

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, January 2012

Self-* Pulse Synchronization for Autonomous
TDMA MAC in VANETs
Master of Science Thesis in Computer Science and Engineering

Mohamed Hassan Mustafa

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Self-* Pulse Synchronization for Autonomous TDMA MAC in VANETs

Mohamed Hassan Mustafa

© Mohamed Hassan Mustafa, January 2012.

Examiner: Elad Michael Schiller

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden January 2012

Abstract

The problem of local clock synchronization is studied in the context of media access control
(MAC) protocols, such as time division multiple access (TDMA), for dynamic and wireless ad
hoc networks. In the context of TDMA, local pulse synchronization mechanisms let neighbor-
ing nodes align the timing of their packet transmissions, and by that avoid transmission inter-
feres between consecutive timeslots. Existing implementations for Vehicular Ad-Hoc Networks
(VANETs) assume the availability of common (external) sources of time, such as base-stations
or geographical positioning systems (GPS). This work is the first to consider autonomic design
criteria, which are imperative when no common time sources are available, or preferred not to
be used, due to their cost and signal loss.

We present self-⋆ pulse synchronization strategies. Their implementing algorithms consider
the effects of communication delays and transmission interferences. We demonstrate the algo-
rithms via extensive simulations in different settings including node mobility. We also validate
these simulations in the MicaZ platform, whose native clocks are driven by inexpensive crys-
tal oscillators. The results imply that the studied algorithms can facilitate autonomous TDMA
protocols for VANETs.

Key words: Pulse Synchronization, Clock Synchronization, TDMA Timeslot Alignment,
MANETs, VANETs

3

Acknowledgments

I am heartily thankful to my supervisor, Elad Michael Schiller, whose encouragement, guidance
and support from the initial to the final level enabled me to develop an understanding of the
subject. I am also thankful to Marina Papatriantafilou and Philippas Tsigas for their valuable
support and suggestions. And my thanks to Mitra Pahlavan and Amir Tohidi for many fruitful
discussions.

Last but not least I wish to avail myself of this opportunity and express a sense of gratitude and
love to my beloved family and friends for their priceless support, strength and prayers.

Gothenburg, Sweden

January 25, 2012

4

Contents

1 Introduction 7
1.1 Related work . 9

2 Preliminaries 10
2.1 Time, clocks, and synchrony bounds . 10
2.2 Pulses . 11
2.3 The MAC layer . 11
2.4 Task definition . 12

3 Algorithmic Strategies for Pulse Synchronization 13
3.1 Cricket strategy . 13
3.2 Local dominant pulses . 15
3.3 Global dominant pulses . 15
3.4 Grasshopper strategy . 16

4 Strategies Implementation 18
4.1 Platform and architecture . 18
4.2 Pulse overshooting . 18
4.3 Mitigating synchrony bound jitter . 19
4.4 Memory consumption . 20
4.5 Algorithm pseudocode . 20

5 Experimental Evaluation 23
5.1 Experiments design . 23

5.1.1 Experiment and control test for dependency (1) 24
5.1.2 Experiment and control test for dependency (2) 24

5.2 Simulation experiments . 24
5.2.1 Single-hop Ad Hoc Network . 25
5.2.2 Multi-hop Ad Hoc Network . 27

5

5.2.3 Mobile Ad Hoc Network . 27
5.3 Testbed experiments . 29

6 Discussion 31

6

Chapter 1

Introduction

Recent work on vehicular systems explores a promising future for vehicular communications.
They consider innovative applications that reduce road fatalities, lead to greener transportation,
and improve the driving experience, to name a few. The prospects of these applications depend
on the existence of predictable communication infrastructure for dynamic networks. We con-
sider time division multiple access (TDMA) protocols that can divide the radio time regularly
and fairly in the presence of node mobility, such as Chameleon-MAC [9]. The studied problem
appears when neighboring nodes start their broadcasting timeslots at different times. It is im-
perative to employ autonomous solutions for timeslot alignment when no common (external)
time sources are available, or preferred not to be used, due to their cost and signal loss. We
address the timeslot alignment problem by considering the more general problem of (decen-

tralized) local pulse synchronization. Since TDMA alignment is required during the period
in which communication links are being established, we consider non-deterministic commu-
nication delays, the effect of transmission interferences and local clocks with arbitrary initial
offsets, see Section 2. We propose autonomous and self-⋆ algorithmic solutions that guarantee
robustness and provide an important level of abstraction as they liberate the system designer
from dealing with low-level problems, such as availability and cost of common time sources,
see Section 3. Our contribution also facilitates autonomous TDMA protocols for Vehicular
Ad-Hoc Networks (VANETs), see Section 5.

Let us illustrate the problem and the challenges of possible strategies using an example. Con-
sider three neighboring stations that have unique timeslot assignment, but their timeslots are
not well-aligned, see figure 1.1. Packet transmissions collide in the presence of such con-
current transmissions. Suppose that the stations act upon the intuition that gradual pairwise
adjustments are most preferable. Station pk is the first to align itself with its closest neighbor,
pj , see figure 1.2. Next, pj aligns itself with pi and by that it opens a gap between itself and pk.

7

ip

jp

kp

Figure 1.1: Unaligned TDMA timeslots. Solid and dashed lines stand for transmission, and
respectively, idle radio times.

ip

jp

kp

ip

jp

kp
jp

kp

ip jp,

kp

ip
jp

kp
ip
jp kp,

ip
jp

kp kp
ip jp,

ip

Figure 1.2: The cricket strategy. Solid and dashed lines stand for transmission, and respec-
tively, idle radio times. The circles above the solid boxes represents the node’s view on its
neighbors’ TDMA alignment at the start of its broadcasting timeslot. Gaps between two solid
boxes represent alignment events.

Then, pk aligns itself with pi and pj . The end result is an all aligned sequence of timeslots. We
call this algorithmic approach the cricket strategy.

We observe that the convergence process includes a chain reactions, i.e., node pk aligns itself
before and after pj’s alignment. One can foresee the outcome of such chain reactions and let pj
and pk to concurrently adjust their clock according to pi. We name this algorithmic approach
the grasshopper strategy, because grasshoppers jump further than crickets. We demonstrate
that the latter strategy is faster, see Section 5. This improvement comes at the cost of additional
memory and processing requirements.

We integrate the proposed algorithms with the Chameleon-MAC [9], which is a self-⋆, mobil-
ity resilient, TDMA protocol. After extensive simulations and testbed experiments with and
without mobility, we observe tight alignment among the timeslots, and high throughput of the

8

MAC protocol.

1.1 Related work

A number of biologically-inspired synchronization mechanisms are used for triggering periodic
pulses [3, 12, 13, to name a few]. They do not consider wireless communication environments
in which transmissions can be disrupted or have non-deterministic communication delays.

To the best of our knowledge, pulse synchronization mechanisms that do consider more prac-
tical communication environments [such as 6, 16, 17], do not study the problem in the context
of TDMA-based MAC protocols. Namely, this work is the first to consider TDMA timeslot
alignment during the period in which communication links are being established. For example,
the authors of [12] consider a pseudo-random TDMA MAC in which packets are transmitted
probabilistically, and in [17], the authors considered a p-persistent CSMA/CA MAC protocol.

We note that pseudo-random TDMA MAC and the p-persistent CSMA/CA MAC protocols
provide a lower predictability degree than TDMA-based MAC protocols that follow the pre-
dictably scheduled approach [such as Chameleon-MAC 9]. We note that our algorithmic so-
lutions can also facilitate TDMA protocols in which packets are transmitted probabilistically.
Another interesting example appears in [6], where Byzantine-tolerance and self-stabilization
properties are considered, although after communication establishment.

9

Chapter 2

Preliminaries

The system consists of a set, N = {pi}, of n anonymous communicating entities, which we
call nodes. The radio time is divided into fixed size TDMA frames and then into fixed size
timeslots [as in 9]. The nodes’ task is to adjust their local clocks so that the starting time
of frames and timeslots is aligned. They are to achieve this task in the presence of: (1) a
MAC layer that is in the process of assigning timeslots, (2) network topology changes, and
(3) message omission, say, due to topological changes, transmission interferences, unexpected
change of the ambient noise level, etc.

2.1 Time, clocks, and synchrony bounds

We consider three notations of time: real time is the usual physical notion of continuous time,
used for definition and analysis only; native time is obtained from a native clock, implemented
by the operating system from hardware counters; local time builds on native time with an
additive adjustment factor in an effort to facilitate a neighborhood-wise clock.

Applications require the clock interface to include the READ operation, which returns a times-

tamp value of the local clock. Let Ci
k and cik denote the value pi ∈ N gets from the kth READ of

the native or local clock, respectively. Moreover, let rik denote the real-time instance associated
with that kth READ operation.

Pulse synchronization algorithms adjust their local clocks in order to achieve synchronization,
but never adjust their native clocks. Namely, the operation ADJUST(add) adds a positive integer
value to the local clock. This work considers solutions that adjust clocks forward, because such
solutions simplify the reasoning about time at the higher layers. We define the native clocks

10

offset δi,j(k, q) = Ci
k − C

j
q , and the local clocks offset Λi,j(k, q) = cik − c

j
q; where ∆i,j(k, q) =

rik − r
j
q = 0. Given a real-time instance t, we define the (local clock) synchrony bound ψ(t) =

max({Λi,j(k, q) ∶ pi, pj ∈ N ∧ ∆i,j(k, q) = 0}) as the maximal clock offset among the system
nodes.

One may consider pi’s (clock) skew, ρi = lim∆i,i(k,q)→0 δi,i(k, q)/∆i,i(k, q) ∈ [ρmin, ρmax], where
ρmin and ρmax are known constants [5, 7]. The clock skew of MicaZ [15] nodes is bounded by a
constant that is significantly smaller than the communication delays. Therefore, our simulations
assume a zero skew. We validate these simulations in the MicaZ platform.

2.2 Pulses

Each node has hardware supported timer for generating (periodic) pulses every P (phase) time
units. Denote by ciqk the k − th time in which node pi’s timer triggers a pulse, immediately
after performing the READ operation for the qk − th time. The term timeslot refers to the period
between two consecutive pulses at times ciqk and ciqk+1 . We say that ti = ciqk mod P is pi’s
(pulse) phase value. Namely, whenever ti = 0, node pi raises the event timeslot(si), where
si = k mod T is pi’s (broadcasting) timeslot number and T > 1 is the TDMA frame size.

2.3 The MAC layer

The studied algorithms use packet transmission schemes that employ communication opera-
tions for receiving, transmitting and carrier sensing. Our implementation considers merely
the latter two operations, as in the Beeps model [2], which also considers the period prior to
communication establishment.

We denote the operations’ time notation (timestamp) in the format ⟨timeslot, phase⟩, where
timeslot ∈ [0, T − 1] and phase ∈ [0, P − 1]. We assume the existence of efficient mechanisms
for timestamping packets at the MAC layer that are executed by the transmission operations, as
in [4, 5]. We assume the existence of an efficient upper-bound, α≪ P , on the communication
delay between two neighbors, that, in this work, has no characterized and known distribution.

11

2.4 Task definition

The problem of (decentralized) local pulse synchronization considers the rapid reduction of all
local synchrony bounds ψ ≥ max({Λi,j(k, q) ∶ pi, pj ∈ N ∧ pj ∈ N

T
i ∧ ∆i,j(k, q) = 0}), where

N T
i refers to pi’s recent neighbors, see figure 3.1 for definition. Given the synchrony bound

ψ ≥ 0, we look at the convergence (rate bound), `ψ, which is the number of TDMA frames it
takes to reach ψ. Recall that we consider only forward clock adjustments. We also study local
pulse synchronization’s relation to MAC-layer, network scalability and topological changes.

12

Chapter 3

Algorithmic Strategies for Pulse
Synchronization

Pulse synchronization solutions require many considerations, e.g., non-deterministic delays
and transmission interferences. Before addressing the implementation details, we simplify the
presentation by first presenting (algorithmic) strategies in which the nodes learn about their
neighbors’ clock values without delays and interferences.

We present two strategies that align the TDMA timeslots by calling the function ADJUST(aim)

immediately before their broadcasting timeslot, see figure 1.2. The first strategy, named
Cricket, sets aim’s value according to neighbors that have the most similar phase values. The
second strategy, named Grasshopper, looks into a greater set of neighbors before deciding on
aim’s value. Both strategies are based on the relations among the nodes’ phase values, see
figure 3.1 for definitions.

3.1 Cricket strategy

This strategy acts upon the intuition that gradual pairwise adjustments are most preferable.
Node pi raises the event timeslot(si), when ti = 0, and adjusts its local clock according to
Equation (3.1). At this time, PhaseOrderγi’s first item has zero value, because it refers to pi’s
own pulse, the second item refers to pi’s successor and the last item refers to pi’s predecessor.

13

Learning about neighbors’ clock values

At any real-time instance t, pi’s reach set, Ri(t) = {pj} ⊆ N , represents the set of nodes,
pj , that receive pi’s transmissions. At the MAC layer, the real-time instance t refers to the
time in which pj raises the carrier sense event. The set recent neighbors, N T

i = {pj ∈ N ∶

starting-time(sj) ∈ [t, t′] ∧ pi ∈ Rj(t(sj))}, refers to nodes whose broadcast in timeslot sj ,
arrive to node pi, where t is a real-time instance that happens T timeslots before the real-time
instance t′ and starting-time(sj) ∈ [t, t′] refers to the starting time of pj’s timeslot.

Locally observed pulse profiles

Given a real-time instance t and node pi ∈ N , we denote the locally observed pulse profile
by γi(t) = (⟨sj, tj⟩)pj∈NTi , as a list of pi’s recently observed timestamps during the passed T
timeslots before t. We sometimes write γi, rather than γi(t), when t refers to the starting time
of pi’s timeslot.

Phase orders

Let Order = (pik)
n−1
k=0 be an ordered list of nodes in N , where pi’s predecessor and successor

in N are pik−1 mod n
, and respectively, pik+1 mod n

. The ordered list, PhaseOrderγi , of the pulse
profile, γi, is sorted by the phase field of γi’s timestamp ⟨timeslotj, phasej⟩ ∈ γi.

Predecessors, successors, heads, and tails

Given a node, pi, and its view on the pulse profile, γi, we define the predecessori and the
successori to be pi’s predecessor, and respectively, successor in PhaseOrderγi . Moreover,
we define headγi = (ti − tpr) mod P and tailγi = (tsu − ti) mod P as the phase difference
between pi’s phase value, ti and predecessori = ppr, and respectively, successori = psu.
These imply that predecessori is pulsed headγi units of time before node pi and successori
is pulsed tailγi units of time after node pi.

Figure 3.1: Pulse profiles and the relations among the nodes’ phase values

aimγi =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

headγi ∶ headγi < tailγi JUMP

0 ∶ headγi > tailγi WAIT

headγior 0; each with probability 1
2 ∶ headγi = tailγi MIX

(3.1)

The cricket strategy considers two types of steps: Pure deterministic actions (JUMP and WAIT)
and a non-deterministic one (MIX).

○ JUMP: Whenever node pi is closer to its predecessor than to its successor (headγi < tailγi),
it catches up with its predecessor by adding headγi to its clock value, which is the phase differ-
ence between itself and its predecessor.

14

○ WAIT: Whenever pi is closer to its successor than to its predecessor (headγi > tailγi), pi
simply waits for its successor to catch up.

○ MIX: Node pi needs to break symmetry whenever it is as close to its predecessor as it is to
its successor (headγi = tailγi). In this case, pi randomly chooses between JUMP and WAIT.

3.2 Local dominant pulses

Let us look into a typical convergence of the cricket strategy, see figure 3.2. Given two nodes,
pi, pj ∈ N , and pi’s locally observed pulse profile, γi(t), we say that pj’s pulse (phase value)
locally dominates the one of pi, if headγi < tailγi and pj is pi’s predecessor in γi. Observe that
clock updates can result in a chain reaction, see figure 3.2-left. Lengthy chain reactions can
prolong the convergence up to O(n) TDMA frames, see figure 3.2-right.

3.3 Global dominant pulses

In figure 3.2-right, all nodes align their timeslots with the one of p1, because p1’s pulse im-
mediately follows the maximal gap in γi. Pulse gaps provide useful insights into the cricket
strategy convergence. Given node pi ∈ N , its pulse profile γi and k ∈ [1, ∣ N T

i ∣], we obtain
the (pulse) gaps between γi’s consecutive pulses, Gapγi(k) = (PhaseOrderγi[k].phase −

PhaseOrderγi[k − 1].phase). For the case of k = 0, we define Gapγi(0) = (P −

PhaseOrderγi[∣ N
T
i ∣].phase). The set, MaxGapγi , of pulses that immediately follows the

maximal gap in γi are named global dominates, see Equation (3.2).

MaxGapγi = argmax
k∈[0,∣NTi ∣]

(Gapγi(k)) (3.2)

Given three nodes, pi, pj, p` ∈ N , pi’s locally observed pulse profile, γi(t), j ∈MaxGapγi and
i, ` /∈ MaxGapγi , we say that pj’s pulse globally dominates the one of pi, if at least one of
the following holds: (1) i = j (2) pj’s pulse locally dominates the one of pi, or (3) pj’s pulse
globally dominates the one of p` and p`’s pulse locally dominates the one of pi. We define
node pi’s clock offset towards its preceding global dominant pulse as DominantPulsei =
P − PhaseOrderγi[k].phase, where k ∈ MaxGapγi refers to pi’s global dominant pulse, see
Equation (3.2).

We define OneGlobal(γi) = (∣MaxGapγi ∣= 1) to be true whenever γi encodes a single global

15

Cricket strategy convergence during
the first two TDMA frames.

2p

1p

3p

4p

 21, pp

 43, pp

Second TDMA frame First TDMA frame

Set up: Given that the broadcasting
schedule of nodes N = {p1, . . . , p4} is
by their index value, the pulse profiles,
{γi}pi∈N , encode pulses such that ini-
tially p1 and p3 have local dominant
pulses.
Convergence: In the first TDMA frame,
nodes N(1) = {p2, p4} converge towards
their respective local dominant pulses
in py ∈ {p1, p3}. In the second TDMA
frame, the local dominant pulses are
nodes py ∈ {p1, p2}. Note that node
p3’s pulse is no longer a local dominant
and it adjusts its phase according to
Equation (3.1), i.e., N(2) = {p3, p4}.

Chain reactions of pulse updates: An
example with O(n) TDMA frames be-
fore convergence.

2

3

(n-1)

n
np

1np

2np

3np

2p

1p

Set up: For ξ > 0 and pi ∈ N , the pulse
profiles {γi}pi∈N encode pulses in which
node pi+1’s pulse occurs (n − i)ξ clock
units after pi’s pulse.
Convergence: In the first TDMA
frame, only node pn can take JUMP

action to align with its neighbor local
clock, pn−1, because its headγn < tailγn .
In the second TDMA frame, nodes
N(2) = {pn, pn−1} adjust their clocks
to be aligned with pn−2. Thus, in
the (n − 1)-th TDMA frame, nodes
N(n − 1) = {pn, pn−1, . . . , p2} align with
node p1. Therefore, n− 1 TDMA frames
are needed before convergence.

Figure 3.2: Typical convergence process of the cricket strategy.

dominant pulse. For the cases in which there is more than one, we define the term next (global)
dominant pulse for node pi, where i ∈ MaxGapγi refer to pi’s global dominant pulse. In this
case, pi’s next (global) dominant pulse, NextDominantPulsei = DominantPulsepr, is pi’s
predecessor’s global dominant pulse, where predecessori = ppr.

Next we present the grasshopper strategy, which uses the notion of global dominant pulses to
avoid lengthy chain reactions in order to achieve a faster convergence.

3.4 Grasshopper strategy

This strategy is based on the ability to see beyond the immediate predecessor and local domi-
nant pulses. The nodes converge by adjusting their local clocks according to the phase value of

16

1p

2p

3p

4p

5p
6p

7p

8p

9p

Set up: Given nodes N = {p1, . . . , p9}, the pulse profiles,
{γi}pi∈N , encode pulses, such that initially p1 and p6 are
global dominants.
Convergence: During the first TDMA frame, nodes px ∈

{p2, . . . , p5} and py ∈ {p7, p8, p9} take the JUMP action
to align their local clocks with their respective preceding
global dominant pulse, p1 and p6 (solid lines). Whereas,
node p1 and p6 take the MIX action to either stay or align
to next dominant pulse (dotted lines).

Figure 3.3: Typical convergence process of the grasshopper strategy.

their global dominant pulses, and by that avoid lengthy chain reactions of clock updates.

Equation (3.3) defines the adjustment value, aim(γi), for the grasshopper strategy. Whenever
node pi ∈ N notices that its clock phase value is dominated by the one of node pj ∈ N , node
pi aligns its clock phase value with the one of pj , see the JUMP step. Thus, whenever a single
global dominant pulse exists, the convergence speed-up is made simple, because all nodes ad-
just their clock values according to the dominant pulse of pj . Thus, there are no chain reactions
of clock updates. Note that node pj does not adjust its clock, see the WAIT step. For the pos-
sible case of many global dominant pulses, we take the mixed strategy approach, see the MIX

step. Here, chain reactions of clock updates can occur. However, they occur only among the
nodes whose clock phase values are global dominants, see figure 3.3.

aimγi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

DominantPulsei ∶DominantPulsei < P JUMP

0 ∶DominantPulsei = P ∧OneGlobal(γi) WAIT

NextDominantPulsei or ∶ else MIX

0; each with probability 1
2

(3.3)

17

Chapter 4

Strategies Implementation

This chapter delineates the challenges and techniques related to the implementation of the pro-
posed pulse synchronization algorithms.

4.1 Platform and architecture

We implement the proposed pulse synchronization strategies using the wireless sensor network
platform Tiny Operating System (TinyOS 2.1.0) [11]. In this platform, different components
interact by means of delegated interfaces to achieve an event-driven programming model. We
use TinyOS Simulator (TOSSIM) to evaluate our algorithmic design in a simulated radio en-
vironment [10]. Our implementation is then deployed into MicaZ motes for validation. The
components of our simulation and platform implementation are depicted in figure 4.1.

4.2 Pulse overshooting

Pulse synchronization solutions require many considerations, e.g., non-deterministic delays
and transmission interferences. Clock adjustments in the presence of non-deterministic com-
munication delays can result in overshooting the targeted clock values. Therefore, it is crucial
to obtain accurate timestamps at the MAC layer, cf. [4]. Moreover, we employ an adaptive
clock adjustment technique that takes into consideration the aimed clock value, aim, in order
to avoid overshooting. Namely, when the target is greater than the bound on the communication
delay, aimγi > α, the local clock is adjusted by aimγi − α. However, when aimγi < α, we use

18

TinyOS …

MicaZ sensor platform
Simulation radio

interference model

T
O

S
S

IM

T
ra

n
s

m
it

R
e

c
e

iv
e

C
a

rr
ie

rS
e

n
s

e

T
im

e
r

Chameleon-MAC

Pulse Synchronizer

Figure 4.1: The implementation architecture and components interaction.

aimγi ⋅ β
1−(β)ε for gradual adjustment of clock values, where β = aimγi/P and ε = 0.1, see

Equation (4.1)

AdjustClock(aim) =

⎧⎪⎪
⎨
⎪⎪⎩

aimγi − α ∶ aimγi > α

aimγi ⋅ β
1−(β)ε ∶ aimγi ≤ α

(4.1)

4.3 Mitigating synchrony bound jitter

The proposed pulse synchronization algorithms are required to maintain the low synchrony
bound achieved. Figure 4.2 displays the synchrony bound level and its progression in time. We
notice that the synchrony bound decreases to 1% (50 µsec) of the timeslot size, P , however,
this is followed by series of oscillations between 1% − 10%. The synchrony bound jitters in
time as pulses approach a synchronized state. We observe that this undesirable behavior appears
when the local clock offsets are smaller than the non-deterministic communication delay, α.

The effect of synchrony bound jitter is mitigated by defining a dismissal interval ω < α around
every pulse. Timestamps falling in this interval are ignored by corresponding nodes, cf. fig-
ure 4.3. In the figure, node p1 ignores p2’s timestamp because p2’s timestamp falls in p1’s ω
interval. However, p1 accepts p3’s timestamp because p3’s timestamp does not fall in p1’s ω
interval. This simple technique refrains the nodes from basing adjustments on less accurate

19

5 10 15 20 25 30 35 40 45 50

20

40

60

80

100

Broadcasting frame number

S
y
n

c
h

ro
n

y
 b

o
u

n
d

 (
a

s
 t

im
e

s
lo

t
p

e
rc

e
n

ta
g

e
)

synchrony bound

Figure 4.2: Synchrony bound jitter effect as pulses approach a synchronized state.

1p2p3p

Figure 4.3: Timestamp jitter mitigation using dismissal interval ω, such that node p1 ignores
p2’s timestamp because it falls in its interval, while it accepts p3’s timestamp in the pulse
synchronization process.

timestamps. In our simulation and platform experiments, we consider ω = 1% of P .

4.4 Memory consumption

The grasshopper strategy considers sorted pulse profiles of O(n(log(P) + log(T))) memory
bits. Note in the cricket strategy, the values of headγi and tailγi can be updated on the fly, i.e.,
sorting can be avoided. Thus, the cricket strategy requires using O(log(P) + log(T)) memory
bits.

4.5 Algorithm pseudocode

20

Algorithm 1: Pulse Synchronization Algorithms
Common variables and functions
P = phase size
T = TDMA frame size
α = upper bound on communication delay
ω = dismissal interval

phase: [0,P-1] = phase value
aim:[0,P-1] = phase adjustment value
str:{0,1} = define strategy to execute
s:[0, T-1] = next timeslot to broadcast
Timestamps:{[0,P-1] × [0,T-1]} = a set of timestamps

Upon carrier_sense(timestamp)
if timestamp mod P ∉ ω then

Timestamps ← Timestamps ∪ {timestamp mod P} (* Record timestamp *)

end

Function AdjustClock(aim)
if aim > α then return (aim - α)
return ⟨ aim ⋅ β 1−βε ⟩, where β = aim

P , ε > 0

end

Upon timeslot(t)
if t mod T = 0 then

(* New broadcasting frame *)
phase← phase + Strategy(str) (* Adjust phase according to strategy *)
Timestamps← ∅

if t = s then transmit() (* My timeslot *)
end
Function Strategy(str)

if str = 0 then
(* Run cricket strategy *)
⟨head, tail⟩ ← FindHeadAndTail() ()
if IsAdjusting(head,tail) then Return ⟨AdjustClock(head)⟩

else if str = 1 then
(* Run grasshopper strategy *)
aim← FindDominantPulse()
return ⟨AdjustClock(aim)⟩

end

21

Cricket variables and functions
tail = successor’s phase offset
head = predecessor’s phase offset

Function FindHeadAndTail()
head← P −max(Timestamps) (* Offset towards predecessor pulse *)
tail ←min(Timestamps) (* Offset towards successor pulse *)
return ⟨ head, tail ⟩

end

Function IsAdjusting(head, tail)
if head = tail then return ⟨ random_number > 1

2 ⟩

return ⟨ head < tail ⟩
end

Grasshopper variables and functions
DominantPulse = preceding global dominant pulse
NextDominantPulse = second preceding global dominant pulse
Gap = set of gap sizes in the order of timestamps reception
MaxGap = set of timestamps preceded by maximal gap

Function FindDominantPulse()
(* Function returns offset towards the nearest global dominant pulse *)
for timestampi ∈ Timestamps do

Gap← Gap ∪ {timestampi − timestampi−1} (* Find gaps between pulses *)
MaxGap← {timestampi} ∶ timestampi − timestampi−1 = max(Gap)
DominantPulse← P −max(MaxGap)
if (DominantPulse = P) ∧ (∣ MaxGap ∣ > 1) then

(* More than one global dominant pulse might exist *)
MaxGap←MaxGap ∖max(MaxGap)
if random_number > 1

2 then
(* Find offset towards nearest global dominant pulse *)
NextDominantPulse← P −max(MaxGap)
return ⟨NextDominantPulse⟩

return ⟨DominantPulse⟩
end

22

Chapter 5

Experimental Evaluation

We use computer simulations and MicaZ platform experiments to show that: (1) both proposed
algorithms achieve a small synchrony bound, and (2) the grasshopper, which has a higher re-
source consumption cost, converges faster than the cricket.

5.1 Experiments design

The proposed algorithms aim at aligning the TDMA timeslots during the process of communi-
cation establishment. Namely, during the period in which the MAC layer assigns the TDMA
timeslots. Since communication interruptions can occur, the nodes might not correctly observe
their local pulse profiles.

In other words, the convergence process of pulse synchronization algorithms inherently de-
pends on: (1) the MAC layer ability to guarantee (eventually) interruption-free communica-
tions, and (2) the system ability to infer on pulse profiles during periods in which there are
no guarantees for interruption-free communications. In order to overcome these inherent de-
pendencies, our tests consider benchmarks that are based on common (external) sources of
synchronization that serve as control tests. We consider the result parameters, ψ, and `ψ, and
compare between the experiments and their control tests, where ψ is the synchrony bound and
`ψ is the convergence time.

23

5.1.1 Experiment and control test for dependency (1)

The former dependency is mitigated by experimenting with Chameleon-MAC, a self-⋆ TDMA
protocol [9], and considering a control test that uses a preassigned TDMA. Here, the external
common source of synchronization is provided by a MAC layer that assigns its timeslots before
any communication. The preassigned TDMA guarantees that the convergence process of the
pulse synchronization algorithms does not include communication interruptions due to timeslot
assignment of the MAC layer. Thus, the preassigned TDMA serves as a baseline from which
we can estimate the degree of improvement that would result from perhaps employing better
MAC algorithms.

5.1.2 Experiment and control test for dependency (2)

The latter dependency is mitigated by experimenting with Chameleon-MAC, a self-⋆ TDMA
protocol [9], and considering a control test that uses a centralized pulse synchronizer. Here, the
external common source of synchronization is provided by a (base-station) node that broad-
casts a distinguished alignment message once in every TDMA frame. The other nodes never
broadcast before receiving the base-station’s message, and thus, all nodes can infer on their
pulse profiles. Thus, the centralized pulse synchronizer serves as a baseline for estimating the
overheads imposed by the autonomous design.

Next we present the simulation and testbed results. For each setting, we average the perfor-
mance of 8 executions. Furthermore, our simulation and testbed experiments consider a times-
lot size of, P = 5 msec, and respectively, P = 20 msec, frame size of di timeslots, where di
refers to node pi’s interference degree, and an upper-bound on communication delay of, α = 5%

of P .

5.2 Simulation experiments

The proposed pulse synchronization algorithms are simulated using TOSSIM [10] on single-
hop, multi-hop and mobile ad hoc networks. We observe the synchrony bound and convergence
time, and study the proposed algorithms’ relation to MAC-layer, network scalability and topo-
logical changes.

24

5.2.1 Single-hop Ad Hoc Network

Both algorithms reduce the synchrony bound down to 1% of the timeslot size, see figure 5.1.
Moreover, the synchrony bounds of the cricket and grasshopper are 24%, and respectively,
62% lower when using preassigned TDMA rather than Chameleon-MAC [9]. However, these
values drop to 0.04%, and respectively, 0.4% after convergence. Furthermore, the grasshopper
convergence is 5.4 times faster than of the cricket. In addition, the cricket and grasshopper
converge 6.8%, and respectively, 40% times faster when using preassigned TDMA rather than
Chameleon-MAC.

5 10 15 20 25 30 35

20

40

60

80

100

Broadcasting frame number

S
y
n
c
h
ro

n
y
 b

o
u
n
d
 (

a
s
 t
im

e
s
lo

t
p
e
rc

e
n
ta

g
e
)

Chameleon Grasshopper

Preassigned Grasshopper

Chameleon Cricket

Preassigned Cricket

Figure 5.1: The studied algorithms in a single-hop network of 20 nodes using preassigned
TDMA and Chameleon-MAC. Both algorithms, for both MAC settings, drop the synchrony
bound to 1% (50 µsec). The convergence time (in number of frames) for the cricket and
grasshopper is 3, and respectively, 27 for preassigned TDMA, and 5, and respectively, 29 for
Chameleon-MAC.

We also study the algorithms’ scalability by considering a variable number of nodes, n ∈

{10,20,30, . . . ,100}. The grasshopper converges faster than the cricket as the number of nodes
increases, cf. figure 5.2 (a) and (b). The convergence depends on the number of nodes. E.g., for
10% synchrony bound, 0.3n + 6.4 and 0.0062n + 10.86 are linear interpolations of the conver-
gence time for the cricket, and respectively, grasshopper strategies. Moreover, 2(log2(n)+0.1)

is a logarithmic interpolation of the grasshopper convergence time. The proposed algorithms
affect the MAC throughput, which is the radio time utilization percentage, cf. figure 5.2 (c) and
(d). Both algorithms eventually reach a throughput of 70%.

25

0

0

0

0

0

0

20

2
0

20
20

40

4
0

40

60

6
0

60

80

8
0

8
0

100

N
o

d
e

s
 n

u
m

b
e

r
(n

)

10 20 30 40 50 60

20

40

60

80

100

(a)
0

0

0

0

0

0

2
0

2
0

2
0

4
0

4
0

4
0

6
0

6
0

6
0

8
0

8
0

8
0

10 20 30 40 50 60

20

40

60

80

100

(b)
0

0
2
0

2
0

2
0

20

4
0

4
0

40

6
0

6
0

60

Broadcasting frame number

N
o

d
e

s
 n

u
m

b
e

r
(n

)

10 20 30 40 50 60

20

40

60

80

100

(c)

0

0

0

2
0

2
0

2
0

4
0

4
0

4
0

6
0

6
0

6
0

Broadcasting frame number
10 20 30 40 50 60

20

40

60

80

100

(d)

Figure 5.2: Synchrony bounds (as timeslot percentage) and throughput levels (as radio time
utilized percentage) for single-hop networks of n ∈ {10,20,30,⋯,100} nodes. Top and bottom
contour plots show the synchrony bounds, and respectively, throughput levels for cricket (a)
and (c), and grasshopper (b) and (d). Given these plots, the number of TDMA frames needed
to reach to a particular synchrony bound (or throughput) by a given number of nodes can be
estimated. E.g., 60 nodes reach 20% synchrony within 25 frames using the cricket strategy.

26

(a)

2 4 6 8 10 12 14 16 18 20

20

40

60

80

100

Broadcasting frame number

S
y
n

c
h

ro
n

y
 b

o
u

n
d

 (
a

s
 t

im
e

s
lo

t
p

e
rc

e
n

ta
g

e
)

Grasshopper

Cricket

(b)

Figure 5.3: A connected graph with 45 nodes and a 6-hops diameter in (a), Multi-hop network
synchrony bound (as timeslot percentage) and convergence time (in number of TDMA frames)
in (b) of the cricket and grasshopper algorithms using Chameleon-MAC.

5.2.2 Multi-hop Ad Hoc Network

We consider a connected graph with 45 nodes, 6 hops diameter and an interference degree
di ∈ [5,15]. We use a set of 8 graphs similar to the one in figure 5.3 (a). Both algorithms reduce
the synchrony bound down to 3% of the timeslot size. Thus, the achieved synchrony bounds
in multi-hop networks are higher than in single-hop ones. This phenomena is well-known [see
8, for relevant lower bounds]. The grasshopper converge 3.25 times faster than the cricket, cf.
figure 5.3 (b).

5.2.3 Mobile Ad Hoc Network

We borrow two mobility models from [9] for studying the proposed algorithms. In the first
model, the nodes are traveling on a grid and thus their radio interferences follow a regular
pattern. In the second model, we consider mobile node clusters that pass by each other and
thus they experience transient radio interferences.

The first model places 72 mobile nodes on a grid with an interference degree of di ∈ [2,4] and
a diameter of 12 hops. Nodes in even and odd rows travel in opposite directions by a constant
speed ∈ {2,4,⋯,50} units every TDMA frame. We considers a transmission (interference)
radius of 22 units, and study the effect of topological changes on the proposed algorithms.

The simulations show that both proposed algorithms reach to a synchrony bound of 10% of the
timeslot size, cf. figure 5.4. Furthermore, we observe that the grasshopper is more resilient to

27

2
0

2
0

20

4
0

4
0

40

6
0

6
0

6
0

8
0

8
0

8
0

1
0
0

1
0
0

S
p

e
e

d

2 4 6 8 10 12 14 16 18 20

10

20

30

40

50

(a)

2
0

2
0

2
0

4
0

4
0

4
0

6
0

6
0

6
0

8
0

8
0

8
0

1
0

0

1
0
0

Broadcasting frame number

S
p

e
e

d

2 4 6 8 10 12 14 16 18 20

10

20

30

40

50

(b)

Figure 5.4: The synchrony bound (as timeslot percentage) for the cricket (a) and grasshopper
(b) using Chameleon-MAC and considering regular interferences. The neighborhood change
rate increases with speed, causing the algorithms to spend longer time for convergence.

32 33 34 35 36 37 38 39 40

10

20

30

40

50

Broadcasting frame number

S
y
n

c
h

ro
n

y
 b

o
u

n
d

 (
a

s
 t

im
e

s
lo

t
p

e
rc

e
n

ta
g

e
)

Grasshopper

Cricket

Figure 5.5: Cricket and grasshopper convergence with mobile clusters.

topological changes than the cricket.

We also study the algorithms re-convergence time when the synchrony bound is compromised
due to transient radio interferences. We consider two mobile node clusters that, in the beginning
of the simulation, do not interfere with each other. When the mobile clusters approach each
other, the communication within each cluster is interrupted because of timeslots misalignment.

Within the first TDMA frames, both clusters converge. When the two clusters start to pass
by each other, we observe transient interferences, cf. figure 5.5. Note that the grasshopper
converges in half the time consumed by the cricket.

28

5.3 Testbed experiments

We validate the single-hop simulation results on MicaZ [15] motes and estimate the cost
of our autonomous solutions. The testbed experiments consider a single-hop network of
n ∈ {5,10,15} nodes, and use Chameleon-MAC to establish communication. We validate the
simulation synchrony bound and convergence time, and evaluate the communication success
rate during and after convergence.

The grasshopper converges 6.5 times faster than the cricket, cf. figure 5.6. Furthermore, the
transmission success rate increases during the convergence process.

We estimate the overheads of our autonomous design via control tests that use a centralized
pulse synchronizer. By executing both experiments, centralized and autonomous, we estimate
the synchrony bound ratio between the two approaches. The centralized and autonomous pulse
synchronizers drop the synchrony bound down to 0.8%, and respectively, 2.0%, cf. figure 5.6.
The autonomous design overheads are merely 2.5 times higher than the centralized one; fixed
ratio for any n.

29

50 100 150 200 250
0

20

40

60

80

S
y
n

c
h

ro
n

y
 b

o
u

n
d

 (
a

s
 t

im
e

s
lo

t
p

e
rc

e
n

ta
g

e
)

 (a)
50 100 150 200 250

0

20

40

60

80

Centralized synchronizer

5 Nodes

10 Nodes

15 Nodes

(b)

50 100 150 200 250

40

60

80

100

Broadcasting frame number

S
u

c
c
e

s
s
 r

a
te

(c)

50 100 150 200 250

40

60

80

100

Broadcasting frame number

(d)

Figure 5.6: Testbed synchrony bounds and success rates. The cricket and grasshopper converge
n ∈ {5,10,15} nodes within {50,165,200}, and respectively, {9,20,32} TDMA frames to a
synchrony bound of 2% (400 µsec) of P , see (a) and (b). The packet delivery success rate is
presented in (c) and respectively (d).

30

Chapter 6

Discussion

The prospects of safety-critical vehicular systems depend on the existence of predictable com-
munication protocols that divide the radio time regularly and fairly. This paper presents au-
tonomous and self-⋆ algorithmic solutions for the problem of TDMA timeslot alignment by
considering the more general problem of (decentralized) local pulse synchronization. The stud-
ied algorithms facilitate autonomous TDMA-based MAC protocols that are robust to transient
faults, have high throughput and offer a greater predictability degree with respect to the trans-
mission schedule. These properties are often absent from current MAC protocol implantations
for VANETs, see [1, 14].

We saw that avoiding clock update dependencies can significantly speed up the convergence
and recovery processes. In particular, the grasshopper algorithm foresees dependencies among
the clock updates, which the cricket cannot. However, dependency avoidance requires addi-
tional resources.

Existing vehicular systems often assume the availability of common time sources, e.g., GPS.
Autonomous systems cannot depend on GPS services, because they are not always available,
or preferred not to be used, due to their cost. Arbitrarily long failure of signal loss can occur in
underground parking lots and road tunnels. Moreover, some vehicular applications cannot af-
ford accurate clock oscillators that would allow them to maintain the required precision during
these failure periods.

By demonstrating the studied algorithms on inexpensive MicaZ motes, we have opened up the
door for hybrid-autonomous designs (cf. centralized pulse synchronizer in Section 5). Namely,
nodes that have access to GPS, use this time source for aligning their TDMA timeslots, whereas
nodes that have no access to GPS, use the studied strategies as dependable fallback for catching
up with nodes that have access to GPS.

31

We expect applicability of the hybrid-autonomous design criteria to other areas of VANETs and
vehicular systems. For example, spatial TDMA [14] protocols base their timeslot allocation on
GPS availability. As future work, we propose dealing with such dependencies by adopting the
hybrid-autonomous design criteria.

32

Bibliography

[1] K. Bilstrup, E. Uhlemann, E. G. Ström, and U. Bilstrup. Evaluation of the ieee 802.11p
mac method for vehicle-to-vehicle communication. In VTC Fall, pages 1–5. IEEE, 2008.

[2] A. Cornejo and F. Kuhn. Deploying wireless networks with beeps. In Distributed Systems

and Networks (DISC), pages 148–162, 2010.

[3] A. Daliot, D. Dolev, and H. Parnas. Self-stabilizing pulse synchronization inspired by bio-
logical pacemaker networks. In Stabilization, Safety, and Security of Distributed Systems

- 6th International Symposium, pages 32–48, 2003.

[4] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using refer-
ence broadcasts. In USENIX Symposium on Operating Systems Design and Implementa-

tion, 2002.

[5] T. Herman and C. Zhang. Best paper: Stabilizing clock synchronization for wireless
sensor networks. In Stabilization, Safety, and Security of Distributed Systems, pages 335–
349, 2006.

[6] E. N. Hoch. Self-stabilizing byzantine pulse and clock synchronization. Master’s thesis,
School of CSEat The Hebrew Univ. of Jerusaelm, 2007.

[7] J.-H. Hoepman, A. Larsson, E. M. Schiller, and P. Tsigas. Secure and self-stabilizing
clock synchronization in sensor networks. In T. Masuzawa and S. Tixeuil, editors, Stabi-

lization, Safety, and Security of Distributed Systems, volume 4838 of LNCS, pages 340–
356. Springer, 2007.

[8] C. Lenzen, T. Locher, and R. Wattenhofer. Tight bounds for clock synchronization. J.

ACM, 57(2), 2010.

[9] P. Leone, M. Papatriantafilou, E. M. Schiller, and G. Zhu. Chameleon-mac: Adaptive and
self-* algorithms for media access control in mobile ad hoc networks. In Stabilization,

Safety, and Security of Distributed Systems, pages 468–488, 2010.

33

[10] P. Levis, N. Lee, M. Welsh, and D. E. Culler. TOSSIM: accurate and scalable simulation
of entire tinyos applications. In ACM SenSys, pages 126–137, 2003.

[11] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, and D. Culler. Tinyos: An operating system for sensor networks. In in Ambient

Intelligence. Springer Verlag, 2004.

[12] D. Lucarelli and I.-J. Wang. Decentralized synchronization protocols with nearest neigh-
bor communication. In ACM SenSys, pages 62–68, 2004.

[13] R. E. Mirollo, Steven, and H. Strogatz. Synchronization of pulse-coupled biological os-
cillators. SIAM, 50:1645–1662, 1990.

[14] K. Sjöberg, E. Uhlemann, and E. G. Ström. Delay and interference comparison of CSMA
and self-organizing TDMA when used in VANETs. In IEEE Wireless Communications

and Mobile Computing Conference, pages 1488–1493, 2011.

[15] Crossbow Technology Inc. MicaZ specs. http://bit.ly/roPGqJ, 2009.

[16] A. Tyrrell, G. Auer, and C. Bettstetter. Fireflies as role models for synchronization in ad
hoc networks. In ICST BIONETICS. ACM, 2006.

[17] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal. Firefly-inspired sen-
sor network synchronicity with realistic radio effects. In J. Redi, H. Balakrishnan, and
F. Zhao, editors, ACM SenSys, pages 142–153. ACM, 2005.

34

