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Abstract

A Wireless Sensor Network (WSN) of anisotropic magnetoresistor sensors offers a low-cost alter-
native to other traffic measurement technologies. The WSNs offer better reliability than other
solutions, they offer more information, can be deployed quickly and be reused. In this thesis the
sensor algorithms used for detection, velocity estimation, queue detection and classification in
such a network are evaluated based on simulated and measured data. A number of algorithms are
evaluated and the results are compared. A new algorithm for speed estimation using two sensor
nodes is proposed and evaluated. It is found to be much better than earlier algorithms, requiring
a signal to noise ratio (SNR) of 20 dB less than the traditional algorithm.

Keywords: Wireless Sensor Network, Anisotropic Magnetoresistor, Vehicle Detection, Vehicle
Classification
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Sammanfattning

Ett tr̊adlöst sensornätverk (Wireless Sensor Network, WSN) av anisotropiska magnetoresistorsen-
sorer erbjuder ett l̊agkostnadsalternativ till andra trafikmätningsmetoder. De ger bättre tillför-
litlighet än andra metoder, de ger mer information, kan installeras snabbt och kan återanvändas.
I det här examensarbetet utvärderas sensoralgoritmer för detektion, hastighetsestimering, köde-
tektion och klassificering i ett s̊adant nätverk baserat p̊a simuleringar och mätdata. Ett antal
algoritmer utvärderas och jämförs. En ny algoritm för hastighetsestimering förel̊as och evalueras.
Det visas att den är bättre än föreg̊aende algoritmer och fordrar ett signal till brus-förh̊allande
(SNR) p̊a 20 dB mindre än tidigare algoritmer.

Nyckelord: Tr̊adlösa sensornätverk, anisotropisk magnetoresistor, fordonsdetektion, fordon-
sklassificering
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is evaluated in this project for different applications in an intelligent transportation system.
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1. Introduction

Chapter 1

Introduction

1.1 Background

During the last decades the number of vehicles on our roads has increased exponentially.
Personal mobility has increased from 17 km a day in 1970 to 35 km in 1998 and is nowadays taken
for granted and seen as an acquired right [1]. This increased mobility has resulted in an increase of
traffic congestion, pollution and accidents. The increased mobility and the demands of improved
traffic safety mean an increased need of correct and in real-time available information.

The notion that a traffic system in the future will be based on real time communication between
human–vehicle–infrastructure is not very far-fetched. A hypothesis is that the infrastructure will
go from being static to being dynamic [2] which also means that the demand for information about
traffic situations will increase.

If information about the current and future traffic situation can be forwarded from the infrastruc-
ture to the vehicle, then information about the best route can be shown to the driver. Getting to
the desired destination within the specified time is however not the only benefit of such a system.
The infrastructure of today was often planned many hundred of years ago with the national and
international politics of the era in mind [1]. The roads were then widened to accommodate the
traffic of the modern era. This spells trouble – the roads cannot withstand the traffic intensity,
resulting in queues and even accidents. Real-time information, and even predictions about future
traffic situations will mean that traffic is spread out on the existing road network and thus reducing
the load on any single road.

In order to make predictions about the future, one must first have information about the present.
A Wireless Sensor Network (WSN) can give such information. We propose a WSN made up out of
many sensor nodes (SNs), equipped with magnetic sensors. These SNs are cheap, easy to install
and give detailed information about each passing vehicle. In its simplest form it can not do a
lot, but its strength comes from the network of SNs. There is also a choice to implement more
computational power in each sensor node.
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1.2 Purpose

The purpose of this thesis is to evaluate the use of a Wireless Sensor Network for traffic surveillance
in a number of fields including detection, speed estimation, classification and queue detection. In
each of these fields a number of algorithms will be evaluated for use in the system. One of the
main goals is to develop a simulator for cheap and easy testing of the system. The simulator
should accurately portrait the model described in Chapter 4 and therefore be able to be used for
simulation of the algorithms found in this thesis.

The main questions to answer are whether a WSN is suitable for� traffic monitoring, i.e., primarily counting, speed estimation and classification,� queue detection, i.e., speed estimation and presence,

and what features of the sensor nodes and the algorithms used are needed for these applications.
The thesis should investigate the performance of some algorithms for each case stated above and
give specifications for the hardware. The applications can be both permanent and temporary
in the sense that a pair of nodes can be placed permanently on-site or temporarily. The first
application for our system will be replacing the old technology based on pneumatic tubes and
provide statistics and queue detection.

1.3 Delimitations

This thesis is limited to the sensor part of the Wireless Sensor Network. This means that it
is assumed that the network exists and works ideally except where otherwise stated. There are
a number of delimitations in the models themselves. The delimitations will be covered in later
chapters.
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1.3. Delimitations

Figure 1.1: During the last decades the number of vehicles on our roads has increased exponentially.
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2. Method

Chapter 2

Method

This chapter aims to describe the scientific reasoning that forms the basis for the work done in
this project. As an introduction, the work process is outlined. Thereafter the methods chosen are
described. Finally a discussion about generality and validity follows.

2.1 Assault approach

Traditionally a completely deductive1 assault approach has been used – one made observations,
noted them with more or less readable handwriting in a notebook and made conclusions from
that. The method used to find the relation to real world data by Imego can be said to be strictly
deductive. The result has then been used to develop the model used in this thesis. The model
has in its turn been used to develop the algorithms for use in the Wireless Sensor Network (WSN)
that we propose, and we assume that they apply to real world situations. This method can be
said to be inductive2.

2.1.1 Description

The project is divided into parts. A short description of these parts now follows.� A study of sensor networks, ad-hoc networks and previous work. Previous work include
theses within the same project.� Simulation of magnetic model and sensor model in Matlab and other tools based on the
magnetic model developed by Imego AB3,� Implementation, evaluation and improvement of algorithms in the simulator,� Implementation in hardware made by a previous thesis project at Qamcom Technology AB,� Verification of the model by field trials.

1deductive, “based on deduction from accepted premises: deductive argument; deductive reasoning.”
http://www.dictionary.com

2inductive, “of, pertaining to, or employing logical induction: inductive reasoning.” http://www.dictionary.com
3http://www.imego.se
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2.1.2 Discussion

The usage of a model to develop algorithms is an inductive approach, but this thesis has not
been written solely by using this approach. Throughout the projects, we have used measurements
to get more data for use in the model, an approach that can be said to be deductive. These
measurements have been the foundation for the model developed, and the model has then been
the basis for further studies. This approach is entirely inductive – therefore a combined inductive
and deductive approach has been used. In this case these approaches has the benefit of being cheap,
time effective and non-destructive as opposed to only doing field trials which are time consuming
and costly since hardware must be rebuilt if they don’t meet specifications and demands.

2.2 Procedure

In order to get acquainted with the Wireless Sensor Networks and the algorithms used today, the
literature in this field have been studied. Using this as a basis, along with the study made by
Imego AB, a simulator for the sensor system has then been developed. The simulator has been
used to evaluate algorithms for the different applications.

2.3 Validity

The validity of the model used in this thesis can be discussed. It is proved empirically that it is
valid at least in a small geographic area and its validity anywhere else in the world is assumed and
inductively proved. The model should be iterative – one should go back and revise the model after
simulations and field trials if the results do not match in order to increase validity. The downside
of basing decisions on a model is of course not knowing if the model matches reality and therefore
the results may not be valid. The validity is of course also determined by model parameters such
as number of magnetic dipoles moments considered.

2.4 Generality

The basis of the model applies to a lot of similar projects, where you want to simulate real events
because they may be expensive, destructive or time consuming. The model itself applies to similar
detection applications with magnetic sensors, but the more specific algorithms can not be applied
anywhere else.

Regarding the scope of this thesis, it can be said that since we do not have data from every vehicle
on the market, we cannot say that our model is valid for all of those vehicles. However when we
add more data, we do not change anything, and using the same methods discussed in this thesis,
the model can be expanded to fit those vehicles.
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3. Wireless Sensor Networks

Chapter 3

Wireless Sensor Networks

Figure 3.1: Wireless Sensor Network together with a queue warning sign fitted with Amparo SeeMeTM

flashing unit.

3.1 “Ambient Intelligence” or

putting electronics into groceries

There has been a tendency for some time now to put embedded computational power into
large things such as washing machines and refrigerators. That tendency is not limited to large
appliances but even disposable goods, groceries, living spaces and working spaces will soon be or
already are endowed with such capabilities [3]. Computational power that surrounds us in our
daily lives can be – somewhat praisefully – called “Ambient Intelligence” wherein many different
devices will work together to control processes or interact with us. We should take this technology
for granted, it should be unobtrusive and even invisible.

In the light of this, a new type of network emerged – the Wireless Sensor Network (WSN). Each
individual node in the network is capable of sensing or interacting with its environment. However,
it is first when they are connected to each other that they show their true power. WSNs have
many applications and the technical solutions are very different.
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An interesting example of a WSN is the “Smart Dust” proposed by the U.S. Defence Advanced
Projects Agency (DARPA). The smart-dust sensor nodes are extremely small - about the size of
a grain of sand or even a dust-particle. The idea is to scatter thousands of these small sensors on
the battlefield as an intelligent minefield to detect and monitor enemy movement. The sensors can
be spread out using aeroplanes or submunitions. An interesting civilian usage of these “intelligent
minefields” can be found in accidents and catastrophe sites such as after an earthquake where
humans can be trapped and wounded and need to be found quickly [4].

The usage for the WSN we are proposing is entirely related to traffic. One interesting application
can be seen in Figure 3.1 and is a queue warning system. The sensor nodes collaborate and send
a signal to the warning unit if there is a queue.

3.2 Wireless Hardware

The transceiver could use IEEE 802.15.4 and ZigBee1 standards [5]. The exact design of the
WSN is not decided upon, here ZigBee is used for simplicity. The sensor nodes should be able
to perform short-range communication in small networks for which ZigBee and Wireless Personal
Area Networks (WPANs) are ideal. Unlike Wireless Local Area Network (WLANs), WPANs allow
for small, power-efficient, inexpensive solutions for a wide range of devices since they do not involve
any or very little infrastructure [6].

3.2.1 ZigBee Networks

A Low-Rate Wireless Personal Area Network (LR-WPAN) is a simple, low-cost communication
for applications where resources are limited [6]. An LR-WPAN offer easy installation, reliable
communication, short-range operation, low cost and low power consumption. Two types of devices
can exist in such a network; reduced-function devices (RFD) and full function-devices (FFD). A
FFD can talk to everyone while an RFD can only talk to a FFD. ZigBee Alliance defines the
network, security and application support layers (API) on top of the physical (PHY) and media
access layer (MAC) defined by IEEE Standard 802.15.4 [6, 7].

The network will consist mostly of sensor nodes (SNs) which are RFDs. These can unlike the
FFDs, not become the coordinator in the star topology net used in this implementation [6, 7]. We
will use an access point (AP) to transmit data to the backbone network. The network topology
can be seen in Figure 3.2. In the future, we will like to have the option to use a mesh network
topology instead. This will allow us to use SNs as relays.

3.3 Wireless Sensor Networks

for applications related to traffic

Due to the different applications, the requirements for a WSN are also different. In our application
some of the important requirements are� Multihop (wireless) communication. Sending information over large distances is only

1ZigBee Alliance, www.zigbee.org
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3.4. Sensor Node Hardware

Figure 3.2: Star network topology with network coordinator [6, 7]. The network coordinator is in our
application the access point (AP) and the nodes are the wireless sensor nodes (SNs).

possible using high transmission power. By using sensor nodes as relays we can reduce the
required power.� Energy-efficient operation. Since the nodes are battery powered a strict power consump-
tion policy is needed. When parts of the sensor node are not needed they are put to sleep
only to be awaken when they are needed.� Auto-configuration. The nodes should be easily installed, by anyone, anywhere and at any
time. If the sensor nodes, and the wireless network, can be auto-configured it would be hugely
beneficial. A “must-have” property [8] of the sensor nodes is that they should autonomously
position themselves in the network. Preferably they should not rely on surrounding infras-
tructure such as the Global Positioning System (GPS). There are many different techniques
that forms the basis for autonomous positioning.� In-network processing. An individual node may not be able to determine whether an
event has occurred or not but will depend on collaboration with its neighbours. We would
like to keep the inter-node traffic as low as possible to keep the power consumption low at
the same time as any calculations will take time, memory and power.

The amount of processing needed in the SNs is highly dependant on their use. There are three
main usages for our equipment� Vehicle detection, speed estimation and counting,� Vehicle classification,� Queue detection. See Figure 3.1.

There is also a possibility to re-identify vehicles [9]. This requires more SNs and more computa-
tional power.
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Figure 3.3: Wireless Sensor Node Prototype.

3.4 Sensor Node Hardware

The sensor node is comprised of two main parts, seen in Figure 3.4. The primary intent of the
sensor node is obviously to sense something and therefore the sensor or sensors make up one of
those parts. Our sensor node uses magnetoresistive sensors to sense the magnetic field and it is
sensitive enough to detect field in the range of at least tens of nanotesla. The prototype can be
seen in Figure 3.3. In order to understand why we have chosen anisotropic magnetoresistors we
have to look at the arguments for and against other systems.

Figure 3.4: Wireless Sensor Node Architecture.

3.4.1 Comparison of existing technologies

The different surveillance technologies can be classified as intrusive, non-intrusive or off-roadway [10].
Intrusive sensor systems are installed in or on the pavement, non-intrusive are installed over or
at the side of the road. Off-roadway systems are special since they need no equipment installed
on-site.

10



3.4. Sensor Node Hardware

Inductive loop

The energy is used for measuring change in oscillator frequency [10] over the sensor loop and for
analog to digital (A/D) conversion [11]. The inductive loop is therefore an active sensor. Inductive
loops are today the most common vehicle detector in use and is today a mature technology. It has
a high detection accuracy. The disadvantages include high-cost installation and traffic disruption
during installation. The loop wire is affected by stresses in the road surface and temperature
making the failure rate high [10].

Pneumatic Tube

A pneumatic tube system is a very basic system that uses pressurised tubes to measure traffic
parameters. When a vehicle passes the tube a pulse of air pressure is transferred along the tube.
The output is therefore only detection, however with more than one tube, you can find the speed
and even classify vehicles. The simplicity of this system is apparent. One of the major drawbacks,
especially in Sweden, is that measurements can not be done in the winter time due to the possibility
that the tubes will be plowed away by snow plows.

Installation and maintenance costs are kept low due to its simplicity. Drawbacks include inaccuracy
in axle counting when buses and trucks are common [10]. The sensitivity is temperature dependant,
and the equipment wear and tear is significant.

Piezoelectric sensor

A piezoelectric sensor uses a material that will generate an electrical potential when mechanical
stress is applied. The output is proportional to the force applied and is only present when the
force is changing. Classification is done here by axle count, spacing and vehicle weight. These
types of sensors also have high-cost installation and maintenance.

Weigh-In-Motion system

A Weigh-In Motion (WIM) system will estimate the gross weight of a passing vehicle using different
types of technology embedded in the road or on the road. These sensors can be of the piezoelectric
type described previously. They can also depend on a capacitance mat, on hydraulic fluid in a
pressure transducer (load cell sensor) or fiberoptics. A fiberoptic system is popular since it is
installed by sticking thin tubes onto the pavement as opposed to burying the sensors [10].

Infrared-based system

An infrared-based system can be either passive or active. A passive system relies on the emitted
radiation from vehicles and ground surfaces while an active system uses the time difference between
transmit and receive of the reflected pulse. The performance of the system is greatly affected by
the environment, for example rain and snow, sunlight and temperature.
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Ultrasonic system

Ultrasonic sound waves are used for ranging in these systems and the principle is similar to that of a
radar. There are models using Doppler shift to measure speed. Disadvantages include temperature
and wind dependence [10].

Passive acoustic system

By using an array of microphones, the acoustic energy produced by a vehicle is measured. Perfor-
mance is affected by temperature and accuracy drops with slow moving vehicles [10].

Video Image Processing

A video traffic detection system relies on image processing of optical data and therefore it is
affected by weather conditions and lighting conditions. The system can also be affected by traffic
intensity, and camera placements since vehicles in the background will make it harder for the
image processing algorithms.

Microwave Radar

A radar system works in the same way as a video system but since it is not using optical wavelengths
it is not affected by weather and lighting conditions to the same degree. It is however affected
by traffic intensity and radar sensor placement. There are a number of different types of radar
systems, each with its advantages and disadvantages. A continuous wave (CW) radar estimate
the vehicle speed with the use of a single radar sensor. With the use of frequency-modulated
continuous wave (FMCW) radar, a pair of of radar zones must be used.

Off-roadway technologies

These systems do not need any roadside hardware. Technologies include Global Positioning System
(GPS) positioning of mobile phones and Automatic Vehicle Identification (AVI). Positioning by
mobile phones is interesting because it is rare that any vehicle do not have a mobile phone so no
equipment need to be installed. Remote sensing by satellite or aircraft, optical or radar, can be
used but has limited coverage due to the low availability of aircraft and satellites.

3.4.2 Summary of different technologies

In Tables 3.1 and 3.2 a comparison between the different technologies are presented. In Table 3.1
we can see the capabilities of the different systems and in Table 3.2 we can find what affects their
performance. There is of course a big difference in installation cost and maintenance costs for
these systems and the data they produce differ in accuracy. Inductive loops, which are the most
used today, have a very good accuracy but are expensive. A WSN also has a good accuracy but is
much cheaper, and can outperform the inductive loop. There are also differences within the same
system. For example a side-fire or overhead-fire VIP system has much different performance.

12



3.4. Sensor Node Hardware

Figure 3.5: AMR Barber Pole Bias.

 

Figure 3.6: Wheatstone
bridge. Voltage difference
between OUT+ and OUT- is
measured.

3.4.3 AMR Magnetic sensors

Some materials change their electrical resistance when exposed to a magnetic field [12]. This
magnetoresistive effect is used in anisotropic magnetoresistance sensors (AMR) sensors. The
resistive elements are most often made of nickel-iron [13] (Permalloy) thin films.

The benefits of using this type of sensor come from its ability to sense static magnetic fields as well
as the direction of those fields. The detection range is also suitable for our purposes. They are very
sensitive to magnetic fields – according to [12] they have a noise specification of in the order of
nT/

√
Hz and one of the sensors we are using has a resolution of 2.7 nT. As a comparison computer

floppy disks store data with field strengths of approximately 1 · 106 nT [14]. Another important
fact is that the sensors can be bulk manufactured on silicon wafers, and thus are cheaper.

In an AMR sensor these magnetorestive materials are used in a “Wheatstone bridge” [15]. A
typical AMR sensor bridge can be seen in Figure 3.5 and the electrical diagram of a Wheatstone
bridge can be seen in Figure 3.6. Each bridge has four resistive elements which are ordered so
that opposite elements are equal. If a magnetic field is applied, two of the resistive elements will
decrease slightly in resistance. The other two will increase slightly.

The voltage between the out terminals Out+ and Out− on the sensor is measured. That voltage
is dependant on the sensor sensitivity, the bridge supply voltage and the applied field [15].

Out+ − Out− = SVbBs, (3.1)

where S is the sensor sensitivity [mv/V/T], Vb the bridge supply voltage and Bs the applied
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magnetic field [T]. In order to detect a magnetic field of any orientation we will need three of these
sensors – one for each axis.

The properties of the AMR sensor are only well-behaving when the magnetic domains of the film is
aligned with each other. The “easy axis” of the magnetisation vector M is set during fabrication,
see Figure 3.7a. The M vector is then parallel to the length of the resistor. The low-resistance
shorting bars (seen in Figure 3.5) is there to make the current flow at a 45 degree angle to the film
which gives us an angle θ between the current vector and the magnetisation vector. The resistance
is dependent on the angle θ and reaches its maximum when the current vector is parallel to the
magnetisation vector [13]. The technique for producing this “shortest path” through the resistor
is called barber pole biasing.

θ

Figure 3.7a: Magnetoresistive
effect. Permalloy (NiFe) resist-
or [13], no applied field.

θ

Figure 3.7b: Magnetoresistive
effect. Permalloy resistor, ap-
plied field.

If we now apply a magnetic field normal to the easy axis the magnetisation vector will rotate and
we will see a change in the voltage output of the Wheatstone bridge. The magnetoresistive effect
is directly related to the angle θ [16]. See Figure 3.7b.

A magnetic field will break down the alignment of the magnetisation vector which is essential
to receive accurate measurements. The resistor is made up of many magnetic domains whose
magnetisation vector can point in any direction, see Figure 3.8a. For small disturbances, these
magnetic domain magnetisation vectors will rotate back to their previous direction when the field
is no longer applied. For large fields however they will not. To realign the total magnetisation
vector with the easy axis we can apply a strong magnetic field in the right direction. The Honeywell
sensors are for this reason equipped with a Set/Reset (S/R) strap that can be pulsed with high
current to reset the sensor and align the magnetisation vector with the easy axis again. The effect
of the S/R pulses can be seen in Figure 3.8b and 3.8c.

Figure 3.8a: Random mag-
netic domain orientations [16,
17] before set/reset pulse. Note
the sensitive axis.

Figure 3.8b: Magnetic mo-
ment domain orientations after
a set pulse [16, 17]. Moments
aligned to the right.

Figure 3.8c: Magnetic mo-
ment domain orientations after
a reset pulse [16, 17]. Moments
aligned to the left.

We need to create the current through the S/R strap and this is done using an H-bridge. The
current pulse shape can be seen in Figure 3.9. The S/R current has a high power requirement. We
need to minimise the current, and maximise the time between the S/R pulses in order to conserve
battery power. A number of schemes for doing this has been tested, among those are� Use only set or reset pulse at any time, interchange them,� Use less current for each pulse,� Maximise the time between pulses,
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3.5. Sensor Hardware

ττPW

Figure 3.9: Set/Reset pulses of
HMC100x, HMC1043.� Only S/R when a high field has been present.

It is most likely that a combination of the above will produce the best result. An important
parameter in this is the usage of the sensor. If we need to detect small fields, then we need to do
this more often.

3.5 Sensor Hardware

The sensor nodes should be inexpensive, battery powered (maybe with an option for an external
power source), rugged, easy to maintain, and easy to install. A prototype sensor node has been
built by a previous project [5] at Qamcom Technology AB.

The sensor should be easy to operate, be capable of near-real-time calculations and withstand
road conditions in the most demanding of climates. Here in Sweden the climate offer snow and
ice in the winter and high temperatures in the summer. It should be able to operate for a long
time in these climates putting enormous strain on the power supply. The power supply can be
internally or parasitically powered.
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Table 3.1: Capabilities of different technologies [10].

Technology Presence Count Direction Speed Classification

Pneumatic tube • • • Wheel axes
Piezoelectric sensor • • • Wheel axes
WIM system • • • • Wheel axes
CW radar • • •
FMCW radar • • • • Shape
Active infrared • • • • Shape
Passive infrared • • • • Shape
Video Image Processing • • • • Shape
Ultrasonic • • • • Shape
Passive Acoustic • • • • Sound
Inductive loop • • • • Magnetic signature
AMR Sensors • • • • Magnetic signature

Table 3.2: Sensitivity of technologies to environmental effects [10].

Technology Wind Temperature Lighting Traffic flow

Inductive loop •
Pneumatic tube • •
Piezoelectric sensor •
WIM system
CW radar •
FMCW radar
Active infrared
Passive infrared
Video Image Processing • •
Ultrasonic •
Passive Acoustic • • •
AMR Sensors •
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4. Theoretical model

Chapter 4

Theoretical model

This is were we come to the pith of the matter. A vehicle is made up of different magnetic
materials. Some of them are soft magnetic materials and some are hard magnetic materials [12].
The soft magnetic materials have no residual magnetisation but high magnetic susceptibility. The
hard magnetic materials have high residual magnetisation. These materials all have the property
that they will disturb a present magnetic field. The disturbances in a magnetic field created by a
vehicle are large enough to be detected with a magnetic sensor.

Different vehicles will disturb a magnetic field differently due to the different magnetic materials
and their distribution within the vehicle.

4.1 The earth magnetic field

The magnetic field that we live and work in everyday is always changing. For this application it
is of critical importance that the earth magnetic field does not change too rapidly, at least not
during the passing of a vehicle.

The magnetic field in a particular position has been known to be affected by magnetic mineral,
iron artifacts, and similar. Short-term effects from solar flares are frequent. The earth magnetic
field reverses polarity with an estimated frequency of a quarter of a million years. On a more
rapid time scale, the field is estimated to have decayed about 5–15 % over 150 years [18]. Even if
the decay is twice as much, it would not pose a problem for our application.

The earth magnetic field looks very different depending on your location in the world. The
measurements discussed in this thesis have all been made in Göteborg, Sweden1. A common and
non-complex model of the earth magnetic field can be seen in Figure 4.1.

1Lat 57 43 00 N Long 011 58 00 E
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Figure 4.1: Simplified model of the earth magnetic field. The
earth magnetic field can be modelled like an ordinary magnet but
in reality it is much more complex and is changing constantly.

4.2 Sensing the world

The primary intent of a magnetic sensor is often not measuring the magnetic field. Instead one
wishes to measure other parameters such as speed, heading, and presence, and to do so one has to
look at the effect those parameters have on the magnetic field. Figures 4.2a and 4.2b illustrates
the difference between conventional sensing and magnetic sensing. In order to get the parameters
we want from the magnetic fields, we have to apply signal processing.

Figure 4.2a: Conventional sensing. Figure 4.2b: Magnetic sensing.

4.3 Magnetic model

When a vehicle moves into a magnetic field the magnetic field lines are disturbed. These dis-
turbances are not located solely inside the vehicle but also outside, allowing us to measure the
magnetic field in order to sense the presence of that vehicle. See Figures 4.3a and 4.3b.
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4.3. Magnetic model

Figure 4.3a: Non-disturbed field lines. A ve-
hicle is about to enter.

Figure 4.3b: Field lines distributed by a pass-
ing vehicle. Simulated in Femlab

2.

All electromagnetics are governed by Maxwell’s equations [19–21],

∇ · D = ρc Gauss’s law (4.1)

∇ · B = 0 Gauss’ law for magnetism (4.2)

∇× E = −∂B

∂t
Faraday’s law of induction (4.3)

∇× H = J +
∂D

∂t
Ampère’s circuital law (with Maxwell’s correction), (4.4)

where B is the magnetic flux density, H is the magnetic field strength, E is the electric flux
density, D is the displacement field, J is the current density and µ0 = 4π · 10−7 Vs/Am is the
permeability in vacuum [21]. µr is the relative permeability of the medium and ρc is the electric
charge density. In linear materials

D = ε0E + P = (1 + χe)ε0E = εE, (4.5)

B = µ0(H + M) = (1 + χm)µ0H = µ0µrH, (4.6)

where P is the polarisation density, M is the magnetisation density, χe is the electrical suscepti-
bility and χm is the magnetic susceptibility. Assuming that the magnetic field is changing slowly,
so that we reach a steady state, Maxwell’s equations reduce [19–21] to the magnetostatic equations

∇ · B = 0 Gauss’ law for magnetism (4.7)

∇× B = µ0µrJ Ampère’s circuital law. (4.8)

The vector potential of a magnetic dipole [20, 21] can be written as

A(µ, r) =
µ0

4π

µ × r

|r|3
, (4.9)

where µ is the magnetic moment and r is the vector from the dipole. This can be related to the
magnetic flux density [21] by

B = ∇× A. (4.10)

The field from a magnetic dipole moment [22] situated at the origin can then be written in vector
form as

B(µi, ri) =
µ0

4π

3 (µi · ri) ri − µi |ri|2

|ri|5
, ri,µi ∈ R

3. (4.11)

2Now Comsol Multiphysics, http://www.comsol.com/
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Table 4.1: Maximum magnetic field strength
at different distances from a passing passenger
car. The node is placed in the road surface.

Distance [m] |Bz| [nT]

0 2.2 · 105

1 1765
2 322
3 102

Table 4.2: Maximum magnetic field strength
at different distances from a passing passenger
car. The node is placed at a height of 0.3 m.

Distance [m] |Bz| [nT]

0 2.5 · 1011

1 3000
2 375
3 111

The total magnetic field, B, from n individual magnetic moments [22] can be written as

B(r1,µ1, r2,µ2, ..., rn,µn) =
µ0

4π

n
∑

i=1

3 (µi · ri) ri − µi |ri|2

|ri|5
, (4.12)

where ri is the position for the ith magnetic moment µi.

It is assumed in [22] that the permanent and induced magnetic fields from a vehicle can be viewed
as the field from a number of magnetic moments. We shall later see that this is a good assumption.
If we have knowledge of all the positions and strengths of the magnetic moments within the vehicle,
we can calculate the field from that vehicle in any point in space. However, we will have an infinite
number of magnetic moments.

Each of the magnetic moments will have six degrees of freedom, making a large system very
complex to handle. Each vehicle will therefore be approximated to be comprised of a low number
of magnetic moments.

The earth magnetic field will have different direction and strength at different locations, but we
can assume it to be constant near the sensor so that a vehicle will experience the same field in the
vicinity of the sensor node. We also assume that the field does not change during the vehicle’s
passing of the sensor. The earth magnetic field does not have to be exactly equal at two different
sensor node positions since the disturbances caused by the vehicle is similar. They are however
not the same due to the orientation of the earth magnetic field and its impact on the magnetic
dipole moments we assume our vehicle to be comprised of. For this application we assume that
the magnetic dipoles are not time dependant. The time dependant magnetic field can now be
written as

B(r1(t),µ1, r2(t),µ2, ..., rn(t),µn) =
µ0

4π

n
∑

i=1

3 (µi · ri(t)) ri(t) − µi |ri(t)|2

|ri(t)|5
. (4.13)

4.4 Vehicle model

In the model used, a vehicle of any type is said to be equivalent to at most three magnetic moments
distributed in the car seen in Figure 4.5. A few simplifications are hereby made. The moments are
assumed to be placed on the centerline of the vehicle, thereby reducing the degrees of freedom per
magnetic moment by two. Since we have three magnetic moments each now having four degrees
of freedom, we have a total number of twelve degrees of freedom. Compare this to the eighteen
we had originally or even the unlimited degrees of freedom we really have. This is certainly a
limitation of the model. The vehicle will move in a coordinate system relative to the sensor, where
the sensor is placed in the origin.
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4.4. Vehicle model

Magnetic field strength versus distance
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Figure 4.4: Magnetic field strength depending on distance. The
sensor is placed on the road surface and the field is measured
exactly when the vehicle passes the sensor. This is not the point
where the field is the strongest.

The simulated maximum sfield strengths from a single passenger vehicle pass versus distance to
sensor can be seen in Tables 4.1 and 4.2 The simulated maximum field strengths versus distance
at the instant the vehicle passes the sensor can be seen in Figure 4.4.
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ŷ ẑ

r

v

µ1
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µ3

Figure 4.5: Input parameters to the
Matlab-model. The sensor is placed at
the origin. The magnetic dipoles are as-
sumed to be positioned on the vehicle cen-
terline.
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Figure 4.6: Can our channel be modelled as an AWGN chan-
nel?

4.5 Sensor and channel model

It is assumed that the data is affected by additive white Gaussian noise with some power as can
be seen in Figure 4.6. We do not know exactly what the channel will do to the magnetic field,
and we do not know exactly what the sensor will introduce, but their joint effect is modelled as
an Additive White Gaussian Noise, AWGN, channel. The signal in one of the sensor axis is then
represented by

xi(r1(t),µ1, r2(t),µ2, ..., rn(t),µn) = Bi(r1(t),µ1, r2(t),µ2, ..., rn(t),µn) + ηi,σ(t), (4.14)

where ηi,σ(t) is a zero-mean Gaussian distributed random variable with standard deviation σ in
direction i ∈ {x̂, ŷ, ẑ}.

4.5.1 Reconstruction

As will be shown later we have sampled the signal at more than twice the Nyquist frequency and
our signal x(t) with one-sided baseband bandwidth W is therefore uniquely determined by its
samples

x[n] = x(nTs) n = 0,±1, . . . (4.15)

if the sampling frequency is

fs =
1

Ts

> 2W (4.16)

where the Fourier transform X(f) of x(t) satisfies

X(f) = 0 |f | > W. (4.17)

2W is called the Nyquist rate, and fs/2 is the Nyquist frequency. We can now reconstruct the
signal x(t) by lowpass filtering [23] the train of impulses x(nTs)δ(t − nTs). This will give us the
reconstruction as

x(t) =

∞
∑

n=−∞

x(nTs)
sin (π(t − nTs)/Ts)

π(t − nTs)/Ts

. (4.18)
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4.6. Comparison to real world data

4.6 Comparison to real world data

Simulated data from four different vehicles can be seen in Figures 4.7a through 4.7d. The sensor
has been placed 1.5 m from the vehicles on the left side on the road surface. The speed was
100 km/h. No noise was added. For the passenger car, one dipole situated 0.3 m over the sensor
in the ẑ-direction and 0.7 m from the sensor in the x̂-direction. The magnetic dipole strength was
[−3, 0,−30]Am2, i.e., almost entirely in the negative ẑ-direction as expected at this location.

A comparison between simulated and real data for all axes can be found in Figures 4.8a and 4.8b.
There are some discrepancies due to the fact that there are many unknown parameters in the
measured data, such as velocity and distance to the sensor and these had to be estimated before
simulation.

From this simple comparison we can conclude that our model is a reasonable model. However,
we can not say anything about how good it is from this case where numerous parameters are
unknown.
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Figure 4.7a: Simulated sensor data from pas-
senger car.
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Figure 4.7b: Simulated sensor data from an-
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Figure 4.7c: Simulated sensor data from bus.
Note the complexity.
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Measurement data
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Figure 4.8a: Measured sensor data from pas-
senger car [22]. Note the different timescale due
to difference in speed.
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Figure 4.8b: Simulated sensor data from pas-
senger car. Speed was 30 km/h and the distance
to the sensor was 0.7 m. The sensor was placed
on the roadway.
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5. Algorithms

Chapter 5

Algorithms

5.1 System Overview

This chapter will describe the algorithms that could be used in our system. For each node we have
the option to put the sensor node in the center of the lane, at the side of the lane or anywhere in
between. The first two positions will give rise to much different characteristics in the signal so the
position will be important when assessing the algorithms. An overview of the system can be seen
in Figure 5.1.

5.2 Simulation of traffic

It is more important to monitor oversized vehicles such as buses and trucks than other types of
vehicles. These vehicles have distinctively different characteristics in terms of speed, acceleration,
road space, and manoeuvre times [24]. They also have longer breaking times and are sometimes
only permitted to drive in certain lanes or even roads. The heavier vehicles will contribute dis-
proportionally to the wear and tear of the road surface. In this thesis, the focus has however been
laid on passenger cars, buses and high cars or SUVs. Together they give rise to very different
types of sensor outputs and can be used for most simulation purposes. Since these types are the
most common we can feel confident that our algorithms will work. The model takes into account
the different probabilities of the different vehicle types, and more types of vehicles can be added.

A traffic model can be very complex. In this thesis it is assumed that all vehicles travel along the
same line, at the same velocity. Furthermore, they do not accelerate, the vehicle path is parallel
to the sensor ŷ-axis and they all have the same height. In the simulator it is easy to implement
another traffic model if needed.

5.3 Detection

We need to have enough samples in order to distinguish key features in the vehicle. The number of
samples needed is of course determined by the application. If we wish to merely detect a vehicle,
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we need at least one sample when the vehicle is passing the sensor and generate a signal with an
amplitude over a pre-defined threshold value. If we assume that no vehicle will travel faster than
110 km/h, we will need to sample at 7 Hz in order to get one sample at a time where a part of the
vehicle is directly above the sensor. However, it is not certain that every part of the vehicle will
generate a signal greater than the threshold value. It is not even guaranteed that the maximum
will occur exactly when the vehicle passes the sensor. If we instead need to classify vehicles, we
will need many more samples. If we need four times more samples, the highest frequency will be
less than 40 Hz. Since we need to sample faster the twice the Nyquist frequency we find that
a sampling frequency of 100 Hz is enough, and this hypothesis is strengthened by the FFT of
simulated and measured data. In the literature a sampling frequency from 64 Hz to 128 Hz is
reported [11]. The sampling frequency is in some cases up to 2 kHz [25] for short periods of time,
which is thus unnecessary. We would like to keep the sampling frequency to a minimum – if we
sample less often we can let the sensor and processor sleep longer to reduce power consumption.

5.3.1 Thresholding

Detection using simple threshold values is not as simple as it might sound to the casual reader.
The sensor output is temperature dependant and the effect will be significant. However the
temperature change can be made slow in comparison to the magnetic signature of a vehicle by
clever design of the enclosure. An illustration of the temperature dependant offset can be seen in
Figure 5.2.

The threshold value can be set at design time or by training the sensor. An adaptive algorithm
can be used to make sure that the threshold is larger than the noise and change depending on
temperature. The threshold value also depends on the closeness to disturbing traffic etc.

5.3.2 Target Tracking

If we have many small sensor nodes with only one task – to report the magnetic equivalent to
Received Signal Strength Indication (RSSI) values – we can track vehicles within the area covered
by the WSN. This is a known problem, commonly encountered in radar systems. In our case we
will have different sensor nodes i.e. a spatial problem and in a radar system you will have different
directions at different times, i.e. a time dependant problem. We have decided not to give this
area any focus even though target tracking will be implementable in our system if sensors are
positioned for such an application.

5.4 Direction

Direction can be found by a single sensor node [15]. The sensor should be placed at the side of the
road, and the ŷ-axis response will show the direction of travel. The signature for a vehicle travelling
in the forward direction can be seen in Figure 5.3 – a vehicle travelling in the reverse direction
will produce a mirrored signature. Note that the sensor placement and the dipole orientation will
affect the signature.

However a more reliable method involves using two sensor nodes, a SN pair, to find the speed and
thereby the direction. In order for this to work the SN pair needs to be time synchronised in order
for this to work and the distance between them must be known.
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5.5. Speed estimation

5.5 Speed estimation

Speed estimation can be either one of two things – the estimation of the speed of an individual
vehicle or the average speed of a number of vehicles in an area. The algorithms used for these
estimations use different parameters that can be seen in Figure 5.4 and the definitions can be
found in Chapter 2. We can use a single sensor, or more sensors, to find a speed estimation.

To find the speed in the two-sensor case we need to consider the distance between the sensors. A
large distance between the sensors means that we will not need a high sampling rate. The sampling
rate needs to be large compared to the velocity. The velocity in turn depends on the time and the
distance between sensor nodes which means that the inverse sampling rate, the sampling period,
should be small compared to the time it takes for a vehicle to pass the SN pair.

A large distance will also mean that we will get a average velocity as opposed to a instantaneous
velocity, a shorter distance will get us closer to the instantaneous velocity. However, the error in
velocity due to error in time difference will decrease when the distance is increased. Since it is
difficult to synchronise clocks between sensors, it will however be beneficial to put two sensors in
the same node but placed at a distance from each other on the circuit board. In this case we can
let the second sensor sleep until the first sensor triggers and then start to sample both sensors at
a higher rate in order to minimise the error. The fact that we can let one sensor sleep lets us save
power and money since we do not need a dedicated processor and transceiver for the extra sensor.

5.5.1 Speed of an individual vehicle

Traditional time difference

Using two sensors we can estimate the speed for an individual vehicle. As seen in (5.1), we can
use both up-time, ton,i and down-time toff,i to get an accurate estimation. See Figure 5.4. This
gives us two speed estimations, v1 and v2 of which we can take the average to form our estimated
speed.

vest =
v1 + v2

2
=

1

2

(

d

t2,on − t1,on

+
d

t2,off − t1,off

)

. (5.1)

The estimation is affected by a difference in sensitivity [10]. The difference in sensitivity introduces
a delay ε, assuming that the pulse is symmetric. This assumption is a good assumption for normal
vehicles, but not for larger vehicles like buses and trucks - for these vehicles we need an εon and
an εoff. The estimated speed is now

vest =
1

2

(

d

t2,on − t1,on + ε
+

d

t2,off − t1,off − ε

)

(5.2)

=
d (t2,on − t1,on + t2,off − t1,off)

(t2,on − t1,on)(t2,off − t1,off) + ε ([t2,on − t1,on] − [t2,off − t1,off]) + ε2
. (5.3)

The distance between sensors should be large, or equivalently the sampling frequency should be
large in order to get accurate measurements. We also have the option to interpolate the signal
since we are sampling at a frequency greater than twice the Nyquist frequency. A small distance
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and high sampling frequency will get a average speed closer to the instantaneous speed. This
information is often not required, and uses a lot of power since the AMR sensors consumes a lot
of power, it is better to interpolate instead of oversampling. Sending information between nodes
is also expensive.

If we can assume that all vehicles that passes the first sensor node also will pass the second sensor
node, we can synchronise the data. In this case we also need to synchronise the time between
sensor nodes, so that we will have accurate timestamps. Another solution is to put two magnetic
sensors on each sensor node circuit board. This will allow us to use the same clock but the sampling
frequency needs to be larger resulting in a higher power requirement.

Time difference using matched filter

A matched filter is a filter, h, that maximises the Signal-to-Noise Ratio (SNR) in the presence of
additive stochastic noise.

y[n] =

∞
∑

k=−∞

h[n − k]x[k], (5.4)

where x is the indata, and y is the outdata. This filter can for example be used to find the
synchronisation time in a communication system as illustrated in Figures 5.5a, 5.5b and 5.5c.

By choosing our matched filter as the time reversed output from the first sensor, we can find the
time difference between the two similar outputs. The pulse shape should be chosen so that the
matched filter output has a sharp peak as possible to not be affected as much by noise. Things that
will affect the peak are for example distance to sensor, speed, sensor axis, and sampling frequency.
By choosing the matched filter like this, we can see that it can be implemented in real-time and
the peak is found when the vehicle has passed both sensors. With this algorithm, we can get
subsample resolution by interpolation of the two signals. We can also interpolate around the peak
of the convolution.

5.5.2 Average speed estimations

An average speed estimation for a number of vehicles can be done with a single sensor assuming
we know the distribution of vehicle lengths [11]. Consider n vehicles with on-times t1, . . . , tn and
lengths l1, . . . , ln. Their unknown assumed common speed is v = v1 = v2 = . . . = vn. We have
n + 1 unknowns and n equations of the form

li = tiv i = 1, . . . , n. (5.5)

If we now know or assume the distribution of the vehicle lengths, we can obtain a maximum
likelihood estimate of the vehicle speed v̂ and also the vehicle lengths

l̂i = tiv̂, i = 1, . . . , n. (5.6)

An estimate of the speed is then just

v̄ =
l̄

t̄
, (5.7)
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5.6. Classification

where x̄ denotes the median value of that variable. The median length l̄ is assumed to be 5 meters.
The accuracy of this methods depends on the difference between the actual vehicle length and the
value of l̄.

If we use the speed estimate v̄ for v̂ in (5.6), we will get the vehicle length estimates [26]

l̂i = tiv̄, i = 1, . . . , n. (5.8)

The number of vehicles, n, must be small enough for the assumption v = v1 = v2 = . . . = vn to
hold [26]. Alternatively we can define two new parameters [27] for each lane,

q =
n

T
(5.9)

θ =

∑n

i=1
ti

T
, (5.10)

where q is the flow and θ is the occupancy. T is the time period length. Assuming that there is
no correlation between vehicle length and vehicle velocity, we reach an estimate of the speed as

v̂ =
q · l̂
θ

, (5.11)

where l̂ is assumed to be known and constant.

5.6 Classification

There are many methods for classification of vehicles. Older sensor systems has set the standard
for what features in the sensor outputs are used. Traditionally when pressure tube measurements
have been used, one could easily find the number of axles, and the distance between them, and
the direction of travel. Sometimes – depending on the setup – one could also find in which lane
the vehicle travelled Later, even when magnetic loop sensor was introduced, the classes were still
basically light and heavy traffic although much research has been made in this area. We propose a
system based on a classification scheme found in [24] for use with other sensors. This classification
has seven classes, based on the information we can get from the AMR sensors. The seven used
classes can be found in Table 5.1. The classification classes is different between different countries.

Table 5.1: Vehicle classes [24]

Class number Type

1 Passenger car, mini-van, sports car, station wagon
2 SUV, pickup
3 Van, full-size pickup
4 Bus
5 Mini-truck
6 Truck
7 Other

For a random variable X or function g(X) moments can be defined. The signature of a passing
vehicle, i.e., the sensor output has properties that make these parameters usable. The moments
can be used as parameters in the classification of vehicles. An example of this can be see in
Figure 5.7. The kth central moment µk is defined [28] as

µk = E[(X − µ)k], (5.12)
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where µ is the expectation value. The skewness γ1 and kurtosis γ2 are defined as

γ1 = E

[

(

(X − µ)

σ

)3
]

(5.13)

γ2 = E

[

(

(X − µ)

σ

)4
]

− 3. (5.14)

For the normal distribution γ1 = γ2 = 0. The skewness and kurtosis are estimated as

γ̂1 =
1

n

n
∑

1=i

(

xi − µ

s

)3

, (5.15)

γ̂2 =
1

n

n
∑

1=i

(

xi − µ

s

)4

− 3, (5.16)

where s is the estimated standard deviation.

A distribution having a longer tail at earlier times, i.e. the “left side” of the signature distribution,
then it is negatively skewed and vice versa. If the tails are thinner than those of the normal
distribution it has positive kurtosis.

5.6.1 Tree method

Significant pre-processing of the raw data is required [11] for this method. The signal magnitude
needs to be normalised, the on-time must be converted into length by multiplying with the speed
and every data set must be re-sampled to the same number of samples. The decision method is
then based on a decision tree which can be seen in Figure 5.7. A number of thresholds, bi, are
chosen which are related to signature length, signature magnitude and skewness. The thresholds
can be chosen at design time or more intelligently by training the sensor. The thresholds are then
used in a greedy best-first search in the tree seen in Figure 5.7.

If the sensors are placed in the center of the lane the signatures will be very different compared
to when the sensors are placed at the side of the road. They will show more distinct features and
by using a basic thresholding algorithm, we can classify them using a tree in the same way as
above. We will receive a pattern consisting of ±1 that will have different lengths depending on the
vehicle. If we instead of the thresholds bi use a single threshold we can define this pattern. Now
we proceed in the same manner as before using the decision tree in Figure 5.7. The bit pattern
can be defined as

c(n) =







+1 x(nTs) ≥ c+

−1 x(nTs) < c−
0 otherwise,

(5.17)

where x(nTs) is our sampled signal. The bit pattern can be compared to a database somewhere
in the network and the closest match determines the vehicle class. An example can be seen in
Figure 5.6.

5.6.2 Hill patterns

Another way of finding a pattern like the one described in the previous section is to use hill
patterns. These are found exactly in the same way as the pattern above, but using the time
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5.6. Classification

derivative of the signature. This method has the benefit that we do not need to place the sensor in
the middle of the lane but rather at the side of the road. Noise will be an issue with this method,
and therefore the signal will need filtering.

The hill pattern is defined [10] as

d(n) =
x(nTs) − x([n − 1]Ts)

Ts

, n ∈ Z (5.18)

d(n) =







+1 d(n) ≥ d+

−1 d(n) < d−
0 otherwise,

(5.19)

where d+ and d− are the thresholds, positive and negative respectively. Normally they are chosen
so that d+ = −d−.

5.6.3 Transforms

Algorithms based on on discrete Fourier transform, DFT, and Karhunen-Loève transform, KLT,
are proposed in [24]. In Appendix A we can find the Fast Fourier Transform, FFT, of the vehicle
signatures in each axis. The sensor was placed at the side of the road. We can see that the
signatures contain a very different frequency content, and therefore classification could be done
using FFT.

5.6.4 Bins

If we do the normalisation and re-sampling as in earlier methods, we can divide the signature into
bins. Two examples can be seen in Figures 5.8a and 5.8b. We take the mean of the magnitudes in
a number of time slots and so we have produced a vector that can be compared with a database.
The number of time slots are the same for all vehicles, but the length of each time slot might be
different. The length of a signature is an important parameter, and therefore it is necessary to
measure that parameter in some way. One way could be to always “record” the same signature
length, or pad with zeros after the vehicle has passed. Of course we could compare the signature
itself with the database entry, but this would require the whole signature to be sent over the WSN,
which would perhaps not be effective.

5.6.5 Least-squares estimation

Using least squares analysis we seek to minimise (5.20) in order to find the parameters of the
magnetic model. This method although very good requires extreme computational power.

S =
n
∑

i

(yi − f(ti,a))
2
, (5.20)

where yi is the measured data, f(ti,a) is the output from our model described in Chapter 4 and a

is a vector containing the parameters we want to estimate. ti is the time samples, n is the number
of samples we have.

31



The parameters estimated are

µi = [µx,i µy,i µz,i ] (5.21)

ri = [xi yi zi ] , (5.22)

and also the speed v. It is assumed that the magnetic moments will lie on a straight line, elim-
inating two degrees of freedom. The vehicle is assumed to be travelling a path perpendicular
to the sensor. Three magnetic moments each with four degrees of freedom will have a total of
twelve degrees of freedom. Placing one of the magnetic moments in the origin of the vehicle coor-
dinate system will eliminate another degree of freedom. Since the vehicle coordinate system will
move, we can add the speed v as another parameter. In all, twelve parameters are estimated from
measurements.

5.7 Queue Detection

A queue is a number of vehicles that travel slowly close together. This tells us that we can define
a function q(v, d) ≥ 0 where v is the average velocity, and d is the mean distance between vehicles.
We can then set a threshold for a function q(v, d) ∈ {0, 1} below which we have a queue. A value
of 0 means that there are no vehicles on the road, a value of 1 means that the road is completely
filled with still-standing vehicles. The mean speed and distance between vehicles can be found in
different ways. We can also just see how often the sensor is “occupied”. A high occupancy means
a large number of vehicles, or few slow moving vehicle. We also note that if we are interested
in minimising the number of “catching-up accidents”, just one vehicle is enough to make a very
dangerous situation, and therefore it is enough to detect one slow-moving or parked vehicle.

In a queue detection system the nodes need to be complemented by a warning unit. A number of
these are presented in Appendix D including a flashing unit from Amparo SeeMeTM.

No performance analysis will be done for queue detection since velocity estimation forms the basis
for queue detection. However, if queue detection will be used the threshold for the q(v, d) function
needs to be trimmed in so that we are not sending a warning too often, or too seldom.
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5.7. Queue Detection

x̂

ŷ

ẑ

Figure 5.1: System overview. Road surface with cars and buses. SNs are placed in pairs to estimate
speed. Note the in-lane sensors and the roadside sensors. APs send the information to the backbone.
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Figure 5.2: Offset depending on temperature
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Figure 5.3: Direction finding using one sensor. Vehicle travel-
ling in forward direction. If the vehicle backs up, the signature
looks like a mirror image. Note that the signature depends on
the sensor position.

Figure 5.4: Parameters for speed estimation. Up time is the
arrival time of the vehicle. Off time is the departure time. On
time is the difference between the two first.

34



5.7. Queue Detection
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Figure 5.5a: Synchronisation pulse. This
is the pulse that we are looking for using the
matched filter.
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Figure 5.5b: Measured data. This is basically
a delayed version of the first signal.
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Figure 5.6: Sensor data and pattern.
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5

Figure 5.7: Decision tree for classification into seven types of vehicles [24].
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Figure 5.8a: Average bar - y-axis.
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Figure 5.8b: Average bar - z-axis.
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6. Performance analysis

Chapter 6

Performance analysis

6.1 Sensor placement

6.1.1 Translation

The general rule about sensor placement is that the closer the sensors are to each other, the
more accurate the placing has to be. For example at the desired inter-sensor distance 2 m, a
misplacement of 5 cm yields a 2.5 % error in velocity. At the desired inter-sensor distance 0.2 m,
a misplacement of 5 mm yields the same error. Since it is complex to sample too often, and by
only considering sensor placement, the nodes in a sensor pair should be placed as far from each
other as possible.

6.1.2 Rotation

When placing the sensor it is important that the axes point in the correct directions. However it
is easy to accidentally rotate the sensor. The effect of rotating the sensor in the yaw (ẑ) and pitch
(ŷ) axes can be seen in Figures 6.1a and 6.1b. If the rotation is known the software could easily
correct for this.

6.2 Detection

In the simulator a number of potential problems have been identified. If two vehicles are travelling
close to each other, especially if they are large, the signal will be indistinguishable from a single
very long vehicle. This can be combated by placing the sensor as close to the vehicles as possible.
Similarly, a vehicle in an adjacent lane will disturb our signal. This is remedied by choosing the
threshold value wisely. Some vehicles such as motorcycles and some small cars will not produce a
signal with high enough magnitude. Placing the sensor closer to the vehicle will help, more sensors
will ensure that the vehicle pass at least one sensor.

In the real-life tests performed, we detected 100 % of normal-sized vehicles. The vehicles not
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Figure 6.1a: Effect of sensor node rotation.
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Figure 6.1b: Effect of sensor node rotation.
The sensor is rotated around its pitch axis and
the effect on the ẑ-axis can be seen.

detected were bicycles and a very small motorcycle. The signature from each vehicle was clearly
visible, and could be both seen by eye or by a simple counting algorithm. The simulations displayed
very similar vehicle signatures, but not all vehicles were detected due to the minimum distance
between vehicles set in the simulator. In the real life test there were no vehicles travelling bumper
to bumper which was expected due to the comparably high speed.

6.3 Speed estimation

6.3.1 Speed of an individual vehicle

Traditional time difference

vest =
d (t2,on − t1,on + t2,off − t1,off)

(t2,on − t1,on)(t2,off − t1,off) + ε ([t2,on − t1,on] − [t2,off − t1,off]) + ε2
. (6.1)

The term ε ([t2,on − t1,on] − [t2,off − t1,off]) in (6.1) is small if the signature is equal or similar at
both sensors. In contrast to the conclusion in [10], the term ε2 is small, but not zero. If we assume
a sampling speed of 100 Hz, a velocity of 72 km/h, a sensor separation of 2 m and ε = 2 samples
then the sensitivity parameter ε2 introduces an error of 4 %. If the distance is doubled, the error
is 1 %. The speed is a factor, a higher speed means less accuracy – see Figure 6.2.

Comparison between traditional time
difference and time difference using matched filter

A comparison between the traditional and matched filter methods can be found in Figures 6.3a,
6.3b, 6.4a, 6.4b, 6.5a and 6.5b. In Figures 6.6b and 6.6b we can see the result if we use the

Euclidean norm ‖B‖ =
√

B2
x + B2

y + B2
z . We can see that the standard deviation of the matched

filter (MF) method is much smaller than the standard deviation for the traditional method, or
peak to peak (P-P) method regardless of SNR and sensor axis. We can see that the use of a
lowpass filter (LP) on the first signal introduces an expected delay into the system. This filtering
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6.3. Speed estimation

ε [s]

E
rr

o
r

[%
]

Error due to sensitivity difference

50 km/h
70 km/h
90 km/h
110 km/h

−0.02 −0.01 0 0.01 0.02
0

2

4

6

8

10

12

Figure 6.2: Time difference. Error due to sen-
sor sensitivity difference. The distance between
sensors was 2 m, and the speed was 20 m/s.

is done since we know we are not looking for an exact replica of the first signal and its noise, but
rather a copy of the first clean signal with added, different, noise. This delay is of course known
and can be compensated for. A lowpass filter will cause the time difference to be underestimated,
and therefore the speed will be overestimated. We also note that it is beneficial to use the more
complex y-axis.

For all of these simulations, the sensors were placed 1.5 m from the passing vehicle, and the SNR
was varied between ∼ 0 dB and 40 dB. The vehicle speed was 72 km/h.

If we plot the mean error and error standard deviation versus the speed, we will see that the error
and the error standard deviation goes to zero at higher speeds for the matched filter method. The
result can be seen in Figures 6.7a and 6.7b.
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Figure 6.3a: Comparison between traditional
and matched filter methods. Mean error versus
SNR. The sensor is placed 1.5 m from the vehi-
cle and on the road surface. The sensor output
in ẑ-axis has been used.
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Figure 6.3b: Comparison between traditional
and matched filter methods. Standard deviation
versus SNR. The sensor is placed 1.5 m from
the vehicle and on the road surface. The sensor
output in ẑ-axis has been used.

Peak-to-peak time difference has a higher mean error than the matched filter method for low noise
situations. We can see in Figure 6.3a how the lowpass filter introduces a delay. Both methods has
the same error in case of high noise. Note that due to the sampling strategy, the matched filter
methods seem to have a mean error of one sample. This error is a product of the implementation,
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Figure 6.4a: Comparison between traditional
and matched filter methods. Mean error versus
SNR. The sensor is placed 1.5 m from the vehi-
cle and on the road surface. The sensor output
in ŷ-axis has been used.
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Figure 6.4b: Comparison between traditional
and matched filter methods. Standard deviation
versus SNR. The sensor is placed 1.5 m from
the vehicle and on the road surface. The sensor
output in ŷ-axis has been used.
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Figure 6.5a: Comparison between traditional
and matched filter methods. The vehicle was
a bus. Mean error versus SNR. The sensor is
placed 1.5 m from the vehicle and on the road
surface. The sensor output in ẑ-axis has been
used.
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Figure 6.5b: Comparison between traditional
and matched filter methods. The vehicle was a
bus. Standard deviation versus SNR. The sen-
sor is placed 1.5 m from the vehicle and on the
road surface. The sensor output in ẑ-axis has
been used.

the error actually goes to zero. In this case the error always goes to one, so it is predictable,
and therefore has no impact. The P-P has a much higher standard deviation than using matched
filter. We can see how the LP filter reduces standard deviation in both cases but not by much.
The recommendation is to use matched filter without LP filter.

The benefit of using the matched filter method is clearly better estimation of the time difference.
However, the disadvantage of this method is that the matched filter requires knowledge of both
signals and therefore more information has to be sent over the network. We should note that these
calculations can be done in close to real-time, and the decision can be taken when the vehicle has
passed both sensors.

With a more complex signal, as seen in Figures 6.5a and 6.5b the error goes to zero faster for the
matched filter method. This means that we should choose the most complex axis or a combination
of axes when using this algorithm. We can also see that since a higher vehicle velocity will give
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6.3. Speed estimation
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Figure 6.6a: Comparison between traditional
and matched filter methods. Mean error versus
SNR. The sensor is placed 1.5 m from the ve-
hicle and on the road surface. The norm of the
sensor output has been used.
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Figure 6.6b: Comparison between traditional
and matched filter methods. Standard deviation
versus SNR. The sensor is placed 1.5 m from
the vehicle and on the road surface. The norm
of the sensor output has been used.
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Figure 6.7a: Comparison between traditional
and matched filter methods. Mean error versus
velocity. The sensor is placed 1.5 m from the ve-
hicle and on the road surface. The sensor output
in ẑ-axis has been used.
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Figure 6.7b: Comparison between traditional
and matched filter methods. Standard deviation
versus velocity. The sensor is placed 1.5 m from
the vehicle and on the road surface. The sensor
output in ẑ-axis has been used.

us sharper peaks, the error becomes smaller with greater speeds. The standard deviation also
becomes smaller. Note that graphs are plotted versus SNR and that the signal amplitude is
different for different vehicles and axes.

One important aspect of this algorithm is that it is not affected by the difference in sensitivity as
the traditional algorithm is.

The SNR is defined as

⌊SNR⌋dB = 10 log

(

〈

x2(t)
〉

σ2

)

, (6.2)

where
〈

x2(t)
〉

is the mean of the square of our signal as

〈

x2(t)
〉

=
1

n

n
∑

i=1

x2
i , (6.3)
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Figure 6.8: Estimated speed using the occu-
pancy method from Section 5.5.2. True speed
was 72 km/h and only passenger cars were
used. Mean speed was 78.6 km/h and median
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360 km/h was discarded. The total number of
remaining vehicles was 8642 and l̂ was chosen
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Figure 6.9: Estimated speed using the median
velocity method from Section 5.5.2. The true
speed was 72 km/h, mean speed was 73.8 km/h
and the median speed was 77.1 km/h. Standard
deviation was 8.95 km/h. The total number of
vehicles was above 3000. l̂ was chosen to be
4.5 m. Adjusting this parameter will shift the
distribution. Note the over estimation due to l̂

and the shape of the distribution.

if xi(t) is a discrete function with n samples. σ is the standard deviation of the Gaussian noise.
For the plots in this section, the SNR of the signal from the first sensor has been used. If we have
used another reference signal, we will get

〈

x2
1(t)

〉

= α
〈

x2
2(t)

〉

where α is a factor. Due to the
nature of logarithms, this will only introduce an offset.

If sensors are placed in pairs with one master and one slave, the master is responsible for uploading
the measured data to the system. Due to the asymmetric power consumption between master and
slave, it might be better to upload all data to the access point before processing.

6.3.2 Average speed estimations

A simulation result of the occupancy method can be seen in Figure 6.8. We can deduce from the
histogram that the standard deviation is quite large for this method.

In Figure 6.9 we can see the result from the median speed method. The fact that the method over
estimates the speed can be corrected for by adjusting the l̂ parameter. The standard deviation was
8.95 km/h or 5.57 mph which is somewhat larger than the reported 2.5 mph standard deviation
for a 10-point median speed estimation in [11].

6.4 Classification

The classification schemes are very different depending on sensor positions. In the limited simu-
lations done we have found the classification rate to be nearly 100 % when the sensor is placed in
the roadway. The classification has been done in three classes; Passenger cars, SUVs (high cars)
and buses. A classification accuracy of 60 % has been reported [11] not using length as a feature.
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6.5. Verification of algorithms

Using the two sensors in a pair will of course make the classification more accurate, especially
since we then can use the speed estimation to estimate the vehicle length.

Since it is expensive to install sensors in the roadway, we have decided to only use sensors at the
side of the road. A roadside sensor position make classification much more difficult. Due to the
signature properties, we can use the derivative of the signal to increase the accuracy. This method
is more sensitive to noise, and requires filtering of the signal.

We can also look at the transform of the signal, for example the FFT. The FFT of different vehicle
signatures can be seen in Appendix A. These transformed signals show potential to be used for
classification, although it will need further investigation.

6.4.1 Estimation of model parameters

One method of classification is trying to estimate the parameters that we use in our model, and
compare the results to our database of vehicles. The database that we are using does not contain
enough data to give a good analysis of the relability of the method but we can use the method for
a proof of concept.

When using the least-squares estimation method described in Section 5.6.5 we obtain the results
than can be seen in Figure 6.10b. The measured data can be seen in Figure 6.10a.

The parameters estimated are as earlier stated

µi = [µx,i µy,i µz,i ] (6.4)

ri = [xi yi zi ] . (6.5)

It is assumed that the magnetic moments will lie on a straight line in the center of the vehicle
thereby eliminating two degrees of freedom. The vehicle is furthermore assumed to be travelling a
straight path perpendicular to the sensor. Since the vehicle coordinate system will move, we can
add the speed v as another parameter. In all, twelve parameters are estimated from measurements.

The estimated data and measured data almost match in shape, but not in amplitude. The most
interesting thing we can see from this estimation is that in an estimation of three different magnetic
moments for a passenger vehicle, two of the magnetic moments are very close in position and has
opposite signs in at least two axes. This means that our model of using only one magnetic moment
is probably a good model. An estimation with only one estimated magnetic moment can be seen in
Figure 6.10c. The discrepancy is in both estimation due to a number of unknown parameters in the
measurements done by Imego, however we can still see the similarity. Among those parameters
are the distance to the sensor and the vehicle velocity.

6.5 Verification of algorithms

Measurements done with our prototype node can be seen in Figure 6.11a. The frequency content
can be seen in Figure 6.11b. The signal contains a lot of power around 50 Hz which is expected.
Noteworthy is that the signal contains most of its power at very low frequencies, and therefore
we can use a crude filter to get rid of the noise at higher frequencies. The influence of the 50 Hz
frequencies was later made smaller by the use of a 2nd order IIR notch filter. We can see that the
vehicle signatures are much higher in amplitude than the noise. The large signature in the data
in Figure 6.11a comes from a large double-deck bus.
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ẑ

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5
−500

0

500

1000

1500

2000

Figure 6.10a: Data from estimated parame-
ters. Three magnetic moments were estimated.
Note the different time scale.
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Figure 6.10b: Measured data from passing ve-
hicle.
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ẑ

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5
−500

0

500

1000

1500

2000

Figure 6.10c: Data from estimated parame-
ters. One magnetic moment was estimated.
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Figure 6.11a: Measured data from traffic. The
signal was filtered using a low order digital low-
pass filter.
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It is worth noting that if we have traffic travelling in the other direction, we can eliminate them
using their speed estimation. Of 18 vehicles travelling in the positive direction, 18 are detected.
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6.5. Verification of algorithms

This is of course a very short sample, and more measurements have to be done. If a driver is
instructed to pass the sensors at 50 km/h, the result differs from that velocity by a maximum
of 2 km/h when the matched filter method was used. The number of vehicle passings was only
thirteen. Due to the limited use of the experiment data, a velocity control measurement was
deemed necessary.

The most energy in the signal can be found at low frequencies which means that we can use a low
pass filter to get rid of undesired high frequency content.
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Figure 6.12b: Convolution of the first and sec-
ond node data. The peak is clearly visible.

The result of the convolution of the two sensor node outputs seen in Figure 6.12a can be seen in
Figure 6.12b. We can see that the peak is well defined, and not noisy. In fact, the sensor node
signals can be much more noisy as described earlier. An example of an interpolation around the
peak can be seen in Figure 6.13.
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Figure 6.13: Sinc reconstruction of the convo-
lution peak.

In the result we can see that the estimated speeds do not differ by much when we use different
sensor axis. We also note that the difference in sensor sensitivity does contribute in the sense that
we have to use a different threshold but not otherwise. This is a huge improvement over the peak
to peak method used in other publications.
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7. Discussion

Chapter 7

Discussion

7.1 Model validity

The model of the earth magnetic field used in this thesis is a very crude and simple model, however
these simplifications are necessary due to the tremendous complexity of the magnetic field and
for computational reasons. The impact of these simplifications are such that they will give us
a slightly different field. A different field will induce different magnetic dipole moments in a
vehicle, and since it is impossible to know the field at all positions at all times we have to make
these simplifications. Places where problems occur include high current cables, tunnels and some
geographic positions such as the poles. Thankfully not much traffic exist at the poles.

Parameters such as vehicle acceleration, different vehicle positions on the road, different cargo,
different car models will have a huge impact on the signal. Some of these can be tested in the
simulator, but measurements have to be done for verification. Since the evaluation is simulation
based, we will always have to do a lot of simplifications. Other parameters that affect the result are
quantisation, electronic noise, synchronisation mismatch and inhomogeneous sampling frequency.

7.2 Algorithm validity

It is imperative that the algorithms are evaluated using real data because of the simplification
discussed in the previous section. Given our current location, and the simplifications done in
the simulator, we can safely say that the algorithms apply at least to the four different vehicles
modelled. We now make an assumption, that these algorithms will apply to all vehicles according
to the inductive approach used in this thesis.

A problem in the measurements is that when drivers see the sensor nodes they tend to swerve and
the distance to the sensor is therefore not constant during the passing of a vehicle. It is also not
constant between different vehicles making the processing of the data more difficult. However the
data is still usable, and a if a live system will see better data it will perform better according to
the old saying “train hard – fight easy”.
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8. Conclusion

Chapter 8

Conclusion

In this thesis evaluations of sensor algorithms were performed. The primary questions we wanted
to answer was if a WSN system was suitable for� traffic monitoring, i.e. primarily counting, speed estimation and classification,� queue detection, i.e. speed estimation and presence.

The thesis shows that a WSN can be used for detection of vehicle presence, counting vehicles,
estimating individual and average speeds, and classification of vehicles. Furthermore it shows that
the performance of such a system is within acceptable limits. A problem is however that the
sensors are not power efficient enough for an application where long battery life is critical. The
thesis does not prove that such a system or the design of it is optimal in any way.

8.1 Theoretical model

We have seen that the sensor output matches the model, in some cases better than other. For
the application of classifying vehicles, further work is needed. Vehicles can be classified manually,
their magnetic properties can be catalogued and used in the system.

8.2 Hardware

It is concluded that speed should be estimated using two sensor nodes and therefore a sensor node
should contain one AMR sensor. In general more axes mean better result, and more axes also
provides the possibility to correct for errors due to rotation of the sensor node. The magnetic
field will be different in different locations, and therefore one cannot be sure which axis is the best
to use at a given location. The nodes should also include a temperature sensor so the magnetic
sensor threshold can easily be adjusted. A temperature sensor will also give additional data for
other purposes, or for warning vehicles for dangerous road conditions.

The sensors nodes should be placed in pairs with one three-axis AMR sensor each. The inter-
sensor distance should be less than one vehicle length but as large as possible in order to maximise
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speed estimation accuracy.

8.3 Algorithms

For detection an adaptive threshold algorithm should be used. The threshold should be set ac-
cording to disturbing traffic, and sensor position. The threshold will need to be changed when
conditions and temperature change.

Speed detection requires two sensors spaced at most one vehicle length apart in order to avoid
problems with vehicles turning, changing lanes etc. It is therefore logical to place sensors in pairs.

The method of using matched filter compared to finding the peak to peak time difference is a
very good method. It is not very sensitive to noise, and it can be used almost in real-time. The
drawback is of course that the complexity and the network load will increase. A very important
fact is that it does not depend on the difference in sensor sensitivity which is a huge improvement
over earlier methods.

8.4 Future Work

The algorithms evaluated and used in this thesis need to be evaluated in real traffic conditions,
only then can one be sure of the performance of the different algorithms. The complexity of
these algorithms need to be studied before implementation and design in sensor nodes. The power
consumption will depend heavily on how much information is sent over the wireless network.

The sensor properties need to be further investigated, especially regarding noise, temperature
dependence, sensor casing properties and transceiver properties. The network properties also
need investigating.

Choosing a threshold adaptively is difficult – the threshold should be chosen to be large enough
to be higher than the noise and signals from disturbing vehicles. The algorithms for this should
be investigated further.
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A. Graphs

Appendix A

Graphs

This appendix contains plots and figures that are to voluminous to be placed anywhere else.

A.1 Fast Fourier Transform of vehicle signatures

The sampling frequency in all figures in this section is 25 Hz. The of the simulated data FFT has
been plotted for all vehicle types used in this thesis and for all three axes. The sensor was placed
at the side of the road.
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FFT x̂-axis - Passenger car
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Figure A.1a: FFT x̂-axis - Passenger car.
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Figure A.1b: FFT x̂-axis - Another passenger
car.

FFT x̂-axis - High car

Frequency / fs

|Y
(f

)|
/
1
·
1
0
−

6

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure A.1c: FFT x̂-axis - High car.

FFT x̂-axis - Bus
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Figure A.1d: FFT x̂-axis - Bus.
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A.1. Fast Fourier Transform of vehicle signatures

FFT ŷ-axis - Passenger car
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Figure A.2a: FFT ŷ-axis - Passenger car.
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Figure A.2b: FFT ŷ-axis - Another passenger
car.
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Figure A.2c: FFT ŷ-axis - High car.
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Figure A.2d: FFT ŷ-axis - Bus.
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FFT ẑ-axis - Passenger car
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Figure A.3a: FFT ẑ-axis - Passenger car.
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56



B. Simulator

Appendix B

Simulator

The simulator is written in Matlab and C with MEX-interface, and contains vehicle generator,
traffic generator, sensor simulator, (network simulator), algorithms. It is built in modules and can
easily be expanded to fit the application. The modular layout can be seen in Figure B.1.

There are a number of interfaces to the simulator, two of them can be seen in Figures B.2a and
B.2b.
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Figure B.1: Simulator overview. Modules.
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B. Simulator

Figure B.2a: Simple simulator interface in Matlab.
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Figure B.2b: Advanced simulator interface in Matlab.
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C. Tables

Appendix C

Tables

The table herein illustrates the different sensor types used in this project.
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Table C.1: Honeywell AMR sensors

Sensor # Axis Sens. [mV/V/mT] Pwr supply Field range [mT] BW Noise [nT/
√

Hz ] Op temp. Price

HMC1043[29] 3 10 1.8–10 V ±0.6 5 MHz 0.8a -40 – 125 � $25 (1 pcs)
HMC1001[16] 1 32 5–12 V ±0.2 5 MHz -55 – 150 � $17 (10 pcs)
HMC1002[16] 2 32 5–12 V ±0.2 5 MHz -55 – 150 � $19 (10 pcs)
HMC2300b[14] 3 6.5–15 V ±0.2 -40 – 85 �

aImego
bContains HMC1001 and HMC1002
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D. Illustrations

Appendix D

Illustrations

Figure D.1a: Addition to old sign. Figure D.1b: Proposed new sign.
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Figure D.1c: Sign with Amparo SeeMeTMMain
Unit.
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“Ambient Intelligence”, 7

amperes circuital, see Maxwell’s equations
Amparo SeeMe, 7
AMR Sensor, see anisotropic magnetoresistance

sensor
anisotropic magnetoresistance sensor, 13
application support sublayer, 8
auto-configuration, 9
Automatic Vehicle Identification, 12

central moment, 29
classification, 9, 29, 42
conventional sensing, 18

delimitations, 2
detection, 9, 25
direction, 26, 37
discrete Fourier transform, 31
Doppler shift, 12
down-time, xvii

earth magnetic field, 20
easy axis, 14
energy-efficient operation, 9

Faraday’s law of induction, see Maxwell’s equa-
tions

FIFO, xvii
full-function device, 8

Gauss’ law for magnetism, see Maxwell’s equa-
tions

Gauss’s law, see Maxwell’s equations
GPS, 12

hill pattern, 30

IEEE Standard
802.15.4, 8

in-network processing, 9
inductive loop, 11
infrared-based system, 11
intelligent minefields, 8

Karhunen-Loève transform, 31

kurtosis, 30

least-squares estimation, 31, 43
load cell sensor, 11
lowpass filter, 38

magnetic dipole moment, 19
magnetic field, 17

earth magnetic field, 17
from a bus, 23
from a car, 23
from a high car, 23
from a magnetic dipole moment, 19
from a vehicle, 20

magnetic loop sensor, 29
magnetic materials

hard magnetic material, 17
soft magnetic material, 17

magnetic model, 18
magnetic sensing, 18
magnetoresistive effect, 13
matched filter, 28, 28, 38
Maxwell’s equations, 19

Ampère’s Circuital Law
magnetostatics, 19
with Maxwell’s correction, 19

Faraday’s law of induction, 19
Gauss’ law for magnetism, 19

magnetostatics, 19
Gauss’s law, 19

media access layer, 8
microwave radar, 12

continuous wave, 12
frequency-modulated continuous wave, 12

mobility, 1
multihop communication, 8

network layer, 8
network topology

mesh topology, 8
star topology, 8, 9

Nyquist frequency, 22

on-time, xvii

passive acoustic system, 12
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Peak-to-peak, 39
Permalloy, 13
permeability in vacuum, 19
physical layer, 8
piezoelectric sensor, 11
pneumatic tube, 11

queue, xvii
queue detection, 9, 32

re-identification, 9
reduced-function device, 8

SeeMeTM, see Amparo SeeMeTM

sensitivity, 27, 38, 41
skewness, 30, 30
Smart Dust, 8
speed estimation, 9, 27, 38

average vehicle, 28, 42
individual vehicle, 27
instantaneous velocity, 27

surveillance technologies
intrusive, 10
non-intrusive, 10
off-roadway, 10

target tracking, 26

ultrasonic system, 12
up-time, xvii

vehicle classes, 29
Video Image Processing, 12

Weigh-In-Motion system, 11
Wheatstone bridge, 13
Wireless Sensor Network, 1, 7, 7
WSN, see Wireless Sensor Network

ZigBee Alliance, 8
ZigBee Networks, 8
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