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Loading and crushing of trapped ballast stones
Loading and deformation of a ballast stone trapped in a railway switch

ROBIN HAFSTRÖM
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
The Swedish railway reported 9000 faults in switches in 2017. One reason for these
faults is the trapping of foreign objects in railway switches. However, a number of
faults are also due to signaling where a sensor reports a false-positive error. One
way to dispense of the problem with erroneous sensors are to remove them. This
can only be done if safe operations can be obtained also without sensors. As a
first investigation into this, the study will investigate the loading and deformation
of ballast stones as well as assess when failure occurs during the switching operation.

The study can be divided into two parts: The first part is trying to find the largest
stone that could get trapped in the switch when drivers are locking the switch rail.
This was done by applying the combined load of two switch motors and a blocking
stone in a numerical model and finding where the switch rail had the highest dis-
placement. By testing different boundary conditions it was found that stones smaller
than some 42 to 81 mm may get trapped under the assumptions in the simulations.

The second part of the study concerns the force required to reach failure in a bal-
last stone. Ballast stones of an approximate diameter of 40 mm are investigated.
Both numerical simulations and tests were performed. The numerical model used
a linear Drucker-Prager material model for the "plasticity" of the stone. The test
of the ballast stones was performed using specialised stone crushing equipment. It
was concluded that loads in the range of 15 to 60 kN are required to compress the
ballast stone 20 %. Numerical simulation results and test data did not fit well. This
is due to the brittle fracture of the ballast stones not being sufficiently well captured
in the numerical simulations.

Keywords: Railway, Switches, contact sensor, Drucker-Prager, Strength of granite,
Ballast stone.
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1
Introduction

1.1 Background

The Swedish railway contains about 7 000 railway switches in main lines [1]. In 2017
there were close to 9 000 faults in switches reported to Trafikverket (The Swedish
Transport Administration). These faults are more prominent during the harsh win-
ter season, but occur all year round. [2]

One significant reason for faults are snow or ballast stones that get trapped and
hinder the tongue to get in position. The tongue control contact (TKK) sensors are
created just for this purpose: to make sure no objects are getting trapped. Without
the TKK the fear is that a complete switching will occur while there being an ob-
ject stuck in between the rails which could cause derailment. A complete switching
means that the driving and locking devices have ensured sufficient switching at the
positions of the driving devices. [2]

However the TKK sensors are not infallible. They sometimes give a warning of
an object being stuck when there is none. Unwanted disruptions in the railway traf-
fic are costly. [2] The simplest way to dispense of this problem would be to show
that removing the TKKs poses no added risk of derailment. This study will not do
that. However it will investigate the behaviour of trapped a ballast stone to support
further studies towards this objective.

(a) Switching motors with the TKK marked in red. (b) The TKK.

Figure 1.1: Pictures of a switch. The two switching motors can be seen as well
as the casing for the TKK. The switching mechanism at the switching motors have
snow covers on them. The picture was taken at Vimnarp operation site, track 1,
switch 132b. Photo by J. Malm, Strukton Rail AB.
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1. Introduction

1.2 Aim
The aim of this thesis it to investigate the loading and deformation behaviour of a
ballast stone trapped in a railway switch. Focus will be put on modeling the ballast
stone and assess failure during switching operations.

1.3 Methodology
Two literature studies are conducted. One focuses on regulations and common
standards regarding ballast according to Trafikverket (The Swedish Transport Ad-
ministration). The second literature study is carried out to identify a suitable con-
stitutive model for ballast. Time is also dedicated on learning the finite element
software Abaqus.

Two numerical simulations are carried out. The first simulation evaluates the load
acting on a ballast stone when a complete switching has occurred. This simulation
also estimates a largest stone length that still provides a complete switching pro-
vided switching motor limitations. The second simulation evaluates the stress and
deformation in the ballast stone. The goal of this simulation is to asses ballast stone
failures and find critical geometrical zones.

As a last step, before conclusions can be drawn, the two finite element models
are validated. The first simulation, concerning the maximum force and size of the
stone, will be validated by comparing to an analytic Euler–Bernoulli beam equation
of a similar problem. The constitutive model and the second simulation will be
compared with experimental data obtained from oedometric tests.

1.4 Limitations
The thesis was carried out at Chalmers University of Technology. Resources avail-
able at the university are primarily used. The project concerns one person and is
limited to 30HP, corresponding to 20 study weeks.

As for the scope, the thesis will only consider a simplified model of one type of
switch as well as one type of switching motor and only one of the two switching
rails. Due to the previous mentioned time constraint the simulations will only con-
sider static and quasi-static loads. This implies that the stone will be assumed fixed
in position and will not slide sideways or upwards as might otherwise be the case.
The loading from of a passing train will not be considered.
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2
Theory

2.1 Railway switches
The purpose of a switch is to guide trains from one track to another. This might
be in junctions, where tracks converge or diverge. There are several different types
of switches depending on the number of tracks as well as how the interaction of the
tracks look. This study will be limited to a single railroad switch, the EV-60E-760-
1:15. This switch has a curvature ratio of 1:15, a radii of 760 m and merge two tracks
into a single track [3]. The choice of the EV-60E-760-1:15 switch is made because
the switch is common and has a slim and long tongue. [4]

2.1.1 Motors and sensors
The railroad switch works by moving the switching rails laterally and leading the
train to the desired track, see Figure 2.1. This lateral movement is achieved using
the switching motors. When switching has occurred without errors, a clearing signal
is given allowing trains to pass. In order to get a clearing signal both switch motors
need to perform a full switch movement and there should not be any foreign objects
in between the switch rail and the stock rail. If a sufficiently large foreign object is
trapped, a contact control sensor (TKK) will raise an error. [5]

Figure 2.1: Illustration of a single railroad switch [6]

When preforming the analysis it is assumed that the switch motor EasySwitch by
Vossloh is used. This switch motor can produce a maximum force of 6.8 kN and has

3



2. Theory

a locking force of 100 kN [7].

2.1.2 Ballast

Ballast is an important and fundamental part of the railway. Its main purpose is
to add stability and support to a rail structure. For ballast stones this concerns
supporting the railway ties and rails and distributing loads. Ballast needs to be re-
sistant to wear in order to withstand a high number of load cycles while maintaining
its mechanical properties. It is also important for the ballast to have good draining
properties as to not be affected by high rainfalls and freezing. [5]

In order to enforce a good quality of the ballast, Trafikverket (The Swedish Trans-
port Administration) have guidelines in place for how ballast is to be produced and
what mechanical and geometrical properties it shall have [8]. These guidelines are
based on European standards. [9]

There are two classes of ballast in Sweden. The main difference is the particle
size with Class I ballast being larger. Ballast of Class I shall have a particle size
distribution in the range of 31.5 mm to 63 mm according to Figure 2.2. The second
class of ballast is Class II with a size distribution of 11.2 mm to 31.5 mm. Both of
these classes shall have a LT-index (length to width ratio) no larger than 3. [8]

Figure 2.2: Ballast particle size according to SS-EN 13450, category E [9]. Figure
from [8].

According to Trafikverket, stones used for ballast shall be of granite with a low
content of mica. Gneiss and other hard and resistant rock types such as quartzite,
diabase and porphyry may also be used [8] [10].
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2. Theory

2.2 Drucker-Prager
The Drucker–Prager effective stress criterion, also known as the Extended von Mises
criterion, is commonly used when predicting failures in geotechnical engineering [11].
In the finite element software Abaqus Drucker-Prager models are used to model
frictional materials such as rock and soils that undergo pressure-dependent yield [12].

The Drucker-Prager criterion is a generalization of the more commonly known Mohr-
Columb criterion [13]. It may be expressed as

ασm +
√
J2 + κ = 0 (2.1)

where α and κ are material constants. J2 is the second invariant of the stress de-
viator tensor defined as J2 = SijSij/2 where § is linked to the stress tensor σij as
Sij = σij − σijδij/3. σm is the hydrostatic stress defined as σm = σii/3. [11] And δij

is the Kronecker delta defined as δij = 1 when i = j and δij = 0 when i 6= j. [14]

The advantage of the Drucker–Prager criterion is the simplicity in the sense that few
material parameters are required. This makes it fairly easy to implement in numeri-
cal simulations. Drucker–Prager will give equal weight to the principal stresses. This
tends to produce significant errors in triaxial stress states e.g. when σ′1 = σ′2 < σ′3.
The errors tend to over estimate the strength of the rock for general states of stress.
By choosing material parameters to match the current load case, the results may be
improved. The model also loses accuracy for tensile stresses. [13]
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2. Theory
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3
Methods

3.1 Crushing test of ballast stone
In the following section the methodology and sample selection from a crushing test is
presented. The test sample was taken at Sävenäs from a smaller storage provided by
Trafikverket. The sample was taken at random. The sample was then divided into
two parts, one larger and one smaller. The large sample was employed to evaluate
the distribution of the length of the stones as well as the ratio between the longest
and the shortest sides of the stones (LT-index). The smaller sample is dedicated to
be used in the crushing test and consists of 15 stones.

3.1.1 Ballast length and LT-index distribution
The large sample contains a total of 150 stones. The sample mostly consist of granite
stones. In Figure 3.1 a bar graph of lengths and LT-indices is presented. In order
to verify the normal distribution an Anderson-Darling test was performed using the
Matlab adtest.m function. The P–value for the length distribution was 0.39 and
for the LT-indices it was 0.0005. With a significance level of 0.05 it is concluded
that the LT-index distribution do not rejects the null-hypothesis regarding a normal
distribution.

(a) Distribution of the stone
length

(b) Distribution of the LT-index

Figure 3.1: Size distributions of the large sample.

The length in this sample correspond to the longest side of the stones. The LT-index
is the ratio between the longest and the shortest side of the stone. The average length
of the sample is 78.7 mm with a standard deviation of 16.8 mm. The samples has
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3. Methods

an LT-index median of 2.16. According to Trafikverket the LT-index shall be less
than 3 [8].

3.1.2 Crushing tests
Crushing tests were performed on 15 stones with an average diameter of 40 mm
taken from the sample above. In Table 3.1 the height and the mass of the tested
stones are presented. The loaded height refers to the height at which the stone was
loaded. The average height of this sample is 35.7 mm. The average mass of the
stones was 128 g with a standard deviation of 16 g. An Anderson-Darling test was
performed using the Matlab adtest.m function. P-values for the height and mass
distributions were 0.24 and 0.86, respectivly.

In Figure 3.2 the distribution curve for the loaded height and the mass of the small
sample of stones to be crushed can be seen. These bar charts show more clearly
that the majority of the stones are smaller than 40 mm and have a mass of around
130 g.

Table 3.1: The loaded length and mass of the small ballast stone sample used in
the crushing test.

Stone no. Height [mm] Mass [g]
1 40.69 122.50
2 34.19 114.54
3 32.59 130.81
4 37.92 144.77
5 34.22 127.62
6 35.82 161.95
7 31.58 132.61
8 36.10 111.43

Stone no. Height [mm] Mass [g]
9 37.45 122.57
10 36.70 110.80
11 34.00 124.33
12 32.24 136.35
13 34.93 130.96
14 32.90 101.61
15 43.98 150.25

(a) Distribution of the loaded
height

(b) Distribution of the mass

Figure 3.2: The distribution of the loaded height and the mass of the smaller test
sample.
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3. Methods

3.1.3 Performing the crushing test
The stone crushing test was performed using a hydraulic press. In Figure 3.3 the
cross section of the test setup is sketched.

The procedure of the test for a single stone specimen was as follows: First, the
weight and height of the stone were recorded. The stone was then placed in the
cylindrical tool, Figure 3.3. The machine then compressed the stone until a 20 %
reduction of the initial height was achieved. The feeding rate was 5 mm/min. Pic-
tures of the stones were taken before and after the test. When the test was finished
one could obtain the force–displacement relationship for the stone. This procedure
was repeated for the 15 stones in the test sample.

The stones were oriented in what was considered a likely orientation to get stuck
in the switch. Note however that the stones in the test are all loaded vertically. In
reality the loading condition of the stone would be horizontally where the train load
will also add a significant contribution to the rail. Thus this test should overestimate
the force required to crush a stone as compared to reality.

Figure 3.3: Illustration of the cross section of the hydraulic press test set up.
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3. Methods

3.2 Estimation of maximum size of a ballast stone
that may get trapped between switch and stock
rail

This scenario concerns the trapping of a ballast stone. This occurs when the two
switching motors close the tongue with a stone positioned between the switch rail
and the stock rail. When switching is performed with a trapped stone, the switch
rail will bend. It is assumed in this scenario that the stone will not fracture. This
bending gives rise to reaction forces which the motors will need to overcome in order
to properly perform the rail switching and lock the switch rail in place at the location
of the motor. Figure 3.4 illustrates a trapped stone in a cross section view.

Figure 3.4: Stone stuck between switching rail and stock rail showing the distance
created between the switch and stock rail.

3.2.1 Numerical model of a switch rail
In Figure 3.5 and 3.6, a simplified model of the problem is presented. The boundary
conditions are applied at (A) and (C) at the locations corresponding to the switch
motors. At location (B) the load is applied. This location corresponds to that of
the trapped stone.

Some assumptions are introduced. In Figure 3.5 three different boundary condi-
tions are presented. One is simply supported and one is partially clamped at both
ends. The restricted displacement is applied at the foot of the rail for both cases.
The last boundary condition is fully clamped at both ends. This boundary condi-
tions clamps the whole cross section at both ends of the rail. The surfaces at witch
the boundary conditions are applied are illustrated in Figure 3.6. Friction between
the switch rail and the sliding plate during switching is neglected.

The trapped stone is assumed to be completely stuck and no sliding will occur.
The sum of the forces generated by the switching motors will be applied were the
stone is trapped at a distance LF from (A). This will allow an evaluation of how

10



3. Methods

large deformation that is possible while the switch motors are still able to lock the
switch rail at position (A) and (C).

(a) Simply supported – Partially clamped

(b) Partially clamped – Partially clamped

(c) Fully clamped – Fully Clamped

Figure 3.5: The three models of the switching rail. Switching motors are located
at (A) and (C). The ballast stone is assumed to be stuck at (B). L is the total length
between the switching motors and LF is the length to the trapped ballast stone. The
force F correspond to the sum of the forces generated by the switching motors.
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3. Methods

(a) Isometric cut at location
(A)

(b) Isometric cut at location
(C)

(c) Cross section at (B) showing where the concen-
trated force from the stone is applied.

Figure 3.6: Cross sections for locations of interest on the switch rail. The red line
correspond to where the simply supported boundary condition is applied. The green
surface is where the partially clamped boundary conditions are applied. The fully
clamped boundary conditions is applied to the whole cross section.

In order to find the location where the largest stone would get stuck, the influence
of different distances LF are investigated. The stone is assumed to only get stuck
where there is a sliding plate. Reaction forces at locations (A) and (B) are evaluated
to ensure that they do not exceed the maximum force that a switching motor could
generate. If this is the case, the force F will be lowered so that the reaction forces
are within possible magnitudes.

3.2.2 Finite element analysis of the switch rail
The geometry of the switching rail was provided by Vossloh Rail Services Scandi-
navia AB as a CAD model. This model was trimmed in order to only contain the
section between the switching motors. The material of the rail was modeled as a
linear elastic steel with a Young’s modulus of 210 GPa and Poisson’s ratio of 0.3.

The mesh was created in Abaqus with quadratic tetrahedral elements of type
C3D10. There was a total of 7 977 elements, see Figure 3.7.
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3. Methods

(a) Isometric view of the mesh at the rail end, lo-
cation (A).

(b) Back view of the rail at location (C).

Figure 3.7: Part of the mesh of the switch rail. The mesh contains 7 977 elements.
The elements are quadratic tetrahedron elements (C3D10).

Loads and boundary conditions were applied as indicated in Figure 3.5. The load
was applied as a concentrated load with an initial magnitude of 13.6 kN. This load
corresponds to the sum of the force the two switching motors can exert. Fully
clamped boundary conditions were applied on the faces at the rail ends.

3.2.3 Validation of the switch rail finite element analysis
The finite element analysis was validated through comparison with an analytical
model. This model was set up by assuming the switching rail behave as a common
beam and solving it using Euler Bernoulli beam theory. One major difference from
the finite element model is the simplification of the geometry. For the analytical
problem the cross section was set as a constant L-beam shape. To validate the finite
element model, displacement and reaction forces are compared towards the analytic
solution given by the Euler–Bernoulli beam equation 3.1.

d2

dx2

(
EI

d2w

dx2

)
= q (3.1)
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The second moment of inertia, I, was taken as 5.4 ·10−6 m4 by estimations from the
switch rail. Young’s modulus was set to 210 GPa as for the FE model. The equation
is integrated with regards to x in two parts. One from x = 0 to x = LF and the other
from x = LF to x = L. The load and clamping are applied as boundary conditions.

3.3 Mechanical behaviour of trapped ballast stone

This model concerns the crushing of a stone that is stuck between the rails. The
focus is to investigate stress and strain distribution in the loaded stone and whether
or not the stone will break. The concept of how this problem is modeled is illustrated
in Figure 3.8.

3.3.1 Model of ballast stone crushing

The model features a stone stuck between two steel plates. The loading of the stone
is created by one of the plates being fixed while the other is loaded by a concentrated
force, F , equal to that created by the switch motors as sketched in Figure 3.8.

Figure 3.8: The model of a ballast stone between two rigid plates.

The stone is modeled as a solid homogeneous 3D body while the two plates are
modeled as rigid bodies. The granite material is modeled with a linear Drucker–
Prager model. The material parameters used are given in Table 3.2. The material
parameters come from tests made on Bohus granite made by H. Shariati et. al
[15]. The strain fracture limit used in the simulations is based on the strain limit of
Solenhofen limestone [16].

3.3.2 Stone geometries

In total five different geometries were simulated. Three of them theoretically perfect
geometries. One cube, one semi-oval and one cylinder. These can be seen in Figure
3.9. All stones are created to have length, width and height of 40 mm. The semi-oval
rock will be loaded on the rectangular flat faces.

14
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Table 3.2: Material parameters for granite used in the Drucker-Prager model

Density ρ 2630 kg/m3

Young’s modulus E 52 GPa
Poisson’s ratio ν 0.25
Friction angle β 52 ◦
Cohesion of material d 153 MPa
Dilation angel Ψ 40 ◦
Strain fracture limit εL 0.001

(a) Rock: Cube (b) Rock: Semi-Oval (c) Rock: Cylinder

Figure 3.9: Isometric view of theoretical rock geometries with dimensions in mm.

Two shapes were modeled after real stones. One of the chosen stones was more
cubic while the other had a more rounded shape. The geometries and some key
dimensions can be seen in Figure 3.10 and Figure 3.11. These stones were both
loaded in their shortest direction, i.e horizontally in the view in Figures 3.10b and
3.11b. Their real counterparts can be seen in the Appendix.

(a) Rock 1 - iso (b) Rock 1 - xy (c) Rock 1 - yz

Figure 3.10: Real rock: Cubic
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3. Methods

(a) Rock 2 - iso (b) Rock 2 - xy (c) Rock 2 - yz

Figure 3.11: Real rock: Round

3.3.3 Setting up the finite element analysis
The problems were solved using Abaqus Explicit. Symmetry was used for the the-
oretical models. This required only one-eighth of the geometry to be modelled and
hence reduced computational times.

3.3.3.1 Overcoming numerical problems with large deformations

Some of the geometries will result in large deformations during loading. In order
to circumvent potential numerical problems due to severely deformed elements, the
Nlgeom option which accounts for non-linearities by introducing a nonlinear strain
tensor is employed [17]. This setting is turned on by default in the Abaqus Explicit
[18].

An additional method that can be employed is the Arbitrary Lagrangian-Eulerian
adaptive meshing. This will later be referred to simply as adaptive meshing. The
adaptive meshing will both create a new mesh and will use advection to remap so-
lution variables from the old mesh to the new [19].

The third major method used to prevent problems due to large deformations is
to introduce smooth particle hydrodynamics (SPH). This options will transform el-
ements that reaches a maximum principal strain to particles. These particles will
be able to interact with the main FE simulation [20].

3.3.3.2 Meshing geometries

Some effort went in to creating good meshes in order to avoid numerical problems
as well as trying to obtain a good resolution at stress concentrations. In Figure 3.12
the meshes for the theoretical stones can be seen. The mesh for the real stones can
be seen in Figure 3.13. The number of elements for each model is provided in Table
3.3.
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Table 3.3: Number of elements for the finite element models

Theoretical Cube 8 000
Oval 16 740
Cylinder 15 880

Real Cubic 8 100
Round 8 221

As the geometries for the theoretical stones are simple, brick elements could be
used. These elements were all 8 node linear elements with reduced integration points
and with hourglass control. Hourglassing is when non-physical deformation of the
element occurs. The phenomena originates from the fact that the finite element
scheme evaluates the integrals assuming constant stress [21]. The elements used for
the real geometries are 4 node linear tetrahedrons.

(a) Cube (b) Oval

(c) Cylinder

Figure 3.12: Mesh of the theoretical ballast stones. Note that only a quarter of
the stones need to be meshed due to the use of symmetry.
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(a) Round (b) Cubic

Figure 3.13: Mesh of the real stones.
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4
Results

4.1 Results of ballast stone crushing tests
In the following section the results of the crushing tests are presented. In Table 4.1
the mass to height ratio and the maximum load for each stone is presented. A larger
mass to height ratio would indicate bulkier stones.

In Figure 4.1 the distribution of maximum forces and force magnitude at the first
load drop are presented. Here one may note that the maximum force follows a nor-
mal distribution but the force at the first load drop dose not. The average maximum
force is 35 kN with a standard deviation of 13 kN. The median of the first load drop
is 20 kN.

Table 4.1: The mass/height ratio (M/H) as well as the maximum load for each
stone in the crushing test.

Stone no. M/H Max load [kN]
1 3.01 38.1
2 3.35 25.3
3 4.01 46.7
4 3.82 40.3
5 3.73 44.8
6 4.52 58.5
7 4.20 37.7
8 3.09 37.3

Stone no. M/H Max load [kN]
9 3.27 20.8
10 3.02 14.0
11 3.66 44.2
12 4.23 19.6
13 3.75 29.2
14 3.09 21.3
15 3.42 47.5

(a) Largest measured force. (b) Force at first load drop in each test.

Figure 4.1: Distribution of maximum force and force magnitude at first load drop
for the tested stones.
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In Figure 4.2a the force and displacement for the first load drop is presented. As the
name indicates, a load drop is when there is a abrupt drop of the load magnitude,
see Figure 4.3. This can be due to fracturing or sliding of the stone. The data
shows only two instances where this force exceeds 25 kN. Due to insufficient amount
of data it is impossible to conclude if these are outliers or regularly occurring data
points. However all ballast stones experience the first load drop within a load range
of 10 to 40 kN.

Figure 4.2 shows different force characteristics of the test data. The maximum
force seems to have no correlation to the height of the specimen. However one may
see some correlation between the maximum force and the mass of the stone.
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(b) The maximum force in relation to
the mass of the stone specimen.

Figure 4.2: Force characteristics of the test data.

In Figure 4.3 the force–displacement curves can be seen for all tests made. The first
real load drop is marked with a dashed line. The maximum force needed to crush
a rock was 58 kN. The corresponding force–displacement curve is shown in Figure
4.3f.
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Figure 4.3: Force–displacement curves for the rock crushing tests. The first load
drop is marked with a black dashed line.
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In Figure 4.3 there are some test results that should be noted. The stone in Test 14,
Figure 4.3n, shatters and additional force is required to reach the 20 % compression
limit. The stone in Test 12, Figure 4.3l has no real discrete force drop but shows
more of a steady decline in load carrying abilities. The stone in Test 6, Figure 4.3f,
is the one where the largest force is exerted during the 20 % compression of the test
subject. Before and after pictures of these stones can be seen in Figure 4.4.

(a) Stone 6 - Before (b) Stone 6 - After

(c) Stone 12 - Before (d) Stone 12 - After

(e) Stone 12 - Splinter
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(a) Stone 14 - Before (b) Stone 14 - After

Figure 4.4: Before and after picture of some notable stones in the crushing test.
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4.2 Results from finite element analyses

4.2.1 Bending of switch rail
The reaction forces and the largest displacements for the switch rail modelled with
different boundary conditions are summarized in Table 4.2 and 4.3. In Table 4.2
the maximum horizontal displacement, maximum vertical displacement, the corre-
sponding location and load are presented. The location is, as noted above, selected
to always coincide with a sleeper position. Note that the load is adjusted so that
the reaction force for a single motor does not exceed 6.8 kN. Reaction forces larger
than this can not be exerted by the switch engine. The reaction forces and reaction
moments are presented in Table 4.3.

In Figure 4.5 evaluated horizontal and vertical rail displacements are presented. As
expected, the simply supported beam experiences the largest displacements. The
fully clamped beam undergoes the least displacement.

Table 4.2: Maximum horizontal displacement, maximum vertical displacement,
location where these occur, and corresponding adjusted load from the FE analysis
of bending of switch rail.

Model Location [mm] Load [kN] H. disp. [mm] V. disp. [mm]
Simply supported 2447 12.92 81.05 31.79
Partially clamped 3647 13.60 50.35 17.57
Fully clamped 3647 13.50 42.45 13.03

Table 4.3: Reaction forces and moments from FE analysis of bending of switch
rail.

Model Rz,A [kN] Rz,C [kN] My,A [kNm] My,C [kNm]
Simply supported 6.84 6.28 0 -13.52
Partially clamped 6.81 6.79 11.5 -12.30
Fully clamped 6.68 6.82 12.3 -13.68
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Figure 4.5: Displacement from FE analysis of bending of switch rail.
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4.2.2 Uniaxially loaded ballast stones
In Figure 4.6 a comparison of force-displacement curves for the finite element simu-
lations with and without smooth particle hydrodynamics (SPH) is presented. One
may here note that the real "round" stone, as well as the theoretical cylinder stone
show higher displacements than the rest of the stones. The round stone is loaded
at a conical point while the cylindrical stone is loaded at a rounded surface. These
are both areas where stress concentrations and large deformations will take place as
they are geometrically weaker. The rest of the stones are all loaded on flat, broad
surfaces. By comparing the simulation with SPH and without SPH one see larger
compression for two of the simulations using the SPH criteria. These two are loaded
at geometrically weaker points and thus the SPH criteria is triggered. For the rest
of the simulations the strain limit is not reached. Thus the simulations are identical
with those not employing the SPH criteria.
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Figure 4.6: Comparison of the FE simulations of the deformation of compressed
stones with and without SPH.

Figure 4.6 shows the maximum and minimum principal stresses for all stones at a
load of 13.6 kN. Note that the cylindrical and the real round stone show the highest
compressive principal stresses; both are above 100 MPa. The oval and the real cubic
stones sustain compressive stresses at around 60 MPa with exceptions for a few small
zones of stress concentrations. The cubic stone experience a compressive principal
stresses of 8.5 MPa. Looking at the tensile principal stresses we see that once again
the cylindrical and the real round stones presents the highest principal stresses close
to and even above 20 MPa.

In comparison Siliceous granite has a compressive strength of 143 MPa and a tensile
strength of 13.4 MPa [16]. If applied to the FE results, the the cylindrical and the
real "round" stone would experience failure due to the high tensile stresses.
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(a) Tensile principal stress scale [Pac for
the maximum principal stresses.

(b) Compressive principal stress
scale [Pac for the minimum princi-
pal stresses.

(c) Cube, tensile stress (d) Cube, compressive stress

(e) Oval, tensile stress (f) Oval, compressive stress
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(g) Cylinder, tensile stress (h) Cylinder, compressive stress

(i) Real round, tensile stress (j) Real round, compressive stress

(k) Real cubic, tensile stress (l) Real cubic, compressive stress

Figure 4.6: Maximum principal stresses at a load of 13.6 kN.
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In Figure 4.6 the equivalent plastic strain at the load 13.6 kN for the real round
stone is presented. As can be seen, the plastic zone is located at the tip of the stone
where the highest principal stresses occur. The real round stone is the only stone
that undergo the Drucker–Prager plasticity. For all other stones the stresses are
below the yield limit.

Figure 4.6: The equivalent plastic strain at a load of 13.6 kN for the real "round"
stone.
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4.3 Validations of finite element analyses
This section will investigate how valid the finite element simulations are compared to
analytic and test data. The first subsection will compare how well the finite element
model of the switch rail fits with an analytic Euler–Bernoulli beam solution. The
second subsection will discuss how well the finite element model with the Drucker–
Prager material model fits with test results.

4.3.1 Switch rail deformations
In Figure 4.7 below, the displacements evaluated by the finite element simulations
and from the analytic Euler–Bernoulli beam equation are plotted. As can be seen,
they do coincide quite well. However small discrepancies are to be expected as the
cross section of the analytic model is constant while the rail model used in the finite
element simulations has a varying cross section.

Note also that the analytical model does not account for three dimensional move-
ment that includes also torsion. As seen in section 4.2.1 the rail will also rise form
the ground. This might in reality move the stone and thereby change the point
where the stone is loaded and thereby its load magnitude and the rail displacement.
This is an important factor to consider in practise, but not included in the current
study.
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Figure 4.7: Displacement of the FE model compared with an analytic solution.
Note that the analytic solution is fully clamped.
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4.3.2 Stone crushing

As seen in Figure 4.8, test data and the modeled data do not fit well. The simu-
lation result for the real round stones show the closest fit to test data, followed by
the cylinder. The other stones are all off by a magnitude of 100.

The larger deformation in the cylinder and the real round stone is due to the smooth
particle hydrodynamic, when applied, but also to their geometry. The cylinder has
a rounded surface and the real round stone have a conical point where the load is
applied. This gives rise to large deformations and in turn high strains. This explains
the higher deformation seen in these models.
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Figure 4.8: Displacement predicted by the FE models and evaluated from test
data.

4.3.3 Comparing FE simulations of stone crushing to test
data

Figure 4.9 shows a comparison of the real test data of two stones to those of the
finite element simulations with and without smooth particle hydrodynamics. As
seen in 4.9 and as discussed above, the fit in Figure 4.8 is not good.

In Figure 4.10 the distribution of the maximum principal stress obtained from the
finite element simulations is compared to pictures of the fracture of the real stones
are shown. The real stones have fractured in several places. For the round stone one
may note that a fracture has occurred in a location where high stress concentrations
are observed in the finite element analysis. For the cubic rock it is much harder to
say what caused the fracture.
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Figure 4.9: Comparison of displacement predicted in simulations and obtained
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(a) Crushed real round stone (b) Crushed real cubic stone

(c) Theoretical "round"
stone

(d) Theoretical "cubic"
stone

Figure 4.10: Maximum principal stress in the finite element simulations stones
and actual fracture surface of the tested stones. The round particles in the Figure
(c) and (d) represent elements that have reached the imposed strain limit and been
converted to free particles.
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5
Discussion

5.1 Test data
The test data obtained were measured with precision and the validity of the data is
good. However due to a relatively small sample size, the uniformity of the sample
and the spread in results may be cuase the test data to be insufficient to draw any
final conclusion for how the ballast generally behaves.

However due to the uniformity of the particles tested one may still observe some
interesting phenomena. The mean loading height was 35.6 mm with a standard de-
viation of 3.35 mm and a mean mass of 128.2 g with a standard deviation of 15.9 g.
Both standard deviations are around 10 % of the mean value. By looking at the
results we see that the mean maximum force to compress a stone 20 % was 35.0 kN.
The corresponding standard deviation was 12.7 kN. This relates to 36 % of the mean
maximum force.

Thus we can see that small deviation of stone properties, such as length and weight,
can still give rise to a larger deviation in maximum load. The stones that required
the largest force to reach the 20 % compression was the highest and second heaviest
stone in the sample.

The test results show no clear correlation between the height of the stone and the
required maximum load. This is shown in Figure 4.2. However some correlation is
indicated between the mass of a stone and the maximum force. One can also draw
the conclusion that a larger mass would mean a larger stone. Thus there should
be a correlation between the size of the stone and the maximum load. It would
however require further testing and larger sample sizes to determine this correlation
with certainty.

5.2 Constitutive model
The constitutive model chosen was based on the linear Drucker–Prager model [15].
The model presented in [15] performed well in an indentation test. However as
presented in Figure 4.8 the model does not predict the deformation of stones well.
This could be due to to the brittleness of granite and stones in general, as well
as due to the different surface roughnesses of the stones. This would give rise to
different local stress concentrations with macro and micro fractures as a result. In
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order to get more accurate results this needs to be accounted for. One approach
mentioned by H. Shariati et al. [22] is to introduce an anisotropic damage model
that assumes initial material defects in the material. In addition, the progressive
deformation after micro and macro fractures needs to be captured in the simulations.

Using smooth particle hydrodynamics, a given strain would detach the element
to form a free particle. Studying the comparison between tests and the simulations
of the two stones, Figure 4.9 shows how the smooth particle hydrodynamics (SPH)
result in a fairly poor prediction of material detachment for the studied case. At a
first glance it appears that simulations with the SPH criteria do in fact predict the
displacement better than those without. However by looking at the actual fracture
surface, Figure 4.10, it is clear that the SPH predictions do not show any resemblance
to the actual fractures.

5.3 Simplifications and assumptions used in the
switch blade deformation analysis

There are some significant assumptions made in this study to the scenario of a
trapped ballast stone. One is the assumption of the ballast stone not moving along
the rail when trapped. In Figure 4.7, one can see that the stone is not trapped in the
position where largest deformation occurs. This introduces some interesting aspects
not treated in this study. One is the non-uniaxial loading case. This refers to the
fact that the stock rail and the switch rail are not tangential to one another. This
type of loading would introduce a higher possibility of the stones sliding as well as
different stress states of trapped stones.

Another scenario that was out of the scope of this study is the loading when a
train passes. This scenario would require a dynamic simulation in order to properly
capture the behavior of both the switch rail and the stone. A passing train would
introduce new types of bending and torsion of the switch rail. This in turn would
change the direction and magnitude of the loading.

Sliding of the stone is also something that might be interesting to study. As the
wheel of the train approaches the trapped ballast stone, the stone would likely start
to slide due to the direction of the loading. This sliding might release the stone.

Depending on the load created by a passing train it might also be of interest to
consider the maximum lock force of the switch motors and check that the force nor-
mal to the rail are within this limit. A switch motor has a specified lock force of
100 kN with no specifications given for the axial force limit [7].

Another important aspect of the switch mechanics is how to model the boundary
conditions at the switch rail actuators. As presented in Figure 4.5 there is almost
a 40 mm difference between a fully clamped cross–section and a switch rail that is
simply supported–clamped in the toe. The largest stone that could possibly get
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stuck in a switch rail correspondsto a boundary condition with a simply support at
one end. This stone could have a diameter of up to 81 mm. For a fully clamped
cross section the largest stone that could get stuck would be a stone with the size of
42 mm. This would imply that there is a high possibility that stones smaller than
40 mm could get stuck and some possibility for stones smaller than 81 mm to get
stuck, depending on the acting boundary conditions.
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6
Conclusion

The aim of this study was to investigate the loading and deformation behaviour of
trapped ballast stone in a railway switch. This have been done both with numerical
analyses and physical tests. The following conclusions can be made with the result
of the study as reference.

It can be concluded that ballast stones with a height of 40 mm requires loads in
the range of 15 to 60 kN to reach a compression of some 20 %. There are also indi-
cations that the fracture load is affected by the weight of the stone. However there
are no direct correlation between the loaded height of the stone and the fracture load.

The finite element analyses show that stones smaller than 42 mm could get trapped
between the switch and the stock rail. The analysis also indicates that stones larger
than 81 mm cannot get trapped with the switch rail in control. The study also
demonstrates the difficulty in creating a numerical model of stone. As can be
seen in the comparison between the numerical simulations and test results, a linear
Drucker-Prager material model is not enough to capture the progressive damage of
compressed granite.
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7
Further work

There are some phenomena not touched upon in this thesis that require further
investigations in order to asses the risk of derailment due to trapped ballast stones.

One topic which was outside the scope of this study was the dynamics of the switch
and the stone. In order to make a proper assessment one would need to investigate
the sliding of the stone due to the applied loads. Another subject is the dynamic
loads due to passing trains. This would also deform the switch rail, which additional
is an interesting aspect to further investigate. The loads and resulting rail defor-
mation might push the stone so that it falls off the track, or the loads may simply
be large enough to shatter the stone and thereby removing the risk of derailment.
There is also the scenario of several stones getting trapped at the same time that
would need further investigation.

Another topic that requires further study is the mechanics of the ballast stones.
For numerical simulations to be reliable, the constitutive model of a ballast stone
would need to be more sophisticated and take brittleness and progressive fracture
into account. There is also a randomness in material properties of a ballast stone
which require further analyses to fully establish.
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