
Developing a Gamified
Fitness Application for Truck Drivers
Bachelor’s thesis in Computer Science and Engineering

ANTON ERICSON
MARCUS KAREGREN

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
Gothenburg, Sweden 2019

DEGREE PROJECT REPORT

Developing a Gamified Fitness Application for
Truck Drivers

ANTON ERICSON
MARCUS KAREGREN

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2019

Developing a Gamified Fitness Application for Truck Drivers
ANTON ERICSON
MARCUS KAREGREN

© ANTON ERICSON, MARCUS KAREGREN, 2019.

Supervisor: Nick Smallbone, Functional Programming division, Department of Com-
puter Science and Engineering, Chalmers University of Technology
Examiner: Jonas Duregård, Department of Computer Science and Engineering,
Chalmers University of Technology

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 (0)31-772 1000

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a
non-commercial purpose make it accessible on the Internet. The Author warrants
that he/she is the author to the Work, and warrants that the Work does not contain
text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary
permission from this third party to let Chalmers University of Technology and Uni-
versity of Gothenburg store the Work electronically and make it accessible on the
Internet.

Cover picture: ”Award, cup, leader, prize, sport, trophy, winner icon”1 by Laura
Reen, licenced under CC BY-NC 3.02

Department Of Computer Science and Engineering
Gothenburg, Sweden 2019

1https://www.iconfinder.com/icons/2064041/award_cup_leader_prize_sport_trophy_
winner_icon

2https://creativecommons.org/licenses/by-nc/3.0/

iv

https://creativecommons.org/licenses/by-nc/3.0/
https://www.iconfinder.com/icons/2064041/award_cup_leader_prize_sport_trophy_winner_icon
https://www.iconfinder.com/icons/2064041/award_cup_leader_prize_sport_trophy_winner_icon
https://creativecommons.org/licenses/by-nc/3.0/

Abstract
A fitness application for Volvo Trucks’ Android based infotainment system has been
developed. The purpose of the project is to increase truck drivers motivation for
physical activity, by using gamification. The gamification aspects of our application
are a point and level system, where the user is rewarded with points upon complet-
ing a workout. These point are then used to determine the user’s level. This means
that to level up, the user has to perform workouts.

The application has been developed with a focus on following the development tech-
niques recommended by Volvo Trucks and Google, to ensure that Volvo Trucks have
the opportunity to continue the development of the application. This has dictated
the choices we have made when developing the application. The focus has not been
to implement a large number of features, but to implement a small number of fea-
tures in a correct way. This meant that a large part of the project had to be spent
on learning and then implementing the different design patterns and techniques
correctly.
This resulted in an application that we are pleased with. The application follows
the guidelines given by Volvo Trucks and Google and there are many opportunities
to expand the application with new features or more workouts.

Keywords: android, application, gamification, fitness

v

Acknowledgements
First of all we would like to thank Jonas Vikentorp and Richard Kahl, Sigma Em-
bedded Engineering, for the opportunity to do this project at Sigma together with
Volvo Trucks and providing us with the tools and support necessary to complete the
project.

We would also like to thank everyone at Volvo Trucks, for the support during the
project and the opportunity to learn about and develop an application for their
platform.

We would like to thank our supervisor, Nick Smallbone, Computer Science and
Engineering department at Chalmers, for his support, ideas, and inspiration during
the project.

We would like to express our gratitude towards everyone that has been involved
in this project in any way. It has been a great opportunity for us to learn more
about software development.

Thanks to David Frisk for providing the Overleaf LaTeX template used to write
this thesis.

Anton Ericson & Marcus Karegren, Gothenburg, June 2019

vii

Contents

List of Figures xi

Listings xiii

1 Introduction 1
1.1 Background . 1
1.2 Scope . 1

2 Theory 3
2.1 Motivation . 3
2.2 Development . 4

3 Method 9
3.1 Research . 9
3.2 Development . 10
3.3 Milestones . 11
3.4 Success Criteria . 12

4 Implementation 13
4.1 Workouts & Exercises . 13
4.2 Gamification . 13
4.3 Model . 15
4.4 ViewModel . 17
4.5 View . 19
4.6 Dependency Injection with Koin . 22

5 Results 25
5.1 Application . 25

6 Conclusion 29
6.1 Discussion . 29
6.2 Further development . 30

Bibliography 33

A Database Entities Explanation I
A.1 Workout . I
A.2 Exercise . I
A.3 Person . II

ix

List of Figures

2.1 Illustration of MVVM communication. 5
2.2 Illustration of an Activity with replaceable Fragments inside it. 6
2.3 Illustration of communication between application and database. . . . 7

3.1 Illustration of intended user flow. 10

4.1 The progression screen displayed upon completing a workout. 14
4.2 The information displayed in the profile screen. 14
4.3 The entities contained in the database. 16
4.4 Picture of Nav graph displaying the fragments and the paths to them. 20
4.5 Interaction between View and ViewModel. 21

5.1 Main menu screen. 25
5.2 Select workout screen. 26
5.3 Workout session screen. 26
5.4 Progression screen. 27
5.5 Profile screen. 27

xi

Listings

4.1 getInstance pseudocode. 15
4.2 Database interaction sample code. 15
4.3 Asynchronous call of suspended function. 17
4.4 Updating the total points of an user. 18
4.5 LiveData exposing the current amount of points gathered. 18
4.6 MutableLiveData representing the current exercise. 19
4.7 Pseudocode of assigning a value to the MutableLiveData. 19
4.8 Setting TextView without Data Binding sample code. 21
4.9 Data Binding example. 22
4.10 Koin module sample code. 22
4.11 Koin ViewModel inject sample code. 23
4.12 Koin Level inject sample code. 23

xiii

1
Introduction

1.1 Background

A sedentary lifestyle can increase the risk of both cardiovascular disease and type
2 diabetes [1]. At particular risk are truck drivers who spend up to 9 hours a day
sitting down [2]. This can have a negative impact on the driver’s health if not
complemented with physical activity. Volvo Trucks want to increase their drivers’
well-being by motivating them to perform some physical activity during their breaks.

The purpose of this project is to help the drivers to feel more motivated to perform
these physical activities. This can be achieved in many different ways; this project
will develop an application for the truck’s built-in infotainment system that can
help motivate the drivers. To increase motivation, the application will feature some
aspects of gamification.

The project will be carried out at Sigma Embedded Engineering on behalf of Volvo
Trucks. Sigma is a consulting company and the majority of the work will be done
at their office. Volvo Trucks will provide contact to a development team, to discuss
the development of the application. The result of this project is owned by Volvo
Trucks.

1.2 Scope

This project will consist of investigating gamification and developing an Android
application for the Volvo Trucks Android based infotainment system.

The application will be built according to Volvo Trucks’ recommendations so that
it can be further developed by Volvo Trucks. The application will have limited
functionality and a basic user interface. The goal of the application is that the user
can browse through different workouts, select a workout, perform the workout, get
rewarded and see their level progression. The user will also be able to view their
profile and see their level progression. The level system will be explained in the
thesis.

1

1. Introduction

Gamification is a broad term and this thesis will only cover some aspects of it. Not
all gamification aspects covered in the thesis will be implemented in the application.
The gamification aspect featured in the application will be a point- and leveling-
system.

The application will feature a limited amount of exercises available in different work-
out sessions. The exercises will be implemented in a modular way, thus making it
easier to add more exercises in the future. Each exercise will be accompanied by a
text and an animation explaining the exercise. The animations will be provided by
Volvo Trucks.

2

2
Theory

2.1 Motivation

Motivating people to exercise is a hard task and there are many different approaches
to it. There are two main types of motivation, extrinsic and intrinsic. Extrinsic
motivation is motivation coming from outside reward or punishment, for example
your salary. Intrinsic motivation comes from the individual itself, for example an
athlete is motivated to push themselves because they want to become the best at
their sport [3].

Since intrinsic motivation comes from the individual, the form of these motivators
vary greatly. Therefore it is important that you cover the entire spectrum of mo-
tivators to be able to appeal to the majority of people. Using gamification in the
application is a way to make it possible to appeal to the majority of people and
what intrinsically motivates them. The motivators in the application combined
with the health benefits of exercising will hopefully make the user continue to use
the application and exercise, since exercising increases overall happiness [4].

2.1.1 Gamification

K. Werbach and D. Hunter [3] defines gamification as: “The use of game elements
and game-design in non-game contexts”. Gamification can be found in many popular
fitness applications. Some gamification aspects commonly found in fitness applica-
tions are leaderboards, achievements, and a level system. Different gamification
aspects will have different effects on people. That is why it is important to im-
plement several different types of gamification to try to motivate the majority of
users.

3

2. Theory

2.1.2 Self-Determination Theory

Self-Determination Theory(SDT) is a psychological theory that explains how people
are motivated. There are a lot of gamification elements that can be explained
with the SDT. K. Webach and D. Hunter [3] explains SDT as: “SDT focuses on
what humans beings need to allow their innate growth and well-being tendencies to
flourish”.

There are three different categories in SDT; Competence, autonomy and relatedness.
Competence refers to feeling that your skills are being tested, for example, the ability
to compete against someone or increase the difficulty of exercises they complete.
Autonomy refers to feeling that your control your own life and your choices, for
example, allowing the user the ability to choose what kind of workouts they want
to complete. Relatedness refers to feeling that you connect with other people and
have social interactions, for example, being notified when your friend performs a
workout, in some kind of social feed.

2.2 Development

The application is developed according to Volvo Trucks’ recommendations to en-
sure that they can continue the development. The different techniques and design
patterns recommended by Volvo Trucks will be explained in this section.

2.2.1 Android Studio

Android Studio is used to develop the application and access its built-in Android
emulator that is used to simulate the infotainment system found in the Volvo trucks.
Android Studio is Google’s official integrated development environment (IDE) for
developing Android applications. Android Studio was chosen for this project due to
both Volvo Trucks’ and Google’s recommendations.

2.2.2 Kotlin

The application is developed in Kotlin. Kotlin is a programming language developed
by JetBrains, released in 2016 [5]. Kotlin is similar to Java and fixes some issues that
Java suffers from. For example, Kotlin fixes null reference issues [6], by controlling
null references with a type system. Kotlin’s type system “distinguishes between
references that can hold null (nullable references) and those that can not (non-null
references)” [7].

4

2. Theory

2.2.3 Model-View-ViewModel

Model-View-ViewModel (MVVM) is a software architectural pattern that is popu-
lar in the development of Android applications. Model refers to the business logic
and data for the application and is completely independent from the User Inter-
face(UI). It handles the processing of the problem domain and stores the state of
the application [8]. The view is responsible for the UI. This means it only handles
the structure and layout of what the user sees on their screen [9]. The ViewModel
acts as a intermediary between the model and the view [9]. The View has no direct
communication with the business logic and data found in the Model. Therefore it
needs to observe the ViewModel while it receives and sends data to the Model (See
figure 2.1) and then make changes to the UI when necessary.

Figure 2.1: Illustration of MVVM communication.

2.2.4 Android Jetpack

Android Jetpack is a collection of different software components for Android. The
purpose of Jetpack is to make development of Android applications easier [10]. Jet-
pack has three main advantages compared to how Android applications were previ-
ously developed. Firstly, it accelerates development by taking advantage of Kotlin
and by making the different components work individually as well as together [10].
Secondly, it eliminates a lot of boilerplate code by assisting and managing navigation
through the application and other background tasks [10]. Lastly, it takes advantage
of modern design techniques such as separation of concerns and testability [11].

5

2. Theory

2.2.5 Fragments

Fragments are a UI component of Android Jetpack. They are used to create a mod-
ular and flexible UI for the user to interact with. A window in an application is
represented by an Activity, which allows you to customize the UI of the window.
The advantage of using Fragments within an Activity is that you can have multiple
fragments inside one Activity window and reuse Fragments between different Activ-
ity windows [12]. Each fragment has its own lifecycle, which means all interactions
with them are individual and they do not affect the other Fragments in the Activity.
This allows a Fragment to be replaced with another one inside the same Activity
(see figure 2.2) without affecting the other Fragments in the window.

Figure 2.2: Illustration of an Activity with replaceable Fragments inside it.

6

2. Theory

2.2.6 Room Database

The “Room Persistence Library” is an abstraction layer over the SQLite [13] database
management system. Room is used in the application to create and pre-populate
a local database. The application will communicate with the database through a
repository (see figure 2.3). This will separate the database from the rest of the
application and make it possible to use a remote database later, without changing
the application.

Figure 2.3: Illustration of communication between application and database.

2.2.7 Dependency Injection

Dependency injection is a programming technique used to reduce dependencies be-
tween classes [14]. This means the classes are not directly dependent on each other
but instead they depend on an injector. The injector is a separate class that passes
objects to other objects that need access to them.

This makes isolated unit tests easier since the classes does not depend on each other.
It also reduces the amount of “boilerplate code” by not having to instantiate each
object that is needed in a class. This project will use Koin for dependency injection
due to recommendations from Volvo Trucks. Koin is a lightweight dependency injec-
tion framework for Kotlin [15]. Koin has built-in support for Android Architecture
ViewModels, which makes it a good choice for this application.

7

3
Method

3.1 Research

The first phase of the project will consist of researching gamification, motivation,
and exercises.

3.1.1 Gamification

To decide on what aspects of gamification to implement in the application we will
research gamification and how the aspects motivate different people. It is important
that the aspects cover a wide range of intrinsic motivators, to ensure that a majority
of people will find the application motivating to use. To understand what motivates
people we will also research motivation to get a better understanding of how different
people can feel motivated.

The research will consist of reading literature and online sources regarding gamifi-
cation and motivation. We will examine popular fitness applications for inspiration
and ideas on how to implement the gamification aspects. When the research is done
our findings will be evaluated to decide on which aspects to implement. A gamifi-
cation aspect will be evaluated based on the ability to implement it within our time
frame, as well as the ability to expand the aspect into something bigger.

9

3. Method

3.1.2 Exercises

The exercises that will be featured in the application are selected by us. We decided
to focus on stretching exercises due to them being relatively simple to perform in
the limited space of a truck cabin. Since the exercises are not the main focus of the
project, a limited amount of time will be spent on researching exercises. The research
will consist of reading different online sources explaining stretching workouts and
exercises. The only requirements for an exercise are that it can be performed within
the limited space of a truck cabin and that it can be performed within a 7 minute
time frame.

3.2 Development

When developing the application the focus will be to fulfil our goals and follow Volvo
Trucks’ recommendations. This is to make sure they can continue the development
of the application. The goal, in terms of functionality, is to implement the user flow
illustrated in figure 3.1. The user flow illustrates how a user will be able to navigate
through the application when selecting and performing a workout.

User starts
the

application

See the
main menu

See the
available
workouts

Select a
suitable
workout

Perform the
workout

See level
progression

See profile
with level

progression

Figure 3.1: Illustration of intended user flow.

10

3. Method

3.2.1 Workflow

Git and GitHub will be used for version control. A feature-branch system will be
used. This means that when development on a new feature starts, a local branch
will be created. The feature will then be fully developed in that branch and upon
completion pushed as a branch to GitHub and a “pull request” will be created.
When a pull request is created, GitHub performs an automatic integration test to
check if the branch can be integrated in the master branch without conflicts. The
pull request system also allows us to inspect the commits in the specific branch
along with all the code that was added, removed, or changed. When the code has
been reviewed and approved GitHub will merge the feature branch into the master
branch.

The development of the application will be split up between us to increase efficiency.
As this could lead to a lower general understanding of the application, we will
review each others code and make sure that we understand it. We will comment the
code to increase understandability, ease the review process and ensure that Volvo
can continue the development. The review process is done to increase our general
understanding of the code and ensure that the design patterns and techniques are
used correctly. During the project we will have continuous meetings with both Volvo
and our supervisor at Chalmers to ensure that the project is moving in the right
direction.

3.3 Milestones

To give structure to the development, some milestones have been created. The mile-
stones consist of important features of the application that need to be implemented.
When developing the application we will work towards these milestones, which will
help us reach our goals.

Room Database A database needs to be set up. The database will contain
workouts, exercises and users.

Main menu The main menu should feature two buttons, one to see your
profile and one to go to the list of workouts.

List of workouts The list of workouts should display all available workouts
with an explanation when clicked.

Workout session When performing a workout, a fragment will be used to
show each step of the workout session will be used.

Profile screen The profile screen will show information about the user.

11

3. Method

Workout finished screen When a workout is finished, a screen showing the users
progress is shown.

Visual aid for exercises Each exercise will have some sort of visual aid, provided by
Volvo.

3.4 Success Criteria

We have set a couple of criteria to be able to determine if the project has been suc-
cessfully completed. They are connected either to the gamification of the application
or the development of the application itself.

3.4.1 Gamification

For the implementation of gamification to be considered a success, a point and
level system has to be implemented. The application should give you points for
completing exercises. The level system should be based on the points that the user
earns.

3.4.2 Development

For the development of the application to be considered a success, Volvo’s guide-
lines have to be followed. We need to enable the possibility of further additions of
gamification aspects. This means that the application has to be developed in Kotlin
using a Model-View-ViewModel pattern. The application should take advantage of
components from Android Jetpack and use Koin for its dependency injection. If
all milestones have been reached and the application is designed like the intended
user flow chart found in figure 3.1, then we can say that the application has been
successfully developed.

12

4
Implementation

4.1 Workouts & Exercises

The application features workouts and exercises. A workout is a collection of exer-
cises. The user can browse through the workouts, see the exercises they contain and
then choose a workout to perform.

In the application there are two different workouts available, containing three and
four exercises respectively. They are stretching exercises and can all be performed
while sitting down. Since the selection of exercises was not the focus of the project
a collection of arbitrary exercises was selected based purely on the fact that they
could be performed while sitting down. The exercises have not been tested in a
truck cabin.

4.2 Gamification

To motivate the user to perform workouts a points and level system is implemented.
These aspects were chosen based on the reasearch we did in the begining of the
project. The motivators behind a points and level system falls under the “Compe-
tence” category of the Self-Determination Theory. The reasoning behind choosing
these features are that they allow us to add new features that are based on them.
The user receives points upon completing a workout, and as the user collects more
points their level increases. To determine what level a user is, the application uses
the Level class, which contains information about the amount of points that are
required for each level.

When an user has completed a workout they will be presented with a screen dis-
playing their current level progress and the amount of points they have collected
(see figure 4.1).

13

4. Implementation

Figure 4.1: The progression screen displayed upon completing a workout.

The points received are based on the number of exercises the workout consists of. In
figure 4.1 the user has completed the workout called ”Upper back and neck stretch”
and has earned 20 points. This is meant to motivate the user to collect more points
to be able to level up. The user can also go to their profile screen in the application
to see their progression (see figure 4.2).

Figure 4.2: The information displayed in the profile screen.

The profile screen displays the users profile information. The user can see their
collected points, level progression, and how many points they need to level up. This
screen is accessible from the main menu and also from the ”workout completed”
screen.

14

4. Implementation

4.3 Model

The model part of the application is represented by the database and classes used
to communicate with the database. These classes will be explained further in this
section.

4.3.1 Database

To store the workouts and exercises the application needs a database. This ap-
plication uses a local Room database to store the workouts, exercises, and profile
information. The code for the database consists of three types of classes.

• Database class

• Entity classes

• DAO classes

The database class handles the initialisation of the database itself and prepopulates
itself upon initialisation. Since there should only ever exist one instance of the
database it uses the singleton design pattern. This means the database class has a
”getInstance” function that returns the database instance (see code in listing 4.1).

1 ge t In s tance ()
2 i f database e x i s t s
3 r e turn database
4 e l s e
5 c r e a t e new database
6 r e turn database
Listing 4.1: getInstance pseudocode.

Entities & Data Access Objects

The data in the database is stored in Entities containing different variables. The
application uses three different Entities (see figure 4.3). For a more detailed expla-
nation of the entities see appendix A.

The data from the entities can be accessed by using their respective “Data Access
Objects” (DAOs). These DAOs are classes wherein the database interactions are
defined (see code in listing 4.2).

1 @Query("SELECT ∗ FROM workouts ")
2 fun ge tA l l () : LiveData<Array<Workout>>
Listing 4.2: Database interaction sample code.

15

4. Implementation

Workout

Key: workoutId
+name
+exercises
+description
+totalTime

Exercise

Key: exerciseId
+name
+description
+instructions
+repetitions
+timePerRepetitionSec
+totalTimeMin
+points
+imageIds

Person

Key: username
+realName
+points
+level

Figure 4.3: The entities contained in the database.

The database interactions are defined by the SQL query on line 1; in this case you
send a query to the database to get everything (SELECT *) from (FROM) the table
workouts (workouts). This retrieves all the entries from the ”workouts” table in the
database. Line 2 defines the function that can be called from the application to run
the aforementioned SQL query. The function takes no parameters and returns data
in the form of a LiveData object containing an Array of all the Workouts in the
database.

Repositories

To separate the database from the rest of the application and to make it easier to add
new data sources (API’s or remote databases) in the future, a “Repository Pattern”
is used. The Repositories consist of one repository-class per Entity, and are used to
call the respective DAOs functions to retrieve information from the database. The
repositories use two main methods of providing data to the application.

• LiveData.

• Suspend functions.

To retrieve data from the database using LiveData, a LiveData object is created
in the repository. This LiveData object will be updated automatically when the
database changes. LiveData is used in the application when retrieving information
that will be used in a View.

The other method used to retrieve data from the database is suspend functions.
These functions are called from a separate thread so that they run in the background.
This ensures that the application does not stop when it is accessing the database.

16

4. Implementation

Pre-populating the database

The workouts, exercises, and profile information are inserted in the database upon
the first launch of the application. This information is imported using a helper class
”DatabasePopulator”. This class contains functions that reads the included json
files and converts the text to objects. These functions returns a list of objects of
the specified type. The functions are called in the Database class using a separate
thread and the lists of objects that they return are then inserted in the database
using the objects respective DAO’s.

4.4 ViewModel

The ViewModel acts as an intermediary between the Model and the View. A View-
Model has two different ways to expose data to the View related to it. It could
either retrieve data from the Model through a suspend function or LiveData. When
you want to retrieve data from a suspend function, a Coroutine is used.

4.4.1 Coroutines

Coroutines is a library found in Kotlin, which allows you to asynchronously call
suspend functions. Coroutines are used in every ViewModel of the application,
either when initialising the ViewModel with data from the database or to update
an entity. When the initialisation of the ViewModel requires something from the
database to proceed, the main thread has to be blocked and wait for the data to be
retrieved from the database (see code in listing 4.3).

1 runBlocking {
2 //Launch background thread
3 va l getPersonJob = scope . launch (Dispatcher s . IO) {
4 //Get the person
5 person = personRepo . getPerson (" john_doe ")
6 }
7 //Wait f o r the background thread to f i n i s h
8 getPersonJob . j o i n ()
9 }
Listing 4.3: Asynchronous call of suspended function.

RunBlocking is a Coroutine function that blocks the current thread by creating a
new coroutine that runs until it has been completed. This allows us to block the
main thread until our background thread has retrieved the necessary data through
the repository.

17

4. Implementation

However when communication with the database is not time-critical, the main thread
should not be blocked. This is the case when you want to update the database with
new data (see code in listing 4.4).

1 fun updatePoints (po in t s : Int) {
2 //Launch background thread
3 scope . launch (Dispatcher s . IO) {
4 personRepo . addPoints (" john_doe " , po in t s)
5 }
6 }
Listing 4.4: Updating the total points of an user.

4.4.2 LiveData

LiveData is a part of Android Jetpack, and is used to retrieve data from the database
that is not time-critical. The ViewModel uses LiveData from the repository to
expose data from the Model. You are not able to write to a LiveData object, it only
changes when the its source is updated.

1 va l cu r r entPo in t s : LiveData<Int> = personRepo . ge tPo int s ("
john_doe ")

Listing 4.5: LiveData exposing the current amount of points gathered.

Listing 4.5 shows a variable that contains LiveData representing the user’s current
number of points. Whenever the function from Listing 4.4 is called, the LiveData
in currentPoints will be updated and the View observing it will be notified.

For data to be observable it does not have to come from the Model. When you want
the View to observe data directly from the ViewModel, MutableLiveData is used.
Compared to LiveData, MutableLiveData is mutable and allows us to write directly
to it, to make changes. This means that we can update the MutableLiveData object
directly from the ViewModel.

18

4. Implementation

1 pr i va t e va l p r i va t eCur r en tExe rc i s e = MutableLiveData<
Exerc i se >() . apply{ value = nu l l }

2 va l cu r r en tExe r c i s e : LiveData<Exerc i se>
3 get () = pr iva t eCur r entExe r c i s e
Listing 4.6: MutableLiveData representing the current exercise.

Listing 4.6 shows how a MutableLiveData object is set up. The data from the
MutableLiveData object is of the type “Exercise” and the data in it is set to null
initially, until it is set to a value in the code (see code in Listing 4.7).

1 pr iva t eCur r en tExe r c i s e . va lue = Ins tance o f Exe r c i s e
Listing 4.7: Pseudocode of assigning a value to the MutableLiveData.

The object is private to ensure that only the ViewModel can update it. To allow
a View to observe the data, a LiveData variable is used. This variable contains
the data from the MutableLiveData object and is automatically updated when the
MutableLiveData is updated.

4.5 View

The view takes care of everything that is related to UI and interactions from the user.
The window that the user can interact with is handled by the Activity class, which
is an Android class that controls what is displayed on the screen. The application’s
UI uses a “Single Activity architecture” to control the UI. This means that the
application only has one Activity that is always active. Inside it there are Fragments
which can be swapped in and out depending on what you want to display.

19

4. Implementation

4.5.1 Navigation

The Navigation class controls the exchange of Fragments in the Activity. Navigation
is a part of Android Jetpack and allows you to design how the user navigates through
the application. The Navigation component has three key parts that make the
navigation of the application work [16]:

Nav graph XML resource that gathers all information related to the navigation
in one place. Inside it there are destinations which are the Fragments
you can navigate to and what paths you can take to the Fragments.

NavHost Is a container used for displaying destinations.

NavController Controls the navigation through the application and what Fragment
that is meant to be displayed in the container of the NavHost.

An advantage of using Android Studio is their graphical tool that allows you to easily
draw lines between Fragments that symbolises how you can navigate throughout the
application (see figure 4.4). The lines are then translated into paths and destinations,
then inserted into the XML code.

Figure 4.4: Picture of Nav graph displaying the fragments and the paths to them.

20

4. Implementation

4.5.2 Retrieve data from ViewModel

The View only handles the UI and needs the ViewModel to handle the business
logic for it. Each Fragment has its own ViewModel and whenever you navigate to a
Fragment, a reference to its ViewModel is retrieved. When an user input requires the
Fragment to update something in the business logic or the database, the Fragment
will send the input to the ViewModel and the change is made (bottom arrow in
figure 4.5). However, since the ViewModel has no knowledge about the Fragment
itself, it can not forward any changes to the business logic or database directly back
to the Fragment that sent the input.

There are two ways for the Fragment to retrieve data from the ViewModel. Either by
a simple getter function or by observing LiveData inside the referenced ViewModel
(upper arrow in figure 4.5). LiveData is used when you want the Fragment to be
notified when the state of an object has changed in the ViewModel. This means
that the Fragment can react directly to changes and make the necessary updates to
the UI. A getter is used when the Fragment does not need updated data, but only
need to do some sort of calculation.

Figure 4.5: Interaction between View and ViewModel.

4.5.3 Data Binding

The UI is represented by an XML resource file. Usually you would have to write a
lot of boilerplate code in the Fragment to change a text or the function of a button
in the UI. For example, if the UI has some text in it that you want to update with
some data from the ViewModel, the usual way of doing that would look something
like the code in listing 4.8.

1 findViewById<TextView>(R. id . some_text) . apply {
2 t ex t = viewModel . updatedText
3 }
Listing 4.8: Setting TextView without Data Binding sample code.

If you have more than one or two components in the UI, the Fragment will become
cluttered very quickly.

21

4. Implementation

This can be avoided by using Data Binding, which is a part of Android Jetpack.
As the name suggests, data binding binds a data source to a component of the UI.
Instead of writing something similar to listing 4.8 for every component, we declare
a variable in the XML file that represents some object inside the resource file and
then use that variable to access the data. Listing 4.9 is the same example as the
previous, but we use data binding to bind the TextView to a data source. Row 1 to
4 is the declaration of the viewModel variable. Row 6 to 8 is the represents getting
data from the variable "updatedText", found in the viewModel.

1 <data>
2 <va r i ab l e name=" viewModel "
3 type="com . app l i c a t i o n . data . ViewModel " />
4 </data>
5
6 <TextView
7 android : t ex t="@{viewModel . updatedText} "
8 />
Listing 4.9: Data Binding example.

In the example above, the data source is a variable from the ViewModel, but it could
just as easily be a function from any of our own classes or a library from Android.
This is the case throughout the application and means that our Fragments contain
fewer lines of code and are kept cleaner.

4.6 Dependency Injection with Koin

Koin is used to handle dependency injection. To use Koin for dependency injection
we must create a module, which includes declarations of objects that can be injected.
Listing 4.10 shows a declaration of a ViewModel and its parameter. In this case the
repository is a singleton object and the ViewModel takes a repository as parameter.
The “get()” function automatically chooses the correct parameter to initialise the
ViewModel with.

1 va l exampleModule = module {
2 s i n g l e { ExampleRepository (AppDatabase . g e t In s tance (

androidContext ()) . ExampleDao ()) }
3 viewModel { ExampleViewModel (get ()) }
4 }
Listing 4.10: Koin module sample code.

22

4. Implementation

This means that all the classes that needs a ViewModel uses the Koin module
to retrieve them. Instead of initialising them directly. As mentioned in the Theory
chapter this removes the dependency between classes. Listing 4.11 shows an example
of how a Fragment uses Koin to inject a ViewModel.

1 c l a s s ExampleFragment : Fragment () {
2 pr i va t e va l exampleViewModel : ExampleViewModel by

viewModel ()
3 . . .
4 }
Listing 4.11: Koin ViewModel inject sample code.

Koin is also used to inject the Level class. Since Level is not a ViewModel this injec-
tion is done slightly differently. Listing 4.12 shows how the Level class is injected.
The difference between how the Level and the Repositories are initialised is that
the repositories use the “single” function, this means that there will only exist one
instance of the repository. The “factory” function gives a new instance every time
it is called.

1 //Code from the Koin module
2 va l exampleModule = module {
3 f a c t o r y { Level () }
4 }
5
6 //Code used in c l a s s that i n j e c t s Leve l
7 pr i va t e va l l e v e l s : Leve l by i n j e c t ()
Listing 4.12: Koin Level inject sample code.

23

5
Results

The project resulted in a functioning application for the Volvo Trucks’ Android
based infotainment system. The application features gamification aspects selected
from gamification and motivation research.

5.1 Application

The user flow illustrated in section 3.2 (figure 3.1) have been implemented. The
different steps illustrated in the user flow are represented by the following screens
in the application.

See the main menu

Figure 5.1: Main menu screen.

25

5. Results

See the available workouts & Select a suitable workout

Figure 5.2: Select workout screen.

Perform the workout

Figure 5.3: Workout session screen.

26

5. Results

See level progression

Figure 5.4: Progression screen.

See profile with level progression

Figure 5.5: Profile screen.

There were some goals set up for the development of the application. The main goal
was to make it possible for Volvo Trucks to continue the development of the appli-
cation. This meant that we had to follow Volvo Trucks’ and Google’s guidelines for
developing an Android application. We believe this has been achieved by following
the MVVM design pattern, using Koin for dependency injection, and following the
Android Jetpack guidelines. However, we have not been able to confirm this with
the developers at Volvo Trucks.

27

5. Results

A lot of time was spent on developing the database of the application. Since we
wanted the application to be easily expandable we wanted to implement a database
that could be swapped out without any changes to the application. This was
achieved by using a repository to communicate with the database. This means
that, in theory, the database can be switched out to a remote database without any
changes to the application. We also made sure that exercises and workouts could
easily be inserted into the application. This was achieved by using Json files to
pre-populate the database, so that to add exercises you can just add them to the
json file and rebuild the database and application.

The goals that were set up for the workouts and exercises were also reached. The
main goal was to implement exercises in a modular way and have each exercise be
accompanied with a text and an animation. This has been partially achieved. The
exercises are implemented in a modular way as explained above, and every exercise
is accompanied with a text that explains it. However, instead of animations, there
are two cycling images explaining the exercise.

5.1.1 Gamification

The application is meant to increase the user’s motivation for physical activity.
This is done by implementing two gamification aspects, points and levels, explained
in section 4.2. These gamification aspects are the same that were presented in
section 1.2. Since we successfully implemented these gamification aspects we have
reached our goals regarding gamification. There have been no tests done to confirm
the effectiveness of the application. The gamification aspects have been chosen based
on our research of gamification and motivation. Investigating gamification was also
a part of the scope, this was done, and as mentioned the findings was used to choose
relevant gamification aspects to implement.

28

6
Conclusion

6.1 Discussion

As a whole we are very pleased with how the project turned out. We were introduced
to a lot of new techniques and patterns, and learning them was very time consuming.
But in the end we developed an application we are proud of. We put a lot of thought
and effort into ensuring that the application followed Volvo Trucks’ guidelines. This
led to the application having a solid ground to stand on and allows it to be further
developed. However, this was at the cost of only having a basic UI.

At an early stage of the project we had a lot of ideas on what gamification aspects
to implement. But once we started to actually plan the milestones of the project, we
realised that the amount of features would need to be kept to a minimum. However,
we did accomplish what we set as our scope and we are happy with the features we
decided to implement. We feel like there are a lot of new features that can be built
on top of the current ones.

At the end of the project, all the effort we put in to ensure that the application
followed the guidelines paid off. At the last week of development, Volvo Trucks
handed us the images for the exercises, which meant we had to put them in the
application with little time left. Normally this would not be the easiest thing to do,
since each exercise had to be paired with two pictures that had to be cycled. But
since we had put so much time and effort into learning the components of Android
Jetpack, this took no more than an hour.

An issue we have discovered with the application, is that there is no way to confirm if
the user has actually completed a workout. This means that a user could very easily
open a workout and finish it without actually performing it. Since the application
has a points and level system, we think this could be exploited by users. This would
especially become a problem if there were ways to compare yourself with other users
inside the application. This issue would need to be solved before the application is
installed in Volvo Trucks’ infotainment systems.

29

6. Conclusion

6.2 Further development

The application is built with the possibility of further development in mind. That is
why the majority of the time was spent on building a solid ground to make further
development easier. There are many ways the application could be improved, and
in this section we will discuss our thoughts on some aspects that can be improved.

6.2.1 Solution to potential exploit

A potential solution to the exploit that we identified in the discussion, would be to
use the accelerometer found in phones. The idea is that the user would connect their
phone to the infotainment system and hold the phone in their hand while performing
the workout. The data from the accelerometer could then verify that the user has
performed the exercise. A problem with this solution, is that the user could shake
their phone to trick the application into believing they are performing the exercise.

6.2.2 User Interface

The user interface is currently very basic as it has not been the focus of the project.
There are many changes that could be made to it to improve the feel of the appli-
cation. The most noticeable UI weakness according to us is the lack of consistency.
To have the entire application follow the same style guide would improve the look
of the application and make it feel more complete.

6.2.3 Gamification aspects

When deciding on what gamification aspects to implement in the application, the
possibility for further development was kept in mind.

When levelling up, new features could be unlocked. This would make levelling up
feel more rewarding. A new feature could be allowing the user to create their own
workouts. This would fall under the “Autonomy” category of the SDT, which is
lacking in the application right now.

Achievements could be implemented. For example, an achievement could be to do a
certain workout three days in a row. When you complete an achievement, a badge
would be added to your collection and you could display it in your profile. This
would be categorised as “Competence” according to the SDT. Achievements would
be a way to feel competent without having to compete with other people.

30

6. Conclusion

A leaderboard would be a good addition to the application. The leaderboard would
be based on the players total points. There could be multiple leaderboards, for
example one global leaderboard and an exclusive one for a truck fleet. A leaderboard
would fall under “Competence” and compared to Achievements, it would be more
attractive to competitive users that want to compare themselves with others.

A social feed could be implemented. The social feed would show you what people in
your truck fleet have been up to. For example, if you complete an achievement you
could share it to a social feed and other users could interact with you. This would
be categorised as “Relatedness” according to the SDT. Which is something that is
lacking in the application right now.

6.2.4 Exercises

The exercises implemented in the application are very basic and have been selected
solely because they are possible to perform whilst sitting down. The application
would benefit greatly from additions of both exercises and workouts. The addition
of more exercises and workouts would make the application feel more complete and
give the user a broader selection of workouts to choose from. This would give the
user a greater feeling of autonomy which in theory would increase motivation as
mentioned in chapter 2.

6.2.5 Implement a remote database

The implementation of a remote database would benefit the application, as it would
simplify the addition of workouts and exercises. The workouts and exercises would
be uploaded to the remote database. The users would then automatically get the
available workouts and exercises from the database. As mentioned in section 4.3.1,
the application uses a repository to retrieve information from the database, which
in theory would make it possible to implement a remote database without changing
the application.

31

Bibliography

[1] N. Bucciarelli Pedersen and L. Eisenberg, “If sitting is the new smoking,
what does this mean for employers? A look at potential workers’
compensation claims in the sedentary workplace”,
Lewis & Clark Law Review, vol. 22, no. 3, pp. 965–990, 2018.

[2] Transportstyrelsen, Regler om kör- och vilotider. [Online]. Available:
https://transportstyrelsen.se/sv/vagtrafik/Yrkestrafik/Kor--och-
vilotider/regler-om-kor--och-vilotider/.

[3] K. Werbach and D. Hunter,
For the win: How game thinking can revolutionize your business.
Wharton Digital Press, 2012.

[4] G. Reynolds, A little exercise might bring cheer, English,
University of Michigan; Copyright New York Times Company May 8, 2018;
Last updated - 2018-11-12, May 2018. [Online]. Available:
http://proxy.lib.chalmers.se/login?url=https://search-proquest-
com.proxy.lib.chalmers.se/docview/2035556507?accountid=10041.

[5] Kotlin Team, Kotlin FAQ, [Online; accessed 3-May-2019].
[Online]. Available: https://kotlinlang.org/docs/reference/faq.html.

[6] ——, Comparison to Java programming language,
[Online; accessed 3-May-2019]. [Online]. Available:
https://kotlinlang.org/docs/reference/comparison-to-java.html.

[7] ——, Nullable types and non-null types, [Online; accessed 3-May-2019].
[Online]. Available:
https://kotlinlang.org/docs/reference/null-safety.html.

[8] J. Gossman,
Introduction to model/view/viewmodel pattern for building WPF apps,
[Online; accessed 25-April-2019]. [Online]. Available: https:
//blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-
to-modelviewviewmodel-pattern-for-building-wpf-apps/.

[9] Microsoft Developers, The MVVM pattern, [Online; accessed 25-April-2019].
[Online]. Available: https://docs.microsoft.com/en-us/previous-
versions/msp-n-p/hh848246(v=pandp.10).

[10] Android Developers, Android Jetpack, [Online; accessed 25-April-2019].
[Online]. Available: https://developer.android.com/jetpack.

[11] C. Sells, B. Poiesz, and K. Ng,
Use Android Jetpack to accelerate your app development,

33

https://transportstyrelsen.se/sv/vagtrafik/Yrkestrafik/Kor--och-vilotider/regler-om-kor--och-vilotider/
https://transportstyrelsen.se/sv/vagtrafik/Yrkestrafik/Kor--och-vilotider/regler-om-kor--och-vilotider/
http://proxy.lib.chalmers.se/login?url=https://search-proquest-com.proxy.lib.chalmers.se/docview/2035556507?accountid=10041
http://proxy.lib.chalmers.se/login?url=https://search-proquest-com.proxy.lib.chalmers.se/docview/2035556507?accountid=10041
https://kotlinlang.org/docs/reference/faq.html
https://kotlinlang.org/docs/reference/comparison-to-java.html
https://kotlinlang.org/docs/reference/null-safety.html
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
https://developer.android.com/jetpack

Bibliography

[Online; accessed 3-May-2019]. [Online]. Available:
https://android-developers.googleblog.com/2018/05/use-android-
jetpack-to-accelerate-your.html.

[12] Android Developers, Fragments, [Online; accessed 3-May-2019].
[Online]. Available:
https://developer.android.com/guide/components/fragments.

[13] ——, Room persistence library, [Online; accessed 25-April-2019].
[Online]. Available:
https://developer.android.com/topic/libraries/architecture/room.

[14] T. Janssen,
Design patterns explained – dependency injection with code examples,
[Online; accessed 25-April-2019].
[Online]. Available: https://stackify.com/dependency-injection/.

[15] Koin Developers, Koin webpage, [Online; accessed 4-May-2019].
[Online]. Available: https://insert-koin.io/.

[16] Android Developers, Android navigation, [Online; accessed 29-May-2019].
[Online]. Available: https://developer.android.com/guide/navigation/.

34

https://android-developers.googleblog.com/2018/05/use-android-jetpack-to-accelerate-your.html
https://android-developers.googleblog.com/2018/05/use-android-jetpack-to-accelerate-your.html
https://developer.android.com/guide/components/fragments
https://developer.android.com/topic/libraries/architecture/room
https://stackify.com/dependency-injection/
https://insert-koin.io/
https://developer.android.com/guide/navigation/

A
Database Entities Explanation

A.1 Workout

workoutId The id of the workout.

name The name of the workout.

exercises A list of id’s for the exercises contained in the workout.

description A description of the workout.

totalTime The estimated total time of the workout.

A.2 Exercise

exerciseId The id of the exercise.

name The name of the exercise.

instructions A set of instructions on how to perform the exercise.

repetitions The number of repetitions the exercise should be performed.

timePerRepetitionsSec The approximated time a repetition takes, in seconds.

totalTimeMin The approximated time the exercise takes, in minutes.

points The amount of points the user receives upon completion of the exercise.

imageIds A list of Strings representing the file names of the images corresponding
to this exercise.

I

A. Database Entities Explanation

A.3 Person

username The username of the user.

realName The real name of the user.

points The amount of points the user has collected.

level The level the user has reached.

II

	List of Figures
	Listings
	Introduction
	Background
	Scope

	Theory
	Motivation
	Development

	Method
	Research
	Development
	Milestones
	Success Criteria

	Implementation
	Workouts & Exercises
	Gamification
	Model
	ViewModel
	View
	Dependency Injection with Koin

	Results
	Application

	Conclusion
	Discussion
	Further development

	Bibliography
	Database Entities Explanation
	Workout
	Exercise
	Person

