
Deep Neural Networks
for Myoelectric Pattern Recognition
An Implementation for Multifunctional Control
Master’s thesis in Biomedical Engineering

Rita Laezza

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis 2018:01

Deep Neural Networks
for Myoelectric Pattern Recognition

An Implementation for Multifunctional Control

RITA LAEZZA

Department of Electrical Engineering
Division of Signal Processing and Biomedical Engineering

Biomechatronics and Neurorehabilitation Laboratory
Chalmers University of Technology

Gothenburg, Sweden 2018

Deep Neural Networks for Myoelectric Pattern Recognition
An Implementation for Multifunctional Control
RITA LAEZZA

© RITA LAEZZA, 2018.

Supervisor: Max Ortiz Catalan
Examiner: Sabine Reinfeldt

Master’s Thesis 2018:01
Department of Electrical Engineering
Division of Signal Processing and Biomedical Engineering
Biomechatronics and Neurorehabilitation Laboratory
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Abstract illustration of deep learning flow. From the input signals at the
top, also shown in figures 2.1 and 2.2. To the classification output at the bottom,
movement 1 from figure 3.2b

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Deep Neural Networks for Myoelectric Pattern Recognition
An Implementation for Multifunctional Control
RITA LAEZZA
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Myoelectric control has many applications, such as robotic prosthetics or phantom
limb pain treatment. Decoding of muscle signals in order to infer the underly-
ing movement lie at the basis of myoelectric control, for which pattern recognition
strategies are commonly used to decode complex movements. The ultimate goal is to
create intuitive control systems where an artificial effector is controlled as naturally
as a biological limb.

A significant amount of work done in myoelectric pattern recognition research
focuses on the pre-processing stage of feature extraction. This aims to reduce the
electromyography (EMG) signal to a set of descriptive values. However, these engi-
neered features may not be ideal for pattern recognition applications.

The aim of this thesis was to evaluate the performance of deep learning al-
gorithms for myoelectric control, without prior feature extraction. Three different
network architectures were tested: a Convolutional Neural Network (CNN), a Re-
current Neural Network (RNN) and a combination of the two in sequence, noted as
CNN-RNN. The RNN models contained Long Short Term Memory (LSTM) units.

Data was obtained from the open source Ninapro database 7 to evaluate the
networks performance. The experiments showed that the RNN provided the best
result, with a median accuracy of 91.81%, compared with 89.01% for the CNN and
90.4% for the CNN-RNN. Accuracy was averaged across ten different subjects and
two groups of movements.

The time an input window took to be classified was approximately 20 ms.
Even though these tests were offline, the computation should be fast enough to
implement in online control systems as well. Future work should be done to test
these algorithms online, since that is a more valuable measure of the algorithms’
performance

Keywords: AI, deep learning, ANN, CNN, LSTM, pattern recognition, myoelectric
control, EMG.

v

Acknowledgements
I would like to thank first and foremost my supervisor, Max Ortiz, for giving me
the opportunity to work in his amazing research group at the Biomechatronics and
Neurorehabilitation Laboratory. I’m grateful for the great work environment that I
had throughout my thesis as well as the people I got to know there. Furthermore,
I would like to thank Sabine Reinfeldt, my examiner, for her patience when I opted
to shift topic within pattern recognition and dive into the field of deep learning. For
this, I must also thank my friends whose work motivated me into exploring one of
the most interesting and disruptive areas of modern technology.

Por fim, gostaria de aproveitar esta oportunidade para agradecer aos meus
pais, não pela tese, mas por todo o seu apoio durante os passados 23 anos. Sem
vocês, não teria chegado tão longe. Espero que saibam o quão grata eu me sinto e
que passarei o resto da minha vida a tentar demonstrá-lo.

Rita Laezza, Gothenburg, January 2018

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . 1

1.1.1 Feature Extraction . 2
1.1.2 Pattern Recognition . 2

1.2 Aim . 3
1.3 Scope and limitations . 3
1.4 Thesis outline . 4

2 Theory 5
2.1 Signals . 5

2.1.1 Electromyography . 5
2.1.1.1 EMG Rectification 6

2.1.2 Inertial Measurements . 6
2.2 Artificial Neural Networks . 7

2.2.1 Backpropagation . 10
2.2.1.1 Activation function 11

2.2.2 Convolutional Neural Networks 12
2.2.3 Recurrent Neural Networks 14

2.2.3.1 Long Short-Term Memory 15
2.3 Learning . 16

2.3.1 Loss Function . 17
2.3.2 Optimisation Algorithm . 18
2.3.3 Regularisation Methods . 19

2.3.3.1 L2-Regularisation . 20
2.3.3.2 Dropout . 20
2.3.3.3 Data Augmentation 20
2.3.3.4 Early stopping . 21

2.4 Performance Measures . 21

3 Methods 23
3.1 Dataset . 23

3.1.1 Signal Acquisition . 23
3.1.2 Sensor Placement . 24

ix

Contents

3.1.3 Exercises . 24
3.1.4 Data Collection . 27
3.1.5 Signal Processing . 27

3.2 Data Processing . 27
3.3 Software and Hardware . 29
3.4 Experiments . 29

3.4.1 Model Comparison . 30
3.4.2 Hyperparameter Search . 32

4 Results 35
4.1 Model Comparison . 35
4.2 Hyperparameter Search . 39

5 Discussion 47

6 Conclusion 49

References 51

A Appendix I

x

List of Figures

1.1 Flow diagram of pattern recognition based control. 2

2.1 Sample EMG signal extracted from the Ninapro database 6
2.2 Sample accelerometer signals extracted from the Ninapro database. . 7
2.3 Representation of artificial neuron. 8
2.4 Representation of an MLP architecture 9
2.5 Graphical representation of 1D CNN architecture. 13
2.6 Simple example of convolution and max-pooling operations in 1D CNNs 14
2.7 Illustration of general recurrent network which was unfolded through

time. 15
2.8 Schematic of vanilla LSTM architecture. 16
2.9 Schematic of two time steps of the LSTM update. 17

3.1 Photographs of electrode placement in an amputee subject. 24
3.2 Collection of movements executed by subjects in database 7 of the

Ninapro repository. 25
3.3 Illustration of the separation of training, validation and test data. . . 28
3.4 Schematic of CNN model. 30
3.5 Schematic of RNN model. 31
3.6 Schematic of CNN-RNN model . 31

4.1 Tukey boxplots with classification results for each architecture 39
4.2 Visualisation of results from the hyperparameter search. 40
4.3 Additional effects of hyperparameters. Figure 4.3a shows effect of

number of nodes on the total number of trainable parameters. Figure
4.3b shows the effect of increasing batch size on the training time.
These results were to be expected since they are directly linked with
the computational complexity of the program. 41

4.4 Learning curves for different learning rates 42
4.5 Learning curves for different number of nodes 43
4.6 Learning curves for different mini-batch sizes 44
4.7 Learning curves for different levels of regularisation 45
4.8 Confusion matrices for both exercises, averaged over all subjects, with

the final set of hyperparameters. 46

A.1 Regulatory Feedback Network with two input cells and four output
cells. I

xi

List of Figures

xii

List of Tables

2.1 Activation function plots and respective formulas. 12
2.2 Confusion matrix of a binary classification problem. 21

3.1 Detailed description of movements from exercise 1. 25
3.2 Detailed description of movements from exercise 2. 26
3.3 Hyperparameter values kept constant, for model comparison. 32

4.1 CNN results for ten subjects, separated by exercise. 36
4.2 RNN results for ten subjects, separated by exercise. 37
4.3 CNN-RNN results for ten subjects, separated by exercise. 38
4.4 Hyperparameter search results separated by parameter. 39

xiii

List of Tables

xiv

1
Introduction

Myoelectric control is a multidisciplinary field which aims at controlling a certain
actuator, based on electromyographic (EMG) signals. Control of robotic prostheses
and exoskeletons as well as phantom limb pain treatment software are a few of the
most notable applications of this control scheme. These have the potential to give
back some of the quality of life lost due to a variety of physical impairments [1].

1.1 Background

Despite several technological advancements in current prosthetic devices, the funda-
mental control strategies have not significantly improved from the first approaches.
Initial control strategies involved on/off control of specific movements, based on care-
fully chosen thresholds. This meant that, for EMG signals above a certain threshold,
the prosthesis would actuate a given movement [1]. Nowadays, a very common ap-
proach is to place the recording electrodes over agonist-antagonist pairs of muscles,
where each will control opposing movements of a degree of freedom (DoF). This is
referred to as direct control (DC), since there is a one to one relationship between
electrode and movement. Naturally, this limits the number of movements that can
be controlled, specially because the intended user may not have many muscles still
intact [2].

In recent years, the research community has shifted its focus to a promising,
more intuitive control strategy namely, pattern recognition (PR) based control. By
using PR algorithms to recognise the underlying myoelectric pattern for each move-
ment, the number of controllable movements is greatly increased. But the most
significant improvement brought by these strategies is the possibility of intuitive
control [1, 3]. As opposed to DC strategies, the EMG signals are recorded from
a collection of electrodes and are then used to train a PR algorithm. There are
numerous types of algorithms that can be implemented for the recognition of move-
ment patterns in EMG signals. They all have the same objective of providing a
correct classification, given a desired movement. In this manner, users can simply
think about executing a natural movement (e.g. open hand) and by contracting the
residual limb the same way they would contract their healthy limb, the signals can
be recognised by the PR and that movement will be executed. [3].

Pattern recognition applications typically require a number of transformations
to the raw EMG signals before a classification output can be computed. The most
common stages found in myoelectric pattern recognition implementations can be
seen in Figure 1.1.

1

1. Introduction

Figure 1.1: Flow diagram of pattern recognition based control. The process begins
with the raw EMG signals and finishes with a control output.

Within each stage there can be numerous different data transformations that
influence the results down the line. In order to find the best strategy, one would
have to try every possible combination of pre-processing, feature extraction, pattern
recognition and post-processing methods, which is unfeasible. In the following sec-
tions the two centre stages will be introduced, since these have the greatest impact
on the outcome of the classification.

1.1.1 Feature Extraction
Feature extraction consists of taking short time windows of the EMG signal and
transforming them in some way to obtain a more informative measure. Extensive
research has been done on feature selection, of both time domain and frequency
domain methods [4]. Additionally, coupled time-frequency domain features based
on wavelet transforms have also been explored [5]. New measures, such as cardinality
and sample entropy, have been shown to improve classification accuracies [6, 7].

More than just selecting the best features, the effect of feature combinations
has also been studied. Perhaps the most commonly used feature selection is the
Hudgins’ set, which consists of four time domain measures: mean absolute value
(MAV), waveform length (WL), zero crossings (ZC) and slope sign changes (SSC).
Despite having been proven to be robust when used with Linear Discriminant Anal-
ysis (LDA) classifiers, it has been reported that different feature groups provide
better results. Furthermore, the best features for one algorithm are not necessarily
the best for others [7]. For this reason, it is important to take feature extraction
into account when implementing a new PR algorithm.

1.1.2 Pattern Recognition
Similarly to feature extraction techniques, numerous pattern recognition algorithms
have been applied to the problem of myoelectric signal classification. Typical PR
algorithms include LDA, Multi-Layer Perceptrons (MLP), Support Vector Machines
(SVM), k-th Nearest Neighbours (k-NN) and Random Forests, to name a few [8].

The work by Englehart using LDA classifiers has been considered to be the
current state-of-the-art approach for myoelectric pattern recognition [9]. There is a
considerable number of studies done using LDA in conjunction with the Hudgins’
set, which makes this approach valuable for benchmarking purposes [6]. Despite
providing robust performances, LDA has several drawbacks. Since an LDA classifier
can only produce a single output, for simultaneous pattern recognition, where more
than one movement is executed at the same time, a classifier for each movement
is needed [10]. Moreover, there is evidence to support that for a larger amount

2

1. Introduction

of movements, the classification accuracy of LDA algorithms is outperformed by
MLPs [11].

As well as for LDA algorithms, there have been several studies applying Ar-
tificial Neural Networks (ANN), such as MLPs, to myoelectric pattern recognition.
More recently, Atzori et al. [12]. implemented a Convolutional Neural Network
(CNN) for the classification of more than 50 hand movements, obtaining an average
accuracy of 66.59 ± 6.40% for the Ninapro dataset 1. Although the best result, on
this particular dataset, was achieved using Random Forests (75.32 ± 5.69%), the
authors claim that the CNN still has potential for improvement.

Unlike the algorithms mentioned above, Recurrent Neural Networks (RNNs)
are a class of ANN capable of processing sequential information, by dynamically
changing an internal state. They have successfully been used for both time series
prediction and classification [13]. Recently, Long Short-Term Memory (LSTM) units
and Gated Recurrent Units (GRUs) have become the two prevailing RNN architec-
tures [14,15]. Since EMG signals are sequential in nature, it is valuable to evaluate
recurrent architectures on a myoelectric classification problem. It is important to
note that, while CNNs can’t handle temporal data explicitly, by windowing time
series, they can learn some local dependencies [16].

The motivation behind implementing CNNs for the myoelectric pattern recog-
nition problem comes from their ability to learn features, without the design input
from human engineers. Instead, the relevant features are learned directly from data
using general-purpose learning procedures. Deep Neural Network (DNN) architec-
tures, such as CNNs and LSTMs, have been making major advances towards solving
problems in the field of artificial intelligence. These methods have beaten other ma-
chine learning techniques, as well as human performance, in several domains, like
image and speech recognition [17].

1.2 Aim
The aim of this thesis is to implement and evaluate Deep Neural Network (DNN)
models, for myoelectric pattern recognition, without any prior feature extraction.,
thus simplifying the processing steps before recognition. Two major architectures
will be explored, namely Convolutional Neural Networks and Recurrent Neural Net-
works, as well as a combination of the two. To that end, the necessary EMG data
will be extracted from the Ninapro benchmark database [18].

The evaluation will be based on the classification accuracy of the models when
applied to the EMG and accelerometer data obtained from the Ninapro project.
This will allow for the evaluation of the pattern recognition algorithms, without the
influence of feature extraction techniques, thereby narrowing the research focus.

1.3 Scope and limitations
Perhaps the biggest drawback of pattern recognition based control, when compared
with direct control, is that it is less robust. Therefore, a trade-off between function-
ality and robustness of the control scheme usually arises. By attempting to increase

3

1. Introduction

the number of controllable movements, the reliability of pattern recognition control
schemes further deteriorates. For that reason, a great number of publications limit
their classification problem to a small number of movements (e.g. six movements
and rest). Nevertheless, there is still an ongoing effort to increase the classification
accuracy in augmented dexterity applications [1].

Another important avenue in the field of myoelectric pattern recognition is
the ability to detect simultaneous movements. However, this thesis will focus on
classifying a large number of hand and wrist postures executed in sequence, to
achieve what is referred to as sequential control [2].

Finally, depending on the type of electrodes (e.g. surface, intramuscular, etc.)
and the measurement configuration (e.g. electrode placement, number of electrodes,
etc.) the quality of the signals may vary substantially. There are different filtering
techniques to reduce noise from power line interference and movement artefacts. To
narrow the scope of the thesis, these factors will not be explored. However, in the
Ninapro database, many of these steps have already been performed to improve the
quality of the EMG data [1].

1.4 Thesis outline
This thesis is organised into four chapters. The theory chapter begins with a sum-
mary of the types of signals to be used for pattern recognition. This is followed by
a comprehensive introduction to artificial neural networks and the series of develop-
ments that gave rise to deep learning. Moving on from MLPs, there is a description
of CNNs and the LSTM architecture. This chapter concludes with a series of relevant
theoretical concepts that were implemented in the experimental work.

Once the foundation is set, the methods chapter introduces the methodology
used for the work carried out in this thesis. A description of the Ninapro database
is included along with the chosen dataset. The hand movements to be classified by
the pattern recognition algorithms are also presented. For clarity, there is a data
processing subsection that includes all transformations applied to the dataset before
feeding it to the machine learning algorithms. Finally, it is also in this chapter that
the studied architectures are presented.

The results chapter is divided into two parts. First the performance of the three
DNN architectures are compared. Once an architecture is determined to outperform
the others, a hyperparameter search is performed to analyse the role of four major
parameters on the learning curve. A brief discussion chapter was added following
the results, to reflect on the findings and compare with similar research done in this
field.

In the final chapter, a short conclusion is presented with reflections on the work
carried out throughout the thesis, and some personal comments on what should be
done in the future.

4

2
Theory

This theoretical introduction aims at familiarising the reader with the core concepts
surrounding the practical work explained in Chapter 3. By the end, there should
be a clear understanding of the signals used for the classification problem and more
importantly, the basic machine learning concepts implemented in this thesis.

2.1 Signals

There are two main types of signal to be introduced, namely electromyograms and
inertial measurements. While the first is a type of biosignal and is recorded by
an electrocardiograph, the latter may be one or a combination of signals from ac-
celerometers, gyroscopes and magnetometers. These components make up a typical
inertial measurement unit (IMU).

2.1.1 Electromyography

Electrocardiograms consist of the signals obtained by electromyography. This med-
ical technique to record the electrical activity of the muscles, can be performed
using different types of electrodes, and in various electrode configurations, such
as monopolar and bipolar. The latter configuration produces a signal with higher
signal-to-noise ratio (SNR), coupled with a differential amplifier [19]. For the pur-
pose of this thesis, only surface electromyography will be introduced.

Though surface electrodes are more convenient and less invasive than intramus-
cular electrodes, they suffer from motion artefacts caused by skin displacement and
provide, in general, significantly weaker signals, with peak amplitudes of the order
of 0.1 mV to 1 mV. In comparison, using intramuscular needle electrodes provides
stronger signals, of up to an order of magnitude higher amplitudes [19].

Another key difference is that needle electrodes are capable of recording action
potentials of single motor units, i.e. the group of skeletal muscle fibres innervated by
a single motorneuron. When the contraction level increases, the signals reach what is
referred to as the interference pattern. This interference occurs due to the increase
of motor units that get recruited as the contraction level increases. However, in
surface electromyography, the signals consist of this interference pattern no matter
the contraction level, due to the large area covered by the electrodes [19].

Figure 2.1 shows an example recording of an surface EMG signal, were its
stochastic and nonstationary nature is evident.

5

2. Theory

Figure 2.1: Sample EMG signal extracted from the Ninapro database (see Section
3.1). It consists of the first 8 seconds of recording from the first subject, movement
and electrode respectively.

2.1.1.1 EMG Rectification

Rectification is a common processing technique for EMG signals, where the negative
part of the signal is either made positive (full-wave rectification) or set to zero (half-
wave rectification). Some electrodes, such as the well established 13E200 MyoBock
from Ottobock, output a Root Mean Square (RMS) rectified signal. Although for
these particular electrodes, the rectification is executed analogically at the hardware
level, following the work by Atzori et al. [12], a similar digital post-processing stage
will by applied in this thesis (see Section 3.2).

2.1.2 Inertial Measurements
Inertial measurements are often used for the estimation of orientation relative to a
reference frame. Two main sensors are typically employed in inertial measurements
units (IMUs), namely the accelerometer and the gyroscope. These can be seen as
complementary to each other since the first measures linear acceleration and the
latter provides angular speed. Both sensors have distinct problems, the first tends
to be noisy and the seconds accumulates errors generating an inevitable drift [20].

Several sensor fusion techniques have been attempted to generate a more re-
liable orientation estimation, however, this falls out of the scope of the thesis and
only raw accelerometer readings will be used as input to the networks. In Figure
2.2 a sample signal can be observed for all three axes. As can be seen from the
accelerometer plots, the signals are quite noisy. Note that the y-axis of each plot,
indicating acceleration, has no units because the sensor outputs normalised acceler-
ation, with respect to the gravitational acceleration, g = 9.81 m/s2. In Figure 2.2,
the sensor is positioned in such a way that the x-axis is aligned with Earth’s gravity,
and is thus outputting values close to one. On the other hand, the z-axis is closer
to zero, meaning that it is parallel to the direction of acceleration.

There have been several implementations of myoelectric pattern recognition
that have been complemented by using inertial measurement data. The work by
Krasoulis et al. [21], shows that by the concurrent use of EMG and IMU measure-

6

2. Theory

Figure 2.2: Sample accelerometer signals extracted from the Ninapro database
(see Section 3.1). It consists of the first 8 seconds of recording from the first subject,
movement and sensor respectively.

ments, there is an increase in accuracy with a relatively low number of recording
electrodes.

2.2 Artificial Neural Networks
Artificial Neural Networks can be described as computational tools which are com-
posed of interconnected adaptive processing elements commonly referred to as neu-
rons. The structure of the artificial neuron was inspired by its biological counterpart,
though it is still quite a distant abstraction. As shown in Figure 2.3, similarly to a
biological neuron, there are a set of inputs (synapses) with different weights (den-
drites) that get summed together (in the cell body). After the weighted sum, the
result is passed through an activation function, thereby exciting the neuron (firing
an action potential through the axon). The first model of an artificial neuron, de-
veloped by McCulloch and Pitts in 1943 [22], consisted of a mathematical model
with binary inputs, restricted weights and a step activation function, g, resulting in
binary outputs. An additional threshold value determined the position of the step
function [23]. This threshold, θ, is referred to as the bias term.

In 1949, Hebb [24] introduced a theory for neuron adaptation while learning,
which provided the first method to train ANNs. The postulate referred to as Hebb’s
rule, has been summarised as "neurons that fire together, wire together", meaning
that if two neurons are activated by the same input, the connection weight between
them increase [25].

7

2. Theory

Figure 2.3: Representation of artificial neuron k, with xj inputs, and wkj weights.
The output of the neuron, yk, is the result of the activation function, g, applied to
the weighted sum of all m inputs.

In 1957, Rosenblatt [26] developed the perceptron algorithm, perhaps the
simplest type of neural network. With inputs xj ∈ {−1, 1}, the algorithm takes
a set of examples, (x, y), to learn how to map inputs to their respective out-
put. Because there is a known output for each input, this is considered a super-
vised learning method. By iteratively feeding an input and computing the output
ypredicted = sign(wx), this can be compared to the desired output, ytarget . For each
prediction, the weights are updated according to Hebb’s rule [23]:

wcurrent = wprevious + η
(
y

(µ)
target − y

(µ)
predicted

)
x(µ) (2.1)

where η is the learning rate and µ is the example index. If the predicted output is
equal to the target output, then the weights do not change. Otherwise, this learning
rule attempts to minimise the error by adjusting the weights after each input-output
example [23].

In 1960, Widrow and Hoff [27] created the ADALINE (Adaptive Linear Ele-
ment) algorithm, which was one of the first industrial applications using ANNs. In
addition, it also introduced the "delta rule" as the network’s learning rule. It per-
formed the minimisation of the squared error between ypredicted and ytarget to adjust
the weights, w [23]. The error function can be seen in equation (2.2).

E(w) = 1
2

p∑
µ=1

(
y

(µ)
predicted − y

(µ)
target

)2
(2.2)

Both the perceptron and the ADALINE algorithm have the same output equation,
which can be seen in Figure 2.3. However, the index k can be ignored since both
of these algorithms constitute a single linear unit, where g is a linear activation
function. The main difference between algorithms is how the weights are updated.
While the perceptron algorithm used Hebb’s rule, the ADALINE algorithm uses the

8

2. Theory

delta rule, which can be seen in the following equation [23].

wcurrent = wprevious − ∂E(w)
∂w

(2.3)

Equation (2.3) is the same update rule used for gradient descent. At the end of each
epoch (after passing through the entire training set), the weights are adjusted in the
opposite direction of the error gradient, noted as ∆E(w). This delta value can also
be multiplied by a learning rate constant, as in equation (2.1). By introducing gra-
dient descent to train neural networks, the ADALINE algorithm was the precursor
of current optimisation algorithms used to train ANNs [23].

Despite all of these developments, the perceptron was still a linear classifier and
therefore could only learn linearly separable classes. In 1969, the book "Perceptrons"
by Minsky and Papert [28], set back the field of neurocomputing, by exposing these
limitations. Little notable research was done on ANNs until the mid 1980s, when
the backpropagation algorithm was developed, which permitted to train networks
with more than one hidden layer [23].

With the advent of backpropagation, the multi-layer perceptron was developed.
Though counter intuitive, the MLP consists of layers of perceptrons connected to
form a feedforward network, and not a single perceptron with more than one layer,
as shown in Figure 2.4. Furthermore, the perceptrons found in MLPs typically
have nonlinear activation functions, g [29]. Section 2.2.1.1 will introduce the most
commonly used activation functions.

Figure 2.4: Representation of an MLP architecture with three inputs xi, two
outputs yl and two hidden layers, Vj and Vk, with five and four nodes respectively.
The weight matrix connecting the layers, noted as w(1)

ji ∈ R5×3, represents the
connection strength from layer i to layer j, namely the input weights to hidden
layer (1). The same applies to matrices w(2)

kj ∈ R4×5 and Wlk ∈ R2×4, for hidden
layer (2), and output layer, respectively.

9

2. Theory

2.2.1 Backpropagation
Though initially developed byWerbos in 1971, the backpropagation algorithm gained
momentum after it was rediscovered by Rumelhart, Hinton, and Williams in 1986
[30]. This groundbreaking algorithm, allowed for the propagation of errors between
target and predicted outputs, backwards through multi-layer networks. Using the
chain rule of differentiation, the algorithm iteratively computes the gradients of each
layer from the output until the input.

For the MLP represented in Figure 2.4, the training process starts by feeding
an input, I(µ), to the network, passing through the hidden layers until an output,
O(µ), is computed. This is called the forward pass, which is why this architecture is
often referred to as feed-forward neural network (FFNN). The forward pass can be
written as:

y
(µ)
l = g(b(µ)

l), b
(µ)
l =

∑
k

WlkV
(2,µ)
k − θl (2.4)

V
(2,µ)
k = g(b(µ)

k), b
(µ)
k =

∑
j

w
(2)
kj V

(1,µ)
j − θ(2)

k (2.5)

V
(1,µ)
j = g(b(µ)

j), b
(µ)
j =

∑
i

w
(1)
ji x

(µ)
i − θ

(1)
j (2.6)

The next step is to compute the loss, L, given in equation (2.7).

L
(
O

(µ)
predicted, O

(µ)
target

)
= 1

2
∑
l,µ

(
y

(µ)
l,target − y

(µ)
l,predicted

)2
(2.7)

This is a simple error measure known as the mean squared error (MSE) between
the predicted and the target output. The loss is computed with respect to all input-
output pairs, µ, for gradient descent. In Section 2.3.1, other loss functions will be
introduced and Section 2.3.2 includes other optimisation algorithms.

Once the loss has been computed, the gradients can be obtained with respect
to the weights between the output and the previous layer, V (2)

k .

∂L
∂Wlk

= ∂L
∂y

(µ)
l

· ∂y
(µ)
l

∂b
(µ)
l

· ∂b
(µ)
l

∂Wlk

= ∂L
∂y

(µ)
l

· ∂y
(µ)
l

∂b
(µ)
l

· V (2,µ)
k

= ∂L
∂y

(µ)
l

· g′(b(µ)
l) · V (2,µ)

k

=
∑
µ

(y(µ)
l,predicted − y

(µ)
l,target) · g′(b

(µ)
l) · V (2,µ)

k

(2.8)

The same principle applies for the other layers:

∂L
∂w

(2)
kj

= ∂L
∂y

(µ)
l

· ∂y
(µ)
l

∂b
(µ)
l

· ∂b
(µ)
l

∂V
(2,µ)
k

· ∂V
(2,µ)
k

∂b
(µ)
k

· ∂b
(µ)
k

∂w
(2)
kj

=
∑
µ,l

(y(µ)
l,predicted − y

(µ)
l,target) · g′(b

(µ)
l) ·Wlk · g′(b(µ)

k) · V (1,µ)
j

(2.9)

10

2. Theory

∂L
∂w

(1)
ji

= ∂L
∂y

(µ)
l

· ∂y
(µ)
l

∂b
(µ)
l

· ∂b
(µ)
l

∂V
(2,µ)
k

· ∂V
(2,µ)
k

∂b
(µ)
k

· ∂b
(µ)
k

∂V
(1,µ)
j

·
∂V

(1,µ)
j

∂b
(µ)
j

·
∂b

(µ)
j

∂w
(1)
ji

=
∑
µ,k,l

(y(µ)
l,predicted − y

(µ)
l,target) · g′(b

(µ)
l) ·Wlk · g′(b(µ)

k) · w(2)
kj · g′(b

(µ)
j) · x(µ)

i

(2.10)

To obtain the bias equations the partial differential equations are solved with respect
to θlk, θkj and θji. These equations can be further simplified by defining the following
δ terms:

δ
(3,µ)
l = (y(µ)

l,predicted − y
(µ)
l,target) · g′(b

(µ)
l) (2.11)

δ
(2,µ)
k =

∑
l

δ
(3,µ)
l ·Wlk · g′(b(µ)

k) (2.12)

δ
(1,µ)
j =

∑
k

δ
(2,µ)
k · w(2)

kj · g′(b
(µ)
j) (2.13)

These terms repeat themselves as the the errors get propagated further back, which
is why the backpropagation algorithm is computationally efficient even for deeper
networks. Finally, the set of simplified backpropagation equations needed to com-
pute the gradients, are summarised in equations (2.14), (2.15) and (2.16).

∂L
∂Wlk

=
∑
µ

δ
(3,µ)
l · V (2,µ)

k

∂L
∂θlk

=
∑
µ

δ
(3,µ)
l · (−1) (2.14)

∂L
∂w

(2)
kj

=
∑
µ

δ
(2,µ)
k · V (1,µ)

j

∂L
∂θ

(2)
kj

=
∑
µ

δ
(2,µ)
k · (−1) (2.15)

∂L
∂w

(1)
ji

=
∑
µ

δ
(1,µ)
j · x(µ)

i

∂L
∂θ

(1)
ji

=
∑
µ

δ
(1,µ)
j · (−1) (2.16)

These equations can be used by any gradient based optimisation algorithm, to
minimise a differentiable loss function and update the weights and biases [31]. For
gradient descent the update equations for each weight and bias are given by:

wcurrent = wprevious − η ∂L
∂wprevious

(2.17)

θcurrent = θprevious − η ∂L
∂θprevious

(2.18)

where η is the learning rate.
The backpropagation equations derived for the MLP model in Figure 2.4,

may seem trivial, however it is the same fundamental method that is used in more
complex models such as CNNs and RNNs, to compute the loss function.

2.2.1.1 Activation function

In the derivation of the backpropagation equations there is no mention of which type
of activation function, g, was used. In truth, the only requirement for an activation
function is that it has to be differentiable in order to apply backpropagation. These

11

2. Theory

are a characteristic of the nodes in the network, as seen in Figure 2.3, and act as a
transfer function for the weighted sum of the inputs of that neuron, to its output.

Numerous activation functions have been used in the literature. In table 2.1
the three most widely used activation functions are presented.

Plot Formula

0

1

Sigmoid:

g(x) = 1
1+e−x ∈ (0, 1)

0

-1

1

Hyperbolic tangent:

g(x) = tanh(x) ∈ (−1, 1)

0

+

ReLU:

g(x) = max(0, x) ∈ [0,+∞)

Table 2.1: Activation function plots and respective formulas.

Both the sigmoid function and the hyperbolic tangent have been implemented
in ANN nodes as nonlinear activations, for a long time. More recently, the Rectified
Linear Unit (ReLU) has been shown to improve generalisation as well as speed
up training, and is the most common activation function applied in CNNs [32].
Note that the ReLU is not differentiable at x = 0, therefore, for backpropagation,
subgradients are computed instead.

2.2.2 Convolutional Neural Networks
Convolutional neural networks are models that revolutionised the field of deep Learn-
ing, due to their ability to efficiently process image-like data by resorting to local
connections, shared weights, pooling and using many layers [17].

Although CNNs have had the biggest impact in computer vision applications,
using 2D images as inputs, for this thesis a 1D CNN will be presented since the
relevant data for the desired application consists of a set of one-dimensional input
vectors. In Figure 2.5, a graphical representation of the CNN sequence is presented,
followed by the description of each layer and the relevant equations.

12

2. Theory

Figure 2.5: Graphical representation of 1D CNN architecture. The input is fed
through a series of convolution layers followed by max-pooling layers, to form ar-
bitrarily deep structures. N represents the number of filters in each layer. Here,
a stride of one was considered for the convolution step and a stride of two for the
max-pooling step. No padding was employed, resulting in a progressive shortening
of the input sequence. The classification output is a result of a softmax layer, with
M outputs, equal to the number of classes.

For a better understanding of the principle layers that make up CNNs, two
examples were given in Figure 2.6, where 2.6a demonstrates the filtering process
of the convolution layers, and Figure 2.6b illustrates the process of max-pooling,
also called sub-sampling. However, the term max-pooling is more precise for this
specific example since it consists of the max(a, b) function. There are also other
sub-sampling functions, e.g. mean-pooling.

Each CNN layer has a set of filters which extract locally connected information
and pass it to the next layer. The weights from the previous layer are therefore
connected to the weights of the following layers. With this arrangement, CNNs are
able to detect translation invariant features, which are progressively more detailed
as the network depth increases [17]. It is due to this capacity that CNNs have
progressively replaced the use of human-engineered feature extractors, such as the
ones typically applied for myoelectric pattern recognition.

After a stack of convolution and pooling layers, there can be one ore more
fully connected layers before applying the softmax function. This is equivalent to
adding an MLP at the end of the CNN. For a softmax activation function, the final
layer needs to have the same number of outputs as there are classes. For multi-class
problems, the last layer performs a softmax operation which squashes the output
into the range of [0,1] in such a way that the sum of all the outputs adds up to
1. This way the classification output can be seen as a probability measure, set by
equation (2.19).

g(b)j = ebj∑K
k=1 e

bk
(2.19)

13

2. Theory

The above equation consists of output j ∈ RK of the softmax activation func-
tion, g, given a K-dimensional vector b of the output layer. Though the softmax is
an activation function, as the examples given in section 2.2.1.1, the derivative has
the unique characteristic of being dependant on the output index, since equation
(2.19) is computed for all j.

(a) (b)

Figure 2.6: Simple example of convolution and max-pooling operations in 1D
CNNs. In Figure a, the filter was convolved with the input vector, with a stride
of 1, meaning that the filter moves in steps of one through the input vector. The
centre value is then updated to be the weighted sum of the input segment and the
filter weights. In Figure b, the max-pooling filter – max(a, b) – with a stride of 2,
was applied to the output of the convolution layer, resulting in an output vector of
half the size.

2.2.3 Recurrent Neural Networks
When the backpropagation algorithm was introduced, its most exciting application
was to train RNNs. These networks differ substantially from MLPs and CNNs, since
they possess dynamic memory, in the form of an internal state which can be altered
by recurrent connections. Due to this unique feature, they have been shown to be
more powerful than FFNN when dealing with temporally dependant signals, such
as speech or text [17].

It is possible to view RNNs has a very deep FFNN which has the same shared
weights for each layer. This is better visualised from Figure 2.7, where a simple
recurrent network is unfolded through time.

It is through this same unfolding that the backpropagation through time
(BPTT) algorithm was developed to train recurrent networks. As the name suggests,
by treating the recurrent network like a feed-forward network, it becomes possible
to apply backpropagation. However, while FFNNs have different parameters that

14

2. Theory

Figure 2.7: Illustration of general recurrent network which was unfolded through
time. On the left hand side, the network architecture is shown, with arrows rep-
resenting the recurrent connections. On the right hand side, these connections are
represented in space, where each time step forms a new layer.

have to be updated for each layer, RNNs have the same parameters between each
"temporal" layer.

Although RNNs share the efficiency of deep FFNN, they also share the issues
that come from large networks, namely the exploding/vanishing gradients problem.
With the conventional BPTT, as the gradient computations flow backwards in time,
there is a tendency to have increasingly high or low values, leading to either an
exploding or vanishing cost. The temporal evolution of the error depends on the
size of the weights, in an exponential manner. Therefore, if the gradients explode,
this will lead to oscillating weights. On the other hand, if the gradients vanish, it
will lead to prohibitively slow learning or even failure [14].

However, the Long Short-Term Memory (LSTM) network architecture, devel-
oped by Hochreiter and Schmidhuber [14], enforced constant, non-exploding and
non-vanishing error flow, thus solving the problem.

2.2.3.1 Long Short-Term Memory

The architecture of a vanilla LSTM cell is depicted in Figure 2.8. The term vanilla
was added since variants of the same architecture have been created, e.g. LSTM
with peephole connections. As shown in the schematic of the LSTM cell, the output
is connected back to the block input and all of the gates, through recurrent (lagged)
connections [33]. For clarity, Figure 2.9 shows a graphical representation of two time
steps of the recurrent update.

The architecture presented here consists of a revised version of the initial
LSTM, which did not yet include a forget gate. With the addition of this gate,
the network becomes able to learn continuous tasks, since it can at times forget and
thus release memory [33].

15

2. Theory

Figure 2.8: Schematic of vanilla LSTM architecture. The recurrent connections
are noted by arrows with time-lags. The gate activation functions, noted by g,
are always sigmoids, while the input g and output h usually have tanh activation
functions.

The formulas for the forward pass in a vanilla LSTM are given in equations
(2.20) through (2.25). For clarity, the notation is vectorised and follows the order
in Figure 2.8.

zcurrent = g
(
Wzx

current +Rzy
previous + θz

)
input (2.20)

icurrent = g
(
Wix

current +Riy
previous + θi

)
input gate (2.21)

f current = g
(
Wfx

current +Rfy
previous + θf

)
forget gate (2.22)

ccurrent = icurrent � zcurrent + f current � cprevious cell state (2.23)
ocurrent = g

(
Wox

current +Roy
previous + θo

)
output gate (2.24)

ycurrent = ocurrent � h
(
ccurrent

)
output (2.25)

Here � denotes point-wise multiplication of two vectors. W and R are the weights
matrices. They are noted differently since W consists of the input weights rectan-
gular matrices and R are square recurrent weight matrices.

2.3 Learning
As previously mentioned, backpropagation is the fundamental principle which al-
lows deep networks to learn. However, it is merely a computation step taken by a
certain optimisation algorithm, such as gradient descent. It is the optimiser that de-
termines how the network updates the weights towards the minimisation of the loss
function. In section 2.3.1 there will be a short description of the relevant loss func-
tions, followed by the optimisation algorithm used in this thesis (section 2.3.2), and
finally some of the regularisation strategies to improve the network’s generalisation
capabilities, in section 2.3.3.

16

2. Theory

Figure 2.9: Schematic of two time steps of the LSTM update. The notation t− 1
represents the previous time step and t the current time step. With a single LSTM
cell, there is a sequence of inputs, x and outputs y, while typically only the last
output is considered for classification applications.

The goal of the ANN training process is to learn how to map the input data
to the output data, so that a high classification accuracy is reached. This is also
referred to as achieving a low bias network. Conversely, if a network fails to learn
and produces low accuracies, it has a high bias. However, for a classifier to be
useful, besides having a low bias, it needs to perform equally well on unseen data
as on the training data, and therefore have low variance. Since the training data
usually consists of a small sample from a certain pool of data, ANNs can learn
the entire sample with an accuracy of 100%, and then perform poorly with other
samples from the same pool. When this occurs, the network is said to have high
variance [34].

Further, when a network is said to have high bias, it means that there was
underfitting to the training data, and that it could not learn efficiently. On the
other hand, when there is high classification accuracy and the test accuracy is signif-
icantly lower, the network may suffer from high variance, meaning that overfitting
occurred [34,35].

2.3.1 Loss Function
There are several possible loss functions to be employed for training neural networks.
The choice of loss depends on the problem at hand. For regression problems, where
the network needs to learn a specific function, the appropriate loss would be similar
to the one in equation (2.7), based on the distance between input and output (resid-
ual). However, for classification problems, such as myoelectric pattern recognition,
there are more efficient entropy-based loss functions.

Depending on the desired output format of the classification problem, it may be
better to use binary or categorical cross-entropy, where the first is merely a special
case of the second. In problems where there are only two output classes, binary
cross-entropy is the obvious choice. However, if there is a multi-class problem where
multiple outputs can be present for a given input, it becomes a multi-label situation.
In such cases, binary cross-entropy can be used. However, in order to use a binary

17

2. Theory

loss with more than two output nodes, the output activation cannot be a softmax
function, but an alternative such as the sigmoid function. This will result in a
classifier made up of a group of binary classifiers.

The binary cross-entropy loss function is presented in equation (2.26), with ŷ
representing the output of the network and y the target value ∈ 0, 1.

L (ŷ, y) = − [ylog (ŷ) + (1− y) log (1− ŷ)] (2.26)
where ŷ can be seen as the probability of the output being 1, and (1− ŷ) the
probability of the output being 0.

In order to employ such a loss function to a multi-class problem, it is necessary
to encode the outputs into binary arrays, with size equal to the number of classes,
K. For example, in a problem with five possible outputs, the one-hot encoded vector
for the second class would be: y2 = {0, 1, 0, 0, 0}. In equation (2.27), the categorical
cross-entropy loss is presented.

L (ŷ, y) = −
K∑
k=1

yklog (ŷk) (2.27)

where yk is the kth output node and log indicates the natural logarithm, which is
why this is also sometimes called the log loss. Note that the output represents a
probability distribution computed by the softmax layer.

Upon choosing the appropriate loss function, the optimisation goal can be
written in the form of a loss function to be minimised with respect to the whole
dataset:

J
(
w[1], θ[1], ..., w[L], θ[L]

)
= 1
p

p∑
µ=1
L
(
ŷ(µ), y(µ)

)
(2.28)

where Lmay represent any of the loss functions introduced, or even another specially
designed for a certain problem, as long as it is differentiable. Note that the cost
function is minimised with respect to all network parameters and averaged by all p
examples. This is called batch gradient descent because the whole batch of training
examples is used to compute the cost function.

2.3.2 Optimisation Algorithm
Though a gradient descent step will always lead to a decrease of the cost function,
propagating the entire training set trough the network to obtain a single step is
computationally expensive. Furthermore, if the gradient gets smaller, the algorithm
becomes increasingly slow. Finally, for deep neural networks it may even be unfea-
sible to keep all that data in the main memory. Consequently, the most extensively
used optimisation algorithm for training large networks is stochastic gradient descent
(SGD).

Though the update rule for SGD is essentially the same, the network parame-
ters get updated after each input-output example, similarly to the perceptron algo-
rithm. Additionally, the inputs are ramdomly shuffled before every epoch. However,
due to its stochastic nature, the cost is no longer guaranteed to decrease monoton-
ically. Nonetheless, this may come as an advantage, since gradient descent will get
stuck in local minima and the stochasticity provides a way to escape them.

18

2. Theory

Perhaps as a way to include the best of both algorithms, the mini-batch train-
ing method was developed. By dividing the training set into smaller batches and
using these to update the network, better estimates of the gradient are obtained. It
is easy to understand that with a batch size of 1, the mini-batch algorithm is simply
SGD, and with a batch size equal o the training set it becomes gradient descent.
By using the mini-batch SGD algorithm, there are two parameters that need to be
chosen for optimisation, namely the learning rate, η, and the batch size.

Recently, more efficient stochastic optimisation methods have been developed,
such as RMSprop and AdaGrad. The optimisation algorithm implemented in this
thesis was the Adam algorithm, which was developed by Kingma and Ba [36] and
has shown to be a comparably better optimiser since it attempt to combine the
advantages of the other two algorithms. The name derives from Adaptive moment
estimation, because the algorithm estimates the first and second moments of the
gradients and then computes individual adaptive learning rates, for the update rule.
This rule can be seen in equation (2.29).

wcurrent = wprevious − α m̂current

√
v̂current + ε

(2.29)

Where m̂ and v̂, are estimates of the first and raw second moments of the gradients,
noted as g. The are computed in accordance with equations (2.30) and (2.31).

mcurrent = β1 ·mprevious + (1− β1) · gcurrent (2.30)
vcurrent = β2 · vprevious + (1− β2) · (gcurrent)2 (2.31)

These equations consist of exponential moving averages of the gradient, m, and the
squared gradient, v. Where the first is an estimate of the 1st moment (the mean) and
the latter is the 2nd raw moment (the uncentred variance). The hyperparameters
β1 and β2 ∈ [0, 1) control the rates of exponential decay of each moving average.
However, because these vectors are initialised to zero, they are biased towards zero.
The algorithm them uses bias correction terms, shown in equations (2.32) and (2.33),
to compute m̂ and v̂.

m̂current = mcurrent

(1− βc1) (2.32)

v̂current = vcurrent

(1− βc2) (2.33)

where c is the current iteration number. This means that at each step, both βc

parameters get increasingly smaller and this initialisation bias correction has a pro-
gressively lower impact on the update [36].

The authors included in their paper the set of advised default parameters:
α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8 [36].

2.3.3 Regularisation Methods
The goal of regularisation methods is to improve the generalisation ability of the
network, by reducing the difference between the training error ans the test error.
This difference can be considered as the generalisation error, and there are several
strategies to reduce it [34].

19

2. Theory

2.3.3.1 L2-Regularisation

The main regularisation method to be presented here is the L2-regularisation of the
cost function. This works by adding an extra penalty term to the cost function,
as can be seen in equation (2.34), where L is the loss function, e.g. categorical
cross-entropy.

J
(
w[1], θ[1], ..., w[L], θ[L]

)
= 1
p

p∑
µ=1
L
(
ŷ(µ), y(µ))

)
+ λ

2p

L∑
l=1

∥∥∥w[l]
∥∥∥2

(2.34)

Where the norm is computed as in equation (2.35). Corresponding to the Frobenius
norm of a matrix, it is equal to the sum of squared elements of a matrix.

∥∥∥w[l]
∥∥∥2

=
n[l+1]∑
i=1

n[l]∑
j=1

(wij)2 (2.35)

The cost function is minimised with respect to all weights and biases of the network
with L layers. Because of the penalty that will increase the cost if the weights are too
large, this regularisation method will force the weights to be small. For this reason,
it is sometimes referred to as weight decay. The regularisation parameter, λ, is
therefore another hyperparameter to be tuned.

2.3.3.2 Dropout

In recent years, a new type of regularisation method has been introduced, namely
the dropout method. It has shown to reduce overfitting at a low computational
cost. By sequentially dropping out a set of nodes, it becomes possible to combine
exponentially many smaller architectures within the same model. The choice of
which nodes to drop is random, and determined by a probability parameter [35].
Though it seems to have become common practice to apply dropout on deep CNN
models, it will not be implemented in this thesis.

2.3.3.3 Data Augmentation

One of the key requirements for deep learning applications is the availability of large
quantities of data. Deep models, with more trainable parameters than number of
training examples can still have relatively low generalisation error [34]. Nonetheless,
when there is an insufficient amount of training data, the models tend to overfit to
that data, and end up having bad generalisation capability. Though the ideal is to
get additional data, when that is not possible, alternative regularisation strategies
can be employed to expand from the available data. Such methods are referred to
as data augmentation.

Though more sophisticated methods exist, a simple way of obtaining more
training data is to modify the available data. In image classification problems this is
done by applying geometric transformations and adding noise to the available images
[37]. In one-dimensional signals, adding white Gaussian noise can produce a similar
effect, by generating significantly different signals. This is the strategy employed by
Atzori et al. [12] when using the Ninapro database for a CNN implementation.

20

2. Theory

2.3.3.4 Early stopping

Finally, the simplest strategy to make sure that the network can generalise well is
to split the dataset into three sets: training, validation and test set. The reasoning
behind this is to be able to use the largest portion of the data for training the model,
but keep a smaller sample of it to track the network’s performance on unseen data,
i.e on the validation set. During training, if the error of the training set keeps
decreasing, but the validation error stagnates or even rises, it means that overfitting
has begun to occur. Early stopping is simply to check when or if this occurs and to
stop training then.

The goal of the test set, independent to the validation set, is to make sure
the training was not biased towards the validation set. This is due to the hyper-
parameters (e.g. number of layers and nodes) that can be fine-tuned based on the
learning curve of the validation set . This also includes the stopping point, meaning
the epoch at which the learning stopped, since it is based on the accuracy for the
validation data. The test set provides a truly unseen group of examples that will
give an unbiased evaluation of the model’s performance.

2.4 Performance Measures

The most straight forward way of evaluating the performance of a machine learning
algorithm is to measure the classification accuracy, which is equal to the fraction of
correct classifications with respect to the total number of classifications. However,
this measure can give rise to deceivingly high performance results. To illustrate this,
consider a binary classification problem, where 80% of test examples are positive and
the rest negative. If the classification algorithm were to classify all test examples as
positive, the accuracy would be 80%, even though it effectively could not recognise
the negative examples. This situation arises from an unbalanced class distribution,
but can be avoided by having equal number of examples for each class.

To continue with the example above, let us introduce a few important concepts
by looking at the confusion matrix in table 2.2.

Table 2.2: Confusion matrix of a binary classification problem.

ytarget

ypredicted Positive Negative

Positive TP FN
Negative FP TN

For binary classification problems, the confusion matrix gives a clear summary
of the algorithm’s performance. The terms TP, TN, FP and FN refer to true pos-
itives, true negatives, false positives and false negatives, respectively. From these
values many different accuracy measures can be extrapolated, such as precision (true
positive rate) and recall (true negative rate) [38].

21

2. Theory

Accuracy = TP + TN

TP + TN + FP + FN
× 100 (2.36)

Precision = TP

TP + FN
× 100 (2.37)

Recall = TN

TN + FP
× 100 (2.38)

The measures from equations (2.37) and (2.38) can further be used for more complex
measures such as the F1-score (harmonic mean of precision and recall).

F1-score = 2 · Precision ·Recall
Precision+Recall

(2.39)

However, the F1-score has some drawbacks, especially when dealing with un-
balanced classes. A measure that is more robust to class imbalance is the Matthew’s
Correlation Coefficient (MCC) [38]. Equation (2.40) shows the formula for comput-
ing the MCC, using values from the confusion matrix.

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(2.40)

The MCC will be 1 for a perfect classifier and 0 for a random classifier. Addi-
tionally, an inverse classifier will have an MCC of -1, which gives another dimension
to the performance measure. This score can be applied for multi-class classification
problems however, all classes must be present in the classification output, otherwise
the measure becomes undefined [38,39] .

22

3
Methods

In this chapter, there will be a detailed description of the Ninapro data, followed
by the processing steps and finally the experiments. The aim is to clearly state
all processing executed before implementing the pattern recognition algorithms in
order to recreate the input to the models. The DNN models to be tested are a CNN,
an RNN and a combination of the two types of networks, referred to as CNN-RNN.
More details about the architectures as well as the experimental setup are presented
in section 3.4.

3.1 Dataset

The EMG data used for this thesis was obtained from the Ninapro repository, which
has the aim of being a benchmark database for the field of non-invasive adaptive
hand prosthetics [18,40]. To date, the repository includes seven different databases,
with distinct acquisition protocols and subjects, but following a general guideline.
The most recent database, is the only to include both intact and amputee subjects,
which is why it was chosen as the source of data to be used here [21]. Though it would
have been possible to collect new data in the lab, it has become common practice
to resort to publicly available databases, such as the Ninapro, for benchmarking
deep learning algorithms [12]. If new recordings would have been made, that would
also require more time while also making the comparison with other methos more
difficult. The following sections will introduce how the chosen dataset was recorded
and processed.

3.1.1 Signal Acquisition

For the 7th Ninapro database, myoelectric recordings were made using a Delsys®

Trigno™ IM Wireless System, with a total of 12 active double–differential wireless
electrodes. Each of the Trigno™ sensors also includes an Inertial Measurement Unit
(IMU), capable of recording tri-axial accelerometer, gyroscope and magnetometer
measurements. While the EMG signals were acquired at a 2000 Hz sampling rate,
the IM data was sampled at a much lower rate of 128 Hz. To compensate for this
discrepancy, the IM data was later up-sampled to a frequency of 2 kHz, by linear
interpolation [21]. While additional measurements are available on the database,
these fall out of the scope of this thesis.

23

3. Methods

3.1.2 Sensor Placement

Following the original Ninapro protocol, eight sensors were equally spaced around
the proximal section of the forearm, 3 cm from the elbow, as shown in Figure 3.1a.
This strategy is often described as untargeted electrode placement, since there is
no specific muscle that it aims to cover. The remaining four sensors were placed
in a targeted manner, above the extensor digitorum communis (EDC), digitorum
superficialis (FDS), biceps brachii and triceps brachii muscles [21].

(a) (b)

Figure 3.1: Photographs of electrode placement in an amputee subject. In pic-
ture a, four of the eight untargeted Trigno™ sensors can be seen. Picture b
additionally shows the targeted electrode placement, above and below the un-
targeted region. All sensors were covered by an adhesive tape to secure them
in place during recordings. Both pictures were taken from Krasoulis et al. [21],
and are licensed under a Creative Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/).

3.1.3 Exercises

The database contains recordings from two different types of exercises, one with
basic movements of the hand and wrist, and another with grasps and functional
movements. In total they make up 40 different movements that could be controllable
by an amputee [21]. These can be seen along with their numbering, in Figure 3.2.

For a better understanding of the movements represented in Figure 3.2, a list
of detailed descriptions for each class is presented in tables 3.1 and 3.2. From these,
it becomes clear that some of the movements are quite similar to each other, which
naturally hinders the performance of any classification algorithm. For that reason, a
decision was made to reduce the number of classes by ignoring somewhat redundant
movements. In addition, functional movements were excluded, since one of the
amputee subjects was interrupted and did not perform the last two [21]. With this
selection, a total of 30 movements will be considered, and they are renumbered on
the right-hand side of tables 3.1 and 3.2.

24

3. Methods

(a)

(b)

Figure 3.2: Collection of movements executed by subjects in database 7 of the
Ninapro repository. Pictures in group a, correspond to movements from exercise
1 and pictures in group b consists of the variety of functional grasps recorded for
exercise 2. These photographs © [2015] IEEE were taken and rearranged from
Atzori et al. [18].

Table 3.1: Detailed description of movements from exercise 1. Sections in gray
represent the original numbering found in Figure 3.2, with excluded movements.

1 Flexing all fingers except thumb (Thumb up) 1
2 Extension of index and middle finger while flexing oth-

ers (V-sign)
2

3 Flexion of ring and little finger while extending others
(German three)

3

4 Thumb opposing base of little finger (Four) 4
5 Abduction of the fingers (Open hand) 5
6 All fingers flexed (Close hand) 6
7 Extended index, with remaining fingers flexed (Index

pointer)
7

Isometric,
isotonic hand
postures

8 Adduction of extended fingers (Joined fingers) 8
9 Wrist supination (rotation axis through middle finger) 9
10 Wrist pronation (rotation axis through middle finger) 10
11 Wrist supination (rotation axis through little finger)
12 Wrist pronation (rotation axis through little finger)
13 Wrist flexion 11
14 Wrist extension 12
15 Wrist extension with closed hand 13
16 Wrist radial deviation 14

Basic
movements of
the wrist

17 Wrist ulnar deviation 15

25

3. Methods

Table 3.2: Detailed description of movements from exercise 2. Sections in gray
represent the original numbering found in Figure 3.2, with excluded movements.

18 Large diameter grasp (1L bottle) 16
19 Small diameter grasp (tube)
20 Fixed hook grasp (glass) 17
21 Index finger extension grasp (knife) 18
22 Medium grasp (0.5L bottle vertical) 19
23 Ring grasp (0.5L bottle horizontal) 20
24 Prismatic four fingers grasp (pencil)
25 Stick grasp (pencil) 21
26 Writing tripod grasp (pen) 22
27 Power grasp (sphere)
28 Three finger grasp (sphere)
29 Precision grasp (sphere)
30 Tripod grasp (sphere) 23
31 Prismatic grasp (coin) 24
32 Tip pinch grasp (pill) 25
33 Quadpod grasp (bottle cap) 26
34 Lateral grasp (card) 27
35 Parallel extension grasp (book) 28
36 Extension type grasp (plate) 29

Grasps, with
every-day
objects

37 Power grasp (disk) 30
38 Open a bottle with tripod grasp
39 Turn a screw (grasp the screwdriver with a stick grasp)Functional

movements 40 Cut something (grasp the knife with an index finger exten-
sion grasp)

26

3. Methods

3.1.4 Data Collection
Data was collected from a total of 20 intact and two amputee subjects, with ex-
actly the same procedure. However, while the first group preformed each movement
monolaterally, the second was instructed to perform bilateral mirrored movements,
to obtain a ground truth. This is a common practice which helps amputee subjects
to visualise the phantom limb moving in synchrony with their intact hand [18]. Each
session required the subject to perform each movement six times, with 3 seconds rest
followed by 5 seconds contraction. This was done by providing a visual stimulus on
a computer screen indicating which movement to perform [21]. Due to time limi-
tations, it was decided to use only the first 8 intact subjects for the experiments,
which gives a total of 10 test subjects.

3.1.5 Signal Processing
In addition to linearly interpolating the IM data, further processing stages were
applied. First, to reduce power line interference, a Hampel filter was used on the
EMG signals. Subsequently, a relabelling procedure was performed to align the
visual stimulus and the respective contraction [21]. This is a vital step for classifica-
tion purposes, since the presence of mislabelled examples in training data can lead
to poor results. Because there is an inevitable misalignment between the stimuli
and the contraction periods, due to variable reaction time and attention span of
subjects, the relabelling was done in accordance with the Ninapro protocol. For a
description of the procedure, refer to section III B of the paper by Atzori et al. [18].

3.2 Data Processing
In order to apply the desired machine learning algorithms to the Ninapro dataset,
it was necessary to structure the data appropriately. The dataset was provided in
a separate Matlab file for each subject and exercise, where all measured movements
were stacked into long vectors of non-contiguous signals. To produce the comma
separated value (CSV) file containing pairs of input and output vectors, some data
processing was performed.

The first step was to remove the redundant movements as mentioned in Section
3.1.3, as well as measurements other than EMG and accelerometer values. Then data
augmentation by a factor of 8 was performed as introduced in Section 2.3.3.3. This
was done by iteratively taking the original signals and adding white Gaussian noise
with increasing SNR from 10 to 40, with an increment of 5. The augmentation
magnitude was chosen by verifying the amount of data generated from the process.
With a factor of 8 the size of the files reached approximately 4 GB per subject and
exercise. If the networks were to be trained for both exercises simultaneously, this
value would therefore reach a total of 8 GB, which proved difficult to handle by
the hardware. Though there are methods to overcome these limitations, none were
explored in this thesis, thus each exercise was evaluated independently. Furthermore,
to add a reasonable amount of noise, two separate SNR values were used based on
the average signal power of the EMG and the accelerometer signals. To achieve

27

3. Methods

this, the inbuilt Matlab function awgn was used and seven new complete recordings
obtained. This process resulted in a total of 48 repetitions for each movement.

Subsequently, the accelerometer signals were down-sampled to 500 Hz, in an
attempt to reduce the amount of computation time needed. Based of the work by
Atzori et al. [12], the EMG data was RMS rectified to the same frequency as the
accelerometer data, so that more information was preserved in the final signal while
also attenuating the effects of outliers.

The next stage of the script was responsible for splitting the data into training,
validation and test sets. To that end, the first, second, fifth and sixth repetitions,
and the augmented data obtained from these, were selected to make up the training
set. The third and fourth repetitions were saved for the validation and test sets,
respectively. While the training set included augmented data, the validation and
test sets consisted only of real signals. Therefore, the data obtained by augmenting
the original third and fourth repetitions was discarded.

Figure 3.3: Illustration of the separation of training, validation and test data.

A seen in figure 3.3, with this separation, the training set included a total of 32
repetitions for each movement, making the other two sets much smaller, containing
only one repetition. The use of only true signals in these sets is crucial because
their purpose is to evaluate how well the network performs. If artificial data were
to be used for testing and validation, the results would not reflect the performance
for real signals.

Furthermore, having the central recordings in these sets, assures that if there is
any changes in the signals as the number of contractions increases, for example due
to fatigue, then the intermediate recordings should represent the median contraction.
Such changes have been previously reported by Atzori et al., in the Ninapro project
(dataset 1) [18]. There was a decreasing trend through repetitions of each movement
in both EMG amplitude and range of motion.

Finally, the signals in each set were segmented with a 200 ms window and 150
ms of overlap between windows. Though bigger intervals will store more information
and typicality improve the classification output, it has been shown that windows
must be smaller than 300 ms so that the user does not experience control delays [41].

28

3. Methods

Once all the data was processed, it was stored in a separate CSV file for each
set. Groups of three sets were stored in separate folders according to exercise and
subject to be accessible for testing.

3.3 Software and Hardware
Once the data was structured and stored appropriately, it could be imported to the
Python program developed to run the different deep learning algorithms. This was
implemented in a virtual environment created using Anaconda. In this environment
Microsoft’s Cognitive Toolkit (CNTK) was installed along with other necessary li-
braries. CNTK is an open source deep learning framework that can be imported
has a library to Python, C++ or C# programs, as well as a standalone tool in
the model description language, BrainScript [42]. Python was chosen due to its
simplicity as well as the compatibility with a well established library supported by
other major deep learning frameworks, such as Theano and TensorFlow. The Keras
library provides a simple high level method of programming neural networks, with
an intuitive and well documented API. Therefore, Keras is an ideal choice for a high
level implementation of complex networks, such as CNNs and LSTMs [43].

For deep learning applications, there has to be a careful choice of hardware
as well as software, since they require computational power superior to most com-
mercially available computers. The system used for the following experiments was a
64-bit Windows based computer, with a CUDA-enabled GPU by NVIDIA, namely
the GeForce GTX 970 model, with 4 GB dedicated memory. Other relevant system
specifications include a 16 GB RAM and an Intel® Core™ i7 CPU. In the results
there will be an evaluation of the execution time for the different networks which
highly depends on the system used together with the selected software.

3.4 Experiments
For the experimental stage of this thesis, the CSV files were loaded into a Python
script and the input-target pairs stored in separate NumPy arrays. Here, as de-
scribed in section 2.3.1, the target classes had to be transformed from integers into
one hot encoded vectors. The final step before training the networks was to balance
all the classes within the sets. This was essential because the class of no movement
or rest, had three times more samples than the other movement classes. Thus, two
thirds of the windows labelled as rest had to be discarded from each set. For that
purpose, before each run, windows classified as rest were randomly removed from
all sets. In addition, the movement classes were also subjected to random deletion
of a small number of windows so that all sets contained exactly the same number
of examples as the least represented movement. To improve training, the examples
were also randomised, before each run.

To evaluate the DNN models, three different architectures were tested on ten
subjects for both exercises. Once a comparison was made between these structures,
the one that provided the best result was further optimised by searching the hyper-
parameter space.

29

3. Methods

3.4.1 Model Comparison
The three architectures to be compared are a CNN, RNN and CNN-RNN model.
Because there are many hyperparameters that influence the performance of DNNs,
in this phase of the experiment, a fix set of parameters were chosen and used for all
three structures. The only hyperparameter that was different between networks was
the number of layers, since these behave differently for RNNs and CNNs. Schematics
of the architectures can be found in figures 3.4, 3.5 and 3.6, and the set of parameters
used is presented in table 3.3.

Figure 3.4: Schematic of CNN model. The input is fed to a sequence of convolu-
tional and max-pooling layers. The sizes of the layer outputs are annotated below
each layer. At the end there is a softmax layer with 16 nodes, one for each class.
Though not represented in the schematic, the outputs of the last max-pooling layer
were stacked into one large vector before being fed to the output layer.

The CNN structure was inspired by the VGGNet architecture, due to its sim-
plicity and reported success in other applications. The network developed by the
Visual Geometry Group at Oxford, has the key characteristic of containing only 3x3
filters in the convolutional layers, and 2x2 in the max-pooling layers. However, the
original paper had a much deeper network with 16-19 weight layers. Of these, three
were fully-connected added at the end, just before the softmax layer. Finally, all
convolutional layers had ReLUs has activation functions [44].

The RNN model is perhaps the simplest, as it includes only one layer of LSTM
units and is followed by a softmax layer. When implementing recurrent networks,
there is a possibility to predict several time steps from each input window, since the
nodes have temporal depth (i.e. many-to-many configuration). However, for the
purpose of immediate movement classification this was not necessary, therefore a
many-to-one configuration was used, meaning that each node outputs a single value
to the softmax layer.

There have been several attempts to create hybrid architectures with CNNs
and RNNs. Perhaps the most relevant example is the recent work by Xia et al.
which employed a CNN-RNN model for EMG based estimation of limb movements
[45]. The strategy proposed in this thesis consists of a quite similar model with
an initial CNN architecture, responsible for feature extraction and dimensionality

30

3. Methods

Figure 3.5: Schematic of RNN model. The input is fed to a 32 LSTM nodes. At
the end there is a softmax layer with 16 nodes, one for each class.

Figure 3.6: Schematic of CNN-RNN model. The input is fed first to two stacked
convolutional layers, followed to a max-pooling layer. The feature vectors extracted
by these will then be the input to the recurrent network with 32 LSTM nodes. The
sizes of the layer outputs are annotated below each layer. At the end there is a
softmax layer with 16 nodes, one for each class. Though not represented in the
schematic, the outputs of the last max-pooling layer were stacked into one large
vector before being fed to the output layer.

31

3. Methods

reduction, followed by a recurrent layer for learning time-dependent characteristics
of the signals. In accordance with the other two architectures, the CNN layers used
ReLU units, while the LSTM nodes maintained the activation functions shown in
figure 2.8.

Table 3.3: Hyperparameter values kept constant, for model comparison.

Nodes 32
Batch size 128
Learning rate, η 0.001
Regularisation parameter, λ 0.001

The choice of initial parameters was, for the most part, arbitrary. The num-
ber of nodes repeats for each convolutional, pooling and recurrent layers in each
architecture. Therefore, depending on the depth of the architectures, it results in a
different number of trainable parameters (i.e. weights and biases). With 32 nodes
per layer, the CNN contains the most trainable parameters with a total of 37040, fol-
lowed by the CNN-RNN with 16592, and finally the RNN containing 10896 trainable
parameters.

Starting with a relatively high batch size of 128, helps keep the training process
short and therefore speed up the model comparison experiment. On the other hand,
the learning rate and other optimiser parameters do not affect the total training
time. The learning rate was set as the default value for the Adam optimisation al-
gorithm. While this was later changed for the hyperparameter search, all remaining
optimisation parameters (β1, β2 and ε) were left as the default values. Finally, the
initial regularisation parameter was chosen by trial and error from a few test runs.

In order to evaluate the performance of each algorithm, during training of a
model, after each epoch if there was an improvement in validation accuracy, the
weights and biases were stored. At the end of 100 epochs, the model to provide the
best validation accuracy was used for testing. This can be seen as a sort of early
stopping as described in section 2.3.3.4.

3.4.2 Hyperparameter Search
In deep learning applications, even after a good architecture is found, there is still
a need to search for potentially better hyperparameters, that improve the perfor-
mance of the algorithm. There are several possible strategies to achieve this, such as
performing a grid search where several combinations of parameters are tested and
the results compared.

For the purpose of this thesis, a sequential search was performed to see the
effects of each parameter on the learning curves. Each parameter was changed
at a time, while keeping the others constant. The test model was updated for 100
epochs and the resulting accuracies recorded. At the end of each test, the parameter
value that provided the best result was kept for the subsequent tests. Here, as for
the model comparison experiment, the accuracies were obtained using the test set.
Therefore, by executing the parameter search using a constant set for testing, the
hyperparameters chosen become biased towards this set. To guarantee that a set of

32

3. Methods

parameters outperforms another for unseen data, the test set should be chosen at
random for each run, and the accuracy averaged over many runs.

Ideally there would also be a more comprehensive and rigorous hyperparam-
eter search, with a heavily sampled search space, for more significant conclusions.
However, since the goal of this experiment is mainly to explore the effects of each
hyperparameter on the learning process, only four new values were tested for each
parameter, in three separate trials. The values selected were picked at random from
a constrained range.

Typically the learning rate takes values between 0.0001 and 1, for that reason
a logarithmic scale was used for randomly selecting the test values. Nodes and batch
size, were limited by the memory capacity of the system. Following convention, both
parameters took only powers of two as vales. Finally, the regularisation parameter
was sampled in a similar range as the learning rate. Because it belongs to the penalty
term, it could take any value equal or larger than zero. However, if λ would be too
large, the penalty would overpower the cost function.

Due to the stochastic nature of the training, an individual run carries little
information on the efficacy of the chosen parameters. By running the same model
repeatedly, the results can be averaged to reduce variability. Though three runs is
still not enough for statistically significant conclusions, it gives an intuition on how
the different parameters affect the learning process.

33

3. Methods

34

4
Results

This chapter summarises the findings from the model comparison experiment as well
as the hyperparameter search. All results presented are discussed in an attempt to
evaluate the potential of implementing these deep neural networks for myoelectric
pattern recognition applications. Furthermore, the effects of each hyperparameter
were discussed to gain a better insight on their influence during training.

4.1 Model Comparison
In order to compare the three architectures, each model was trained once for each
of the ten subjects, first for the movement classes from exercise 1, and then from
exercise 2. This resulted in 20 runs per algorithm, for a total of 60 trained models.
Tables 4.1, 4.2 and 4.3 contain the results from this experiment. In addition to
accuracy and MCC score, three other measures were recorded: the time it took
to train the network, tTrain, the time it took to evaluate one window and get a
classification output, tTest/w, and the epoch at which the model was obtained (best
validation accuracy).

In terms of classification performance, the best network, with an average ac-
curacy of 89.42% was the RNN model. Table 4.2 shows the cases in which the CNN
model outperformed the RNN with the † symbol, and ‡ denotes the cases where the
CNN-RNN model performed better. Naturally, since the models are of a stochastic
nature, these five samples in which the RNN did not outperform both models may
have been a result of an unfortunate run. To be certain, this experiment should
have included multiple trials to average over, however, there was a time constraint.

While the CNN model took on average, approximately 4 minutes to train,
the RNN took around 31 minutes. One of the benefits of having the CNN-RNN
hybrid model is that the initial CNN structure reduces the input dimensionality of
the LSTM cells, thus speeding up the training to an average of 18 minutes.

When comparing test times of the different models, the CNN was the consider-
ably faster at producing a classification output when given an input window, taking
on average only 1.25 ms. The CNN-RNN model followed with 11.82 ms and finally
the RNN took 20.20 ms.

There is not a lot that can be concluded about the learning process from the
epoch at which the best model was obtained. A better indication is to look at the
learning curves of the training and validation set to observe when overfitting starts
to occur. However, if the best validation accuracy is obtained in an early epoch,
it may indicate that the learning rate is to high. Similarly, if the best model is

35

4. Results

Table 4.1: CNN results for ten subjects, separated by exercise. The mean accuracy
was 86.27% (E1:87.70%, E2:84.84%), while the average MCC was 0.8558 (E1:0.8709,
E2:0.8406). Training times (tTrain) were between 3 and 5 minutes, and the average
test time (tTest per input window w) was 1.25 ms. The early-stopping epoch is noted
for each subject and was based on the validation accuracy. The early-stopping epoch
is noted for each subject and was based on the validation accuracy. The † symbol
denotes the results obtained with the CNN that outperformed the RNN for the same
subject and exercise.

(a) Exercise 1

Subject Accuracy (%) MCC tTrain (min) tTest/w (ms) Epoch

1 94.33 0.9399 3 1.1926 53
2 92.47 0.9201 3 1.2356 76
3 91.86 0.9160 3 1.2391 58
4 96.88 0.9668 4 1.1926 57
5 85.20 0.8451 3 1.2620 80
6 90.00 0.8965 4 1.2449 21
7 92.07 0.9159 3 1.2194 20
8 83.59 0.8298 4 1.3256 92
21 80.83 0.7984 3 1.2267 25
22 69.74 0.6803 3 1.2155 65

(b) Exercise 2

Subject Accuracy (%) MCC tTrain (min) tTest/w (ms) Epoch

1 90.45 0.8990 4 1.1822 89
2 88.02 0.8745 5 1.3150 33
3 93.86 0.9355 4 1.2481 93
4 86.22 0.8557 5 1.2246 90
5 85.51 0.8482 4 1.2296 74
6 93.96† 0.9361† 4 1.2046 95
7 87.66 0.8705 3 1.4025 91
8 90.00 0.8952 4 1.1976 100
21 49.47 0.4675 4 1.1867 100
22 83.24† 0.8237† 3 1.3828 81

obtained near the one hundredth epoch, it may be that the learning rate should be
increased or that the training should be extended to more epochs.

To summarise the model comparison, the classification results were compiled
into Figure 4.1, in the form of boxplots. From these, the same conclusion was taken,
namely that the RNN outperformed the other two models. With a median accuracy
of of 91.81% (MCC = 0.9135), compared with 89.01% (MCC = 0.8849) for the CNN
and 90.43% (MCC = 0.8990) for the CNN-RNN, the RNN model was chosen for the
hyperparameter search. Although, by selection of better parameters for the other
models could potentially lead them to outperform the RNN.

36

4. Results

Table 4.2: RNN results for ten subjects, separated by exercise. The mean accuracy
was 89.42% (E1:91.38%, E2:87.47%), while the average MCC was 0.8889 (E1:0.9088,
E2:0.8690). Training times (tTrain) were between 24 and 46 minutes, and the average
test time (tTest per input window w) was 20.20 ms. The early-stopping epoch is
noted for each subject and was based on the validation accuracy. The results for
which the † and ‡ symbola are appended show instances in which the RNN was
outperformed by the CNN and CNNR-RNN models, respectively.

(a) Exercise 1

Subject Accuracy (%) MCC tTrain (min) tTest/w (ms) Epoch

1 94.91 0.9460 26 21.0467 46
2 93.75 0.9338 29 20.2995 58
3 99.13 0.9907 24 20.0171 84
4 97.72 0.9758 30 20.3820 79
5 92.27 0.9182 22 20.1575 67
6 90.80‡ 0.9026‡ 31 19.8325 55
7 95.73 0.9548 25 22.3052 91
8 86.99 0.8645 31 20.3809 83
21 89.17 0.8859 25 20.7791 47
22 73.30 0.7160 25 19.5468 96

(b) Exercise 2

Subject Accuracy (%) MCC tTrain (min) tTest/w (ms) Epoch

1 91.25 0.9075 34 20.1043 93
2 91.35 0.9088 39 20.9211 54
3 94.31 0.9401 32 19.5972 92
4 86.86‡ 0.8630‡ 46 19.3947 81
5 93.47 0.9305 35 19.3309 86
6 93.33† 0.9300† 37 20.0148 84
7 90.71 0.9024 24 20.4519 48
8 92.31‡ 0.9192‡ 33 19.5547 100
21 59.71 0.5732 37 20.0887 83
22 81.39† 0.8149† 26 19.6957 65

As seen in Figure 4.1, there are outliers in the data. These correspond to the
results from subject 21 on exercise 2. For all networks, the classification performance
for this exercise was substantially lower than the other participants and even for the
same participant on exercise 1. This may indicate that the amputee subject had
more difficulties performing the movements from this exercise, resulting in worse
recordings. When looking at Figure 3.2b, with the movements from exercise 2, it is
understandable why an amputee would have difficulties recreating these movements.

37

4. Results

Table 4.3: CNN-RNN results for ten subjects, separated by exercise. The mean
accuracy was 85.69% (E1:87.82%, E2:83.56%), while the average MCC was 0.8490
(E1:0.8715, E2:0.8265). Training times (tTrain) were between 13 and 28 minutes,
and the average test time (tTest per input window w) was 11.82 ms. The early-
stopping epoch is noted for each subject and was based on the validation accuracy.
The ‡ symbol denotes the results obtained with the CNN-RNN that outperformed
the RNN for the same subject and exercise.

(a) Exercise 1

Subject Accuracy (%) MCC tTrain (min) tTest/w (ms) Epoch

1 92.44 0.9204 15 11.6438 23
2 92.98 0.9257 17 11.7232 36
3 96.66 0.9645 14 12.0112 47
4 96.88 0.9668 18 11.6034 32
5 87.60 0.8691 13 11.6746 96
6 91.59‡ 0.9109‡ 18 11.9243 17
7 91.16 0.9065 15 11.6649 23
8 80.48 0.7974 18 12.2664 54
21 82.36 0.8136 15 12.0728 14
22 66.05 0.6401 15 11.6535 82

(b) Exercise 2

Subject Accuracy (%) MCC tTrain (min) tTest/w (ms) Epoch

1 90.80 0.9028 20 11.3705 42
2 90.83 0.9027 23 12.0714 33
3 92.52 0.9212 19 11.4918 39
4 87.82‡ 0.8726‡ 28 11.8096 28
5 79.26 0.7808 21 12.0017 84
6 87.08 0.8649 22 11.4452 52
7 90.06 0.8954 14 12.3661 61
8 92.79‡ 0.9249‡ 20 11.5054 96
21 46.41 0.4316 23 12.4690 96
22 77.98 0.7685 15 11.6596 96

Finally, it can be concluded from the interquartile range (IQR) values that the
RNN also provided the lowest variability, as opposed to the CNN-RNN which had
the highest IQR of approximately 10% in accuracy. Even though variability is to
be expected when dealing with different subjects along with stochastic models, it is
clear that the CNN-RNN model was more variable than the other two.

38

4. Results

CNN RNN CNN-RNN
40

50

60

70

80

90

100
A
cc
u
ra
cy
 (
%
)

(a)

CNN RNN CNN-RNN
0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
C
C

(b)

Figure 4.1: Tukey boxplots with classification results for each architecture. The
whiskers have length equal to 1.5×IQR and were computed from the results in tables
4.1, 4.2 and 4.3. These show the RNN outperforming the other two architectures
with a median value of 91.81%.

4.2 Hyperparameter Search
The results from the hyperparameter search were compiled in Table 4.4. Since the
experiments were done sequentially, a total of five values were actually tested for
each parameter. Because the first hyperparameter to be tested was the learning
rate, the initial model, with η = 0.001 had to be tested for two additional trials.
This resulted in a reference average initial accuracy of 95.25% and MCC score of
0.9495.

Table 4.4: Hyperparameter search results separated by parameter. The values
correspond to averages over three runs.

(a) Learning rate, η

η Accuracy (%) MCC

0.0001 94.81 0.9449
0.0006 95.93 0.9568
0.0040 92.54 0.9218
0.0253 77.91 0.7680

(b) Number of nodes

Nodes Accuracy (%) MCC

16 93.65 0.9328
64 94.72 0.9439
128 93.07 0.9266
256 92.93 0.9255

(c) Batch size

Batch Accuracy (%) MCC

16 93.65 0.9339
32 94.62 0.9429
64 94.57 0.9425
256 93.56 0.9318

(d) Regularisation parameter, λ

λ Accuracy (%) MCC

0 95.49 0.9522
0.04 91.38 0.9101
0.2 88.66 0.8807
1 82.17 0.8117

39

4. Results

The best result is shown in bold, and was obtained with the initial number of
nodes and batch size, namely 32 nodes and batch size of 128. The effect of changing
learning rate can be seen in Figure 4.2a. It can be concluded that a learning rate
between 0.0001 and 0.001 produces the best results. Because there were insufficient
trials, there is no certainty that η = 0.0006 is in fact the best value, however, from
the small sample obtained, it produced the best result.

0.0001 0.001 0.01
Learning rate, η

70

75

80

85

90

95

100

A
cc

u
ra
cy

 (
%
)

(a)

0 ... 0.01 0.1 1
Regularisation parameter, λ

70

75

80

85

90

95

100

A
cc
u
ra
cy

 (
%
)

(b)

Figure 4.2: Visualisation results from Table 4.4. From these plots, the effect of
the learning rate and the regularisation parameter are shown with respect to the
accuracy. The data point in green corresponds to the best average accuracy obtained
from the hyperparameter search. There is a clear decrease in learning ability as these
values become too large.

From tables 4.4b and 4.4c there are little changes in accuracy with the values
tested in this experiment. However, it would have been unfeasible to test much
higher values, due to the memory limitation of the system. Though the number
of nodes did not have any significant effect on the classification accuracy, it can
be seen in Figure 4.3a, that with the increase of number of nodes there is a linear
increase of number of parameters that need to be trained, has would be expected.
In a similar way, Figure 4.3b shows the linear relationship between the batch size
and the training time. This was also to be expected since the bigger the mini-batch
size, the fewer times the network needs to be evaluated and updated.

The final hyperparameter to be tested was the regularisation parameter. From
Figure 4.2b it becomes evident that λ cannot be too large. However, there is no
significant improvement from having λ = 0.01, when compared with having no
regularisation at all. In order to gain a better understanding of the effects of this,
as well as the other hyperparameters, it is valuable to look at the learning curves
shown in figures 4.4 through 4.7.

It becomes clear from Figure 4.4 that the learning rate affects the speed at
which the network converges. With η = 0.0001, the network seems to still be
learning when it reaches 100 epochs. By increasing the learning rate to 0.0006,

40

4. Results

16 32 64 128 256
Number of nodes

4432

10896

29968

92688

316432

N
u
m
b
e
r
o
f
p
a
ra
m
e
te
rs

(a)

16 32 64 128 256
Batch size

90

50

27

15

9

T
ra
in
in
g
 t
im

e
 p
e
r
e
p
o
ch

 (
s)

(b)

Figure 4.3: Additional effects of hyperparameters. Figure 4.3a shows effect of
number of nodes on the total number of trainable parameters. Figure 4.3b shows
the effect of increasing batch size on the training time. These results were to be
expected since they are directly linked with the computational complexity of the
program.

there is already significant improvement and the network rapidly converges to a
good accuracy, until it starts overfitting. This turning point is very clear in Figure
4.4b where the training curve intersects the validation curve. With η = 0.004 the
network still converges, however, it seems that initially the rate is too large resulting
in large oscillations. Nevertheless, there seems to be no evidence of overfitting. which
means that values of this order of magnitude may produce better results. The same
cannot be said for η = 0.0253, which clearly made the network incapable to learn.

The effect of the number of nodes, seen in Figure 4.5, is not as drastic. It
seems that with 16 nodes, the RNN learns slower, since at the end of 100 epochs
it still did not converge. On the other hand, with 256 nodes, the network had
significantly higher variance at the end of the training. However, since early-stopping
was implemented, this did not affect the accuracy measured for the test set.

The batch size also affected the speed of convergence of the network. From
Figure 4.6 there is a tendency for the network to converge increasingly slower as
the mini-batch size increases. This can be explained by the fact that with a smaller
batch, at the end of each epoch the model was updated more times than with a
larger batch.

Finally, as had been concluded from 4.2b, the regularisation parameter can
have large effects on the learning process. With larger values of λ, the learning
curves become more linear. Perhaps by increasing the number of epochs these values
would actually lead to good results. Nevertheless, the learning speed becomes too
slow for the 100 epoch tests. Moreover, the increase in overlap between the training
curve and the validation curve shows that the regularisation is efficient in keeping a
low variance.

41

4. Results

0 20 40 60 80 100
Epoch #

0

20

40

60

80

100

Ac
cu

ra
cy
 (%

)

training set
validation set

(a) η = 0.0001

0 20 40 60 80 100
Epoch #

0

20

40

60

80

100

Ac
cu

ra
cy
 (%

)

training set
validation set

(b) η = 0.0006

0 20 40 60 80 100
Epoch #

0

20

40

60

80

100

Ac
cu

ra
cy
 (%

)

training set
validation set

(c) η = 0.004

0 20 40 60 80 100
Epoch #

0

20

40

60

80

100

Ac
cu

ra
cy
 (%

)

training set
validation set

(d) η = 0.0253

Figure 4.4: Learning curves for different learning rates shown in Table 4.4a. Each
plot corresponds to one of the three trials for a given parameter set. With a larger
learning rate, the network suffers from high bias.

42

4. Results

0 20 40 60 80 100
Epoch #

0

20

40

60

80

100

Ac
cu

ra
cy
 (%

)

training set
validation set

(a) nodes = 16

0 20 40 60 80 100
Epoch #

0

20

40

60

80

100

Ac
cu

ra
cy
 (%

)

training set
validation set

(b) nodes = 64

0 20 40 60 80 100
Epoch #

0

20

40

60

80

100

Ac
cu

ra
cy
 (%

)

training set
validation set

(c) nodes = 128

0 20 40 60 80 100
Epoch #

0

20

40

60

80

100

Ac
cu

ra
cy
 (%

)

training set
validation set

(d) nodes = 256

Figure 4.5: Learning curves for different number of nodes, shown in Table 4.4b.
Each plot corresponds to one of the three trials for a given parameter set. With
more number of nodes the validation accuracy drops below the training accuracy,
which is a sign of high variance.

43

4. Results

0 20 40 60 80 100
Epoch #

0

20

40

60

80

100

Ac
cu

ra
cy
 (%

)

training set
validation set

(a) batch size = 16

0 20 40 60 80 100
Epoch #

0

20

40

60

80

100

Ac
cu

ra
cy
 (%

)

training set
validation set

(b) batch size = 32

0 20 40 60 80 100
Epoch #

0

20

40

60

80

100

Ac
cu

ra
cy
 (%

)

training set
validation set

(c) batch size = 64

0 20 40 60 80 100
Epoch #

0

20

40

60

80

100

Ac
cu

ra
cy
 (%

)

training set
validation set

(d) batch size = 256

Figure 4.6: Learning curves for different mini-batch sizes shown in Table 4.4c.
Each plot corresponds to one of the three trials for a given parameter set. The
learning curves for different batch sizes are not significantly different. In general, it
seems that a smaller batch size leads to a faster convergence.

44

4. Results

0 20 40 60 80 100
Epoch #

0

20

40

60

80

100

Ac
cu

ra
cy
 (%

)

training set
validation set

(a) λ = 0

0 20 40 60 80 100
Epoch #

0

20

40

60

80

100

Ac
cu

ra
cy
 (%

)

training set
validation set

(b) λ = 0.04

0 20 40 60 80 100
Epoch #

0

20

40

60

80

100

Ac
cu

ra
cy
 (%

)

training set
validation set

(c) λ = 0.2

0 20 40 60 80 100
Epoch #

0

20

40

60

80

100

Ac
cu

ra
cy
 (%

)

training set
validation set

(d) λ = 1

Figure 4.7: Learning curves for different levels of regularisation, shown in Table
4.4d. Each plot corresponds to one of the three trials for a given parameter set. Note
that plot 4.7a displays the learning curve without regularisation. From λ = 0.2, the
regularisation effect overpowers the learning and leads to high bias.

45

4. Results

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Predicted movement (%)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ta
rg
et
 m

ov
em

en
t (
%
)

79 0 0 0 0 10 0 7 0 0 0 0 0 0 0 0
0 92 0 0 4 0 0 0 0 0 0 0 0 0 0 0
4 0 84 0 4 0 3 0 1 0 0 0 0 0 0 0
0 0 1 90 4 0 0 0 0 0 0 2 0 0 0 0
0 4 3 0 83 0 3 2 0 0 0 0 0 0 0 0
2 0 0 0 0 88 0 0 1 0 0 0 0 2 0 0
4 0 2 0 0 2 85 0 0 0 0 0 0 0 1 2
8 0 0 0 0 0 0 85 2 1 0 1 0 0 0 0
1 0 0 1 0 3 0 2 74 1 0 8 5 0 0 0
2 0 0 0 0 0 0 0 2 89 2 0 0 0 0 0
1 0 0 0 0 0 0 1 0 3 87 3 1 0 0 0
0 0 0 0 0 0 0 0 2 2 2 86 4 0 0 0
4 0 0 0 0 0 0 2 0 0 0 0 90 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 95 2 1
3 1 0 0 0 0 0 0 0 0 0 0 5 1 87 0
1 1 0 0 0 0 0 0 1 0 0 0 0 3 0 89

(a) Exercise 1

0 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Predicted movement (%)

0
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Ta
rg
et
 m

ov
em

en
t (
%
)

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 92 0 0 1 0 2 0 0 0 0 0 0 0 0 0
1 0 93 2 0 0 1 0 0 0 0 0 0 0 0 0
2 0 0 85 9 1 0 0 0 0 0 0 0 0 0 0
1 0 0 6 81 8 0 0 0 0 0 0 1 0 0 0
0 3 0 0 10 80 0 0 1 2 0 0 0 0 0 0
0 0 0 0 0 0 97 2 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 89 3 0 1 0 1 0 0 0
1 0 0 0 3 0 0 1 93 0 0 0 0 0 0 0
1 0 0 0 1 0 0 1 0 93 2 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 94 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 92 4 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 83 7 1 1
4 0 0 0 0 0 0 0 0 0 0 0 0 95 0 0
2 0 0 0 0 0 0 0 0 0 0 1 0 0 89 6
3 0 0 0 0 0 0 0 0 0 1 0 0 0 7 86

(b) Exercise 2

Figure 4.8: Confusion matrices for both exercises, averaged over all subjects, with
the final set of hyperparameters. The percentages were truncated to the nearest
integer for better visualisation. Despite leading to inconsistencies in the percentages,
values smaller than 1% can be disregarded for the purpose of this analysis.

As a final evaluation of the results, the RNN model was once again trained
using the best set of parameters with the data from all subjects and both exercises.
The results were compiled in two separate confusion matrices shown in Figure 4.8.
The percentages obtained were computed by averaging the results of the ten subjects,
for each exercise.

By looking at Figure 4.8, a few observations can be extracted. For instance,
the majority of the output classes were at some point misclassified as the rest class
(i.e. no movement). This may be due to failure of the relabelling procedure, where
a time window during rest was labelled as a certain movement. Furthermore, the
class with the lowest accuracy consisted of class number 8 of exercise 1, with 74%.
This movement consists of the adduction of extended fingers, which is actuated by
the palmar interossei muscles, which are located in the hand. Since the electrodes
were all placed in the proximal part of the forearm, these were most likely unable
to detect the movement effectively.

46

5
Discussion

This chapter will attempt to build from the discussion initiated in the results section
and further discuss the significance of the findings of this thesis.

While the model comparison experiment was done by grouping together both
intact and amputee subjects, it is relevant to evaluate the results separately. The
mean CNN accuracy was 90.13% for intact subjects and 70.82% for amputees. The
same trend is observed for the RNN, with 92.81% and 75.89% for intact and am-
putee subjects, respectively. The difference was even more noticeable for the hybrid
network with 90.06% for intact and 68.20% for amputee subjects. Since the end-
users of myoelectric control systems are for the most part amputees, these results
reinforce the RNN as the best performing model.

For myoelectric control, the testing time is a limiting factor. In order to im-
plement these networks in real time applications, for online classification, the time
it takes to compute an output needs to be sufficiently small. This requirement will
depend on the application and the hardware on witch it is implemented. Since
the tests were run in an a high performing computer, there will likely be an in-
crease in testing time for other systems. While software applications, such as for
phantom-limb pain treatment, may be used via similar systems, prosthetic devices
have embedded systems which are significantly more limited. Nonetheless, there is
an effort from the research community to increase computing speeds of DNNs which,
in the future will allow for larger models to be implemented on weaker devices [46].

Taking test time into consideration, the CNN model would be the most likely
candidate to be implemented in embedded devices, with the mean test time of 1.25
ms. As previously stated, it is possible that by searching the hyperparameter space
for the CNN network, this would reach or even surpass the performance of the RNN.

Although Atzori et al. [12] employed CNNs for classification of the Ninapro
movements, they did not exclude redundant movements nor separate the two exer-
cises into different classifiers. Furthermore, they also did not include accelerometer
data, therefore it is not possible to do a direct comparison of the accuracies achieved
here. On the other hand, the 7th Ninapro database was provided by Krasoulis et
al. [21], where for the 40 movements and using an LDA classifier a median accuracy
of 82.7% for intact subjects and 77.8% was achieved. This however, was including
all of the IMU data, namely three-axial accelerometer, gyroscope and magnetome-
ter signals. From this work it was concluded that by employing all the IMU data,
significantly improved classification accuracy.

47

5. Discussion

Initially it was attempted to use all the movements at once to train the clas-
sifiers, but several issues were encountered. The first being the memory capacity
of the system, which did not allow for data augmentation in such a case. In ad-
dition, the classifiers proved to have difficulties distinguishing between movements
that were too similar (e.g. movements 9-12 in Figure 3.2a), leading to poor ac-
curacies. Finally, there was a certain reasoning behind splitting the two exercises
into separate classifiers. Due to the significant differences of the exercises, it seemed
logical to have two modes between which the user could switch, depending if they
wanted to control hand postures or grasps.

While the CNN implementation by Atzori et al. [12] was implemented using
two-dimensional filters, this was not the approach used for this thesis. The motiva-
tion for this modification was based on the characteristics of the input signals. By
stacking the EMG signals into a matrix and applying e.g. 3x3 filters, the signals
from different channels are mixed together through the convolution operation, and
valuable information may be lost. Furthermore, CNNs are not rotation or inversion
invariant which attributes significant importance to the order in which the different
channels are stacked. As mentioned in the theory, the CNNs learn local, transla-
tion invariant features. This only makes sense if the signals are kept separate and
one-dimensional convolution is used.

Due to the considerable variability between different myoelectric pattern recog-
nition research, it is difficult to compare results. Overall the conclusion that can
be derived from the current work is that these networks are yet another type of PR
algorithm that can be employed to solve the problem.

Moving on to the hyperparameter search experiment, the results showed that
number of nodes and the batch size had little effect on the test accuracy of the RNN.
On the other hand, the optimisation parameters can have a significant impact on
the learning curves, therefore they should be prioritised when tuning parameters.

48

6
Conclusion

To conclude, there will be a short summary of results an discussion followed by some
comments on the work presented in this thesis as well as possible future work that
may be relevant for the field of myoelectric pattern recognition.

With median accuracies above 80% achieved by all three models studied, it
can be concluded that these DNNs are powerful pattern recognition tools for myo-
electric control applications. However, there have been higher accuracies reported
in offline studies with other PR algorithms. Although, contrary to such studies,
the classification was done independently of any feature extraction phase and still
reached high performances.

The highest performing architecture, with a median accuracy of 91.81%, was
the RNN consisting of a layer of LSTM units. This could support the hypothesis
that recurrent networks have an advantage when processing temporal data, such as
EMG and IMU signals. This can also be supported by the higher median accuracy
obtained by the hybrid CNN-RNN model, 90.4% when compared with the CNN,
89.01%. Though, due to the higher variability of the CNN-RNN model, it achieved
the lowest average accuracy. Nevertheless, the median performance values indicate
that the networks containing LSTM units have an advantage.

Another factor that should be taken in to consideration, is that even though
the CNN performed worse, it is an order of magnitude faster at computing an output
than the CNN-RNN and RNN models. By passing the input windows through the
CNN layers to the LSTM layer, the hybrid architecture became twice as fast as the
RNN. This is due to the automatic feature extraction and reduction by convolutional
and max-pooling layers, respectively.

The utility of DNNs for myoelectric control applications has not yet been
proven. These models are more complex to implement than other well established
algorithms such as LDA, and have high computational cost. For simple embedded
systems, such as in prosthetic devices, they may not be a viable option until faster
algorithms or systems are developed. However, DNNs have been gaining momentum
in the research community, and have been tested in a growing number of fields. The
high pace in development of both deep learning software and processing power of
hardware may lead to more reliable myoelectric control.

49

6. Conclusion

50

References

[1] Aidan D Roche, Hubertus Rehbaum, Dario Farina, and Oskar C Aszmann.
Prosthetic myoelectric control strategies: a clinical perspective. Current
Surgery Reports, 2(3):44, 2014.

[2] Sophie M Wurth and Levi J Hargrove. A real-time comparison between di-
rect control, sequential pattern recognition control and simultaneous pattern
recognition control using a fitts’ law style assessment procedure. Journal of
neuroengineering and rehabilitation, 11(1):91, 2014.

[3] Susannah M Engdahl, Breanne P Christie, Brian Kelly, Alicia Davis, Cynthia A
Chestek, and Deanna H Gates. Surveying the interest of individuals with upper
limb loss in novel prosthetic control techniques. Journal of neuroengineering
and rehabilitation, 12(1):53, 2015.

[4] Angkoon Phinyomark, Pornchai Phukpattaranont, and Chusak Limsakul. Fea-
ture reduction and selection for emg signal classification. Expert Systems with
Applications, 39(8):7420–7431, 2012.

[5] Kevin Englehart, B Hudgin, and Philip A Parker. A wavelet-based continuous
classification scheme for multifunction myoelectric control. IEEE Transactions
on Biomedical Engineering, 48(3):302–311, 2001.

[6] Max Ortiz-Catalan. Cardinality as a highly descriptive feature in myoelectric
pattern recognition for decoding motor volition. Frontiers in neuroscience, 9,
2015.

[7] Angkoon Phinyomark, Franck Quaine, Sylvie Charbonnier, Christine Serviere,
Franck Tarpin-Bernard, and Yann Laurillau. Emg feature evaluation for im-
proving myoelectric pattern recognition robustness. Expert Systems with Ap-
plications, 40(12):4832–4840, 2013.

[8] Paul Kaufmann, Kevin Englehart, and Marco Platzner. Fluctuating emg sig-
nals: Investigating long-term effects of pattern matching algorithms. In Engi-
neering in Medicine and Biology Society (EMBC), 2010 Annual International
Conference of the IEEE, pages 6357–6360. IEEE, 2010.

[9] Erik Scheme and Kevin Englehart. Training strategies for mitigating the effect
of proportional control on classification in pattern recognition based myoelectric
control. Journal of prosthetics and orthotics: JPO, 25(2):76, 2013.

[10] Max Ortiz-Catalan, Bo Håkansson, and Rickard Brånemark. Real-time and
simultaneous control of artificial limbs based on pattern recognition algo-
rithms. IEEE Transactions on Neural Systems and Rehabilitation Engineering,
22(4):756–764, 2014.

[11] Afarin Nazemi and Ali Maleki. Artificial neural network classifier in comparison
with lda and ls-svm classifiers to recognize 52 hand postures and movements. In

51

References

Computer and Knowledge Engineering (ICCKE), 2014 4th International eCon-
ference on, pages 18–22. IEEE, 2014.

[12] Manfredo Atzori, Matteo Cognolato, and Henning Müller. Deep learning with
convolutional neural networks applied to electromyography data: A resource for
the classification of movements for prosthetic hands. Frontiers in neurorobotics,
10, 2016.

[13] Michael Hüsken and Peter Stagge. Recurrent neural networks for time series
classification. Neurocomputing, 50:223–235, 2003.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[15] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. On the properties of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259, 2014.

[16] Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. Compara-
tive study of cnn and rnn for natural language processing. arXiv preprint
arXiv:1702.01923, 2017.

[17] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[18] Manfredo Atzori, Arjan Gijsberts, Ilja Kuzborskij, Simone Elsig, Anne-
Gabrielle Mittaz Hager, Olivier Deriaz, Claudio Castellini, Henning Müller,
and Barbara Caputo. Characterization of a benchmark database for myoelec-
tric movement classification. IEEE Transactions on Neural Systems and Reha-
bilitation Engineering, 23(1):73–83, 2015.

[19] John Webster. Medical instrumentation: application and design, chapter 4,
pages 144–146,242. John Wiley & Sons, 4th edition, 2015.

[20] Melvin M Morrison. Inertial measurement unit, December 8 1987. US Patent
4,711,125 A.

[21] Agamemnon Krasoulis, Iris Kyranou, Mustapha Suphi Erden, Kianoush Nazar-
pour, and Sethu Vijayakumar. Improved prosthetic hand control with concur-
rent use of myoelectric and inertial measurements. Journal of neuroengineering
and rehabilitation, 14(1):71, 2017.

[22] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[23] Ivan Nunes Da Silva, Danilo Hernane Spatti, Rogerio Andrade Flauzino, Luisa
Helena Bartocci Liboni, and Silas Franco dos Reis Alves. Artificial Neural
Networks: A Practical Course, pages 6–7,34,44–47. Springer, 2016.

[24] Donald O Hebb et al. The organization of behavior: A neuropsychological
theory. New York: Wiley, 1949.

[25] Siegrid Lowel and Wolf Singer. Selection of intrinsic horizontal connections in
the visual cortex by correlated neuronal activity. Science, 255(5041):209, 1992.

[26] Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton
Project Para. Cornell Aeronautical Laboratory, 1957.

[27] Bernard Widrow and Marcian E Hoff. Adaptive switching circuits. Technical
report, STANFORD UNIV CA STANFORD ELECTRONICS LABS, 1960.

[28] Marvin Minsky and Seymour Papert. Perceptrons. 1969.

52

References

[29] Dennis W. Ruck, Steven K. Rogers, Matthew Kabrisky, Peter S. Maybeck, and
Mark E. Oxley. Comparative analysis of backpropagation and the extended
kalman filter for training multilayer perceptrons. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 14(6):686–691, 1992.

[30] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. nature, 323(6088):533, 1986.

[31] Bernard Widrow and Michael A Lehr. 30 years of adaptive neural net-
works: perceptron, madaline, and backpropagation. Proceedings of the IEEE,
78(9):1415–1442, 1990.

[32] Matthew D Zeiler, M Ranzato, Rajat Monga, Min Mao, Kun Yang, Quoc Viet
Le, Patrick Nguyen, Alan Senior, Vincent Vanhoucke, Jeffrey Dean, et al. On
rectified linear units for speech processing. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on, pages 3517–
3521. IEEE, 2013.

[33] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and Jürgen
Schmidhuber. Lstm: A search space odyssey. IEEE transactions on neural
networks and learning systems, 2017.

[34] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization. arXiv
preprint arXiv:1611.03530, 2016.

[35] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. Journal of machine learning research, 15(1):1929–1958, 2014.

[36] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[37] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas,
Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas Brox.
Flownet: Learning optical flow with convolutional networks. In Proceedings
of the IEEE International Conference on Computer Vision, pages 2758–2766,
2015.

[38] Pierre Baldi, Søren Brunak, Yves Chauvin, Claus AF Andersen, and Henrik
Nielsen. Assessing the accuracy of prediction algorithms for classification: an
overview. Bioinformatics, 16(5):412–424, 2000.

[39] Jan Gorodkin. Comparing two k-category assignments by a k-category corre-
lation coefficient. Computational biology and chemistry, 28(5):367–374, 2004.

[40] Manfredo Atzori, Arjan Gijsberts, Simone Heynen, Anne-Gabrielle Mittaz
Hager, Olivier Deriaz, Patrick Van Der Smagt, Claudio Castellini, Barbara Ca-
puto, and Henning Müller. Building the ninapro database: A resource for the
biorobotics community. In Biomedical Robotics and Biomechatronics (BioRob),
2012 4th IEEE RAS & EMBS International Conference on, pages 1258–1265.
IEEE, 2012.

[41] Lauren H Smith, Levi J Hargrove, Blair A Lock, and Todd A Kuiken. De-
termining the optimal window length for pattern recognition-based myoelectric
control: balancing the competing effects of classification error and controller
delay. IEEE Transactions on Neural Systems and Rehabilitation Engineering,
19(2):186–192, 2011.

53

References

[42] The microsoft cognitive toolkit. https://docs.microsoft.com/en-us/
cognitive-toolkit/. Accessed: 20-09-2017.

[43] Keras: The python deep learning library. https://keras.io/. Accessed: 03-
10-2017.

[44] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[45] Peng Xia, Jie Hu, and Yinghong Peng. Emg-based estimation of limb movement
using deep learning with recurrent convolutional neural networks. Artificial
organs, 2017.

[46] Zhisheng Wang, Jun Lin, and Zhongfeng Wang. Accelerating recurrent neural
networks: A memory-efficient approach. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 25(10):2763–2775, 2017.

[47] Tsvi Achler. Input shunt networks. Neurocomputing, 44:249–255, 2002.
[48] Tsvi Achler and Eyal Amir. Input feedback networks: Classification and infer-

ence based on network structure. Frontiers in artificial intelligence and appli-
cations, 171:15, 2008.

[49] Tsvi Achler. Evaluating the role of feedback regulation in recognition processing.
BMC Neuroscience, 11(S1):P54, 2010.

54

https://docs.microsoft.com/en-us/cognitive-toolkit/
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://keras.io/

A
Appendix

Introduction
Originally, the purpose of this thesis was to investigate a different algorithm for
pattern recognition, namely Regulatory Feedback Networks (RFN). Since there was
a change in topic which caused some delay in the conclusion of the thesis, it seems
appropriate to justify it. To that end, there will be a short section summarising
RFNs, the reason why they seemed to be a promising topic and ultimately, the
reason why they were replaced by the more mainstream DNN.

RFNs constitute a type of neural network structure developed by Tsvi Achler
[47], initially named input shun networks. The interest for this algorithm arose from
the fact that, in some test cases, RFNs seemed to outperform traditional pattern
recognition algorithms, such as MLPs, SVMs, etc. when dealing with simultane-
ous patterns. In the context of multifunction myoelectric control, where the cor-
rect recognition of complex movement patterns is essential, this algorithm showed
promise.

Theory

Figure A.1: Regulatory Feedback Network with two input cells and four output
cells. The number of feedback cells are always the same as of input cells, since they
regulate the state of the input.

In figure A.1 one can see the architecture of a simple RFN. A key differentiating
factor for this architecture is that the classification decision is made during test
phase by repeatedly inhibiting some inputs in favour of others. While most machine

I

A. Appendix

learning algorithms have long training periods, and fast test phases, this is reversed
for RFNs. In reality, there is no learning mechanism to train an RFN. Instead, the
connectivity matrix,W ∈ Rm×n, has to be defined, where m is the number of output
classes and n is the number of input features.

W =

w11 w12
w21 w22
w31 w32
w41 w42

 (A.1)

As for ANNs, to calculate the output, the connectivity matrix is multiplied with
the input vector. However, though the inputs Xi corresponding to the raw feature
vectors to be classified, are kept constant, the input cells Ii(t) are updated at each
iteration based on salience at the output cells connected to it, Qi(t) of the previous
iteration. Therefore, to compute the output, first the input must be updated:

Qi(t) =
m∑
j=1

Yj(t)wji (A.2)

Ii(t) = Xi

Qi(t)
(A.3)

The whole feedback equation to update the input cell can be seen below:

Ii(t) = Xi∑m
j=1 Yj(t)

(A.4)

Finally, the complete update rule is presented:

Yj(t+ ∆t) = Yj
n

n∑
i=1

Ii(t)wji (A.5)

Here it becomes evident that the output depends not only on the raw input and
connectivity matrix. The output will change at each iteration, depending on the
output at the previous step and the regulated input. The network was proven to
eventually converge to a decision [48].

Discussion
Achler hypothesised in his poster: “Evaluating the role of feedback regulation in
recognition processing” [49], that the role of feedback connections in sensory re-
gions of the brain was to regulate or conserve information. He further claimed that
RFNs, with their recurrent structure, are able to obtain unparalleled performance
with simultaneous patterns, by down-regulating inputs that activate the output too
vigorously.

In the same poster, the performance of the RFN algorithm was compared
to that of SVM, ANN and Lateral Inhibition algorithms (e.g. winner-take-all) in
simultaneous pattern recognition. The results show that while the performance of
the RFN stays at 100% with increasing number of overlapping patterns, the other
algorithms seem to fail. Despite the impressive results, there are a few thing to take
into account:

II

A. Appendix

1. All networks were trained only with the single patterns. Typically, this means
that the connectivity matrix of the RFN was generated by averaging the train-
ing samples of each target into one representative feature vector. For the other
algorithms, this means that there was a learning mechanism to map the input
vectors to the respective target outputs.

2. The simultaneous patterns were generated by adding overlapping features of
multiple learned patterns.

3. The percentage of correct compositions was computed by checking if the k
most-active cells corresponded to the correct k target outputs.

The reason why all of these remarks are extremely important is that in the desired
context, namely simultaneous movement recognition, the problem is much more
complex than this dummy experiment. In order to achieve such a high performance,
one would need:

1. The feature vectors for each single movement would have to be sufficiently
different between movements. Which, if this were the case, simpler decision
algorithms could be used instead.

2. The feature vector of the simultaneous movements would have to be, if not
added together such as in the poster at least some kind of linear combination
between the constituting single movements.

3. There would have to be a separate decision mechanism to predetermine how
many movements, k, are present for each input vector.

Conclusion
The overall conclusion is that even though the algorithm works under a specific set
of conditions, it seems that it cannot be directly applied to pattern recognition based
on myoelectric signals, in the context of simultaneous patterns. Although there may
be other strategies to improve the performance of RFNs, there is a limited amount of
literature available on this type of network, having all related publications been from
the same author. Therefore, a decision was made to look for alternative algorithms.

III

	List of Figures
	List of Tables
	Introduction
	Background
	Feature Extraction
	Pattern Recognition

	Aim
	Scope and limitations
	Thesis outline

	Theory
	Signals
	Electromyography
	EMG Rectification

	Inertial Measurements

	Artificial Neural Networks
	Backpropagation
	Activation function

	Convolutional Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memory

	Learning
	Loss Function
	Optimisation Algorithm
	Regularisation Methods
	L2-Regularisation
	Dropout
	Data Augmentation
	Early stopping

	Performance Measures

	Methods
	Dataset
	Signal Acquisition
	Sensor Placement
	Exercises
	Data Collection
	Signal Processing

	Data Processing
	Software and Hardware
	Experiments
	Model Comparison
	Hyperparameter Search

	Results
	Model Comparison
	Hyperparameter Search

	Discussion
	Conclusion
	References
	Appendix

