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Bayesian Model Averaging of Nuclear Mass Models
And the Limits of Stability of Visible Matter
Sebastian Lundquist
Department of Physics
Chalmers University of Technology

Abstract
In this thesis we investigate the performance of Bayesian inference and Bayesian model av-
eraging (BMA) applied to two nuclear mass models, the Duflo-Zuker 10 parameter model
(DZ10) and the semi-empirical mass formula (SEMF). The DZ10 and SEMF models both
have theoretically and experimentally motivated terms but the relative importance of
them is less clear. Using Bayesian inference and BMA we have attempted to quantify
model uncertainties and improve inference about nuclear masses. To explore the robust-
ness of our BMA analysis we compare the results using different choices of parameter
priors, and vary the assumed model discrepancy. The main focus is on the DZ10 model.
We employ the Atomic Mass Evaluation from 1983 (AME83) for parameter estimation,
then we evaluate the predictive power of the model using the Atomic Mass Evaluation
from 2016 (AME16). In an attempt to determine the limits of stability of visible matter
we also make a prediction for the neutron drip lines, in the tin isotopic chain (Z = 50)
using the DZ10 model trained on AME16. The 1-neutron drip line is predicted to neut-
ron number N = 123125

95 , and the 2-neutron drip line at N = 115125
103. Where the error bar

corresponds to a 68 % degree of belief.

Keywords: Bayesian Model Averaging, Duflo-Zuker 10, nuclear mass models, neutron drip
line
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List of Symbols

Herein we will adopt a convention of using the Latin alphabet for variables connected with
data and measurements, and use the Greek alphabet for variables dealing with models.
We will also use bold fonts to denote vectors and matrices.

D/d Data set or vector
E Data covariance matrix
α Model parameter(s)
Σ/Ψ Parameter covariance matrix
Φ/φ Model design matrix/basis function
δ Model discrepancy, inability to follow data
p(A) Probability/Plausibility of proposition ‘A’
π(A) Prior probability/plausibility of proposition ‘A’





1
Introduction

Theoretical modelling is a foundation for science and research, but often there can exist
several theoretical models that equally well describe experimental data. Most often, a
preferred model is selected, and typically one proceeds as if this model has generated the
data. This has several drawbacks, most important is overconfident inference since this
approach ignores model uncertainty. Bayesian model averaging (BMA) offers another
route; use the entire set of candidate models, and average all model predictions weighted
by their posterior model probability.[1, 2] This way, BMA can account for underlying
model uncertainty.

In a Bayesian approach to statistics we can ask questions like ‘how credible is this model?’
or ‘how plausible is this parameter?’, which cannot be done in a frequentist sense. In this
thesis we will focus on a BMA analysis of two nuclear mass models: the Duflo-Zuker 10
parameter model (DZ10)[3, 4] and the well-known semi-empirical mass formula (SEMF).
By investigating such models and examining the credibility intervals of their parameters
we can learn much about the underlying physics, and possibly better predict the stability
of atomic nuclei.

Nuclear physics is a lively area of research and there exist different models for describ-
ing nuclear masses; e.g. a) ab initio based models,[5, and references therein] b) models
based on nuclear density functional theory,[6] c) microscopically inspired phenomenolo-
gical models such as the Duflo-Zuker (DZ) models,[3] d) purely phenomenological model
e.g. the semi-empirical mass formula (SEMF). Models from category (c) and (d) are
advantageous since they are easier to implement and do not require vast computational
resources. Moreover, these models are typically linear in their parameters. This feature
facilitates analytical expressions for the Bayesian marginalisation integrals. However, pre-
dictions from such mass models are typically made without accounting for the inherent
model uncertainty. Theory is made to match experimental measurements in a pool of
calibration data, but every model is, to some degree, approximate and truncated. To
increase the reliability of mass predictions, one must account for theoretical deficiencies.

Several attempts have been made at predicting the neutron drip line and stability of visible
matter,[6, 7] recently also employing Bayesian methods and BMA.[8–10] In this thesis we
investigate the performance of BMA applied to two nuclear mass models, the DZ10 and
the SEMF. They both have theoretically and experimentally motivated terms but the
relative importance of them is less clear. Analysing them using Bayesian inference and
BMA we have attempted to quantify model uncertainties and improve inference about

1



1. Introduction

nuclear masses. To explore the robustness we compare the results of different choices
of parameter priors, and vary the a priori assigned model uncertainty. The main focus
will be on the DZ10, using the Atomic Mass Evaluation from 1983 (AME83)[11, 12] as
training data, then evaluating the predictive power of the models using the Atomic Mass
Evaluation from 2016 (AME16)[13, 14]. In an attempt at pushing the analysis of the
limits of stability of visible matter we also make a prediction for the neutron drip lines
in the isotopic chain, using the DZ10 model trained on AME16. We have developed the
necessary Python code for achieving the goal of performing BMA as a part of the project.

2



2
Basics of Bayesian Inference and

Nuclear Mass Models

In this chapter we will present the necessary theory for performing Bayesian model aver-
aging of nuclear mass models. This will include a review of the statistical aspects, along
with the mathematical tools for Bayesian inference. Then follows the basic theory re-
garding the phenomenological nuclear mass models of interest, the semi-empirical mass
formula and Duflo Zuker 10 parameter model.

2.1 Bayesian Statistics and Model Averaging

Herein we will briefly introduce the Bayesian approach to statistics, then continue with
how parameter estimation is performed. After that we review of advantages of analysing
linear models, including a presentation of the equations that play a central role in BMA.
Then follows a section which describes how BMA is performed.

2.1.1 Introduction to Bayesian Inference

The calculations in this paper will be based on Bayesian statistical inference. It differs
from the more ubiquitous frequentist statistical inference, where the probability of a pro-
position is the relative frequency by which it occurs when repeating the experiment under
identical conditions for a long time (infinitely many times). In this approach the proposi-
tion is limited to being about random variables, e.g. number of heads when flipping a coin
N times. Using a Bayesian approach we expand the notion of probability of a proposition
and relieve the restriction to random variables, and we can define e.g. the probability
of a political party winning an election.[15–17] It is argued that Bayesian inference is
subjective. But all theories are subjective, since they are limited to the available prior
information, i.e. the current knowledge. As E.T. Jaynes stated, among others, objectivity
only requires that two individuals with the same knowledge reach the same conclusion.[18]

Using the rules of Boolean logic and ordinary algebra R.T Cox found that mathematical
consistency is only ensured if the real numbers attached to beliefs in propositions obey

3



2. Basics of Bayesian Inference and Nuclear Mass Models

the following rules of probability theory:[15]

sum rule: p(A) + p
(
Ā
)

= 1 (2.1.1)

product rule: p(A, B) =

p
(
A |B

)
× p(B)

p
(
B |A

)
× p(A)

(2.1.2)

where A and B denote propositions, and Ā denotes A being false. p(A, B) denotes
the joint probability of both propositions, A and B, being true. p

(
A |B

)
denotes the

probability of proposition A being true conditional on B being true. From the product
rule follows Bayes’ theorem

p
(
A |B

)
= p

(
B |A

)
× p(A)

p(B) . (2.1.3)

Furthermore we can define marginalisation from these rules. If {Bi} form a mutually
exclusive and exhaustive set of possibilities, i.e. if Bi is satisfied then Bj, j 6= i, cannot
be satisfied and ∑i p(Bi) = 1, marginalisation is defined as

p(A) =
∑
k

p(A, Bk)→
∫

dB p(A, B) , (2.1.4)

where in the continuous limit the summation becomes an integration, where k runs over
the set of propositions {Bk} and the integration is performed over the corresponding
space of propositions. Marginalisation can be a powerful tool in eliminating nuisance
parameters, i.e. those which we are not interested in. For an example if we are interested
in the frequency of a signal the amplitude would be a nuisance parameter.

We can rewrite Bayes’ theorem in a more informative way, especially for the purposes of
this report:

p
(
hypothesis | data, I

)
= p

(
data | hypothesis, I

)
π
(
hypothesis | I

)
p
(
data | I

) , (2.1.5)

where ‘π
(
hypothesis | I

)
’ is called prior probability or prior plausibility and states our be-

lief in the hypothesis before analysing the data. Here we have explicitly included the
dependence on additional information, I, which is a description of the current knowledge.
The quantity ‘p

(
data | hypothesis, I

)
’ is called likelihood and is a measure of how well our

hypothesis predicts the observation. ‘p
(
hypothesis | data, I

)
’ is called posterior probability

and is a measure of our belief in the hypothesis after we have analysed the data. The de-
nominator ‘p

(
data | I

)
’ describes the marginal likelihood of observing the data, effectively

it is a normalisation factor. In words Bayes’ theorem states

‘the posterior probability of the hypothesis being true, given the data, is pro-
portional to the likelihood of the data, conditional on the hypothesis being
true, multiplied by the prior probability of the hypothesis’.

4



2. Basics of Bayesian Inference and Nuclear Mass Models

Here it is manifest that our current knowledge and information I plays a role in assigning
probability to propositions. It is also apparent that Bayes’ theorem describes the process
of learning from data, i.e. we update our belief of the hypothesis based on observed
data. While it may seem that the conclusion we draw from given data is subjective as it
depends on our prior belief in the hypothesis, this is partially true but the interpretation
is debatable. First of all, all science is subjective in some sense as it is conducted by
individuals. Different priors represent different states of knowledge. Secondly, if the
choice of prior greatly affects our posterior probability it suggests our data is insufficient
to draw a definite conclusion. If the data at hand is sufficient the choice of prior should
not be a decisive factor regarding the conclusion we can draw from the data.

Further on in this thesis we will omit the explicit dependence on prior information I, as
p
(
x | I

)
→ p(x), but always remember that the dependence remains but implicit. Another

point to have in mind is that the probability does not hold any real measure of the ‘true
value’ of any proposition, but rather our belief in the proposition being true.

2.1.2 Bayesian Parameter Estimation

In data analysis, and science in general, estimating parameters has a central role. For
example we can be interested in the mass of a planet or the fairness of a coin. In this
section we will develop the foundations for our primary interest of model averaging. When
estimating a parameter we are asking ourselves ‘what is the true value of this parameter?’.
In Bayesian theory we try to answer this by stating our belief in the value of a parameter.
So, considering a theory of a continuous parameter α and a data set D, we want to
determine the probability density function (pdf) p

(
α |D

)
. Using Bayes’ theorem (2.1.3)

we express this in terms of a prior and a likelihood:

p
(
α |D

)
∝ π(α)× p

(
D |α

)
(2.1.6)

Where we have omitted the factor of 1/p(D), which merely acts as a normalisation con-
stant. Later this will become of interest as we will discuss several parameters and several
models. To illustrate this more concretely, consider a classical example of tossing a coin.
The throws are considered independent and the probability of the outcomes are described
by a binomial distribution, where α is the probability of, say, ’heads’. Then we have the
likelihood of observing H heads in N tosses given by

p
(
‘H heads in N tosses’ |α

)
∝ αH(1− α)N−H (2.1.7)

The maximum likelihood estimate, α0, of α is given by,

α0 : dp
(
α |D

)
dα

∣∣∣∣∣
α0

= 0, d2p
(
α |D

)
dα2

∣∣∣∣∣
α0

< 0 (2.1.8)

if there is only one global maximum and no local maxima. A more thorough discussion
on parameter estimation can be found in any good book on statistics, e.g. [16, 17].

5



2. Basics of Bayesian Inference and Nuclear Mass Models

To illustrate parameter estimation we can consider a data set1 D = {di}Ni=1 of independent
measurements and represent the measurement errors by a Gaussian distribution.

di = fi + ei, where ei ∼ N (0, σi) ≡
exp

(
−e2

i /2σ2
i

)
√

2π σi
(2.1.9)

In general the model, f , for describing the data can be any mathematical expression but
we will limit ourselves to so-called linear models.

2.1.3 Linear Models
A linear model, M, is given by a mathematical expression f with linear dependence on
its parameters:

M : f(x) =
∑
κ

ακφκ(x) (2.1.10)

where ακ are the model parameters and φκ represent the model basis functions. An
example of a linear model is a one-variable polynomial of maximum degree Np

M(Np) : f(x) =
Np∑
κ=0

ακx
κ (2.1.11)

When analysing a linear model the mathematics of parameter estimation and likelihood
evaluations simplify and we can sometimes arrive at analytical and closed form expres-
sions. In the following sections we will show this explicitly for certain choices of parameter
prior distribution.

We want to quantify our (un)certainty in a model. Our goal is then to obtain the posterior
probability of the model, M, given a set of data D = {di}, i.e. p

(
M|D

)
. This sounds

simple enough, but there are several steps to compute this; we need to assign model priors,
compute evidence integrals, which calls for assigning parameter priors and estimating
likelihoods. We start with Bayes’ theorem, by which we have

p
(
M|D

)
= p

(
D |M

)
π(M)

p(D) . (2.1.12)

Where we need to assign a model prior π(M), based on our current knowledge, this
become more important later on, Sec. 2.1.4. The evidence of the model is given by the
marginalisation of its parameters

p
(
D |M

)
=
∫

dα π
(
α |M

)
p
(
D |M, α

)
. (2.1.13)

So to obtain a posterior model probability we need to evaluate this integral. This calls
for assigning also a parameter prior π(α), but we start with specifying and simplifying

1This ‘set’ is not a mathematical definition but rather refers to the data as being one entity. It will
be represented by a vector and we will not trouble ourselves with any rigorous mathematical difference
between ‘set’ and ‘vector’. But vectors will be written in bold font.
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2. Basics of Bayesian Inference and Nuclear Mass Models

the data likelihood p
(
D |M, α

)
. Assuming a Gaussian noise for the measurements, the

likelihood for the data takes the form of a multivariate Gaussian distribution

p
(
D |M, α

)
=

exp
(
−χ2/2

)
(2π)N/2 |E|1/2

, χ2 = (d− f)TE−1 (d− f) (2.1.14)

where d denotes the data vector and E denotes the covariance matrix of the measurement
errors. The quantity E−1 is often referred to as the precision matrix. We first search for a
simple expression for χ2 which separates the part independent from α and the part that
is dependent, this will allow us to evaluate the integral in Eq. (2.1.13). In the case of a
linear model, with K basis functions, we can enhance our notation and define a design
matrix

Φ =
(
φ1 · · · φK

)
(2.1.15)

where the column κ is the evaluation of basis function κ for the data vector d, thus we
can write the f = Φα. Furthermore define

Ψ−1 = ΦTE−1Φ (2.1.16)

then Ψ can be considered as a covariance matrix for the model, or rather its basis func-
tions. Then

χ2 = dE−1d+αTΨ−1α− 2αTΦTE−1d (2.1.17)

using the symmetry of Ψ. We observe the first term is independent of the model para-
meters α, which is a first step to evaluating Eq. (2.1.13). To separate the rest we will find
the maximum likelihood for the parameters, which is given by the least-squares solution.
Assuming a unimodal distribution, i.e. with one unique maximum and no other peaks or
plateaus, this is given by

∂χ2

∂α
= 2Ψ−1α− 2ΦTE−1d

!= 0

=⇒ α̂ = ΨΦTE−1d.

(2.1.18)

So in order to simplify the integrand in Eq. (2.1.13), we can perform a change of variables
by δα = α− α̂, which yields

χ2 = (d−Φα̂)TE−1 (d−Φα̂) + δαTΨ−1δα (2.1.19)

The first term is completely independent of the parameters and the second term de-
scribes a Gaussian distribution. Recalling that we want to compute the model posterior,
Eq. (2.1.12), hence we need to calculate the model evidence Eq. (2.1.13). Now that we
obtained a nice simple expression for the likelihood, p

(
D |M, α

)
, we stand before the

task of specifying a prior pdf for the parameters, π(α), in order to evaluate the integ-
ral in Eq. (2.1.13). We will provide two alternatives: uniform prior and normal prior ;
both will allow us to perform the evidence integral analytically. A small discussion of the

7



2. Basics of Bayesian Inference and Nuclear Mass Models

implications of these choices and what they mean follows in the subsequent sections.

Uniform Parameter Prior

A uniform or flat prior for continuous model parameters is defined as

π(α) =
∏
κ

θ[min(ακ)− ακ]− θ[max(ακ)− ακ]
|max(ακ)−min(ακ)|

= Θ(∆α)
Vol(∆α) (2.1.20)

Where θ(x) is the Heaviside step-function, and we abbreviate the sum and product by
Θ(x). The prior pdf of all the parameters is given by the reciprocal of the volume of the
hyper-cube which they span and zero outside it. Thus we can write the evidence as

p
(
D |M

)
=

exp
[
−1

2(d−Φα̂)TE−1(d−Φα̂)
]

(2π)N/2|E|1/2

× 1
Vol(∆α)

∫
Vol(∆α)

dα exp
−δαTΨ−1δα

2


(2.1.21)

A quick remark: the first part, being the maximum likelihood estimator (MLE), is a
multivariate Gaussian distribution, with covariance E and expectation value Φα̂. Fur-
thermore we can identify the integrand to describe a posterior pdf for the parameters, as
δα = α− α̂,

p
(
αk |M, D

)
= N

(
α | α̂, Ψ

)
(2.1.22)

Although truncated due to our prior. Now, since Ψ and of course Ψ−1 is a real symmetric
matrix, we can decompose

Ψ−1 = V SV T (2.1.23)

where V are real orthogonal matrices which columns are the eigenvectors of Ψ−1 and
S is a diagonal matrix with the corresponding eigenvalues, λκ. Thus we can perform a
orthogonal transformation, noting the Jacobian equals unity, into δα = V x and

δαTΨ−1δα =
∑
κ

λκx
2
κ. (2.1.24)

With this transformation the integral can be performed analytically. If the chosen in-
terval for the parameters, the prior distribution, is wide enough the integral can be well
approximated by the result from the infinite case. Then the evidence the model is given

8



2. Basics of Bayesian Inference and Nuclear Mass Models

by

p
(
D |M

)
≈

(2π)K/2|Ψ|1/2

Vol(∆α)

 exp
(
−χ2

min/2
)

(2π)N/2|E|1/2

≡ ΩMLmax

(2.1.25)

The first factor is calledOccam factor, as it accounts for the complexity of the model with
dimension K i.e. number of parameters, in the sense that a model with more parameters
that span a larger prior volume is considered to be more complex,

ΩM = (2π)K/2|Ψ|1/2

Vol(∆α) . (2.1.26)

Here it is manifest that an unnecessary large range for the parameters will negatively
contribute to the evidence for the model, as it appears in the denominator. A model
with few parameters and if we are inclined to believe a certain narrow interval will receive
low penalty and is thus considered more likely. A risk of narrow parameter interval is
that we then exclude any values outside of that range, which means that we should use
well informed ranges. The second factor in Eq. (2.1.25) is the maximum of the likelihood
function, given by the inverse of the determinant of the data covariance matrix a constant
factor of 2π’s and an exponent

χ2
min = (d−Φkα̂k)TE−1(d−Φkα̂k). (2.1.27)

Now that we know how to calculate the likelihood of any model, when assigning uniform
parameter priors, we can determine the posterior probability distribution Eq. (2.1.12),
i.e. how much we believe in the model after considering the data at hand. But let us also
discuss another choice of parameter prior.

Gaussian Parameter Prior

So picking up from Eq. (2.1.13) with the intent of calculating the model posterior Eq. (2.1.12),
we assign a Gaussian distribution for the parameter prior. Gaussian distributions are
conjugate to themselves, which means that assigning a Gaussian parameter prior, while
having a Gaussian likelihood, the posterior will also be a Gaussian distribution. In the end
we will reach an analytical expression for the model posterior as well as a parameter pos-
terior, but we must work through quite a bit of algebra in order to do so. This discussion
will be more general so we temporarily adopt a, in statistics, more standard notation.

The standard one-variable Gaussian distribution for a variable x is described by a mean,
or expected, value µ and a variance σ2:

N
(
x |µ, σ2

)
= 1√

2π σ
exp

[
−(x− µ)2

2σ2

]
(2.1.28)

The multivariate extension to a N -dimensional variable x is described by a expectation

9



2. Basics of Bayesian Inference and Nuclear Mass Models

value µ in vector form and a covariance matrix E

N
(
x |µ, E

)
= 1

(2π)N/2|E|1/2 exp
[
−1

2(x− µ)TE−1(x− µ)
]

(2.1.29)

where |E| denotes the determinant. In this form we can partition our variable, its ex-
pectation value and the covariance matrix, without loss of generality, according to

x =
(
xa
xb

)
, µ =

(
µa
µb

)
, E =

(
Eaa Eab

Eba Ebb

)
(2.1.30)

Where a and b correspond to some partitioning, for example if x is a vector of size n then
xa could denote the choice of the m first points and xb is then the remaining n−m points.
Likewise for µa and µb, and Eaa would be the n× n upper left part of E and Eab would
be the n ×m upper right part. Considering only the quadratic form in the exponent in
Eq. (2.1.29) we can isolate xa, or xb, in a new quadratic form. Dropping the −1

2 factor
and for simplicity express in terms of the precision matrix L ≡ E−1. Note: Laa is not in
general equal to (Eaa)−1.

(x− µ)TL(x− µ) = (xa − µa)TLaa(xa − µa) + (xa − µa)TLab(xb − µb)

+ (xb − µb)TLba(xa − µa) + (xb − µb)TLbb(xb − µb)
(2.1.31)

Since isolating any partition results in a new quadratic form this implies the conditional
probabilities, e.g. p

(
xa |xb

)
, are Gaussian. The quadratic form in the exponent of a

Gaussian distribution appears as, omitting the constant factor,

(x− µ)TE−1(x− µ) = xTE−1x− xTE−1µ+ constant (2.1.32)

Further omitting all terms not dependent on x. Identifying these terms allows us to
identify the covariance and expectation value of distributions. Eq. (2.1.31) can be written
in terms of order of, e.g., xa

O(x2
a) : xT

aLaaxa

O(xa) : − xT
a

[
Laaµa +Lab(xb − µb)

]
+ transpose

(2.1.33)

This implies that the conditional distribution is a Gaussian with

E[xa | xb] = µa +L−1
aaLab(xb − µb)

cov[xa | xb] = L−1
aa

(2.1.34)

This process can performed in reverse, which is in our interest as have a conditional normal
pdf and a normal prior pdf. Defining a new variable z = (x,y), where p(x) = N

(
x |µ, Σ

)
and p

(
y |x

)
= N

(
y |Ax+ b, E

)
. The quadratic form appearing in p(z) = p(x) p

(
y |x

)
,

omitting the constant factor of −1/2 is then

(x− µ)TΣ−1(x− µ) + (y −Ax− b)TE−1(y −Ax− b) (2.1.35)

10



2. Basics of Bayesian Inference and Nuclear Mass Models

Which manifestly is a quadratic form in y, thus p(y) is another normal distribution.
Rewriting in terms of z we find the terms quadratic and linear in z

zT
(

Σ−1 +ATE−1A −ATE−1

−E−1A E−1

)
z − zT

(
Σ−1µ−ATE−1b

E−1b

)
(2.1.36)

By Eq. (2.1.32) we find

p(z) = N
(
z |R−1M , R−1

)
(2.1.37)

where we define the precision matrix and expectation value of z according to

R ≡
(

Σ−1 +ATE−1A −ATE−1

−E−1A E−1

)
, M ≡

(
Σ−1µ−ATE−1b

E−1b

)
(2.1.38)

The inverse of a partitioned matrix is found by the Schur complement, S/D, of block D
of matrix S

S ≡
(
A B
C D

)
, S/D ≡ A−BD−1C

=⇒ S−1 =
(

(S/D)−1 −(S/D)−1BD−1

−D−1C(S/D)−1 D−1 +D−1C(S/D)−1BD−1

)
,

(2.1.39)

assuming the necessary properties ofD and its Schur complement being invertible. Using
this identity we find the inverse of our matrix R quite easily

cov[z] = R−1 =
(

Σk ΣkA
T

AΣk E +AΣkA
T

)
(2.1.40)

which is the covariance matrix for the variable z = (x,y), and furthermore its expectation
value

E[z] = R−1M =
(

µk
Aµk + b

)
(2.1.41)

We can thus identify the distributions for the partitioned variables.[19] In our case the
pdf of interest is the marginal distribution of the variable y. Given a marginal Gaussian
distribution for a variable x and a conditional Gaussian distribution for y given x in the
form 

p(x) = N
(
x |µ, Σ

)
p
(
y |x

)
= N

(
y |Ax+ b, E

) (2.1.42)

the marginal distribution of the variable y and the conditional distribution for x given y

11



2. Basics of Bayesian Inference and Nuclear Mass Models

are given by
p(y) = N

(
y |Aµ+ b, E +AΣAT

)
p
(
x |y

)
= N

(
x |Λ[ATE−1(y − b) + Σ−1µ], Λ

) (2.1.43)

where Λ = (Σ−1 + ATE−1A)−1. We have during this entire derivation neglected all
normalisation factors. The reason is simple: we know the end result must be a probab-
ility distribution, thus normalised. The dependence of the variable takes the shape of a
quadratic form in an exponent, i.e. a Gaussian function. Thus the final pdf must be a
Gaussian distribution. Which means we have found analytical, closed form expressions
relating Gaussian marginal, p(x), and conditional probabilities, p

(
y |x

)
, of propositions

with their converses, p(y) and p
(
x |y

)
. This is just our problem we seek to solve.

To make it explicit for our intents, repeating ourselves: we are interested in the marginal
likelihood

p
(
D |M

)
=
∫
π
(
α |M

)
dα p

(
D |α,M

)
(2.1.44)

Where we assume a Gaussian error in the data, and our model is linear, thus

p
(
D |α,M

)
= N

(
d |Φα, E

)
. (2.1.45)

Furthermore we adopt a Gaussian distribution for the parameter prior according to

π
(
α |M

)
= N

(
α |µ, Σ

)
(2.1.46)

which naturally raises the question of choice of the parameters µ and Σ. This will be
dealt with in the next section. Then the marginal likelihood of the data conditional on
M and the posterior parameter probability is found.

Having known distributions
p
(
D |α,M

)
= N

(
d |Φα, E

)
π
(
α |M

)
= N

(
α |µ, Σ

)
we then obtain

p
(
D |M

)
= N

(
d |Φµ, E + ΦΣΦT

)
p
(
α |M, D

)
= N

(
α |Λ

[
ΦTE−1d+ Σ−1µ

]
, Λ

)

where Λ =
(
Σ−1 + ΦTE−1Φ

)−1

(2.1.47)
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2. Basics of Bayesian Inference and Nuclear Mass Models

Parameter Prior Probability

The choice of prior can greatly affect the posterior pdf if the data at hand is limited. Or
rather if the prior has a great influence on posterior it implies either our question or our
theory is ill defined, or the data at hand is insufficient. Importantly, the choice of prior is
a statement about our current knowledge, or rather lack thereof, to describe the theory.
When performing parameter estimation we encountered the need of parameter prior pdf.
We will focus on two choices; the uniform prior, and the Gaussian (or normal) prior. The
latter is conjugate to the Gaussian likelihood. The advantage of a uniform prior is that
it is constant over a range, the equally large drawback is that it neglects all parameter
space outside this range. This is reflected in the posterior distribution. If our ignorance
about the region in which the parameter takes its true value is total, i.e. excluding it,
the posterior will always be zero, which could be a fatal flaw. If the parameter values are
completely unknown, a finite uniform prior may be a poor choice.

The advantage of a Gaussian prior, as seen in Sec. 2.1.3, is that with a Gaussian er-
ror also the posterior distributions are Gaussian. This makes computations easier as
the calculations can be done analytically and the results are analytical standard ex-
pressions. In Sec. 2.1.3 we adopted a Gaussian distribution for the parameter prior,
p(α) = N

(
α |µ, Σ

)
, then the question of assignment of µ and Σ appears. One choice is

ignorance in location, i.e. setting the expectation value to zero, together with a Zellner
g-prior for the covariance matrix

µ = 0 and Σ = g
(
ΦTΦ

)−1
(2.1.48)

So the covariance matrix is a scalar multiple of the Fisher information matrix.[20] Typical
values used are g = 1 and g =# data points, we will use g =#data points, in our analysis.
We will focus on three types of parameter priors: uniform prior, Zellner g-prior, Gaussian
prior.

πU(α) = Θ(∆α)
Vol(∆α)

πN, Z(α) = N
(
α |0, g

[
ΦTΦ

]−1
)

πN(α) = N
(
α |0, σ21

)
πN, phys.(α) = N

(
α |µ, Σ

)
(2.1.49)

Where the size of the uniform hyper-cube in πU(α) can be set to dismiss negative para-
meter values as well as values of absurd magnitude. The g-prior, πN, Z(α), uses the values
of the basis functions over the region of interest to normalise the parameter priors. This
allows a simple and fast assignment for many parameters where there is lack of knowledge
for a reasonable region for the parameter values. It also considers the presence of other
parameters; a difficulty which arises when hand-picking the priors. The Gaussian prior,
πN(α), will be independent and identically distributed for all parameters, centred around

13



2. Basics of Bayesian Inference and Nuclear Mass Models

0 and with a large standard deviation, σ, allowing for varying solutions of parameters.
The physically inspired prior, πN, phys.(α), will be unique for the model under study. Us-
ing theoretical arguments and previous information both the mean values and standard
deviation will be assigned for each parameter.

2.1.4 Model Averaging
An often encountered problem in science is the choice of model, as several models can
equally well describe data. Instead of only choosing one model, based on plausibility
or other measures, we can average predictions using several models. In order to do
this we must first start with a clarification of the situation we consider. Experiments
measure quantities with errors ei, which we will assume to be Gaussian but not necessarily
independent,

di = y(xi) + ei. (2.1.50)

Depending on the quality of the measurements, the data almost describes the physical
process, y(x), where x is some variable. This measurement error, e is typically small. We
also adopt a model discrepancy, δ(x), which takes into consideration the inability of the
model to correctly describe the physical processes. [21–24]

y(x) = f(x) + δ(x) (2.1.51)

This model discrepancy, which is independent of measurements, may well be order of
magnitudes larger than the measurement error. The model discrepancy is deterministic,
but unknown, and we will employ a Gaussian distribution for inference. A Gaussian
maximises entropy,[16, 17] i.e. it is the most conservative, if we specify only the variance
of the model discrepancy. Then we can combine the errors into σ ∼

√
e2 + δ2 ≈ δ. Thus,

limiting ourselves to a linear model f(x) = φα,

di = φ(xi)α+ σ =⇒ p
(
d |α,M

)
= N

(
d |Φα, σ21

)
(2.1.52)

i.e. we have an independent multivariate distribution for the data.

Thus far we have only considered one model for describing the data, but Bayesian inference
is much more powerful. We can instead consider the model in the previous part as one
from a set of models, i.e. M → Mk ∈ {Mk}. The above calculations, Sec. 2.1.3, hold
just fine, we merely replace M by Mk and α by αk. In this thesis we will consider a
global model M with K parameters, and the set of models is given by all combinations of
the parameters, i.e. Mk ⊆M soMk ∈ {Mk}2K−1

k=1 . Explicitly, if M : f(x) = α0 + α1x
then the set of models can consist ofM1 : α0,M2 : α1x andM3 : α0 +α1x. Employing
Bayesian methods to accomplish model averaging can have positive effects on predictive
power as well as error estimation.[1, 2, 8, 21, 22]

Starting from a linear model it is possible to construct several different models, by simply
choosing a subset of the terms that appear. This indicates the presence of an underlying
model uncertainty, which can be quantified using BMA. The dimensionality of the set of
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models grows exponentially with the number of parameters, K. To tackle this we exploit
the linearity of all considered models, which allows derivation of an analytical expression
for the model evidence, see Sec. 2.1.3. With the posterior model probability known we
can average the posterior distribution of any quantity of interest ∆, e.g. nuclear binding
energy, according to

p
(
∆ |D

)
=
∑
k

p
(
∆ |Mk, D

)
p
(
Mk |D

)
. (2.1.53)

How to calculate the posterior model probability, p
(
Mk |D

)
, as well as the posterior para-

meter distribution, p
(
αk |Mk, D

)
, was discussed earlier in Sec. 2.1.3. If we are interested

in predicting measurements, i.e. ∆ = d?, then this is performed by marginalisation of the
parameters

p
(
∆ = d? |Mk, D

)
=
∫

p
(
αk |Mk, D

)
dαk p

(
d? |Mk,αk, D

)
(2.1.54)

So the prediction, and its uncertainty, is averaged and weighted by the corresponding
posterior model probabilities. Averaging over several models can improve the predictive
ability in the sense of more realistic uncertainties.

Furthermore to improve the estimation of various parameters in the models we can cal-
culate the weighted posterior distribution of the parameter ακ given the data

p
(
ακ |D

)
=
∑
k

p
(
ακ |Mk, D

)
p
(
Mk |D

)
. (2.1.55)

Model Prior Probability

The parameter posterior probability is of great interest, but so is the posterior model
probability. So let us recall Eq. (2.1.12), and realise we now know how to compute the
model evidence, Eq. (2.1.13). We even have analytical closed form solutions when adopting
uniform parameter priors, Eq. (2.1.25), and Gaussian parameter priors, Eq. (2.1.47), which
are the priors we will employ. The quantity that remains is the model prior probability,
π(Mk). If we are naive a natural choice would be a uniform distribution, i.e. for a set of
models {Mk} being all combinations of a global model with K parameters, we have

π(Mk) = 1
2K . (2.1.56)

While this choice seems intuitive and reasonable it may be rushed, as it does not consider
the correlation between model parameters. This correlation, depending on basis func-
tions, can be very high. An example of highly correlating basis functions are polynomials.
A solution to this is to use a so-called dilution prior which deals with correlation among
model parameters.[25] Dilution priors can be achieved by multiple methods or consider-
ations; tessellation, collinearity, model distance. Adopting a dilution prior based on the
collinearity of the models such that it reduces to the uniform case when the models are
uncorrelated, is a possibility of reducing the number of redundant models. Let Rk be the
correlation matrix of model k, i.e. Rk ∝ Φk,κΦk,λ, and note that if the design matrix is
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orthogonal then |Rk| = 1 and as the basis functions correlate more |Rk| reduces to zero.
So we choose

π(Mk) ∝ h
(
|Rk|

) 1
2K (2.1.57)

for some monotonic function satisfying h(1) = 1 and h(0) = 0. E. I. George suggests
h(r) = rp for two choices: p = 1/2, and p = 1.[25]

πD(Mk) = |Rk|p 2−K∑
l |Rl|p 2−K (2.1.58)

2.2 Review of Nuclear Mass Models
In Ch. 4 we will analyse the SEMF and the DZ10 nuclear mass models. So here follows
a brief description.

2.2.1 SEMF
The semi-empirical mass formula, also known as Bethe-Weizsäcker mass formula, models
the nucleus as a liquid drop. The formula contains physically motivated terms but the 5
parameters αi are inferred from nuclear mass-data. The binding energy of a nucleus with
a total of A = Z +N nucleons, Z protons and N neutrons, is given by

BESEMF = αVA− αSA2/3 − αC
Z(Z − 1)
A1/3 − αA

(N − Z)2

A
+ αP

δ(A,Z)
A1/2 . (2.2.1)

Where the terms, in order, correspond to effects that scale with the volume, surface,
Coulomb, asymmetry, and pairwise interactions. The last term considers the pairing of
nucleons of the same type and is simply given by

δ(A,Z) =


+1, Z even, N even
0, A odd
−1, Z odd, N odd

(2.2.2)

Noteworthy is the existence of different versions of the SEMF, omitting the pairing term,
or the Coulomb term being proportional to Z2, or the asymmetry term in terms of T (T+1)
for T = (N − Z)/A. The first three terms (volume, surface, and Coulomb) can be
seen as expansion in A1/3 ∼ radius, i.e. proportional to the size of the nucleus. The
fourth term (asymmetry) is also proportional to the squared neutron excess, i.e. neutron-
proton asymmetry, hence the name. This is expansion in terms of radius referred to as a
leptodermous expansion.

The terms all have natural explanations. Using a Fermi gas model together with experi-
mental data and physical arguments we can estimate the magnitude of the volume term
and the asymmetry term. αV ∼ 10 MeV and αA ∼ 50 MeV. Furthermore the surface
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term is expected to be of the same order as the volume term. The Coulomb term can be
theoretically estimated from electrodynamics as

αC = 3
5

e2

4πε0r0
≈ 0.69 MeV (2.2.3)

Where e is elementary charge, ε0 the vacuum permittivity. r0 ≈ 1.25 fm is the nuclear
radius constant relating the atomic radius and the mass number as R = r0A

1/3. The
SEMF can be used for guiding estimates of the binding energy

A major flaw of the SEMF is its inability to predict so-called magic numbers, i.e. the
pattern of higher binding energy per nucleon, i.e. particularly stable nuclei, for certain
numbers of protons and neutrons.

2.2.2 Duflo-Zuker Mass Models
We will only briefly describe the physical reasoning behind the DZ mass models as they
are, although microscopically inspired, quite phenomenological.

The DZ mass model assumes a shell-structure of the nucleus, based on the harmonic
oscillator (HO) model, and writes the Hamiltonian as a sum of a monopole part and a
multipole part.[3, 4, 26–28] The binding energy can be written as

BEDZ = 〈Hm〉+ EC + Esym + Epairing (2.2.4)

where EC , Esym and EP are energy due to Coulomb interaction (which is negative, i.e.
repulsive), (a)symmetry (negative) and pairing, respectively, reminiscent of the terms in
the SEMF but not identical. The monopole term, Hm, describes a mean field based on an
interacting shell model. Instead of solving for the mean field for every nucleus, Duflo and
Zuker parameterised the energy as a sum of phenomenological terms Hm = HMa+Hs+Hd

to reflect energy variations due to breaking of spherical symmetry. These terms, HMa, Hs

and Hd, are parameterised to reflect sequential filling of a pre-assumed harmonic oscillator
shell-structure of the nucleus. In a HO model, the number of neutrons and protons are
given by

N =
∑
p=0

np and Z =
∑
p=0

zp (2.2.5)

where p is the principal quantum number of the HO major shell, and np (zp) is the number
of neutrons (protons) in this shell. The degeneracy of a major shell is Dp = (p+1)(p+2),
for a fully filled shell we have np = Dp, and likewise for protons. The monopole part,
which only contains quadratic forms of the number, mp = np + zp, and isospin operators,
Tp = |np − zp|/2, can be written

Hm =
∑
p, q

apqmp

(
mq − δpq

)
+ bpq

(
Tp · Tq −

3mp

4 δpq

)
(2.2.6)

where the sum runs twice over all orbits p, thus including interactions. By geometric
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properties of realistic forces, Duflo & Zuker reach a general rule regarding the master
monopole terms: they ‘must be symmetric quadratic forms of properly scaled operators’.[3]
Duflo & Zuker construct in total 12 symmetric quadratics which belong to the master
monopole part HMa, along with a 4T (T + 1) term, a multipole pairing term included
as its form is equal for all nuclei, and a Coulomb term which contains multipole effects
but these can be ignored. But when comparing to data only some terms show significant
contribution.[3] The terms appearing in the final expression for the binding energy are
several and the true importance of each term is ill-understood, mostly measured by the
error in the prediction or fit to data. In Ch. 4 we will employ Bayesian methods to analyse
the actual evidence of the DZ models and its various terms.

Before we delve into the specific formulations of the DZ models, we will make an obser-
vation: In the SEMF there is an implicit radius r = A1/3. In the DZ mass models this is
replaced by

R = A1/3

1−
(
T

A

)2
2

(2.2.7)

for all terms except the Coulomb term, which is scaled by

RC = A1/3

1−
(
T

A

)2
 . (2.2.8)

Note that both reduce to r = A1/3 when the neutron number and proton number coincide
N = Z.

DZ10 Model

One of the DZ models often used is the DZ10 version with 10 parameters. First we will
give these in a cryptic short-hand notation which is consistent with the formalism of Duflo
& Zuker, and then we will, in short, explain these terms.

BEDZ =− α1 (Coulomb) + α2 (FM volume + SO)− α3 (FM surface)

− α4
(
isospin/symmetry volume

)
+ α5

(
isospin/symmetry surface + Wigner

)
+ α6 (S3 volume)− α7 (S3 surface)

+ α8 (QQ spherical) + α9 (QQ deformed) + α10 (pairing)

(2.2.9)
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We will write these out explicitly, in order, note the signs of expressions, the binding
energy is given by the sum of the following expressions. The Coulomb energy is given by

EC = −α1
Z(Z − 1)− 0.76

[
Z(Z − 1)

]2/3

A1/3
[
1−

(
T
A

)2
] (2.2.10)

which resembles the Coulomb term appearing in the SEMF, Eq. (2.2.1). The so-called
‘master term’, FM volume+SO, describes the dominant term in the monopole Hamilto-
nian, corrected for spin-orbit (SO) effects so that it exhibits the experimentally observed
extruder-intruder behaviour. The first two terms are the master monopole and the two
following are SO terms to ensure the observed magicity instead of HO shell-structure,

EFM vol.+SO = α2

R


∑

p

np√
Dp


2

+

∑
p

zp√
Dp


2

+
∑
p

(
pnjp

2 − nrp
)

1 + np√
Dp

 p2

D
3/2
p

+

1− np√
Dp

 4p− 5
D

3/2
p



+
∑
p

(
pzjp

2 − zrp
)

1 + zp√
Dp

 p2

D
3/2
p

+

1− zp√
Dp

 4p− 5
D

3/2
p




(2.2.11)

which is a rather lengthy and sophisticated expression. The master surface term is a bit
shorter

EFM surf. = −α3

R2


∑

p

np√
Dp


2

+

∑
p

zp√
Dp


2
 (2.2.12)

The isospin or symmetry terms, volume and surface corrected by Wigner, is given by

Esym = −α4

R

4T (T + 1)
A2/3R

+ α5

R2

4T (T + 1)
A2/3R2 −

4T
(
T − 1

2

)
AR3

 (2.2.13)
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The spherical part of the Hamiltonian is given by the S3 volume term, and corresponding
surface term and the ‘QQ spherical’ term,

Espherical = α6

R

(
nn̄(n− n̄)

Dν

+ zz̄(z − z̄)
Dπ

)
− α7

R2

(
nn̄(n− n̄)

Dν

+ zz̄(z − z̄)
Dπ

)

+ α8

R

2
√
pν nn̄

Dν

· 2
√
pπ nn̄

Dπ

(2.2.14)

where n is the number of valence neutrons and n̄ = Dν−n is the number of corresponding
valence holes in the open SO major shell with principal quantum number pν and degener-
acy Dν . z is the number of valence protons and z̄ = Dπ−z is the number of corresponding
valence holes holes in the open SO major shell with principal quantum number pπ and
degeneracy Dπ. So far the terms neglect the deformation of nuclei, this resides in the ‘QQ
deformed’ part,

Edeformed = α9

R

n′n̄′

D
3/2
ν

· z
′z̄′

D
3/2
π

(2.2.15)

where n′ = n − JU which accounts for the promotion of JU neutrons with principal
quantum number pν to a higher level and n̄′ = Dν − n′, and z′ = z − JU which accounts
for the promotion of JU protons with principal quantum number pπ to a higher level and
z̄′ = Dπ − z′. From Nilsson diagrams, Duflo & Zuker, find JUν = JUπ = JU = 4.[3]
Remaining is the pairing term which can be written

Epairing = α10

R



2T/A N odd, Z odd
1− 2T/A N even > Z odd
1 N odd > Z even
1 N even < Z odd
1− 2T/A N odd < Z even
2− 2T/A N even, Z even

(2.2.16)

The DZ10 mass model is quite a lengthy formula, and for reference printed in sequence
in its entirety in App. A and a Fortran code for calculating the binding energy in App. B

To be perfectly clear, the DZ10 model is actually not entirely linear, as can be seen from
the last couple lines in the code, App. B. The DZ10 code calculates two binding energies,
one assuming a spherical nuclei and one assuming a deformed nuclei, then chooses the
max:

BEDZ10 = max
(〈

Hmonopole
〉

+
〈
Hspherical

〉
,
〈
Hmonopole

〉
+
〈
Hdeformed

〉)
. (2.2.17)

For proton number Z ≤ 50 the DZ10 code, App. B, always uses the spherical Hamiltonian,
which actually is a linear model with 9 parameters. We will neglect the non-linearity and
construct a design matrix under the assumption the DZ10 mass model is linear.
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3
Bayesian Model Averaging

In this chapter we will continue upon the theoretical base which we established in the
previous chapter. We will use a toy model to describe the underlying theory in detail.
Particular emphasis is put on the choice of priors.

3.1 A Toy Model Example

Thus far we have described some of the theory and methods to analyse data using Bayesian
statistics. We have also, under the assumption of linear models, derived rather simple,
analytical expressions for various posterior distributions. In this section we will give an
example of parameter estimation, model selection and BMA, using synthetic data and
polynomial toy models.

In polynomial regression we seek the parameters of a polynomial model,

M :
K−1∑
κ=0

ακx
κ = α0 + α1x+ α2x

2 + · · ·+ αK−1x
K−1 (3.1.1)

which best describes the data. This polynomial of degree K − 1 is a linear model, see
Eq. (2.1.10), with K parameters. {ακ}K−1

κ=0 . From this model we can construct a set of
models by choosing a subset of the basis functions, e.g. a model only containing the
constant term or a model only containing the quadratic term. We will construct a set of
all possible combinations of basis functions. The dimension of this model space is 2K − 1.
Then given a set of data, in the form of a vector, d, we can follow the steps of Sec. 2.1.3
to calculate posterior model and parameter probabilities. This allows us to discuss the
credibility of the basis functions of the global model.

Polynomial fitting is an ordinary least-squares problem, which there exist numerous tools
for, e.g. NumPy’s polyfit. These will trust the user to know which degree of polynomial to
be used; analysis can be made by examining the residuals or rank of the coefficient matrix.
The issue of overfitting appears, we can use an overly complex polynomial and perfectly
describe data, but having no proper way of describing the credibility of the model.

This issue can be resolved in a Bayesian approach to parameter estimation and calculating
model posterior probabilities. We can quantify more rigorously the certainty in models,
and answer which one is most plausible and not just which one fits the data best. Even
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3. Bayesian Model Averaging

though higher order models may have a better fit, the added complexity makes them
less plausible. A numerical example to illustrate the rejection of more complex models,
in Eq. (2.1.25): The addition of one extra parameter with range [−500, 500] implies a
multiplicative factor of ∼ 1× 10−3. Thus the goodness of fit must be at least a factor
∼ 1× 103 better to be comparable to the more simple model with one parameter less.
Bayesian parameter estimation and model averaging can therefore be more conservative
than standard least-squares solver.

Let us start with fitting the 5 parameters of a fourth order polynomial to synthetic data
generated by

y = x+ 1
2 sin(4πx). (3.1.2)

Gaussian noise is then added to simulate measurement error. Furthermore we adopt a
model discrepancy, as per Eq. (2.1.51), δ = 0.5. We do this, since when we analyse mass
models, Ch. 4, we will also study the robustness of BMA when varying σ in Eq. (2.1.52)
Now let us consider two (rather extreme) cases: Imagine we have only a few, 5 data points
from equidistant x ∈ [−0.25, 0.5], and low precision, the added noise is ei ∼ N (0, 0.01),
i.e. an uncertainty of 0.1 ∼ 10 % of max(y) over the range, see Fig. 3.1.1.
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Figure 3.1.1: Toy model (dashed line) and simulated data points (blue
squares) with error bars showing 1 standard deviation. 5 data points, e ∼
N (0, 0.01)

The other scenario is a large number of measurements, n = 100 data points using
equidistant x ∈ [−0.25, 0.75], and high precision, the added noise is ei ∼ N (0, 0.001), an
uncertainty of 0.01 ∼ 1 % of max(y) over the range, see Fig. 3.1.2. An important question
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3. Bayesian Model Averaging

is which parameter values will make the model best fit the data. Then we can follow
the procedure in Sec. 2.1 and Sec. 2.1.2, in evaluating the posterior model probabilities,
Eq. (2.1.12) and (2.1.13) and (2.1.14). In order to do so we need to assign a parameter
prior, this must also be done before looking at the data.
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Figure 3.1.2: Toy model (dashed line) and simulated data points (blue
squares) with error bars showing 1 standard deviation. 100 data points,
e ∼ N (0, 0.001)

3.1.1 Choice of Parameter Prior
Depending on the data set the choice of parameter prior can have large effect. This we
can illustrate by comparing the results using different priors, i.e. how well the posterior
parameter distributions describe the data. Let us use an ignorant uniform prior, an
ignorant Gaussian prior, and a Zellner g-prior with g = n:

πU(α) = U [−10, 10]
πN, I(α) = N

(
α |0, 10 · 1

)
πN, Z(α) = N

(
α |0, g

[
ΦTΦ

]−1
) (3.1.3)

Focusing on a 5 parameter polynomial model, we can then use Eq. (2.1.22) and Eq. (2.1.47)
to extract posterior distributions for our parameters. That is, fitting f(x) = α0 + α1x +
α2x

2 + α3x
3 + α4x

4 to the data. Then we can compare this to the data and see how our
analysis performs. In Figs. 3.1.3, 3.1.4 and 3.1.5 we show the model that fits best with
the data, i.e. the one with highest posterior model probability.
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f(x) = 9.40x4

Figure 3.1.3: Fit using a uniform prior, shown with the expected value (red
line) and a shaded region (yellow band) of 1 standard deviation depicting
model uncertainty. The ’true model’ shown dashed. As expected from a
polynomial model it interpolates quite well but extrapolates very poorly.
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Figure 3.1.4: Fit using a Gaussian prior, shown with the expected value
(red line) and a shaded region (yellow band) of 1 standard deviations depict-
ing model uncertainty. The ’true model’ shown dashed. As expected from
a polynomial model it interpolates quite well but extrapolates very poorly.
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Figure 3.1.5: Fit using Zellner’s g-prior, shown with the expected value
(red line) and a shaded region (yellow band) of 1 standard deviations depict-
ing model uncertainty. The ’true model’ shown dashed. As expected from
a polynomial model it interpolates quite well but extrapolates very poorly.

In reality we will not know the ’true model’, we will not even know how far we actually are
from it, and we have limited means of checking if our model actually represents reality.
The only thing we can do is evaluate our model to data, and try to predict values prior
to performing experiments and then compare the results. In the examples above we can
see that for a small sample, different choices of parameter prior can alter the posterior
drastically.

3.1.2 Different Models
We often have more than one model. For a polynomial model we can create a ’family’ of
models which correspond to all the combinations of the basis functions. Our numbering
convention of models is based on the binary representation acting as a Boolean array. So
for our toy model f(x) = α0 + α1x + α2x

2 + α3x
3 + α4x

4 with 5 parameters there exists
25 − 1 = 31 different combinations thus allowing a 5 digit binary number to represent
each model. For example:

1110 = 010112 →��α0, α1,��α2, α3, α4 = α1, α3, α4 (3.1.4)

would be model 11. A very important property of Bayesian statistics is that we can
quantify our prior and posterior beliefs in the model we use. By Bayes theorem, Eq. (2.1.12),
we can calculate a posterior distribution for the models, Fig. 3.1.6, 3.1.7 and 3.1.8, here
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assuming a uniform model prior.
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Figure 3.1.6: Distribution of posterior model probability using a uniform
parameter prior, and a uniform model prior.

As we can discern in Fig. 3.1.6, 3.1.7 and 3.1.8 there can be several competing models
that in a sense equally well describe the data without being too complex. But here we
have neglected the correlation of basis functions, which for a polynomial is severe. Here a
model dilution prior can be employed to mitigate using highly correlated basis functions,
see Sec. 2.1.4.
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Figure 3.1.7: Distribution of posterior model probability using a Gaussian
parameter prior, and a uniform model prior.
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Figure 3.1.8: Distribution of posterior model probability using Zellner’s
g-prior for the parameters, and a uniform model prior.
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3.1.3 BMA
From above we know that several models can describe the data. Which model should we
select? A beautiful solution appears: model averaging, Sec. 2.1.4. We can combine the
predictions from all the models at our disposal and weight them according to how credible
the models are. See Fig. 3.1.9, 3.1.10, and 3.1.11.
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Figure 3.1.9: Fit of most probable model in top left, and BMA fit bottom
left, using the posterior model probability shown on the right. All using a
uniform parameter prior.

Since the Occam factor is different for different parameter priors the posterior distributions
for the models are different. An important observation is the increase of error band seen in
all Figs. 3.1.9, 3.1.10, and 3.1.11 when using BMA; most notably in 3.1.11. This extreme
error band is due to having competing models, which describe the data at hand equally
well, but extrapolate in vastly different directions.
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Figure 3.1.10: Fit of most probable model in top left, and BMA fit bottom
left, using the posterior model probability shown on the right. All using a
Gaussian parameter prior.
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Figure 3.1.11: Fit of most probable model in top left, and BMA fit bottom
left, using the posterior model probability shown on the right. All using a
Zellner’s g prior for the parameters.
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3.1.4 Importance of Having Enough Data
How will the analysis be different if we have a larger data set? An increase in the number
of data points will certainly make us more certain of any behaviour we observe. See
Fig. 3.1.12, 3.1.13, and 3.1.14 for the analysis performed on a large data set with small
data uncertainty.
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Figure 3.1.12: Fit of most probable model in top left, and BMA fit bottom
left, using the posterior model probability shown on the right. All using a
uniform parameter prior.

As expected from a polynomial model, of rather low degree, it has poor prediction. How-
ever the error bands of the most probable models seem to indicate we are quite certain.
Using BMA we can instead place a more reliable uncertainty on our fit, especially for the
extrapolation which is very poor. It still catches the behaviour of the data in general.

An important note here is that we use a model discrepancy, as Eq. (2.1.50) and Eq. (2.1.51).
This means we expect an error and therefore accept an error. This explains why the fits
in Fig. 3.1.12, 3.1.13 and 3.1.14 capture the linear dependency but neglects the sin(4πx).
We know the models are insufficient, and rule out overfitted models.
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Figure 3.1.13: Fit of most probable model in top left, and BMA fit bottom
left, using the posterior model probability shown on the right. All using a
Gaussian parameter prior.
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Figure 3.1.14: Fit of most probable model in top left, and BMA fit bottom
left, using the posterior model probability shown on the right. All using a
Zellner’s g prior for the parameters.
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4
Bayesian Analysis of the SEMF and

DZ10 Models

We have calibrated the parameters of the mass models using AME 1983,[11, 12] and then
evaluated the predictive capabilities of our models using the most recent mass data from
2016, i.e. AME 2016[13, 14]. We have also restricted ourselves to heavier nuclei, A > 40,
when analysing the SEMF as it is a leptodermous expansion; approximating the nucleus
as a liquid drop is less valid for light nuclei. The SEMF is an interesting model but not our
focus so we only include it for comparison. We now turn our focus to the more complex
DZ10 model, which we will assume to be a truly linear model. Choosing the parameter
priors

• wide uniform distribution,
πU(α) : αi ∈ [0, 300] for i = 1, . . . 10

• wide Gaussian distribution,
πN, ignorant(α) = N (0, 400 · 1)

• Zellner’s g-prior,
πN, Zellner(α) = N

(
0, g

[
ΦTΦ

]−1
)
, g =#data points

we can investigate the robustness of parameter estimation, and posterior distributions.
The number σ2 = (20 MeV)2 is to limit the reasonable parameter values to within 60 MeV
with 99.7 % degree of belief. Recall that for a large enough data set, the choice of
parameter prior distribution should not play a considerable role, see Sec. 3.1. As the
AME83(A > 40) contains mass data for 1399 isotopes with typically small experimental
uncertainty, of the order 10 keV, it is expected the parameter estimation will be rather
robust. For comparison the AME16(A > 40) contains mass data for 2241 isotopes with
slightly higher experimental precision. There is of course a possibility of adopting a phys-
ically inspired parameter prior but we first want to compare simpler priors.

In Sec. 2.1 we discussed the process of performing parameter estimation and calculating
posterior distributions for parameters, and even models. So we are fit for the task of
performing analysis of especially the DZ10 mass model using different priors. We denote
the binding energy measurements from AME83(A > 40) with d. We also combine the
measurement uncertainty and model discrepancy δ into a diagonal covariance matrix E.
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Varying the factor δ allows us to study the behaviour and robustness of the evidence
calculations. We have investigated values

δ = 0, 1, 2, 3, 4, 5 MeV (4.0.1)

For the uniform parameter prior, πU(α) : αi ∈ [0, 300] for i = 1, . . . 10, we have
Eq. (2.1.22) and (2.1.25), yielding the parameter posterior and model posterior distri-
butions, respectively. The wide Gaussian parameter prior, πN, wide(α) = N (0, 400 · 1),
and Zellner g-prior, πN, Zellner(α) = N

(
0, g

[
ΦTΦ

]−1
)
, also have closed form solutions

for all necessary posteriors, given by Eq. (2.1.47).

When we have calculated the posterior distributions for the parameters we can start
making predictions. We begin our study by first restricting ourselves to the most plausible
model, i.e. we have done model selection. Later we will choose all models and use BMA
to make predictions. We compare these predictions of nuclear binding energies with data
from AME16.

The primary goal is to study robustness of Bayesian analysis applied to nuclear mass
models and the influence of BMA.

To a posteriori estimate the model discrepancy we use the root-mean-square deviation
(RMSD) with respect to the training data

RMSD ≡
√

(d−Φα)2

#data points . (4.0.2)

This is evaluated for each model after performing parameter estimation. We then update
our belief in the model discrepancy, during predictions of nuclear binding energies.

4.1 Posterior Probability Distributions

We found that the distribution of the model posterior probabilities is rather narrow for
the DZ10 mass model, and almost all choices of parameter prior and model discrepancy
favour a near full DZ10 model. The agreement between a uniform parameter prior and
a Gaussian parameter prior is expected as they have, by design, similar and large ranges
within which we assume the parameters to have their ‘true’, physical, values. This yields
a Bayesian framework that knows very little about the physics and the posterior values
will be close to those that maximises the likelihood.

Our numbering convention of models is based on the binary representation acting as a
Boolean array. For a model with K parameters there exists 2K−1 different combinations
thus allowing a K digit binary number to represent each model. For example:

35910 = 01011001112 → α2, α4, α5, α8, α9, α10 (4.1.1)
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For a wide uniform parameter prior, model number 1015 is by far the most plausible for
a model discrepancy in the range δ = 0, 1, 2, 3 MeV. That means including the terms
proportional to α1, α2, α3, α4, α5, α6, α8, α9, α10, only omitting the, spherical, S3 surface
term. Then for the δ = 3 MeV the 1011 model attains a non-negligible probability. For
δ = 4, 5 MeV this model dominates. It includes the terms proportional to α1, α2, α3, α4,
α5, α6, α9, α10, now omitting also the spherical QQ term.

The wide Gaussian parameter prior favours, without competition, model 1021 for a model
discrepancy of δ = 0, 1, 2, 3, 4 MeV and is a close runner up even for 5 MeV. This
corresponds to α1, α2, α3, α4, α5, α6, α7, α8, α10, omitting the QQ deformed term of
the Hamiltonian. For δ = 5 MeV the 1005 is slightly favoured over the 1021 model, both
with about 40 % posterior probability and a third model 1007 at around 10 %. Model
1005 corresponds to α1, α2, α3, α4, α5, α7, α8, α10, i.e. omitting the QQ deformed
term as for lower model discrepancy but now also the spherical S3 volume term from the
Hamiltonian. Model 1007 corresponds to α1, α2, α3, α4, α5, α7, α8, α9, α10, i.e. allowing
the QQ deformed term again and only omitting the spherical S3 volume term.

Onto the g-prior, which for a model discrepancy δ = 0 MeV model 1021 dominates. Same
as for the wide Gaussian parameter prior, excluding the QQ deformed term from the
Hamiltonian. But increasing to δ = 1 MeV model 895 dominates. Which corresponds
to α1, α2, α4, α5, α6, α7, α8, α9, α10, i.e. including the QQ deformed term and now
omitting the master FM surface term of the Hamiltonian. Then for δ = 2, 3 MeV model
894 is dominating. This corresponds to α1, α2, α4, α5, α6, α7, α8, α9, now besides the
FM surface terms also omitting the pairing term. For δ = 4 MeV model 886 dominates.
Corresponding to α1, α2, α4, α5, α6, α8, α9, i.e. omitting the FM surface, the pairing
terms and also the spherical S3 surface term is excluded. For a discrepancy of δ = 5 MeV
model 870 dominates. Which corresponds to α1, α2, α4, α5, α8, α9, now omitting the FM
surface, S3 surface and pairing terms also the S3 volume term is rejected.

This behaviour of eliminating parameters when allowing a larger model discrepancy is an-
ticipated, and to some extent wanted, since it displays the uncertainty in those parameters
of the DZ10 mass model. An interesting result is that the full DZ10 model is never close
to being favoured. This implies a redundancy, or overfitting in the DZ10 model. Overall
the different parameter priors and prior model discrepancies always keep the α1, α2, α4,
α5, α8 parameters, i.e. the Coulomb term, master FM and SO term, isospin/symmetry
volume and Wigner term, isospin/symmetry surface term, QQ spherical term. The Cou-
lomb, the FM part and isospin/symmetry terms exist also in the SEMF model; the SO
part and isospin/symmetry term are correctional terms and the QQ spherical term has
no counterpart in the SEMF.

4.2 Predicting Binding Energies

Using the posterior model distributions to either choose a model or average over them
all, when more than one model has non-negligible model posterior, we can with their
respective parameter posterior distributions predict nuclear binding energies. Then ap-
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proximating the model discrepancy using the RMSD, Eq. (4.0.2) with respect to training
data, the posterior predictive distribution of nuclear binding energies can be evaluated,
using Eq. (2.1.54) and Eq. (2.1.47). In Fig. 4.2.1 the prediction of nuclear binding energies
is compared to the stable nuclei in AME16, by plotting the deviation

∆BE = experimental value−model prediction. (4.2.1)

The RMSD values with respect to AME83 and AME16 are also shown along with the
estimation of parameters used. We can note that the value of posterior RMSD with respect
to training data, 3071 keV, is close to the assigned prior model discrepancy, 3000 keV. We
can note the apparent overestimation of binding energy, but only speculate the reasons.
It may very well come from the model being fitted to AME83 and compared to AME16.
But most likely it is indicative of the inability of the model to describe nuclear masses far
away from magic numbers.
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Figure 4.2.1: Comparison of AME16 and predicted binding energy using
DZ10, trained on AME83 heavy nuclei (A > 40) using an ignorant Gaussian
parameter prior and a prior model discrepancy of 3 MeV, ∆BE = AME16−
model. The posterior discrepancy is estimated by RMSD, shown in figure
when compared to training data AME83 and also AME16. The parameter
values for the present model are shown above the plot. Note the scale of
∆BE.

For a uniform parameter prior the posterior value of RMSD remains within 2.2 MeV–
3.5 MeV with a mean of 2.9 MeV. Using a wide Gaussian parameter prior we instead get
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a posterior RMSD in the region of 2.3 MeV–3.8 MeV with a mean of 3.0 MeV. The g-prior
have a much higher posterior RMSD value 3.8 MeV–7.2 MeV with a mean 6.3 MeV. All
of these stand in contrast to the RMSD of magnitude 700 keV claimed in [3]. The major
difference is that Duflo and Zuker created a Hamiltonian based on physics, and then
extracted the parameters values from their models fit to data. Herein, adopting Bayesian
approach, we instead rely on which model we believe in given our priors, rather than the
purely best fitting model. The most probable models, along with their parameters and
the posterior RMSD with respect to AME16 for different choices of parameter prior and
assigned prior model discrepancy is presented in Tab. 4.2.1

For comparison the corresponding scenario is shown for the SEMF in Fig. 4.2.2, but
note the different scale of ∆BE. The pattern of failure to describe the underlying shell
structure of nuclei is clearly visible in the regions of underestimated binding energy. The
DZ10 model incorporates based on a harmonic oscillator some shell structure. A notable
result is that all parameters of the SEMF are retained in the BMA, in contrast to the
more complex DZ10 model.
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Figure 4.2.2: Comparison of AME16 and predicted binding energy using
SEMF, trained on AME83 heavy nuclei (A > 40) using a wide Gaussian
parameter prior and a model discrepancy of 3 MeV, ∆BE = AME16−model.
The posterior discrepancy is estimated by RMSD, shown in figure, compared
to training data AME83 and also AME16. The parameter values for the
present model are shown above the plot. Note the scale of ∆BE.
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4. Bayesian Analysis of the SEMF and DZ10 Models

4.3 Binding Energies Across the Tin Isotopic Chain

We now focus on the tin isotopic chain, 50Sn which has a magic number of protons. In
Fig. 4.3.1 the binding energy per nucleon is shown, together with the parameters for the
model prediction and the associated RMSD. Data from AME16 is shown in blue with error
bars corresponding to 3 standard deviations, though they are not visible at this scale. The
top plot also shows the most probable model, in yellow, with 3 standard deviation error
bars, and filled markers represent predictions for isotopes present in AME83 and hollow
markers represent new isotopes only in AME16. The model does not seem to display any
difference in predictive power for interpolation or extrapolation, though the extrapolation
is not far. There is no noteworthy difference when applying BMA as can be seen in
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Figure 4.3.1: Comparison of AME16, blue hollow triangles, and predicted
binding energy per nucleon for tin isotopes. Models trained on AME83
heavy nuclei (A > 40) using a wide Gaussian parameter prior and a model
discrepancy of 3 MeV. Filled squares denote interpolated prediction and
hollow squares extrapolation. Both data and prediction is shown with error
bars of 3 standard deviations. Top panel: most probable model. Bottom
panel: BMA.
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4. Bayesian Analysis of the SEMF and DZ10 Models

Fig. 4.3.1 in bottom plot. This is due to the most probable model by far dominates over
the other models.

An important observation is that even though we omit α9, i.e. the QQ deformed term,
we still describe the behaviour of the binding energy. But magic cores are not expected
to be deformed, so it would have been a surprise to see anything else. However, this may
very well mean reduced performance when extrapolating to nuclei far from stability.

4.4 The Neutron Drip Line
We have some trust in our parameter estimation although we have quite large uncertainties
in the predictions. These uncertainties describe a credibility region for predicted nuclear
binding energies. Calibrating on AME16 now, we can use the present day knowledge to
search for the location of the neutron drip line. In AME16 there is listed a total of 36
tin isotopes, ranging from the doubly magic isotope with N = 50 neutrons to the most
neutron rich isotope with N = 85 neutrons, which does not mark the neutron drip lines.

Negative neutron separation energies, i.e.

S1n = BE(Z, N)− BE(Z, N − 1) (4.4.1)

S2n = BE(Z, N)− BE(Z, N − 2) (4.4.2)

define the neutron drip line.

In Fig. 4.4.1 the prediction of the neutron drip line is shown using AME16 as training
data and a Gaussian parameter prior together with a prior model discrepancy of 3 MeV.
This is near the mean of posterior RMSD with respect to training data, Tab. 4.2.1,
when calibrating using AME83. It is also close to the posterior RMSD with respect to
prediction onto AME16, when calibrating using AME83. Using the RMSD with respect
to calibration data can give a misleadingly small value, this is seen in Tab. 4.2.1 as the
RMSD with respect to prediction of AME16 is almost always larger than RMSD with
respect to AME83 (A > 40). The posterior RMSD with respect to calibration data
AME16 is 2003 keV. Error bars corresponding to 3 standard deviations are shown, i.e.
approximately 99.7 % credibility region for the most probable model in the top panel and
for BMA in the bottom panel. The most plausible 1-neutron drip line seems to be located
at N = 123, but within errors the drip line might enter as early as N = 69 and the very
slight possibility of a small island of stability near N = 221. The 2-neutron drip line is
predicted to be at = 115, but possibly earlier at N = 81 or later N = 153 is plausible.
Limiting to a region of 1 standard deviation, i.e. a 68 % credibility interval, the region of
the 1 neutron drip line is shrunk to N = 95–125 and the 2 neutron drip line to N = 103–
125. We do know that the drip line is not as early as N = 69, this just shows the large
uncertainty of these particular nuclear mass models. BMA has only a very small effect,
in the analysis of the drip line, it does not shift the expected value but it does reduce the
upper region of it just slightly. The 1 neutron drip line from N = 221 to N = 219 and
the 2 neutron drip line from N = 153 to N = 152.
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Figure 4.4.1: Left: Neutron drip line for tin (Z = 50), DZ10 trained
on AME16 using a wide Gaussian parameter prior and assigned model dis-
crepancy of δ = 3 MeV. The posterior RMSD with respect to AME16 is
2003 keV. Zero separation energy marked by the horizontal dashed line and
the end of known stable nuclei listed in AME16, 135

50 Sn marked by the ver-
tical dashed line. Prediction plotted with 3 standard deviation error bars.
Top left: most probable model. Bottom left: BMA. Right: Model posterior,
showing two competing models, but the effects of BMA seems to be small.
The parameters of the most plausible model are displayed above.

For comparison we have also predicted the neutron drip line using the SEMF when assign-
ing a prior model discrepancy of 3 MeV, as shown in Fig. 4.4.2. The predicted separation
energies clearly show how the SEMF does not describe any shell structure of the nucleus,
as it describes a rather smooth decay. The fit is also quite uncertain which places a
large region of plausibility on the neutron drip line, so we limit ourselves to 1 standard
deviation, i.e. approximately a 68 % credibility region, to draw some conclusions. The 1
neutron drip region may be from N = 81 to N = 239 with an expected value of N = 119.
The 2 drip region may be as low as N = 90 up to N = 142 with an expected value
of N = 110. Since the full SEMF is the most plausible model, the effects of BMA are
negligible.

We can note here that both the DZ10 model and the SEMF, using our Bayesian calibration
of parameters, predict the neutron drip line to be in the vicinity of N ≈ 110–120 and may
stretch up to N ≈ 150–240. While the lower limit may be around N = 90. Extremely
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Figure 4.4.2: Left: Neutron drip line for tin (Z = 50), SEMF trained on
AME83 using δ = 3 MeV. Zero separation energy marked by the horizontal
dashed line and the end of known stable nuclei listed in AME16, 135

50 Sn,
marked by the vertical dashed line. Prediction plotted with 1 standard
deviation error bars for inference. Top left: most probable model. Bottom
left: BMA. Right: Model posterior, showing that one model dominates, thus
rendering BMA almost redundant.

large errors, as expected, we assigned a prior model discrepancy of δ = 3 MeV and the
posterior RMSD = 6096 keV with respect to AME16.

4.5 Analysing DZ10 for Proton Number Z ≤ 50
In the previous sections we have assumed the DZ10 model to be linear, although this is
not the case. Recall Eq. (2.2.17), that it actually calculates two Hamiltonians and selects
the one which yields the maximum binding energy. But, as seen in the code, App. B,
Duflo & Zuker decided that isotopes with proton number Z ≤ 50 are not associated with
deformation. This allows us to correctly analyse a linear ‘DZ9’ mass model to assess
the naive approach of assuming a truly linear DZ10 model. Comparing Fig. 4.3.1 with
Fig. 4.5.1, we can see that the RMSD is slightly lower for the most probable model, top
panel. But the more prominent feature is the effect of BMA, as there are more credible
models available. Here BMA accomplishes a smaller RMSD while increasing the region
of uncertainty. This DZ9 model seems to better interpolate for stable nuclei, while only
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Figure 4.5.1: Comparison of AME16, blue hollow triangles, and predicted
binding energy per nucleon for tin isotopes. Models trained on AME83
light nuclei (Z ≤ 50) using a wide Gaussian parameter prior and a model
discrepancy of 3 MeV. Filled squares denote interpolated prediction and
hollow squares extrapolation. Both data and prediction is shown with error
bars of 3 standard deviations. Top panel: most probable model. Bottom
panel: BMA.

considering spherical properties.

Assuming the DZ10 model to be linear appears, of course not optimal, but adequate as an
indicative tool; it captures aspects of both the spherical and the deformed Hamiltonian
while this DZ9 model only captures the spherical part. Furthermore, using the Bayesian
approach we have quantified the uncertainties of our models and predictions. If we were to
investigate an isotopic chain with Z > 50 the effects are expected to be more noticeable.
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5
Conclusions and Outlook

In this thesis we have studied the DZ10 mass model and the SEMF in a Bayesian frame-
work for different choices of parameter prior, assuming both of them being linear models.
We have also assigned and varied a prior model discrepancy in the models we investigate.
When using wide uniform and Gaussian parameter priors, the posterior distribution for
parameters and models does not vary much for different choices of prior model discrep-
ancy. This is quite expected with the amount of data at hand and these choices are
similar. The Zellner g-prior on the other hand varies much with the different choices
of prior model discrepancy. It is designed to renormalise the parameter prior according
to the basis functions. At the start of the project, and when analysing toy models, the
g-prior seemed promising, not so different from the uniform or Gaussian priors. But the
Zellner g-prior does exhibit a wanted property to an extent more than the uniform or
Gaussian, in that it rejects parameters when increasing the prior model discrepancy. Dis-
missing parameters, as they add complexity, gives us information about the credibility of
the parameters, but of course increasing posterior RMSD. The Zellner g-prior posterior
RMSD is larger than the prior assigned model discrepancy. In contrast the wide uniform
and Gaussian parameter priors have more or less stable posterior RMSD for all values
of prior model discrepancy. A guess is that varying the model discrepancy in the range
[0, 5] MeV is too much when using the g-prior, and a more narrow, informed, region is
then more suited. The stability of the posterior RMSD near 3 MeV for the wide uniform
and Gaussian parameter priors, when varying the a priori assigned model discrepancy
indicates that the DZ10 has a naturally large discrepancy due to physical reasons, see
Tab. 4.2.1.

In terms of posterior RMSD, with respect to calibration data as well as with respect to
AME16, the wide uniform and Gaussian parameter priors outperform the Zellner g-prior,
see Tab. 4.2.1. The Zellner g-prior is noticably poor at predicting compared to using
Gaussian or uniform priors. But as the g-prior more fiercely omits terms we may learn
more from it. In viewing the posterior model distributions it seems the belief in some
terms is greater:

α1, α2, α4, α5, α8

Coulomb, FM and SO, symmetry volume,

symmetry surface and Wigner, QQ spherical

(5.0.1)

This means a reduction from 10 parameters to 5 parameters of higher credibility, Eq. (5.0.1).
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This, of course, is only a statement that their plausibility is greater than that of the terms
omitted. In our analysis the following terms were deemed less credible:

α3, α6, α7, α9, α10 (5.0.2)

FM surface, S3 volume, S3 surface, QQ deformed, pairing (5.0.3)

Our analysis has been restricted to using mass data of heavier nuclei, AME83 A > 40.
Surface terms are merely corrections to the volume terms and their effects lessen with
larger mass number, A. So it is reasonable surface terms are excluded in favour for volume
terms. There is more mass data in AME16, and perhaps a larger number of deformed
nuclei compared to AME83. This would imply the importance of the QQ deformed
term may be underestimated. The exclusion of the pairing term is rather surprising but
compared to the other terms its effects may be negligible, as it seems.

Several models based on the g-prior have, from a physical point of view, an unexpected
posterior parameter distribution. For an example, the Coulomb term is lower than what
we from standard arguments can estimate. Most likely it points to the fact that the model
contains terms which equally well describe behaviour of nuclear binding energies.

Drawing a concrete conclusion regarding the neutron drip line for the tin isotopic chain
is hard as the credibility region is wide. But it seems as if it is in the vicinity of the
claimed magic numbers N = 114 and 126 with the faint possibility of having an island of
stability around N = 220. The more reasonable N ≈ 115–123, seems to agree with other
sources.[6, 7]

As we have assumed the DZ10 model to be linear we have introduced an error, as it
compares a Hamiltonian for spherical nuclei and a Hamiltonian for deformed nuclei. This
could be a plausible explanation of the posterior RMSD near 3 MeV, as the two Hamilto-
nians differ to some extent, but not extremely. When restricting to investigating nuclei
with proton number Z ≤ 50 the DZ10 model reduces to a 9 parameter model, neglecting
any deformation, as these are not associated to deform according to Duflo and Zuker,
App. B. Most likely, assuming spherical nuclei, when predicting binding energies beyond
stable isotopes and higher neutron excess, is sub-optimal but it serves as an indicative
prediction. Furthermore the difference in predicted binding energy is not severe, compar-
ing this DZ9 model using AME83 Z ≤ 50 and the DZ10 model using AME83 A > 40. A
slight decrease in RMSD, i.e. better interpolation, for the DZ9 model along the tin iso-
topic chain. Albeit the DZ10 model still captures some aspects of the deformation effects,
thus it could possibly have better extrapolation properties. The effects of BMA on the
DZ9 model is greater compared to the DZ10 model as there are more plausible models,
omitting one parameter. Prediction of neutron drip line is not affected to great extent;
the expected location is shifted by one or two neutrons for both the one-neutron drip line
and the two-neutron drip line, well within uncertainties of using the DZ10 model. The
major difference is that the importance of considering deformation is increasing with the
number of neutrons as the proton number is constant, this is not taken into consideration
in the DZ9 model. The prediction of separation energy using the DZ9 model does not
decline as rapidly as the DZ10 model; similar to the SEMF it seems to stabilise around
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some negative value. This pushes the upper bound of the location of the neutron drip
lines as the error bar is wide. Yet from a physical perspective it is quite unreasonable
that we would have stable isotopes for any number of neutrons.

Future Prospects
First it would be interesting to perform a Bayesian analysis of the DZ10 model for the
entire chart of nuclides, not assuming linearity. However, this imposes numerical methods
for the evidence calculations, and as a consequence more computational power and time.

One natural outlook is to investigate other priors. Investigating a physically inspired
prior is possible, but demands an analysis of the mathematics and physics behind the
formulas. A more thorough, in-depth, exploratory analysis would improve the results,
in the sense that more informed priors yield more reliable posteriors. We have also
assumed the amount of data to outweigh the prior dependency, in order to set a fixed
value on the model discrepancy a priori and estimating it a posteriori using RMSD.
This appears reasonable for our wide uniform and Gaussian priors but not the Zellner
g-prior. In an extended analysis we can use a Gaussian-inverse-gamma prior which is the
conjugate prior of a Gaussian likelihood with unknown mean and variance. An even more
formidable prior is the Gaussian-inverse-Wishart distribution which is the conjugate to
a multivariate Gaussian likelihood, allowing a unknown covariance matrix. Also, from
a physics perspective we should restrict the sign of parameters, a Gaussian parameter
prior is actually not fully suitable as it always allows for negative numbers. Nevertheless
investigating the performance and results of using a Gaussian-inverse-Wishart distribution
would indeed be interesting.

Another, very interesting, possible future project is calculating the neutron drip line for the
entire chart of nuclides. Albeit an analysis of other priors should come first, investigating
the drip line at the current stage could give an indication of its location.

Performing a Bayesian calibration on the DZ33 model is an interesting possibility, es-
pecially in determining the relevance of the 33 parameters. Given the large number of
parameters it will certainly be able to more correctly determine nuclear binding energies.
From a computational perspective one of the problems that arise is the curse of dimen-
sionality. The computational power needed to calculate posterior distributions for models
with up to 33 parameters, and to evaluate model and parameter posterior distributions,
which requires matrix inversions, is vast. Especially when performing calculations for all
233−1 = 8 589 934 591 (8 billion 589 million 934 thousand 591) models. The time it takes
quickly becomes unfeasible, and numerical methods such as Markov chain Monte Carlo
model composition, (MC)3, could be used to mitigate such problems.[1]

Of course BMA can be applied to more complex, and non-linear models. However, for
a non-linear model the posterior distributions may be impossible to evaluate analytic-
ally, and instead numerical evaluations are necessary, e.g. Markov Chain Monte Carlo
(MCMC), or nested sampling[16, 29] must be employed.
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A
DZ10 Mass Model
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The numbering of parameters is to conform with those of Duflo & Zuker in the original
paper as well as their code. [3, 4, 30]
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B
DZ10 Code

module dz_models

contains
! sub rou t ine du f l o (nn , nz , exc )
! c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−c
! c F i l e "du_zu_10 . f eb96 " c
! c c
! c J . Duf lo and A.P. Zuker Feb 23 , 1996 10 parameters formula c
! c Reference : c
! c Phys . Rev . C52 , 1995 ( f o r the 28 param . formula ) c
! c and Pr iva t e Communication to AMDC, February 1996. c
! c c
! c Microscopic c a l c u l a t i o n o f nuc l ear masses wi th 10 c
! c parameters . F i t to the 1810 measured masses from Helium−4 c
! c and up wi th a root−mean−square d e v i a t i on ( rms) o f 506 keV . c
! c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−c

subroutine dz10 (b , nx , nz ,E) ! Duflo−Zuker f e v r i e r 1996

implicit none

double precision : : a , t , r , rc , ra , e
integer : : nn ( 2 ) , nx , nz , z2 , n2 ( 2 ) , ncum
integer : : ndef , ju , kk , j , l , noc (18 , 2 ) , i2 , imax
integer : : ip , ipm , mss , pi , k , i , id
double precision : : px ,vm, de , den , fac t ,moc

! c Ca l cu l a t i on o f b ind ing energy E (nx neutrons , nz protons )
double precision : : b (10 ) , dyda (10 ) , y ( 2 ) , onp ( 0 : 8 , 2 , 2 ) &

, op (2 ) , dx (2 ) , qx (2 ) , os ( 2 ) , o e i ( 2 ) , de i ( 2 ) , pp (2 )
! data b /0 .7043 ,17 .7418 ,16 .2562 ,37 .5562 ,53 .9017 ,0 .4711 ,2 .1307 , &
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! 0 .0210 ,40 .5356 ,6 .0632/
! c ∗∗∗∗∗∗∗∗∗
nn(1)=nx
nn(2)=nz
a=nx+nz
t=abs (nx−nz )
r=a ∗ ∗ ( 1 . / 3 . )
rc=r ∗(1 .− .25∗( t /a )∗∗2) ! Charge rad ius
ra=(rc ∗ rc )/ r
! c−−−−−−−−
z2=nz ∗( nz−1)
dyda(1)=(−z2+.76∗ z2 ∗ ∗ ( 2 . / 3 . ) ) / rc ! Coulomb energy
! c ∗∗∗∗∗∗∗∗ ! beg inn ing o f main loop
do ndef=1,2 ! ndef=1 s p h e r i c a l

ju=0 ! ndef=2 deformed
y ( ndef )=0.
i f ( ndef . eq . 2 ) ju=4 ! nuc leons a s s o c i a t e d to deform .
do kk=2,10

dyda ( kk )=0.
enddo
! c−−−−−−−− ! b eg inn ing o f loop over N and Z
do j =1,2

do l =1 ,18
noc ( l , j )=0

enddo
do l =1,2

do k=0,8
onp (k , l , j )=0.

enddo
enddo
n2 ( j )=2∗(nn( j )/2) ! ( f o r pa i r i n g c a l c u l a t i o n )
ncum=0
i=0
! c−−−−−−−−

20 i=i+1 ! sub−s h e l l s ( ssh ) j and r f i l l i n g
i 2=( i /2)∗2
i f ( i 2 .ne . i ) then

id=i+1 ! f o r ssh j
else

id=i ∗( i −2)/4 ! f o r s s c r
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endif
ncum=ncum+id
i f (ncum . l t . nn ( j ) ) then

noc ( i , j )= id ! nb o f nuc leons in each ssh
go to 20

endif
! c−−−−−−−−
imax=i+1 ! imax = l a s t s u b s h e l l nb
ip=( i −1)/2 ! HO number (p )
ipm=i /2
pp( j )= ip
moc=nn( j )−ncum+id
noc ( i , j )=moc−ju ! nb o f nuc leons in l a s t ssh
noc ( i +1, j )=ju
i f ( i 2 .ne . i ) then ! s sh j

o e i ( j )=moc+ip ∗( ip−1) ! nb o f nuc leons in l a s t EI s h e l l
de i ( j )= ip ∗( ip+1)+2 ! s i z e o f the EI s h e l l

else ! s sh r
o e i ( j )=moc−ju ! nb o f nuc leons in l a s t EI s h e l l
de i ( j )=( ip +1)∗( ip+2)+2 ! s i z e o f the EI s h e l l

endif
qx ( j )=oe i ( j ) ∗ ( de i ( j )−o e i ( j )− ju )/ de i ( j ) ! n∗(D−n)/D S3( j )
dx ( j )=qx ( j )∗(2∗ o e i ( j )−de i ( j ) ) ! n∗(D−n)∗(2n−D)/D Q
i f ( ndef . eq . 2 ) qx ( j )=qx ( j )/ sqrt ( de i ( j ) ) ! s c a l i n g f o r deformed
! c−−−−−−−−
do i =1, imax ! Amplitudes

ip=( i −1)/2
f a c t=sqrt ( ( ip +1.)∗( ip +2.))
onp ( ip , 1 , j )=onp ( ip , 1 , j )+noc ( i , j )/ f a c t ! f o r FM term
vm=−1.
i f ( ( 2∗ ( i / 2 ) ) .ne . i )vm=.5∗ ip ! f o r spin−o r b i t term
onp ( ip , 2 , j )=onp ( ip , 2 , j )+noc ( i , j )∗vm

enddo
! c−−−−−−−−
op ( j )=0.
os ( j )=0.
do ip=0,ipm ! FM and SO terms

pi=ip
den=(( p i +1)∗( p i +2) )∗∗ (3 . /2 . )
op ( j )=op ( j )+onp ( ip , 1 , j ) ! FM
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os ( j )=os ( j )+onp ( ip , 2 , j )∗(1.+onp ( ip , 1 , j ) ) ∗ ( p i ∗ p i /den ) & ! SO
+onp ( ip , 2 , j )∗(1.−onp ( ip , 1 , j ) ) ∗ ( ( 4 ∗ pi−5)/den )

enddo
op ( j )=op ( j )∗ op ( j )

enddo
! c−−−−−−−− ! end o f loop over N and Z
dyda(2)=op(1)+op (2) ! Master term (FM) : volume
dyda(3)=−dyda (2)/ ra ! s u r f a c e
dyda(2)=dyda(2)+ os (1)+ os (2 ) ! FM + SO
dyda(4)=− t ∗( t +2)/( r ∗ r ) ! i s o s p i n term : volume
dyda(5)=−dyda (4)/ ra ! : s u r f a c e
i f ( ndef . eq . 1 ) then ! sph .

dyda(6)=dx(1)+dx (2) ! S3 volume
dyda(7)=−dyda (6)/ ra ! s u r f a c e
px=sqrt (pp(1))+ sqrt (pp ( 2 ) )
dyda(8)=qx (1)∗ qx (2)∗(2∗∗ px ) ! QQ sph .

else ! d e f .
dyda(9)=qx (1)∗ qx (2 ) ! QQ deform .

endif
dyda(5)= t∗(1− t )/ ( a∗ ra ∗∗3)+dyda (5 ) ! "Wigner term "
! c−−−−−−−− ! PAIRING
i f ( n2 ( 1 ) .ne . nn ( 1 ) .and . n2 ( 2 ) .ne . nn ( 2 ) ) dyda(10)= t /a
i f ( nx . gt . nz ) then

i f ( n2 ( 1 ) . eq . nn ( 1 ) .and . n2 ( 2 ) .ne . nn ( 2 ) ) dyda(10)= 1−t /a
i f ( n2 ( 1 ) .ne . nn ( 1 ) .and . n2 ( 2 ) . eq . nn ( 2 ) ) dyda(10)= 1

else
i f ( n2 ( 1 ) . eq . nn ( 1 ) .and . n2 ( 2 ) .ne . nn ( 2 ) ) dyda(10)= 1
i f ( n2 ( 1 ) .ne . nn ( 1 ) .and . n2 ( 2 ) . eq . nn ( 2 ) ) dyda(10)= 1−t /a

endif
i f ( n2 ( 2 ) . eq . nn ( 2 ) .and . n2 ( 1 ) . eq . nn ( 1 ) ) dyda(10)= 2−t /a
! c−−−−−−−−
do mss=2,10

dyda (mss)=dyda (mss )/ ra
enddo
do mss=1,10

y ( ndef )=y( ndef )+dyda (mss )∗b(mss )
enddo
! c−−−−−−−− ! end o f main loop

enddo
de=y(2)−y (1 )
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E=y (2) ! Binding Energy f o r de f . nu c l i d e s
i f ( de . le . 0 . . or . nz . le . 5 0 )E=y (1) ! s p h e r i c a l nu c l i d e s

return
end subroutine dz10
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