
Defining and minimizing cell margins in
a SafeMove supervised robot system
The development of an algorithm that assists the robot cell
engineer at the design phase in RobotStudio

Master’s thesis in Systems, Control and Mechatronics

Oskar Henriksson

EX066/2018

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis EX066/2018

Defining and minimizing cell margins in a
SafeMove supervised robot system

The development of an algorithm that assists the robot cell engineer
at the design phase in RobotStudio

Oskar Henriksson

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2018

Defining and minimizing cell margins in a SafeMove supervised robot system
The development of an algorithm that assists the robot cell engineer at the design
phase in RobotStudio
Oskar Henriksson

© Oskar Henriksson, 2018.

Supervisor: Henrik Berlin, ABB Robotics
Examiner: Martin Fabian, Signals and Systems

Master’s Thesis EX066/2018
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Printed by [Name of printing company]
Gothenburg, Sweden 2018

iv

Defining and minimizing cell margins in a SafeMove supervised robot system
The development of an algorithm that assists the robot cell engineer at the design
phase in RobotStudio

Oskar Henriksson
Department of Electrical Engineering
Chalmers University of Technology

Abstract
When designing a robot cell, it is often desired to keep it as small as possible, while
at the same time meeting a required cycle-time. A tight cell increases the risks of
costly fence-robot collisions, to avoid this the velocity and boundary supervision
system SafeMove can be used. SafeMove halts the robot upon a zone or velocity
violation, though the stop is not atomic, a brake distance has to be accounted for.
To approximate these brake distances at the design phase, where changes are cheap,
the cell engineer only has standard brake scenarios at help. To ease the process
and minimize the total brake margin between the cell boundary and fence, this
thesis proposes a two-step algorithm. First, it explores and describes the relation-
ship between the velocity-programmed trajectory, cycle-time, and brake margin to
the engineer using RobotStudio. Secondly, by mixed integer linear programming,
it minimizes the brake margin by adjusting the programmed trajectory. The algo-
rithm successfully describes and visualizes the relationship between cycle-time and
occupied factory floor area for a given trajectory and a set of velocities. Also, the
optimizer, with the objective to minimize maximum angular velocity, lowers the
maximum velocity for the tested trajectory and robot.

Keywords: Brake margin, fence, trajectory optimization, MILP, SafeMove, Robot-
Studio

v

Acknowledgements
Firstly, I want to thank you, Lisa, you are always loving, always supportive, always
understanding and always remembering me about the great life beyond the com-
puter screen. Gratitude to my family and friends who never tried to change who I
am and always putting trust in me when my own belief was lacking.

I am deeply grateful for all the support, discussions, knowledge and positive en-
ergy Henrik Berlin as a supervisor at ABB has contributed to. Thank you, Niklas
Skoglund at ABB for the help with the RobotStudio API and all the interesting
visionary talks. Thank you, August Ramle at ABB for being the archetype of a
experimenting, inspiring, positive engineer. Thank you, Hans Andersson at ABB,
providing the modified virtual controller with live stopping distances and your ex-
pertise about emergency stops. Also, to all of you great colleagues at ABB Robotics
Mölndal a great thank you for being such a social, creative and supportive group of
people.

Thank you, Martin Fabian for examining this master’s thesis, putting me in the right
direction and supporting with all the practicalities. Finally, thanks to all great peo-
ple contributing to the open source community and the publicly available libraries,
programming languages and tools, reinventions of the wheel could be avoided.

Oskar Henriksson, Gothenburg, June 2018

vii

Contents

List of Figures xi

1 Introduction 1
1.1 The problem . 1
1.2 The solution . 2

2 Theory 3
2.1 Anatomy of the 6-DOF decoupled manipulator 3

2.1.1 Wrist center point (WCP) . 3
2.1.2 Tool center point (TCP) . 4
2.1.3 Frame . 4

2.2 Robot motion programming . 5
2.2.1 high-level motion programming of ABB robots 5

2.3 RobotStudio . 6
2.3.1 Emergency stops . 7

2.4 SafeMove . 7
2.5 Rigid body transformations . 8

2.5.1 Plane . 8
2.5.2 Collision detection, sphere - plane 9
2.5.3 The 3D frame . 9

2.6 Manipulator kinematics . 10
2.6.1 Denavit-Hartenberg parameters 10
2.6.2 Forward kinematics . 11
2.6.3 Inverse kinematics . 12

2.7 Kinematics of IRB 6700-175/3.05 . 12
2.7.1 Denavit-Hartenberg parameters 12
2.7.2 Inverse kinematics . 14

2.7.2.1 Processing . 18
2.8 Linear programming (LP) . 19

2.8.1 Mixed integer linear programming (MILP) 19

3 Methodology 21
3.1 Preparatory phase . 21

3.1.1 Velocity and cycle time . 21
3.1.2 Zone Definition . 21
3.1.3 Collision poses . 22

ix

Contents

3.1.4 Violating trajectories . 22
3.1.5 Cycle time, brake margins . 24

3.2 Optimizing phase . 24
3.2.1 Trajectory optimization . 25
3.2.2 Trajectory generation . 27
3.2.3 A final simulation . 28
3.2.4 Fence generation . 28

4 Results 29
4.1 Preparatory phase . 29

4.1.1 Brake time and distance . 29
4.1.2 Cycle time and trajectory velocities 32

4.2 Optimizing phase . 32
4.2.1 Minimize acceleration . 32
4.2.2 Minimize max angular velocity 33
4.2.3 Comparison . 33

5 Conclusion 37

Bibliography 39

A Appendix I
A.1 Scenario based brake test . I

A.1.1 Scenario 1 movements . I
A.1.2 Scenario 2 movements . II

A.2 Trajectory optimization . II
A.3 Symbolic kinematic python solver . III

x

List of Figures

2.1 Anatomy and joint positions of the IRB 6700-175/3.05, where the
contrast colored parts are moved by axes 1,3 and 5 and the white
colored parts are moved by axis 2, 4 and 6. 4

2.2 The standard programmatic frames of ABB robots where the robot is
positioned in the local origin of the base frame, and all programmatic
targets in the work frame. 5

2.3 All frames of the IRB 6700-175/3.05, where frame b is the base frame
and frame 7 the TCP. Each frame i, is represented by a coordinate
system defined by xi, yi and zi. The Denavit-Hartenberg translational
distances ai and di between each frame i, represents each arm of the
manipulator. Note that frame 4,5 and 6 are all positioned in the
origin of frame 4 and that frame 0 and 1 shares the same position as
well. Dimensions are not proportional. 14

3.1 An illustration of how the cycle time and brake margin is displayed
to the engineer. Where the max brake distance out of each zone
boundary has been summed and the total is shown on the y-axis. . . 24

4.1 The robot cell where two brake distances scenarios where set up. The
translucent black border is the safe zone and the yellow border around
the cell is the generated fence. 30

4.2 Two scenarios with similar setups tested for different velocities and
two payloads: 0 kg payload denoted t0 and 175 kg payload denoted
t175. 31

4.3 A typical pick and place cell with safe move boundaries in red, the
yellow dashed lines trajectories and the blobs represent found collision
poses . 32

4.4 A test run with the velocity settings 50%, 75% 100% 125% and 150%
for a given trajectory with a velocity of v2000, representing 100% on
all targets using the IRB 6700-175/3.05 and the safezone presented
in section subsection 4.1.2. Collision poses found using 0.1 rad dis-
cretization resolution . 33

4.5 Sample time 0.5 s, trajectory velocity set to 600mm/s. The left col-
umn is the original recorded trajectory meanwhile the right column
is the new optimized trajectory. 3763 variables, 28057 constraints,
solved in 22403ms . 34

xi

List of Figures

4.6 Sample time 0.5 s, trajectory velocity set to 1200mm/s. The left
column is the original recorded trajectory meanwhile the right column
is the new optimized trajectory. 2404 variables, 19434 constraints,
solved in 17243ms . 35

xii

1
Introduction

In industrial robot cells today, fences protect not only humans from entering the
cell, but also prevent the robot from moving outside of it. Cells are kept as small as
possible, often resulting in a robot working range that is greater than what the cell
allows. The fence does not only have to be strong enough to withstand the robot’s
full force [1], but is also expensive in purchase and installation. If an incident occurs,
the fence most certainly needs to be replaced and maybe also parts of the robot and
its tool. Smaller robot cells are a consequence of the desire to fit as many production
units as possible into a limited floor area.

There exists a supervising system called SafeMove (explicitly available for ABB
Robots), which allows the cell constructor to set up virtual zones for the robot.
SafeMove halts the robot if it violates the virtual boundary of the zone, hence, the
purpose of the fence, if placed correctly, is reduced to prevent humans from entering
the cell. However, halting a moving robot results in a significant brake distance [2],
thus, a brake margin in-between the real fence of the cell and the virtual boundary
must be accounted for. This brake margin depends on the velocity of the robot [3],
therefore SafeMove includes a velocity restriction, which if violated, halts the robot
even though it is within the virtual boundary.

1.1 The problem
The SafeMove setup procedure starts in the virtual robot simulation software Robot-
Studio, where the virtual zones, stopping category and velocity supervision can be
configured. This is typically done after the virtual robot and the cell has been
programmed. Once the SafeMove configuration has been set, as part of the safety
standard [1], a unique hash is generated from the configuration to prevent unnoticed
changes.

When the cell and robot has been physically installed, the safety configuration with
its unique hash is tested and signed by the responsible on site. The test procedure
focuses on manually programmed trajectories that purposely violates the safety con-
figuration, to confirm that SafeMove stops the robot before a collision occurs. If the
configuration is unsatisfying being too strict or too loose, changes are expensive,
both in time and money.

1

1. Introduction

To prevent unsatisfying safety configurations brake margins are manually approxi-
mated by studying scenario-based braking distances for the particular robot defined
by ISO 10218-1 [2]. These scenarios are very much simplified, hence it is hard for
a cell constructor to apply the scenarios to an ongoing cell design. And there is no
possibility to simulate this in RobotStudio today. These scenario-based stops has
been verified and repeated by [3] for some robots.

1.2 The solution
To assist the cell configurator in an early stage, this thesis proposes a two-phase algo-
rithm, which presents and reduces the dead floor area consumed by the zone-fence
margin. Firstly, the robot cell and the programmed robot trajectory is analyzed
such that an approximated fence margin is achieved. Secondly the zone-fence mar-
gin is reduced by an optimization algorithm by lowering the top-velocity in the
programmed robot trajectory. Finally, the fence position is determined by the zone-
fence margin.

The first phase of the algorithm utilizes RobotStudio, a virtual robot simulation tool
to simulate ABB Robots. Since the cell and its safety configuration is created in
RobotStudio, both simulations and measurements can be done without access to
a real robot. The algorithm has a generic approach, and with the purpose to be
applicable to any RobotStudio cell.

Obtained explicitly for this thesis, a virtual robot has been modified by the motion
team at ABB Robotics to produce data about the exact stop position and time if
an emergency stop where issued. The stopping data is computed in each discrete
time step, hence it is an approximation based on the internal dynamic model of
the robot. Without the modified virtual robot, an alternative dynamic estimation
model would be required to predict brake distances.

2

2
Theory

An industrial robot consists of two parts, a manipulator and a controller. The
manipulator itself is a dumb, mechanical component, meanwhile the often-separate
control system referred to as the controller houses a real-time computer, an electri-
cal control system and often a programmable logic computer(PLC). The supervis-
ing system SafeMove is also located in the controller, utilizing a dedicated so-called
safety PLC to communicate with surrounding industrial components in the factory
such as light guards and emergency-stop buttons.

Since this thesis only focuses on simulations, the focus is put on the manipulator
and its kinematics, rigid body transformations in the cartesian coordinate system
and optimization. As the focus is on the proposed algorithm, the only virtual robot
used in this thesis is the IRB 6700-175/3.05 from ABB, where the manipulator has
six degrees of freedom(6-DOF).

2.1 Anatomy of the 6-DOF decoupled manipula-
tor

The generic six-axis decoupled manipulator used in this thesis features three po-
sitional and three orientational joints. Hence, the inverse kinematic problem (de-
scribed in section 2.6) of finding joint positions that places the TCP at a certain
point in joint space can be decoupled into a positional and an orientational problem,
thus, be solved independently. On the IRB 6700-175/3.05, shown in Figure 2.1,
axes 1, 2 and 3 are positional and axes 4, 5 and 6 are orientational. The decoupling
requires the three orientational joints to rotate around a common origin, creating a
spherical joint referred to as the wrist center point (WCP).

2.1.1 Wrist center point (WCP)

The Wrist Center Point (WCP) is defined by the point where the rotational axes of
joints 4, 5 and 6 intersects, this is discussed and illustrated further in section 2.7.
The joints are situated in a cascading manner, thus, the end position of axis 6
depends on axis 5 which depends on axis 4.

3

2. Theory

Figure 2.1: Anatomy and joint positions of the IRB 6700-175/3.05, where the
contrast colored parts are moved by axes 1,3 and 5 and the white colored parts are
moved by axis 2, 4 and 6.

2.1.2 Tool center point (TCP)
The tip of the manipulator, referred to as the Tool Center Point (TCP), is a point
positioned with a rotational and a translational offset from the WCP, which can
be described by a frame, described in subsection 2.1.3. Sometimes, the TCP are
subject to change when attaching equipment (a tool) to the robot.
There is still a need for new word abbreviation though, if a tool is attached, the
tool’s defined as the end effector(EE), which is an offset from the TCP to a point
on the attached equipment.

2.1.3 Frame
A frame is simply a local coordinate system with a certain offset and rotation to
its parent frame, the mathematical definition is found in subsection 2.5.3. Frames
are used to ease the programming process, introducing modularity, which eases
future changes in the program, but also to describe the actual kinematics of the
robot, discussed and illustrated in section 2.7. From a ABB point of view (including

4

2. Theory

RobotStudio), there are a couple of standard frames, forming a hierarchical structure
illustrated in Figure 2.2, where the world frame is the world origin. Additionally,
there are three more frames, the task frame, a direct ancestor to the world frame
and parent to all other frames, the manipulator base frame locates the base of the
manipulator(if multiple, there are multiple base frames). The manipulator base
frame is naturally a direct ancestor to the controller world frame, which has one
or multiple children named object frame(s) that houses the programmatic positions
and trajectories to be known by the robot.

world frame

controller world frame

manipulator base frame

object frame 1

object frame 2

Figure 2.2: The standard programmatic frames of ABB robots where the robot is
positioned in the local origin of the base frame, and all programmatic targets in the
work frame.

2.2 Robot motion programming
A robot motion can be described, defined and programmed in various ways, from
low-level absolute joint positions to more application based targets (a frame without
children), with trajectories in-between. Low-level trajectories are usually described
as a sequence of joint sets discretized with a certain resolution. Each joint set is
referred to as a pose, as proposed by [4]. A motion can then be discretely defined
by a set of poses with a given time in-between each pose.

2.2.1 high-level motion programming of ABB robots
Most robots also offer more high-level programming. In the case of ABB robots,
trajectories can be composed by targets, which specifies The TCP position by a
frame and a specified type of movement in-between, known as a instruction [5]. For
most application based robot cells, the high-level description of the trajectory is the
most practical. Unfortunately, the new description introduces other problems; target
reachability and compatibility, if the target is within reach, it is often reachable from

5

2. Theory

different poses. Each unique pose to a target is denoted as a configuration, which
introduces a compatibility issue discussed more in subsection 2.2.1

Instructions

Moving between two targets can be done either in the shortest distance in cartesian
space or in the shortest distance in joint space. Moving in joint space is almost
always possible, but it is not suited for precision-type applications since the TCP
trajectory between the two targets is unintuitive for a human. Moving in a linear
fashion instead ensures a straight line in cartesian space between the two targets,
but adds the requirement of compatible configurations between targets, to be known
more about in subsection 2.2.1.

Each instruction is defined with a certain flexibility in precision, denoted as a zone,
which is an offset radius from the target origin. The robot is guaranteed to pass
through the zone, but not through the target origin, if not explicitly specified.

Each instruction also holds a velocity parameter which defines the desired TCP
velocity in mm/s towards the target zone. When the target zone has been reached,
the robot starts to execute the next instruction according to its properties. On ABB
robots, this is done live at each execution, thus, the robot does not foresee further
in the program than one step at the time. This is by design since it makes the
movements repeatable and reliable, independent on instructions further ahead.

Configurations

A 6-DOF manipulator can in some scenarios reach a target using eight different
poses [6]. Similarly a human arm (with 7-DOF), can reach a object from various
poses. In the case of IRB 6700-175/3.05, axis 1 can turn around and the target,
which is now behind the manipulator, is still reachable. Also axes 2 and 3 can create
a "mirrored" pose like any double hinge joint, lastly, the spherical joint at the WCP
can achieve the same rotation with different two different poses of axes 4,5 and 6.
This totals into a maximum of 23 = 8 configurations if no joint limits are hit and
the target is placed within reach for all of the alternatives.

When programming linear trajectories, the configuration must be specified and com-
patible, meaning that no reorientation is required between the targets. Similarly as
when putting on a suit jacket, if one starts from the wrong pose with the arm it is
impossible to get your arm through straight without ruining the jacket. The very
same situation applies to linear motion trajectories, if the joints where continuous
such that there were no joint limits, the problem would not exist.

2.3 RobotStudio
A virtual robot controller in RobotStudio is a direct software replica of a real robot
controller, mimicing properties, timings and behavior. The simulated results are

6

2. Theory

thereby close to robots in real life(IRL). ±3% cycle-time difference between a real
robot cell and the virtual copy in RobotStudio is guaranteed by the Virtual Robot
Controller (VRC) interface specification [7], which ABB complies to.

2.3.1 Emergency stops
As of today, it is hard to simulate emergency stops in RobotStudio, the reason is
that the communication with the robot controller and its internal kinematic model
is terminated as soon as an emergency stop is triggered. The controller can trigger
two types of stops; category 0 and a category 1 stop. The first applies the physical
brakes directly, meanwhile category 1 follows the robots last instruction meanwhile
braking with the motors. If the robot is still moving after one second, the physical
brakes are applied [2].

The modified virtual controller enhanced with brake distance approximation at each
discrete time step only provides these data for category 0 stops, hence the algorithm
proposed in item 3.1.4 will use these numbers explicitly. Hence, these values are
not directly suitable for SafeMove configurations which utilizes category 1 stops.
Nevertheless, the applicability of the results is not affected by stop type, thereby
the algorithm proposed is directly applicable to category 1 stops whenever data
becomes available.

2.4 SafeMove
The position and velocity supervising system SafeMove is used very differently de-
pending on application and cell type. The setup can be very generic, only restricting
the cell area to reduce the need of a robot-safe fence. But there are also applica-
tions where SaveMove is tailored to fit a specific robot trajectory and with a goal
to minimize the robot cell area. Typically, the SafeMove configuration is added to
the virtual robot cell in RobotStudio when trajectories and positions have been set.
The complete configuration is then stored in a .xml file and a unique hash string is
generated out of the configuration.

SafeMove supports multi-robot setups and multiple zones, where each zone can be
defined using up to 24 vertices. Zone walls are only allowed orthogonally to the com-
mon xy-plane, representing the floor [8]. The position supervision is either based
on the elbow of the robot (situated between axis 3 and 4) or a tool attached to the
robot. Virtual convex spherical shapes are used to conservatively approximate the
geometry of the elbow and/or tool, to eases collision classification of a pose without
the risk of a false negative. Also, this is related to the SafeMove code’s safety clas-
sification according to standard ISO 13849-1:2015 which puts certain requirements
to the code. The standard also restricts allowed complexity of the supervisory algo-
rithms.

Each SafeMove configuration must be extensively tested before put into operation by
the factory safety responsible. Every zone plane, and velocity specification must be

7

2. Theory

separately verified IRL to see that SafeMove acts as intended. Thereby are complex
SafeMove configuration even more time consuming to test. Also, it is important to
note that any added payloads are not supervised by the safety-system, hence when
testing, the heaviest payload to be used in the cell, must be attached to the robot.

2.5 Rigid body transformations
Since robots move in the cartesian space, mainly the first phase of the algorithm
utilizes several rigid body definitions and transformations in kinematic calculations,
collision detection, zone definitions and trajectory generation.

2.5.1 Plane
The infinite plane as defined by [9], as the unique two-dimensional surface that
is perpendicular to the normal, n and passes through the point P0, where n =
Ai + Bj + Ck, n 6= 0, P0 = [x0, y0, z0] and i, j and k are unit vectors in R3. The
relationship between n and P0 is achieved by the position vector r0 = x0i+y0j+z0k.
The standard form denoted by [9] is then

Ax+By + Cz = Ax0 +By0 + Cz0, (2.1)

which can be simplified to
Ax+By + Cz = D. (2.2)

Plane offset

Translating a plane in the direction of the normal n is simple, since the orientation
and thereby the normal n to the plane is unchanged. By dividing all the constants
in the plane by D, the same plane, but with normalized constants are achieved

Ax

D
+ By

D
+ Cz

D
= D

D
. (2.3)

The normalized plane can then be offset with e simply by

D′ = D + e, (2.4)

where D′ is the new offset.

Plane - plane intersection

The intersection between two planes can be found if they are not parallel. According
to [9], an intersection vector v exists such that it is orthogonal to the normals n1
and n2 of the intersecting planes, thus:

v = n1 × n2, (2.5)

where × is the cross product.

8

2. Theory

To be able to define the location of the intersection as a line equation on the form
p+ v, a point of intersection p is wanted. There are three unknowns coordinates in
p and there are only two plane equations, resulting in the two equations:

n1p = −A1x−B1y − C1z +D1 (2.6)
n2p = −A2x−B2y − C2z +D2. (2.7)

According to [10], a special solution can be given if one of the unknowns are assumed,
specifically in this thesis pz = 0 since both planes will always cut the xy-plane,
described in subsection 3.1.2. With pz given, there are only two unknowns left,
Equation 2.7 can be solved and p found.

2.5.2 Collision detection, sphere - plane
Collision detection in general is very much dependent on the type of polygon and
there is a smorgasbord of algorithms available. This thesis will utilize the distance
e between a sphere with radius r and a plane to determine a collision, inspired
by [11]. The normal to the plane as a unit vector is defined by n, to achieve the
unit vector, the plane equation needs to be normalized as done in plane offset part
of Equation 2.5.1.
Now, projecting the sphere’s origin s onto the plane’s normal as a unit vector n and
subtract the plane’s offset from the origin D, gives the distance e between the plane
and the sphere’s origin:

e = n • s−D. (2.8)

If a collision has occurred, |e| < r, other ways the plane and the sphere does not
intersect.

2.5.3 The 3D frame
A frame F is a coordinate system, with a local origin and an axis rotation, from
which local coordinates and rotations can be defined as described in subsection 2.1.3.
A frame can be represented as a 4 by 4 matrix, with a rotational part R, and a
translational part T , describing how to convert a point from the parent frame to the
local frame’s coordinates. The transformation of point p0 by frame F results in the
point p1 as follows:

p1 = Fp0 =

 R T

0 0 0 1

x0
y0
z0
1

 =

x1
y1
z1
1

 . (2.9)

The rotational part can be separated into three types of rotations,defined from
rotation around the local coordinate frame: R = Rx(α)Ry(β)Rz(γ), which can be

9

2. Theory

described as these three matrices:

Rx(f) =

1 0 0
0 cos(f) −sin(f)
0 sin(f) cos(f)

 (2.10)

Ry(f) =

 cos(f) 0 −sin(f)
0 1 0

−sin(f) 0 cos(f)

 (2.11)

Rz(f) =

cos(f) −sin(f) 0
sin(f) cos(f) 0

0 0 1 0

 . (2.12)

The strength with this approach is that the inverse F−1 has the very same format,
simply that R is replaced by RT and T is replaced by −RTT .

2.6 Manipulator kinematics
For manipulators of many kinds it is desirable to know what position and rotation
the tip of the manipulator (often referred to as the TCP) has for a given set of joint
values. This is known as forward kinematics, doing the opposite is simply called,
inverse kinematics. A generic approach to describe how each joint and arm angle
affects the TCP is to use Denavit-Hartenberg parameters.

2.6.1 Denavit-Hartenberg parameters
A Denavit-Hartenberg(DH) matrix is a matrix describing the translation and rota-
tion between two dependent frames. It is a comprehensive approach to model the
kinematics in the manipulator, where each axis movement affects the position of all
descendant axes.
The DH matrix is composed by four matrices that describes the relationship between
frame i and frame i− 1. These matrices are: a forward rotation matrix Rx, with a
rotation αi−1 around the x-axis of the previous frame i, a forward translation matrix
Dx with the transition ai−1 along the previous frame i− 1’s x-axis, a joint rotation
matrix Rz with a rotation θi around the frame i’s z-axis and a joint translation
matrix Dz. Each of these values are defined by the manipulator design, hence are
static, except for the joint rotation angle θi. This is presented by [12] as follows:

Rx =

1 0 0 0
0 cos(αi−1) −sin(αi−1) 0
0 sin(αi−1) cos(αi−1) 0
0 0 0 1

 (2.13)

Dx =

1 0 0 ai−1
0 1 0 0
0 0 1 0
0 0 0 1

 (2.14)

10

2. Theory

Rz =

cos(θi) −sin(θi) 0 0
sin(θi) cos(θi) 0 0

0 0 1 0
0 0 0 1

 (2.15)

Dz =

1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

 (2.16)

The compositional result for the transition from frame i − 1 to the next i is then
created :

i−1
iDH = Rx(αi−1)Dx(ai−1)Rz(θi)Dz(di), (2.17)

where i−1
iDH is the resulting transformation matrix with the format

i−1
iDH =

cosθi −sinθi 0 ai−1

sinθicosαi−1 cosθicosαi−1 −sinαi−1 −disinαi−1
sinθisinαi−1 cosθisinαi−1 cosαi−1 dicosαi−1

0 0 0 1

 . (2.18)

Note that the DH notation sometimes differ, sometimes the DH matrix is composed
by a rotation and transformation about z and then about x, nevertheless this thesis
will use the order present in Equation 2.17. This notation is very much how a frame
is defined in Section subsection 2.5.3, which means that the DH matrix also has the
same benefit of easy inversion.

2.6.2 Forward kinematics

For a given set of axis values (a pose) the resulting TCP position of the manipulator
is to be found. The Denavit-Hartenberg matrix simplifies this to a chain of matrix
multiplications, starting with the outer-most axis and a position of origin, the end
result being the TCP position denoted pTCP .
The total transformation is summoned by

0
fT CP

DH = 0
1DH

1
2DH...

fT CP −1
fT CP

DH, (2.19)

where the fTCP is the frame located at the TCP. The resulting transformation for
the current pose porigin is then

pTCP = 0
fT CP

DHporigin, (2.20)

where porigin = [x0, y0, z0, 1]T , where the 1 ensures multiplication compatibility with
the DH-matrix in Equation 2.18.

11

2. Theory

2.6.3 Inverse kinematics
The art of achieving angular positions that positions the robots TCP or end effector
at a specific point in cartesian space. There is no common generic solution to the
inverse and there can be zero to infinitely many solutions depending on manipulator
type [6]. In the case of the 6-DOF decoupled manipulator introduced in section 2.1
it is possible to decouple the links into positional and orientational [12]. In the case
of IRB 6700-175/3.05 with a spherical wrist joint, axes 1, 2 and 3 determine the
position and axes 4, 5 and 6 intersects in the point pWCP (located at the WCP),
affecting the orientation to the TCP. First, let’s define how to get from the base
frame to the WCP. The specific inverse kinematic problem in this thesis is described
in section 2.7

2.7 Kinematics of IRB 6700-175/3.05

A similar robot, ABB IRB 6620 has been modeled by [13] with a total of nine
matrices describing the transformation from the base to the end effector. Since
the anatomy of the ABB IRB 6620 and the IRB 6700-175/3.05 share the same
properties, just with different dimensions, the approach has much in common. The
original concept as such is presented originally by J.Craig in [6], where most of the
calculations are derived from.

2.7.1 Denavit-Hartenberg parameters
In Figure 2.3, each frame is represented and the related DH offsets as described in
subsection 2.6.1. There are two static offset matrices, independent of axes angles and
six matrices that are directly dependent on the manipulator axes. The prettiness
with the two static matrices are the possibility to add them separately without
involvement in the inverse kinematics. The two static matrices are:

b
0DH =

1 0 0 0
0 1 0 0
0 0 1 db
0 0 0 1

 , (2.21)

a offset from the origin to axis 2, and

6
7DH =

1 0 0 0
0 1 0 0
0 0 1 d7
0 0 0 1

 , (2.22)

the offset from the WCP to the TCP where d7 is the distance between the WCP and
TCP. These two matrices can typically be designed arbitrarily as long as they are
static and independent of the joint angles of the manipulator. Additionally there
are six matrices that are directly dependent on joint angles:

12

2. Theory

0
1DH =

cos (θ1) − sin (θ1) 0 0
sin (θ1) cos (θ1) 0 0

0 0 1 0
0 0 0 1

 (2.23)

1
2DH =

cos (θ2) − sin (θ2) 0 a1

0 0 1 0
− sin (θ2) − cos (θ2) 0 0

0 0 0 1

 (2.24)

2
3DH =

cos (θ3) − sin (θ3) 0 a2
sin (θ3) cos (θ3) 0 0

0 0 1 0
0 0 0 1

 (2.25)

3
4DH =

cos (θ4) − sin (θ4) 0 a3

0 0 1 d4
− sin (θ4) − cos (θ4) 0 0

0 0 0 1

 (2.26)

4
5DH =

cos (θ5) − sin (θ5) 0 0

0 0 −1 0
sin (θ5) cos (θ5) 0 0

0 0 0 1

 (2.27)

5
6DH =

cos (θ6) − sin (θ6) 0 0

0 0 1 0
− sin (θ6) − cos (θ6) 0 0

0 0 0 1

 , (2.28)

where the static parameters are presented in the separate Table 2.1.

frame i ai[m] αi[rad] di[m]
b 0 0 0.35
0 0 0 0
1 0.32 0 0
2 1.14 −π/2 0
3 0.20 0 0
4 0 −π/2 1.59
5 0 π/2 0
6(WCP) 0 −π/2 0
7(TCP) 0 0 0.21

Table 2.1: DH parameters for the IRB 6700-175/3.05, where frame 7 is the TCP
and frame b is the controller world frame, note that values are rounded to two
decimals.

13

2. Theory

xb

yb

zb

db

x0,1

y0,1

z0,1

a1

x2

y2

z2

a2

x3

y3

z3

a3, d4

x4y4
z4

x5

y5

z5

x6y6
z6

x7y7
z7

d7

Figure 2.3: All frames of the IRB 6700-175/3.05, where frame b is the base frame
and frame 7 the TCP. Each frame i, is represented by a coordinate system defined
by xi, yi and zi. The Denavit-Hartenberg translational distances ai and di between
each frame i, represents each arm of the manipulator. Note that frame 4,5 and 6
are all positioned in the origin of frame 4 and that frame 0 and 1 shares the same
position as well. Dimensions are not proportional.

2.7.2 Inverse kinematics

As described in subsection 2.6.3, the trick to decouple position and orientation will
be used to attack the inverse kinematic problem. [6] proposes variable substitution
by inverse matrix multiplication to find relationships between each DH matrix and
the final position p. The relationship between the end position j and an arbitrary

14

2. Theory

frame i can then be described as
0
iDH

−1 0
jDH = i

jDH, (2.29)

which is crucial for this inverse kinematic method.
This section has partly been solved using the programming language python and the
symbolic library SymPy [14], the source code developed can be found in section A.3.

Axis 1
0
1DH

−1 0
6DH = 1

6DH, (2.30)
is expanded to

cos(θ1) sin(θ1) 0 0
−sin(θ1) cos(θ1) 0 0

0 0 1 0
0 0 0 1

dh11 dh12 dh13 px
dh21 dh22 dh23 py
dh31 dh32 dh33 pz

0 0 0 1

 = 1
6DH, (2.31)

where dhab are the expression at column a, row b of the matrix 0
6DH. The last

column in the right hand side of Equation 2.31 is

1
6DH∗,4 =

a1 + a2 cos (θ2) + a3 cos (θ2 + θ3)− d4 sin (θ2 + θ3)

0
−a2 sin (θ2)− a3 sin (θ2 + θ3)− d4 cos (θ2 + θ3)

1

 . (2.32)

Equating cell (2, 4), on the lhs and rhs in Equation 2.31 as proposed by [6], boils
down to the relationship:

− s1px + c1py = 0, (2.33)
which may be simplified to

θ1 = atan2 (py, px)− atan2 (0,±1) = atan2 (py, px)± π, (2.34)
where atan2(y, x) is a deluxe version of atan(y

x
), with the addition that it is defined

for x = 0(as long as y 6= 0) and that the signs of x and y are used to find the right
quadrant in the unit circle. Hence atan2(−1,−1) 6= atan(−1

−1). Also, a cliffhanger
for subsubsection 2.7.2.1, the ± sign gives two solutions to θ1.

Axis 2

Craig proposes equating (1, 4) and (2, 4) in the relationship between the transition
from frame 0 to frame 3:

0
3DH

−1 0
6DH = 3

6DH, (2.35)
which gives

c1c2,3 s1c2+3 −s2,3 −a1c2,3 − a2c3
−s2,3c1 −s1s2,3 −c2,3 a1s2,3 + a2s3
−s1 c1 0 0

0 0 0 1

dh11 dh12 dh13 px
dh21 dh22 dh23 py
dh31 dh32 dh33 pz

0 0 0 1

 = 3
6DH, (2.36)

15

2. Theory

where ci = cos(θi), likewise si = sin(θi), in case of a suffix with the structure i, j, it
corresponds to θi + θj inside the trigonometric function. The relationship can then
be written as

a3 = −a1 cos (θ2 + θ3)− a2 cos (θ3) + px cos (θ1) cos (θ2 + θ3)
+py sin (θ1) cos (θ2 + θ3)− pz sin (θ2 + θ3), (2.37)

d4 = a1 sin (θ2 + θ3) + a2 sin (θ3)− px sin (θ2 + θ3) cos (θ1)
−py sin (θ1) sin (θ2 + θ3)− pz cos (θ2 + θ3), (2.38)

the first can be solved for sin(θ2 + θ3) and the second for cos(θ2 + θ3), by using the
common c1px + s1 + y − a1 term:

s(2,3) = −pz(a2c3 + a3) + (a2s3)− d4)(−a1 + pxc1 + pys1)
p2
z + (−a1 + pxc1 + pys1)2 , (2.39)

c2,3 = pz(a2s(3) − d4)− (a2c3 + a3)(−a1 + pxc1 + pys(1))
p2
z + (−a1 + pxc1 + pys1)2 , (2.40)

finally the common denominator is used to construct one tan(θ2 + θ3):

θ2 + θ3 = atan2 (a, b), where (2.41)

a = pz (−a2 cos (θ3)− a3) + (a2 sin (θ3)− d4) (−a1 + px cos (θ1) + py sin (θ1))
and

b = pz (a2 sin (θ3)− d4)− (a2 cos (θ3) + a3) (−a1 + px cos (θ1) + py sin (θ1))

Seen in Equation 2.41, Axis 2 is direct dependent on both axis 1 and 3, However,
the opposite is not true, thus, evaluation of axis 2 is done after axis 3.

Axis 3

Since axis 2 is dependent on axis 3 and that the derivation starts with the similar
relationship as axis 1, axis 3 is derived before axis 2. From Equation 2.31, the
equalities of (1, 4), (2, 4) and (3, 4) are:

−a1 + px cos (θ1) + py sin (θ1) = a2 cos (θ2) + a3 cos (θ2 + θ3)− d4 sin (θ2 + θ3)
(2.42)

−px sin (θ1) + py cos (θ1) = 0 (2.43)
pz = −a2 sin (θ2)− a3 sin (θ2 + θ3)− d4 cos (θ2 + θ3). (2.44)

Craig [6] proposes a clever trick to eliminate θ2: square both sides of all three
equalities, subtract the lhs with the rhs, finally, add the three equations together
and set equal to zero. The end result is the relationship:

16

2. Theory

a3 cos (θ3)− d4 sin (θ3) = K, (2.45)

K = 1
2a2

(
a2

1 − 2a1px cos (θ1)− 2a1py sin (θ1)− a2
2 − a2

3 − d2
4 + p2

x + p2
y + p2

z

)
,

(2.46)

where θ3 can be derived similarly to Axis 1:

θ3 = − atan2

(
K,±

√
K2 + a2

3

)
+ atan2 (a3, d4), (2.47)

again, note the ± sign which gives two solutions.

Axis 4

The inverse orientation problem is somewhat lighter in terms of equations, Craig [6]s
procedure is followed:
Using the matrix from Equation 2.36 and equating elements (1, 3) and (3, 3) respec-
tively gives:

− sin (θ2 + θ3) = − sin (θ5) cos (θ4) (2.48)
0 = sin (θ4) sin (θ5), (2.49)

from which sin(θ4) and cos(θ4) can be derived to form:

θ4 = atan2 (0, sin (θ2 + θ3)). (2.50)

Though one has to be careful: there is singularity at sin(θ5) = 0, this happens at the
pose where joint 4 and 6 rotates around the same axis, this alters the DH-matrices
of the joints, giving them different behavior than what has been modelled. This is
in most applications(that includes this thesis) unwanted [6], ABB Robots avoids a
singularity at all costs and stops if a singularity has been hit.

Axis 5
0
4DH

−1 0
6DH = 4

6DH, (2.51)

which gives

0
4DH

−1

dh11 dh12 dh13 px
dh21 dh22 dh23 py
dh31 dh32 dh33 pz

0 0 0 1

 = 4
6DH, (2.52)

and as for axis 4, equate elements (1, 3) and (3, 3) and solve for θ5 results in:

θ5 = atan2 (sin (θ2 + θ3) cos (θ4),− cos (θ2 + θ3)). (2.53)

17

2. Theory

Axis 6

Finally, by using the DH matrix between frame 5 and 6 gives:

0
5DH

−1 0
6DH = 5

6DH, (2.54)

which gives

0
5DH

−1

dh11 dh12 dh13 px
dh21 dh22 dh23 py
dh31 dh32 dh33 pz

0 0 0 1

 = 5
6DH, (2.55)

this time, equate elements (1, 1) and (3, 1) and solve for θ6 results in:

θ6 = atan2 (a, b) (2.56)
a = (sin (θ1) cos (θ4)− sin (θ4) cos (θ1) cos (θ2 + θ3) (2.57)

b = sin (θ1) sin (θ4) cos (θ5)− sin (θ5) sin (θ2 + θ3) cos (θ1) (2.58)
+ cos (θ1) cos (θ4) cos (θ5) cos (θ2 + θ3)).

2.7.2.1 Processing

This could be the finish line, apologies reader, stopping here is like cooking dinner
without doing the dishes. Before this section can be left in peace, all configurations
need to be found and the desired point to reach p, must be processed.

As noted in Equation 2.34, the ± contributes to two alternative configurations: θ1
and θ′1, the same applies to θ3 in Equation 2.47. Now, one has four solutions, it does
not stop here, since the WCP is a spherical joint, axis 4,5 and 6 can be twisted such
that the end position is still the same. This contributes to one additional configura-
tion for each of the original four, giving a total of eight. To twist the spherical joint
θ′4 = θ4 + π, θ′5 = −θ5 and θ′6 = θ6 + π. As described in subsection 2.2.1, not all of
these configurations are valid because of physical limitations of the axes.

The inverse kinematics would not have been possible without some simplifications
made, now the price of that must be paid: The desired end point p where the TCP
is desired to be positioned must be pre-processed before the actual inverse kinematic
computation can take place. There is one offset in each end of the manipulator, the
offset from the base to the imaginary position of axis 1 and the offset from the TCP
to the WCP. Additionally, as noted in Figure 2.3, the robot’s default position is
through the floor, most robots are not designed like this, neither are the IRB 6700-
175/3.05. Axis 2’s actual 0 position is offset by −π

2 , hence all the true position,
denoted by ∗, is θ∗2 = θ2 − π

2 .

18

2. Theory

2.8 Linear programming (LP)
Linear programming (LP) is the art of formulating a problem using linear expres-
sions and finding the optimum solution. Combining linear continuous relationships
gives a convex set of solutions, hence the local optimum will be the global opti-
mum [15]. A convex solution set is a solution set where no local optimum exists.
There are a couple of different numerical, iterative algorithms to find the global
optimum, whereas simplex is one of the most common.

LPs can be presented with different notations, to complicate things, the naming
of each form differs from author to author. However, the standard form is defined
by [16] as

min cTx

s.t. Ax = b

x ≥ 0,

where x is the column vector of variables, A a matrix of constants, b a column vector
of constants and c a column vector of constants.

2.8.1 Mixed integer linear programming (MILP)
Linear expressions are sometimes limiting problem definitions heavily, some prob-
lems might not be formulated at all, a typical example is boolean(true or false)
constraints. By introducing binary and integer values, a greater variety of prob-
lems may be formulated, producing a mixed integer linear programming (MILP)
problem [17]. A MILP problem is very similar to the standard LP problem in its
notation, though the mixture of discrete and linear variables summons a completely
different type of solution set that rarely is convex. The non-convex solution set
limits the strength of classical LP solving methods, though there are various algo-
rithms for finding a solution or an approximation. One simple approximation is to
relax the MILP problem, solving it as an ordinary LP, when a solution is found,
the closest integer solution is chosen, this does not guarantee optimality though.
Modern MILP solvers combines many methods to find the optimal solution, though
if the solution space is complex and has local optimums, the solution might not be
found in polynomial time, which is often denoted as a NP-hard problem [17].

19

2. Theory

20

3
Methodology

The approach to the problem is generic, such that only minor modifications and
extensions are needed to fit a broad type of single robot cells with a SafeMove
configuration. However, focus has been put on a specific single robot cell with a
simplified pick and place operation using one trajectory without waiting times.

The algorithm proposed in this thesis consist of two phases; a preparatory and an
optimizing phase. The former phase utilizes RobotStudio to collect data about the
safety configuration, brake distances and the programmed trajectory. The latter is
fed with the programmed trajectory, with the objective to reduce maximum TCP
velocity. The outcome is a positional trajectory similar to the original but with an
altered time profile, together with a defined brake margin for each boundary of the
safety zone.

3.1 Preparatory phase
Mainly, this algorithm is a final virtual step when the virtual cell configuration and
robot trajectory is considered done. The objective is to collect data about the main-
trajectory built by the cell engineer and to explore the brake distances of the safety
configuration. Finally, presenting the result to the engineer. This phase has been
implemented in RobotStudio as a .NET framework C# add-in using the publicly
available RobotStudio API.

3.1.1 Velocity and cycle time
The robot trajectory is altered with a number of velocity offsets decided by the user,
typically three to five steps, each with an offset of 25% is applicable. Each velocity
offset is simulated meanwhile poses, maximum TCP velocity and total time (to be
the cycle time) is recorded. Angular velocity and angular acceleration is numerically
differentiated using forward differentiation. This approach has been chosen mainly
to fit the optimizing phase as much as possible where angular positions are the only
input-output data. TCP velocity data is produced by feeding the angular velocity
of each pose into the forward kinematics matrices.

3.1.2 Zone Definition
The SafeZone is defined by a number of finite-planes with shared intersection vectors.
A finite-plane is a normal 3d-plane limited to its two orthogonal spanning vectors va

21

3. Methodology

and vb(orthogonality: va • vb = 0) and their intersection point in the 3d-space. The
orthogonality of va and vb gives the finite-plane a rectangular shape. The planes
are put togeather such that all normal’s positive directions is out from the zone,
this eases the classification of 3d points as described in section subsection 3.1.3. To
create an ’ordinary’ fence with a base on the floor, only planes perpendicular to the
xy − plane is allowed, However, this condition is not crucial for the algorithm, but
an adjustment to fit the SafeMove configuration.

3.1.3 Collision poses

By discretizing each joint’s range by a certain resolution r, a discrete joint space
with the same dimension as the number of joints is achieved. By exploring the joint
space using forward kinematics and collision detection, all poses in the joint space
are evaluated and collision poses stored. Since each joint adds a new dimension to
the joint space, the number of poses to verify n, grows exponentially with each new
joint

n = j1

r

j2

r
...
jN
r
, (3.1)

up to joint N . The algorithm has been restricted to the first three positional joints
to limit number of collisions to verify.

Collision detection

By attaching a sphere representing the tool to the TCP, all valid collision poses are
filtered out using the following evaluation process:

1. For each pose, compute the end TCP position by forward kinematics as de-
scribed in section 2.6.

2. Neglect the pose if the TCP position is outside of the safe zone.
3. Using sphere-plane collision detection as in subsection 2.5.2, if there is a col-

lision, save the pose.
This is very much how SafeMove determines during live-supervision if the robot in
the discrete time step is colliding or not as described in section 2.4

3.1.4 Violating trajectories

For each collision pose, two zone violating trajectories are created with the purpose
to find the trajectory that gives the longest stopping distance. One trajectory is
linear, parallel to the collided safe-zone plane’s normal. The other trajectory is
joint-based, which only moves axis 1. This since according to [2], axis 1 has the
longer stopping distances than joint 2 and 3, also, single joint movements are easy
to generate without to consider different robot configurations. Mixing these two
types of trajectories, covers both the testcases described in [2], and more complex
mutli-axis movements.

22

3. Methodology

Linear trajectories

Linear trajectories are complex, mainly since the robot cannot change configuration
meanwhile travelling a linear trajectory as discussed in subsection 2.2.1. To create
a trajectory that is valid and as long as possible (longer possible acceleration dis-
tance), the start and endpoints are iteratively found in a n-step algorithm. First, the
collision pose is converted to a TCP point using forward kinematics subsection 2.6.2.
Then the process for both the end and start positions is as follows:

1. Find the normal to the plane collided with.
2. If number of steps taken is smaller than n, continue, else end.
3. Take a x-long step in the direction of the normal
4. If all of the below is fulfilled, save the new position, increase x by 50% and

jump to step 2.
(a) Use inverse kinematics (described in subsection 2.7.2), is the point reach-

able?
(b) Is the configuration compatible with the collision point?
(c) if x < 0: is the point inside the safe zone?

5. If not fulfilled, decrease x by 50%, jump to step 2.

Rotational trajectories, joint 1

Joint-wise trajectories are more natural, less abstract movements, as long as the
joint is within its movement range the position is reachable and compatible. The
algorithm to find a start and end pose here is done in a similar fashion to the linear
trajectory:

1. move joint 1 a π
8 -long step

2. using forward kinematics, calculate the TCP position and verify if it is outside
or inside the zone
(a) when finding a start pose and if the TCP is outside the zone x := −x
(b) when fining the end pose and if the TCP is inside the zone x := −x

3. If number of steps taken is smaller than n, continue, else end.
4. Move joint 1 a x-long step
5. If the new position is inside joint limits and less than π, save the value and

increase step length by 50% and jump to step 3.
6. else, decrease step length by 50% and jump to step 3.

Collision supervision

For each individual velocity step, brake times and brake distances are recorded. By
using the maximum TCP velocity achieved in subsection 3.1.1 all collision trajec-
tories are specified with that velocity. This guarantees that the TCP velocity is
lower or at what has been configured, hence there will be scenarios where the TCP
velocity is not reached.

To determine the brake distance and time at a collision point, the modified VC
described in subsection 2.3.1 is used. To save the data exactly when at the collision
pose, collision supervision is used at the virtual boundary. For each zone boundary,

23

3. Methodology

only the value with the worst brake distance in terms of how much the boundary
was violated is kept. The total violation distance d is is computed by

d = |proje,P |+ r, (3.2)

where e is the end TCP point for the stop pose, P is the zone boundary plane. The
sphere’s radius r is also accounted for since that is what collided with the plane, not
the TCP.

3.1.5 Cycle time, brake margins
At the end of phase one, the designer is presented by a figure with cycle times on
the x-axis and the total brake-margin on the y-axis, an illustration is presented
in Figure 3.1. The cell engineer can then either run the approximation procedure
again with different velocity steps or choose a cycle time that is acceptable with the
related fence distance and proceed with the velocity optimization to decrease the
fence margin additionally.

15 20 25 30 35 40 45 50
cycle time [s]

2.6

2.8

3.0

3.2

3.4

3.6

 b
ra

ke
 m

ar
gi

n
[m

]

velocity (120%)

velocity (110%)

velocity (100%)

velocity (90%)

velocity (80%)

Brake margin related to cycle time

Figure 3.1: An illustration of how the cycle time and brake margin is displayed to
the engineer. Where the max brake distance out of each zone boundary has been
summed and the total is shown on the y-axis.

3.2 Optimizing phase
The input and output data from the optimizer is a set of poses. To achieve angu-
lar velocity and angular acceleration the poses are numerically differentiated using
two-point forward differentiation. This adds noise to the data in the first and last
value. To eliminate these artifacts: still positions are copied to the beginning and
end of the recording, which makes sure that the initial and final velocities are zero.

The optimizing phase has been implemented in C# using the linear solving library
from Google Operations Research tool [18]. With the vision to one day integrate the

24

3. Methodology

two phases of this algorithm into one complete tool. The MILP solver used with the
linear solving library is the publicly available open source solver COIN-OR branch
and cut [19].

3.2.1 Trajectory optimization
By feeding the trajectory into the optimizer a new position profile can be built by
adjusting the time between each target, but not the position order. This optimiza-
tion is inspired by [4], which has shown good trajectory optimization results using
a nonlinear optimization. This approach instead tries to mimic the problem formu-
lation using a discrete up sampling technique to create new data points in-between
the originals to create slack. The optimizer now has the freedom to decide when
a certain position is reached. The order where the poses are passed through is not
changed. Also, stand-still duplicates, where the same pose is present in two adjacent
time steps, are identified and the doublette removed. Also joint angles are offset 2π
such that all angle positions are strictly positive. When the optimization is complete
a decimation process is performed such that the original resolution is preserved.

Constants

Number of unique targets are defined as T , up sampling resolution R, number of
axes A and upsampled timesteps N is defined by N = R(T − 1) + 1. Cycle time ct,
is the time difference between the first and the last recorded sample.

Variables and constraints

Each axis is denoted by a ∈ [0, A). The time indices k ranges k ∈ [0, N), each pose
has an index t, where t ∈ [0, T). a, k, t ∈ Z. Each timestep is separated by ∆ = ct

N

Each angular position recorded is stored in

βa,t. (3.3)

The robot pose is defined by its angular position in each joint a and time k

θa,k, (3.4)

angular velocity is directly related to angular position, derived in discrete time:

ωa,k = θa,k+1 − θa,k
∆ . (3.5)

The same relationship is created between angular velocity and angular acceleration:

αa,k = ωa,k+1 − ωa,k
∆ . (3.6)

To connect each pose with a certain time instance the binary variable pt,k is in-
troduced. A second binary variable qt,k with the same dimensions as p is used
to indicate a travel between two poses. The relationship between q and p can be
described as

25

3. Methodology

qt,k = pt,k−1 ∧ pt,k, (3.7)
which translates to the linear constraints

qt,k ≥ pt,k−1 + pt,k − 1∀t, k > 0, (3.8)
and

qt,k ≤ pt,k−1∀t, k > 0 (3.9)

qt,k ≤ pt,k∀t, k. (3.10)
The travel-between targets variable q, constrains θ to have a value between the
previous target βa,t and the next target βa,t+1, described by

θa,k ≤ βa,t+1C + βa,t(1− C) +M (3.11)
θa,k ≥ βa,t+1(1− C) + βa,t(C)−M (3.12)

∀k, a, t < T, (3.13)

where M is a large penalty constant and C = max{sign{(βt+1 − βt}, 0}, this is not
linear, but allowed since β is constant.

To ensure that only one pose is used at one time instance the following constraint
is used

N∑
k

pt,k = 1 ∀t, (3.14)

further each pose has to be used at least once, which

T∑
t

pt,k ≥ 1 ∀k (3.15)

ensures.
Finally, θ is constrained by p and the travel-between targets variable q in a upper
bound, for each a, t and k

θa,k ≤ βa,t +M(1− pt,k + qt,k)∀a, t, k, (3.16)

and a lower bound

θa,k ≥ βa,t −M(1− pt,k + qt,k)∀a, t, k. (3.17)

Objectives

Two separate objective functions are proposed, with focus on angular acceleration
and velocity. In both objectives presented, the absolute value is desired, to achieve
the absolute value, a new variable with only positive values is introduced. Then
a lower bound can be put on the variable such that it has to be greater than the
original variable and the inverse of the original variable. Since minimization is used,

26

3. Methodology

the lack of an upper bound is not a problem.

Formulating TCP velocity using angular velocity and forward kinematics was not
possible since forward kinematics includes trigonometric functions, which is not
linear. Thus,a other ways much desired TCP velocity objective has been neglected
in this thesis.

Minimal summed angular acceleration

Let’s use γa,k ∈ (0,∞), a linear representation of |αa,k|. The objective function can
then be formulated as

min
A∑
a

N∑
k

γa,k, (3.18)

where

γa,k ≥ αa,k (3.19)

and
γa,k ≥ −αa,k. (3.20)

Minimal top angular velocity

Let’s introduce ωmax ∈ (0,∞), a linear representation of max(|ωt,k|)∀t, k.

min ωmax, (3.21)

where

ωmax ≥ αa,k∀a, k (3.22)

and
ωmax ≥ −αa,k∀a, k. (3.23)

The downside with the angular velocity objective is that it only targets the maximum
value, the rest will not be affected. Combining the two objectives with a certain
weight to find a good balance between them is an option if the angular velocity
objective provides in other terms good results.

3.2.2 Trajectory generation
Since the output from the velocity optimization is joint positions in discrete time
these are directly programmed as joint targets, no TCP is specified, instead the time
between each target is specified as the original sampling frequency that the poses
where collected with initially. This has a consequence; the new trajectory is almost
impossible to alter if a design change is wanted. The original trajectory has to be
kept.

27

3. Methodology

3.2.3 A final simulation
Finally, a repeated run with the new trajectory to verify that cycle-time is met
and to achieve the new top-velocity. This top-velocity is fed a last time to the
violating trajectories method and a final run of all trajectories is performed as in
subsection 3.1.4. Now the brake distance for each safety boundary is known.

3.2.4 Fence generation
When the brake distance has been found, the final fence position is desired. It is
assumed that the fence geometry complexity is identical to the safety boundaries,
hence have the same number of vertices. This assumption is restrictive but Using the
brake distance for each boundary, a copy of the boundary is generated and offset by
the brake distance with the technique described in Equation 2.5.1. When the planes
have the right positions, an intersection vertex between each neighboring plane is
desired such that the fence geometry can be defined. The intersection vertices are
created as described in Equation 2.5.1, where each vertex is positioned on the floor
of the cell, thus, the z-value of each vertex is known.

28

4
Results

The preparatory phase contains several design variables; desired velocity steps to
analyze, number of joints to discretize and with what resolution, finally the step
length and iterations when generating violation trajectories. Values are provided
that has given reasonable results, though a complete test of how much each variable
affect the end result has not been evaluated. The same is valid for the only design
parameter in the optimizing phase: the up sampling resolution.

4.1 Preparatory phase
A comparison of brake times has been made to verify how the results comply com-
pared with the values provided by ABB in [2]. Also, the relationship between cycle
time and the brake distance estimation has been analyzed to see what the relation-
ship looks like for a typical cell.

4.1.1 Brake time and distance
Two test scenarios has been setup to verify and compare the preparatory phases
brake distances with those specified by ABB using standard scenarios [2]. Both sce-
narios were carried out in the same setup, illustrated in Figure 4.1. For comparison,
a joint 1-trajectory mimicing that scenario has been created presented in its raw
RAPID form in the appendix, referred to as scenario 1. That scenario is inspired
by the one presented by Björn in [3](named scenario 3), since Björn presents similar
results when comparing with [2]. The preparatory phase uses a safe zone to find
braking distances, scenario 2 is introduced, where a safe zone is configured such
that collision positions will be found in points where the trajectory of scenario 1
passes through.

The hypothesis is that these scenarios should give similar brake-distances. To ease
the comparison, the brake-distance algorithm has been configured to not convert
brake angles into brake poses and then into positions but keep the brake angles as
is. Both scenarios have been logged in the exact same way.
The result in Figure 4.2 shows an angular brake distance and brake time, greater
for scenario 2 than for scenario 1. Hence the proposed algorithm finds trajecto-
ries that has longer brake distances for velocities lower than maximum. Note that
the behavior for category 1 brake distances in [2] indicates, that for low velocities,
extension zone 0 gives longer brake times and angular brake distances. If the same

29

4. Results

Figure 4.1: The robot cell where two brake distances scenarios where set up. The
translucent black border is the safe zone and the yellow border around the cell is
the generated fence.

behavior is present at category 0 stops, that might explain the longer brake dis-
tances found by the algorithm. Also note that the numbers in [2] differs greatly
from what has been found here. For the IRB 6700-175/3.05, axis 1 category 0 stop
with maximum payload and velocity the brake time is 0.730 s compared to 0.280 s in
Figure 4.2 for scenario 1. Comparing the angular brake distance for axis 1 0.714 rad
with 0.330 rad in scenario 1, also indicates a great difference in values. These dif-
ferences might be the result of a perfect simulation world without delays and with
optimal brakes and motors.

30

4. Results

1000 2000 3000 4000 5000 6000 7000
velocity specification [mm/s]

0.05

0.10

0.15

0.20

0.25

0.30

m
ax

 b
ra

ke
 ti

m
e

[s
]

Axis 1 brake scenarios

1000 2000 3000 4000 5000 6000 7000
velocity specification [mm/s]

0.00

0.05

0.10

0.15

0.20

0.25

m
ax

 a
ng

ul
ar

 b
ra

ke
 d

ist
an

ce
 [r

ad
] scenario 1, t0

scenario 1, t175
scenario 2, t0
scenario 2, t175

Figure 4.2: Two scenarios with similar setups tested for different velocities and
two payloads: 0 kg payload denoted t0 and 175 kg payload denoted t175.

31

4. Results

4.1.2 Cycle time and trajectory velocities
A specific virtual robot cell with a pick and place operation trajectory and an accom-
panied safe move configuration is used to see what the relationship between cycle
time and brake distances are. The cell is shown in Figure 4.3. The relationship
graph is shown in Figure 4.4. Even though brake distance out of the virtual safe
zone is what is of most importance, it is also interesting to see that brake time very
much follows the brake distance.

Figure 4.3: A typical pick and place cell with safe move boundaries in red, the
yellow dashed lines trajectories and the blobs represent found collision poses

4.2 Optimizing phase
The model proposed in subsection 3.2.1 is used to optimize a recorded robot trajec-
tory using the two different objectives proposed, minimize the summed acceleration
and minimize the highest angular velocity. [4] shows a relationship between angular
velocity and minimized acceleration. If that relationship can be found here as well
it is desired to know if that also lowers TCP velocity.

4.2.1 Minimize acceleration
The same objective was used for two identical trajectories set with different TCP
velocities, 600mm/s, shown in Figure 4.5 and 1200mm/s shown in Figure 4.6, the

32

4. Results

6 8 10 12 14 16
cycle time [s]

0.70

0.75

0.80

0.85

0.90
 b

ra
ke

 d
ist

an
ce

 [m
]

velocity (50%)

velocity (75%)

velocity (100%)

velocity (125%)

velocity (150%)

0.200

0.205

0.210

0.215

0.220

0.225

0.230

0.235

0.240

 b
ra

ke
 ti

m
e

[s
]

velocity (50%)

velocity (75%)

velocity (100%)

velocity (125%)

velocity (150%)

Cycle time and stopping behaviour
brake distance
brake time

Figure 4.4: A test run with the velocity settings 50%, 75% 100% 125% and 150%
for a given trajectory with a velocity of v2000, representing 100% on all targets
using the IRB 6700-175/3.05 and the safezone presented in section subsection 4.1.2.
Collision poses found using 0.1 rad discretization resolution

total summed acceleration is lower for both trials, so is the top angular velocity
However, not the TCP trajectory, even though it has been somewhat altered, top
TCP velocity is unchanged.

4.2.2 Minimize max angular velocity
Minimization of max angular velocity as the only objective function did not give
any feasible results. Since the objective function only penalizes the very top value
of the objective, the solver never converged towards a feasible solution but jumped
back and forth between different decision trees. Finally, a result was presented that
was fuzzy with huge angular accelerations.

4.2.3 Comparison
Since the whole concept of optimizing trajectories was inspired from the nonlinear
model presented in [4], it is of big interest to compare the linear optimization model
in this thesis with the original. However, the model provided with this thesis and
using the solver Coin-or branch and cut [19] ran for 52 hours with the very same
dataset as used in [4], without finding a single feasible solution.

33

4. Results

1

0

1

ra
d

Position Position

0.5

0.0

0.5

1.0

ra
d/

s

Velocity, max: 0.928 Velocity, max: 0.6529

1

0

1

2

ra
d/

s2

Acceleration, sum: 11.661 Acceleration, sum: 9.087

0 5 10 15 20
s

0.0

0.5

1.0

m
/s

TCP velocity

0 5 10 15 20
s

TCP velocity

Figure 4.5: Sample time 0.5 s, trajectory velocity set to 600mm/s. The left column
is the original recorded trajectory meanwhile the right column is the new optimized
trajectory. 3763 variables, 28057 constraints, solved in 22403ms

In general,the performance of the MILP model is far from satisfying, despite that the
optimizer is fed with an initial solution, it is very slow at finding a feasible solution.
The model description definitely qualifies as a NP-hard problem, although it has
been shown for this trajectory with different velocity settings that lower angular
velocity does not imply lower TCP velocity.

34

4. Results

1

0

1

ra
d

Position Position

2

1

0

1

ra
d/

s

Velocity, max: 2.1334 Velocity, max: 1.4011

2.5

0.0

2.5

5.0

7.5

ra
d/

s2

Acceleration, sum: 22.934 Acceleration, sum: 16.99

0 2 4 6 8 10
s

0.0

0.5

1.0

m
/s

TCP velocity

0 2 4 6 8 10
s

TCP velocity

Figure 4.6: Sample time 0.5 s, trajectory velocity set to 1200mm/s. The left
column is the original recorded trajectory meanwhile the right column is the new
optimized trajectory. 2404 variables, 19434 constraints, solved in 17243ms

35

4. Results

36

5
Conclusion

The search for a method to describe cell margins and accompanied cycle-time in a
industrial single-robot cell equipped with SafeMove has been successful. The first
phase of the algorithm has been integrated into RobotStudio, where it seamlessly
collects data about the configuration and trajectories, analyzes and presents cycle
times and brake distances for different velocity settings. This algorithm makes it
possible for cell engineers to directly analyze and see what tradeoff between cycle
time and factory floor area in terms of brake distances that are made. As a bonus,
when a desired cycle time is found, one can choose to parse the robot trajectory to
the second phase, which minimizes the total acceleration in the trajectory, and the
maximum angular velocity, just as [4] has shown. However, for the tested velocities
and trajectories max TCP velocity was not lowered and the brake distance could
therefore not be decreased.

This thesis has shown that brake distances can with simple algorithms be better
approximated than using the standard tabular values. To be more versatile to a
greater varieties of robot cells the algorithm needs to be expanded to cover collisions
with other geometries on the robot than the TCP such as the upper elbow on the
robot close to axis 3. The optimizing phase shows a guidance that simplifying
a problem into an integer linear problem neither increase computation time nor
improves the result.

37

5. Conclusion

38

Bibliography

[1] ISO ISO. 10218-2: 2011: Robots and robotic devices–safety requirements for
industrial robots–part 2: Robot systems and integration. Geneva, Switzerland:
International Organization for Standardization, 2011.

[2] ABB Robotics. Robot stopping distances according to iso 10218-1. Document
ID: 3HAC048645-001, http://search.abb.com/library/Download.aspx?
DocumentID=3HAC048645-001&LanguageCode=en&DocumentPartId=&Action=
Launch, 2017.

[3] Björn Lindqvist. Multi-axis industrial robot braking distance measurements:
For risk assessments with virtual safety zones on industrial robots. Master’s
Thesis at University West, Department of Engineering Science, 2017.

[4] Sarmad Riazi, Kristofer Bengtsson, Rainer Bischoff, Andreas Aurnhammer, Os-
kar Wigström, and Bengt Lennartson. Energy and peak-power optimization of
existing time-optimal robot trajectories. In Automation Science and Engineer-
ing (CASE), 2016 IEEE International Conference on, pages 321–327. IEEE,
2016.

[5] ABB Robotics. Technical reference manual - rapid instructions, functions and
data types. Document ID: 33HAC050917-001 Revision: G, 2018.

[6] John J Craig. Introduction to robotics: mechanics and control, volume 3. Pear-
son/Prentice Hall Upper Saddle River, NJ, USA:, 2005.

[7] Realistic Robot Simulation II. In VRC-Interface Specification Version 1.0,
pages 1–2. The Steering Committee of The World Congress in Computer Sci-
ence, Computer Engineering and Applied Computing (WorldComp), VRC-
Specification-Maintenance Management, 2001.

[8] ABB Robotics. Applicationmanualfunctionalsafetyand safemove2. Document
ID:3HAC052610-001 Revision: G, 2018.

[9] Robert A. Adams and Christopher Essex. Calculus: a complete course. Pearson,
Toronto, 8. edition, 2013.

[10] Eric W. Weisstein. "plane-plane intersection.". From MathWorld–
A Wolfram Web Resource. http://mathworld.wolfram.com/
Plane-PlaneIntersection.html, 2018.

[11] Christer Ericson. Real-time collision detection. CRC Press, 2004.
[12] Jorge Angeles. Fundamentals of robotic mechanical systems, volume 2. Springer,

2002.
[13] Adrian-Florin Nicolescu, Florentin-Marian Ilie, and Tudor-George Alexandru.

Forward and inverse kinematics study of industrial robots taking into account
constructive and functional parameter’s modeling. Proceedings in Manufactur-
ing Systems, 10(4):157, 2015.

39

http://search.abb.com/library/Download.aspx?DocumentID=3HAC048645-001&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=3HAC048645-001&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=3HAC048645-001&LanguageCode=en&DocumentPartId=&Action=Launch
http://mathworld.wolfram.com/Plane-PlaneIntersection.html
http://mathworld.wolfram.com/Plane-PlaneIntersection.html

Bibliography

[14] O Certik et al. Sympy python library for symbolic mathematics, 2008.
[15] George Dantzig. Linear programming and extensions. Princeton university

press, 2016.
[16] Howard Karloff. Linear programming. Springer Science & Business Media,

2008.
[17] Frédérico Della Croce. Mixed integer linear programming models for combina-

torial optimization problems, 2014.
[18] Google Inc. Google operations research tool. https://developers.google.

com/optimization/, 2018.
[19] John Forrest. Cbc (coin-or branch and cut) open-source mixed integer pro-

gramming solver. https://projects.coin-or.org/Cbc, 2018.

40

https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://projects.coin-or.org/Cbc

A
Appendix

• Robotstudio stations, RAPID trajectories and recorded trajectories published
at: github.com/ohenriksson/MastersThesisData

• Symbolic kinematic solver, forward kinematics and brake distance plotting :
github.com/ohenriksson/python-robot-kinematics

A.1 Scenario based brake test
where vmax is replaced with [vel, 5000, 5000, 5000], where the desired velocity vel
is defined in mm/s.

A.1.1 Scenario 1 movements
Also available at github.com/ohenriksson/MastersThesisData/scenario1.RAPID

1 CONST robtarget Target_10:=[[2650.778985035,-1514.394022891,665.53670734],
[0.237207259,0.063532185,0.962557826,-0.114798994],[-1,0,-1,0],[9E+09,9E+09,9
E+09,9E+09,9E+09,9E+09]];

2 CONST robtarget Target_20:=[[3044.708925288,-223.083043607,665.53670734],
[0.256719524,-0.150874772,0.952780515,-0.059507803],[-1,0,-1,0],[9E+09,9E
+09,9E+09,9E+09,9E+09,9E+09]];

3 CONST robtarget Target_30:=[[2830.995781706,1142.576635519,665.53670734],
[0.263526219,-0.362657835,0.893886571,0.000156031],[0,0,-1,0],[9E+09,9E+09,9E
+09,9E+09,9E+09,9E+09]];

4 CONST robtarget Target_40:=[[1941.519398723,2355.954351946,665.53670734],
[0.255362535,-0.571733158,0.776965317,0.065085085],[0,0,-1,0],[9E+09,9E+09,9E
+09,9E+09,9E+09,9E+09]];

5 CONST robtarget Target_50:=[[758.480316395,2957.148304315,665.53670734],
[0.235112529,-0.726933226,0.634130896,0.119030212],[0,0,-1,0],[9E+09,9E+09,9E
+09,9E+09,9E+09,9E+09]];

6 CONST robtarget Target_60:=[[-1267.010409106,2777.53543763,665.53670734],
[0.182049336,-0.896624462,0.355834908,0.190536432],[1,0,-1,0],[9E+09,9E+09,9E
+09,9E+09,9E+09,9E+09]];

7 CONST robtarget Target_70:=[[-2708.612226105,1408.345942114,665.53670734],
[0.110083745,-0.963626329,0.044477023,0.239431956],[1,0,-1,0],[9E+09,9E+09,9E
+09,9E+09,9E+09,9E+09]];

8 CONST robtarget Target_80:=[[-3006.534548987,529.875919266,665.53670734],
[0.072430236,-0.959197766,-0.102438045,0.253377098],[1,0,-1,0],[9E+09,9E+09,9
E+09,9E+09,9E+09,9E+09]];

9
10 CONST jointtarget JointTarget_5

:=[[48.429291781,85,-98.742260129,0.112841515,40.027258121,-22.258237543],[9E
+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

I

github.com/ohenriksson/MastersThesisData
github.com/ohenriksson/python-robot-kinematics
github.com/ohenriksson/MastersThesisData/scenario1.RAPID

A. Appendix

11 CONST jointtarget JointTarget_6
:=[[15.425917994,85,-98.742260129,0.112841515,40.027258121,-22.258237543],[9E
+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

12 CONST jointtarget JointTarget_7
:=[[-5.037431675,85,-98.742260129,0.112841515,40.027258121,-22.258237543],[9E
+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

13 CONST jointtarget JointTarget_8
:=[[-30.266766578,85,-98.742260129,0.112841515,40.027258121,-22.258237543],[9
E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

14 CONST jointtarget JointTarget_9
:=[[-58.818282132,85,-98.742260129,0.112841515,40.027258121,-22.258237543],[9
E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

15 CONST jointtarget JointTarget_10
:=[[-77.492415908,85,-98.742260129,0.112841515,40.027258121,-22.258237543],[9
E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

16 CONST jointtarget JointTarget_11
:=[[-105.198837588,85,-98.742260129,0.112841515,40.027258121,-22.258237543],[9
E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

17
18 PROC Path_10()
19 MoveAbsJ JointTarget_1,vmax,z200,tool0\WObj:=wobj0;
20 MoveAbsJ JointTarget_2,vmax,z200,tool0\WObj:=wobj0;
21 MoveAbsJ JointTarget_3,vmax,z200,tool0\WObj:=wobj0;
22 MoveAbsJ JointTarget_4,vmax,z200,tool0\WObj:=wobj0;
23 MoveAbsJ JointTarget_5,vmax,z200,tool0\WObj:=wobj0;
24 MoveAbsJ JointTarget_6,vmax,z200,tool0\WObj:=wobj0;
25 MoveAbsJ JointTarget_7,vmax,z200,tool0\WObj:=wobj0;
26 MoveAbsJ JointTarget_8,vmax,z200,tool0\WObj:=wobj0;
27 MoveAbsJ JointTarget_9,vmax,z200,tool0\WObj:=wobj0;
28 MoveAbsJ JointTarget_10,vmax,z200,tool0\WObj:=wobj0;
29 MoveAbsJ JointTarget_11,vmax,z200,tool0\WObj:=wobj0;
30 ENDPROC

A.1.2 Scenario 2 movements
Scenario 2 is quite long, instead the whole code is available at github.com/ohenriksson/
MastersThesisData/scenario2.RAPID

A.2 Trajectory optimization
Trajectory used to optimize upon, also available at github.com/ohenriksson/
MastersThesisData/cycle-time-trajectory.RAPID

1 CONST robtarget home:=[[295.012360665,-1961.528973741,2549.551272427],
[0.503498848,0.487616868,0.566438135,-0.433435739],[-1,-1,0,0],[9E+09,9E+09,9
E+09,9E+09,9E+09,9E+09]];

2 CONST robtarget pick_appr:=[[1225.117136908,-1433.471650837,1173.632948636],
[0.028438528,-0.437587093,-0.896246668,-0.06671354],[-1,0,-1,0],[9E+09,9E
+09,9E+09,9E+09,9E+09,9E+09]];

3 CONST robtarget pick:=[[1173.225075815,-1471.482028347,1003.1900711],
[0.021718246,-0.72642022,-0.686503609,-0.023553701],[-1,0,0,0],[9E+09,9E+09,9
E+09,9E+09,9E+09,9E+09]];

II

github.com/ohenriksson/MastersThesisData/scenario2.RAPID
github.com/ohenriksson/MastersThesisData/scenario2.RAPID
github.com/ohenriksson/MastersThesisData/cycle-time-trajectory.RAPID
github.com/ohenriksson/MastersThesisData/cycle-time-trajectory.RAPID

A. Appendix

4 CONST robtarget place_appr:=[[1367.611678682,1352.581913875,970.575639752],
[0.013576519,-0.072386312,0.995149194,-0.065222558],[0,-1,0,0],[9E+09,9E+09,9
E+09,9E+09,9E+09,9E+09]];

5 CONST robtarget place:=[[1367.61201179,1352.581938252,93.612530794],
[0.059786579,-0.693245635,0.716568642,-0.048635744],[0,-1,-1,0],[9E+09,9E
+09,9E+09,9E+09,9E+09,9E+09]];

6 PROC Path_10()
7 MoveJ home,[600, 500, 5000, 1000],z100,tGripper\WObj:=wobj0;
8 MoveJ pick_appr,[600, 500, 5000, 1000],z100,tGripper\WObj:=wobj0;
9 MoveJ pick,[600, 500, 5000, 1000],z100,tGripper\WObj:=wobj0;

10 MoveJ pick_appr,[600, 500, 5000, 1000],z100,tGripper\WObj:=wobj0;
11 MoveJ place_appr,[600, 500, 5000, 1000],z100,tGripper\WObj:=wobj0;
12 MoveJ place,[600, 500, 5000, 1000],z100,tGripper\WObj:=wobj0;
13 MoveJ place_appr,[600, 500, 5000, 1000],z100,tGripper\WObj:=wobj0;
14 MoveJ home,[600, 500, 5000, 1000],z100,tGripper\WObj:=wobj0;
15 ENDPROC

A.3 Symbolic kinematic python solver
The symbolic kinematic solver and brake distance plotter is also available at github.
com/ohenriksson/python-robot-kinematics

1 from sympy import *
2 from sympy.abc import *
3 import mpmath
4 import numpy
5
6 mpmath.mp.pretty = True
7 init_printing(use_unicode=True)
8
9 class c(Function):

10 @classmethod
11 def eval(cls,x):
12 # return cos(x)
13 if x == pi/2: return 0
14 if x == -pi/2: return 0
15 if x == 0: return 1
16 else:
17 return cos(x)
18
19 class s(Function):
20 @classmethod
21 def eval(cls,x):
22 # return sin(x)
23 if x == pi/2: return 1
24 if x == -pi/2: return -1
25 if x == 0: return 0
26 else:
27 return sin(x)
28
29 class b(Function): #alfa
30 @classmethod
31 def eval(cls,x):
32 if x.is_Number:

III

github.com/ohenriksson/python-robot-kinematics
github.com/ohenriksson/python-robot-kinematics

A. Appendix

33 if x == 1: return -pi/2
34 elif x == 3: return -pi/2
35 elif x == 4: return pi/2
36 elif x == 5: return -pi/2
37 else: return 0
38
39 class a(Function):
40 @classmethod
41 def eval(cls,x):
42 if x.is_Number:
43 if x == 1: return Symbol(’a1’)
44 elif x == 2: return Symbol(’a2’)
45 elif x == 3: return Symbol(’a3’)
46 else: return 0
47 if x.is_String:
48 return Symbol(’a’+x)
49
50 class d(Function):
51 @classmethod
52 def eval(cls,x):
53 if x.is_Number:
54 if x == 4: return Symbol(’d4’)
55 elif x == 7: return Symbol(’d7’)
56 else: return 0
57 else: return Symbol(’d_’+str(x))
58
59 class t(Function):
60 @classmethod
61 def eval(cls,x):
62 if x.is_Number:
63 if x == 0: return 0
64 else: return Symbol(str(theta) +str(x))
65 else: return 0
66
67 def getmatrix(i, dval=0):
68 if dval == 0: dval = d(i)
69 else: dval = d(dval)
70 mat = Matrix([
71 [c(t(i)), -s(t(i)), 0, a(i-1)],
72 [s(t(i))*c(b(i-1)), c(t(i))*c(b(i-1)), -s(b(i-1)), -dval*s(b(i-1))],
73 [s(t(i))*s(b(i-1)), c(t(i))*s(b(i-1)), c(b(i-1)), dval*c(b(i-1))],
74 [0,0,0,1]
75])
76 return mat
77
78 def MyInv(matrix):
79 myinv = matrix
80 A = matrix[0:3,0:3]
81 R = matrix[0:3,3]
82 Rnew = -(A.T)*R
83 myinv[0:3,0:3] = simplify(A.T)
84 myinv[0:3,3] = Rnew
85 return myinv
86
87
88

IV

A. Appendix

89 def printall(list1,indices):
90 for x,i in zip(list1,indices):
91 str1 = ’\\begin{equation}␣\prescript{’ + i[0] +’}{’ +i[1] +’}{DH}␣=␣’
92 str2 = ’\end{equation}’
93 print(str1 + latex(x) +str2)
94 pprint(x)
95
96 def createPosMatrix():
97 x, y, z = symbols(’p_x␣p_y␣p_z’)
98 Pmat = eye(4)
99 Pmat[0:3,3] = Matrix([[x,y,z]]).T

100 return Pmat
101
102 def solveTheta1(T01, T16):
103 print(’-----theta1-------’)
104 leftM = MyInv(T01)*createPosMatrix()
105 py = T16.row(1).col(3)[0]
106 temp1 = Eq(leftM.row(1).col(3)[0],py)
107 theta1 = solve(temp1,t(1))
108 print(latex(theta1[0]))
109 print(latex(theta1[1]))
110
111 def solveTheta3(T01, T16):
112 p_x, p_y, p_z = symbols(’p_x␣p_y␣p_z’)
113 print(’-----theta3-------’)
114 leftM = MyInv(T01)*createPosMatrix()
115 px = T16.row(0).col(3)[0]
116 py = T16.row(1).col(3)[0]
117 pz = T16.row(2).col(3)[0]
118 l14 = leftM.row(0).col(3)[0]
119 l24 = leftM.row(1).col(3)[0]
120 l34 = leftM.row(2).col(3)[0]
121
122 #the solver could not solve it with a on the wrong side of the equal sign(

probably because of the squaring later)
123 l14 = l14 -a(1)
124 px = px - a(1)
125
126 eqx = simplify(Eq(l14,px)**2)
127 eqy = simplify(Eq(l24,py)**2)
128 eqz = simplify(Eq(l34,pz)**2)
129
130 #sadly, squaring the whole Eq did not follow through, workaround:
131 eqx = pow(l14,2)-pow(px,2)
132 eqy = pow(l24,2)-pow(py,2)
133 eqz = pow(l34,2)-pow(pz,2)
134
135 eq4 = Eq(simplify(eqx+eqy+eqz),0)
136 pprint(eq4)
137 lhs = 2*a(2) * (a(3)*c(t(3)) - d(4)*s(t(3)))
138 rhs = a(1)**2 - a(3)**2 -d(4)**2 + p_x**2 + p_y**2 -a(2)**2 + p_z**2 - 2*a(1)

*p_x*c(t(1)) - 2*a(1) *p_y *s(t(1))
139 lhs = solve(eq4,rhs)[0]
140
141 lhs = lhs/(2*a(2))
142 K = rhs/(2*a(2))

V

A. Appendix

143 # slask = solve(eq4, slask = solve(eq4, (d(4)*s(t(3))))
144 print(latex(lhs))
145 print(latex(K))
146 pprint(lhs)
147 pprint(K)
148 K = symbols(’K’)
149
150 theta3a = atan2(a(3),d(4)) - atan2(K,+sqrt(a(3)**2+d(3)**2-K**2))
151 theta3b = atan2(a(3),d(4)) - atan2(K,-sqrt(a(3)**2+d(3)**2-K**2))
152 print(latex(theta3a))
153 return theta3a
154
155
156 def solveTheta2(T03, T36):
157 p_x, p_y, p_z = symbols(’p_x␣p_y␣p_z’)
158 print(’-----theta2-------’)
159 leftM = MyInv(T03)*createPosMatrix()
160 l14 = leftM.row(0).col(3)[0]
161 r14 = T36.row(0).col(3)[0]
162 l24 = leftM.row(1).col(3)[0]
163 r24 = T36.row(1).col(3)[0]
164 eq1 = l14-r14
165 eq2 = l24-r24
166
167 denumA = c(t(1))*p_x + s(t(1))*p_y -a(1)
168 denum = p_z**2 + denumA**2
169
170 nom1 = p_z*(-a(3)-a(2)*c(t(3))) + denumA*(a(2)* s(t(3))-d(4))
171 eq1 = Eq(s(t(2)+t(3)),nom1/denum)
172 nom2 = p_z*(a(2)*s(t(3))-d(4)) - denumA*(a(3) + a(2)*c(t(3)))
173 eq2 = Eq(c(t(2)+t(3)),nom2/denum)
174
175 eq1 = (simplify(eq1))
176 eq2 = (simplify(eq2))
177 print(latex(eq1))
178 print(latex(eq2))
179 print(’---’)
180
181 EQ = Eq(t(2)+t(3),atan2(nom1,nom2))
182 print(latex(EQ))
183 pprint(EQ)
184
185 return
186 # c1px = solve(eq1,c(t(1)*p_x)))[0]
187 # c23 = solve(eq2,sin(t(2)+t(3)))[0]
188 # pprint(simplify(s23))
189 # pprint(simplify(c23))
190 # print(’---’)
191
192 # eq2b = eq2.subs(sin(t(2)+t(3)),s23)
193 # pprint(simplify(eq2b))
194 # return
195
196 # A, B = fraction(solve(eq1,c(t(2)+t(3)))[0])
197 # C, B = fraction(solve(eq2,s(t(2)+t(3)))[0])
198 # #assume z>0

VI

A. Appendix

199 # theta23 = atan2(A,C)
200 # theta2 = theta23 - t(3)
201 # pprint(theta23)
202 # print(’----’)
203 # pprint(latex(Eq(t(2)+t(3),theta23)))
204 # print(latex(Eq(t(2)+t(3),theta23)))
205 # return theta2
206
207
208 def solveTheta4(T03, T36):
209 print(’-----theta4-------’)
210 leftM = MyInv(T03)*createPosMatrix()
211 c = 2
212 l13 = leftM.row(0).col(c)[0]
213 r13 = T36.row(0).col(c)[0]
214 l33 = leftM.row(2).col(c)[0]
215 r33 = T36.row(2).col(c)[0]
216 eq1 = Eq(l13,r13)
217 eq2 = Eq(l33,r33)
218
219 print(latex(eq1))
220 print(latex(eq2))
221
222 c4 = solve(eq1, cos(t(4))*sin(t(5)))[0]
223 s4 = solve(eq2, sin(t(4))*sin(t(5)))[0]
224
225 #assume s5!=0 #singularity
226 theta4 = Eq(t(4),atan2(s4,c4))
227 pprint(theta4)
228 print(latex(theta4))
229 return theta4
230
231
232 def solveTheta5(T04, T46):
233 print(’-----theta5-------’)
234 leftM = MyInv(T04)*createPosMatrix()
235 c = 2
236 l13 = leftM.row(0).col(c)[0]
237 r13 = T46.row(0).col(c)[0]
238 l33 = leftM.row(2).col(c)[0]
239 r33 = T46.row(2).col(c)[0]
240 s5 = solve(l13-r13,sin(t(5)))[0]
241 c5 = solve(l33-r33,cos(t(5)))[0]
242 theta5 = Eq(t(5),atan2(s5,c5))
243
244 pprint(theta5)
245 print(latex(theta5))
246
247 return theta5
248
249
250 def solveTheta6(T05, T56):
251 print(’-----theta6-------’)
252 leftM = MyInv(T05)*createPosMatrix()
253 c = 0
254 l11 = leftM.row(0).col(c)[0]

VII

A. Appendix

255 r11 = T56.row(0).col(c)[0]
256 l31 = leftM.row(2).col(c)[0]
257 r31 = T56.row(2).col(c)[0]
258 c6 = solve(l11-r11,cos(t(6)))[0]
259 s6 = solve(l31-r31,sin(t(6)))[0]
260 theta6 = Eq(t(6),atan2(s6,c6))
261
262 pprint(theta6)
263 print(latex(theta6))
264 return theta6

VIII

	List of Figures
	Introduction
	The problem
	The solution

	Theory
	Anatomy of the 6-DOF decoupled manipulator
	Wrist center point (WCP)
	Tool center point (TCP)
	Frame

	Robot motion programming
	high-level motion programming of ABB robots

	RobotStudio
	Emergency stops

	SafeMove
	Rigid body transformations
	Plane
	Collision detection, sphere - plane
	The 3D frame

	Manipulator kinematics
	Denavit-Hartenberg parameters
	Forward kinematics
	Inverse kinematics

	Kinematics of IRB 6700-175/3.05
	Denavit-Hartenberg parameters
	Inverse kinematics
	Processing

	Linear programming (LP)
	Mixed integer linear programming (MILP)

	Methodology
	Preparatory phase
	Velocity and cycle time
	Zone Definition
	Collision poses
	Violating trajectories
	Cycle time, brake margins

	Optimizing phase
	Trajectory optimization
	Trajectory generation
	A final simulation
	Fence generation

	Results
	Preparatory phase
	Brake time and distance
	Cycle time and trajectory velocities

	Optimizing phase
	Minimize acceleration
	Minimize max angular velocity
	Comparison

	Conclusion
	Bibliography
	Appendix
	Scenario based brake test
	Scenario 1 movements
	Scenario 2 movements

	Trajectory optimization
	Symbolic kinematic python solver

