zs + trϕ+ llθ − zrrl) + url(żs + trϕ̇+ llθ̇ − żrrl), (4.48)
Frr = ksrr(zs + trϕ− lrθ − zrrr) + urr(żs + trϕ̇− lrθ̇ − żrrr). (4.49)
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Accelerations of the sprung mass:

z̈s = 1
ms

(−Ffl − Ffr − Frl − Frr), (4.50)

θ̈ = 1
Ix

((Ffr + Frr)lr − (Ffl + Frl)ll), (4.51)

ϕ̈ = 1
Iy

((Ffl + Ffr)tf − (Frl + Frr)tr). (4.52)

As for the Reference NMPC, it was desirable to have the rate of change of the
damping coefficient in the cost function which are defined as:

u̇fl = ∆ufl

∆t , (4.53)

u̇fr = ∆ufr

∆t , (4.54)

u̇rl = ∆url

∆t , (4.55)

u̇rr = ∆urr

∆t . (4.56)

This reduced model results in a state vector, x, with 10 states instead of 18. Heave,
roll, pitch and their respective velocities as well as the control signals:

x = [zs, θ, ϕ, żs, θ̇, ϕ̇, ufl, ufr, url, urr]T . (4.57)

The control vector, u, contains the rate of change of the damping coefficients:

u = [∆ufl, ∆ufr, ∆url, ∆urr]T . (4.58)

Since the model is now also dependent on the vertical velocity of the road, the known
disturbance vector, w, contains this information as well as the road height:

w = [zrfl, zrfr, zrrl, zrrr, żrfl, żrfr, żrrl, żrrr]T . (4.59)
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Figure 4.2: Reduced vehicle model with damping coefficient as control signal. The
suspension is connected directly between the sprung mass and the road.

4.5.2 Optimization problem formulation
The optimization problem structure and the cost function is exactly the same as for
the Reference NMPC. See Section 4.4.2 for more details. The optimization problem
is:

min
x0,...,xN

u0,...,uN−1

N−1∑
k=0

∣∣∣∣∣∣h(xk, uk)
∣∣∣∣∣∣2

Wk

+
∣∣∣∣∣∣hN(xN)

∣∣∣∣∣∣2
WN

(4.60)

s.t. x0 = x̂0 (4.61)
xk+1 = F (xk, uk, wk), for k = 0, ..., N − 1 (4.62)
ulb

fl ≤ ufl ≤ uub
fl (4.63)

ulb
fr ≤ ufr ≤ uub

fr (4.64)
ulb

rl ≤ url ≤ uub
rl (4.65)

ulb
rr ≤ urr ≤ uub

rr (4.66)

h = [z̈s, θ̈, ϕ̈, ∆ufl, ∆ufr, ∆url, ∆urr]T (4.67)
hN = [z̈s, θ̈, ϕ̈]T . (4.68)

4.5.3 Tuning
The goal of the tuning of the Real-time NMPC was the same as for the Reference
NMPC, which was to minimize body accelerations. In order to meet the real-time
constraints, the sampling time was increased since this enabled shortening of the
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prediction horizon without reducing the prediction time. It also gave the controller
more time to compute the next control signal before the next sampling instant. The
sampling time for the Real-time NMPC was set to 30 milliseconds and the number of
prediction steps was set to 20. This meant that the prediction time was 0.6 seconds.
An overview of the tuning parameters can be found in Table 4.2.

Table 4.2: Tuning parameter values for the Real-time NMPC.

Parameter Value Description
∆t 0.03 Sampling time (s)
N 20 Prediction horizon (steps)
Wk diag(1, 1, 1, 0.2, 0.2, 0.2, 0.2) Weight matrix
WN diag(1, 1, 1) Weight matrix (last step)

4.6 Real-time implementation
One of the main goals of the thesis was to make the controller run in real time. To
do that, the controller had to be run on a piece of hardware running a real-time
operating system. The hardware that was used was a MicroAutobox II DS1401 [21]
from dSpace with a 900 MHz processor. The dSpace compiler supports plain C and
C++ code but it is also possible to generate code from a Simulink model by using
Simulink coder and the RTI1401 code generation tool from dSpace. The RTI1401
tool does however only support C code and not C++ code.

The controller was implemented using ACADO Toolkit, which automatically gen-
erates a C code implementation of the MPC solver. To be able to interface the
solver with the rest of the functionality, which was made in Simulink, the solver
was compiled into an S-function that was inserted into the model. When doing the
implementation in this way, the RTI1401 tool could be used to generate C code for
the entire model and upload it to the Autobox. The underlying QP solver that was
used with ACADO Toolkit was qpOASES. However, the qpOASES solver imple-
mentation is done in C++ and the RTI1401 tool only supports C code. Therefore, a
plain C code translation of the qpOASES solver, qpOASES_e [22], was used instead.
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5
Simulation testing and results

This chapter describes how the controller performance was tested in simulations
against a realistic vehicle model. Evaluation metrics are introduced and a verifica-
tion of the vehicle models is done. Test scenarios to test the performance of the
controllers are described as well as the procedure how to test the real-time perfor-
mance. Finally, the results of the simulations are presented.

5.1 Realistic vehicle model
Simulations to test the controller were performed as a co-simulation with Simulink
and CarMaker, [23], which is a virtual testing environment for automobiles and
light-duty vehicles. The controllers were evaluated against a realistic vehicle model,
validated on a Volvo S90. This vehicle model considers all dynamics that affects the
movement of the car body while the controllers are based upon much simpler models.
The solver used in the continuous model for the co-simulation with CarMaker was
ODE1, which uses the Euler method, with a fixed step size of 0.001 seconds. When
the controllers were run, the damper forces in the model were replaced with external
damper forces, calculated from the control signals and the suspension deflection
velocities from CarMaker. The forces were calculated using the ideal damper model,
F = b · v. The reference vehicle to compare the controllers with was a car with a
passive suspension with nonlinear characteristics for the springs and the dampers.

5.2 Evaluation metrics
To evaluate the performance of the controllers in simulation, the primary parameters
to consider were the body accelerations since low body accelerations are considered
as good ride comfort. To evaluate the behaviour between the different controllers
as well as comparisons with a passive car, the Root Mean Squared (RMS) error of
the body accelerations were used. It is defined as:

xrms =
√

1
n

(x2
1 + x2

2 + . . . x2
n). (5.1)

The FFT of the body accelerations was also calculated in order to analyze the
frequency content of the accelerations. The controllers were evaluated by a visual
evaluation of how the frequency spectrum differed between the controllers and the
passive car.
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5.3 Model verification
This section aims to verify the vehicle models by comparing them to the realistic
vehicle model in CarMaker. The state variables from the full-car model and the
reduced full-car model in Simulink were compared to the state variables from the
CarMaker model. The road profile used in the test consists of a bump that is rotated
with an angle of 45 degrees which triggers a combined motion of heave, roll and pitch.
The front left wheel hits the bump first, then the front right wheel followed by the
rear wheels in the same order. The passive CarMaker model used in this test had
passive suspension with a fixed damping coefficient for each damper and was using
the same ideal damper model as the two full-car models. The full-car model that
was verified is described in Section 4.4.1 and the reduced full-car model is described
in Section 4.5.1. The road profile used in the test is shown in Figure 5.1.

Figure 5.1: Road profile used to verify the full-car model and the reduced full-car
model. The black curves represents the road profile under the front left wheel and
the front right wheel, respectively. The blue curves represents the road profile under
the rear left and rear right wheels.

As can be seen in Figure 5.2, 5.3, 5.4 and 5.5 the behaviour of the vehicle when
passing over a rotated bump is very similar when comparing the full-car model to
the reduced full-car model. The full-car model and the reduced full-car model are
simplified models which only consider vertical dynamics compared to the vehicle
model in CarMaker which describes the full dynamics of a real car. Which is why
some differences between the models are inevitable. However, the dynamics are
very similar when assessing the shapes of the curves and the main difference is the
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amplitude of the curves.

(a) Heave of vehicle body. (b) Heave velocity of vehicle body.

Figure 5.2: Comparison of vehicle behaviour between full-car model, reduced full-
car model and vehicle model in CarMaker with respect to heave and heave velocity
of the vehicle body.

(a) Roll of vehicle body. (b) Roll velocity of vehicle body.

Figure 5.3: Comparison of vehicle behaviour between full-car model, reduced full-
car model and vehicle model in CarMaker with respect to roll and roll velocity of
the vehicle body.
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(a) Pitch of vehicle body. (b) Pitch velocity of vehicle body.

Figure 5.4: Comparison of vehicle behaviour between full-car model, reduced full-
car model and vehicle model in CarMaker with respect to pitch and pitch velocity
of the vehicle body.

(a) Heave of front left wheel. (b) Heave velocity of front left wheel.

Figure 5.5: Comparison of vehicle behaviour between full-car model, reduced full-
car model and vehicle model in CarMaker with respect to heave and heave velocity
of the front left wheel. Since there are no wheels in the reduced full-car model,
the spring and the damper are connected directly to the road and the red curves
correspond to the road height and the rate of change of the road height.

5.4 Testing controller performance
In order to test the performance of the controllers, four difference test scenarios were
created with the aim to test different combinations of heave, roll and pitch of the
car.
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5.4.1 Scenario 1: bumps

This test case aims to test the controllers ability to handle irregularities in the road
in the shape of small bumps and a hole and can be seen in Figure 5.6. Since the two
front wheels hit the bumps simultaneously, the resulting motion of the vehicle body
are mainly pitch and heave. Some roll is also induced because the COG of the car
is not perfectly centered. The first two bumps are placed close to each other and
then comes a third larger bump followed by a hole.

Figure 5.6: Road profile for test case which consists of two small bumps following
one larger bump and a hole. The car hit the bumps with the front wheels at the
same time. Note that the road profile is zoomed in on the area of interest. Before
and after the described disturbance in the road profile the height is zero.

Figure 5.7 shows the resulting body accelerations (heave-, roll- and pitch) from
simulation over the road profile. As can be seen, the amplitude of the peaks in
the accelerations are decreased by the controllers over almost the whole test case
compared to the passive car. The Reference NMPC and the Real-time NMPC
perform very similar for this test scenario with respect to how they lower the body
accelerations. The RMS-error of the body accelerations is shown in Table 5.1. It
can be seen that the Reference NMPC has the lowest RMS-error and the Real-time
controller has a slightly higher RMS-error. However, both the controllers have a
significantly lower RMS-error than the passive car.
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Figure 5.7: Heave, roll and pitch accelerations of the vehicle body.

Table 5.1: RMS errors for the body accelerations during Scenario 1.

Heave acc Roll acc Pitch acc
Passive: 0.71 0.054 0.73
Reference NMPC: 0.5 0.035 0.5
Real-time NMPC: 0.56 0.039 0.53

The frequency content of the body accelerations is shown in Figure 5.8. As can be
seen, the amplitude of most frequencies are lowered for both the Reference NMPC
and the Real-time NMPC compared to the passive car.

Figure 5.9 shows the control signal at the front left wheel and the control signal
at the rear right wheel for the Reference NMPC and the Real-time NMPC. The
control signals are very similar which is expected since the two front wheels hits the
bumps and the hole simultaneously and the same for the rear wheels. The damping
coefficient is decreased when the wheel hit the bump in order to let the wheel travel
with low damping. Then the damping coefficient is increased in order to dampen
out the oscillations followed after hitting the bump. This behaviour is as expected
and the control signals stays between the specified bounds.
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Figure 5.8: Frequency spectrum of heave, roll and pitch accelerations of the vehicle
body.

Figure 5.9: Control signals at the front left wheel and the rear right wheel for the
Real-time NMPC and the Reference NMPC.

39



5. Simulation testing and results

5.4.2 Scenario 2: one side disturbances

In this scenario, shown in Figure 5.10, the car is exposed to disturbances on the
right side of the car in the shape of one hole, one small bump and another larger
hole. Note that the right hand wheels are exposed to this road profile while the road
profile on the left hand side is a flat surface. The resulting vehicle body motion is
a combined roll and pitch motion with an additional heave motion. This scenario
is interesting because it induces both roll and pitch motions which means that a
full-car model is required to accurately predict the process response in the MPC.
A smaller model, like the half-car model, would not be sufficient for predicting the
process response in this scenario.

Figure 5.10: Road profile for test case with disturbance on only the right hand
side in terms of two holes and one small bump. Only the wheels on the right side of
the car hits the holes and the bump while the road profile under the tires on the left
side is flat. Note that the road profile is zoomed in on the area of interest. Before
and after the described disturbance in the road profile the height is zero.

The resulting body accelerations for this test scenario are shown in Figure 5.11 and
the RMS-errors of the body accelerations are presented in Table 5.2. Note that the
Reference NMPC has the lowest RMS-error for all body accelerations, the Real-time
slightly higher RMS-error than the Reference NMPC and the passive car has the
highest RMS-errors for all body accelerations.
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Figure 5.11: Heave, roll and pitch accelerations of the vehicle body.

Table 5.2: RMS errors for the body accelerations during Scenario 2.

Heave acc Roll acc Pitch acc
Passive: 0.33 0.72 0.32
Reference NMPC: 0.24 0.53 0.25
Real-time NMPC: 0.26 0.58 0.26

The frequency content of the body accelerations is presented in Figure 5.12. Note
that especially the amplitude of frequencies over around 4 Hz are reduced for the
Reference NMPC and the Real-time NMPC compared to the passive car. Those
frequencies corresponds to the secondary ride, which is described in Section 2.5 and
are frequencies that are less comfortable.

The control signals for the Reference NMPC and the Real-time NMPC at the front
right wheel and at the rear left wheel are shown in Figure 5.13. Since the road
profile only consist of holes on the right side of the car, the control signals between
the left and the right side differs. The damping coefficient for the front right damper
changes between low and high values according to when the wheels hit the obstacle.
On the other hand, the control signal (damping coefficient) for a wheel which trav-
els on the flat surface is mainly high with a decrease when the car hits the larger hole.
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Figure 5.12: Frequency spectrum of heave, roll and pitch accelerations of the
vehicle body.

Figure 5.13: Control signals for the Real-time NMPC and the Reference NMPC.
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5.4.3 Scenario 3: long dip

This test case consists of a long dip and the road profile can be seen in Figure 5.14.
This scenario aims to test the behaviour of the controller when the road profile is
changing significantly in height during the test case. A small bump is introduced
after approximately 3.1 seconds when the car is driving downhill and small hole at
around 5.2 seconds when the car is driving uphill. This is done to investigate how
the controller handles disturbances while driving uphill or downhill.

Figure 5.14: Road profile for test case with a long dip with a small bump on
the way downhill and a small hole on the way uphill. Note that the road profile is
zoomed in on the area of interest. Before and after the described disturbance in the
road profile the height is zero.

Figure 5.15 shows the heave-, roll- and pitch accelerations and the RMS-errors of the
body accelerations are presented in Table 5.3. The body accelerations are reduced
for the Reference NMPC and the Real-time NMPC compared to the passive car.
The reference controller performs slightly better than the real-time controller, except
for roll acceleration where they perform just as good.
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Figure 5.15: Heave, roll and pitch accelerations of the vehicle body.

Table 5.3: RMS errors for the body accelerations during Scenario 3.

Heave acc Roll acc Pitch acc
Passive: 0.9 0.18 0.49
Reference NMPC: 0.83 0.16 0.4
Real-time NMPC: 0.85 0.16 0.45

The frequency spectrum of the body accelerations are shown in Figure 5.16. Since
the accelerations are relatively similar for the two controllers and the passive car for
this test case the amplitude of the different frequencies are similar. However, the
Real-time NMPC reduces the amplitude slightly compared to the passive car and
the same for the Reference NMPC compared to the Real-time NMPC.

The control signals at the front right wheel and at the rear left wheel are shown
in Figure 5.17. The control signals differs quite significantly between the Reference
NMPC and the Real-time NMPC for this scenario. However, as previously stated,
the body accelerations are very similar between the two controllers as well as the
RMS-errors of the body accelerations.
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Figure 5.16: Frequency spectrum of heave, roll and pitch accelerations of the
vehicle body.

Figure 5.17: Control signals for the Real-time NMPC and the Reference NMPC.
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5.4.4 Scenario 4: waves

A road profile is commonly defined as combination of different sine shaped waves
with different amplitudes and frequencies. This test case consist of such waves and
is shown in Figure 5.18 and aims to test how well the controller handles such a road.

Figure 5.18: Road profile for test case with wave shaped road with different am-
plitudes and frequencies. Note that the road profile is zoomed in on the area of
interest. Before and after the described disturbance in the road profile the height is
zero.

Figure 5.19 shows the resulting body accelerations for simulation over such a road
profile. It is clear from the figure that both the Reference NMPC and the Real-time
NMPC minimize the body accelerations compared to a passive car, especially for
waves with a higher frequency. Also when looking at the RMS-errors of the body
accelerations presented in Table 5.4, the Reference NMPC has the lowest RMS-
errors, the Real-time NMPC slightly higher RMS-erros and the passive car the by
far highest RMS-errors.
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Figure 5.19: Heave, roll and pitch accelerations of the vehicle body.

Table 5.4: RMS errors for the body accelerations during Scenario 4.

Heave acc Roll acc Pitch acc
Passive: 0.92 0.22 0.58
Reference NMPC: 0.7 0.17 0.51
Real-time NMPC: 0.73 0.19 0.52

The frequency spectrum of the body accelerations is presented in Figure 5.20. The
amplitude of frequencies higher than approximately 3-4 Hz are reduced, which im-
proves secondary ride. This behaviour can also be seen in Figure 5.19 where the
two controllers have lower peaks in the body accelerations when the car hits wave
shaped road disturbances of a higher frequency.

Figure 5.21 shows the control signals for the front left wheel and the rear right wheel.
For this test case, the control signals for the Reference NMPC and the Real-time
NMPC are similar in shape with a small difference in amplitude.
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Figure 5.20: Frequency spectrum of heave, roll and pitch accelerations of the
vehicle body.

Figure 5.21: Control signals for the Real-time NMPC and the Reference NMPC.
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5.5 Measuring execution time

Being able to run the controller in real time means that the entire controller algo-
rithm should take less than one sampling interval to execute on the specific real-time
platform. For example if the sampling time is 0.03 seconds, the execution time of
the controller on the hardware needs to be less than 0.03 seconds if it should run in
real-time.

In order to check the real-time performance of the controller, the execution time of
the controller is measured by running it on the MicroAutobox. On the MicroAuto-
box, the execution time can be monitored via Control Desk [24] from dSpace as the
turnaround time of the task that is executing. If no other code besides the controller
is running, the turnaround time of the task is the same as the execution time of the
controller.

The difficulty in measuring the execution time of an MPC is that the time it takes
to solve the optimization problem may vary depending on the current inputs. This
means that the execution time has to be measured for many different inputs in or-
der to gain an understanding for what the execution time actually is. Therefore,
the controller was run for an entire test scenario and the average and maximum
execution time were recorded. This test was carried through by first simulating the
scenario with the closed-loop controller in CarMaker and record all the inputs to the
controller. The recorded inputs were then played back to the controller running on
the MicroAutobox. This made sure that the inputs were realistic and not random.
It also removed the need for simulating the car plant on the MicroAutobox or to
set up a hardware in the loop test with the MicroAutobox communicating with the
computer running CarMaker.

Both the Reference NMPC and the Real-time NMPC were tested to get a compari-
son between the full state model with 18 states and the reduced state model with 10
states. Three different prediction horizon lengths were tested for both controllers:
10, 20 and 40 samples. By doing this, an understanding of the time complexity
when changing the size of the model and the length of the prediction horizon could
be gained. The inputs were recorded while running Scenario 1, described in Section
5.4.1, in CarMaker.

Figure 5.22 shows the execution time for the Reference NMPC with horizon set to
20 when feeding the MicroAutobox with the inputs from Scenario 1. As can be seen,
the execution time varies a lot. The maximum and average execution times from
the measurements are shown in Table 5.5.
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Figure 5.22: Execution time for the Reference NMPC with horizon 20 while run-
ning Scenario 1.

Table 5.5: Execution times for the Reference NMPC with 18 states and the Real-
time NMPC with 10 states. The controllers were both running Scenario 1 and
the execution time is shown for three different prediction horizon lengths (number
of samples). The first number is the maximum recorded execution time and the
second number, within parenthesis, is the average execution time for the scenario.

Horizon: 10 20 40
Reference NMPC 14.4 (11.4) ms 50.3 (30.2) ms 278.2 (106.1) ms
Real-time NMPC 5.7 (3.5) ms 23.4 (13.6) ms 123.8 (65.84) ms
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6
Vehicle implementation and

results

This chapter describes implementation of the controller in a real car, including
available sensors and nonlinear spring and damper characteristics. The presented
solutions targets running the controller in a Volvo S90 equipped with semi-active
dampers and a vision system for obtaining the road preview. Finally, some experi-
mental results are shown as a proof of concept that the controller can be run in a
real car.

6.1 Available sensors
The sensors that are available in the car are three single axis accelerometers and
four level sensors that measure the position and velocity of the suspension at each
wheel. With these sensors, the following signals could be obtained with sufficient
accuracy: suspension deflection, suspension deflection velocity, heave, roll and pitch
accelerations and heave, roll and pitch velocities. The road preview is obtained with
a vision system mounted in the car.

The absolute heave position and roll and pitch angles cannot be measured with the
available sensors. This is a problem since the full-car model contains these states.
However, a workaround is possible under the assumption that the slope of the road
is small, the same assumption that was made when linearizing the full-car model.
The workaround is closely tied to the output of the pre-processing of the road pre-
view.

6.1.1 Road preview
The road preview that is fed to the controller consists of four road height profiles,
one for each wheel. Both the height and the velocity of the road are available from
the rear wheels to the maximum range of the vision system. The pre-processing of
the road preview is outside the scope of this thesis, but it is important to understand
what the road preview looks like when it is received by the controller. The samples
in the road height profile is spaced by time, not by distance. The difference in time
between two samples in the road preview is one sampling interval. The road height
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profile for each wheel is rotated and translated to fit into one calculated reference
plane. The reference plane is calculated from the average slope of the road within
the prediction horizon. The road preview and the initial state in the controller is
then adjusted to that reference plane. The adjustment is done by setting the heave
position, the roll angle and the pitch angle of the car to zero. Note that at most
times this is not the same as the real state of the car body, but the real state cannot
be measured. In order to keep the correct relation between the states in the model,
the road height profile for each wheel is placed according to the current measure-
ments of suspension deflection and suspension deflection velocity. This way, all the
forces are calculated accurately in the model. The heave velocity, roll velocity and
pitch velocity are measured accurately and are not affected by the reference plane
so they are fed to the controller without modification. Figure 6.1 shows how the
reference frame is calculated and how the road preview is rotated and translated
before being fed to the controller for one road height profile. When pre-processing
the road preview for all four wheels, they are rotated according to the same reference
plane, but the starting height is placed individually based on the current suspension
deflection for each wheel.

Figure 6.1: Pre-processing of the road preview in the real car before it is fed to
the controller.

6.2 Real damper characteristics
The general assumption when modelling dampers is that the characteristics are
linear and can be described as:

F (v, b) = b · v, (6.1)
where F is the force, v is the damper velocity and b is the damping coefficient.
The same applies for the damper model used in the designed controllers, where b
can be controlled in order to get the desired stiffness. This assumption does not
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work well with the characteristics of the semi-active dampers in the real car, as
can be seen in Figure 6.2. The dashed lines show measured forces from the semi-
active dampers for maximum, medium and minimum input current. Using the
linear damper characteristics in this case means that the force will be clipped for a
lot of cases without the controller knowing and in some cases it will not use the full
potential of the actuators.
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Figure 6.2: Linear damper model (solid lines) showing the force generated with
the maximum and minimum damping coefficient fit to the characteristics of the real
damper (dashed lines) where the curves show the force generated with maximum,
medium and minimum input current.

The solution to this problem was to use the fact that NMPC was used and hence
it was not expensive to introduce further nonlinearities. With inspiration drawn
from Pacejka’s tire model, [25], the following equation for describing the semi-active
damper characteristics was found:

F (v, i) = a(i) · (arctan(b(i) · v + c(i))− arctan(c(i))) + d(i) · v, (6.2)

where:

a(i) = ka · i+ma, (6.3)
b(i) = kb · i+mb, (6.4)
c(i) = kc · i+mc, (6.5)
d(i) = kd · i+md. (6.6)
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The control signal in this function is current since the real actuators use current as
input. The parameters a, b, c and d where fit to the measured data for the maximum,
medium and minimum currents. This resulted in three different sets of parameters.
The parameter values had to expressed as funcitons depending on the current, i.
Linear functions were used to fit how the parameters changed with the current and
another round of parameters, ka,b,c,d and ma,b,c,d, were found. The resulting damper
model is displayed in Figure 6.3.
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Figure 6.3: Nonlinear damper model (solid lines) fit to the characteristics of the
real damper (dashed lines). The curves show the force generated with maximum,
medium, and minimum input current.

6.3 Suspension travel limits
An important aspect to consider in a real car is that the travel of the suspension
is limited. A car is equipped with so called bump stops or spring buffers to reduce
the impact if the limit of the suspension is reached and possibly also save the car
from breaking. If the controller has knowledge about these limits it could reduce
the risk of hitting the bump stops and the opposite is true if the controller assumes
unlimited travel.

One way to implement this in an MPC is to put constraints on the suspension de-
flection together with slack variables in case the actuator is not able to keep the
constraints. This is expensive for a real-time solution since the optimization prob-
lem will contain more constraints and more optimization variables.
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The proposed solution is to add the limits as a cost by modelling a significant
increase of the force from the springs when the travel limit is reached. This is done
with the following equation:

F (x) = a · (arctan(b · x− c) + arctan(b · x− d) + arctan(c) + arctan(d)), (6.7)

where F is the force, x is the suspension deflection and a, b, c and d are parameters
chosen so that the function fits to the real characteristics of the spring buffers. The
function is shown in Figure 6.4 together with the real characteristics. Note that
the slope at the ends of the function is purposely decremented in order to avoid
problems with very large numbers in the optimization problem.
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Figure 6.4: Nonlinear spring buffer model (solid lines) fit to the characteristics of
the real spring buffer (dashed lines).

6.4 Controller implementation
The controller that was used for the experimental tests, henceforth called the Pre-
view controller is the Real-time NMPC, described in section 4.5, with two addi-
tions: the force from the spring buffers, described in Section 6.3, and the nonlinear
damper characteristics from Section 6.2. Because the nonlinear damper character-
istics were added, the Preview controller outputs the current that goes directly to
the semi-active dampers instead of the damping coefficient. The sampling time for
the experimental tests was set to 30 milliseconds and the number of prediction steps
was set to 12. This meant that the prediction time was 0.36 seconds. An overview
of the tuning parameters for the Preview controller can be found in Table 6.1. The
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magnitude of the new control signals were slightly different, so the weights were ad-
justed to keep the controller behaviour approximately the same as for the Real-time
NMPC.

Table 6.1: Tuning parameter values for the Preview controller.

Parameter Value Description
∆t 0.03 Sampling time (s)
N 12 Prediction horizon (steps)
Wk diag(1, 1, 1, 1, 1, 1, 1) Weight matrix
WN diag(1, 1, 1) Weight matrix (last step)

6.5 Simulation results

To ensure that the Preview controller still worked well after the modifications, it
was tested on Scenario 1, described in Section 5.4.1 and compared to the passive car.
For this test, a model of the real actuators was used (instead of an ideal actuator)
including signal delays and dynamics for building force. The inputs to the controller
and the preview signal were kept ideal.

The resulting performance of the Preview controller was better than the passive car
and as good as the Real-time NMPC for heave acceleration and pitch acceleration,
which can be seen in Figure 6.5 and Table 6.2. The roll accelerations were, however,
a lot worse. This might be a consequence of the delays in the actuator model and
because the road in the scenario mainly excites heave and pitch, the prediction of
roll in the controller might not be accurate. The control signals for the front left
and rear right wheel during the scenario is shown in Figure 6.6.

Table 6.2: RMS errors for the body accelerations during Scenario 1.

Heave acc Roll acc Pitch acc
Passive: 0.71 0.054 0.73
Real-time NMPC: 0.56 0.039 0.53
Preview controller: 0.57 0.1 0.54
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Figure 6.5: Heave, roll and pitch accelerations of the vehicle body for Scenario 1.
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Figure 6.6: Control signals for the front left and rear right wheel for the Preview
controller.
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6.6 Experimental results

To obtain experimental results, the controller was run on a MicroAutobox mounted
in a Volvo S90 equipped with semi-active dampers and a vision system for collecting
road preview. The testing was performed on Hällered Proving Ground (HPG) on a
road section containing bumps that mainly exited heave and pitch. The road section
was divided into three parts, staring with 5 small bumps followed by 6 larger bumps
and finally 5 smaller bumps. The car was driven over the bumps twice at a speed of
60 km/h. The first time, the current sent to the dampers were fixed to the medium
current, in order to get the behaviour of a passive car. The second time, the damper
currents were controlled by the Preview controller.

A comparison of the measured body accelerations between the passive car and the
Preview controller is shown in Figure 6.7 and the RMS errors can be found in Table
6.3. For heave and pitch accelerations, the Preview controller is marginally worse
than passive on heave and marginally better on pitch. For the roll acceleration,
the result is similar to the simulations as roll acceleration is notably worse with the
Preview controller.
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Figure 6.7: Heave, roll and pitch accelerations of the vehicle body measured by
the accelerometers in the car.

58



6. Vehicle implementation and results

Table 6.3: RMS errors for the body accelerations during the test run on HPG.

Heave acc Roll acc Pitch acc
Passive: 1.0647 0.2817 0.7681
Preview controller: 1.0785 0.3411 0.7506

The control signals, seen in Figure 6.8 for the front left and rear right wheels, show
that the controller is working during the test run. The full range of the current is
used but the upper and lower bounds are kept. An interesting difference compared
to the simulation results is that the controller chooses a soft damping when the road
disturbance is small.
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Figure 6.8: Control signals from the Preview controller for front left and rear right
wheel.

The experimental results showed that there are things to work on in terms of per-
formance but they also showed potential since the controller was able to function in
real-time with real inputs in a real car.
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7
Discussion and Conclusion

In this chapter, the objective and the research questions are recalled and discussed
in conjunction with the obtained results. Furthermore, actions for future work are
suggested. Then conclusions are drawn regarding how well the purpose of the thesis
was achieved.

7.1 Discussion
The objective was to achieve an implementation of an MPC that was utilizing road
preview to control the semi-active suspensions of a car. There were also the two
requirements that (1) the controller should be based on a full-car model capable of
describing the movements of heave, roll and pitch and (2) the controller should be
able to run in real time. (1) was achieved because the implemented MPC is based
on a full-car model. (2) was achieved since by using a reduced full-car model the
controller could be run in real time. The reduced full-car model also retained the
important correlation between heave, roll and pitch, despite that the tire dynamics
were neglected. This claim is supported by the results in Section 5.3 where the full-
car model and the reduced full-car model were compared to the CarMaker model
and it can be seen that the full-car model and the reduced full-car model behaves
very similar to each other.

Since the primary objective was reached, the additional objective to test the con-
troller in a real car could also be achieved. In order to make it possible for the
real implementation to work well, further developments to the controller were pro-
posed and the limitations of using real sensors and real semi-active actuators were
addressed. To show that the real implementation worked, a proof of concept test
was run on Hällered Proving Ground. The test showed that the controller was able
to run in real time, even with the extra load of communicating with the camera
and the dampers and being fed imperfect sensor data. One interesting difference
between how the controller worked in the car compared to in simulations was that
the control signal was set to give soft damping when the road disturbances were
small. In simulations, the disturbances from the road profile were zero when driving
on a flat road which means that the controller stops the oscillations induced by driv-
ing over for example a bump by setting a high damping coefficient. However, that
is not the case for a real road and to minimize the body accelerations introduced
by these small disturbances, the controller chose a soft damping. The test also
showed that the controller did not manage to reduce the body accelerations com-
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pared to a passive car, but the fact the the simulation results showed great potential
suggests that there is a lot of room for improvement for the real car implementation.

7.1.1 Research questions
1) What is the best way to utilize road preview together with MPC for semi-active
suspension in order to improve ride comfort?

It was seen during the literature review that the best way to utilize road preview
together with semi-active suspension is to use MPC as the control strategy. The
reason for this is that MPC makes it possible incorporate the road preview and
solve for the optimal control signals while accounting for the dissipative constraints
of the semi-active dampers. In order to use the full potential of the controller, the
vehicle model that the MPC is based on should incorporate all relevant dynamics
of the real vehicle. The full-car model fits this purpose since the vertical dynam-
ics are of interest when considering the suspension. The most important difference
from previous work done in the field is the reformulation of the model so that the
damping coefficients are used as control signals instead of the forces exerted by the
dampers. By doing this, NMPC was required to solve the problem since the model
become nonlinear, but in turn it removed the need for an MIQP solver to handle the
constraints on the damper force. It also made it possible to tap into the extensive
research done to make real-time NMPC solvers and in this case make use of ACADO
Toolkit. Using a nonlinear plant model also opened up the possibility to incorpo-
rate nonlinear damper and spring characteristics without substantially increasing
the computation time, which is a huge advantage. In conclusion, the answer to
the question is that the best way that was found was to use a full-car model with
damping coefficient as control signal in an NMPC with the objective to minimize
body accelerations.

2) What simplifications or assumptions have to be made in order to make a real-time
implementation feasible?

In order to achieve a real-time implementation of the controller the main issue
is to reduce the computational time. Modelling the force that is exerted by the
semi-active actuators as the control signal leads to a linear model with nonlinear
constraints on the control signal. This strategy leads to a MIQP problem that is NP-
hard and therefore not suitable for a real-time implementation. Therefore, the main
assumption in order to make a real-time implementation feasible was to formulate
the problem with the damping coefficient as the control signal where a framework for
NMPC could be used and the resulting optimization problem became a QP-problem
instead. However, other simplifications were required in order to be able to run the
controller on a real-time system. The vehicle model was reduced to contain 10 state
variables instead of 18 state variables which reduced the computational time by
approximately a factor of two. The prediction horizon was shortened in order to
make the optimization problem smaller and it was seen that reducing the prediction
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horizon lowered the computational time quadratically. The sampling time was also
increased in order to give the controller more time to to calculate the control signals.

3) How does the performance of a real-time implementation differ from an imple-
mentation that does not consider the real-time constraints?

A reference controller was designed without any simplifications due to a real-time
implementation, such as limitations on number of state variables, sampling time
and length of prediction horizon. The real-time controller was compared to this
reference controller and the RMS-errors of the body accelerations were evaluated
for both controllers during four different test cases. The results are presented in
Section 5.4 which indicates that the limitations of a real-time solution does not
decrease the performance a lot. The reference controller has lower RMS-errors for
all body accelerations in all test cases, but the real-time controller is only marginally
worse in terms of reducing the vehicle body accelerations.

7.2 Future work
The implementation of the controller in the car is implemented as a proof of concept
that the controller can be run in real-time while using inputs from the car and
the vision system. In order to improve the performance there are still work to
be done. The controller assume that the inputs are ideal, which is not the case
for the real implementation. Hence, further testing of how the inputs affects the
performance of the controller is appropriate. The execution time varies depending
on the current input to the controller, which can be seen in Figure 5.22. To guarantee
that the controller will always meet the real-time constraints, the sampling time is
chosen with enough marginal so that the maximum execution time is lower than
the sampling time. However, since the average execution time is significantly lower
than the maximum execution time it may be desirable to limit the execution time
in order to reduce the sampling time. A solution would be to monitor the controller
and employ a fast, backup control strategy for the case when the controller is not
able to find a solution within a specified upper bound on the execution time.
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7.3 Conclusion
The purpose of the thesis was to improve ride comfort, which is the same as lower-
ing body accelerations, by using preview of the road height profile with semi-active
suspension. For this purpose, a nonlinear model predictive controller (NMPC) was
designed and implemented. In order to make a real-time implementation feasible two
key design concepts were proposed, the definition of damping coefficient as control
signal and the reduced full-car model. The common way to formulate the problem
to control semi-active suspension is to use a linear vehicle model with nonlinear con-
straints on the damping force which is the control signal. This results in a MIQP
problem that is infeasible for a real-time implementation. This thesis proposed a
nonlinear vehicle model with linear constraints on the the damping coefficient which
is the control signal. This made it possible to use an existing framework for NMPC,
by which a standard QP solver was used. The other key concept that is proposed is
to use a reduced full-car model with 6 state variables instead of 14 state variables.
This model reduction reduce the complexity of the model by neglecting the wheel
dynamics and reduce the computational time significantly. The reduced full-car
model was compared and verified against a full-car model and the realistic vehicle
model in CarMaker which showed a similar behaviour between the models. The pro-
posed controller was able to run in real-time and this was verified by measuring the
execution time when running the controller on a real-time platform. The simulation
results where a real-time controller was compared to a passive car and a reference
controller without simplifications due to a real-time implementation, showed unan-
imously that the performance of the real-time controller was slightly worse than
the reference controller but significantly better than a car with passive suspension.
This indicates that ride comfort can be improved by designing an real-time NMPC
utilizing road preview for semi-active suspension.

The controller were implemented and tested in a real-car as a proof of concept that
the controller works in real-time while using real inputs from the car as well as
the preview information from the vision system. The resulting body accelerations
when driving on a track consisting of bumps were very similar to a car with passive
suspension. Since the performance of the controller showed great potential in the
simulation results future work will be to improve the implementation in a real car
where there are things to work on to increase the performance of the controller.
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