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Abstract
When developing software there are different requirements for what the software
needs to deliver. In some cases raw speed performance is the most important factor,
while in other cases achieving reusable design is more important. Regardless of the
different implementation approaches that can be used, the programming language
is likely to affect whether the requirements are met. Thus, knowing how to choose
the optimal programming languages for a specific software project is an important
task. The goal of this study is to identify weakness and strengths of some popular
programming languages based on how they are used in practice by professional
programming contestants.

This study empirically examines five programming languages: C, C#, C++,
Python and Java. The characteristics of the languages are studied using data de-
veloped independently of this study, namely programs submitted as entries in the
programming competition Google Code Jam (GCJ). Entries to the contest were
downloaded, compiled and executed to measure features of interest such as: lines
of code, size of executable file, run time and memory consumption, as well as each
entry’s final rank in the competition. Furthermore how self contained the languages
are is studied using error messages received execution.

The study found no language that is superior in all features. C and C++ give
great raw speed performance and use memory most efficient. C# and Java have
slower performance and larger footprint compared to C and C++, but provide small
executables. Python emerges as reasonable alternative to C and C++.
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1
Introduction

Since the invention of the modern computer in the 1940s various programming lan-
guages have been developed. A natural question that arises is which language is to
be preferred in the abundance of programming languages. This question is highly
debated among computer scientist and programmers. Similarity to other commonly
used languages, the availability of open source libraries and the programmer’s expe-
rience are just some of aspects that influence the choice of programming language [1].
Hence the answer depends on whom you ask and what parameters are taken into
account.

Knowing beforehand which programming language to use in a specific context to
solve a problem in the most optimal way is a difficult task. Therefore observations
from empirical comparisons can provide significant guidance both when designing a
new programming language and when choosing existing programming language for
a project.

Empirically comparing programming languages is an ambitious endeavor since
the success of such comparison is affected by several factors. For example, the
programmers who wrote the programs under analysis must have similar experience
in the language of preference and the problem set must be varied in order to achieve
generalizability. Thus solutions have to be written by programmers of comparable
skills, solving the same unambiguously specified and sufficiently varied problem set.

In this thesis, we utilize the Google Code Jam repository to compare features
of five popular programming languages. Google Code Jam, GCJ, is known as one
of the most challenging and prestigious programming competitions in the world [2].
The contest attracts up to 20,000 different programmers each year [2] and the GCJ
repository collects solutions written in up to 70 different programming languages [2].
The large diversity of problems and programming languages used to solve these as
well as the high number of contestants make this repository suitable for a empirical
comparison such as this one.

1.1 Problem Definition
The study presented in this thesis examines the characteristics of five programming
languages: C, C#,C++, Java and Python. The aim of this work is to identify,
based on empirical grounds, weaknesses and strengths of these languages in relation
to one another, and to decide which languages are better given specific parameters.
The approach used, in order to derive such findings, is statistical analysis of data
originating from the GCJ repository.
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1. Introduction

1.2 Motivation
Choosing the optimal programming language for a project can save developers, re-
searchers and companies both time and money. There are several possible benefits
of choosing the optimal language for a specific task. Reducing the number of bugs,
improving the performance of a program and even reducing the time spent on de-
velopment are just few examples. Thus the cost of training developers to use a more
suitable language may in the long term be much cheaper than using the current
programming language.

Previous studies [3, 4] investigating language features such as memory consump-
tion, conciseness of code, and so on, looked at a small problem set or used a data set
containing solutions to well known computers science problems. This thesis makes
use of a larger set of problems for which there exist no obvious standard solutions.

1.3 Research Questions
In order to determine which programming languages are optimal given a set of
parameters, the following research questions were investigated during the thesis.

• RQ1: Which programming languages make for the top rank in Google Code
Jam?

• RQ2: Which programming languages make for more concise code?
• RQ3: Which programming languages compile the smallest executables?
• RQ4: Which programming languages have better running time performance?
• RQ5: Which programming languages use memory most efficiently?
• RQ6: Which programming languages are more self contained, i.e. which

programming languages produce less errors when run on other devices.

1.4 Summary
To give a concrete answer to which programming language is the best is hard. From
the examined parameters in this study we conclude that no language is superior
with respect to all investigated parameters. According to our results C and C++
perform well when analyzing the majority of the examined features. C and C++
provide the fastest performance, use little memory and tend to provide fairly concise
code base; on the other hand C and C++ have large executable files. In contrast,
C# and Java have small executable files but longer runtimes, use more memory
and are more verbose compared to C and C++. Python tends to place itself in
the middle when analyzing most features. However for conciseness of code and
small size of the executable Python is the best option. When considering memory
consumption of Python, we found that Python ranks better than C# and Java and
worse that C and C++; but is closer to the latter. The run time of Python solutions
is the greatest weakness of the language we found in this study. Finally, to give an
indication of which programming languages are more self-contained, we investigated
the different encountered errors. By investigating the encountered errors and study
the corresponding solution, we try to determine how easy it is to move a solution from

2



1. Introduction

one machine to another machine and make the solution execute without errors. For
this question availability of third party libraries weights in as well as how descriptive
error messages are in the different languages. In this study Python had the smallest
percentage of execution errors and C# the highest percentage. Concluding the
results our findings align, in general, with the findings of previous studies [3][4]

1.5 Reading Guidance
This master thesis report is divided into six chapters. The first chapter, i.e. current
chapter, gives an introduction and motivation to this study. Chapter 2 gives the
reader a general background on empirical research and summarized related research
papers. Chapter 3 describes the experimental design, including motivation to the
design choices. Chapter 4 describes the implementation and the development tools
as well approach for encountered difficulties. Chapter 5 presents the results of this
study and answers each research question individually. Reflections on the results, the
design choices and suggest ideas for extending the work in the future are presented
in chapter 6. The final chapter, chapter 7, concludes our findings.
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2
Background

Empirical research is a cornerstone in many areas of scientific inquiry and it lends
itself for use in software engineering as well. Section 2.1 provides an overview of
how to construct empirical research in software engineering; section 2.2 summarizes
empirical studies about topics similar to ours.

2.1 Empirical Research in Software Engineering
The information technology revolution has resulted in software being a vital part
of an increasing amount of products. Software engineering is the process of devel-
oping new software and involves complexities such as large amount of developers,
complexity of the software itself and the long development time [5].

Empirical research has historically been common in social, behavioral and phys-
ical sciences since it provides a way of evaluate human-based activities using ex-
periments. However, empirical research can be applied to areas within software
engineering as well, for example comparing new tools and languages to existing
ones. Applying empirical research to software engineering is suitable since soft-
ware engineering is a human activity based on creativity and studies ingenuity of
developers.

Empirical studies in software engineering involve; setting up formal experiments,
studying real projects in industry (e.g. a case study), performing surveys and in-
terviews [5]. This master thesis is a case study and therefore the focus will be on
describing this kind of empirical research.

A case study examines a real life context and can be used as a comparative
research strategy. When conducting a case study it is important to minimize the
confounding factors, in other words factors that have not been accounted for [5].
These factors may lead to biased or misleading results. Planning a case study
is rather simple in comparison to other research strategies and the projects can
be scaled easily. There are however, some potential problems, for example the
difficulty to generalize results. Results may differ depending on the scale of the
study and confounding factors may potentially make it difficult to pin point the
variables leading to the results [5].

2.2 Related Work
The previously conducted studies have been roughly divided into two categories:
controlled experiments and analyzing programs in public repositories. In controlled
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2. Background

experiments a group of human subjects solves small programming tasks in vari-
ous programming languages under a limited time span. While studies that analyze
programs in public repositories investigate code in projects that has evolved under
months or even years. The main drawback of controlled experiments is in most
cases the use of students as human subjects, due to the limited programming knowl-
edge among them. On the other hand the main drawback when analyzing public
repositories is the diversity of the solved problems.

2.2.1 Rosetta Code Study
Nanz and Furia explored the middle ground between controlled experiments and
analyzing public repositories using the Rosetta Code Repository [3]. The Rosetta
Code Repository collects implementations of over 700 programming tasks, written
in hundreds of different languages. Furthermore, the solutions have been revised
and improved by other programmers, hence they are close to optimal with regard
to conciseness, running time, failure proneness and memory usage.

The study revealed differences regarding some of the most frequently discussed
language features such as conciseness, performance and failure proneness. The study
concluded that functional and scripting languages are more concise than procedural
and object-oriented languages, while C gives the best raw speed performance given
large inputs. However, the tasks are relatively small and have well known solutions,
thus not suitable for real-life programming challenges.

2.2.2 Controlled Study Using One Given Problem
Another study, similar to Nanz and Furia’s, was done by Prechelet in 2000 [4]. A
comparison between different languages was performed, investigating similar param-
eters of interest (i.e. conciseness, programming effort, runtime efficiency, memory
consumption, and reliability). However, the environment was controlled and the
set of investigated languages was : C, C++, Java, Perl, Python, Rexx and Tcl. In
the experiment, several programmers solved a given problem, using one of above
mentioned programming languages.

The study revealed that computations in C and C++ ran faster than in other
languages, most notably twice as fast as solutions written in Java. C is also superior
when dealing with memory usage. However, the scripting languages: Perl, Python
and Tcl, were reasonable alternatives to C and C++, even for tasks that require
fair amounts of computation and data. The results of this study however, can not
be generalized due to the limited amount of tasks that were solved, i.e. only one
programming problem.

2.2.3 Code Quality in Github
A study [6] analysing programs in public repositories was conducted in 2014 and
focused on code quality in Github repositories. The study investigated 729 projects
in 17 languages, in order to probe the effect of programming languages on software
quality. Furthermore, the study investigated if some languages are more prone to

6



2. Background

failure than others. When such relationships was found, the authors looked for what
language properties that were related to those defects and however defect proneness
depend on domain.

The study concluded that some languages are more often associated with defects
than other languages. Although the effect is small it has a significant relationship
with the language class. It was found that functional languages contained less defects
that procedural and scripting languages. With respect to domain no significant
relationship was found.

7
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3
Experimental Design

This chapter describes the work flow of this thesis and includes motivation for our
choice of methodology. Sections 3.1 to 3.6 outline the work flow for each part of the
project.

3.1 Data Collection: Google Code Jam
The data used in this study originates from submissions to the programming com-
petition Google Code Jam, GCJ. Every annual edition of GCJ consist of several
rounds to rank the contestants and announce a winner. The first round is the qual-
ification round, followed by rounds 1A-1C, round 2, round 3. Finally, the winner is
announced in the World Finals. All submissions to the competition are collected in
a public repository, thus accessible to anyone. The availability, the large amount of
data and the competence among the programmers provide a good base for a study
such as this one.

In each round a set of problems is given. Typically this set contains four problems
to be solved using a programming language of choice. Two inputs are provided, in
general, i.e. one small and one large input, to test the correctness of the program.
The first line of the input file specifies number of test cases, followed by the actual
test cases. From the time the input was downloaded, a contestant has four minutes
to upload output for the provided input. This to avoid solutions that merely do
pattern matching on the given input. In addition to the output file, a contestant
has to upload the source code solving the problem; but only the output file is used
to verify the solution.

The server gives one of three responses for the submitted output:
1. Accepted, the contestants output was correct.
2. Rejected, the file was rejected due to reason unrelated to whether the output

is correct or not, e.g. the contestant might have submitted the source code as
output file.

3. Incorrect, the produced output is incorrect. However without revealing whether
the output contained some correct cases or not.

If the submission was not accepted, it is up to the contestant to debug his/hers
code within the time limit. If the time limit is exceeded, a new set of test cases
becomes available to download and the timer is reset. Furthermore if the contestant
manages to solve the small input, the large input becomes available. The process
for submitting the large input set is the same, however the contestant is given eight
minutes to submit [7].

9
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The submission procedure entails that all solutions available in the GCJ repos-
itory have somewhat been verified. However, it is not the code itself that has been
verified just the output it have produced. We will consider this as the code have
been verified to an acceptable extent. Since it is hard to fake correct output with-
out writing a correct program, we consider all solutions in the repository fulfill the
requirements to be used as data in this study.

3.1.1 Selection of Competitions
Apart from solutions to the annual edition of GCJ, the GCJ repository also stores
solutions to spin offs and different tracks such as: Distributed Google Code Jam and
EuroPython. To identify which competitions to include in this study all competi-
tions were examined carefully. Competitions that focused on specific skills such as
distribution, and competitions that were limited to a specific group of people or area
were disregarded. All competitions in which a sample input was unavailable have
been disregarded as well, since the solutions are not executable without a provided
input.

Thus this study is focused on the original version of the competition, for the
years 2012-2016. We have chosen to include the Qualification round, round 1A,
round 1B and round 1C; since the amount of solutions naturally decreases when
the final round approaches and performing statistical analysis on too small a data
set is prone to be inconclusive. Because the amount of contestants who solved all
problems for a round drastically decreased, we decided to only include the first 300
pages for each contest of interest.

3.2 Exploratory Study
An exploratory phase was conducted to investigate factors that could have negative
impact on the process of downloading and compiling solutions automatically. In the
exploratory phase a small set of solutions was downloaded and compiled manually.
Then for each solution in the set that did not compile correctly, an error message
was written to a log file. The findings from the exploratory study are presented in
section 4.2 and laid the groundwork for the implementation phase of the project,
described in chapter 4.

3.3 Language Selection
When deciding which programming languages to analyze in the study two parame-
ters were taken into account: number of solutions submitted to GCJ written in the
language and TIOBE index. The first parameter was considered since performing
statistical analysis on a small data set is a threat to validity for this study. TIOBE
index, the second parameter, is an indicator of how popular a programming lan-
guage is at the moment based on the number of skilled engineers, courses and third
party vendors [8]. The top five programming languages in January 2017 according
to the TIOBE index [8] were Java, C, C++, C# and Python, in that order. These
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3. Experimental Design

five languages are also by far the most represented languages in GCJ each year [9].
Therefore, these five languages were included in the study.

3.4 Task selection
The specific features that were analyzed were determined in the exploratory phase
of the project. In order to pinpoint such features, the first step was to investigate
if there exist major differences between the solutions when manually downloading
them. For example if the solutions vary much with regards to length, the size of the
execution file is an interesting feature to analyze. This feature is measurable and
therefore a suitable aspect to analyze. Other features, such as how comprehensive
the code is to another programmer who was not involved in the development, could
have been an interesting parameter to analyze. However, this is not a very suitable
parameter to analyze since it can not be measured objectively nor did this project
contain data that could measure this aspect. Thereby the features to be analyzed
must be suitable for objective measurement. Having this in mind, the following
features were selected to be investigated:

• Correlation between rank and language
• Lines of code
• Size of executable file
• Runtime performance
• Maximum memory footprint
• More self contained

3.5 Scripts and Storage of Results
To analyze the features of interest for comparison of language features scripts were
written in Python. The scripts were used to compile and execute the solutions while
measuring the determined featured. The output, produced by the scripts, was stored
in comma-separated values, CSV, format and analyzed with statistical methods. A
CSV file is a plain text file with tabular data. Each line represents a record where
each field is separated by comma or another reserved separator token. The CSV
format is not standardized, thus it was tailored to fit this projects’ specific needs.
Beside CSV being a customizable format, it is also one of the most efficient ways to
store data with these characteristics.

3.6 Statistical Analysis
The measured data was analyzed using the statistical methods and tools described
in section 3.6.1 to 3.6.3. The results from the statistics were used to draw con-
clusions answering the research questions and were the underlying material for the
discussion. The results were also visualized using tables and diagrams to facilitate
the interpretation.
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3.6.1 Python Library Pandas
To analyze the output from our measurements we used a Python library, Pandas.
Pandas allowed for reading a CSV-file to a data frame and perform database like
operations on the data frame to select and filter fields. Pandas also provides several
graph plotting functions, which were used to plot graphs and diagrams with.

Box plots were used to compare a specific feature among the five investigated
languages. Box plot graphs use the median, first quartile, third quartile, minimum
and maximum to represent the data. A box plot graph is, as the name indicates,
represented by a box. The top edge of the box represent the third quartile, the
bottom edge the first quartile and the horizontal line in the middle of the box plot
represents the median. The first quartile is the middle value between the minimum
and the median, the third quartile is similarly the middle value between the median
and the maximum value. The box is also extended with a vertical line from the
top edge of the box up to the maximum and another line from the bottom edge to
the minimum value. Abnormal values are represented by a small x and are placed
on the y-axis accordingly to it’s value. However, these abnormal values were not
representative and made the graphs unintelligible and therefore were omitted.

Figure 3.1: Simple example of a box plot

3.6.2 Kendall’s τ
For measuring the relationship between two sets of ranked data we used a statistical
method called Kendall’s τ . In Kendall’s τ , 1 means a perfect correlation and 0 no
correlation. The algorithm to calculate the Kendall’s τ value was implemented in
Python.

3.6.3 Vargha and Delaney Effect Size Measurement
We used the Vargha-Delaney effect size statistics to decide which of the investigated
languages is superior using the observed data from our measurements. The algorithm
to compute the effect size takes two vectors as input, Ax and Bx, where x denotes the
feature of interest and A, B denote the programming languages used, and returns
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3. Experimental Design

a value between 0 and 1. A returned value of 0.5 indicates that the programming
languages are stochastically equivalent. A returned value closer to 1 indicates that
language A performs better than language B for the measurement x. A value closer
to 0, on the other hand, indicates that B is superior.
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4
Implementation

This chapter will guide the reader through the implementation phase of the project.
The first section, section 4.1, will explain the environment in which the experiments
were conducted. Secondly in section 4.2 the exploratory phase will be discussed,
followed by section 4.3 describing how data was retrieved and processed, using our
scripts. In section 4.4 we will describe how various compilation and execution errors
were handled. Finally, information about how the tasks examination and statistical
analysis were conducted will be presented in section 4.5. The challenges encountered
whilst the implementation phase will be portrayed throughout this chapter at their
specific occurrence.

4.1 Environment
The study was conducted on the virtual machine running the operating system
Debian-8.7.1-amd64 hosted on virtual machine monitor Qemu. The examined so-
lutions were placed on the virtual machine, where compilation and execution were
performed using the compilers listed in Table 4.1.

The scripts for running the solutions automatically were written in Python and
executed with Python 2.7.3. Further Cloc, a script for counting lines of code and
used for the solution files, was installed in the virtual environment together with a
Python package manager Pip. This manager was used to download and to install
module from Python Index Packge Reposity. Python libraries Pandas andMatplotlib
were used to plot graphs for the statistical analysis.

Table 4.1: Compilers

Language Compiler Version
C gcc 4.9.2
C# mono 3.2.8
C++ gcc 4.9.2
Java Java SE 1.8.0_131
Python 2.7.9 or 3.4.2

Git was used as the version control tool for this project. There are three repos-
itories for this project; one for the data collection, containing all the solution files
and input files. Another one for the CSV files, where the results from the statisti-
cal analysis were stored and finally a repository for the scripts executing solutions
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automatically.

4.2 Exploratory Study

In the exploratory study we examined how the download process could be automated
and if there existed challenges related to automatically compile and execute the
solution files. Our course of action when exploring how to download solutions is
described in section 4.2.1 and our approach to finding compilation and executing
challenges is described in section 4.2.2.

4.2.1 Description of the Google Code Jam Repository

The GCJ repository collects solutions to previous competitions categorized by the
year of the competition. Each competition consists of several rounds where each
round has an unique id. Each round, in turn, consist of several problems also
identified by an unique id. For each problem two input sets are given, one smaller
and one larger. Thus a contestant must upload two solutions, one solving the smaller
case and another solving the larger case. However, in most cases, contestants have
submitted the same program twice.

When clicking on a specific round, a scoreboard of that round is displayed. The
scoreboard is presented as a table, displaying 30 entries on each page. Number of
pages for a round varied depending on the round; an qualification round consisted
of up to 27000 pages, while the final round contained not even 30 entries. An entry,
in turn, contains: alias of the contestant, rank, score, and time spent to solve all
problems and finally links to zip files containing the solutions to the specific problem,
see image 4.1.

Figure 4.1: Screen shot of scoreboard for Google Code Jam Qualification Round
2012. Taken: 2017-04-04
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4.2.2 Identified Challenges when Compiling and Executing
Solution Files

During the exploratory study it was found that most of contestants using C#, Java,
Python (and in some C++ programs) had hard coded the path to the input file.
This issue together with compiler version used and dependencies on external libraries
were the most common problems found when trying to execute the solution files
manually. Thus, when executing such a program an exception is raised, containing
information about the missing file. Furthermore, an error found mostly in C#,
was the absence of the main method which naturally made the solution file non
executable. We also noticed that not all errors could be solved automatically, for
example we encountered solutions that got stuck in infinite loops or programs that
raised Index Out Of Bound Exceptions.

4.3 Using Scripts For Downloading, Compiling and
Executing Solutions

In section 4.3.1 we describe how the download links were reversed engineered and
how the script uses information from the GCJ repository to download solutions. This
followed by section 4.3.2 describing the process of partitioning data by language to
facilitate compilation and execution with the correct commands; compilation and
execution are described in section 4.3.3. Finally, the section 4.3.4 portrays the
process of measuring and storing features of interest.

4.3.1 Implementation of Downloading Solutions
To download solutions automatically, a download link for each zip file was built.
The format of the URL is not specified officially, so we reversed engineered it by
scraping the GCJ web page. By using Chrome’s tool for inspecting a web page, we
found that each link contains: alias of a contestant, id of a problem, a flag referring
to input size and an id of the contest round. To extract an id for each contest,
the page listing all contests was scraped. Then by using the id of a contest, each
individual contest page could be accessed, i.e. each contest scoreboard. From each
contest page both the contestants’ aliases and problem ids for the contest round were
obtained. After retrieving this information the downloading of zip files could start
using the scraped contest id, problem id, flag and alias used to build the download
link. Additionally, to retrieve information for each contestant about rank, score, and
time spent to solve the given problems, data from the scoreboard was downloaded
from the REST API as a JSON message.

To speed up the downloading process the downloading was done in parallel
using multiple processes. We used Python’s standard module multiprocessing to
distribute the downloading of different contests to all available cores. The zip files
were downloaded into a directory, which is available on GitHub [10]. By using a
dedicated GitHub repository for storing solutions, we were able to revert all files
to their original state. Reverting to original state facilitated the process of testing
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scripts for error handling.

4.3.2 Partitioning Solutions

To simplify compilation and execution, the solution files were partitioned by lan-
guage. Hence all zip files were sorted while being unpacked. Before the unpacking
started, five directories were created in the problem id directory. Each of the five
directories represents one of the selected languages: C, C#, C++, Java or Python.
Then for all zip files a directory with the same name as the zip file, i.e. the alias, was
created inside the correct language directory. Finally the solution files were placed
inside the alias directory. The partitioning process also took care of discarding
solutions written in programming languages other then the five selected ones.

While sorting the zip files a CSV file for each problem id was created. Each CSV
file was initialized with a tuple containing the contestant’s alias and programming
language used to the problem, where the name of contestant is used as key for each
row to store additional data later on. Each row in a CSV file stores all data related
to that contestant and that problem id. The data in the CSV files was analyzed in
the statistical phase. All CSV files can be accessed on GitHub [11].

4.3.3 Compilation and Execution of Solutions

To automatically compile and execute the downloaded data a set of scripts in
Python was written; one for each language. A master script written in Python
was used to start the compilation and execution of the downloaded solutions. Mod-
ule subprocess was used to launch a new process for compilation or execution in
the host environment. We also passed the full path to the solution file and redirected
the input file. Additionally, the usage of subprocess module allowed us to retrieve
error message, output and exit code of the process. This information revealed the
outcome of the command and hence the script can take action accordingly; either
continue to the next solution or make an attempt to resolve the error and then
try again. In the case of failure, the script tries to patch the error and re-run the
solution. The last output is stored to the CSV file.

During execution, a time limit of 10 seconds was set. If a solution failed to
finish within this limit it was forcefully terminated. However, it was found that
a considerable amount of solutions failed to finish within this time limit. When
studying such solutions manually it was found that they indeed worked, however
some needed more than 10 seconds to finish. Unfortunately this was discovered late
in the thesis, thus we did not manage to redo the execution of these files a second
time. The goal was to execute the solutions that were caught in the timeout during
the first run but using a higher time out of 3 minutes.

When compiling and executing the solutions on the virtual machine occasionally
the virtual machine entered the READ-ONLY state. Instead of the master script
executing all problems sequentially, a bash script was written. The bash script
launched the Python script for compilation and execution of solutions, however for
one problem and one language at time.
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4.3.4 Measurement of Features
For each downloaded solution a script was run on the file to count: lines of code,
comments and blanks. The output was appended to existing values for the row
corresponding to the contestant who wrote the program and stored in a CSV file
corresponding the problem id. The actual counting of lines in the solution files was
performed by a script downloaded from GitHub named cloc [12].

Most part of the measurements were carried out under compilation and execu-
tion. During compilation the exit code of the compile command and compiler version
were stored. The exit code is an integer, 0 representing success of the command,
while any other number represents different errors which caused the compilation to
fail. If compilation was successful the script also measures the size of the executable
file produced. During the execution phase each execution command was run with
the set of flags listed in table 4.2 for measuring the remaining properties of interest.
In some cases the solution contained errors that the script tried to resolve. If patch-
ing of error(s) succeeded, features of interest were measured again and the resulting
values were stored in the CSV file.

Table 4.2: Flags used under the execution and description of them

Flag Description of Measurement
%x exit code
%e wall-clock time
%U user time
%S system time
%K average of memory allocated to the process
%M maximum of RAM usage (resident set size)
%t average RAM usage (resident set size)
%F number of page faults (major, that is requiring I/O)
%O number of file system outputs
%I number of file system inputs
%W number of swapping out of main memory

4.4 Error Handling for Compilation and Execu-
tion

In this section we present how the errors were automatically fixed using the script.
As described in the Exploratory Study, section 4.2, various reasons can cause compi-
lation or execution to fail. In order to increase the success rate of executing solutions
and get more data, the script tries to resolve the error. Depending on the error and
language different error handling strategies was used.

Despite the fact that several languages encountered problems of similar charac-
teristics, the error handling had to be tailored to the specific language. This due to
the fact that different languages have different syntax and semantics. Thus, for each
language we have dedicated a section describing errors encountered and strategies
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used to solve these. However, most of the errors encountered were related to the
handling of the input and the output file. Some solutions expected input and/or
output provided as an argument during execution. While other solutions used hard
coded paths causing FileNotFound error to be raised. For FileNotFound we used
the same idea for all languages and this technique is presented in section 4.4.1.

We tried to fix simple errors that did not required manual altering the solution
file. However, several of the encountered errors could not be automatically resolved.
Hence some solutions were left uncompiled or/and unexecuted. Fixing every error
would simply take too much time and not all errors could be fixed automatically,
e.g. missing non-standard libraries.

4.4.1 Handling File Not Found Exception
File not found was resolved automatically by the script modifying the source code.
The hard coded paths to input and output were found using regular expressions
and replaced with the path to input and output on the virtual machine. Capturing
groups were used to only replace paths and not whole statements. In most cases
these tactics could successfully change the paths. However there are many ways to
read input and write output in each language and therefore, close to impossible to
patch all cases.

4.4.2 C Specific Error Handling
When compiling C solutions mainly two errors were encountered: undefined refer-
ence to standard math library and the need of specifying the compiler version. C
programs that use math functions require math library to be linked with the source
code during compilation. This is achieved by adding -lm flag to the compilation
command. Some files also used version specific syntax of the std C11 version of the
compiler, thus these solutions were run with the flag std=c11. Iostream errors were
solved by compiling and then executing the file using the C++ compiler. However
other errors encountered in C were not correctable since these involved imports of
self written .h files that were not include in the submitted solution or errors of
similar characteristics. A flow chart illustrating how the script deals with all errors
in C is available in appendix A, figure A.1.

4.4.3 C# Specific Error Handling
A program written in C# usually is developed using Visual Studios. Since the
contestants did not include the whole project, several of the C# solutions did not
include a main method when submitting their code. It is therefore the most common
issue found in C# was the absence of the main method.

For those solutions that did not include a main method, a main class was created
automatically by the script, i.e. TestMain.cs. The main class has a static format
where only the name of the namespace and the method call is changed depending
on the solution. An example of a main class created by the script is shown in figure
4.1, here the submitted file is named Solution.cs. The name of the namespace
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has to be the same as the namespace in the solution file and can be extracted
from the solution file using regular expressions. In the example the namespace in
the file Solution.cs is GoogleCodeJam.CountingSheep thus the script gives the
namespace in the main class the same name.

To find the method to call from the main method is however more challenging.
We saw no other possibility than finding the executing method by brute force search.
However, we limited the search to static methods, thus the name and signature of
all static methods are collected. Then all static methods are called one by one from
within the main method. If the program runs successfully, the selected method
is retained and the measured values are stored, otherwise the search continues by
trying next static method. If no appropriate method was found, the solution file is
disregarded.

Listing 4.1: Automatically Generated Main Method
// TestMain .cpp
namespace GoogleCodeJam . CountingSheep {

class TestMain
{

static void main ()
{

Solution . SolveProblem ();
}

}
}

Another error that was fixed for C# was dynamically-linking standard libraries
under compilation. If an error message for absence of a specific library is received,
the the missing library is added to the command and the process of compilation and
execution is started again. A flow chart illustrating how the script deals with all
errors in C# is available in appendix A, figure A.2.

4.4.4 C++ Specific Error Handling
Most C++ programs included a file named stdc++.h. Since this file were used by
a significant amount of contestants, it was downloaded from github [13] and put in
the directory /usr/local/include/bits. The benefit of including this file is that
it imports several commonly used libraries at once.

Several C++ programs also required to be run with a flag,-std=c++0x, speci-
fying which version of the compiler to use. Since this flag does not affect programs
that are meant to run with lower versions of the compiler, all programs are exe-
cuted with this flag to reduce the number of cases in the script and reduce compile
time. Another issue we found in some C++ files was related to the signature of the
main function. The correct signature of the main function in C++ is int main()
when C++ programs are developed in Visual Studio the compiler for C++ accepts
programs with main signatures of simply main() or void main(). When these er-
rors were encountered the scripts tried to replace the signature to int main() using
matching on regular expressions and then recompile the file. A flow chart illustrating
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how the script deals with C++ errors is available in appendix A, figure A.3.

4.4.5 Java Specific Error Handling
Some of the solution files written in Java files had a package name declared at the
top of the source code. This package name caused the execution of the program
to fail. The solution to this problem was to remove package name and re-run the
file. A flow chart illustrating how the script deals with Java errors is available in
appendix A, figure A.4.

4.4.6 Python Specific Error Handling
The most common error found in Python was related to the two versions of the
Python environment. Some contestants have used the 2.x branch and others the
3.x. Since these versions are not compatible with each other, a program must be
syntactically correct for that version or a generic syntax error will be thrown. Thus,
the correct branch needed to be specified when interpreting. Furthermore there is
no way to check beforehand which version is required for the interpretation and
therefore the script first tries to execute the solution using Python 2.x. If a syntax
error was thrown, the script tried to execute the solution using Python 3.x. However,
not all syntax errors are related to the version of the environment; syntax errors
encountered were also typos, which we were not able to correct automatically.

Another common error found among Python solutions was the absence of an
imported module used in the solution file. This caused an Import error to be
thrown. The script solved this problem by parsing the error message for the library
name. The script then tried to install the missing library, if it is available, using the
package manager Python Index Package, Pip. Finally, the script tried to execute
the program again. However in most cases the missing packages were not published
and hence could not be downloaded. A flow chart illustrating how the script deals
with Python errors is available in appendix A, figure A.5.

4.5 Statistical Analysis
We used the Pandas library to read the CSV files, containing the observed data,
and merge them into one single data frame. From this data frame feature specific
values could be selected and grouped by language for comparing. Box plots and
tables were used as an aid for comparison when answering the research questions
stated in section 1.3.

We implemented Kendall’s τ and the Vargha and Delaney effect size measure-
ment using Python. The Kendall’s τ function was used to investigate if there is
a correlation between language and rank. To be able to apply this method, we
calculated the mean rank for each language in each competition and ordered them
according to mean rank. We then applied pairwise Kendall’s τ on the ordered lists,
to get a value indicating if there exists a similarity of the rank for those two com-
petitions.
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Vargha and Delaney was used in all research questions to analyze which of the
two languages was superior given an investigated feature. Using Pandas we were able
select the feature column and feed the data to the Vargha and Delaney algorithm.
The output from the algorithm was visualized with tables.
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5
Results

In this chapter, we present the outcome of this study. Firstly, we present the amount
of data that we were able to successfully make use of in this study. This is followed by
section 5.2 presenting the findings of the statistical analysis that lay the foundations
for answering the research questions put forth in this thesis.

5.1 Successful Compilations and Executions
In total 236 428 solutions were downloaded, whereof 18 744 were written in pro-
gramming languages other than those selected for in this thesis. The majority of
the analyzed solutions were written in C++, followed by Python and Java which
had approximately as many solutions. The amount of solutions written in C# and
in C were significantly fewer compared to the other three languages.

Figure 5.1 illustrates, for each of the investigated languages, the percentage of
the downloaded solutions that we manged to compile and execute. As described
from the figure C, C++ and Python have the highest percentage of executable
files. Furthermore, table 5.18 summarizes the number of downloaded, compiled and
executable solutions of each language.

Figure 5.1: The percentage of successfully compiled and ran solutions among total.
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Table 5.1: Number of Solutions

Language Number of Solutions Compiled Executed
C 4685 4290 2816
C# 6823 5417 3084
C++ 136085 120928 82572
Java 33187 30524 19749
Python 36904 36497 25597
Total 217684 197656 133818

5.2 Answers to the Research Questions
In this section we present our findings based on the statistical analysis that was
made on the solutions that we succeeded to compile and execute. These findings
are used to provide an answer to the research questions stated in this thesis.

RQ1. Which programming languages make for the highest
rank?
We investigated if there is a correlation between the programming language used in
the competition and the contestants rank. The languages used in GCJ vary from
year to year. However C, C#, C++, Java and Python have been the most used
languages during the recent years, where C++ is the most used language in the
competition and therefore accounts for the highest amount of solutions.

A contestant’s rank in a round is based on the combined performance in all
problems of that round. For this analysis contestants that used the same language
for all problems in a round were included and the languages were ordered based on
their mean rank. It would have been interesting to investigate if a combination of
programming language could make for the highest rank, however this question is
outside the scope for this thesis.

Table 5.2 lists all rounds and languages that were included in the study; for each
round the left most language had the lowest mean rank, i.e. performed better, and
the rightmost the highest mean rank. We found that the most common ordering is:
C++, Java, Python, C# and C. This ordering occurs three times, in qualification
round 2015, 2013 and round 1C 2012. Looking at which position each language ranks
most often we found the same pattern among the languages. C++ is ranked first
most often, 17 times. Java most often ranks in second place, 8 times. Python most
often rank as the third language, 6 times. C# most often rank as language number
four, 6 times and C most often ranks as the fifth and final language, 9 times. Such
ranking is not surprising because solutions written in C++, as mentioned above,
account for the highest proportion of downloaded data.

We used Kendall’s τ statistics to compare rounds pairwise in order to get a
value on how equal the ordering of the mean rank is. The complete table, table
B.1, displaying the resulting values can be found in appendix B. From this table
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Table 5.2: Consistency mean rank, left most language has lowest mean rank

Contest Mean rank ordering
Qualification Round 2016 C++ C C# Java Python
Round 1A 2016 Python C++ C# Java C
Round 1B 2016 C++ Java C# C Python
Round 1C 2016 C++ Java C C# Python
Qualification Round 2015 C++ Java Python C# C
Round 1A 2015 C# Python Java C++ C
Round 1B 2015 C++ Python Java C C#
Round 1C 2015 C++ C# Java C Python
Qualification Round 2014 C++ Python Java C C#
Round 1A 2014 C++ C# Python Java C
Round 1B 2014 C++ Java C# C Python
Round 1C 2014 C++ C Java Python C#
Qualification Round 2013 C++ Java Python C# C
Round 1A 2013 C++ Java Python C C#
Round 1B 2013 C++ Python C Java C#
Round 1C 2013 C++ C# Python Java C
Qualification Round 2012 C++ Java C# Python C
Round 1A 2012 C++ Python Java C# C
Round 1B 2012 Python C++ C C# Java
Round 1C 2012 C++ Java Python C# C

we conclude that in the worst cases there are no similarity between two competi-
tions. In the best cases, in contrast, there are two competitions with exactly the
same ordering. We found that the order the languages rank in are consistent with
approximately 60% overall.

To get an indication for which language make for the highest rank, we used
Vargha and Delaney effect size statistic to compare languages pairwise based on
rank. Table 5.3 shows the resulted values of the comparison, where languages on
the y-axis are compared to languages on the x-axis. This statistics indicates that
C++ is the superior language, i.e. makes for the highest rank in the competition.

Table 5.3: Vargha and Delaney for Contestants Rank

Language C C# C++ Java
C# 0.54
C++ 0.62 0.58
Java 0.55 0.51 0.42
Python 0.55 0.51 0.43 0.51

We manually inspected around 100 of the downloaded solutions to find advan-
tages for using C++ instead of other investigated languages. However no such traits
could be discovered. It is therefore hard for us to pinpoint the features that favour
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C++ in the competition.

RQ2. Which programming languages make for more concise
code?

To compare the overall conciseness of solutions between languages, lines of code,
LOC, were counted for each solution. Given that the repository contained inad-
equate solutions, we only measured LOC for solutions that executed successfully.
Furthermore, we manually investigated solutions that had fewer than 20 lines of
code for correctness. In this set we identified solutions that clearly did not solve the
given problem and these solutions were disregarded from the analysis.

Table 5.4 shows the minimum, the maximum, mean, median and sum of LOC for
each language. The largest gap of 47 LOC, when analyzing the median values, can
be found between Python and C#. Since the analyzed programs are relatively short
in general, this is a significant difference. When analyzing the difference between the
medians of procedural languages, C and C++, and the object oriented languages,
Java and C#, the largest gap of 32 LOC can be found between C# and C.

Table 5.4: Lines of code (LOC) for successful execution

Language Min Median Mean Max Sum
C 12 46.00 55.34 510 155454
C# 16 77.50 99.81 1395 307619
C++ 11 55.00 63.97 3087 5273389
Java 16 65.00 78.46 3193 1548896
Python 1 30.00 38.01 483 973026
Overall 1 55.00 67.12 3193 8258384

The box plot, figure 5.2, shows that Python tends to provide the lowest mean
and the smallest variance of LOC. The median value of Python is between 1.5 and
2.6 times shorter compared to the other languages. C#, on the other hand, tends
to be the most verbose and with the highest variance. In the comparison between
procedural and object oriented languages, it can be noticed that the procedural
languages tend to be slightly more concise than the object oriented languages.

Table 5.5 displays the Vargha and Delaney statistics applied to the measured
LOC. The output from this statistic suggests that Python has an advantage having
effect size up to 0.8 compared to other investigated languages. Furthermore, table
5.6 shows the rank of the languages ordered by median, mean and the Vargha and
Delaney statistics. As can be noticed from the table the ordering of the values from
the Vargha and Delaney statistic align with the ordering of the median and then
mean values derived from the table 5.4. These results are consistent with the study
done by Nanz and Furia [3], as well as findings by Prechelet [4]

.
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Figure 5.2: Box plot for lines of code (LOC)

Table 5.5: Vargha and Delaney results for lines of code (LOC)

Language C C# C++ Java
C# 0.24
C++ 0.41 0.69
Java 0.33 0.61 0.41
Python 0.70 0.88 0.77 0.82

Table 5.6: Rank of languages for lines of code (LOC)

Median Python C C++ Java C#
Mean Python C C++ Java C#
Box Median Python C C++ Java C#
VD Python C C++ Java C#

RQ3. Which programming languages compile into smaller
executables?
Knowing which programming language compiles in to the smallest executable is
useful when code has to be run on a device where memory storage is a limitation.
We measure size of executable to give an answer to this question and take into
account only solutions that execute without errors or time out and have at least 10
lines of code, apart from Python where a working solution was found having one line
of code. This study was carried out without usage of optimization flags for making
the compiler attempt to improve code size and performance. Our findings are shown
in table 5.7 and in the corresponding graph 5.3.
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Table 5.7: Smaller executables, in bytes

Language Min Median Mean Max Sum
C 6552 7864.00 79424.76 100008312 223660136
C# 3072 4608.00 5317.23 26112 16398336
C++ 1811 12336.00 22852.63 168009808 1886576214
Java 247 2110.50 2345.31 63330 46305708
Python 334 1354.00 1663.26 113268 40302501
Overall 247 4608.00 22320.64 168009808 2213242895

Figure 5.3: Box plot for size of executable file, measured in bytes.

C#, Java and Python compile into bytecode, which is interpreted by a virtual
machine under execution. C and C++, on the other hand, are complied into as-
sembly code that is translated to machine code. From table 5.7 it can be seen that
among languages that compile to bytecode Python accounts for the smallest exe-
cutable; having executable size around 30%, when analyzing the medians, of the
size produced by C#. However, the smallest executable was found in Java. Among
languages that compile to machine code C produces the smallest executable, when
considering mean and median size of executable. When comparing these two groups,
it can be found that languages which compile into bytecode produce smaller exe-
cutables than languages that compile to machine code. The greatest difference is
found between Python and C++, where C++ produces, when median is considered,
an executable 9 times bigger. The differences found between these two groups agree
with the study done by Nanz and Furia [3].

The Vargha and Delaney statistics, whose results are displayed in table 5.8,
shows that solutions written in Python tend to have the smallest executables, fol-
lowed by Java and C#. On average, C and C++ tend to produce largest executa-

30



5. Results

Table 5.8: Vargha and Delaney results for size of executables

Language C C# C++ Java
C# 0.94
C++ 0.06 0.02
Java 1.00 0.97 1.00
Python 1.00 0.98 1.00 0.75

bles, up to 13 times larger that executables produced by Python. These findings are
coherent with the box plot.

Table 5.9: Rank of languages for size of executable

Median Python Java C# C C++
Mean Python Java C# C C++
Box Median Python Java C# C C++
VD Python Java C# C C++

To summarize the findings of the size of the executable file for the investigated
languages we have ordered them in table 5.9 with the language with the smallest
executable to the leftmost side for each statistics. As the table illustrates, Python
and Java conduct the smallest executable. However there is some variance among
solutions written in C++. The large variance in size of executables produced by
C++ increased complexity in the comparison of executable size, in relation to other
languages .

RQ4. Which programming languages have better running
time performance?
Running time of software can be crucial and save a significant amount of time
when computing large amount of data. Therefore time performance is an important
aspect to consider when choosing a programming language for implementation. To
analyze which programming languages have better time performance we executed
the downloaded solutions with the corresponding input file downloaded from GCJ
repository. When executing the solutions three measurements related to time were
measured :

1. Wall clock time: time from start to finish of process call, includes time used
by other process and time when the process is blocked, e.g. waiting for IO to
complete.

2. User time: time spent in user mode (outside kernel) within the process, i.e.
the actual CPU time used executing the process.

3. System time: time spent in CPU inside kernel within the process, e.g. allocat-
ing memory, accessing disks and network card.

Solutions which successfully executed and had more than 10 lines of code, were
the only ones included for this research question. To determine which languages
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have better running time performance we investigated user time and system time,
however problems emerged as follows. For user time it cannot be assumed that
all contestants have solved the given problem with the same time complexity. Thus
comparing the user time among the five investigated languages will give an indication
of the time complexities of the solutions and not the speed of the languages. System
time, in turn, is affected by number of read and write operations to a file and which
standard methods are used to achieve this. Since a considerable amount of solutions
read and/or wrote to a file using different methods, this metric is not useful when
investigating which programming languages have better time performance. Thus,
for time performance we analyzed wall-clock time, which measures the overall time
elapsed in practice for a user’s point of view. Resulting values are shown in table
5.10 and in the corresponding graph 5.4.

Figure 5.4: Box plot for wall clock time, in seconds

Table 5.10: Wall clock time, in seconds

Language Min Median Mean Max Sum
C 0.00 0.00 0.15 9.95 421.92
C# 0.00 0.03 0.28 9.89 854.29
C++ 0.00 0.00 0.26 9.98 21743.92
Java 0.03 0.11 0.35 9.95 6919.95
Python 0.00 0.01 0.30 9.97 7731.96
Overall 0.00 0.01 0.27 9.98 37672.04

Graph 5.4 shows that C and C++ have the fastest median wall-clock time. How-
ever C++ has an additional variance, compared to C. This difference can originate
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from the fact that C only accounted for a small percentage of all downloaded solu-
tions in contrast to C++ that accounted for the higest percentage. Solutions written
in Java run, on average, up to 2.3 times slower than solutions written in C. Python
and C# perform almost equally good when looking at the graph, through Python
having slightly better median wall-clock time. Further Python’s median time is not
significantly longer than that for C and C++. The fastest solutions in Python runs
as fast as those written in C and C++. If we aggregate programming languages
according to programming paradigms, procedural languages run approximately 1.5
times faster, on average, than object oriented and twice as fast as Python. In the
table 5.10 the resulting median values are coherent with the values displayed in the
graph, however when taking into account the mean values Python emerges as the
slowest option.

Table 5.11: Vargha and Delaney results for wall clock time

Language C C# C++ Java
C# 0.16
C++ 0.45 0.79
Java 0.11 0.17 0.14
Python 0.23 0.67 0.29 0.81

The results using the Vargha and Delaney statistic seen in table 5.11 agree
with the results displayed in the box plot. C, indeed, tends to have the wall-clock
time among the languages. Java, in contrast, appears as the slowest option, having
statistical effect size less than 0.2.

After further considerations we also decided to investigate the user time addi-
tionally, since it may given an indication for which language it is easier to implement
algorithms with low time complexity. The results for the user time measurements
are displayed in table 5.12 and figure 5.5. As can be seen in figure 5.5 C and C++
which compiles into assembly code runs notably faster than C#, Java and Python
which compiles into bytecode. Bytecode has to be interpreted during runtime, thus
acquire longer time for execution. Among the interpreted languages, Python runs
the fastest and Java the slowest. C# has the smallest variance for the user time,
this might be a result of having significantly fewer solutions in C# compared to
Java and Python.

As can be observed when comparing the results form the wall clock time and
user times, the languages preform the same when considering how they rank against
each other. Correspondingly observing the time, the user time is naturally slightly
lower than the wall clock time.

Table 5.13 shows the results of when analyzing the Vargha and Delaney for the
user time. The results indicates the same rank of the languages as for the Vargha
and Delaney for the wall clock time. However the values in table 5.13 are closer to 0
or 1 than the corresponding values in table 5.11. The effect size values being closer
to 0 or 1 for the user time compared to the wall clock time shows that the Vargha
and Delaney results are more significant for the user time than the wall clock time.
Going back to the box plots and studying the variance the box plots illustrates that
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Table 5.12: User time, in seconds

Language Min Median Mean Max Sum
C 0.00 0.00 0.11 9.46 318.28
C# 0.00 0.02 0.26 9.87 790.32
C++ 0.00 0.00 0.18 9.98 14986.14
Java 0.01 0.09 0.33 11.00 6520.22
Python 0.00 0.01 0.29 9.95 7390.48
Overall 0.00 0.01 0.23 11.00 30005.44

Figure 5.5: Box plot for user time, in seconds

Table 5.13: Vargha and Delaney results for user time

Language C C# C++ Java
C# 0.15
C++ 0.47 0.81
Java 0.10 0.17 0.13
Python 0.35 0.70 0.38 0.81

the variance is larger for the wall clock time than the user time. Thus the Vargha
and Delaney for user time is more convincing than for the wall clock time.

Further to investigate the run time, the format of GCJ allowed for analysis of
how user time scales with respect to input size, since close to all problems were
provided with two input set, one small and one large. Analyzing how the user time
scales can indicate the complexity of the algorithms used for each language, but to
determine the complexity more input sizes are needed.
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In GCJ there were two possible variations of how the small and large input could
differ, either the number of test cases differed or the length of each case differed.
However calculating the difference in user time for the small an large input can serve
as an indication on how well the languages scale with respect to time consumption.
The results for this analysis are displayed in figure 5.6 and in table 5.14.

Figure 5.6: Box plot for difference in user time between small and large input,
measured in seconds

Figure 5.6 visualize with a box plot the difference in user time between the small
and large input. The difference has been calculated by comparing user time (user
time large input - user time small input) for all user whom got accepted for both
the small and large input in a problem with the same language. As can be seen
the variance stretches to negative time for all languages, i.e. in each language there
were some cases where the large input ran faster than the smaller. This originates
form the natural fluctuation that is present in all machines. To get more accurate
values for runtime, the execution time should be measured several times so extreme
values could be disregarded and then use the median runtime. The difference in user
time for small and large input is similar to the user time. C and C++ have more
concise values and Java still has the largest variance. Due to the large variance the
results might not be a great indication of how well the languages scale with respect
to input. However, C, C#, C++ and Python have medians significantly closer to 0
than compared to Java which have a median of 0.1 seconds.

Table 5.14 summarizes the rank of the languages for both wall-clock time and
user time. As shown by the table the rank of the languages are the same regardless
if the wall clock time or the user time is considered. In general the results for the
different approaches align, however when calculating the mean time the ordering of
the languages differ compared tot he other approaches. This is most likely due to
the edge cases being very different from the majority of the data.
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Table 5.14: Rank of languages for time, a * detonates a tie

Wall-clock time
Median C* C++* Python C# Java
Mean C C++ C# Python Java
Box Median C* C++* Python C# Java
VD C C++ Python C# Java
User time
Median C* C++* Python C# Java
Mean C C++ C# Python Java
Box Median C* C++* Python C# Java
VD C C++ Python C# Java

RQ5. Which programming languages use memory most effi-
ciently?
To answer the question which language uses memory most efficiently we measured
the maximum used RAM memory for the solutions that only execute without errors
or timeout. The results for this analysis are displayed in figure 5.7 and in table 5.15.

C and C++ have manual memory allocation and have therefore small memory
footprints. The variance between solutions in these languages are also small. On the
other hand, for the languages having a garbage collector responsible for the memory
handling, i.e. C#, Java and Python, the memory footprint is larger.

There is a clear difference between C#, Java and Python languages. Solutions
written in Python have a small variance compared to C# and Java and the smallest
median. Thus Python being the best option with automatic memory allocation. A
possible explanation for why C# and Java have a larger memory footprint is the
initialization of objects needed in those languages. It is possible to create objects
Python as well but our impression is that it is not necessary, in most cases, given
the characteristics of the problems in GCJ. Another explanation for the differences
among theses three languages are the different implementations of the underlying
garbage collector, e.g. which strategy used. Furthermore, Java uses significantly
more memory than C#, a possible implication of the additional memory allocated
by the JVM during start up.

The Vargha and Delaney statistics, whose output is presented in table 5.16,
shows that solutions written in C have the smallest memory footprint. Java, in
contrast, provides the largest memory footprint. These results align with the results
from calculating the median and mean which can be seen in table 5.17.

Besides comparing the languages against each other, we compared the size of
the memory footprint between the small and large input. The larger input differs
from the smaller input by having either more test cases or larger magnitude for each
of the provided test cases.

Beside the space complexity of the algorithm, the memory consumption, in this
study, is affected by two factors. The first factor is how a contestants read the input.
More precisely if a contestant is reading the entire file into memory or reading the file
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Table 5.15: Maximum Memory Footprint, in bytes

Language Min Median Mean Max Sum
C 1256 1412.00 2766.57 548688 7776828
C# 8824 11764.00 15672.81 945948 48225240
C++ 1932 2556.00 4398.43 2066600 362897008
Java 21276 27784.00 54658.29 1418332 1072122408
Python 6228 6764.00 9492.29 2104756 242043872
Overall 1256 6764.00 17397.68 2104756 1733065356

Figure 5.7: Box plot for memory footprint, in bytes

Table 5.16: Vargha and Delaney results for memory footprint

Language C C# C++ Java
C# 0.01
C++ 0.04 0.98
Java 0.01 0.04 0.01
Python 0.02 0.93 0.03 0.98

line by line. The second factor is the magnitude of each test case. When the whole
input file is read at once the amount of used memory depends on the size of the file.
Large input requires more memory than the small input both when considering the
magnitude and the number of test cases. In the case where the magnitude of each
test case for the larger input is bigger, one could expect the larger input to use more
memory since it may need more intermediate steps to solve the problem or require
more memory for storing each test case.
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Figure 5.8: Box plot for difference in memory footprint between small and large
input, measured in bytes

Figure 5.8 illustrates the difference in memory consumption between a contes-
tants small and large solution. C, C++ and Python have no difference in size of
memory footprint between the small and large input. For C# and Java solutions
there exists solutions that use more memory for the large input as well as solutions
that surprisingly uses less memory for the large input compared to the small one.

.

Table 5.17: Rank of languages for memory footprint

Median C C++ Python C# Java
Mean C C++ Python C# Java
Box Median C C++ Python C# Java
VD C C++ Python C# Java

Summarizing the findings for which languages uses memory most efficient, we
see that all used statistical methods points towards the same result, see table 5.17.
The is quite a clear difference between the languages, where C is the best option
and Java the worst when RAM is limited. In general, memory footprint for each
language has a small variance. Therefore different implementations of a solution in
a language does not make a huge impact on the memory footprint of the program.
Our findings for most efficient use of memory aligns with the results by Nanz and
Furia [3] as well as the results from Prechelet’s [4] study.
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RQ6. Which programming languages are more self contained?
Besides analyzing performance features of the languages we also consider which
of the languages are more self contained. For this analysis we excluded solutions
that ran successfully. We identify which errors are most common for the investigated
languages and what is the reason behind this. This is achieved by analyzing the error
messages obtained under compilation or execution and the corresponding solution
file. We also examine solutions that timed out to evaluate the set time limit, i.e.
the time limit of 10 seconds.

Table 5.18: Number of solutions that compile and/or execute with errors

Compile Errors Runtime Errors
Language Nbr % Nbr %
C 395 8 1869 39
C# 1406 20 3739 54
C++ 15157 11 53513 39
Java 2663 8 13438 40
Python 406 1 11307 30
Total 20027 9 83866 38

Table 5.18 shows that Python tends to be the easiest language to compile. Such
result is not surprising since Python is a dynamic language and therefore most of
the errors occur at runtime. However, Python tends to have lowest percentage of
runtime errors, suggesting that Python is the more self contained language among
the investigated languages.

For solutions written in Python, Java and C# the most common error was
exiting the program with status 1, having 8149 cases in Python, 10110 in Java
and 2181 C#. Exit code 1 is used as catchall for general errors, e.g Syntax Er-
ror, File Not Found Error and Import Error. File Not Found Error was the most
common error and accounted for 48% of all cases where exit code was 1 for these
languages. This result is not surprising since most of solutions written in C and
C++ expected the input provided as an argument or redirected and therefore
contain less of such errors. Furthermore, this indicates that more development
time should be spent on writing regular expressions to replace the hard coded in-
put and/or output files. Other common errors with exit status 1 found in Java
were ArrayIndexOutOfBoundsException and NullPointerException accounting
for 1171 and 1260 cases respectively. While in Python the second and the third
common errors, i.e. ValueError and Import Error, accounted for 1654 and 675
cases.

To give some concrete examples of cases that were not covered we examined
a subset of solutions where automatic path replacement failed. The general pat-
tern for Python is that we missed to patter match for ’-’ in the input file names,
e.g "ProblemA-large.in". Other cases involve adding an file ending to the in-
put argument, which already contains the file ending, e.g sys.argv[1] + ’.in’
and abnormal paths, e.g Users + // Downloads + // + input + ’.in’. Pat-
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terns found in Java are quite similar to those that were found in Python, e.g
Ç:\\\GCJ\\Large-a.in. In addition to these patterns, we did not take into account
cases as follows: new File ("A-large(1).in"), new File(A.class.getName()
+ ".in"). Many of the File not Found exceptions, in Java, were raised because
of the missing output file since we did not spend as much time for writing regular
expressions for replacing these paths. This was not a problem for Python since a
file that is being written to is created automatically if it does not exists. To achieve
automatic file creation in Java, in contrast, a developer must create a new File ob-
ject; this was not the common procedure among the downloaded solutions. C# has
the same issues as Java, i.e. in several cases the output path did not exist and thus
caused the program to trow an exception. As a result of the following we succeeded
to replace more paths in Python in contrast to Java and C#.

12844 of the 217684 downloaded solutions were forcefully terminated by our
script because they ran longer than 10 seconds. We manually investigated a sample
of 380 solutions to measure the actual running time for these languages; the output
from this analysis is shown in table 5.19. The conclusion that can be drawn from
the manual investigation is that time limit of 10 seconds was set too low for some
problems. This is especially true for problems running with larger input; we found
working solutions finishing after 6 minutes. Therefore the time limit should have
been set to at least to 3 minutes to catch some of the slowest solutions. Furthermore,
207 of the examined solutions executed under 10 second when ran manually. These
results suggests that the implemented time out, achieved by using threads, did not
work as intended. Another possible explanation for this is that the time out followed
from blocks by other process active on the virtual machine.

Table 5.19: Manual investigation of solutions that timed out where # >3 denotes
number of solutions that took longer than 3 minutes to finish, # <3 denotes number
of solutions that ran longer than 10 seconds but faster than 3 minutes. Other Errors
denotes errors encountered other that File Not Found Errors

Language # >3 minutes # < 3 minutes # Other Errors # < 10 seconds
C 4 11 7 39
C# 3 9 3 10
C++ 4 19 13 64
Java 4 27 2 37
Python 16 44 7 57
Total 31 110 32 207
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This chapter reflects on the quality of the downloaded data. We also evaluate design
choices and implementations made in this empirical study and discuss potential
improvements. Finally we present suggestions for future work.

6.1 Quality of the Downloaded Data

The data used in this study had more flaws than expected. In the following section
we recognize some of the difficulties encountered with regard to the quality of the
data and discuss how such difficulties may have influenced the result.

A considerable amount of the downloaded solutions were incomplete. These
files contained only comments or an empty main method, just to mention some of
the encountered problems. Problematically there was no simple way for us to filter
out all solutions with incomplete code. Thus we choose to only include solutions
which had successfully executed in the analysis to decrease the amount of inadequate
solutions. However, this does not guarantee that all of the executed solutions solved
the given problem or any problem at all for that matter and we recognize this issue as
a potential threat to validity for our study. The simplest solution to this problem,
from our point of view, would be that Google verified that the correct output is
produced using the submitted code and not only verifying the submitted output
file.

The aspect that data originating from the GCJ repository or analogous com-
petitions is partly inadequate should be kept in mind for similar future studies.
Clearly, a contestant that got accepted yet submitted inadequate source code must
have solved the problem; however did not submit the actual code. Therefore when
using data that have been developed independently from the study it is important
to study the specifications for submission of the developed code. Specifications to
consider are for example: handling of input and output, allowance of third party
libraries and complexity of implemented algorithm.

Given the structure of the problems in GCJ, it is hard to generalize our findings
to real world projects, since all problems in GCJ have similar characteristics and size.
All problems test knowledge of algorithms and data structures, therefore resulting
in fairly short programs. In real world projects similar code can be found in logical
components of the software. However the size of these components are, in general,
larger since they serve as logic for more complex problems.
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6.2 Design Choices and Implementation

The environment used to perform all executions was the virtual machine manager
Qemu. This was the environment provided by our university which made Qemu a
natural choice for us to use. The reliability of Qemu was low. The virtual machine
entered the READ-ONLY state consistently, was suddenly killed or lost the Internet
connection. As a result of this the downloading, compilation and execution phase
took a significantly longer time than planned. We have no explanation for the situa-
tions where the virtual machine lost the Internet connection or was suddenly killed.
However for the first issue that is the READ-ONLY error we have two possible ex-
planations. The first one being related to the number of threads. When executing
solutions via Python’s subprocess module, new threads are started. Then the exe-
cuted program generally starts additional threads itself. When several threads run
simultaneously and are not terminated correctly, the RAM is eventually exceeded
causing a corrupt file system which finally puts the virtual machine in the READ-ONLY
state. The other theory is that hardware errors occasionally occurs which the virtual
machine cannot recover from and thus enters the READ-ONLY state.

Python was used for the implementation of the analysis scripts. This choice
of language facilitated the process of automatically compiling and executing solu-
tions. Python has several convenient libraries that we made use of, such as Pandas,
subprocess, multiprocessor, re and urllib2. Furthermore, it would have been
advantageously to use the Python 3.x branch because of the provided timeout pa-
rameter that could be set when launching a new process, instead of writing our
own implementation. However when too large sets of data were to be compiled the
we had difficulties with our environment Qemu, as mentioned above. We consider
Python a good choice of language when doing a study such as this one, assuming
another choice of virtual machine.

We wanted as many downloaded solutions to execute as possible. We fixed
simple errors described in section 4.4, where most errors were regarding handling
of files for input and output. The different ways contestants handled input and
output affected the study in several ways. Firstly it influenced how many solutions
we were able to compile and execute, since not all issues regarding input and output
handling could be patched. Secondly it influenced the time performance. The fact
that contestants have handled their input and output using different approaches
was discovered early in the exploratory phase. However, that it would affect our
measurements significantly was something we only realized towards the very end
of the study. Therefore our findings with regard to time performance should be
taken with a grain of salt. Furthermore, when performing time measurements each
solution was only executed once. To get more reliable measurements each solution
should have been executed a repeated number of times and the average of these
measurements should be used instead. This especially affects languages that compile
into bytecode. The first execution of these languages comes with one-time overhead
due to the need for the virtual machine to load from the disk.

Another parameter that influenced the number of solutions that we were able
to execute was the timeout. Our strategy for choosing the time limit before a
solution got forcefully terminated was based on our findings during the exploratory
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study. Studying the execution times of the programs downloaded in the exploratory
study, we found the slowest programs do not use more then 4 seconds, in general,
to terminate thus 10 seconds is in most cases a reasonable time limit. To increase
the amount of solutions that execute correctly a possible option would be to set the
timeout to 4 and 8 minutes for the small and large input respectively. Thus having
the same time limits used in GCJ. Using a timeout of 4 and 8 minutes was not an
option due to the resulting excessive time requirements.

Considering the languages chosen to evaluate during this study we are satisfied
with our choice. These languages are both the most popular in the competition and
in real life software projects. It would have been interesting to include additional
languages in this comparative study, for example JavaScript and Ruby. The amount
of solutions in these languages however is just a fraction of the five considered
languages, and therefore lead to the findings being hard to generalize.

6.3 Future Work
The classification of which paradigm a language belongs to has become more vague
in recent years. The reason for this is the new features that are being added each
year. Because of the size of the GCJ repository it is suitable to use for evaluating
how well the new features are used in practice. An example of such study could be
to compare versions of Java, more precisely comparing Java 1.7 to Java 1.8. Another
suggestion is to compare solutions written in Python 2.x and Python 3.x.

Considering optimization in runtime, memory and size of executable investi-
gating how flags and different compilers influence these parameters could be an
interesting topic for the future. Using a new compiler and adding flags to the com-
pilation would benefit programmers, thus there would be no changes to the existing
code base and performance would increase if such evidence could be found.
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Conclusions

To give a concrete answer to which programming languages are superior is a difficult
task. The answer depends on the angle the question is asked from and which param-
eters are considered the most important. Generalizing and combining our findings
from our research questions there are no language which is superior to other lan-
guages taking into account the investigated features. To summarize our findings,
one has to choose between speed and size of executable.

C, C++ and Python are the top contenders for best languages according to our
results, while Java and C# performed worse. Programs in C have a small memory
footprint, run fast and can be written concisely. On the other hand, programs
written in C have large size of the executable file. C++ has similar characteristics
as C but tends to be less concise. Programs written in Python can be written very
concisely and have small executable files. With respect to time performance and
memory consumption, Python is the middle language. However, this does not mean
that Python solutions ran slow. Python has the highest percentage of successful
executions thus more solutions were included and there were a larger variance in
run time for Python solutions.

For applications where time and memory consumption are the most important
aspects to consider, C or C++ is the better choice. However, for programming
completions, such as GCJ, Python emerges as a reasonable alternative to these
languages. Java and C# produce smaller executables and therefore can be used
with benefit on storage with limited space. The results from this study can not be
applied to real world projects, though can provide some guidness when choosing a
language for a software project.
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A
Flow Charts Describing Error

Handling

Understanding how the scripts deals with errors and how they tries to fix them has
been challenging to explain in a simple and clear way. Therefore we have drawn
flow charts to illustrate the sequence of actions the scrips takes when encountering a
compilation or execution error. In this Appendix A, flow charts describing the error
handling for C#, C++, Java and Python can be found.

I



A. Flow Charts Describing Error Handling

Figure A.1: Flow chart describing error handling for C solutions.
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A. Flow Charts Describing Error Handling

Figure A.2: Flow chart describing error handling for C# solutions.
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Figure A.3: Flow chart describing error handling for C++ solutions.
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Figure A.4: Flow chart describing error handling for Java solutions.
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Figure A.5: Flow chart describing error handling for Python solutions.

VI



B
Additional Statistics

VII



B. Additional Statistics

T
able

B
.1:

M
atrix

ofC
onsistency

ofM
ean

R
ank

C
ontest

N
am

e

Qualification Round 2016

Round 1A 2016

Round 1B 2016

Round 1C 2016

Qualification Round 2015

Round 1A 2015

Round 1B 2015

Round 1C 2015

Qualification Round 2014

Round 1A 2014

Round 1B 2014

Round 1C 2014

Qualification Round 2013

Round 1A 2013

Round 1B 2013

Round 1C 2013

Qualification Round 2012

Round 1A 2012

Round 1B 2012

Round 1C 2012

Q
ualifi

cation
R
ound

2016
1.00

0.60
0.80

0.75
0.43

0.25
0.56

0.60
0.56

0.60
0.80

0.60
0.43

0.43
0.71

0.60
0.56

0.56
-1.00

0.43
R
ound

1A
2016

1.00
0.33

0.14
0.50

0.50
0.40

0.20
0.40

0.60
0.33

0.33
0.50

0.25
0.60

0.60
0.60

0.60
0.75

0.50
R
ound

1B
2016

1.00
0.80

0.75
0.00

0.71
0.80

0.71
0.50

1.00
0.50

0.75
0.80

0.56
0.50

0.80
0.60

0.20
0.75

R
ound

1C
2016

1.00
0.80

-0.33
0.60

0.75
0.60

0.43
0.80

0.60
0.80

0.75
0.82

0.43
0.60

0.71
0.60

0.80
Q
ualifi

cation
R
ound

2015
1.00

0.56
0.60

0.50
0.60

0.80
0.60

0.60
1.00

0.80
0.50

0.80
0.80

0.80
0.50

1.00
R
ound

1A
2015

1.00
0.50

0.33
0.50

0.60
0.25

0.56
0.56

0.25
0.33

0.60
0.56

0.78
0.14

0.56
R
ound

1B
2015

1.00
0.78

1.00
0.60

0.60
0.80

0.60
0.80

0.80
0.60

0.50
0.80

0.40
0.60

R
ound

1C
2015

1.00
0.78

0.75
0.80

0.56
0.50

0.60
0.56

0.75
0.60

0.82
0.20

0.50
Q
ualifi

cation
R
ound

2014
1.00

0.60
0.60

0.80
0.60

0.80
0.80

0.60
0.50

0.80
0.40

0.60
R
ound

1A
2014

1.00
0.50

0.56
0.80

0.56
0.60

1.00
0.75

0.60
0.33

0.80
R
ound

1B
2014

1.00
0.50

0.75
0.80

0.56
0.50

0.80
0.60

0.20
0.75

R
ound

1C
2014

1.00
0.40

0.60
0.75

0.56
0.60

0.56
0.20

0.40
Q
ualifi

cation
R
ound

2013
1.00

0.80
0.50

0.80
0.80

0.80
0.50

1.00
R
ound

1A
2013

1.00
0.60

0.82
0.75

0.60
0.25

0.80
R
ound

1B
2013

1.00
0.71

0.43
0.60

0.60
0.50

R
ound

1C
2013

1.00
0.75

0.60
0.33

0.80
Q
ualifi

cation
R
ound

2012
1.00

0.75
0.00

0.80
R
ound

1A
2012

1.00
0.60

0.80
R
ound

1B
2012

1.00
0.43

R
ound

1C
2012

1.00

VIII


	List of Figures
	List of Tables
	Acronyms
	Introduction
	Problem Definition
	Motivation
	Research Questions
	Summary
	Reading Guidance

	Background
	Empirical Research in Software Engineering
	Related Work
	Rosetta Code Study
	Controlled Study Using One Given Problem 
	Code Quality in Github


	Experimental Design
	Data Collection: Google Code Jam
	Selection of Competitions

	Exploratory Study
	Language Selection
	Task selection
	Scripts and Storage of Results
	Statistical Analysis
	Python Library Pandas
	Kendall's 
	Vargha and Delaney Effect Size Measurement


	Implementation
	Environment
	Exploratory Study
	Description of the Google Code Jam Repository
	Identified Challenges when Compiling and Executing Solution Files

	Using Scripts For Downloading, Compiling and Executing Solutions
	Implementation of Downloading Solutions
	Partitioning Solutions
	Compilation and Execution of Solutions
	Measurement of Features

	Error Handling for Compilation and Execution
	Handling File Not Found Exception
	C Specific Error Handling
	C# Specific Error Handling
	C++ Specific Error Handling
	Java Specific Error Handling
	Python Specific Error Handling

	Statistical Analysis

	Results
	Successful Compilations and Executions
	Answers to the Research Questions

	Discussion
	Quality of the Downloaded Data
	Design Choices and Implementation
	Future Work

	Conclusions
	Bibliography
	Flow Charts Describing Error Handling
	Additional Statistics

