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Stochastic modeling using machine learning and stochastic differential equations
From the geometric Brownian motion to stock prices
OLOF JOHANSSON
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Due to the presence of (unpredictable) fluctuations in the financial market, stochas-
tic models have long been used in various financial applications. In particular, a
common application is the forecasting of a given financial time series, for exam-
ple stock prices. Stock prices are often assumed to follow a Geometric Brownian
Motion (GBM), a specific type of stochastic differential equation. Recent studies
have demonstrated promising results of using neural networks to parameterize SDEs
(referred to as a neural SDE framework). Further studies have demonstrated how
machine learning, specifically Recurrent Neural Networks (RNNS), can be used for
predicting the future values of time-dependent data. The aim of this thesis was to
investigate the possibility of combining a RNN with a neural SDE framework to
forecast stock prices. In particular, three different RNNs were used, namely a Long
Short-Term Memory (LSTM) model, an Echo State Network (ESN) and a Long-
Short Echo State Network (LS-ESN). The results of this thesis showed that the
three models considered in this thesis achieved more accurate predictions of stock
prices when compared to both a traditional LSTM model and a GBM model. This
was showed for both a single stock and also for 100 different stocks, where the latter
also was tested for different numbers of predicted time steps ahead.

Keywords: Stochastic differential equations, machine learning, stochastic modeling,
echo state networks, recurrent neural networks, financial time series
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1
Introduction

This chapter provides a brief background of this thesis, followed by the scope and
the aim. Thereafter, the related studies, as well as the limitations and the ethical
aspects, will be presented.

1.1 Background
The term stochastic comes from the Greek word stokhastikos, meaning "random"
or "chance". A stochastic model further refers to a model that aims to predict a
set of possible outcomes from some probability distribution [1]. However, in many
natural phenomena and real-world cases, events are not in essence stochastic nor
deterministic. It is rather a choice of the observer to model a phenomenon as either
stochastic or deterministic. In some cases, this choice is clear, but sometimes it is
highly unclear [1]. For example, in population models, as described in [1], variations
in large populations are often modeled as deterministic, despite it being agreed that
many random events contribute to these variations.

Stochastic models have long been incorporated in a variety of financial applications,
such as risk management, decision making in uncertain markets, asset pricing and
portfolio management [2]. One reason for their extensive use is the great amount
of (unpredictable) fluctuations that occur in financial markets (and particularly in
stock prices). As these fluctuations are caused by factors that are usually unknown,
they are often treated as stochastic processes [2]. The development of stochastic
financial models has resulted in various different applications. In particular, op-
tion price models (such as the Black-Scholes model), interest rate models (such as
the Hull-White and Cox-Ingersoll-Ross models) and multiple portfolio management
models, all of which are still being used within financial analysis [2].

When modeled as a stochastic process, the price of a stock is often assumed to
follow a Geometric Brownian Motion (GBM). The parameters of a GBM are then
estimated using historical values of the stock price [2]. However, stock prices can
change a lot over small time intervals, but the parameters in a GBM are constant.
Thus, this does not provide a sufficient representation of the true movement of stock
prices. On the other hand, the GBM has shown to provide a relatively accurate de-
scription of smaller, less complex systems [2]. Therefore, a more flexible approach
with the ability to account for the relative changes in the stock prices over short
time periods would be desired. The recent developments in machine learning have
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1. Introduction

demonstrated that neural networks are efficient and flexible for making predictions
for various applications [3]. It could therefore be interesting to investigate how such
methods could be used for stock price modeling. In particular, investigating the
possibility of using a combined framework of machine learning and stochastic mod-
els could be of interest. Moreover, as stock prices are time-dependent, historical
changes of the stock price could be valuable when considering how it could change
in the future. Therefore, it would also be desired for a model to be able to account
for historical values when making future predictions of the price of a stock. Since
Recurrent Neural Networks (RNNs) are designed to model time-dependent data and
learn from historical values, they are interesting to consider for this task [4]. One
such model is the Long Short-Term Memory (LSTM) model.

The LSTM model has shown to outperform previously developed RNNs in vari-
ous prediction tasks involving time-dependent data. It has further been widely used
in financial applications [4]. A disadvantage of the LSTM model is however that it
is computationally expensive to train and can suffer from convergence issues in the
optimization [5]. To overcome this issue, a different kind of machine learning mod-
els called Echo State Networks (ESNs) could be used. ESNs are faster to train and
have shown to be better at learning from chaotic and nonlinear data, a prominent
attribute for modeling stock prices [5]. A recent development of ESNs, presented
in [6], is the Long-Short Term Echo State Network (LS-ESN). The LS-ESN uses an
ensemble of ESNs to improve forecasting of time-dependent data.

As previously mentioned, the price of a stock can be assumed to follow a GBM, a
stochastic process that satisfies a specific type of Stochastic Differential Equation
(SDE). A recent study has shown promising results of using neural networks to
parametrize a SDE [7]. This is referred to as a neural SDE framework. Using such
a framework has further been demonstrated to yield more accurate results (than
deterministic methods) with a lower vulnerability to significant amounts of random
noise in the data [7]. Since stochastic processes by definition comprise randomness,
it could be interesting to use a neural SDE framework to parameterize stock prices.
As previously mentioned, it could further be interesting to utilize RNNs to account
for the historical data when aiming towards forecasting future stock prices. The aim
of this thesis is therefore to investigate the possibility of combining the use of RNNs
(more specifically a LSTM, an ESN and a LS-ESN) with a neural SDE framework
in order to forecast stock prices.

1.2 Scope
As previously mentioned in Section 1.1, the main objective of this thesis is to inves-
tigate whether a combined framework of recurrent neural networks and neural SDEs
can be used to make probabilistic forecasts of stock prices. Specifically, a LSTM,
ESN and LS-ESN combined with the neural SDE framework (denoted LSTM-SDE,
ESN-SDE and LS-ESN-SDE respectively) are used. In this thesis, these models are
used to obtain a probability distribution of what the possible future values the price
of a stock can be. The project was carried out during the course of six months
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(January 2022 - June 2022) and was in partial collaboration with Ortex Technolo-
gies Ltd1. This is a company that utilizes machine learning for financial modeling
and is therefore interested in the development of methods to be used for stock price
modeling. All real-world data that is being used in this project, was provided by
the company.

1.2.1 Aim
To fulfill the above presented scope, the aim of this thesis is to provide answers to
the following question:

1. Can the LSTM-SDE, ESN-SDE and LS-ESN-SDE be used to forecast
(a) a geometric Brownian motion,
(b) real-world stock prices?

1.3 Related studies
A previous study in [8] used neural networks to solve Ordinary Differential Equa-
tions (ODEs), referred to as a neural ODE approach. Similarly, a study in [7] used
Stochastic Differential Equations (SDEs) parameterized by neural networks, referred
to as neural SDEs, for the purpose of image classification. Despite being limited to
only considering images as data, the neural SDE framework in [7] was developed to
make existing models more robust against perturbations in the input data. Since
stochastic data by definition is subject to perturbations, this inspires to investigate
the use of such a framework in predictions of stochastic data.

As also mentioned in Section 1.1, a study in [9] used a similar approach for fore-
casting as used in this thesis. They used a LSTM model along with a SDE block
to produce a predictive mean and predictive variance of the target values. These
two were produced by using two additional neural networks within the SDE block.
However, with their approach, the predictive variance used in the optimization is not
actually a variance, but rather some parameter used as the variance. It is therefore
less intuitive what these values actually represent. Therefore, by instead incorpo-
rating the uncertainty of the final predictions within the model, by using the sample
mean and sample variance from several produced predictions, the predictive param-
eters are both more interpretable and also represent the actual mean and variance
from the predictions. Moreover, the work in [9] performed experiments on stock
price data, but did so only for one time step ahead and did only consider a LSTM
model as recurrent neural network. Since this model suffers from some issues as
previously mentioned in Section 1.1, it is interesting to investigate other models for
this task.

Lastly, as also mentioned in Section 1.1, a related study in [6] used a LS-ESN
1Further referred to as "the company".
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model for the task of forecasting. It was shown that the LS-ESN outperformed the
benchmark models on all of the different data sets used. It was however not tested
on stock price data and with the obtained results, it is therefore interesting to in-
vestigate the usage in the framework of this thesis.

The work presented in this thesis was inspired by the above studies, among oth-
ers, and in particular the findings of the work in [9], that combines previous studies
of the LSTM model with the neural SDE framework specifically designed to make
forecasting tasks more robust and accurate.

1.4 Limitations
As the aim of this thesis focuses on financial data, and in particular stock prices,
applications in other domains are not considered. Furthermore, the GBM is the
only stochastic process which is considered in this thesis. The reason for that is,
as mentioned in Section 1.1, due to its use for stock price modeling. Moreover,
since the stock price data that is used in this thesis is solely what is provided by
the company, the experimental results as well as the conclusions are limited for
this data specifically. Furthermore, as the results are only considered with respect
to the selected benchmark models, the evaluation of the performance is limited in
comparison to these models only.

1.5 Ethical aspects and considerations
When working with financial data, there are some ethical aspects to take into con-
sideration. First of all, algorithms in financial analysis have the risk to offset human
biases and negatively impact users of such an analysis. Moreover, due to the great
uncertainty in financial markets, the results in this thesis are not guaranteed to hold
for other stock data or for the same data in a different time period. It is there-
fore important to note that the results of this thesis are not a recommendation for
possible investments.

4



2
Theory

This chapter presents the necessary theoretical concepts involved in the methods
used in this thesis. The outline is to first define the fundamental concepts of stochas-
tic processes and stochastic differential equations and then explain the construction
of the models that are considered in this thesis.

2.1 Stochastic Processes
Stochastic processes appear in many real-world phenomena, such as the motion of
particles in physics, modeling of infectious diseases and genetics in medicine and
asset price modeling in finance [10]. It is also used to describe the noise in experi-
mental measurements influenced by external factors [11]. The following section first
defines some fundamental concepts of stochastic processes, and then presents how
these processes are analytically and numerically approached.

2.1.1 Introduction to Stochastic Processes
Let (Ω,F ,P) denote a probability space where Ω is a sample space of possible out-
comes, F is a σ-algebra and P is a probability measure. A stochastic process is a
collection of random variables defined on such a probability space and is indexed
by some set T [12]. Moreover, in this thesis, the set T is a set of (continuously
or discretely) increasing values of some time interval on R. A stochastic process
indexed by T is further denoted as X = {Xt : t ∈ T }. The random variables in a
(real-valued) stochastic process are (real-valued) variables whose values are random
samples from a probability distribution. The values of the random variables in X are
therefore (for real-valued stochastic process) defined on RN . The stochastic process
is then said to be a N -dimensional stochastic process such that Xt ∈ RN [12].

An important type of stochastic process is the Wiener process which is used to
describe various different phenomena within physics, finance and biology. Let W =
{Wt : t ∈ [0, T ]} be a stochastic process defined on a probability space (Ω,F ,P) on
the continuous time interval [0, T ] for some T > 0. Then W is a Wiener process if
it satisfies

1. W0 = 0 (with probability one),

2. for any n ≥ 2 and 0 < t1 < · · · < tn ≤ T , the (non-overlapping) increments

5



2. Theory

Wt2 −Wt1 , · · · , Wtn −Wtn−1 are independent,

3. for any 0 ≤ s < t ≤ T , the increment Wt −Ws is normally distributed with
mean 0 and variance t− s,

4. t 7→ Wt is continuous (with probability one),

then Wt is a Wiener process [12]. As the Wiener process originated from being a
model to describe a Brownian motion, it is often referred to as a Brownian motion
process, or even just a Brownian motion [12]. In the remaining of this thesis, a
Brownian motion will be referred to as a Wiener process as presented above. More-
over, in this thesis, the notation Xt will denote the value of a stochastic process at
time t and X(t) will denote the value of a time-dependent function (not necessary
stochastic) at time t.

2.1.2 Stochastic Differential Equations
Stochastic Differential Equations (SDEs) are constructed using the theory of stochas-
tic calculus and, in this thesis, Itô calculus. Before presenting the type of SDEs
considered in this thesis, the notion of an Itô integral needs to be described [13]. To
do this, first consider the function h : RN × [0, T ] −→ R for some T > 0. Then
by recalling that, for some real-valued function of time y such that y(t) ∈ RN for
t ∈ [0, T ], the Riemann integral R, for h over t ∈ [0, T ] given as

R(t) =
∫ t

0
h(x(s), s)ds, t ∈ [0, T ],

can be written as the limit of a Riemann sum as

R(T ) =
∫ T

0
h(x(t), t)dt = lim

n−→∞

n∑
k=0

h(x(t∗
k), t∗

k)(tk+1 − tk), (2.1)

where 0 = t0 < t1 · · · < tn = T is a partition of the interval [0, T ] and t∗
k ∈

[tk, tk+1] is an arbitrary element in the subinterval [tk, tk+1] of the partition for all
k ∈ {0, 1, . . . , N−1}. The value of the Riemann integral is then defined by the limit
of the Riemann sum if the upper and lower sums converge to the same value [13].

Consider instead the N -dimensional stochastic processes Y = {Yt : t ∈ [0, T ]}
and X = {Xt : t ∈ [0, T ]} and let h : RN −→ RN . Then, let Yt be the integral such
that for all t ∈ [0, T ],

Yt =
∫ t

0
h(Xs, s)dWs,

where W = {Wt : t ∈ [0, T ]} is a Brownian motion. For this case, the Riemann sum
cannot be used in Equation (2.1) as a definition of the integral Y. This is because
the Brownian motion t 7→ Wt is non-differentiable and because of the values Wt∗

k

are unbounded. Therefore, as described in [13], by instead fixing t∗
k = tk for each

tk ∈ {t0, t1, · · · , tn}, Y can be defined as the unique limit in the L2 sense, of

YT =
∫ T

0
h(Xt, t)dWt = lim

n−→∞

n−1∑
k=1

h(Xtk
, tk)(Wtk+1 −Wtk

). (2.2)

6



2. Theory

The integral equation of Y in Equation (2.2) is referred to as the Itô integral. As
described in [13], this Itô integral is also a stochastic process defined on (Ω,F ,P).
The Itô integral in Equation (2.2) will be used in defining of the type of SDEs used
in this thesis. First, let f : RN× [0, T ] −→ RN and g : RN× [0, T ] −→ RN×N . Next,
let X = {Xt : t ∈ [0, T ]} be a N -dimensional stochastic process and W = {Wt : t ∈
[0, T ]} be a N -dimensional Brownian motion. Then the integral equation

Xt = X0 +
∫ t

0
f(Xs, s)ds +

∫ t

0
g(Xs, s)dWs, t ∈ [0, T ] (2.3)

defines the Itô integral equation of Xt for t ∈ [0, T ]. The first integral in Equation
(2.3) is an ordinary Lebesgue integral and the last term is a sum of Itô integrals.
Moreover, a stochastic process described by an Itô integral equation as in Equation
(2.3) is called an Itô process [13]. The differential notation of Equation (2.3) is
written as

dXt = f(Xt, t)dt + g(Xt, t)dWt, t ∈ [0, T ]. (2.4)
The functions f and g are referred to as the drift and diffusion functions of the
Itô process Xt. When the diffusion function g only contains constant values, it is
referred to as a diffusion matrix. Moreover, [13]. The Itô integral in Equation (2.3)
is referred to as the Itô SDE of X while the notation in Equation (2.4) are usually
applied when referring to an (Itô) SDE.

The problem related to Equation (2.4) is to find its solution X given an initial
condition X0. However, in order for a unique solution to exist, some restrictions
are required for the drift and diffusion functions f and g. These are stated in the
following theorem, as according to [14].

Theorem 2.1. Let f : RN × [0, T ] −→ RN and g : RN × [0, T ] −→ RN×N , then if
there exists two constants L, C ≥ 0 such that for all t ∈ [0, T ] and for all x, y ∈ RN ,

||f(x, t)− f(y, t)|| ≤ L||x− y||, and ||g(i)(x, t)− g(i)(y, t)|| ≤ C||x− y||, (2.5)

for all i ∈ {1, . . . , N} and there exists four constants a, b, c, d ≥ 0 such that

||f(x, t)|| ≤ a + b||x||, and ||g(i)(x, t)|| ≤ c + d||x||, (2.6)

for all i ∈ {1, . . . , N}. Then, for every X0 ∈ RN , there exists a unique solution
X ∈ RN which solves the stochastic differential equation in Equation (2.4).

For the proof of Theorem 2.1, see [14]. The Equations (2.5) and (2.6) are the
Lipschitz continuity condition and the linear growth condition respectively for the
functions f and g.

2.1.3 Numerical Approximation of Stochastic Differential
Equations

In order to approximately solve the SDE in Equation (2.4) and find and approxi-
mation to its solution Xt as according to Equation (2.4), numerical methods needs
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to be applied since analytical solutions are often unavailable. To define such nu-
merical methods for an approximate solution to Equation (2.4), let first X, f and
g be as in Equation (2.4) for t ∈ [0, T ] and let X0 = x0 be given. Then, similarly
to deterministic ordinary differential equations, consider an integer N > 0 and let
∆t = T/N be the stepsize of the discretization of the time interval [0, T ]. Then, an
approximation X̃ of X is computed for each discretized time ti = i∆t as

X̃ti
= X̃ti−1 + f(X̃ti−1 , ti−1)∆t + g(X̃ti−1 , ti−1)∆Wti−1 , (2.7)

where ∆Wti−1 = Wti
−Wti−1 is a N -dimensional vector of independent and normal

distributed variables with a mean zero and variance ∆t. Hence, ∆Wti−1 can be
generated as ξ

√
∆t, where ξ is a N -dimensional vector of independent and normal

distributed variables with mean zero and unit variance. Therefore, Equation (2.7)
is evaluated as

X̃ti
= X̃ti−1 + f(X̃ti−1 , ti−1)∆t + g(X̃ti−1 , ti−1)ξ

√
∆t, (2.8)

for ti = i∆t, i ∈ {1, · · · , N}. The numerical method for approximating X by X̃ as
in Equation (2.8) is called the Euler-Maruyama (EM) method [15, 16].

A central type of SDE used in financial modeling for which the EM method can
be applied is the geometric Brownian motion (GBM). The GBM is defined for the
one-dimensional case as

dXt = µXtdt + σXtdWt, (2.9)

where µ and σ is the drift and diffusion constants. The GBM is used to model the
movement of stock prices and is used in the Black-Scholes option pricing formula
[17]. The GBM is a continuous stochastic process, but can be used to model data
that are discretely observed, such as stock prices. By using the EM method, sample
paths of the GBM can be simulated in discrete steps. A desired property of the
GBM is that the ratio of its values between consecutive time steps are log-normal
distributed. Hence, log Xt/Xt−∆t are normally distributed with mean (µ− σ2/2)∆t
and variance σ2∆t, where ∆t is the time step size. Moreover, the logarithmic ratios
are also independent and identically distributed (i.i.d) as according to [18].

There exist several ways to estimate the parameters of a GBM using historical
values of the stock price. One method utilizes the previously mentioned result to
estimate the parameters, as according to [18], as

µ̂ =
N−1∑
t=1

Xt+1 −Xt

Xt

σ̂ =

√√√√ 1
N − 1

N−1∑
t=1

(
Xt −Xt−1

Xt

− µ̂
)2

,

(2.10)

where Xt denotes the stock price observed at some time t for all t in the interval
{0, . . . , N − 1}. When the parameters of a GBM have been estimated, the EM
method can be applied to simulate sample paths over the future values of Xt. An
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Figure 2.1: 10 realizations of a GBM with µ = 0.4, x0 = 1, σ = 0.4, ∆t = 0.1 for
n ∈ {0, . . . , 100} generated using the EM method.

illustration of 10 realizations of the GBM simulated using the EM method is shown in
Figure 2.1 with µ = 0.4, σ = 0.4, x0 = 1, ∆t = 0.1 for the time steps n ∈ {0, . . . , 100}
where N = 101.
The pseudocode for the implementation of the EM method for approximating a
stochastic process, given as a GBM, is shown below.

Algorithm 1: Euler-Maruyama method for a geometric Brownian motion
Data: µ, σ, x0, t0, T , N
Result: X̃(t) ≈ X(t), t ∈ [t0, T ]
∆t← (T − t0)/N ;
X̃ ← zero array of size N ;
X̃(0)← x0;
for i = 1 to N do

ξ ← randomly generated number from N (0, 1);
X ← X̃(i− 1);
X̃(i)← X + µX∆t + σX

√
∆tξ;

end

2.2 Stochastic Modeling

Consider an input data set, X = (x1, x2, . . . , xk) where xi ∈ RDobs for all i = 1, . . . , k
and k is the total number of samples for some dimension Dobs > 0 of the observed
values. Let further Y = (y1, y2, . . . , yk), where yi ∈ RDtarg for all i = 1, . . . , k,
denote the corresponding target data set for some dimension Dtarg > 0 of the target
values. By assuming that values of the input and target data are driven by some
underlying process such that their values are samples from a probability distribu-
tion. Then the connection between the input and target samples, assumed that
such a connection exists, can be described by a conditional probability distribution,
ptrue(yi|xi). The objective of a stochastic model (when the underlying process is
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unknown) is to find an approximative probability distribution, pappr(yi|xi, θ), with
parameters θ for all i = 1, . . . , k, which best approximates the true distribution,
ptrue(yi|xi) [19, 20].

When using a forecasting model, prior information is used to predict future out-
comes. Consider for example the time-development of a stock price. The future
price of the stock can be estimated by first finding an approximate probability dis-
tribution, where later observations are conditioned on the prior observations. As-
sume that the price of the stock has been observed for T number of equitemporal
steps. This time-series could further be divided into Tsub equal length subintervals,
where 2 ≤ Tsub < T . One method for approximating the probability distribution,
is to condition each interval on the prior. This distribution could then be used to
forecast future, not yet observed, prices of the stock. This could be achieved by
simply using the latest observed data as input and estimating the output using the
approximate conditional probability distribution. However, to estimate pappr can be
difficult. A special case is when the drift and diffusion functions are known. Then,
the conditional probability distribution can be approximated for any type of SDE
under the assumption that the distribution is Gaussian. This case will be more
deeply presented in the the following section.

2.2.1 Cubature Integration Sigma Point Approximation
Suppose that some N -dimensional discretely observed data x = {x(t) : t ∈ {0, · · · , T}}
for some T > 0 corresponds to the N -dimensional Itô process X = {Xt : t ∈ [0, T ]}
as

dXt = f(Xt, t)dt + g(Xt, t)dWt, t ∈ [0, T ] (2.11)

where f : RN × [0, T ] −→ RN and g : RN × [0, T ] −→ RN×N are the drift and
diffusion functions respectively and W is an N -dimensional Brownian motion. The
values of the process X at the time steps t ∈ {0, · · · , T} is then equal to the values
of the observations at that time t. Then the conditional distribution, p(x(t)|x(s)),
of x(t) given Xs = x(s), evaluated at Xt = x(t) for some t ≥ s, is given as the
solution to the Fokker-Planck-Kolmogorov (FPK) equation [21]

∂p(x(t)|x(s))
∂t

=−
N∑

i=1

∂

∂xi

[fi(x(t), t)p(x(t)|x(s))]

+ 1
2

N∑
i=1

N∑
j=1

∂2

∂xi∂xj

{
[g(x(t), t)g(x(t), t)T]i,jp(x(t)|x(s))

}
,

(2.12)

with some initial value p(x(s)|x(s)) = ps and where superscript T denotes the trans-
pose. Then, by considering the expectaction, ⟨Xt⟩p of Xt, where ⟨·⟩p is expectation
with respect to the conditional distribution p, the conditional mean and conditional
covariance matrices, m(t), S(t) can be denoted by

m(t) = ⟨Xt⟩p
S(t) =

〈
(Xt −m(t))(Xt −m(t))T

〉
p

, t ∈ [0, T ],
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and are called the first and second order moments of Xt with respect to p. As a
consequence of Itô’s formula, m(t) and S(t) are given as the solution to the ordinary
differential equations of

dm(t)
dt

= ⟨f(Xt, t)⟩p , t ∈ [0, T ], (2.13)

and

dS(t)
dt

=
〈
f(Xt, t)(Xt −m(t))T

〉
p

+
〈
(Xt −m(t))f(Xt, t)T

〉
p

+
〈
g(Xt, t)g(Xt, t)T

〉
p

, t ∈ [0, T ].

(2.14)

Since these are given as expectations with respect to the conditional distribution,
which is given by the solution of the FPK in Equation (2.12), the differential equa-
tions in (2.13) and (2.14) cannot be explicitly solved in most cases. In the case when
X is Gaussian distributed they can completely characterize the solution [21]. This
is however most often not the case, but despite this, with the use of the first and
second order moments, the conditional distribution can be approximated for nonlin-
ear SDEs. In fact, by approximating the conditional distribution of X at Xt = x(t)
given Xs = x(s) as Gaussian as

p(x(t)|x(s)) ≃ N (x(t)|m(t), S(t)),

where N denotes a Gaussian (or normal) distribution and ≃ denotes that p is as-
sumed to be equal the Gaussian distribution N . The expectations of the first and
second order moments are therefore taken with respect to ⟨·⟩N instead of ⟨·⟩p. The
moments in Equation (2.13) and (2.14) can then be numerically solved [22]. This
type of approximation is referred to as Gaussian-process approximation or Gaussian-
density approximation [23, 24, 22].

There are several numerical methods to solve the ODEs in Equation (2.13) and
(2.14). For example by using linearization approximation where the drift is lin-
earized around the conditional mean after which the diffusion is approximated as

f(x(t), t) ≈ f(m(t), t) + Jx(f)(m(t), t)(x(t)−m(t))
g(x(t), t) ≈ g(m(t), t),

where Jx is the Jacobian operator of f with respect to its first argument x. These
approximations can then be used to approximate the expectations in the ODEs of
the moments [22]. A different way of approximating Equation (2.13) and (2.14) is
to directly approximate the expectations with respect to N (x(t)|m(t), S(t)). This
can be done using quadrature weighted sums as

⟨f(Xt, t)⟩N ≈
2N∑
i=1

W (i)f(s(i)(t), t), (2.15)
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where s(i)(t) are referred to as sigma-points and W (i) referred to as the corresponding
weights of the sigma-points and i ∈ {1, 2, . . . , 2N}. Here, N is the dimension of x.
Different methods can be used to select these sigma-points and weights. A common
method [25] is to choose s(i)(t) as

s(i)(t) = m(t) +
√

S(t)ξi, (2.16)

where
√

S(t) ∈ RN×N such that S(t) =
√

S(t)
√

S(t)
T

and

ξi =


√

Nei, i ∈ {1, 2, . . . , N}
−
√

Nei−N , i ∈ {N + 1, N + 2, . . . , 2N},
(2.17)

W (i) = 1
2N

, i ∈ {1, 2, . . . , 2N}, (2.18)

where ei is the N -dimensional unit vector as

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , · · · , eN =


0
0
...
1

 .

Using this sigma point approximation of Gaussian integrals with the sigma-points
and corresponding weights being chosen as in Equation (2.16), (2.17) and (2.18)
is referred to as cubature integration sigma-point approximation (CISPA) [22] and
is commonly used in filtering theory for approximation of Gaussian integrals. The
approximation of the equations for the first and second order moments are then
evaluated as

dm(t)
dt

=
2N∑
i=1

W (i)f(m(t) +
√

S(t)ξi, t), (2.19)

and

dS(t))
dt

=
2N∑
i=1

W (i)f(m(t) +
√

S(t)ξi, t)ξT
i

√
S(t)

T

+
2N∑
i=1

W (i)ξi

√
S(t)fT(m(t) +

√
S(t)ξi, t)

+
2N∑
i=1

W (i)g(m(t) +
√

S(t)ξi, t)gT(m(t) +
√

S(t)ξi, t).

(2.20)

The ODEs in Equation (2.19) and (2.20) can be solved using usual numerical meth-
ods for ODE such as the Euler method. Finding the conditional mean and condi-
tional covariance for the approximation of p(x(t)|x(s)), then the initial conditions
of m and P is set to m(s) = x(s) and S(s) = 0. Then, the interval {s, . . . , t}
is discretized the into n partitions with some discretization step ∆t = (t − s)/n.
The conditional mean and conditional covariance are then iteratively solved using
Equation (2.19) and (2.20) at each discretized time step n∆t [22].
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The approximations used in this section aim at approximating the conditional dis-
tribution of nonlinear SDEs, but can also be used for the linear case. However, this
method assume that the original SDE is actually known, which is not always the
case. If some observed data is considered to follow a SDE whose drift and diffu-
sion are unknown, assumptions must be put on the drift and diffusion in order to
apply the approximations presented in this section. For financial applications, like
modeling stock prices, a common assumption is that the stock price can be modeled
as Geometric Brownian Motion (GBM), as mentioned in Section 2.1.2. However,
estimating the parameters of the GBM, such that the process best fits the observed
data, does not always represent the actual data that is being observed. Therefore,
some kind of transformation of the data is often required, such that the transformed
data provides more accurate modeling. One method that aims to approximate the
conditional distribution of some observed data (by doing such a transformation) is
the Free-Energy Approximation (FEA). This is presented in the proceeding section.

2.2.2 Free-Energy Approximation
Let x be some N -dimensional observed data x = {x(t) : t ∈ {0, . . . , T}} for some
T > 0 as in the previous section. Then assume that x corresponds to a stochastic
process, X, such that the values of x are sampled from probability distribution
p(Xt) at each t ∈ {0, . . . , T}. Then, a connection between the values of X that have
been observed, and the possible values of future observations of X, can be obtained
by approximating the conditional distribution of the observed values of X. One
method from [26] and [27], referred to as free-energy approximation (FEA), aims to
approximate the posterior distribution of the values from some observed data. This
is done by modeling the observed data by a SDE of a time-continuous process and
find the posterior distribution by fitting another approximating SDE to the first one.
More concretely, assume first that X is some noisy observed values from a hidden
N -dimensional process Z = {Zt : t ∈ [0, T ]}, such that

dZt = f(Zt, t)dt + ΣdWt, t ∈ [0, T ]
Xt ∼ N (Zt, r2I), t ∈ [0, T ]

(2.21)

where f : RN × [0, T ] −→ RN is some drift function, Σ := diag{σ2
1, . . . σ2

N} is
the diagonal diffusion matrix, Σ ∈ RN×N , WN is an N -dimensional Brownian
motion. Moreover, r is the noise parameter, a fixed parameter that describes the
variance of the noise of the observed data. Then, given the observations x(t) for all
t ∈ {0, . . . , T} of X, the aim is to approximate the posterior distribution p(Zt|x(t), t)
for all t ∈ {1, . . . , T}. As proposed by [26] and [27], this is done by considering the
SDE

dZt = g(Zt, t) + ΣdWt,

g(Zt, t) = −A(t)Zt + b(t),
(2.22)

where A(t) ∈ RN×N and b(t) ∈ RN are the functions of the linear drift (drift that
is linear with respect to the input values) g : RN × [0, T ] −→ RN . The reason
for having a linear SDE to approximate the posterior distribution p is that the

13



2. Theory

solution of the SDE in Equation (2.22) correspond to a Gaussian process (GP) and
thus Gaussian distributed. As mentioned in the preceding section, this means that
its first and second order moments fully characterize the solution of its posterior
distribution given from the FPK equation. As shown in [27], the ODEs for the first
and second order moments for Equation (2.22) is

dm(t)
dt

= −A(t)m(t) + b(t)

dS(t)
dt

= −A(t)S(t)− S(t)AT(t) + Σ,

(2.23)

for some s, t ∈ [0, T ] where s ≤ t. Hence, the interest is to find A(t) and b(t)
such that the distribution of Zt under the SDE in Equation (2.22) approximates the
posterior distribution of Zt under the enforced SDE in Equation (2.21). By denoting
the distribution of Zt under the SDE in Equation (2.22) as q(Zt, t), this is done by
minimizing the so called variational free-energy which is defined, as according to
[26], as

FF E(A, b) =
∫ T

0
Esde(t)dt +

∫ T

0
Eobs(t)

T∑
k=0

δ(t− k)dt + KLD[q(Z0)||p(Z0)], (2.24)

where KLD is the Kullback-Leibler divergence, δ(·) is the Dirac’s delta function and
k is the index of the discrete time interval {0, . . . , T} for which the values of x are
observed. Moreover,

Esde(t) = 1
2
〈
(f(Zt, t)− g(Zt, t))TΣ−1(f(Zt, t)− g(Zt, t))

〉
q
, t ∈ [0, T ],

Eobs(t) = 1
2
〈
(Xt − Zt)T(r2I)−1(Xt − Zt)

〉
q

+ K ln 2π

2 + ln |r2I|
2 , t ∈ {0, . . . , T}.

(2.25)

The variational free-energy in Equation (2.24) is henceforth referred to only as the
free-energy. To optimize A and b such that the free-energy is minimized, the ODEs
for the first and second order moments in Equation (2.23) can be used as consistency
constraints for the means and covariances along sample paths of Equation (2.22).
These constraints can be enforced by introducing the Lagrangian, L, defined, ac-
cording to [26] and [27], as

L =FF E(A, b)−
∫ T

0
λT(t)

(∂m
∂t

(t) + A(t)m(t)− b(t)
)
dt

−
∫ T

0
Tr
[
Ψ(t)

(∂S
∂t

(t) + 2A(t)S(t)−Σ
)]

dt,
(2.26)

where λ(t) ∈ RN and Ψ(t) ∈ RN×N are the time dependent Lagrange multipliers
with Ψ(t) being symmetric and Tr[·] refers to the trace of a matrix. The interest
is to minimize the free-energy with respect to the independent variations of A(t),
b(t), m(t) and S(t) subject to the constraints in Equation (2.23). Therefore, the
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stationary points in Equation (2.26) are desired. To allow for this, integration by
parts is used for Equation (2.26) resulting in

L =FF E(A, b)−
∫ T

0

[
λT(t)(A(t)m(t)− b(t))− ∂λT

∂t
(t)m(t)

]
dt

−
∫ T

0
Tr
[
Ψ(t)(2A(t)S(t)−Σ)− ∂Ψ

∂t
(t)S(t)

]
dt

− λT(T )m(T ) + λT(0)m(0)− Tr[Ψ(T )S(T )] + Tr[Ψ(0)S(0)].

(2.27)

However, at the final time T , only the changes for A(T ) and b(T ) are considered.
Therefore, as according to [27], Ψ(T ) = λ(T ) = 0. Moreover, the initial values of
S(0) and m(0) are also fixed, meaning that they are not under subject of optimiza-
tion. The gradients with respect to A(t) and b(t) of L are therefore, as recalled
from [27], evaluated by taking the functional derivatives as

∇AL = ∇AEsde(t)− λ(t)mT(t)− 2Ψ(t)S(t) (2.28)
∇bL = ∇bEsde(t) + λ(t), (2.29)

where

∇AEsde(t) = Σ−1 [⟨∇Zf(Zt, t)⟩q + A(t)] S(t)−∇bEsde(t)b(t)mT(t), (2.30)
∇bEsde(t) = Σ−1 [−⟨f(Zt, t)⟩q −A(t)m(t) + b(t)] , (2.31)

of which ⟨f(Zt, t)(Zt − m(t))T⟩q = ⟨∇Zf(Zt, t)⟩qS(t) has been used in Equation
(2.30), as according to [26]. Thereafter, obtaining the gradients with respect to
m(t) and S(t) implies taking the functional derivatives of L which yields

∇mL = ∂λ

∂t
(t) +∇mEsde(t)−AT(t)λ(t), (2.32)

∇SL = ∂Ψ
∂t

(t) +∇SEsde(t)− 2Ψ(t)A(t), (2.33)

with the corresponding jump conditions that are enforced when observations occur,

λ(t+) = λ(t−)−∇mEobs(t)|t∈{0,...,T }, (2.34)
Ψ(t+) = Ψ(t−)−∇SEobs(t)|t∈{0,...,T }, (2.35)

where the |t∈{0,...,T } means that the term is only evaluated for when the time t
is equal to the time of the observations which are observed at the discrete times
t ∈ {0, . . . , T}. Setting Equation (2.32) and (2.32) to zero yields the ODEs of
the time derivative of λ(t) and Ψ(t). The optimization goal is then to update
A(t) and b(t) with the use of the explicit gradients in Equation (2.28) and (2.29).
Though, since λ(t), Ψ(t), m(t) and S(t) are also dependent on A(t) and b(t), the
implicit gradients must also be considered. However, if the consistency constraints in
Equation (2.23) and the jump constraints in Equation (2.34) and (2.35) are satisfied,
the implicit gradients vanish [26]. To obtain this, a forward propagation of solving
the first and second order moments in Equation (2.23) using the initial conditions
m(0), S(0) and the current values of A and b are performed. Then, a backward
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solver that solves for the Lagrange multipliers with the current values of m, S, A
and b along with the initial conditions λ(T ) = Ψ(T ) = 0 are performed using the
ODEs obtained by setting Equation (2.32) and (2.33) to zero. Then finally, A(t)
and b(t) is updated for all t ∈ [0, T ] using the gradients ∇AL and ∇bL in Equation
(2.30) and (2.31) respectively as

A(t)← A(t)− η∇AL, (2.36)
b(t)← b(t)− η∇bL, (2.37)

with gradient step size η ∈ (0, 1] [27]. That is, using gradient descent. The pseudo
code for finding the optimal posterior distribution q using the free-energy approxi-
mation is shown in Algorithm 2.

Algorithm 2: Finding the optimal posterior distribution q using free-energy
approximation.
Data: D, m(0), S(0), Σ, η, K, T
∆t← T/K;
Initialize {A(k), b(k)}k≥0;
repeat

for k = 0, . . . , K − 1 do
m(k + 1)←m(k)− (A(k)m(k)− b(k))∆t;
S(k + 1)← S(k)− (A(k)S(k) + S(k)AT(k)− Σ)∆t;

end
for k = K, . . . , 1 do

λ(k − 1)← λ(k) + (∇mEsde|t=tk
−AT(k)λ(k))∆t;

Ψ(k − 1)← Ψ(k) + (∇SEsde|t=tk
− 2Ψ(k)A(k))∆t;

if observation at tk−1 then
λ(k − 1)← λ(k − 1) +∇mEobs|t=tk−1 ;
Ψ(k − 1)← Ψ(k − 1) +∇SEobs|t=tk−1 ;

end
end
compute {Ã(k), b̃(k)}k≥0;
update {A, b}k≥0 using Equation (2.36) and (2.37);

until minimum of L is obtained;
The free-energy approximation aims to find the optimal posterior distribution of
some observed data under the assumption that the observed data follows some SDE.
However, there are several issues involved in doing so. Firstly, the choice of the SDE
for the observed data needs to be pre-defined and the results may vary a lot based on
this choice. Secondly, both SDEs assume a constant diffusion term, meaning that the
noise of the observations are assumed to keep the same variance, independent of time
and the values themselves. Thirdly, the computations required for the gradients can
become difficult for more complicated choices of the parameterized drift f . Moreover,
the complexity of the algorithm is of order O(MKD3

hid), where M is the number
of iterations of the outer loop, hence it can become computationally expensive for
higher dimensions and larger number of discretization steps [27]. However, with the
use of machine learning, approximating the observed data can be done with neural
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networks. Hence, instead of relying on the pre-defined SDE, the approximations of
the drift and diffusion terms of the SDE can be optimized to best fit the observed
data with respect to the objective. This is described in the following section.

2.2.3 Neural SDEs
A neural SDE is a stochastic differential equation as in Equation (2.4) of which the
drift and diffusion functions f and g are parametrized by neural networks. Given
some data x(t) ∈ RN for t = {0, 1, . . . , T}, a single layer neural network f ∗(·; Θf )
with weight matrix Θf ∈ RNnn×N is defined as

f∗(x(t); Θf ) = α(Θfx(t) + b), (2.38)

where b ∈ RNnn is the bias vector, α : RNnn −→ RNnn is the corresponding activation
function and Nnn is the so called width of the neural network, also referred to as its
dimension. Therefore, let f∗ : RN −→ RNnn and g∗ : RN −→ RNnn be the single
layer drift and diffusion neural networks, then the neural SDE of some process X
that corresponds to the data x, takes the form

dXt = f∗(Xt; Θf )dt + g∗(Xt; Θg)⊙ dWt, X0 ∈ RN , (2.39)

where Θf and Θg are the corresponding weights of the networks f∗ and g∗ respec-
tively and W is a Nnn-dimensional Brownian motion and ⊙ is the elementwise
product (Hadamard). Apart from the demonstrated learning ability of neural net-
works, a theoretical motivation for using neural networks to approximate the drift
and diffusion functions is a result referred to as the universal approximation theorem.
The universal approximation theorem states that neural networks are universal ap-
proximators. This means that a neural network of multiple layers can theoretically
approximate any measurable function to any degree of accuracy [28, 29]. Therefore,
in situations when the drift and diffusion functions are unknown, or when some
data is assumed to follow a SDE, but the identification of the type of SDE is un-
certain, neural networks can be applied to approximate this process. Hence, the
identification of the drift and diffusion functions can be automated by updating the
parameters in the neural networks to best fit the solution of the corresponding SDE
[7].

Moreover, a neural SDE as in Equation (2.39), can be seen as using multiple resid-
ual connections, a method which is commonly used in many deep neural network
topologies such as DenseNets and ResNets which have achieved state-of-the-art per-
formance [30]. Residual connections were introduced to approach the problems of
training extremely deep neural networks such as vanishing and exploding gradients,
saturated performance and high computational cost. By including an additional
bypass around the activation functions between layers, the information is allowed
to flow without attenuation [30]. Such a bypass is called a residual connection, or a
skip connection, and is defined as

x(t + 1) = x(t) + f∗(x(t); Θf ), t ∈ {0, . . . , T − 1}. (2.40)
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To connect residual connections to neural SDEs, first consider the deterministic
case of having zero diffusion in Equation (2.39). Then the neural SDE evaluates as
a neural ODE with

dXt = f∗(Xt; Θf )dt, t ∈ {0, . . . , T},

which can be numerically approximated as

Xt+∆t = Xt + f∗(Xt; Θf )∆t. (2.41)

Hence, comparing to Equation (2.40), the residual connection and the neural ODE
in Equation (2.41) take a similar form [31]. The neural SDE can thus be viewed as
a stochastic residual connection between the time steps in {0, . . . , t}.

In order for unique solution to exist for Equation (2.39), the neural networks f∗

and g∗ must satisfy the conditions in Theorem 2.1. To achieve this, a certain trans-
formation can be made upon the weight matrices of the neural networks. Specifically,
for arbitrary sizes of the neural networks, assume that f∗ and g∗ are neural networks
with L and K number of layers respectively, that is,

f∗(x(t); Θf ) = W
(L)
f ◦ · · · ◦W

(1)
f (x(t)), where W

(l)
f : Rdl−1 −→ Rdl ,

s.t W
(l)
f (d) = α

(l)
f (Θ(l)

f d + b(l)
f ), for any d ∈ Rdl−1 ,

(2.42)

and similarly

g∗(x(t); Θg) = W (K)
g ◦ · · · ◦W (1)

g (x(t)), where W (k)
g : Rdk−1 −→ Rdk ,

s.t W (k)
g (d) = α(k)

g (Θ(k)
g d + b(k)

g ), for any d ∈ Rdk−1 ,
(2.43)

where l ∈ {1, . . . , L}, k ∈ {1, . . . , K}, Θf = (Θ(1)
f , . . . , Θ(L)

f ) where Θ(l)
f ∈ Rdl×dl−1

and Θg = (Θ(1)
g , . . . , Θ(K)

g ) where Θ(K)
g ∈ Rdk×dk−1 are the weight matrices for f ∗

and g∗ respectively and b(l)
f ∈ Rdl , b(k)

g ∈ Rdk are the corresponding bias vectors
for l:th respectively k:th layer and dl, dk is the corresponding dimension [32]. If the
networks f ∗ and g∗ shall satisfy the conditions in Theorem 2.1, then transformations
are needed on all the weight matrices Θf and Θg. This is done by applying spec-
tral normalization to Θf and Θg as originally proposed in [32]. This is stated below.

Theorem 2.2. Let f∗ and g∗ be as in Equation (2.42) and (2.43) respectively and
assume that it holds, for both f∗ and g∗, that each activation function is in each
corresponding layer satisfies

||α(l)
f (x)− α

(l)
f (y)|| ≤ C

(l)
f ||x− y||,

for any x, y ∈ Rdl−1, and l ∈ {1, . . . , L} and some constant C
(l)
f ≥ 0, and the same

for g∗. Define the spectral norm of a matrix W ∈ RN×N as

σ(W ) := max
h∈RN :h̸=0

||Wh||
||h||

= max
||h||≤1

||Wh||,
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then, by applying the transformation

Θ̃(l)
f =

Θ(l)
f

σ(Θ(l)
f )

, and Θ̃(k)
g =

Θ(k)
g

σ(Θ(k)
g )

, l ∈ {1, · · · , L}, k ∈ {1, · · · , K},

(2.44)
to each weight matrix in Θf and Θg, f∗ and g∗ satisfy the conditions in Theorem
2.1.

Proof. First, define the Lipschitz norm of f∗, ||f∗||Lip as

||f∗||Lip := ||f
∗(x)− f∗(y)||
||x− y||

,

for any x, y ∈ RN and the corresponding Lipschitz constant as the smallest value c
such that

||f∗||Lip ≤ c.

Furthermore, let f∗
i be i:th layer in the network f ∗ such that f∗

i : h(i)
in 7→ h(i)

out where
h(i)

in and h(i)
out is the input respectively output vector corresponding to layer i. It

holds by definition that ||f∗
i ||Lip = suph σ (∇f ∗

i (h)) and so for a linear mapping
f∗
i (h) = Θ(i)

f h + b(i)
f , the Lipschitz norm is given by ||f∗

i ||Lip = suph σ(∇f ∗
i (h)) =

suph σ(Θ(i)
f ) = σ(Θ(i)

f ). Moreover, from assumption it holds that the Lipschitz con-
stant of each activation function corresponding to layer i is equal to C

(i)
f such that

||α(i)
f ||Lip ≤ C

(i)
f

1. Then by using the inequality

||f∗
i ◦ f∗

i+1||Lip ≤ ||f∗
i ||Lip · ||f∗

i+1||Lip,

a bound on ||f∗||Lip is achieved as

||f∗||Lip ≤||α(1)
f ||Lip · ||Θ̃(1)

f h(0) + b(1)
f ||Lip · ||α(2)

f ||Lip · ||Θ̃(2)
f h(1) + b(2)

f ||Lip

· · · ||α(L)
f ||Lip · ||Θ̃(L)

f h(L−1) + b(L)
f ||Lip = Cf

L∏
l=1
||Θ̃(l)

f h(l−1) + b(l)
f ||Lip

=Cf

L∏
l=1

σ(Θ̃(l)
f ) = Cf

L∏
l=1

σ

 Θ(l)
f

σ(Θ(l)
f )

 = Cf · 1 = Cf ,

where Cf = ∏L
l=1 C

(l)
f . For assumed finite L, Cf <∞. Thus, it holds that

||f∗||Lip = ||f
∗(x)− f∗(y)||
||x− y||

≤ Cf ,

for any x, y ∈ RN . The proof of the second condition in Theorem 2.1 of Equation
(2.6), is not provided by [32], but can easily be shown using the result of the first

1For many common activation functions, ||α||Lip ≤ 1, such as for the ReLU and tanh-functions
[32].
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condition. Knowing that ||f∗(x)− f∗(y)|| ≤ C||x− y|| for some constant C and for
all x, y ∈ RN , then consider

||f∗(x)|| =||f∗(x)− f∗(0) + f∗(0)|| ≤ ||f∗(x)− f∗(0)||+ ||f∗(0)||
≤ C||x− 0||+ ||f∗(0)|| = C||x||+ ||f∗(0)|| = C||x||+ K,

for some constants C and K and where 0 ∈ RN , which satisfies the second condition
in Equation (2.6) in Theorem 2.1. Hence, by applying the spectral normalization in
Equation (2.44) to each weight matrix in the network f∗ then f∗ satisfy the conditions
in Theorem 2.1. The proof for g∗ is identical. ■

From the results in Theorem 2.2, it is showed that applying the spectral normaliza-
tion in Equation (2.44) to each weight matrix in the networks f∗(·; Θf ) and g∗(·; Θg),
the networks satisfy the conditions in Theorem 2.1 required for the SDE in Equation
(2.39) to be solvable when approximating the drift and diffusion functions with f∗

and g∗ respectively.

By using neural SDEs, drift and diffusion functions can be optimized to fit x(t)
for all t ∈ [0, T ]. However, this approach alone does not account for historical values
x(s) for some 0 ≤ s < t, s, t ∈ {0, . . . , T}, but rather only the current value x(t). In
order to make the model also consider historical values, an additional type of machine
learning methods can be applied, namely recurrent neural networks. These take a
sequence of observations as input and aims to also consider the time-dependencies
between the different time steps of the input [33]. Incorporating this in the neural
SDE framework, results into what in this thesis is called, a latent variable neural
SDE. This is presented in to proceeding section.

2.2.4 Latent Variable Neural SDEs
The term latent variable refers to a variable that is unobserved and, in the use
of machine learning, often meaning a representation of some input data. Latent
variables are often mentioned in methods for dimensionality reduction [34] and in
generative models [35]. The idea is to map the observed input data to latent vari-
ables, referred as a latent mapping. The aim of this is to create a more meaningful
representation of the observed input data. For generative models, the goal is to
optimize this mapping so that new data can be generated from the latent variables,
such that the new data belongs to the same distribution as the input data. If so,
the latent variables are said to be a well representation of the observed data [35].
For dimensionality reduction models, the objective is to map the observed input
data of higher dimensions down to latent variables of lower dimensions, Dobs > Dlat,
while maintaining any valuable information in the observed data [34, 36]. This is
often used for visualization purposes, clustering tasks or for improved classification
in classification tasks. The common goal is, however, to optimize the latent mapping
such that the latent variables best represents the observed input data in the sense
that no meaningful information of the observed data is lost [20].

A specific type of model that utilizes latent variables under the assumption that
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the observed input data is sampled from an unknown underlying process is Vari-
ational Autoencoders (VAEs) [20]. VAEs are generative models that consist of a
recognition model and a generative model. The former aims to learn a conditional
distribution of the latent variables conditioned on the observed input data, usu-
ally approximated by neural networks. Let x(t) ∈ RDobs be some observed input
data and y(t) ∈ RDtarg be some observed target data, both discretely observed for
t ∈ {0, . . . , T} for some T > 0. Moreover, let z(t) ∈ RDlat denote some latent vari-
ables for all t ∈ {0, . . . , T}. By letting qθ(z(t)|x(t)) denote the recognition model
with some parameters θ and pϕ(y(t)|z(t)) denote the generative model with some
parameters ϕ for all t ∈ {0, . . . , T}. The aim of these models is to optimize θ and
ϕ such that the latent variables sampled from qθ can be used to reconstruct y(t) in
the generative model pϕ [20, 33]. This has empirically proven to yield better results
comparing to traditional, deterministic autoencoders [37, 38, 20].

Applying the same principles as for the VAEs, but for a sequence of observed input
values, Recurrent Neural Networks (RNNs) can be used. This is referred to as Vari-
ational Recurrent Neural Networks (VRNNs). A RNN is a neural network that also
processes information between the different time steps of the input data [33]. This
enables the model to account for previously observed values of x(t), and not just the
value x(t) at some t ∈ {1, . . . , T}. For VRNNs, this implies that time-dependencies
between time steps are induced in the latent variables. Similar with VAEs, VRNNs
have been demonstrated to achieve a better performance compared to traditional
RNNs in various tasks, such as speech and text modeling [33]. To connect VRNNs to
stochastic modeling, assume once again that some sequence of input data is driven
by some underlying process. Then a similar paradigm as for VRNNs can be applied
to approximate this process. This can be compared to the free-energy approximation
method described in Section 2.2.2. Here, the connection between the observed data
and the underlying process is fixed. Therefore, the latent variable approach provides
more flexibility as the latent mapping is subject to optimization. Therefore, rather
than considering an approximate SDE of some hidden process as in the free-energy
approximation, a process of latent variables can be considered.

Let x = {x(t) : t ∈ {0, . . . , T}} be some observed values for some T > 0, where
x(t) ∈ RDobs for all t ∈ {0, . . . , T} and some Dobs > 0. Assume that the values
in x is a sample from an unknown underlying process. For the task of forecast-
ing, the aim is to approximate the conditional distribution for some subsequential
values of x. That is, finding an approximation to p(y(T )|x(0), . . . , x(T )), where
y(T ) = {x(T + 1), . . . , x(T + h)} for some h ≥ 1. Here, Dtarg = Dobs. To do
this, first define a RNN model that will be used to map the sequence of observed
input values, x, to a latent variable, z ∈ RDlat . A commonly used RNN is the Long
Short-Term Memory (LSTM) model, due to its ability to learn longer dependencies
compared to traditional RNNs. An illustration of a LSTM model is shown in Figure
2.2. Each layer in the LSTM model consists of four so called gates; an input gate, a
forget gate, a cell gate and an output gate. For each element in the input sequence,
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that is, for each x(t) for t ∈ {0, . . . , T}, one layer of the LSTM model computes

it = sigmoid(Θiix(t) + bii + Θhiht−1 + bhi)
ft = sigmoid(Θifx(t) + bif + Θhfht−1 + bhf )
gt = tanh(Θigx(t) + big + Θhght−1 + bhg)
ot = sigmoid(Θiox(t) + bio + Θhoht−1 + bho)
ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct),

(2.45)

where the subscripts i, f , c and o refers to the input, forget, cell and output gates
respectively. Θif ∈ RDobs×DLST M further refers to the weight matrix that acts on the
input in gate f whilst Θhf ∈ RDLST M ×DLST M refers to the weight matrix that acts
on the hidden vector ht−1 in gate f . Similarly, the bias vectors biq ∈ RDLST M and
bhq ∈ RDLST M acts on the input respectively hidden vector in gate q ∈ {i, f, g, o.
Moreover, ⊙ refers to the elementwise product (Hadamard). For t = 1, ht−1 and
ct−1 are usually zero initiated [39]. Here, DLST M refers to the dimension of the
LSTM network. For the final time step, the output latent variable is hT , which
can then be processed through an additional linear layer that maps from RDLST M

to RDlat to produce the latent variable z0. In the remainder of this thesis, the last
linear layer will be considered as an integrated part of a LSTM model.

Figure 2.2: Information flow of a LSTM model for a single time step k where sig
refers to the sigmoid function and tanh refers to the tanh-function. The blue dots
represent either the elementwise product (circle with dot) or regular addition (plus).
The values of each function fk, ik, gk, ok as well as the hidden and cell vectors, hk

and ck respectively, are computed as in Equation (2.45).

Let L(·; ΘL), where L : RDobs × R −→ RDlat , denote the LSTM model with corre-
sponding weight matrices ΘL. Then, the latent variable from this LSTM model can
be treated as an initial condition for some latent variable neural SDE. That is, a
stochastic process of latent variables with drift and diffusion functions as presented
in Section 2.2.3. Moreover, since it is assumed that the values in x are samples
from an unknown underlying process, the same assumption holds for the values in
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y. A realization of the latent variable process, z = {zt : t ∈ {0, . . . , Tsde}} for some
Tsde > 0 and where z0 = L(x(t); ΘL), can be generated using numerical approxima-
tion methods, such as the EM method described in Section 2.1.3. The values in the
latent variable process can then be used to approximate the conditional distribution
of the values in y. However, in order to obtain a mapping from the latent variables
to the values in y, an additional network, referred to as the target network, can be
applied to the latent variables. This target network is a linear neural network, de-
noted by LT (·; ΘLT

) with ΘLT
∈ RDtarg×Dlat being the corresponding weight matrix.

and Dtarg is the dimension of the values in y. Moreover, to not restrict the number
of generated latent variables in the latent process to be equal the number of pre-
dicted time steps h, Tsde can be selected as a positive multiple , ktarg ∈ {1, 2, . . . , },
of h. Then, every ktarg:th latent variable is processed through the target network
to predict the target values in y. The weights in the latent mapping, drift and
diffusion networks as well as the target network can further be optimized to best fit
the target values in y [40]. Recalling from the VAE paradigm, this is similar to the
generative model of which the aim is to approximate the conditional distribution
p(y|z). Since this distribution, under the assumption that it exists, is unknown,
additional assumptions need to be made. This is presented in the following section.

2.2.4.1 Gaussian Approximation Assumption

Selecting an appropriate distribution for some data for which the true distribu-
tion is unknown can be complicated. However, as seen in both Section 2.2.1 and
Section 2.2.2, a common choice of approximation is the Gaussian approximation.
The Gaussian distribution is one of the most commonly used distributions within
machine learning and statistics and has proven to be effective in various different
methods [41]. One reason for its wide usage is due to its parameters (the mean
and the variance), being highly descriptive of the most fundamental properties of a
distribution. The mean, µ, and variance, σ2, correspond to the expectations

µ = E[y], σ2 = E[y2]− E[y]2,

for some Gaussian random variable y [41]. Recall that it is assumed that x(t) is
driven by an underlying unknown process for all t ∈ {0, . . . , T}. Further assume
that x(t) is a Gaussian vector. That is, a vector such that any linear combination of
its values is Gaussian distributed. Then, it follows that the conditional distribution
p(y(t)|x(t)) is also (multivariate) Gaussian for all t ∈ {1, . . . , h}. Recall that h is
the number of subsequential values from x(t). The aim is then to approximate the
parameters in this conditional distribution. That is, the conditional mean vector
µ(t) ∈ RDtarg and conditional covariance matrix Σ(t) ∈ RDtarg×Dtarg . This can be
done by using a Monte-Carlo (MC) approach.

More concretely, let z = {zt : t ∈ {0, . . . , Tsde}} be some generated latent vari-
able process and let ŷ(t) = LT (zt; ΘLT

) where t ∈ {0, . . . , h} be the output of the
model. In order to approximate µ(t) and Σ(t), a set of N output vectors {ŷn(t)}N

n=1
can be generated by simulating several latent variable variable paths, {zn}N

n=1 in
the model. From this set of outputs, the sample mean, µ̂(t) ∈ RDtarg , and sample
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covariance, Σ̂(t) ∈ RDtarg×Dtarg , can then be computed as

µ̂(t) = 1
N

N∑
n=1

ŷn(t), (2.46)

Σ̂(t) = 1
N − 1

N∑
n=1

(ŷn(t)− µ̂(t))(ŷn(t)− µ̂(t))T, (2.47)

for all t ∈ {1, . . . , h}. These can then be treated as estimates for the true conditional
mean vector and true conditional covariance matrix.

For a perfect MC approximation of which it is known that ŷ(t) belongs to the
same distribution as y(t), and that the samples {ŷn(t)}N

n=1 are independent and
identically distributed, it is implied by the strong law of large numbers that µ̂(t)
converges almost surely to E[y(t)], thus

lim
N−→∞

µ̂(t) w.p.1= E[y(t)],

where w.p.1 refers to ’with probability one’. Moreover, the root-mean-square error
(RMSE) of the estimate µ̂(t) is proportional to 1/

√
N implied by the central limit

theorem [42]. However, in this case when the set of outputs are generated from
the latent variable neural SDE framework, it is not guaranteed that ŷ(t) and y(t)
have the same distribution. The neural networks of the latent mapping, drift and
diffusion networks and the target target network may result in the estimates in
Equation (2.46) and (2.47) being biased. The bias is given as the difference between
the expectation of an estimator and the true value of the parameter that is being
estimated [43]. Thus, in this case, the parameter that is being estimated is the
mean vector of the true conditional distribution of all x(t). That is, E[y(t)] = µ(t).
Therefore, the bias of the estimator µ̂(t) of E[y(t)] is given as

E [µ̂(t)]− E [y(t)] .

Moreover, the bias is related to the mean-square-error (MSE) and as well as the
variance it the estimator µ̂(t) as

E
[
(µ̂(t)− E[y(t)])2

]
= Var[µ̂(t)] + (E[µ̂(t)]− E[y(t)])2, (2.48)

for t ∈ {1, . . . , h} and where the left hand side is the MSE of µ̂(t).

2.2.4.2 Optimization Procedure

In the previous sections, only a single sequence of observed values has been con-
sidered. However, during the optimization procedure of a machine learning model,
referred to as the training of the model, it is desired to have several sequences of both
input values and target values. To do this, let the total number of observations be
T , such that x(t) for t ∈ {1, . . . , T}. Let further h > 0 be the number of prediction
steps in the forecast. Then, the sequence of total observations is divided into D pairs
of subsequences of input and target values, denoted {x(d), y(d)} for d ∈ {1, . . . , D}.
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Let Tsub < T denote the number of input values in each subsequence, x(d). Then,
the number of input and target pairs of subsequences is the smallest positive integer
D := minc∈N{c = (T − Tsub)/h}. The input values in each subsequence can further
be obtained as x(d)(t) = x((d−1)h+t), where t ∈ {1, . . . , Tsub}. Similarly, the target
values in each subsequence can be obtained by taking the h consecutive values of
x(d), as y(d)(t) = x((d− 1)h + t) where t ∈ {Tsub + 1, Tsub + 1 + h}. An illustration
of dividing the observed sequence x(t) for t ∈ {1, . . . , T} in to pairs of subsequences
of input values and output values {x(d), y(d)} for d ∈ {1, . . . , D} is shown in Figure
2.3.

Figure 2.3: Dividing a sequence of observed data, x(t), for t ∈ {1, . . . , T} into D
pairs of subsequences of input data and target data, {x(d), y(d)} for d ∈ {1, . . . , D}.
Here, Tsub is the number of input values in each subsequence of and h is the number
of target values in the target. The time step between each subsequence of x is h.

The process of training a neural network is usually done through maximum likelihood
estimation. LetD denote the set of D number of pairs of subsequences such thatD =
{x(d), y(d)}D

d=1 of some observed data x(t) for t ∈ {1, . . . , T}. Under the Gaussian
assumption that the conditional distribution for each y(d)(t) for t ∈ {1, . . . , h},
conditioned on x(d)(Tsub) is multivariate Gaussian. Then the aim of the training
procedure is to optimize the weight matrices ΘL, Θf , Θg and ΘLT

in the model such
that the estimators, µ̂(d)(t) and Σ̂(d)(t) for each d ∈ {1, . . . , D} and t ∈ {1, . . . , h}
maximize the corresponding likelihood function for all y(d)(t) [44]. For the Gaussian
assumption, the likelihood function is

L(y(t), µ̂(t), Σ̂(t)) =
D∏

d=1

exp
(
−1

2(y(d)(t)− µ̂(d)(t))T(Σ̂)−1(y(d)(t)− µ̂(d)(t))
)

√
(2π)Dobs|Σ̂(d)(t)|

,

where y(t) = {y(d)(t)}D
d=1, µ̂(t) = {µ̂(d)(t)}D

d=1 and Σ̂ = {Σ̂(d)(t)}D
d=1 is the target

values, estimated mean vectors and estimated covariance matrices respectively for
t ∈ {1, . . . , h}. In practice however, for gradient based optimization methods, it
is more convenient to, instead of maximizing the likelihood, minimize the negative
log-likelihood (NLL) [45]. In this case, the objective instead becomes to minimize

LNLL(y(t), µ(t), Σ̂(t)) = − ln
[
L(y(t), µ̂(t), Σ̂(t))

]
, (2.49)
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for each t ∈ {1, . . . , h}. In this thesis, only data where Dobs = 1 is considered.
Hence for the sake of simplicity, let Dobs = 1. In this case, multivariate Gaussian-
assumption reduces to univariate and thus the assumed conditional distribution of
the input data is a univariate Gaussian. Therefore, the estimators are also univari-
ate. Thus, in this case, the NLL is reduced to

LNL(y(t), µ̂(t), σ̂2(t)) = − ln
[

D∏
d=1

pG(y(d)(t)|µ̂(d)(t), σ̂2(d)(t))
]

= − ln
 D∏

d=1

1√
2πσ̂2(d)(t)

exp −(y(d)(t)− µ̂(d)(t))2

2σ̂2(d)(t)


= −

D∑
d=1

ln
 1√

2πσ̂2(d)(t)
exp −(y(d)(t)− µ̂(d)(t))2

2σ̂2(d)(t)


= −

D∑
d=1

−(y(d)(t)− µ̂(d)(t))2

2σ̂2(d)(t) − ln σ̂2(d)(t)
2 − C

=
D∑

d=1

(y(d) − µ̂(d)(t))2

2σ̂2(d)(t) + ln σ̂2(d)(t)
2 + C,

(2.50)

where the constant C is neglected. The NLL in Equation (2.50) are then summed
for all t ∈ {1, . . . , h}. Updating the weights is done by a gradient-based optimiza-
tion methods such as stochastic gradient descent (SGD), Adam or other [45]. The
pseudocode for the learning procedure of this latent variable neural SDE framework
is shown in Algorithm 3.
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Algorithm 3: Learning procedure for the latent variable neural SDE framework
up until the loss is computed in the univariate case.
Data: D, Tsde, Nsde, h, N
Initialize L(·; ΘL), f ∗(·; Θf ), g∗(·; Θg), LT (·; ΘLT

);
Apply spectral normalization to Θf , Θg as in Equation (2.44);
∆tsde ← Tsde/Nsde;
ktarg ← Nsde/h;
for each x(d), y(d) ∈ D do

z0 ← L(x(d); ΘL);
ŷ← zero array of size N × h;
for n = 0, . . . , N do

z← zero array of size Nsde;
z(0)← z0;
ŷ(i) ← zero array of size h;
hi ← 0;
for k = 1, . . . , Nobs do

ξ ← randomly generated number from N (0, 1);
z← z(k − 1);
z(k)← z + f ∗(z; Θf )∆tsde + g∗(z; Θg)

√
∆tsdeξ;

if (k mod ktarg) = 0 then
ŷ(i)(hi)← LT (z(k); ΘLT

);
hi ← hi + 1;

end
end
ŷ(n)← ŷ(i);

end
µ̂← zero array of size h;
σ̂2 ← zero array of size h;
for t = 1, . . . , h do

µ̂(t)← 1
N

∑N
n=1 ŷ(n, t);

σ̂2 ← 1
N−1

∑
n=1(ŷ(n, t)− µ̂(t))2;

end
L ← ∑h

t=1 LNL(y(d)(t), µ̂(t), σ̂2(t));
end

2.3 Echo State Networks

Traditional RNNs are used in various applications such as medicine, linguistics, com-
puter vision, finance, physics amongst others and have empirically proven to be able
to learn temporal dependencies in data. However, there is only a partial success in
the training of these models as the backpropagation suffers from several limitations
such as the exploding and vanishing gradient problem. The latter is a consequence
of the backpropagation algorithm combined with the large amount of nested layers
required for longer time steps [5]. Therefore, since the weights are shared among
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the time steps of an input sequence and since they are updated based on the chain
rule, the gradients used in the optimization can vanish since product of many small
numbers tends to zero. Hence, if the gradients become sufficiently small, the weights
of the network are being updated with insignificantly small factors which leads to in-
significant improvements. A similar scenario can happen with exploding gradients.
If the gradients in the backpropagation are large, then their values explode since
the product of many large numbers tends to infinity. This results in the weights
just oscillating between large values between updates and hence leading to no im-
provement [46]. Even though the LSTM model was developed to approach both of
these problems, for long input sequences the issues remains. Further limitations in
training RNN’s are the computational costs due the large amount of parameters as
well as high risk of overfitting [5].

Reservoir computing (RC) is a subfield of machine learning methods that uses differ-
ent techniques to perform classification and regression on applications that involve
processing of temporal information (data which is time-sequential) and the ear-
liest known definition of a reservoir was presented in [47, 5]. The main part of
these methods is the reservoir, an excitable system of high-dimensional temporal
dynamics with fixed weights that process sequential data and outputs intermediate
activation states. These values are then further processed through a readout layer.
This readout layer contains the only weights subject to optimization and process the
intermediate activation states and outputs the desired predictions [46]. A schematic
illustration of this is shown in Figure 2.4.
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Figure 2.4: Schematic illustration of a reservoir computer consisting of a reservoir
with randomly initiated neurons which is sparsely connected and a readout layer of
trainable weights. Here, some input data X ∈ RD are fed into the reservoir where
each node (blue dots) represent the reservoir weight matrix. The arrows between two
nodes represent the non-zero element weight element at the corresponding position
of the two nodes. That is, the arrow between weight node i and node j represent
the weight element θij for all i, j ∈ [1, . . . , Dres] where Dres × Dres is the size of
the reservoir weight matrix. Hence, an arrow from a node into itself represent the
non-zero element in the diagonal at the corresponding position.

These models were developed as an alternative to traditional RNNs with the as-
set of faster training due to the fixed weights in the reservoir and also improved
representations of chaotic, nonlinear and dynamical data. A specific collection of
methods that belongs to the framework of reservoir computing are Echo State net-
works (ESNs). The schematic design of an ESN is similar to general RC models,
as shown in Figure 2.5. It consists of a reservoir with sparsely connected neurons,
followed by a readout layer. The weights that connect the input data to the reservoir
as well as the weights within the reservoir are fixed and are randomly initiated, usu-
ally uniformly or from a binomial distribution [5, 46]. When analyzing the change in
the weight values during the training of traditional RNNs of multiple layers, as done
in [48], it was showed that the most prominent changes were made in the weights
corresponding to the last output layers. This further encourage the use of such a
reservoir, apart from being less computationally expensive due to the fixed weights.
To define how the temporal information flows through an ESN, first let x(t) be a
time-dependent process where x(t) ∈ RDobs , t ∈ {0, · · · , T}. Then, the intermediate
activation states out of the reservoir are computed as

u(t) = γ · α (Θinx(t) + Θresu(t− 1)) + (1− γ)u(t− 1), (2.51)

where u(t) ∈ RDesn is the intermediate activation states, Θin ∈ RDesn×Dobs is the
input weights that connects the input process to the reservoir with Desn being its di-
mension, Θres ∈ RDesn×Desn is the reservoir weights, γ is a leakage rate that governs
how much information to be integrated between states and α being the activation
function, usually defined to either the tanh- or the sigmoid function. The inter-
mediate activation states u(t) are then fed into the readout layer which normally

29



2. Theory

is a linear neural network r(u(t); Θr) = αr(Θru(t) + br) with αr, Θr ∈ RDout×Desn ,
br ∈ RDout being the activation function, weight matrix and bias vector for the
readout layer respectively [6].

Figure 2.5: Schematic illustration of an echo state network of which some time-
dependent input data, x(t), for t ∈ [1, T ], are fed into the reservoir whose time-
dependent intermediate states, u(t), are computed. The last state u(T ) are then
being fed into the readout layer consisting of a linear layer which outputs the predicted
values yout.

There are several steps involved for constructing an ESN [5]. Firstly, in the initial-
ization of the input weights Θin, the input scaling parameter, ωin ∈ (0, 1], needs to
be specified such that each element, θij

in, in Θin is initiated as θij
in ∼ U(−ωin, ωin),

for all i, j ∈ [0, Desn], where U is the uniform distribution. The second step is to
first specify the spectral radius parameter, ρ, used to scale the weight matrix of the
reservoir, Θres, as

Θres = ρ · Θ̃res

|λmax(Θ̃res)|
, (2.52)

where Θ̃res is the initialized weight matrix of the reservoir which is uniformly initial-
ized, usually in the interval [−0.5, 0.5] and |λmax(Θ̃res)| is the spectral radius of Θ̃res,
that is, the maximum absolute eigenvalue of Θ̃res. The last step of the initialization
process of an ESN is to specify the sparsity parameter, β ∈ (0, 1), which governs
the proportion of elements of the reservoir weight matrix to be non-zero and then
randomly setting the remaining proportion of the elements in Θres to zero. The
spectral radius scaling in Equation (2.52) is performed in order to obtain the Echo
State property (ESP), also referred to the asymptotic stability property [5, 6, 49].
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2.3.1 Echo State Property
The ESP is an important property of the ESN which states that the reservoir will
asymptotically remove the impact from initial conditions. To define the ESP, as
according to [50], first let X be the compact set of observed data, x(t) ∈ X ⊂ RN

for all t ∈ Z and let U be the compact set of intermediate states, u(t) ∈ U ⊂ RD.
Moreover let A : X × U −→ U be such that

u(t) = A(x(t), u(t− 1)) = α(Θinx(t) + Θresu(t− 1)). (2.53)

The compactness of U is guaranteed when the activation function, α(·), is bounded
such as tanh-function [50]. In practice, the input will also be bounded hence the com-
pactness of X is assumed to hold. Then, let U∞ := {u∞ = (u(0), u(1), . . . )|u(t) ∈
U , for all t ≥ 0} and X∞ := {x∞ = (x(0), x(1), . . . )|x(t) ∈ X , for all t ≥ 0} be the
positive infinite state and input sets respectively. Then, with the use of Definition
2.1, the ESP is defined as in Definition 2.2, as according to [50].

Definition 2.1. If u(t) = A(x(t), u(t−1)) for all t ≥ 0, then u∞ is compatible with
x∞.

Definition 2.2. The mapping A : X ×U −→ U as given in Equation (2.53) possess
the Echo State property with respect to X if and only if there exists a null sequence
(δt)t≥0 such that for all u∞, y∞ ∈ U∞ that are compatible with all x∞ ∈ X∞, it
holds that ||u(t)− y(t)|| ≤ δt for all t ≥ 0.

In Definition 2.2, the null sequence (δt)t≥0 is referred to a sequence such that for
every ϵ > 0, there exists some N ∈ N such that |δt| < ϵ when t ≥ N [51]. By
scaling the initialized weight matrix of the reservoir as in Equation (2.52) such that
|λmax(Θres)| < 1, the ESN satisfies the ESP, as according to [50] and [52].

2.3.2 Long-Short Echo State Networks
To further improve the performance of ESNs, [6] proposed an ensemble of ESNs
called Long-Short Echo State Networks (LS-ESNs). Specifically, the LS-ESN con-
sist of three different ESNs, a long ESN, a short ESN and a traditional ESN. Each
with different recurrent connections, such that each of them process different time
steps of the intermediate activation states. This demonstrated to yield improved
prediction performance when tested on various data of both synthetically generated
and real-world applications [6]. The long ESN aims to capture long-time depen-
dencies through skip connections of length k. Mathematically, the intermediate
activation states for the long ESN, ulong(t), is therefore defined as

ulong(t) = γ · αlong(Θinx(t) + Θresulong(t− k)) + (1− γ)ulong(t− k), (2.54)

where k is the length of the skip connection, x(t) ∈ RN is the time-sequential input
process for t ∈ [0, T ], γ is the leakage rate, Θin ∈ RD×N , Θres ∈ RD×D is the
input and reservoir weight matrices respectively and αlong being the corresponding
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activation function. The short ESN aims to capture the short-term dependencies by
only considering the m last historical states [6]. The intermediate activation states
for the short ESN, ushort(t), is defined as

ushort(t) = γ · αshort(Θinx(t) + Θresushort(t− 1)) + (1− γ)ushort(t− 1), (2.55)

where i ∈ [t − m, t] is the m historical time steps and αshort is the corresponding
activation function. The intermediate activation states from the traditional ESN,
long ESN and short ESN, given by Equation (2.51), (2.54) and (2.55) respectively,
are then concatenated as U(t) = (u(t), ulong(t), ushort(t)) ∈ R3D of which then is
being fed into the readout layer r(U(t), Θr) = αr(ΘrU(t) + br) where αr is the
activation function, Θr ∈ RDout×3D is the weight matrix and br ∈ RDout is the bias
vector. A schematic illustration of the LS-ESN model is shown in figure 2.6.

Figure 2.6: Schematic illustration of a LS-ESN model with k = 2 and m = 3
for which time-sequential input data is fed into each of the three ESNs whose final
intermediate states, ulong(T ), u(T ) and ushort(T ), are concatenated before being fed
into the readout layer, set to be a linear layer, and producing yout.

2.4 Evaluation metrics
In order to measure how well the models perform, appropriate evaluation metrics
need to be defined. For the task of forecasting, an important property to evaluate
is the accuracy of the forecast predictions. That is, how close the predictions are
compared to the true target values [53]. For accuracy, a common evaluation metric
in forecasting tasks is the Root Mean Square Error (RMSE), between the predicted
output and the true value. For D number of predictions, µ̂(t) = {µ̂(d)(t)}D

d=1 of D
number of target values, y(t) = {y(d)(t)}D

d=1, the RMSE is defined as

RMSE(µ̂(t), y(t)) =

√√√√ 1
D

D∑
d=1

(µ̂(t)(d) − y(d)(t))2. (2.56)

Another evaluation metric that is used to measure the accuracy in forecasting tasks
in machine learning is the coefficient of determination (R2) metric [53]. The R2
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metric measures the square of correlation between the predictions and the target
values. Mathematically, R2 is defined as

R2(y(t), µ̂(t)) = 1−
D∑

d=1

(y(d)(t)− µ̂(d)(t))2

(y(d)(t)− ȳ(t))2 , (2.57)

where ȳ(t) is the mean of all the true values in y. Thus, R2 ∈ [0, 1] where R2 = 0
refers to zero correlation between the predicted and true values and R2 = 1 refers
to perfect correlation.

Moreover, the performance of a model can also be evaluated based on how well-
calibrated it is. As according to [54], a forecast model is well-calibrated if for any
p ∈ [0, 1] then

D∑
d=1

I{y(d)(t) ≤ F −1(p; µ̂(d)(t), σ̂2(d)(t))}
D

−→ p, as D −→∞, (2.58)

where D is the number of prediction and target values, I is the indicator function
and F −1 is the Gaussian quantile function. The left term in Equation (2.58) is,
as according to [9], referred to as the empirical coverage probability denoted by
E(p, y(t), µ̂(t), σ̂2(t)). For cases when having uneven data distribution, using the
empirical coverage probability as a calibration error may be inaccurate since the
quantile deviation with higher confidence is more important than with lower confi-
dence. Therefore, [9] proposed the confidence-weighted calibration error (CWCE)
to approach this issue, defined as

CWCE(y(t), µ̂(t), σ̂2(t)) =
n∑

i=1
pi · |E(pi, y(t), µ̂(t), σ̂2(t))− pi|, (2.59)

where pi ∈ [0, 1] for all i ∈ {1, · · · , n}. Furthermore, in this thesis, the aim is to min-
imize the prediction predictive variance, σ̂2(t) = {σ̂2(d)(t)}D

d=1, while still covering
the true values, y(t). This is referred to as the concentration of the predictive dis-
tribution and is a measure of the forecasting sharpness, as according to [9]. Howver,
the accuracy and calibration have often been evaluated seperately, but [9] proposed
a combined metric for evaluation of accuracy and calibration, called R-CWCE. The
R-CWCE metric is defined, as according to [9], as

R-CWCE(y(t), µ̂(t), σ̂2(t)) = CWCE(y(t), µ̂(t), σ̂2(t)) ·
D∑

d=1

(y(d)(t)− µ̂(t))2

(y(i)(t)− ȳ(t))2 .

(2.60)
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Methods

This chapter presents the methodology used in this thesis, where the first section
describes the architecture of the models as well as presenting how the data is pro-
cessed in these models. The second section presents what experiments that were
conducted in this thesis and how they were executed. The results of these experi-
ments are presented in Chapter 4 and discussed in Chapter 5.

3.1 Model architectures
Before describing which experiments were conducted and how they were performed,
the framework used for these experiments needs to be defined. In this thesis, three
main models are used. This section will present the architecture of each model. The
models were implemented using the PyTorch framework in Python and the training
procedure was done using the Adam optimizer1.

3.1.1 LSTM-SDE Model Architecture
The first model is a latent variable neural SDE with a LSTM network as latent
variable mapping. This model is denoted LSTM-SDE and is illustrated in Figure
3.1. For the LSTM-SDE model, the observed time-sequential data of dimension
Dobs = 1 is fed to a single layer LSTM network of dimension DLST M , meaning that
the observed data is mapped from RDobs to RDLST M inside the LSTM network. The
mapped observed data is then mapped to the initial latent variable, z0 ∈ RDlat ,
through a linear layer that maps RDLST M to RDlat . The initial latent variable is then
fed to a latent variable neural SDE framework as presented in Section 2.2.4, referred
to as a SDE block. The SDE block generates N latent variable paths of the form
{z0, . . . , zNsde

}, where z(0) = z0, and Nsde denotes the number of latent variables in
each latent variable path. This is done using the EM method, as presented in Sec-
tion 2.1.3, with the drift and diffusion networks f ∗ and g∗. Each of these networks
consists of a two-layer neural network where the first layer maps RDlat to R2Dlat and
the second one maps R2Dlat back to RDlat . The activation function for both f ∗ and
g∗ is the tanh-function.

Each latent path is generated with a discretization step size ∆tsde = Tsde/Nsde

for some Tsde > 0. Consider the case where the number of latent variables in each
path, Nsde, is greater than the number of target values, Ttarg. To match the number

1For further information of the PyTorch framework, the reader is referred to [55].
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of latent variables with the number of target values, every ktarg:th latent variable
is stored into a new vector of latent variables where ktarg = Nsde/Ttarg. Hence, a
vector of the values {zktarg , z2ktarg , . . . , zTtargktarg} from each latent variable path is
obtained. Each of these vectors are then fed to a layer that maps from Dlat to
Dtarg = 1, referred to as the target path layer. The target path layer produces a
target path {ŷ(1)(i), ŷ(2)(i), . . . , ŷ(Ttarg)(i)} for i = 1, . . . , N . The activation func-
tion for this target path layer is the tanh-function. From these target paths, the
estimates, µ̂(t) and σ̂2(t), are computed for each t ∈ {1, . . . , Ttarg}.

Figure 3.1: Graphical illustration of the LSTM-SDE model.

3.1.2 ESN-SDE Model Architecture

The second model (used in this thesis) is a latent variable neural SDE model with
an Echo State network as latent variable mapping. This model is denoted ESN-SDE
and is illustrated in Figure 3.2. In the ESN-SDE model, the observed data is fed
into a traditional ESN whose reservoir is of dimension Dres. The last intermediate
activation state of the ESN is then fed into a linear layer that maps from RDres

to RDlat from which the initial latent variable, z0, is produced. The initial latent
variable is then fed into the SDE block similar to the LSTM-SDE model from which
the predictive mean and variance are computed.
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Figure 3.2: Graphical illustration of the ESN-SDE model.

3.1.3 LS-ESN-SDE Model Architecture

The third and last model used is similar to the ESN-SDE model in the previous
section, but is instead using a Long-Short ESN as latent variable mapping. This
model is denoted LS-ESN-SDE and is illustrated in Figure 3.3. The information
flow for the LS-ESN-SDE model is similar to the ESN-SDE model.

Figure 3.3: Graphical illustration of the LS-ESN-SDE model.

3.2 Experiments

This section describes the experiments that were conducted in this thesis, what
data was used and the configuration of the models. The results for each of the
experiments is presented in Chapter 4.
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3.2.1 Conditional Distribution Approximation

By recalling that the models presented in Section 3.1, outputs estimates the predic-
tive mean and the predictive variance under a Gaussian-assumption. It is therefore
motivated to investigate how good these estimates actually approximate the true
conditional mean and conditional variance of some data with known conditional
distribution. Therefore, given some data with known solutions, the first experi-
ment conducted, aimed towards studying the quality of the model approximations
of conditional distributions compared to the true conditional distribution. For com-
parison, each of the models LSTM-SDE, ESN-SDE and LS-ESN-SDE was compared
to the Cubature Integration Sigma-Point Approximation (CISPA) method presented
in Section 2.2.1, as well as the Free-Energy Approximation (FEA) method presented
in Section 2.2.2. Furthermore, the quality of the approximations for each of the mod-
els was measured based on the Jensen-Shannon Distance (JSD) between the true
solution and the approximations. This was implemented using the SciPy package
in Python. Moreover, the data used for this experiment was a Geometric Brownian
Motion (GBM). The reason for using a GBM is its common usage in stock price
modeling, as mentioned in Section 2.1.2. Hence, for this thesis, this process is of
particular interest. Moreover, since if the approximations of the conditional mean
and conditional variance are poor only for one step, then they will most likely also
be poor for larger number of time steps. Therefore, the approximations of the con-
ditional distribution were only performed for a single consecutive time step.

The parameters used for the GBM were µ = 0.05 and σ = 0.5 with an initial value
of x(0) = 0.5. The process was generated with n ∈ {1, · · · , 100} data points with a
discretization step size of ∆t = 0.1. The LSTM-SDE, ESN-SDE, LS-ESN-SDE and
FEA models were trained on the first 99 values and tested at x(100). The data used
is shown in Figure 3.4.

Figure 3.4: Geometric Brownian motion with µ = 0.05, σ = 0.5, x0 = 0.5,
∆t = 0.1, n ∈ {0, . . . , 100}.

The approximations were compared to the true conditional distribution of the GBM
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which, by recalling to Section 2.1.3, are

E[x(t + ∆t)|x(t)] = x(t)e(µ+ σ2
2 )∆t

Var[x(t + ∆t)|x(t)] =
(

x(t)e(µ+ σ2
2 )∆t

)2 (
eσ2∆t − 1

)
,

where in this case, t = 99 and ∆t = 1. The hyperparameters used for the LSTM-
SDE, ESN-SDE and LS-ESN-SDE are shown in Appendix A.1.

For the CISPA method, following the notations as presented in Section 2.2.1, the
sigma-points and corresponding weights were

ξi = ±1, W (i) = 1
2 , i ∈ {1, 2}. (3.1)

This implied the following equations for the conditional mean and conditional vari-
ance

dm(t|s)
dt

= 1
2

(
m(t|s)−

√
S(t|s)

)
µ + 1

2

(
m(t|s) +

√
S(t|s)

)
µ, (3.2)

and
dS(t|s)

dt
=
√

S(t|s)
(

m(t|s)−
√

S(t|s)
)

µ−
√

S(t|s)
(

m(t|s) +
√

S(t|s)
)

µ

+ 1
2

(
(m(t|s)−

√
S(t|s))σ

)
+ 1

2

(
(m(t|s) +

√
S(t|s))σ

)
,

(3.3)

with the initial conditions
m(0) = x(s), S(0) = 0. (3.4)

These were solved using Euler’s method for ODEs with x(t) = x(99) = 0.4495 as
starting point and a step size of ∆tS = 10−5.

For the FEA method, following the notations as presented in Section 2.2.2, Σ was
set to be equal to σ2 and the drift of the hidden process was set to be the same as the
drift for the GBM. That is, dz(tn) = µz(tn)dt+σ2dW (tn), with x(tn) ∼ N (z(tn), r2),
where the noise parameter was set to r = 0.1. In this setting, this implies that Eobs

and Esde evaluate into

Esde(tn) =1
2
〈
f(z(tn), tn)− g(z(tn), tn))TΣ−1(f(z(tn), tn)− g(z(tn), tn))

〉
q

= 1
2σ2

〈
(µz(tn) + A(tn)z(tn)− b(tn))2

〉
q

=(A(tn) + µ)2

2σ2 ⟨z(tn)2⟩q −
(A(tn) + µ)b(tn)

σ2 ⟨z(tn)⟩q + b(tn)2

2σ2

=(A(tn) + µ)2

2σ2 (m(tn)2 + S(tn))− (A(tn) + µ)b(tn)m(tn)
σ2 + b(tn)2

2σ2 ,

and

Eobs(tn) =1
2
〈
(x(tn)− z(tn))Tr−2(x(tn)− z(tn))

〉
q

+ C

= 1
2r2 ⟨(x(tn)− z(tn))2⟩q + C

= 1
2r2

(
(m(tn)2 + S(tn))− 2x(tn)m(tn) + x(tn)2

)
+ C.
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In the above evaluations, the fact that ⟨z(tn)2⟩q = m(tn)2 + S(tn) is used and C is
a constant. This yields the following gradients of Eobs and Esde as

dEsde

dA
(tn) = A(tn) + µ

σ2 (m(tn)2 + S(tn))− b(tn)m(tn)
σ2 (3.5)

dEsde

db
(tn) = b(tn)

σ2 −
(A(tn) + µ)m(tn)

σ2 (3.6)

dEsde

dm
(tn) = (A(tn) + µ)2m(tn))

σ2 − (A(tn) + µ)b(tn)
σ2 (3.7)

dEsde

dS
(tn) = (A(tn) + µ)2

2σ2 (3.8)

dEobs

dm
(tn) = m(tn)

r2 − x(t)
r2 (3.9)

dEobs

dS
(tn) = 1

2r2 . (3.10)

These were implemented in the FEA algorithm described in Section 2.2.2. Moreover,
the initial conditions were set to be m(0) = 0 and S(0) = 0. The gradient step size
was set to η = 0.1 and the algorithm was iterated for 100 iterations. Furthermore,
the number of discretization steps was set to K = 105 such that the discretization
step was ∆tfea = T/K = 10/105 = 10−4. The parameters of the FEA method was
updated on the training data and was then tested on the test data in the Figure
3.4, as according to the algorithm described in Section 2.2.2.

After having approximated the conditional mean and the conditional variance, and
obtained a predictive mean and predictive variance from the models at x(s), the
approximated densities were sampled by generating 105 Gaussian random variables
with the approximated parameters. The same was done for the true distribution
with the known mean and variance. Finally, the JSD was then computed using the
SciPy package in Python on these generated random variables. The results of the
transition density approximation are given in Section 4.1

3.2.2 Forecasting
Since the aim of this thesis was to use the models to predict future data values based
on historical data values, the models’ ability to do such forecasts were investigated.
Hence, the final experiments conducted was to from some observed data. For this
purpose, three different sets of data were used. For the first data set, referred to
as the trivial test case, the data was generated from a GBM. For the last two data
sets, real-world stock price data was used. These are therefore referred to as the
real-world test cases. The motivation for performing experiments on the trivial data
is to investigate the models’ ability to forecast longer time steps ahead of a GBM
and see if the uncertainty of the models’ coincide with the uncertainty of the GBM.
For the real-world test cases, a set of 100 different stocks was used, all from the
same industry class of the Global Industry Classification Standard (GICS), namely
the class of 1510. This data was provided by the company. The aim of the first
experiment using the real-world data was to investigate the forecasting performance
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on a sample stock that was randomly selected among the 100 stocks that were
available. The aim of the second experiment using the real-world data used all
of the 100 available stocks. The reason for using all of the stocks was to obtain
a more general investigation of the forecasting performance of the models as the
performance may vary a lot depending on what stock is being investigated.

3.2.2.1 Trivial test case

For the trivial test case, the data used was a GBM with parameters µ = 0.01, σ = 0.1
and with the initial value of x0 = 0.1. It was further generated for n ∈ {1, . . . , 5000}
with discretization step of ∆t = 0.1. Moreover, the data was divided into a training
and test set using a 80/20 split ratio. The data of the GBM is shown in Figure 3.5.

Figure 3.5: Data of the GBM used for the trivial test case for tn = n∆t where
n ∈ {1, . . . , 5000} and ∆t = 0.1 and divided into a train set (blue) and a test set
(green) with a 80/20 split ratio.

The forecasting was performed using 10 historical time steps and 10 steps ahead
were predicted.

Each model was trained on the train set in three different training periods, each
with decreased learning rate. This was done in order to avoid learning plateaus and
getting stuck in local minima. For each of the models, the Adam optimizer was used
with a weight decay of 10−3. The loss function used was the NLL loss function as
described in Section 2.2.4.1. The hyperparameters used for the LSTM-SDE, ESN-
SDE and the LS-ESN-SDE models for are given Appendix A.2.1. Furthermore,
the models was benchmarked against a traditional machine learning model, namely
a standard LSTM network. The hyperparameters used for the standard LSTM
for each test case is given in Appendix A.2.1. The evaluation metrics used for
measuring the forecast performance was the Root Mean Squared Error (RMSE)
and the coefficient of determination (R2) for measuring the accuracy of predictions
as well as the R-CWCE for a combined evaluation measure of the accuracy and the
calibration of the models. These metrics were previously presented in Section 2.4.
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3.2.2.2 Real-world test cases

To investigate how the models perform in a real-world scenario, data over stock
prices from 100 different stocks was used. These were randomly selected with the
criteria that the time period of available data was the same for each stock. In
this experiment, daily stock prices in an approximately 10 year time period from
2012 − 03 − 01 to 2022 − 02 − 18 were used, resulting in 2551 time steps. The list
of each stock used is listed in Appendix B.

For the first real-world test case, the forecasting performance of the stock prices
from a single stock was investigated using each of the LSTM-SDE, ESN-SDE and
LS-ESN-SDE models. This single stock was randomly selected among the 100 avail-
able stocks and the stock used was the stock with ticker name APD. For this exper-
iment, predictions were made for 10 time steps ahead and using 10 historical time
steps. Moreover, the data was normalized as

Norm(x) = x−min (x)
max (x)−min (x) , x ∈ R, (3.11)

which was performed using the MinMaxScaler module in the Scikit-learn package in
Python. After normalization, the data was also divided into a 80/20 train/test ratio
split. The data over the stock price for the APD stock used in the first real-world
test case is shown in Figure 3.6.

Figure 3.6: Stock prices of the APD stock for 2551 days of data in the time period
2012-01-03 to 2022-02-18 used for the single stock test case of real-world data with
a 80/20 split of the train (blue) and test (green) data.

Moreover, similarly as for the trivial test case, the training procedure for each of
the LSTM-SDE, ESN-SDE and LS-ESN-SDE models consisted of three training
periods, each with a decreased learning rate. Furthermore, the Adam optimizer
was used with a weight decay of 10−3 and the loss function was the NLL function
described in Section 2.2.4.1. The hyperparameters used for the LSTM-SDE, ESN-
SDE and the LS-ESN-SDE models for each test case are given Appendix A.2.2.
For benchmarking, both a traditional LSTM and a GBM process were used. For
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the GBM method, the parameters were estimated as described in Section 2.1.2 in
Equation (2.10), as

µ̂(d) =
s−1∑
i=0

S(d)(i + 1)− S(d)(i)
S(d)(i)

σ̂(d) =

√√√√ 1
s− 1

s−1∑
i=0

(
S(d)(i + 1)− S(d)(i)

S(d)(i) − µ̂(d)

)2

,

where s denotes the number of historical time steps, that is s = 10, and S(i) de-
notes the (normalized) stock price at each time i ∈ {0, . . . , s}. After the parameters
had been estimated, 100 simulated paths of the GBM were produced using the EM
method described in Section 2.1.3. The step size of the discretization was set to
10−5 for predicting 10 days ahead and thus resulting in each simulated path having
106 number of data points. The predictions were then set as the mean of the final
values from all of the 100 simulated paths, where the variance was also computed.

As previously mentioned, for the second experiment for the real-world test cases,
data over the stock prices from all of the 100 stocks were used. The procedure
was that for each of the LSTM-SDE, ESN-SDE and LS-ESN-SDE models, data
from all of the stocks for each time period was used in each sample. More specif-
ically, by letting {S(t − s)}t∈T denote the historical stock prices for each stock
such that S(t) ∈ R100 for each historical time period {t − s, . . . , t}, for t ∈ T and
T = {s, s + 1, . . . , 2551} where s ∈ N denotes the number of historical time steps
used. Hence, each sample used in the train and test sets consisted of data from all of
the stocks in that the current time period. Thus, resulting in one model trained on
all of the 100 stocks, for each of the LSTM-SDE, ESN-SDE and LS-ESN-SDE mod-
els respectively. The reason for training the models on the data from all of the stocks
simultaneously is that in practice, having one model per stock is highly insufficient
as it requires much memory to store the trained models. Hence, it is often desired to
have one model for a large set of data. Therefore, motivated by practical purposes,
the models were trained and evaluated on data from all of the stocks simultaneously.

Moreover, to also investigate the models’ ability to forecast longer time periods,
each of the models were trained and tested for different time step predictions. More
specifically, the models were investigated in predicting 10, 20, 30 and 40 time steps
ahead using 10, 20, 30 and 40 historical time steps respectively. The models were
evaluated using the mean of the RMSE scores for each stock. Since the value of the
stock price can vary a lot between stocks, the RMSE scores were computed from
evaluating on the normalized test data. Moreover, to analyze how the forecasting
performance changed for a growing number of time steps predicted, a linear least
squares fit was performed on the RMSE scores between the time steps for each of the
model. This provided a relation between the mean RMSE scores and the number of
time steps predicted for each model as

RMSEM(Ttarg) ≈ α + βTtarg,

where Ttarg is the number of predicted time steps and α and β is the residual and
coefficient of the linear least square fit. This was implemented using the optimization
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module in the SciPy package in Python. Similarly to the previous experiment for
the single stock, a traditional LSTM model as well as a GBM method was used as
benchmark, where the same procedure as in the previous experiment was performed
for each stock. Furthermore, parameter configuration for the LSTM-SDE, ESN-SDE
and LS-ESN-SDE as well as the LSTM model was also the same as in the single
stock experiment. The results of the experiments conducted on the real-world stock
data presented above are given in Section 4.2.2.
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This chapter presents the results of the experiments described in Section 3.2. The
analysis and discussion about the results are given in Chapter 5.

4.1 Conditional distribution approximation

The results of the JSD measures for approximating the conditional distribution of
the GBM presented in Section 3.2.1 for the LSTM-SDE model compared to the
Cubature Integration Sigma-Point Approximation (CISPA) and the Free-Energy
Approximation (FEA) method is shown in Figure 4.1. Moreover, the resulting
distributions from the approximated parameters for the ESN-SDE model and the
LS-ESN-SDE model compared the FEA and CISPA methods are shown in Figure
4.2a, 4.2b and 4.2c respectively.

Figure 4.1: The Jensen-Shannon distances between the approximate and true con-
ditional distributions from generating 105 Gaussian random variables of the param-
eters obtained from the LSTM-SDE, ESN-SDE, LS-ESN-SDE, CISPA and FEA
methods.
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(a) Results for the LSTM-SDE model
compared to the CISPA and FEA meth-
ods.

(b) Results for the ESN-SDE model
compared to the CISPA and FEA meth-
ods.

(c) Results for the LS-ESN-SDE model
compared to the CISPA and FEA meth-
ods.

Figure 4.2: The results of density plots estimated from generating 105 Gaussian
random variables with parameters obtained for the LSTM-SDE model in (a) ESN-
SDE model in (b) and LS-ESN-SDE model in (c), each compared to the CISPA and
FEA methods for the GBM.

4.2 Forecasting

The following section presents the results for the forecasting task described in Section
3.2.2. The results for the trivial test case are first presented, followed by the results
on the real-world test cases of the stock data.

4.2.1 Trivial test case
The results of the forecasts for the trivial test case as described in Section 3.2.2.1
are shown in Figure 4.3a, 4.3b, 4.3c and 4.3d for the traditional LSTM, LSTM-SDE,
ESN-SDE and the LS-ESN-SDE models respectively.
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(a) Predictions for the traditional LSTM
model for the trivial test case.

(b) Predictions for the LSTM-SDE
model for the trivial test case.

(c) Predictions for the ESN-SDE model
for the trivial case.

(d) Predictions for the LS-ESN-SDE
model for the trivial test case.

Figure 4.3: Predictions of the forecast for the trivial test case when predicting 10
time steps ahead and using 10 historical time steps for the traditional LSTM model
in (a), LSTM-SDE model in (b), ESN-SDE model in (c) and the LS-ESN-SDE
model in (d).

Moreover, the corresponding scores of the evaluation metrics for each model of the
trivial case are shown in Table 4.1

Table 4.1: Scores of the evaluation metrics from the predictions when predicting 10
steps ahead using 10 historical time steps of the trivial test case for the traditional
LSTM, LSTM-SDE, ESN-SDE and LS-ESN-SDE model. The best value for each
metric is shown in bold.

LSTM LSTM-SDE ESN-SDE LS-ESN-SDE
RMSE 0.0411 0.0336 0.0329 0.0320

R2 0.9311 0.9475 0.9477 0.9507
R-CWCE - 0.0737 0.0436 0.0736

4.2.2 Stock data
The results of forecasting the APD stock prices for 10 steps ahead using 10 historical
time steps for the traditional LSTM model, GBM method and the LSTM-SDE, ESN-
SDE and LS-ESN-SDE models as described in Section 3.2.2.2, are shown in Figure
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4.4a, 4.4b, 4.4c, 4.4d and 4.4e respectively.

(a) Forecast results on the APD stock for
the traditional LSTM model.

(b) Forecast results on the APD stock for
the GBM method.

(c) Forecast results on the APD stock for
the traditional LSTM-SDE model.

(d) Forecast results on the APD stock for
the traditional ESN-SDE model.

(e) Forecast results on the APD stock for
the traditional LS-ESN-SDE model.

Figure 4.4: Forecast results on the APD stock prices when predicting 10 time
steps ahead using 10 historical time steps for the traditional LSTM model (a), GBM
method (b), LSTM-SDE (c), ESN-SDE (d) and the LS-ESN-SDE (e) models.

Moreover, the scores of the evaluation metrics for each of the models are shown in
Table 4.2.
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Table 4.2: Scores of the evaluation metrics from the predictions when predicting
10 steps ahead using 10 historical time steps of APD stock prices for the traditional
LSTM model, GBM method and the LSTM-SDE, ESN-SDE and LS-ESN-SDE mod-
els. The best value for each metric is shown in bold.

LSTM GBM LSTM-SDE ESN-SDE LS-ESN-SDE
RMSE 0.0703 0.0546 0.0402 0.0408 0.0393

R2 0.5460 0.6555 0.7930 0.7983 0.8103
R-CWCE - 1.5429 1.2972 2.1392 1.7490

The results of the mean RMSE scores for the LSTM-SDE, ESN-SDE and LS-ESN-
SDE models as well as the traditional LSTM and the GBM method when predicting
10, 20, 30 and 40 time steps ahead using 10, 20, 30 and 40 historical time steps
respectively for the data from all of the 100 stock prices are shown in Figure 4.5.

Figure 4.5: Mean RMSE scores for the LSTM-SDE, ESN-SDE and LS-ESN-SDE
model benchmarked against a traditional LSTM model and the GBM method for the
100 stocks when predicting 10, 20, 30 and 40 time steps ahead and equivalent amount
of historical steps respectively.

The results of the linear least squares of the change in the mean RMSE scores
between the number of predicted time steps for the LSTM-SDE, ESN-SDE, LS-
ESN-SDE models as well as the traditional LSTM and GBM method is shown in
Table 4.3.

Table 4.3: Results of the linear least squares of the change in the mean RMSE
scores between the number of predicted time steps of the LSTM-SDE, ESN-SDE,
LS-ESN-SDE, traditional LSTM and the GBM model.

LSTM GBM LSTM-SDE ESN-SDE LS-ESN-SDE
β 0.001087 0.001776 0.001396 0.001408 0.001439
α 0.04601 0.02994 0.01834 0.01693 0.01485

49



4. Results

50



5
Discussion

The following chapter presents a discussion about the results from Chapter 4.

5.1 Conditional distribution approximation
The results of the conditional distribution approximation of the GBM described in
Section 3.2.1 shows that the LSTM-SDE, ESN-SDE and LS-ESN-SDE achieves good
approximations of the parameters of the conditional distribution of the GBM. As
shown in Figure 4.2a, the LSTM-SDE appears to be slightly shifted compared to the
true distribution whereas the ESN-SDE in Figure 4.2b seems to be more centered
around the true conditional mean. Similarly, the LS-ESN-SDE in Figure 4.2c seems
to also be centered around the true conditional mean. Moreover, all three of the
LSTM-SDE, ESN-SDE and LS-ESN-SDE models obtains a better approximation
than the FEA method which appears to be both slightly shifted and have a higher
variance than the conditional distribution as it has a lower peak. This could be
explained by the construction of the FEA method as the diffusion part of the model
is constant. As this is not the case for a GBM, whose diffusion term are dependent
on the current value of the process itself, this could explain why the FEA method
achieves a worse performance than the other models.

From the Jensen-Shannon distances in Figure 4.1, the ESN-SDE obtains the low-
est score of 0.0784. As the peak of the distribution from the parameters of the
ESN-model is higher than the peak with the true parameters, it would suggest a
higher JSD score compared to the CISPA method. However, the distribution from
the parameters of the CISPA method do show a slightly shifted mean than the true
solution. As the peak of the distribution from the ESN-SDE model shifts at the
top to a higher value, this could indicate that the mean of the ESN-SDE model is
actually closer to the true mean. This could explain the lower JSD score for the
ESN-SDE model compared to the CISPA method. Moreover, it is also seen that
each of the three LSTM-SDE, ESN-SDE and LS-ESN-SDE models’ achieved a lower
JSD score than the FEA method. This coincide with the result in Figure 4.2a-4.2c.
These results indicates that the LSTM-SDE, ESN-SDE and the LS-ESN-SDE ob-
tains better approximations of the true parameters in the conditional distribution
of the GBM than the FEA method. They further obtain approximations of the
true parameters that are similar to the CISPA. As the conditional distribution is
Gaussian, the CISPA method should be able obtain close to exact approximations.
This further suggest the same for the LSTM-SDE, ESN-SDE and the LS-ESN-SDE
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models.

5.2 Forecasting
The following section discusses the results of the forecasting experiments described
in Section 3.2.2 of which the results of the trivial test case is first discussed followed
by the discussion of the results on the real-world test cases.

5.2.1 Trivial test case
From the results in Table 4.1, it is shown that the LS-ESN-SDE achieved the lowest
RMSE score as well as the lowest R2 score among the four models’. This suggest that
the LS-ESN-SDE is the most accurate in its predictions in forecasting the GBM.
By comparing the RMSE scores between the LSTM-SDE, ESN-SDE and LS-ESN-
SDE, it shows that the ESN and the LS-ESN provides more accurate predictions
than when using a LSTM network and a ESN network for the latent mapping. This
coincides with the result from the related studies of the LS-ESN. Moreover, all three
of the LSTM-SDE, ESN-SDE and the LS-ESN-SDE achieves better performance in
accuracy than the traditional LSTM in both the RMSE and R2 values. This further
suggests that the latent variable neural SDE framework do obtain predictions that
are more correlated to the target values than the LSTM model.

It is further shown that the ESN-SDE obtains the lowest R-CWCE value compared
to the LSTM-SDE and the LS-ESN-SDE. Since the R-CWCE metric is a measure
of both the accuracy and the calibration of the models’, this result suggest that the
ESN-SDE obtains the best overall description of the data. Furthermore, it is shown
in Figure 4.3b-4.3d that each of the LSTM-SDE, ESN-SDE and the LS-ESN-SDE
obtain a predictive variance similar to the true conditional variance of the GBM.
Comparing this with the result from the previous experiment where only one step
ahead was considered. The result here therefore indicates that, even for longer time
steps ahead, the models’ are able to obtain a relatively close approximation of the
true conditional variance. That is, for a GBM.

5.2.2 Stock data
The results of forecasting the stock prices of the APD stock, as presented in Section
4.2.2, shows that the traditional LSTM model provide less accurate predictions than
the other four models. The LSTM achieves a RMSE of 0.0703 and a R2 score of
0.5460 as shown in Table 4.2. Compared to the results in forecasting the data from
a GBM, where the R2 score was 0.9081, this is a significant reduction in accuracy.
Moreover, the GBM method achieves a better accuracy in predictions than the tra-
ditional LSTM, but obtains a vary volatile variance. This could be explained from
the data of the stock prices as shown in Figure 3.6 in Section 3.2.2. There, it is seen
that time period for when the GBM obtains a very high variance, do coincide with
drastic changes in the data of the stock price. Since the parameters of the GBM are
estimated based on the 10 most previous time steps, any drastic change in the stock
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price will result in a higher diffusion term in the GBM. Therefore, it is expected
that the GBM obtains a higher variance in those time intervals. This could further
explain the significant higher value for the R-CWCE metric.

For the LSTM-SDE, ESN-SDE and LS-ESN-SDE models, it is shown in Table 4.2
that the LS-ESN-SDE model achieves the lowest RMSE score with a value of 0.0393
compared to 0.0402 and 0.0408 for the LSTM-SDE and ESN-SDE respectively. This
imply that these three models’ are more accurate in their predictions compared to
the traditional LSTM and the GBM. A similary result is shown for the R2 scores.
For the R2 scores, the LS-ESN-SDE also achieves the best highest value of 0.8103.
This is closely followed by the scores of the ESN-SDE and the LSTM-SDE models’
of 0.7983 and 0.7930 respectively. This indicates a significantly higher correlation
between the target values and their predictions. However, this result is just for the
stock prices of a single stock and thus only provide a small indication for their ability
to forecast stock prices. Hence, the results from the 100 stock prices needs to be
analyzed for a more generalized analysis.

From the results in Figure 4.5, it is shown that the LSTM-SDE, ESN-SDE and
the LS-ESN-SDE achieve a lower mean RMSE when forecasting on the stock prices
from all of the 100 stocks compared to the traditional LSTM and the GBM model.
This also for each of the predicted time steps. However, from the result in Table 4.3
it is shown in that the traditional LSTM model has the smallest rate of change of
the mean RMSE scores. Hence, it has the smallest decrease in the accuracy of the
predictions for growing number of predicted time steps. However, the traditional
LSTM has also the highest residual of all of the models with a value of 0.04601.
This implies that the accuracy of its predictions is already much higher compared
to the other models. Hence, despite the low change rate of error, it is still the least
accurate model among the five.

The model with the lowest residual, as shown in Table 4.3, is the LS-ESN-SDE
with a value of 0.01485. This suggest that the use of the LS-ESN in the latent
mapping improves the accuracy of the predictions. A similar result as in the trivial
test case. Moreover, from the result from the linear least squares fit in Table 4.3,
it is seen that the mean RMSE decreases fastest for the GBM model. However, it
obtains a lower mean RMSE value for predicting 10 and 20 time steps ahead com-
pared to the traditional LSTM, as seen in Figure 4.5. This suggests that the GBM
model is more convenient for shorter forecasting steps. Moreover, as also seen in
Figure 4.5, each of the three LSTM-SDE, ESN-SDE and the LS-ESN-SDE achives
a lower mean RMSE than the two benchmark models. This indicates that the three
models’ do obtain more accurate predictions even in a more general case. However,
because the number of stocks were limited, further experiments needs to be done in
order to say how the models’ would perform in a real-world setting.
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5.3 Future studies
As the aim of this thesis was to investigate whether the presented methods could be
used to forecast stock prices, no new theory has been developed within the scope of
this thesis. Therefore, it is motivated to perform deeper studies within the theory of
the used models. Specifically, within the framework of neural SDEs as the previous
research of this is limited. Furthermore, the models’ used for benchmark in forecast
in this thesis consisted only of a traditional LSTM model and a GBM model. It is
therefore motivated for further studies to compare against more advanced methods
for the task of stock price predictions. Moreover, since the focus in this thesis was
the application to stock prices, it is also motivated to perform future studies in
how these models’ can be used in other financial applications such as interest rate
modeling and option price modeling. Lastly, since the scope of this thesis is within
the financial domain, it would also be interesting for future studies to investigate
the use of these models’ in other domains and fields. Specifically in areas where
stochastic models are used or where data is subject to perturbations.
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The work conducted in this thesis has investigated the use of three different models
for the task forecasting stock prices. The models that were considered consisted
of three different types of RNNs, namely, a LSTM, a ESN and a LS-ESN. These
were combined with a neural SDE framework to produce several latent variable
processes. From each of these latent variable processes, a prediction was produced
using an additional neural network. All of these predictions produced from the latent
variable processes, was then used to compute estimates of a predictive mean and a
predictive variance that were the output of the models. Under the assumption that
the observations were Gaussian distributed, these estimated parameters were then
used as approximations for the conditional distribution of the data. The conclusions
made from this thesis is that each of the three models obtains good approximations
for the conditional distribution of a GBM. Moreover, the models also achieve more
accurate predictions when the outputs are used for forecasting data from a GBM
when compared to a traditional LSTM model. Moreover, they also provide more
accurate forecasts when being used on stock prices than both a traditional LSTM
and when using a GBM model. Both on a single stock and on 100 stocks. It was
further concluded that the LS-ESN did provide more accurate predictions compared
to using a LSTM and a ESN. However, further studies need to be made in order to see
how they compare to more advanced models to fully investigate their performance.
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A
Parameter configuration for the

models

A.1 Conditional distribution approximation

The parameter configuration used for the LSTM-SDE, ESN-SDE and LS-ESN-SDE
models for the conditional distribution approximation is shown in Table A.1

Table A.1: Hyperparameters used for the LSTM-SDE, ESN-SDE and LS-ESN-
SDE models for the conditional distribution approximation.

LSTM-SDE ESN-SDE LS-ESN-SDE
DLST M 32 - -
DESN - 10 10
Dhidden 8 8 8

N [5, 10, 50, 100, 500] [5, 10, 50, 100, 500] [5, 10, 50, 100, 500]
Tsde 1 1 1
Nsde 10 10 10

Spectral radius - 0.99 0.99
Leakage rate - 0.99 0.99

Sparsity parameter - 0.99 0.99
Scaling parameter - 0.1 0.1

klong - - 1
mshort - - 1

Learning rate [10−2, 10−3, 10−4] [10−2, 10−3, 10−4] [10−2, 10−3, 10−4]
# Epochs [50, 1000, 1000] [50, 1000, 1000] [50, 1000, 1000]

A.2 Forecasting

A.2.1 Trivial test case

The parameter configuration used for the LSTM-SDE, ESN-SDE and LS-ESN-SDE
as well as the traditional LSTM models for the forecasting in the trivial test case
are shown in Table A.2
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A. Parameter configuration for the models

Table A.2: Hyperparameters used for the LSTM-SDE, ESN-SDE and LS-ESN-
SDE models for forecasting in the trivial test case.

LSTM-SDE ESN-SDE LS-ESN-SDE
DLST M 64 - -
DESN - 256 256
Dhidden 16 16 16

N [5, 10, 50, 100, 500] [5, 10, 50, 100, 500] [5, 10, 50, 100, 500]
Tsde 1 1 1
Nsde 10 10 10

Spectral radius - 0.99 0.99
Leakage rate - 0.99 0.99

Sparsity parameter - 0.99 0.99
Scaling parameter - 0.1 0.1

klong - - 1
mshort - - 1

Learning rate [10−2, 10−3, 10−4] [10−2, 10−3, 10−4] [10−2, 10−3, 10−4]
# Epochs [50, 1000, 1000] [50, 1000, 1000] [50, 1000, 1000]

A.2.2 Stock prices
The parameter configuration used for the LSTM-SDE, ESN-SDE and LS-ESN-SDE
as well as the traditional LSTM models for the forecasting in the trivial test case
are shown in Table A.3

Table A.3: Hyperparameters used for the LSTM-SDE, ESN-SDE and LS-ESN-
SDE models for the stock prices.

LSTM-SDE ESN-SDE LS-ESN-SDE
DLST M 64 - -
DESN - 256 256
Dhidden 16 16 16

N [5, 10, 50, 100, 500] [5, 10, 50, 100, 500] [5, 10, 50, 100, 500]
Tsde 1 1 1
Nsde 10 10 10

Spectral radius - 0.99 0.99
Leakage rate - 0.99 0.99

Sparsity parameter - 0.99 0.99
Scaling parameter - 0.1 0.1

klong - - 1
mshort - - 1

Learning rate [10−2, 10−3, 10−4] [10−2, 10−3, 10−4] [10−2, 10−3, 10−4]
# Epochs [50, 1000, 1000] [50, 1000, 1000] [50, 1000, 1000]
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B
List of stock tickers

The list of all the 100 stocks used in the real-world forecasting experiment is shown
in the list below.

• AAU
• AEM
• AG
• ALB
• AMRS
• AP
• APD
• ASH
• ATI
• ATR
• AU
• AUMN
• AUY
• AVY
• AXU
• BAK
• BCPC
• BLL
• CCF
• CDE
• CE
• CENX
• CLF
• CLW
• CMC

• CMP
• CX
• DD
• DRD
• ECL
• EGO
• EXK
• EXP
• FCX
• FF
• FMC
• FNV
• FOE
• FSM
• FTK
• GAU
• GEF
• GFI
• GGB
• GLT
• GOLD
• GORO
• GPK
• GPL
• GSV

• HAYN
• HL
• HMY
• HWKN
• IAG
• IFF
• IOSP
• IP
• IPI
• KALU
• KRA
• KRO
• KWR
• LIN
• LPX
• LXU
• LYB
• MAG
• MEOH
• MERC
• MLM
• MOS
• MSB
• MTRN
• MTX

• MYE
• NAK
• NEU
• NG
• NGD
• NP
• NUE
• OI
• OLN
• PAAS
• PKG
• PLG
• PLM
• PPG
• RFP
• RGLD
• RPM
• RS
• SA
• SCCO
• SCHN
• SCL
• SEE
• SHW
• SON

• SQM
• SSL
• STLD
• SVM
• SWM
• SXC
• TECK
• TG
• TGB
• THM
• TREC
• TRQ
• TRS
• TX
• UAN
• USAP
• VGZ
• VMC
• WLK
• WOR
• X
• ZEUS
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