
Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, August 2011

Porting MeeGo to LEON

Master of Science Thesis

IVAN BERTONA

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Porting MeeGo to LEON

Ivan Bertona

© Ivan Bertona, August 2011.

Examiner: Arne Dahlberg

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden, August 2011

POLITECNICO DI TORINO

III Faculty of Information Engineering
Master of Science in Computer Engineering

Master Thesis

Porting MeeGo To LEON

Supervisor:

Bartolomeo Montrucchio

Candidate:

Ivan Bertona

August 2011

Abstract

Portable multimedia devices are the flagship of a steadily growing market, from
which the LEON/GRLIB hardware platform was excluded due to the lack of suitable
software support.

This thesis work addressed such problem by initiating a port effort of MeeGo, a
Linux-based mobility-oriented operating system, to the SPARC-compatible LEON
processor and to the hardware components provided by the GRLIB IP core library.

The build infrastructure of MeeGo was modified and set up accordingly, and a
partially working but usable MeeGo port was produced.

The LEON/GRLIB platform was evaluated from a multimedia application stand-
point. Lacking areas such as OpenGL hardware acceleration were pinpointed and
the necessary improvements outlined.

II

Acknowledgements

First of all I would like to express my gratitude to all the team that makes Aeroflex
Gaisler AB a great workplace. In particular to Jiri Gaisler, Kristoffer Glembo and
Daniel Hellstrom who most closely helped me by providing support, infrastructure
and precious advice. Additionally, I would like to thank my two academic super-
visors, Arne Dahlberg at Chalmers and Bartolomeo Montrucchio at Politecnico di
Torino, for their expert guidance and supportive attitude.

A special thanks goes to all my Erasmus friends. To Giampaolo Calestani and
Isabella Mordeglia for remembering me that sometimes it is fine to take a break (and
for making it remarkably good). To Fabio Castro and Tanja Schindler for staying a
bit longer with me. To all the others that I cannot name here for teaching me that
regardless where you go, you will always find great people to share your life with.

An equally special thanks goes to all my old friends from Italy. To Alessandro
Bianchi for being a brother more than a friend. To Luca Cerri for stalking me with
his persistent bad taste. To Francesca Di Meo for not calling me too often. To
Alessandro Cannarozzo and Stefano Cannillo for all the adventures in Torino. To
all of you who did not forget me, I did not forget you too.

Finally, and most importantly, I wish to thank my loving parents Maurizio
Bertona and Lucia Simonotti, to whom I dedicate this thesis. Without you nothing
would have been possible.

III

List of Figures

1.1 The MeeGo Architecture . 7
1.2 The LEON4 processor [13] . 9
1.3 An example LEON4-based SoC schematic [13] 10
1.4 The GR-LEON4-ITX development board [6] 11

2.1 An example RPM spec file . 20
2.2 The OBS web interface . 22
2.3 Setup of a MeeGo chroot . 28
2.4 /usr/lib/rpm/platform/sparc-linux/macros (parts) 29
2.5 Example usage of the automation scripts 31
2.6 Rebuilding the Ubuntu Lucid kernel 31
2.7 Kernel patch to allow remote execution (part) 32
2.8 Initialization of the OBS MySQL databases 36
2.9 Startup of the OBS services . 38
2.10 Compilation and installation of DISTCC 41
2.11 Porting workflow diagram . 43
2.12 Example porting session . 44
2.13 Setup of an OpenSUSE chroot . 45

3.1 Connection configuration for minicom 47
3.2 Test environment setup . 48
3.3 Creation of a Linux kernel image for the test board 48
3.4 Creation of the initial system image 50
3.5 Test workflow . 51

IV

List of Tables

2.1 Architectures emulated by QEMU . 23
2.2 Bootstrap build methods . 25
2.3 Configuration variables for the build scripts 29
2.4 Configuration variables for the worker package 45

3.1 Supported screen resolutions and color depths 54

V

Contents

Abstract II

Acknowledgements III

List of Figures III

List of Tables V

1 Introduction 1
1.1 Project description and objectives . 1

1.1.1 An informal introduction . 1
1.1.2 On the technical side . 2
1.1.3 Road map and methodology 3

1.2 Background . 4
1.2.1 The mobile computing landscape 5
1.2.2 The MeeGo OS . 6
1.2.3 The LEON/GRLIB platform 8

2 The porting process 13
2.1 Tools, techniques and design choices 13

2.1.1 Building techniques . 14
2.1.2 The RedHat Package Manager 17
2.1.3 The OpenSUSE Build System 21
2.1.4 The bootstrap problem . 24
2.1.5 The ARM port and the SPARC design choices 26

2.2 The temporary build environment . 26
2.2.1 Initial cross build attempts . 27
2.2.2 A technique for remote execution 31
2.2.3 Additional workarounds . 34

2.3 The final build infrastructure . 36
2.3.1 Setup and configuration of the OBS 36

VI

2.3.2 Adding the necessary SPARC support 41
2.3.3 A zero-configuration, flexible build cluster 44

3 System testing and images 46
3.1 The test environment . 46

3.1.1 Test hardware, tools and configuration 46
3.1.2 Test workflow, methodology and criteria 49

3.2 Functionality areas and test results 51
3.2.1 Basic system functionality . 51
3.2.2 Text-based functionality and applications 53
3.2.3 Basic graphic functionality . 54
3.2.4 Traditional Linux desktop functionality 55
3.2.5 MeeGo-specific functionality 56

3.3 Prebuilt system images . 58
3.3.1 Configuration and security considerations 58
3.3.2 Description of the available images 59

4 Conclusions 60
4.1 The final result compared to initial objectives 60

4.1.1 Platform evaluation standpoint 60
4.1.2 Software availability standpoint 61
4.1.3 MeeGo standpoint . 61

4.2 Future developments . 62
4.2.1 Hardware support enhancements 62
4.2.2 Software infrastructure enhancements 63
4.2.3 MeeGo SDK and tools enhancements 63

A Package details 65
A.1 Unmodified packages . 65

A.1.1 Core repository . 65
A.1.2 Netbook repository . 71

A.2 Modified packages . 72
A.2.1 Core repository . 72
A.2.2 Netbook repository . 75

A.3 Excluded packages . 75
A.3.1 Core repository . 76
A.3.2 Netbook repository . 76

B Images content 77
B.1 minimal . 77
B.2 xorg . 78

VII

B.3 xfce . 79
B.4 netbook . 80

C Referenced source code 85
C.1 Temporary environment . 85

C.1.1 RPM configuration . 85
C.1.2 Automation scripts . 87
C.1.3 Kernel and Loader patches . 100
C.1.4 Remote execution gateway . 102

C.2 Final build environment and OBS . 107
C.2.1 OBS patches . 107
C.2.2 Project config . 113
C.2.3 Deployable worker . 119

C.3 Kernel configurations . 122
C.3.1 QEMU . 122
C.3.2 GR-LEON4-ITX . 125

References 129

VIII

Chapter 1

Introduction

This chapter provides an overview of the thesis work, the motivations behind it and
the declared objectives. To clarify and support these elements, some background
and context information is also included.

1.1 Project description and objectives

The main purpose of this project was to create a port of the MeeGo operating system
for the LEON/GRLIB System-on-Chip (SoC) platform.

MeeGo is a Linux distribution designed to run on mobile and embedded devices
such as netbooks, smartphones and in-vehicle computers. A custom desktop man-
ager provides several user interfaces suitable for use with small screens, while a set
of kernel patches guarantees enhanced compatibility with mobile hardware.

The hardware platform is developed by Aeroflex Gaisler AB and features a LEON
synthesizable processor, which implements the SPARC v7 and v8 instruction sets1.
The companion IP library GRLIB provides support components such as a system
bus, several I/O interfaces and a framebuffer controller, all of which can be exten-
sively configured and embedded on a single chip.

1.1.1 An informal introduction

In the last years we have observed a steady growth of market demand for portable
multimedia devices. Mobile Internet traffic increased by a factor of 7 in Western
Europe between May 2008 and May 2010, and by a factor of 13 in North America
under the same period [1]. Hardware designers and manufacturers are consequently

1The v8 version differs from v7 only due to the introduction of hardware multiply and divide
instructions, which can be optionally included in the synthesized LEON processor. A technical
description of the instruction set can be found at [28].

1

1 – Introduction

exploring the possibility to enter such market, which of course requires know-how
and investments. The first mandatory steps in this process include creating de-
vice prototypes, hardware and software, and estimating costs and marketability of
products based on the developed prototypes.

The LEON/GRLIB platform is mainly used in aerospace applications, thanks to
its optionally fault-tolerant and radiation-tolerant design. Use cases include Data
Handling Systems (DHS) and Attitude and Orbit Control Subsystems (AOCS). On
the other hand, nothing prevents its use in less critical contexts [14], such as the
implementation of a set-top box or as a generic, multi-purpose embedded controller.
As a matter of fact, though, multimedia applications are not a core feature of the
platform and for this reason the available hardware support for multimedia is limited.
For example, while a framebuffer device for video output is available, hardware video
acceleration is not supported. Moreover, an AC97-compatible audio controller is
under development but still not ready for use.

The objective of this thesis work was to provide the software required to evaluate
LEON/GRLIB as a platform for multimedia and portable applications and pinpoint
the areas where improvements are necessary. At the time of writing, the possible
outcomes still range from the simple availability of useful test data to the prospective
implementation of new products.

The classical areas in which the LEON/GRLIB platform is excellent, such as
connectivity and reliability, combined with a refreshed multimedia outfit, might well
become key points for platform adoption. For example, consider the availability of a
Controller Area Network (CAN) bus interface. This interface is specifically designed
for automotive applications to allow communication between the various vehicular
subsystems. MeeGo provides and In-Vehicle Infotainment interface which might
allow to develop a good car computer able to show telemetry and status information
in real time, without the need for additional bridging hardware.

1.1.2 On the technical side

The LEON/GRLIB platform is designed as a collection of modular IP cores2, imple-
mented in VHDL, which describe the various available hardware components and
the way in which they interact with each other. These modules can be configured
extensively and synthesized in hardware using one of the two mainstream technolo-
gies: Field Programmable Gate Arrays (FPGA) or Application Specific Integrated
Circuits (ASIC). Flexibility, performance, cost and time-to-market can be balanced
every time according to the project requirements. The actual synthesis process and
design of hardware, though, are outside the scope of this thesis work and will not

2The Intellectual Property (IP) core modular design pattern is commonly used in the industry
to isolate hardware components in reusable blocks.

2

1 – Introduction

be covered in detail. Aeroflex Gaisler AB provided all the hardware required for
testing, whose capabilities and specifications are described later in this report.

Without diving to much to details, for now, the available hardware modules
range from the SPARC processor itself, with SMP support, to SDRAM and DDR
memory controllers, a framebuffer interface and various I/O subsystems (e.g. USB,
PCI, CAN, AMBA, SPI, I2C, Ethernet).

After the former official Linux kernel maintainer for the SPARC v7 and v8 ar-
chitectures resigned in 2007 with no replacement, all the main Linux distributions
dropped the support for them3 and upgraded to the more recent v8+ version, which
features 64-bit registers. This fact introduced some concern about the actual feasi-
bility of the port, compared to the available time and workforce of one person for
about six months. Thanks to the work of the Aeroflex Gaisler AB team, though, the
Linux kernel can be patched to support the LEON/GRLIB platform. Moreover, all
the core software components such as the GNU C Standard Library and the GNU
Compiler Collection still retain support for the target architecture. Eventually most
of the problems were addressed and solved. Known issues and uncompleted tasks
are described in detail in section 3.2.

The core part of the porting process basically consisted in recompiling all the
software packages and components to target the SPARC System V Application
Binary Interface (ABI). Part of the packages had to be patched in order to work,
while most did not yield any problem. Few packages, on the other hand, did not
support the SPARC architecture at all and due to their size and complexity were left
out from the port. A detailed list of the affected packages is available in appendix
A.

The rebuild was performed as a two-step process. First, a bootstrap repository
was created by manually cross-compiling a subset of the distribution. The bootstrap
repository was later used to seed the official MeeGo build infrastructure and attempt
to rebuild all the available packages. To succeed in these tasks a particular tempo-
rary build environment was created, blending a cross compiler and native SPARC
hardware, while the official build infrastructure was modified to support full-system
emulation of the SPARC build target. The porting process is covered in detail in
chapter 2.

1.1.3 Road map and methodology

At planning time, a set of best practices to be applied throughout the project was
defined. The idea was to keep a consistent behavior across the various phases of
development and to help focusing on the final result.

• General rule of thumb — Rely as much as possible on the existing MeeGo

3As an example, the discussion that led Debian to drop SPARC v8 can be found at [3].

3

1 – Introduction

infrastructure and tools, modifying them if needed in order to support the
SPARC architecture.

• Regarding the compilation of packages — In case of failures, first try to modify
the build script in such a way that it does not affect the other architectures
(e.g. using architecture if switches). Apply source code patches only in case
no other fix can be developed.

• Regarding the completeness of the port — Give priority to the core distribution
packages, which include the entire base system and the Xfce desktop environ-
ment4. Later concentrate on the netbook flavor of MeeGo, since it is the most
appropriate for the available hardware.

Additionally, after a first period of study and documentation, a list of milestones
was sketched in order to split the project in a number of phases, to be completed
incrementally. The steps were:

1. Set up a temporary build environment and attempt to build some packages,
make sure that they run on the LEON/GRLIB platform.

2. Using the temporary build environment, build enough packages to seed an
initial bootstrap repository.

3. Add support for the SPARC architecture to the official MeeGo build system.

4. Seed the build system with the bootstrap repository and generate a SPARC
repository.

5. Test the SPARC MeeGo images both in emulation and on real hardware,
iterate the previous steps if necessary until a satisfactory result is obtained.

6. Package and document the port, keeping track of the modified components
and providing a relevant set of patches.

7. Collect all the documentation produced in the previous steps and write a full
report covering the various aspects of the thesis work.

1.2 Background

This section provides some brief background information about the current state
of the mobile computing landscape and technical details about the structure of
the MeeGo distribution and the LEON/GRLIB platform, useful to understand the
remainder of the report.

4The Xfce desktop environment [30] is included in the MeeGo core repository but not installed
by default in any official MeeGo image.

4

1 – Introduction

1.2.1 The mobile computing landscape

As said before, in the last years a strong increase in the availability and use of
portable, connected, mobile devices has been observed. This development was
backed by technological advancements in the areas of wireless connectivity, hardware
miniaturization and energy storage and management.

At the same time the market fragmentation increased with the introduction of
new devices such as netbooks, in-vehicle computers and smartphones capable of
browsing the mainstream web.

Companies like ARM Holdings (which designs a low-power synthesizable hard-
ware platform) and Texas Instruments (which produces, among others, ARM-based
ASICs), were positively affected by this trend. ARM Holdings shares multiplied
their value by almost three times over the last three years [4].

On the software side, the situation is completely different if compared to the
desktop and laptop market. The embedded nature of portable devices, where the
software is tightly coupled with the hardware, lowered the entrance barrier for new
operating systems, resulting in the diffusion of several main actors:

• Android — Developed by Google, open source, Linux-based. Runs on smart-
phones and tablets produced by several manufacturers.

• iOS — Powers the Apple iPhone and iPad.

• Windows Phone 7 — Developed by Microsoft, proprietary source. Runs on
smarthpones produced by third-parties.

• WebOS and Blackberry — Run respectively on Palm and RIM smartphones
and occupy a relatively niche market.

• Several Linux distributions and Windows XP/7 — Can be adapted to run on
netbooks and tablets with screens in the nine to twelve inches range.

In an attempt to make its Atom and Moorestown platforms more interesting
to device manufacturers, Intel initiated the development of MeeGo in collaboration
with Nokia [10], based on the previously separated efforts Moblin and Maemo. Un-
fortunately, after bad market performance and a change of CEO, Nokia revised its
mobile strategy, moving from MeeGo to Windows Phone 7 [19].

Intel nevertheless confirmed its commitment to MeeGo and at the time of writing
is working on the development of the 1.2 release.

5

1 – Introduction

1.2.2 The MeeGo OS

MeeGo is a fairly standard RPM-based Linux distribution, which differs from the
others mostly in the user interface area. Additionally, MeeGo is a real open source
project, backed by several companies, which employs best practices of open source
development, providing convenient access to code base, forums, mailing lists and
a transparent steering committee. All patches applied to MeeGo packages are also
forwarded upstream in order to contribute to the open source ecosystem and increase
maintainability.

To better adapt to the different kinds of available devices, various flavors of
MeeGo are developed. These variants provide different user interfaces that fit diverse
screen sizes and enhance usability for the intended usage patterns. Different kernels
are also shipped to support the varying hardware capabilities. The MeeGo flavors
are:

• Netbook — For laptops with a small form factor, usually equipped with a 10”
screen.

• Handset — For smarthpones with Internet connectivity, usually equipped with
a touch screen and able to make phone calls over mobile telephony networks.

• In-Vehicle — For vehicular computers, equipped with a touch screen, used
to deliver information such as telemetry, weather and traffic reports and to
entertain the passengers.

• Smart TV — For interactive TVs able to show Internet-based content and
execute entertainment applications such as simple videogames.

• Media phone – For landline phones with extended capabilities such as video
conferencing, message recording and contacts management.

Consequently, MeeGo is suitable for use with most of the portable devices avail-
able on market, provided that Linux drivers exist for the desired hardware.

Organization and components

As shown in Figure 1.4, which is provided by the development team at [16], MeeGo
can be logically separated in three layers:

• Core OS — Contains the Linux kernel and related drivers and all the mid-
dleware and OS services used by higher layers, mostly resembling any other
Linux distribution.

6

1 – Introduction

Figure 1.1. The MeeGo Architecture

• MeeGo API — Provides an interface for application development which sim-
plifies the creation of portable applications with a standardized interface.

• User Experience — Contains the user interfaces for the various MeeGo flavors
as well as additional flavor-specific API components.

Distribution and build infrastructure

MeeGo is developed, maintained and compiled using a locally deployed instance of
the OpenSUSE Build Service (OBS) [20]. The instance can be reached at [17].

The OBS allows to create a distributed build system able to keep track of the
package sources (using a source control system) and of the package dependencies (by
parsing the RPM specification files). The system consists of a main server where
the packages are stored and of a variable number of build workers, which might be
distributed on other machines over the network. Remote access is provided both
via a command line client and a web interface. Security is implemented via access
control lists where different accounts can be given different privileges regarding what

7

1 – Introduction

can be done on the system, from read-only anonymous access to full administration
capabilities.

The OBS is able to completely rebuild several Linux distributions, based on
several package management systems. If a bootstrap repository and native workers
are available, any architecture can be targeted. If native workers are not available the
OBS can use x86 workers to target foreign architectures, either by cross-compiling
or using software emulation.

SDK and application development

Developers interested in creating applications for MeeGo can use the MeeGo SDK,
available both for Windows and Linux [23]. The SDK integrates development tools,
the QEMU emulator and precompiled MeeGo images, allowing the developers to
test their applications without the use of real hardware. Thanks to the use of
MeeGo APIs, applications are easily portable. The included build tools can also
cross-compile applications to the ARM target.

1.2.3 The LEON/GRLIB platform

As previously said, the entire LEON platform and GRLIB IP core library are imple-
mented in VHDL and can be synthesized in hardware using different technological
solutions. Currently two main options are available:

• Field Programmable Gate Array (FPGA) — This technology delivers low per-
formance but has the property of being reprogrammable multiple times. Con-
sequently, it is mainly used for small series production with a short time-to-
market.

• Application Specific Integrated Circuit (ASIC) — This technology delivers bet-
ter performance but produces integrated circuits that cannot be modified,
whose cost-per-unit decreases with volume production. It is mainly used for
final prototypes, evaluation boards and actual products produced in large se-
ries.

The LEON processor family

The LEON soft-processor family provides a certified implementation of the SPARC
v7 and v8 architectures. The latest version, LEON4, is software compatible with
the previous versions and has the following features [12]:

• 7-stage pipeline with branch prediction, hardware multiply and divide units,
IEEE-754 compliant FPU.

8

1 – Introduction

• Separate instruction and data L1 cache (Harvard architecture) with snooping,
configurable with 1 - 4 ways, 1 - 256 kbytes/way and random, LRR or LRU
replacement policy, L2 cache up to 8 MB in size.

• Memory Management Unit (MMU) as of the SPARC specification, with con-
figurable Translation Lookaside Buffer (TLB).

• Symmetric Multiprocessing (SMP) support up to sixteen cores.

• Advanced on-chip debug support with instruction/data trace buffer, hardware
breakpoints, performance counters and more.

Figure 1.2. The LEON4 processor [13]

Performance wise, the LEON4 processor delivers 1.7 DMIPS/MHz, 2.1 Core-
Mark/MHz and 0.35 SPECint2000/MHz. The actual clock frequency is customiz-
able, depending on the physical technology, and currently ranges from 125 MHz on
a Virtex5 FPGA board to 1500 MHz using 32 nm ASIC.

9

1 – Introduction

The GRLIB IP core library

The IP cores provided by the GRLIB library can be synthesized together with the
processor, allowing the creation of a System-on-Chip (SoC) platform [25]. Inter-
estingly, the library is released under the open source GNU GPL license. All the
components are centered around a on-chip multi bus architecture and include, among
others:

• PCI bridge with DMA.

• 32-bit PC133 SDRAM controller.

• 16/32/64-bit DDR/DDR2 controllers.

• PS/2 controller.

• 10/100/1000 Mbit Ethernet.

• USB 2.0 host and device controllers.

• Framebuffer video device with DVI interface.

• Basic system peripherals: timer, interrupt controller, UART, etc.

• Other interfaces: CAN, TAP, SPI, I2C, ATA, etc.

Figure 1.3. An example LEON4-based SoC schematic [13]

10

1 – Introduction

Test and evaluation boards

The LEON platform is compatible with several FPGA test boards and synthesis
tools developed by Actel, Altera, Lattice and Xilinx. A complete list is available at
[25]. Additionally, some boards specifically designed for LEON/GRLIB are available
as listed at [11].

These boards can be connected to a developer workstation using both Ethernet
and serial interfaces. The GRMON utility leverages on the debug unit integrated
in the LEON processors to provide a fully-featured step-by-step software debugger
and processor inspector, with read and write capabilities (e.g. it is possible to write
to memory addresses and registers when the processor is on hold).

A typical Linux development setup, which is relevant to this project, consists in
loading a Linux kernel by issuing some commands in GRMON and mounting the
root file system, hosted on the developer machine, using the Network File System
(NFS) protocol. Thanks to this approach it is not necessary to regenerate and flash
new images of the system every time a change occurs.

Figure 1.4. The GR-LEON4-ITX development board [6]

The GR-LEON4-ITX development board

For the testing part of the thesis project a GR-LEON4-ITX board [7] was used. It
is a general purpose, custom design, evaluation and testing board which provides
the fastest piece of LEON/GRLIB hardware physically implemented to date. It has
the following characteristics:

11

1 – Introduction

• Mini-ITX format with dual PCI slots.

• LEON4 SoC ASIC including dual LEON4 cores clocked at 200 MHz.

• 256 MB of 32-bit DDR2-400 SDRAM.

• 8 MB SPI serial flash PROM.

• Dual 32-bit 33 MHz PCI slots, dual 10/100 Ethernet interfaces, dual USB 2.0
host interfaces, dual CAN bus interfaces, SPI and I2C controller interfaces,
dual PS/2 keyboard and mouse connectors, 44-bit generic user I/O.

• Debug support over Ethernet, USB or serial connection.

The testing of the MeeGo SPARC distribution is described in chapter 3, where
also information about the board and its usage procedures is provided.

12

Chapter 2

The porting process

This chapter describes in detail the process that led to the creation of a working
SPARC MeeGo repository. Some early failed attempts are also briefly discussed in
order to clarify part of the design choices.

2.1 Tools, techniques and design choices

All the major Linux distributions consist in a collection of packages, or software
archives, which can include source code, patches, build scripts and executable bi-
nary files. Usually, binary repositories for one or more architectures are generated
starting from a set of source packages. For this purpose, the distribution main-
tainers develop and employ tools that allow to keep track of the package history
and sources, distribute the maintenance tasks among a team of developers and au-
tomatically rebuild the packages when needed. For example, MeeGo relies on the
OpenSUSE Build Service (OBS).

Thanks to these build systems, the transition towards new versions of the pack-
ages (and later to new releases of the distribution) is handled gracefully. In par-
ticular, once an initial binary repository is established for each of the supported
architectures, every modification can be easily built and tested against the current
code base, leading to a constant flow of updates which can be isolated and, if nec-
essary, fixed from time to time.

What the tools cannot automatically handle, regardless the actual build tech-
nique, for various reasons that will be illustrated in the remainder of this chapter,
is the generation of the initial bootstrap binary repository. Such repository, which
might also come from a similar pre-existing Linux distribution, usually contains a
minimal functional system, which is then used to initialize the build system.

13

2 – The porting process

2.1.1 Building techniques

Several techniques can be employed to build packages, being more or less convenient
depending on a series of environmental factors such as the availability of fast native
hardware, the support for emulation techniques and, last but not least, the way in
which the available build scripts are written.

Cross or native builds

The first aspect to be considered concerns the relation between the architectures
of the machine where the build is performed and of the generated binaries, and
distinguishes the building techniques in two main groups:

• Native build — The target architecture of the compiler is the same of the
compiler itself and, consequently, of the build machine.

• Cross build — The two architectures differ in such a way that the compiled
binaries cannot be run on the building machine. This fact implies that the
used compiler, which in this case is referred to as a cross compiler, is able to
generate executable code for one or more foreign architectures.

It is worth to note that gray areas do exist. For example, consider the generation
of 32-bit x86 binaries on a 64-bit x86 64 machine. Strictly speaking this is a cross
build, but it is often regarded as a native build due to the fact that the generated
binaries are still compatible with the target machine architecture.

Emulated native builds

Native builds can be executed on machines characterized by a different architecture
by the means of emulation. A software interpreter reads the foreign binaries and,
after a translation process, executes them on the local hardware. This technique
is very flexible, but incurs in a high performance penalty due to the translation
overhead. Still, it has the clear advantages of neglecting all the complexity related
to cross compilation (which is often untested or entirely not supported by the package
developers) and allowing for a native build even when real hardware is not available,
affordable or for some other reason usable.

Emulation techniques

Few words must also be spent about emulation, in order to clarify then next para-
graphs. It is possible to identify two main emulation techniques:

14

2 – The porting process

• Full system emulation — Implements the functionality of a complete system
(which might even be fictional) from the ground up, simulating the interaction
with hardware at low level. An entire operating system can be booted inside
the emulator, which in turn runs as a process inside the host operating system.
The emulated software might transparently access the hardware resources of
the host machine (e.g. network cards) through an interface layer provided by
the emulator.

• User mode emulation — Allows direct interaction between the running oper-
ating system and a foreign architecture binary by interpreting its instructions
and translating all the executed system calls to the equivalents on the system.
This translation mechanism usually requires the foreign binary to be compat-
ible with a very similar environment and, due to the great amount of details
involved, might result in partly faulty behaviors which are often hard to track
down and fix.

Since it does not require an entire operating system to be installed or otherwise
configured, user mode emulation is the most convenient technique to perform emu-
lated native builds. Full system emulation, instead, is best suited for hardware and
software testing or simulation.

Chroot environments

Another aspect of the build is the interaction between the built software and the
operating system, tools and libraries installed on the build machine. Application
developers usually want to build and test their applications against a range of differ-
ent user configurations without being forced to set up multiple test environments,
reboot their workstations or employ additional hardware.

On the other hand, it is not easy to guarantee the reproducibility of the build
on a heterogeneous range of configurations. For example some specific version of
the build tools might be required for the build to succeed. The compiled binaries,
moreover, should be isolated from the build system libraries, and linked against the
libraries of the target system.

In other words, it would be convenient to be able to build applications in the
same environment where they will be executed, with minimal effort by the applica-
tion developers. A possible solution, which is not optimal for performance reasons,
consists in booting such environment in a full system emulator. When working on
Unix systems, though, a better alternative is available: the use of a chroot environ-
ment.

The chroot system call, introduced first in Version 7 Unix [29], allows to modify
the execution environment of a process by temporarily changing the root of the
file system to one of its subdirectories. The build technique consists in populating

15

2 – The porting process

a directory on the host system with an image of the target system and chrooting
into that directory. The two systems should be similar enough. In particular, the
standard C library of the target system should be compatible with the system call
layout of the running kernel.

The chroot environment might also include a blend of native and foreign binaries.
The foreign binaries can be executed by an user mode emulator when necessary.
This technique, known as mixed chroot, allows to target foreign architectures while
mitigating the performance problems related to emulation by running part of the
tools natively, when the results are not expected to be different.

Building packages

Package managers usually provide the automation required to create chroot envi-
ronments and build packages. For this reason, in most cases, two main kinds of
packages are defined:

• Source packages — They contain the software sources, any relevant patch and
the specifications of the content of the generated binary packages. Moreover,
several scripts might be attached to implement tasks such as the actual com-
pilation of the package.

• Binary packages — They contain the actual binaries, for one or more archi-
tectures. In the latter case, they are referred to as universal binary packages.
Some package managers also support the inclusion of scripts to be executed
before or after a particular event such as the installation of the package.

Several binary packages are usually generated starting from a single source pack-
age. For example, consider a software library. The development headers might be
placed in a different subpackage than the dynamically loadable library, to allow their
installation only on systems where they are actually needed.

The enclosed support scripts are usually interpreted (not compiled) in order
to simplify portability. Nevertheless, package maintainers should pay particular
attention to make sure that the scripts are indeed written in a portable way, for
example by avoiding to hardcode specific paths or architecture names.

In its simplest form a package consists of a compressed archive containing the
package files and shell scripts. Currently, more advanced systems are available,
where packages are associated with metadata (e.g. build and installation dependen-
cies, author names and e-mail addresses, etc.) and custom scripting languages are
implemented to simplify the writing of maintenance scripts. Examples of package
manager are the RedHat Package Manager [22], the Debian package management
tools [27] and Slackware’s pkgtool [24].

16

2 – The porting process

Finding and retrieving packages

Most Linux distributions not only provide a package manager, but also additional
tools used to search for packages and fetch them automatically from the repositories
before build or installation. This functionality is usually separated from the package
manager itself, so that different repository management tools can coexist using the
package manager as an interface layer with its database of installed packages.

The list of available repositories is usually populated when the Linux distribution
of choice is installed, while additional repositories can be configured later to provide
third-party software not officially included in the distribution. The repositories are
usually reached over the network and can provide both source and binary packages.
The user might choose to customize a source package and rebuild it even though a
prebuilt binary version might be already available for use.

Since the contents of the repositories may vary over time, as new packages are
added or existing packages are updated, the repository management tools also usu-
ally provide a system update functionality.

2.1.2 The RedHat Package Manager

The RedHat Package Manager (RPM) system was born as a package manager for
the RedHat Linux distribution, and was later adopted by several others including
Fedora, OpenSUSE and MeeGo. It defines a custom file format for packages and
provides a set of tools to manipulate them. More information about RPM and a
complete guide for developers can be found at [15].

The RPM package naming scheme

The packages follow a strict naming scheme, whose information is also included in
the package file and which has the form name-version-release.architecture.rpm. The
name components are defined as follows:

• Name — Identifies uniquely the package in the distribution namespace. It is
often formed by a prefix, which identifies the included software, and a dash-
separated suffix which specifies which part of the software is included. For
example, a software library called foo might be split in the binary packages
foo, foo-devel and foo-static.

• Version — It is the version of the included software, usually a sequence of
numbers separated by dots. In some cases, patches that have not yet been
included in an official release are attached to the package. Nevertheless the
version field refers to the bundled software source package.

17

2 – The porting process

• Revision — It is a version number related to the package creation and revisions.
For example, the OpenSUSE Build System generates it automatically as two
numbers separated by a dot: the first is incremented every time the source
package is modified, the second every time the source package is built.

• Architecture — Describes the target of the package contents. For source pack-
ages, the literal src is used. For architecture-independent packages, instead,
the literal noarch is used. For all the other packages it is the name of the
target architecture. As a side note, RPM does not support the creation of
universal binary packages.

The RPM file format

The file structure of an RPM package consists of three metadata sections (lead,
signature, headers) and of a data section (archive). The headers were not part of
the first version of the format and were later added to support the new features
developed for RPM. From a functionality standpoint, they duplicate and integrate
the information present in the lead, which nevertheless is still included in current
RPM packages for backward compatibility reasons. More in detail:

• Lead — It is a fixed-length data structure placed at the start of the file. The
first four bytes consist of a constant magic value which can be used to identify
the file as an RPM package. The following fields indicate the file format
version, the type of package (source or binary), the package architecture, the
original file name, the operating system on which the package was created and
finally the package signature presence and type.

• Signature — It may or may not be present and consist of a cryptographic hash
of the headers and data section of the file, which allows to check the integrity1

of the package. The hash may also be signed using a public key cryptographic
algorithm, which makes also possible to check the authenticity2 of the package.

• Headers — They define a sequence of key-value pairs, holding metadata related
to the package. A predefined set of keys is available, but not all of them must
be actually present in the headers. Each entry consists of a key ID, a type
marker (which specifies how to interpret the value), the length of the value

1Integrity is intended as the fact that the contents of the package actually correspond to the
attached hash. Verifying this property is considered to be enough to protect against accidental
data corruption, but not enough to protect against an attacker maliciously modifying the package.

2Authenticity is intended as the fact that the hash was indeed applied by the package maintainer
and not modified afterwards. If verified together with integrity and against a trusted copy of the
public key of the source it is enough to prevent package modification attacks. More information
can be found at [21].

18

2 – The porting process

and the value itself. The headers duplicate the information available in the file
name and in the lead and integrate that information with more details, such
as package author and maintainer name, software license, build and install
dependencies, installed size, archive size and the source code of the support
scripts. Most of these values come from the specification files written by the
package maintainer, whose structure is described later.

• Archive — All the files shipped together with the package are compressed
using the GNU zip routines and appended to the package file, resulting in the
archive section.

How to create RPM packages

To create a RPM package, the maintainer first collects the source archives of the
software that will be packaged. It is recommended to include a verbatim source
archive from the software distribution and add separate patches which might be
needed in the build environment. Then the maintainer writes a RPM specification
file (usually referred to as spec file), which contains the package metadata and all
the support scripts. Starting from these items, the rpmbuild tool is able to compile
the sources and generate the RPM packages.

The spec files are written in a special purpose language, while the included
support scripts are written in Bourne shell. The RPM spec file interpreter provides
a set of predefined macros that help the maintainers to write the spec file and support
scripts. These macros start with a percent sign and are expanded to their contents
when the spec file is interpreted. Examples of macros are %arch, which gives the
current target architecture, %patch, which expands to the shell command to apply
a patch, %configure which expands to the classical GNU configure command with
some of the most important switches set. A regular spec file consists of the following
sections:

• Preamble — Defines all the metadata associated to the package, including but
not limited to: name, version, release, license, description, build and install
dependencies. Moreover, the same metadata can be specified for an arbitrary
number of subpackages.

• Prep section — Includes the shell instructions required to unpack the source
archives of the software and apply any patch included with the source package.

• Build section — Includes the shell instructions required to configure and build
the source package. On Linux in most cases this boils down to the configure
and make commands.

19

2 – The porting process

1 Summary: A hello world program

2 Name: helloworld

3 Version: 1.0

4 Release: 1

5 License: GPL

6 Group: Development/Tools

7 Source0: %{name}-%{ version }.tar.gz

8 Patch0: fix -helloworld -spelling.patch

9 Patch1: fix -exit -value.patch

10

11 %description

12 A hello world program used to show an example of RPM spec file.

13

14 %prep

15 %setup -q

16 %patch0 -p1

17 %patch1 -p1

18

19 %build

20 %configure

21 make

22

23 %install

24 rm -rf %{ buildroot}

25 mkdir -p %{ buildroot}

26 make install DESTDIR =%{ buildroot}

27

28 %postin

29 echo "Thank you for installing Hello World on %{arch }!"

30

31 %files

32 %defattr(-,root ,root ,-)

33 %{ _bindir }/ hello

34

35 %changelog

36 * Thu May 15 2011 Ivan Bertona <ivan.bertona@gmail.com > 1.0-1

37 - First Build

Figure 2.1. An example RPM spec file

• Install section — Includes the shell instructions required to install the compiled
software in a specific directory, whose path is available through the macro
%{buildroot}, where the files to be packaged are later found by the build tool.
Again, on Linux this action is usually performed with the command make
install DESTDIR=”...”.

• Install and uninstall scripts — Four optional maintenance shell scripts can
be included. Such scripts are copied in the header of the generated binary
packages and executed when one of the following event occurs: the package is
going to be installed, the package has just been installed, the package is going
to be erased and the package has just been erased.

• File lists — The list of files that should be included in the package. In case

20

2 – The porting process

more than one package is generated, more lists are provided, defining how the
package contents are to be split among the generated subpackages.

2.1.3 The OpenSUSE Build System

The OpenSUSE Build System (OBS) [20] is a complete build system which supports
most of the build techniques outlined before and integrates with the RedHat Package
Manager and the Debian package management tools. Each instance of the OBS can
host an arbitrary number of projects which basically are collections of packages to
be built and linked against each other.

For each project, the build dependencies might be resolved either by providing
a bootstrap repository and then recompiling all the packages in the project or by
referring to an external package repository. The first mode of operation is well
suited to maintain an entire Linux distribution, while the second can be used by
developers to build and test their applications against one or more existing Linux
distributions. Moreover, the OBS provides an accounting system that allows to limit
the capabilities of users and restrict their access to selected projects or even single
packages.

Components of the OBS

The OBS consists of several services written in Perl and Bash and a web interface
whose server-side component is written in Ruby. The main components are:

• Web interface — It consists of a web application, written in Ruby, which might
be run under Apache or lighttpd and uses MySQL as a database backend.
Through the web interface it is possible to create, edit and delete projects and
packages. The administrators of the OBS can also manage the local users and
the granted permissions.

• API — Allows third-party applications to remotely access the facilities pro-
vided by the OBS by sending XML messages over HTTP. A command line
client, available for several Linux flavors, allows to interact with the OBS
through the API.

• Scheduler — This service continuously scans the local project and identifies
the packages that need to be built or rebuilt, creating build jobs that become
pending.

• Workers — Several instances of this service can be run, also on different
machines on the network. It performs the actual build jobs, either natively or
in emulation.

21

2 – The porting process

Figure 2.2. The OBS web interface

• Dispatcher — This service assigns the scheduled build jobs to the available
workers according to a dispatching policy. Limited support for preferred build
hosts and package priorities is also provided.

• Warden — This service continuously monitors the remote workers by pinging
them. If a worker does not respond, the warden marks it as unavailable and
forces the scheduler to reassign any lingering build job.

• Publisher — This service manages all the repositories generated by the OBS,
collects and publishes the built packages in the right place. Moreover, it takes
care of generating all the support metadata associated with the repositories
and the repository specification files.

Integration with QEMU

To accomplish all the tasks that require emulation capabilities, the OBS relies on the
QEMU emulator. The QEMU emulator runs on x86 hardware and is able to emulate
several architectures, as illustrated in table 2.1, even though not all of them with
the same level of maturity. It supports both user mode and full system emulation,
even though the OBS only uses it in user mode.

22

2 – The porting process

Full System User Mode (Linux)

i386 x x

x86 64 x x

alpha x

arm x x

armeb x

cris x x

lm32 x

m68k x x

microblaze x x

microblazeel x x

mips x x

mipsel x x

mips64 x

mips64el x

ppc x x

ppcemb x

ppc64 x x

ppc64abi32 x

sh4 x x

sh4eb x x

sparc x x

sparc32plus x

sparc64 x x

Table 2.1. Architectures emulated by QEMU

The user mode functionality of QEMU is enhanced by the binfmt misc kernel
module, which hooks itself at low level in the execution routines of the kernel.
By default, the kernel will fail to execute any foreign architecture binary. The
binfmt misc module can be configured to intercept such event and force the kernel
to execute a different native binary (in this case the QEMU emulator), passing as
an argument the path to the foreign architecture binary so that it can be emulated
in user mode.

23

2 – The porting process

Supported building techniques

The OBS supports most of the building techniques illustrated earlier and always
executes them in a chroot environment. In particular, the OBS is able to execute
native and cross vanilla builds, emulated native builds and emulated native builds
with acceleration.

The emulated builds are executed in the same way as the native builds by im-
plementing the transparent user mode emulation technique described above. The
accelerated builds are implemented using a mixed chroot, where part of the software
(e.g. package manager, compression utilities, compiler) is executed natively.

The following steps illustrate how the chroot environments are set up and the
build jobs are executed, regardless which package manager is used:

1. An initial chroot environment is set up by installing a minimal set of packages
under a specific directory. To do so, the package manager tools are invoked
specifying a different root directory and disabling the execution of the support
scripts. The requirement of the minimal chroot is to provide an environment
capable of running the package manager. Each project in the OBS has a
configuration file which includes the list of packages to be installed in the
minimal chroot, while the packages are fetched from the repositories associated
to the project.

2. The build dependencies of the package that is going to be built are resolved
and a list of packages that need to be installed is stored in a file under the
chroot. A script coming from the OBS is copied in the chroot as well.

3. The copied script is executed inside the chroot environment. It reads the list
of needed packages and installs them through the package manager. All the
foreign architecture binaries that might exist in the chroot are executed using
the transparent user mode emulation technique outlined above.

4. Finally the script invokes the package manager to perform the build. The
generated packages and logs are saved in a specific folder under the chroot,
and can be later retrieved by the OBS.

2.1.4 The bootstrap problem

When targeting a novel, previously unsupported architecture, due to the lack of
an existing binary repository, the build dependencies of almost all packages are
not satisfied. Moreover, cycles usually exist in the build dependency graph of the
distribution packages, making it difficult or even impossible to generate a satisfiable
build list by the means of automated tools.

24

2 – The porting process

Once such list has been manually devised, there are two main methods to pro-
ceed with the build: natively compiling on compatible hardware or cross compiling.
The viability and convenience of these two methods depend on the following envi-
ronmental factors:

• Availability of native hardware — Some architectures, especially those oriented
to embedded systems, might not be well suited to perform native builds. For
example, they might not deliver enough performance or might not provide an
adequate performance over cost ratio to make native builds practical.

• Availability of a similar software target — To perform native builds, a suffi-
ciently similar software stack able to boot the target hardware is required. In
case of the OBS, this software stack might be used as the bootstrap repository
requiring the packages to have the same naming conventions of the target and
similar versions of the software.

• Cross-compile awareness of the build scripts — The build scripts of some
packages are written in such a way that the package cannot be cross compiled
out of the box. For example, a build script might require a compiled binary to
be executed on the build machine in order to generate headers, documentation
or other kind of files. Additionally in some cases it might not be possible to
correctly guess the capabilities of the target hardware at compile time.

Factors Methods

Native Hardware Similar Software Cross Support Native Cross

Y Y N Y N

N N Y N Y

N Y Y N Y

Y N Y N Y

Y Y Y Y Y

Y N N N N

N N N N N

Table 2.2. Bootstrap build methods

Table 2.2 illustrates which methods are viable depending on various notable real-
world combinations of the above factors. The last two lines describe situations where
none of the previously outlined build methods is directly employable.

25

2 – The porting process

These situations can be addressed either by modifying the package build scripts
to add support for cross compilation or by indirectly solving the problems related to
those scripts which do not cross compile. For this project indeed the latter solution
was implemented, as described in section 2.2.2.

2.1.5 The ARM port and the SPARC design choices

The ARM port of MeeGo [2] was analyzed in order to gather useful information be-
fore initiating the SPARC porting effort. First, the bootstrap problem in the ARM
case was heavily mitigated by the existence of very similar ARM port of Fedora.
Several packages in the MeeGo distribution come indeed unchanged from their Fe-
dora counterparts. The process is undocumented, but it is possible that the Fedora
repositories could have been directly used to bootstrap the OBS. Unfortunately, the
same is not true in the SPARC case. To create the bootstrap repository a temporary
build environment was set up, as illustrated in 2.2.

As the first building attempts were performed, it became clear that a great
number of MeeGo packages were not cross-compile friendly. At the same time,
ARM hardware is subject to fast evolution and oriented to a low-power and low-
performance market. For these reasons, to maintain the ARM port, the OBS is
configured to work using the emulated native build mode with acceleration.

Given the nature of the available SPARC hardware, the same choice looked
appropriated for the SPARC port. Some complications, though, emerged later in
the implementation phase, due to the fact that the SPARC user mode support in
QEMU is partial and not sufficient to run complex software. For example, the fork
system call cannot be currently translated. Fixing QEMU was considered out of
scope of the project work, also due to the time constraints, so an additional build
method, based on full system emulation, was devised and implemented in the OBS.

2.2 The temporary build environment

This section describes the creation of the bootstrap repository used to initialize the
OBS in order to build the SPARC MeeGo repositories. The repository had to be
cross compiled from scratch due to the lack of an existing similar target.

The list of packages to build was first devised by observing the logs of the image
creator for the official MeeGo 1.1 Core image [18]. The requirements related to build
dependencies were relaxed by the fact that several tools could be executed natively
in a chroot environment. For example, a package might have required the GNU
make tool to be compiled. Such tool was not available in the SPARC bootstrap
repository, but could be installed from the x86 repositories and directly used to
perform the cross build.

26

2 – The porting process

An initial cross build environment was set up, but some problems emerged. Most
of the build scripts turned out to be not friendly to cross compilation, requiring heavy
modifications in order to build the bootstrap repository. The biggest complication
was related to the required execution of the freshly compiled SPARC binaries, either
for testing purposes or in order to generate header files and documentation. Instead
of manually fixing every single issue, the execution of SPARC binaries was made
possible with a workaround, resulting in a working general solution.

2.2.1 Initial cross build attempts

The hardware resources available for the project were few LEON test boards, some
old SPARC workstations and several recent x86 machines. Given the higher perfor-
mance of the x86 hardware, the first method of choice for building the bootstrap
repository resulted to be cross compilation. The build machine was powered by a
dual core AMD Phenom processor and 3GB of RAM. The installed operating sys-
tem was Ubuntu 10.04 32-bit, since it was the most recent version supported by the
MeeGo 1.1 SDK and tools. The following design choices were made:

1. Chroot environment — To minimize the differences between the build and the
execution environment, the technique described in 2.1.1 was used. A chroot
environment based on the official MeeGo 1.1 Netbook image was created and
configured.

2. Toolchain and sysroot — To cross compile the packages, the official LEON
toolchain was used. Such toolchain is based on the GNU Compiler Collection
(GCC) version 4.4.2 and provides a minimal system root populated with the
GNU Standard C Library (glibc) version 2.9.

3. Automation scripts — To reduce the amount of work required to build every
single package, a set of scripts was implemented. The scripts allow to fetch the
package sources, execute the builds, compare the contents of the built packages
against the official MeeGo packages and manage a local repository.

Setup of the chroot environment

The first step consisted in adding the MeeGo repositories to Ubuntu and installing
the required tools, in particular the MeeGo Image Creator (mic). Detailed instruc-
tions for all the supported operating systems can be found at [5].

To create the chroot environment, it was sufficient to unpack a MeeGo 1.1 Net-
book image for the x86 architecture. The chroot environment was accessed using the
mic-chroot command, which took care of bind mounting all the virtual filesystems
necessary for the chroot environment to work properly (e.g. /proc and /dev).

27

2 – The porting process

1 root@host$ mkdir ~/ meegochroot

2 root@host$ mic -chroot --unpack -only -s ~/ meegochroot meego -netbook -ia32 -1.1. img

3 root@host$ mic -chroot ~/ meegochroot

4 root@meego$ zypper removerepo updates -core updates -netbook updates -non -oss

5 root@meego$ zypper refresh

6 root@meego$ zypper install man nano wget python perl rpm -build rpm -devel

rpmdevtools

7 root@meego$ cd /opt

8 root@meego$ wget ftp :// gaisler.com/gaisler.com/linux/linux -2.6/ toolchains/sparc -

linux -4.4.2/ sparc -linux -ct-multilib -0.0.5. tar.bz2

9 root@meego$ tar -xvf sparc -linux -ct-multilib -0.0.5. tar.bz2

10 root@meego$ su - meego

11 meego@meego$ echo ’export PATH ="/ opt/sparc -linux -4.4.2 - toolchains/multilib/bin:

$PATH"’ >> ~/. bashrc

12 meego@meego$ rpmdev -setuptree

Figure 2.3. Setup of a MeeGo chroot

The image came configured with two users: the root user, which was imperson-
ated after invoking the mic-chroot command, and an unprivileged user called meego,
which was used to perform the builds. In the chroot environment, it was possible
to drop super user privileges using the su - meego command and regain them by
typing exit.

The official LEON cross compile toolchain was installed by unpacking the dis-
tribution archive under the /opt filesystem and permanently adding the its bin
directory to the search path of the user meego.

The rpmdev-setuptree command created the directory structure used by the rpm-
build tool in the user home directory. In particular the following directories were
created: /rpmbuild/BUILD, /rpmbuild/BUILDROOT, /rpmbuild/RPMS, /rpm-
build/SOURCES, /rpmbuild/SPECS and /rpmbuild/SRPMS. The input files for
the command have to be placed in the SPECS and SOURCES directories, while
the generated packages are saved under the RPMS and SRPMS directories.

Configuration of RPM

MeeGo already provided custom settings for RPM through the package meego-rpm-
config. Additionally, a platform-specific configuration file for the SPARC architec-
ture had to be written. Most importantly, such file contained the platform-specific
command line options to be passed to compiler, linker and configure scripts.

The first line in figure 2.4 specifies the compile flags to be passed to the compiler.
The first three switches instruct GCC to generate code which includes the v8 mul-
tiply and divide instructions and targets a 32bit SPARC processor with hardware
FPU. In LEON jargon this target is usually referred to as hfleonv8. The –sysroot
switch forces GCC to refer all the inclusion paths, either for headers and libraries, to
the path supplied as argument. The other lines in 2.4 specify the value of the –host

28

2 – The porting process

option to be passed to any GNU configure script included in the source packages,
to make it aware of the cross compilation scenario. The complete configuration file
can be found in section C.1.1.

1 %optflags -mcpu=v8 -m32 -mhard -float --sysroot =/home/meego/root

2 %_host_cpu sparc

3 %_host_vendor leon

4 %_host_os linux

5 %_host %{ _host_cpu }-%{ _host_vendor }-%{ _host_os}-gnu

Figure 2.4. /usr/lib/rpm/platform/sparc-linux/macros (parts)

The automation scripts

The build environment was enhanced with a set of scripts used to automate as much
as possible the build tasks. The scripts were placed under the /home/meego/scripts
directory, which was added to the search path of the user meego. The first version of
the script set is described here, while some additional functionality that was added
later is described in 2.2.3.

Variable Description

SM VERSION MeeGo version to be built, used for example to select the
correct source repository.

SM CACHE MAXAGE Amount of seconds after which downloaded files such as
source packages and repository indexes expire and have
to be downloaded again.

SM EDITOR Text editor of choice.

SM PATH Location of the rpmbuild and scripts directories.

SM REPOSITORY Template of the URL to MeeGo source repositories. The
SM VERSION variable might be included in the value
to select the correct repository.

SM RPM TARGET Value of the –target switch to be passed to the rpmbuild
tool.

Table 2.3. Configuration variables for the build scripts

The scripts share a common set of utility functions defined in include/func-
tions.inc and a certain amount of configuration variables, defined in include/env.inc,
which are documented in table 2.3. The following commands are available:

29

2 – The porting process

• buildclean — Clears the rpmbuild directory tree and allows for a new build
job to be prepared.

• buildprepare ”repository” ”package” [local] — Accepts the repository and pack-
age name (e.g. core, tzdata), downloads the source package from the MeeGo
repository and unpacks it in the correct location so that it becomes ready to
be built. If the local literal is specified, the source package is retrieved from
the local repository of built packages, thus including any modification that
was done in a previous build.

• buildperform [prep/force] — Builds the previously prepared package by invok-
ing the rpmbuild tool with the correct switches. If the prep literal is specified,
only the %prep stage in the spec file is executed. If the force literal is specified,
the build is executed even if unresolved build dependencies are detected.

• buildcheck ”repository” — Compares the built packages with the binary pack-
ages found in the specified repository (e.g. core) and notifies of any difference
in the list of included files. Moreover, each binary file is checked to make sure
it was indeed built for the SPARC target.

• buildsave ”repository” — Saves the built packages in a local folder. The repos-
itory argument is usually the same value previously used to fetch the source
package, but might be changed here for flexibility.

• repoclean — Deletes all the built packages saved in the local repository folder
by the buildsave command.

• rootpopulate — Wipes the local system root directory (the one specified earlier
in the –sysroot switch for GCC) and populates it using the initial system root
shipped with the official LEON toolchain.

• rootinstall ”repository” ”package” — Installs the specified package from the
local repository to the system root directory. This step is necessary to provide
the include headers and libraries which might be needed by other packages in
order to be built.

In figure 2.5 an example build session is shown. Eventually, an additional com-
mand build ”repository” ”package” was implemented to further reduce the verbosity
by encapsulating all the shown commands in a single one. The sources of the refer-
enced scripts can be found in section C.1.2.

30

2 – The porting process

1 meego@meego$ buildclean

2 meego@meego$ buildprepare core tzdata

3 meego@meego$ builperform

4 meego@meego$ buildcheck core

5 meego@meego$ buildsave core

6 meego@meego$ rootinstall core tzdata

Figure 2.5. Example usage of the automation scripts

2.2.2 A technique for remote execution

To overcome the limitations of the build scripts, a remote execution technique was
devised and implemented. Two main design choices had to be made, concerning
how and where the execution of the SPARC binaries had to take place. The imple-
mentation required to set up an available SPARC workstation and to modify the
stock Ubuntu kernel and C library, as illustrated next.

How to modify and rebuild the Ubuntu kernel

Ubuntu provides a patched kernel which might differ from the mainline available
on the official Linux kernel website. Moreover, Ubuntu provides a set of tools that
simplify the retrieval of the correct sources and the installation of the new kernel.
For this reason the recommended Ubuntu procedures were used, as described in [8].

Briefly, the required build tools were installed using the Ubuntu package man-
ager. Then a copy of the sources of the kernel shipped with Ubuntu Lucid was
fetched from its git repository and a new configuration file was created starting
from the default one. The sources were duplicated, modified and a patch was gen-
erated with the diff command. The kernel was finally compiled and installed, and
became automatically available in the system bootloader menu.

1 user@host$ sudo apt -get install fakeroot build -essential crash kexec -tools

makedumpfile kernel -wedge build -dep linux git -core libncurses5 libncurses5 -

dev libelf -dev asciidoc binutils -dev

2 user@host$ git clone git :// kernel.ubuntu.com/ubuntu/ubuntu -lucid.git

3 user@host$ cp -r ubuntu -lucid ubuntu -lucid.orig

4 user@host$ cp ubuntu -lucid/debian.master/config/i386/config.flavor.generic

ubuntu -lucid/debian.master/config/i386/config.flavor.sparcmeego

5 ...

6 user@host$ diff -Naur ubuntu -lucid.orig/fs/exec.c ubuntu -lucid/fs/exec.c >

kernel -remote -execution.patch

7 user@host$ fakeroot ubuntu -lucid/debian/rules binary -sparcmeego

8 user@host$ sudo dpkg -i linux -headers -*- sparcmeego_ *.deb linux -image -*-

sparcmeego_ *.deb

Figure 2.6. Rebuilding the Ubuntu Lucid kernel

31

2 – The porting process

The execution hook mechanism

On Linux systems, binaries stored on the disk are executed via the execve system
call, whose source code is located in the file fs/exec.c of the kernel source tree. When
invoked on a foreign architecture binary, execve fails returning the ENOEXEC error
code. This behavior was modified with a simple patch, as shown briefly in figure 2.7
and extensively in section C.1.3.

1 @@ -1359,6 +1401 ,7 @@

2 struct files_struct *displaced;

3 bool clear_in_exec;

4 int retval;

5 + char *remoteclient = "/home/meego/scripts/remoteclient";

6

7 retval = unshare_files (& displaced);

8 if (retval)

9 @@ -1379,6 +1422 ,11 @@

10 clear_in_exec = retval;

11 current ->in_execve = 1;

12

13 + if (bin_type_sparc(filename , (const char **) argv)) {

14 + printk(KERN_DEBUG "remote execution activated\n");

15 + filename = remoteclient;

16 + }

17 +

18 file = open_exec(filename);

19 retval = PTR_ERR(file);

20 if (IS_ERR(file))

Figure 2.7. Kernel patch to allow remote execution (part)

The bin type sparc function reads the ELF header of the binary and returns a
non-zero value if the architecture is SPARC. In that case, the path on disk of the
binary to be executed is replaced with the hardcoded path of a gateway program,
which takes care of performing the remote execution.

The remote execution gateway

The remote execution gateway script was designed to be as simple as possible. The
main idea was to configure the execution target to replicate as closely as possible
the build environment and to use the SSH protocol both to share files and execute
commands remotely. The following details had to be taken care of:

• Configure SSH servers both on the host and the target. Generate RSA key
pairs on both machines and add the public keys to the authorized hosts list
on the other machine, so that no password will be asked upon connection3.

3This setup refers to the OpenSSH public key authentication mode. More information can be
found at [26].

32

2 – The porting process

• Create a user called meego on the target, with the same UID as the user
meego on the host. On the target, mount under the same path the following
directories of the host: /home/meego/rpmbuild, /home/meego/root.

The gateway was written in C, both for performance reasons and for convenience,
and its source code can be found in section C.1.4. The gateway builds a string
containing the command to be executed remotely, and passes it to the local SSH
client. The command string is built as follows:

1. The SSH parameters required to connect to the target, such as user name, host
name and port, are retrieved from the SM SSH INTO NATIVE environment
variable, which must be defined, and appended to the command string.

2. The current working directory is retrieved and the command to switch to it
generated as cd ”...”.

3. All the local environment variables except those specified in a predefined con-
stant are dumped and each of them is exported to the remote target by ap-
pending the command export VARIABLE NAME=”...”.

4. The relative path to the SPARC binary (referred to the current working direc-
tory) and the provided parameters are quoted and appended to the command
string. This is possible due to the fact that the kernel patch modifies the ex-
ecutable path but not the parameters, and that on Linux the first parameter
is always the relative path to the invoked binary file.

5. Finally, the command string is completed with exit ”$?” which forces the ssh
client to return the exit code of the remotely invoked SPARC binary.

Choice and configuration of the execution target

The remote execution gateway can work with any target, regardless its location
and architecture, as long as it is reachable over the network and it accepts SSH
connections. As a first attempt, the target was configured inside QEMU in full
system emulation mode. Unfortunately the approach turned out to be impossible
for two reasons:

1. The 32-bit SPARC QEMU was stable and complete enough to run a full Linux
operating system, but the most recent compatible distribution, Debian Etch,
was too old to be able to execute the SPARC binaries compiled against glibc
version 2.9.

33

2 – The porting process

2. In theory, the 64-bit SPARC QEMU would have been able to execute a re-
cent enough Linux distribution as well as the 32-bit SPARC binaries, but its
development stage was still far from completion.

Consequently, the only choice left was to use real hardware. A spare SUN Ul-
tra1 Creator workstation, featuring an UltraSPARC processor, was configured with
Debian Lenny and successfully used as native remote target.

Fixing the loader from glibc

The GNU Standard C Library (glibc) provides the dynamic loader which loads at
runtime the shared libraries needed by a program. The shared libraries are searched
first in the paths specified by the environment variable LD LIBRARY PATH, then
from the system library cache and finally from the standard paths /lib and /usr/lib.

Sometimes, in the cross compilation scenario, a dynamic library also used by a
native build tool is built. Moreover the LD LIBRARY PATH variable might be set
to include the build directory in order to run some tests. As a result, when the native
tool is executed, the loader first finds the just built SPARC version of the library.
The expected behavior would be to ignore it and proceed searching. Unfortunately,
due to a glitch in the loader code, when the library and the build machine have
different endianness (which is the case of x86 and SPARC) the execution is blocked
and an error is returned.

The glitch was addressed by patching the 2.11.1 version of glibc shipped with
Ubuntu, recompiling it and overwriting the stock dynamic loader, which is located
at /lib/ld-2.11.1.so. The complete patch can be found in section C.1.3.

2.2.3 Additional workarounds

While cross compiling some packages, additional workarounds had to be imple-
mented to solve minor glitches. Since most of the packages rely on the GNU au-
totools and make for building, the workarounds proved to be reusable for packages
showing the same problematic behavior. Consequently, the automation scripts de-
scribed in 2.2.1 were integrated with a command used to enable or disable the
available workarounds.

The command is workaround ”name” ”action” [parameters]. All workarounds
support the actions enable and disable, with no parameters, while some of them also
define other actions. Here is a description of the available workarounds:

• compileflags — Allows to specify additional flags that will be passed to the
compiler. Once the workaround is enabled, the flags can be added using the
action add and specifying them as parameters.

34

2 – The porting process

• configurecache — Allows to force the GNU configure scripts to load some
variables from a cache file instead of attempting to evaluate them at runtime.
This can be used in case some build parameters are not correctly detected
(usually because they refer to the build machine instead of the target). The
default cache file already contains the most common values, while more can
be added with the action add.

• configureflags — Allows to specify additional flags that will be passed to the
configure script. Once the workaround is enabled, the flags can be added using
the action add and specifying them as parameters.

• gccmasq — The correct build tools (such as gcc, g++, ar, etc.) for the LEON
target are prefixed with the literal sparc-leon-linux-gnu- to distinguish them
from the local, native build tools4. Some build scripts ignore the RPM settings
and do not prefix the tools, hence building x86 binaries. This workaround
inserts some wrappers in the system path so that the correct tools are invoked
in any case. The reason why this workaround is not always enabled is that
some build scripts are indeed cross compilation aware and need both native
and cross tools to work properly.

• nocheck — This workaround temporarily modifies the RPM configuration in
order to disable the %check section of the build spec file.

• nocross — This workaround temporarily modifies the RPM configuration by
removing the –host parameter for configure scritps, which consequently behave
as the performed build was native. Often used in combination with the gccmasq
workaround.

• uname — This workaround replaces the system uname command to return
the information relative to the target. It is useful when the build scripts use
uname to determine the characteristics of the target.

Finally, to complete the bootstrap repository, a custom package called system-
root was created. Its contents were the system root shipped with the official LEON
toolchain and a native SPARC version of GCC and Binutils. In order for the
final build system to recognize its contents, the custom package was marked as
provider (using the Provides clause in its spec file) of the following MeeGo pack-
ages: glibc, glibc-common, glibc-devel, glibc-headers, glibc-static, glibc-utils, nscd, lib-
stdc++, libstdc++-devel, kernel-headers, ldconfig, binutils, binutils-devel, gcc, gcc-
c++.

4This is the standard notation used for GNU-based cross build tools. The prefix is formed by
four elements, which respectively represent target architecture, hardware vendor or subarchitecture,
operating system and ABI.

35

2 – The porting process

2.3 The final build infrastructure

In order to build and maintain the full SPARC MeeGo repositories the OBS was
set up and modified to target the SPARC architecture. The system was initialized
using the bootstrap repository and the MeeGo source packages were imported and
compiled automatically. Thanks to the source code history tracking features of
the systems, all the patches applied to problematic packages were stored in the
distribution history and are available for inspection through the web interface.

Due to a lack of functionality in the QEMU user mode emulation, the full system
emulation mode had to be employed to perform the builds. As a consequence the
mixed chroot acceleration approach could not be used and an alternative method
based on the distributed building tool distcc was implemented. Finally, to further
reduce the distribution rebuild time, a zero-configuration worker package was created
and spread on several machines over the company network.

2.3.1 Setup and configuration of the OBS

An Intel machine equipped with a Core 2 Quad processor clocked at 3.00 GHz and 8
GB of RAM was dedicated to the build infrastructure. The machine was configured
with OpenSUSE 11.4, the natural choice to set up an OBS instance, following the
instructions available at [9].

Installing and configuring of the OBS

The OBS installation procedure is not fully automated. First the Tools repository
referring to the installed OpenSUSE version has to be added to zypper. The com-
plete OBS is available for installation through the packages obs-server, obs-api and
obs-worker.

These packages also pull in MySQL, whose default settings are unsafe and can
be fixed using the interactive tool mysql secure installation. Figure 2.8 shows the
commands used to initialize the OBS databases.

1 root@host$ cd /srv/www/obs/api/

2 root@host$ RAILS_ENV="production" rake db:setup

3 root@host$ RAILS_ENV="production" rake db:migrate

4 root@host$ cd /srv/www/obs/webui/

5 root@host$ RAILS_ENV="production" rake db:setup

6 root@host$ RAILS_ENV="production" rake db:migrate

Figure 2.8. Initialization of the OBS MySQL databases

The OBS consists of several services, which all have to be started in order for
the system to work. Figure 2.9 shows the startup procedure (the system can then

36

2 – The porting process

be stopped by executing the same commands and replacing start with stop). Before
starting the OBS services, though, several configuration files have to be modified as
described next:

• /etc/lighttpd/lighttpd.conf

include shell ”cat /etc/lighttpd/vhosts.d/*.conf” — This line has to be un-
commented to enable the virtual hosts functionality of lighttpd, used by the
OBS web interface and API web applications.

• /etc/lighttpd/modules.conf

include ”conf.d/fastcgi.conf” — This line has to be uncommented to enable
the FastCGI interface used to invoke the Ruby interpreter and generate the
dynamic web pages of the OBS.

• /etc/sysconfig/obs.server

OBS SCHEDULER ARCHITECTURES=”sparc” — Makes sure that the sched-
uler only dispatches build jobs that target the SPARC architecture.

• /etc/sysconfig/obs.worker

OBS VM TYPE=”qemu” — Forces the Virtual Machine mode of the OBS
to use QEMU instead of Xen or KVM. This setting will also be used to en-
able the new full system emulation build method implemented for this project.

OBS WORKER INSTANCES=”3 — Runs 3 workers at the same time. Can
be changed depending on the available hardware resources.

OBS WORKER JOBS=”2” — Sets the number of parallel build jobs inside
a worker to 2. Such value has been empirically selected by observing the be-
havior of the system.

OBS VM DISK AUTOSETUP ROOT FILESIZE=”6122” — Sets the size of
the system image file used to perform the builds to 6 GB.

OBS INSTANCE MEMORY=”1024” — Allocates 1 GB of RAM to every
QEMU instance used to perform the builds.

• /srv/www/obs/api/config/database.yml and ../webui/config/database.yml

37

2 – The porting process

username: root — Sets the user name used to access the MySQL database.
password: ***** — Sets the password used to access the MySQL database.

• /srv/www/obs/webui/config/environments/production.rb

FRONTEND HOST = ”192.168.0.39” — Should be changed to the IP ad-
dress of the machine hosting the OBS server.

1 root@host$ rcmysql start

2 root@host$ rcobsrepserver start

3 root@host$ rcobssrcserver start

4 root@host$ rcobsscheduler start

5 root@host$ rcobsworker start

6 root@host$ rcobsdispatcher start

7 root@host$ rcobspublisher start

8 root@host$ rcobswarden start

9 root@host$ rclighttpd start

Figure 2.9. Startup of the OBS services

Preparing QEMU

Several choices and arrangements had to be done in order to use the full system
emulation capabilities of QEMU. The process can be summarized as follows:

• Choice of the emulated hardware — QEMU is able to emulate several work-
stations produced by Sun Microsystems. The SPARCstation 10 was chosen
because quite reliable at the time of testing and able to support up to 1 GB
of virtual RAM, which was considered to be necessary since compilation is a
memory-consuming task. The switch -M SS-10 was passed to QEMU in order
to select the emulated machine.

• Choice of the disk layout — Since the OBS provided already some limited
support for it, a disk layout with two single partition image files was used.
The first image file was formatted in ext3 and dedicated to the system image
while the second was used as swap space. The path to the two image files was
passed to QEMU using respectively the -hda and -hdb command line options.

• Boot method and options — QEMU is natively able to initialize the Linux
kernel for improved flexibility, so no bootloader had to be installed in the
system image file. The -kernel command line option was used to supply the
path to a valid kernel zImage file. At boot, QEMU decompresses the image
contents to a fixed location in RAM and sets the instruction pointer to that

38

2 – The porting process

location. Moreover, using the -append command line option, it is possible
to specify some options passed to the booted kernel. The most important
employed options were:

– root=/dev/sda rw — So that the kernel automatically mounts /dev/sda
as the file system root in read/write mode. Note that the device is sda
and not hda since in recent kernels the IDE and SCSI subsystems were
partially unified.

– ip=dhcp — So that the kernel automatically attempts to configure all
available network interfaces via the Dynamic Host Configuration Protocol
(DHCP).

– elevator=noop — So that the kernel does not reschedule I/O operations.
The I/O scheduling policy is hence left only to the kernel running on the
host machine, which is the one accessing the real hardware.

– console=ttyS0 — So that the kernel output is sent to a virtual serial
interface and then redirected to the standard output stream of the QEMU
process.

Additionally, the -m option was passed to QEMU to set the amount of emu-
lated RAM, the -nographic option was used to disable the optional emulated
framebuffer and integrated VNC server and the -no-reboot option was used to
make sure QEMU terminated in case of error, giving control back to the OBS.

• Kernel version and build options — Unfortunately, the QEMU team does not
supply prebuilt Linux kernels suitable for the emulated hardware, nor a set of
recommended options to be used. The latest available kernel version, 2.6.38,
was then configured and cross compiled for the SPARC architecture using the
LEON toolchain, whose output binaries are compatible with any SPARC v8
processor. The following notable settings were chosen:

– Regarding the cross toolchain — The cross compiler tool prefix option
was set to sparc-leon-linux-gnu-, in order for the LEON toolchain to be
used.

– Regarding the loadable module support — It was disabled to speed up the
boot procedure. This setting makes sense only if the hardware where the
kernel will be run is known at compile time and most of the subsystems
are disabled, so the image does not grow exceedingly in size.

– Regarding the processor type and features — The system timer frequency,
which also regulates the interrupt handling, was set to the lowest possible
value of 100 Hz. This setting was chosen due to the slowness of the

39

2 – The porting process

emulated machine and the non-interactive usage pattern. The symmetric
multi-processing support was disabled because the emulated processor is
single core.

– Regarding the networking options — Everything was disabled except Unix
domain and PF KEY sockets, TCP/IP networking and DHCP kernel-
level autoconfiguration support.

– Regarding the device drivers — Everything was disabled except Loopback,
RAM block, HID and GMII devices, the Real Time Clock and the specific
drivers actually in use on the emulated system: 93CX6 EEPROM, Sun
LANCE Ethernet interface and the /dev/openprom virtual device.

– Regarding the supported file systems — The classic ext2, ext3 and ext4 file
systems were selected as well as Dnotify, Inotify and kernel automounter
support.

The kernel was compiled using the command make ARCH=sparc and the re-
sulting zImage file was copied on the OBS machine under the path /opt/qemu-
kernels/sparc-zImage. A detailed list of the enabled kernel options can be found in
section C.3.1.

Preparing DISTCC

The DISTCC tool consists of a server and a client. The client runs as a wrapper
to GCC and is able to offload part of the compilation processes to one or more
servers, by transferring source and binary files over the network. In particular, the
preprocessing phase is always executed on the build machine, while the already
preprocessed files can be compiled somewhere else. This technique results in easier
configuration, since the correct system headers do not have to be propagated on all
the server machines, and good performance improvements, since most of the CPU
time is anyway spent in the compilation phase.

Due to the use of full system emulation, the SPARC build jobs could not be
accelerated using the same mixed chroot approach of the ARM port, so support
for DISTCC was added to the OBS. OpenSUSE does not provide prebuilt DISTCC
binaries, so DISTCC 2.18.3, the same version included in the MeeGo 1.1 Core repos-
itory, was compiled from source and installed on the OBS machine. The OBS chroot
creation scripts were later modified to configure the DISTCC client to offload the
build jobs to the host machine.

Figure 2.10 illustrates how to build DISTCC and run its server component. In
this case the server is not executed as a daemon but on an interactive terminal, using
the –no-detach option. The –jobs options specify how many concurrent compilation
jobs to allow, while the –allow option specifies the IP addresses which are accepted

40

2 – The porting process

as clients. Only the loopback address is specified since only the requests coming
from the locally running instances of QEMU are supposed to be accepted.

1 user@host$./ configure --prefix =/opt/distcc

2 user@host$ make

3 root@host$ make install

4 root@host$ /opt/distcc/bin/distccd --no-detach --jobs 4 --allow 127.0.0.1

Figure 2.10. Compilation and installation of DISTCC

2.3.2 Adding the necessary SPARC support

Most of the OBS code is written in Perl or Bash and supports the use of native
build workers for a wide range of architectures out of the box, as long as a Linux
distribution capable of running a recent Perl interpreter is available. In practice,
the emulation functionality of the OBS is used only to target ARM systems.

If QEMU properly supported the SPARC architecture in user mode, adding it to
the OBS would have been just a matter of changing some paths. Unfortunately, the
only working emulator available for use was the full system QEMU, which required
more complex changes to be performed, as described next.

Adding SPARC full system emulation to the OBS

The OBS was modified in several parts to accommodate the new SPARC build sys-
tem. Patches against the OBS packages from the OpenSUSE 11.4 Tools repository
can be found in section C.2.1. Briefly, the following changes were made:

• Dispatching the SPARC build jobs — The first change to be done regards the
OBS dispatcher code. Inside the file /usr/lib/obs/server/bs dispatch, in fact,
there is an hashtable which describes the target architectures that can be built
by a worker running on a given architecture. The sparc literal has to be added
on the lines related the i586, i686 and x86 64 workers, so that the dispatcher
would assign SPARC jobs to them. The same change has to be performed in
/usr/lib/obs/server/bs worker, so that the workers also become aware of their
new SPARC build capabilities.

• Fixes for the web interface — The target repository selection page of the OBS
web interface hides the SPARC target, making it impossible to select it for the
builds. To fix this problem, the file /srv/www/obs/webui/config/options.yml
has to be changed by adding the literal sparc to the visible architectures vari-
able.

41

2 – The porting process

• Adding full system emulation support — The changes related to the emulation
mode affect a tool called build, which is shipped with the OBS but can also
be used independently. Such tool is able to create a chroot environment and
build packages inside the chroot. The main idea behind the patches is to
create the chroot environment inside a loop-mounted image file, boot it with
QEMU and execute the build. Once the build is finished, the emulator shuts
down and the built packages can be fetched from the image file. The files
/usr/lib/build/build and /usr/lib/build/init buildsystem were modified, most
notably in the following ways:

– The invocation of QEMU was changed to support full system emulation,
by applying the settings described before.

– The DISTCC client was configured by modifying some environment vari-
ables set at boot time. In particular, the path to the DISTCC wrap-
pers (/usr/lib/distcc/bin) was added to the PATH variable, and the
DISTCC HOST variable was set to 10.0.2.2. Such IP address always
maps to the host machine running QEMU.

– Finally, a set of minor fixes was introduced to minimize the differences be-
tween the packages in the SPARC bootstrap repository and the packages
in the existing MeeGo repositories. The changes mostly consist in harm-
less path fixes through symlinks and the introduction of the –replacefiles
option in the RPM tool invocation.

Initializing the SPARC MeeGo project

Once the system was set up and ready to build, a new a project called MeeGo and
a subproject called MeeGo:1.1 were created through the web interface. Finally, a
further subproject called MeeGo:1.1:Core was created and initialized following the
steps:

1. The corresponding project configuration was fetched from the official MeeGo
OBS instance, modified to include support for the SPARC target and added to
the MeeGo:1.1:Core project from the Project Config tab of the web interface.
The configuration lists the content of the minimal build chroot and also in-
cludes the project-related RPM settings such as compilation flags and support
macros. It can be found in section C.2.2.

2. The output repository for the built SPARC packages was created from the
Repositories tab of the web interface, by clicking on Add, then pick one via
advanced interface and filling the displayed form with the following values:
Project: MeeGo:1.1:Core, Repository: standard, New name: standard, Archi-
tecture: sparc.

42

2 – The porting process

3. All the packages from the bootstrap repository were copied to the OBS ma-
chine, under the path /srv/obs/build/MeeGo:1.1:Core/standard/sparc/:full,
making sure that they were owned by the user obsrun. The OBS was notified
of this action by typing, as root, the command obs admin –rescan-repository
Meego:1.1:Core standard sparc.

4. The MeeGo 1.1 source packages from the Core repository were imported into
the local OBS, using a small shell script written on purpose. The script down-
loaded the packages from the official repository and pushed them to the local
OBS using the command line OBS client.

Other repositories, such as the Netbook repository, were imported following a
slightly different procedure. The bootstrap repository was indeed not needed any-
more, and the OBS had to be instructed to use the Core repository to satisfy the
build dependencies and create the chroot environment for the builds. Steps 1 and 3
were skipped and step two was executed in the same way, hence selecting the Core
repository instead of creating a new self-contained Netbook repository.

Finally, a repository called Support was created with the purpose of hosting
additional packages and experimental builds specifically related to the SPARC ports.
Currently, its contents are the system-root package described before, and the X.org
video drivers for the machine emulated by QEMU.

The porting workflow

Start
More

packages?

End

No

Yes Failed
package?

No

Read log
Checkout sources

Develop fix
Commit fix

Yes

Figure 2.11. Porting workflow diagram

Once the MeeGo:1.1:Core project had been initialized and populated with the
source packages, the OBS started to execute the build jobs. The build progress

43

2 – The porting process

could be observed through the OBS web interface, which notified of failures. The
OBS command line client was instead used to manipulate the package sources and
apply the required fixes.

Figure 2.11 illustrates the porting workflow in the context of the OBS. Figure
2.12, instead, shows an example session where a package is fetched from the OBS,
a patch is added and the changes are pushed back to the system.

1 user@host$ osc -Ahttp ://192.168.0.39:81 co MeeGo :1.1: Core/package

2 user@host$ cd MeeGo :1.1: Core/package

3 ...

4 user@host$ tar -xvf package -0.1. tar.gz

5 user@host$ cp -r package -0.1 package -0.1. orig

6 user@host$ nano package -0.1/ src/file.c

7 user@host$ diff -Naur package -0.1. orig package -0.1 > sparc.patch

8 user@host$ nano package.spec

9 ...

10 user@host$ osc -Ahttp ://192.168.0.39:81 add sparc.patch

11 user@host$ osc -Ahttp ://192.168.0.39:81 ci

Figure 2.12. Example porting session

2.3.3 A zero-configuration, flexible build cluster

Due to the emulation overhead and the lack of SMP support in QEMU, the build
time of packages was too long for a complete system rebuild to be performed within
the project deadline. Since the single package build time could not be reduced
further, the system performance was improved by employing more hardware and
exploiting package-level parallelism, hence attempting to build several packages con-
currently.

The main idea was to create an easily deployable worker package and distribute it
on different machines in the company network, possibly enabling it only for limited
periods of time, for example at night. The main design requirements were ease of
use and minimal external dependencies.

1. First, an OpenSUSE 11.4 chroot environment was created as shown in fig-
ure 2.13. The environment could then be accessed from any recent Linux
distribution by bind mounting the required filesystems and typing the chroot
command.

2. The environment was completed by installing the LEON toolchain, the DISTCC
server, QEMU and the obs-worker package, following the same procedures de-
scribed before. No patch had to be applied to the OBS code, since the modified
build tool is downloaded automatically from the OBS server by the local worker
service, every time a build job is started.

44

2 – The porting process

1 root@host$ mkdir /root/obs

2 root@host$ zypper --root /root/obs addrepo http :// download.opensuse.org/

distribution /11.4/ repo/oss/suse/ repo -oss

3 root@host$ mkdir /root/obs/dev

4 root@host$ cp -a /dev/zero /root/obs/dev/

5 root@host$ zypper --root /root/obs install rpm zypper wget vim # this will pull

in all the required dependencies

6 root@host$ mount -vt proc proc /root/obs/proc

7 root@host$ mount -vt sysfs sysfs /root/obs/sys

8 root@host$ mount -v -o bind /dev /root/obs/dev

9 root@host$ chroot /root/obs

10 ...

Figure 2.13. Setup of an OpenSUSE chroot

3. An initialization script was written and saved under the path /root/obs. It
was designed to be run inside the chroot environment and start the DISTCC
server and the OBS worker service.

4. Finally, an external startup script was added to be shipped together with the
chroot directory. The script was able to adjust the chroot configuration files
to the run environment, mount the required filesystems and run the internal
initialization script.

The startup script and the chroot directory were compressed in a single archive
for easy distribution. To run a new worker it was sufficient to unpack, edit the
startup script by setting the correct OBS server IP address, and running it. When
running the workers in a different environment, some configuration values might
have to be changed in the startup script. Such values are documented in table 2.4,
while the full sources are available in C.2.3.

Variable Description

CFG INSTANCES Number of worker instances to be run.

CFG INSTANCE MEMORY Amount of memory to reserve for each instance.

CFG SERVER IP Address of the main OBS server.

CFG SERVER FQDN Fully qualified domain name of the main OBS
server. Please note that this can be a simple
hostname, not registered within a DNS, since the
/etc/hosts configuration file of the worker chroot is
modified accordingly.

Table 2.4. Configuration variables for the worker package

45

Chapter 3

System testing and images

This chapter describes the test hardware and setup, how the SPARC MeeGo images
were assembled starting from the freshly compiled repositories and the results of the
tests performed alongside.

3.1 The test environment

The tests were performed using the GR-LEON4-ITX board already introduced in
section 1.2.3, which was connected to the local network and to a developer work-
station as illustrated in figure 3.2. An initial bootable image of the SPARC MeeGo
port was created manually, booted on the board and tested by incrementally adding
new features of the system.

3.1.1 Test hardware, tools and configuration

A Linux-based developer workstation was used to host the system images and export
them via NFS. The GRMON utility was used to remotely load a NFS-enabled kernel
and to boot the board using the exported NFS share as root filesystem.

The developer workstation

Any recent Linux distribution could have been used as base for the developer work-
station, as long as it was supported by GRMON. In particular, the same Ubuntu
10.04 machine previously employed to build the bootstrap repository was used. The
following configuration steps were performed:

• Connectivity — The workstation was connected to the company network and
the network parameters were configured automatically via DHCP. Moreover,
the workstation was directly connected to the test board over a serial to USB

46

3 – System testing and images

interface. The tool minicom was used to display the output coming from the
board, using the configuration illustrated in figure 3.1.

1 pu port /dev/ttyUSB0

2 pu baudrate 38400

3 pu bits 8

4 pu parity N

5 pu stopbits 1

6 pu rtscts No

Figure 3.1. Connection configuration for minicom

• NFS server — It was configured to export an empty directory by adding a line
in the configuration file /etc/exports. The following NFS options were used:

– * — To allow access from any IP address on the company network.

– rw — To export the directory in read/write mode.

– sync — To make the server reply to requests only after all changes had
been committed to stable storage1.

– no root squash — To disable the security feature which maps requests
from the root UID/GID to the anonymous UID/GID. This was required
to allow the right file and directory permissions to be set.

– insecure — To allow requests whose source port number is higher than
IPPORT RESERVED2.

• SSH client — It was installed in order to be used to login into the MeeGo
images and execute commands.

• grmon — It was already configured and available for use from a NFS share
on the company network. To execute it, two parameters had to be devised
from the board documentation: the synchronization frequency and the static
IP address of the hardware debug interface. For the GR-LEON4-ITX board
in use the values were respectively 100 and 192.168.0.52.

1The synchronous commit behavior is mandated by the NFS protocol, but the particular server
implementation allowed a faster, albeit less safe, asynchronous commit mode.

2On UNIX-based systems only processes running with root privileges can make use port numbers
lower or equal to IPPORT RESERVED, whose value is usually 1024.

47

3 – System testing and images

Workstation

grmon
client

minicom
client

NFS
server

SSH
client

GR-LEON4-ITX

debug
interface

NFS
client

SSH
server

Ethernet
Switch

DHCP
client

Company
Network

DHCP
server

OBS
server

Serial Link

OBS
workers

Figure 3.2. Test environment setup

The test board kernel and boot method

Aeroflex Gaisler AB maintains a version of the Linux kernel compatible with LEON/-
GRLIB hardware. Unfortunately, part of the required hardware drivers still had not
been accepted into the kernel mainline, so a separate kernel repository was available
for use inside the company network. The board kernel was obtained from the repos-
itory and compiled using the configuration shown in section C.3.2, and a binary
image suitable for use with GRMON was created with the mklinuximg tool.

1 user@host$ git clone /usr/local/src/leon -linux -2.6 leon -linux -2.6

2 user@host$ cd leon -linux -2.6

3 user@host$ make ARCH=sparc

4 user@host$ mklinuximg arch/sparc/boot/image ../ image.ram -base 0x40000000 -

cmdline "video=grvga :800x600 -16 @60 console=ttyS0 ,38400 root=/dev/nfs nfsroot

=192.168.0.103:/ home/meego/SM/final -images/mp rw ip=dhcp" -ethmac "00007

ccc056d" -ipi 13

Figure 3.3. Creation of a Linux kernel image for the test board

Such tool accepts as input a kernel image and some configuration options which
are included in the output, and generates a RAM image which also includes the
code necessary to initialize the LEON processor and start the Linux kernel. The
used image options were:

48

3 – System testing and images

• -base — The starting address where the resulting image has to be loaded. This
had to be specified since the image is not relocatable.

• -cmdline — The kernel command line arguments. Most notably, the nfsroot
option was used to specity the location of the NFS export to be mounted as
root filesystem.

• -ethmac — The MAC address of the board Ethernet interface through which
the hardware debug functionality can be accessed.

• -ipi – The IRQ number used by the two available LEON cores to communicate.

The generated image is ready to be copied in RAM and executed from the first
memory location. The GRMON tool was used to perform this operation, by issuing
the load and run commands. At boot time, thanks to the integrated NFS client, the
kernel mounted as root filesystem the system image available on the workstation.

3.1.2 Test workflow, methodology and criteria

The tests were performed by first booting an initial system image, incrementally
adding packages and verifying that they worked. Several separated areas of func-
tionality were identified and tested after installing the related packages, with the
results shown in section 3.2. The tests were performed as follows:

1. A blank image file was created and its contents were formatted as an empty
ext3 partition, using the dd and mkfs.ext3 commands.

2. The image file was loop mounted3 on the workstation under the directory
exported via NFS. This technique allowed to simplify the image management
procedures and to allow to reuse the same kernel RAM image for different
system images without having to move around consistent amounts of data4.

3. A minimal bootable image able to run the package manager was created by
invoking the Zypper and RPM tools with the –root option set to the NFS
export path. The Zypper configuration had to be temporarily modified to
force it to consider the SPARC packages, by adding the line arch=sparc in the
configuration file /etc/zypp/zypp.conf. The SPARC MeeGo repositories were
added and the packages rpm, zypper, wget and nano were installed explicitly.
Since Zypper resolves automatically the package dependencies, all the other
needed packages were consequently installed. Figure 3.4 shows the issued
commands in detail.

3The term loop mount refers to the fact that an image file on a filesystem is mounted under a
directory of the same filesystem. The mount option -o loop has to be used.

4Due to the fact that the path to the NFS export is hardcoded in the RAM image.

49

3 – System testing and images

1 user@host$ dd if=/dev/zero of="skel.img" bs=1MiB count ="4092"

2 user@host$ mkfs.ext3 skel.img

3 user@host$ mkdir mountpoint

4 user@host$ su

5 root@host$ mount -oloop skel.img mountpoint

6 root@host$ rpm --root ‘realpath mountpoint ‘ --initdb

7 root@host$ zypper --root ‘realpath mountpoint ‘ addrepo http ://192.168.0.39:82/

MeeGo :/1.1:/ Core/standard/MeeGo :1.1: Core.repo

8 root@host$ zypper --root ‘realpath mountpoint ‘ addrepo http ://192.168.0.39:82/

MeeGo :/1.1:/ Netbook/standard/MeeGo :1.1: Netbook.repo

9 root@host$ zypper --root ‘realpath mountpoint ‘ addrepo http ://192.168.0.39:82/

MeeGo :/1.1:/ Support/standard/MeeGo :1.1: Support.repo

10 root@host$ zypper --root ‘realpath mountpoint ‘ install rpm zypper wget nano

11 root@host$ umount mountpoint

12 root@host$ exit

13 user@host$ cp skel.img minimal.img

Figure 3.4. Creation of the initial system image

4. The initial image contained some glitches caused by the fact that the pre and
post installation scripts of the packages could not be executed, but it was
enough to be booted over NFS, using GRMON as described above. To fix
these glitches, the RPM database folder /var/lib/rpm was deleted and the
packages were reinstalled by invoking Zypper from the system shell prompt.

5. An iterative test procedure was started, as illustrated in figure 3.5. The pack-
ages related to an outlined area of functionality were installed, tested and
fixed whenever it was necessary and possible. Once an area was tested, the
procedure was repeated with the next one.

The MeeGo repositories contain many more packages than those actually used in
the official stock MeeGo images. While allowing the users to empower their devices
with ready-to-use software additions, this fact is probably related to the legacy of
the traditional Linux distributions on which MeeGo is based on. To provide a figure,
only the SPARC binary packages of the Core repository are more than 2800.

Testing everything was both impossible, due to the time constraints of the
project, and pointless, since many packages were not interesting or even appropriate
for use on a LEON/GRLIB system. For example, the sound server pulseaudio is
superfluous because no audio output device is provided by GRLIB. The criteria used
to choose whether to test or not a functionality area were two:

1. Is the functionality area required by or strictly related to MeeGo itself?

2. Is the functionality area interesting for LEON/GRLIB applications out of the
scope of MeeGo?

50

3 – System testing and images

Start
Missing

features?
Add feature

Does it
work?

Can it be
fixed?

Fix feature

End

Yes

No

Yes

No

No

Yes

Figure 3.5. Test workflow

The second item is a consequence of the fact that, before the completion of this
project, no recent Linux distribution was available for LEON/GRLIB. The SPARC
MeeGo port contributed to fill this gap, hence becoming interesting also from a pure
Linux functionality standpoint.

3.2 Functionality areas and test results

This section describes the functionality areas that were identified to group the testing
of packages, and the results of the performed tests. Known issues and missing
functionality are outlined as well. Several functionality areas are moreover grouped
in macro areas, which correspond to the following subsections.

3.2.1 Basic system functionality

This macro area includes packages required to perform the boot sequence, implement
the mandatory system services, allow the user to login, execute basic commands and
remotely connect to the system.

51

3 – System testing and images

Boot sequence and startup scripts

It works. The file /etc/inittab can be modified to set the default runlevel, where 3
is a non-graphical environment and 5 is a graphical multi-user environment. Since
the root filesystem is mounted automatically by the kernel over NFS, it is not listed
under /etc/fstab. The startup script rc.sysinit prints a warning but the functionality
is not affected. The available devices are correctly detected and exported to the /dev
filesystem by udev.

Logging capabilities

The system logger daemon rsyslog is available. It works and it can be configured to
start at boot using the chkconfig command, which works properly too. The daemon
can be configured by modifying the file /etc/sysconfig/rsyslog.

Virtual terminals, text based login and session management

The boot sequence is correctly completed by spawning several virtual terminals, as
defined in /etc/inittab. The text-based login prompt works and can be accessed
using the PS/2 keyboard and the screen connected to the board. The /etc/shadow
file had to be tweaked manually to set a known root password.

Interactive shells

The repositories provide at least three different working shells: bash, tcsh, zsh. All
of them are functional. The generic shell /bin/sh is a symlink to bash. By default
the system assumes an American English keyboard is connected.

Basic UNIX system commands

The system commands provided by the GNU packages Coreutils and Findutils are
available and working. These include filesystem management commands (such as
cp, mv, rm, chown, chmod, etc.), text file manipulation commands (such as base64,
cat, expand, fmt, head, cut, sort, split, uniq, etc.) and search commands such as
find. It is moreover possible to change the user privileges through the sudo and su
commands.

Network configuration and utilities

The Ethernet interfaces available on the test board are working both in static and
DHCP-based configurations. DNS resolution works. Configuration utilities such as
ifconfig and route are available and working. Basic network utilities such as ping,

52

3 – System testing and images

traceroute and nslookup are available and working. The firewall subsystem iptables
is available and functional.

Remote shell capabilities

The OpenSSH server and client are available and working. Both the server and
the client can be used without any additional preparation besides installation and
invocation. The first time the server is started, a new host keypair is generated.
The procedure is CPU intensive and takes several minutes to be completed. As
an alternative to OpenSSH, the lightweight SSH server dropbear is available and
working.

Package management

The RPM and Zypper package management utilities are available and working.
After installation Zypper does not have any repository configured. The SPARC
MeeGo repositories can be added later using the commands zypper addrepo and
zypper ref.

3.2.2 Text-based functionality and applications

This macro area includes packages which allow to perform advanced operations in
a non-graphical environment.

Classical UNIX text manipulation tools

Most of the tools are available and working including sed, grep, gawk, flex and bison.

Data archiving and compression utilities

The following archiving and compression utilities were tested and resulted to be
working properly: zip, bzip2, gzip, xz and tar.

Compilers and interpreters

Besides GCC, several other compilers and interpreters are available in the MeeGo
repositories. The following were tested and resulted to be working properly: perl,
python, ruby, swi-prolog, lua, slang, tcl, tk and vala. It is worth to note, though,
that the test hardware did not deliver brilliant performance when interpreting code.
Moreover, compilers usually require big amounts of memory which might force the
system to swap, thus deteriorating performance.

53

3 – System testing and images

Documentation access utilities and data

The following utilities used to access system documentation are available and work-
ing: man, info and help. The documentation related to most system commands and
configuration files can be installed through the package man-pages. If the latter is
not installed, man fails with a misleading error message.

Text editors

The following text-based text editors are available and working: nano, emacs, vim
and ed.

3.2.3 Basic graphic functionality

This macro area includes packages required to provide minimal graphic functionality
and hardware support for the GRLIB framebuffer and for common input devices.

X.org graphic server

It works with the default configuration, using the generic X framebuffer driver fb-
dev. The supported screen refresh frequency is 60 Hz, while the supported screen
resolutions and color depths are shown in table 3.1. The resolution of 1024x768
with 16-bit color depth works but is subject to screen flickering problems, as the
system bus bandwidth is barely enough to transfer the graphic data. When the bus
is heavily used also by other devices such as the Ethernet interface, the video data
transfers might be delayed causing a loss of synchronization with the screen.

8-bit 16-bit 24-bit

640x480 x x x

800x600 x x

1024x768 x x (partly)

Table 3.1. Supported screen resolutions and color depths

Basic X-based graphic utilities

The basic window manager twm works allowing the setup of a bare-bones X-based
desktop environment. The default utilities xterm and xclock work as well.

54

3 – System testing and images

It is worth to note that the time displayed by xclock is not correct since the test
board does not provide a system clock. At boot, the system assumes the conventional
date of the 1st of January 1970 at 00:005.

3.2.4 Traditional Linux desktop functionality

This macro area includes packages required to setup a traditional Linux-based desk-
top system as well as graphical application for office automation, document viewing,
image manipulation and similar.

Gnome desktop environment

Several components of Gnome infrastructure are included in the MeeGo reposito-
ries, but not enough to setup the complete desktop environment. Nevertheless both
the system messaging bus dbus and the system configuration daemon gconf work
properly. The traditional Gnome application libraries such as glib and GTK are
available and working. These components are included since the MeeGo user inter-
face is based also on parts of Gnome 3.

Xfce desktop environment

The full Xfce desktop environment is included in the MeeGo repositories, even
though the reason is unclear. Anyway it was considered interesting and hence in-
stalled. In particular the following components were tested:

• Window manager (xfwm4) — OK.

• Compositing features of the window manager — OK.

• Desktop manager (xfdestkop) — OK.

• Configuration daemon and access client — OK.

• Panel, application menu and common panel widgets — OK.

• File manager (thunar) — OK.

• Terminal emulator (terminal) — OK.

• Text editor (mousepad) — OK.

• System settings management dialogs — OK.

5This date is usually referred to as the UNIX epoch, and is used to define UNIX timestamps as
the number of seconds elapsed since then.

55

3 – System testing and images

At this point, though, some concerns were raised about the actual capability of
the hardware to run a fully fledged Linux system, especially in the area of graphics.
The framebuffer device included in GRLIB, in fact, does not provide any hardware
video acceleration, and all the rendering work has consequently to be done in soft-
ware. This adds heavy load on the CPUs and results in a poor user experience,
primarily characterized by a lack of responsiveness of the interface.

GTK-based graphic applications

The MeeGo repositories include a full collection of GTK-based applications that can
run without problems within the Xfce desktop environment. Several of them were
installed, tested and proved to be working. Some notable applications in the areas
of text editing, document and image visualization, office automation and network
transfer are named here: gedit, evince, eog, abiword, gnumeric and transmission.

Web browsing

Unfortunately, no web browser could be built for the SPARC architecture (in the
repositories are available both Chromium and Fennec, a Firefox derivative for mo-
bile devices). All the major open source browsers, indeed, provide Just-in-Time
javascript compilers which are required by the browser itself, but are not able to
generate SPARC code.

3.2.5 MeeGo-specific functionality

This macro area includes packages that were explicitly designed and implemented
for MeeGo systems.

MeeGo desktop manager and login manager

Due to its intended usage patterns MeeGo does no provide a prompt login manager,
rather providing a desktop manager which initiates a session for a predefined user.
The MeeGo desktop manager is spawned directly by init and is able to initialize
both Xfce and the MeeGo interface launcher uxlaunch.

User interface initialization

The MeeGo desktop manager launches the interface launcher uxlaunch, which in
turn is able to initialize all the different flavors of user interface available in MeeGo.
Since the only MeeGo flavor encompassed by the port is the Netbook flavor, the
tool was tested only with such user interface. It worked. The behavior of uxlaunch
can be modified by editing the configuration file /etc/sysconfig/uxlaunch.

56

3 – System testing and images

Mutter-based window manager

The MeeGo Netbook interfaces relies on a modified version of the Mutter window
manager, which was developed originally for the Gnome 3 project. Mutter is a
compositing-only window manager, which uses the Clutter library for graphic ren-
dering. Clutter works on top of the OpenGL graphic libraries (optionally on the
OpenGL ES subset for embedded applications).

The use of Clutter in combination with a software rasterizer had been reportedly
problematic, for two main reasons:

1. Software rasterizers (included the one shipped with Mesa and used in the
SPARC MeeGo setup) tend to be simple and to support a limited number of
OpenGL extensions. In some cases, consequently, it might be impossible to
render correctly Clutter-based applications.

2. Performance. Rendering complex scenes on a general purpose CPU is usually
too slow to be practical for interactive use. This fact also explains why nor
the software rasterizer developers nor the Clutter developer actually put some
effort in enabling such combination to work in all cases.

The window manager relies only on supported extensions and hence works, albeit
being extremely slow (in the order of 0.5 - 2 frames per second, depending on
the scene). The hardware improvements required to deliver an acceptable user
experience are discussed in detail in 4.2.1.

Netbook user interface

The MeeGo Netbook user interface can be launched as well, and the top menu bar
is shown on the screen. The icon animations work (e.g. the magnifying mouse-over
effects), but they are to slow to be actually connected to the movements of the
mouse.

MeeGo-based application panels

The MeeGo Netbook application panels do not work. This is caused by a combina-
tion of factors, namely the use of the Clutter MX widget library and the software
rasterizer. Two alternatives were considered to fix the problem:

• Modify the software — The software rasterizer could be modified to support all
the required GL extensions. This solution, though, would have been pointless
since it would not have addressed the performance problems related to software
rendering.

57

3 – System testing and images

• Modify the hardware — This was considered out of the project scope and,
besides, it would have been enough work for a second thesis (or even more).
Nevertheless, this solution was considered from a theoretical point of view and
the necessary design parameters were outlined, as explained in 4.2.1.

3.3 Prebuilt system images

During the testing procedure, while the system was being assembled, it was con-
sidered interesting to create a series of preconfigured system images that could be
used for platform evaluation and as starting point for Linux-based LEON/GRLIB
projects. The images could be easily created by copying the testing image at a given
point, somehow freezing its status and making it available for later use. This section
describes the contents of the images and provides some documentation on how to
use them.

3.3.1 Configuration and security considerations

The following list describes some important details about the predefined configura-
tion of the images and, where relevant, describes how to modify it:

• Users — All the images are preconfigured with an administrative user root
and an unprivileged user meego, which use by default the Bash shell. New
users can be created using the classical UNIX commands.

• Init — The default runlevel is set to 3 on text-only images and to 5 on graphic
images. This setting can be changed by editing the file /etc/inittab.

• Default user — The default user for graphic sessions is meego. This setting
can be changed by editing the file /etc/sysconfig/uxlaunch.

• SSH Server — Some images provide a preinstalled SSH server, which can
be started by typing the command /etc/init.d/sshd start. To have it started
automatically at boot, the command chkconfig –add sshd shall be executed
once.

• Repositories — The SPARC MeeGo repositories are preconfigured in Zyp-
per as reachable at the IP address 192.168.0.39, which was the address of
the repository server when the images were created (no domain name had
been allocated for that). If the repository server is moved, the preconfigured
repositories have to be disabled and the correct ones have to be added using
the command zypper addrepo. In future, in case new versions of the SPARC

58

3 – System testing and images

MeeGo packages will be released, it will be possible to update the image with
the command zypper update.

When using the images it is important to consider them as experimental soft-
ware, which is not in any way production ready. MeeGo itself is still under heavy
development and is not particularly focused on security issues. Moreover, when
using the image, two security problems have to be addressed as soon as possible:

• Default passwords — The default user passwords have to be changed. More-
over, the meego user is enabled to escalate its privileges using the sudo com-
mand. This behavior can be disabled using the visudo command and com-
menting the line related to the user meego.

• SSH keys — The images that are shipped with the SSH server contain an
already generated host RSA keypair. Such keypair should never be trusted,
and a new one should be generated using the ssh-keygen command.

3.3.2 Description of the available images

The detailed contents of the prebuilt system images are available in appendix B.

minimal

Contains a really small set of packages that allow to boot the system, login on a
Bash shell and use the package manager to install more software.

xorg

Contains a minimal X server which can be started by typing the command startx
at prompt. The window manager twm is used by default.

xfce

Contains the Xfce desktop environment, which is automatically started at boot, and
basic graphical utilities such as a file manager, a terminal emulator and a text editor.

netbook

Is the equivalent of the official MeeGo Netbook images, and allows to start the Net-
book interface. Unfortunately, this image is only partially functional, as described
in section 3.2.5.

59

Chapter 4

Conclusions

This chapter describes the outcome of the project and the possible future develop-
ments. The current situation is compared to the initial objectives.

4.1 The final result compared to initial objectives

This section provides an analysis of the project results from several points of view.
Moreover, some personal considerations about the project and work experience are
included.

4.1.1 Platform evaluation standpoint

Despite the project being named Porting MeeGo to LEON, one of its main objectives
was indeed testing the limits of the LEON/GRLIB platform. From this point of view,
the project can be considered successful, as it clearly outlined where the hardware
improvements are most needed. Such improvements might be grouped in two main
areas:

• Hardware manufacturing — The test board used to test the port, despite
being one of the fastest available, was still too slow to provide a marketable
user experience. This problem, though, does not regard the actual platform
design, which can scale up to 16 cores clocked at 1.5 GHz, but rather the
available hardware.

• Hardware design — Two main problems were outlined during the test phase.
The first, and most important, is the lack of hardware video acceleration. Soft-
ware rasterization is actually not supported by MeeGo and moreover cannot
provide a smooth and satisfying user experience. The second problem is the

60

4 – Conclusions

lack of audio capabilities, which does not strictly impair the use of MeeGo but
greatly limits its functionality.

On the other hand, the LEON/GRLIB platform has also proven to be very
flexible and reliable. Since it is compatible with the preexisting SPARC ABI, which
is already supported by several critical components of MeeGo, the effort required
to port the software was greatly reduced. Additionally, the available hardware
manufacturing options do not restrict the implementation to a specific form factor
or performance level, which in theory allows the creation of any kind of computing
device available currently, and probably also in future.

4.1.2 Software availability standpoint

As a result of the port effort, a vast amount of the available GNU/Linux userland
as well as the MeeGo APIs and user interface elements were built for the SPARC v8
architecture. Parts of it still explicitly retained support for such architecture, while
most of the software still worked because it used to support the architecture in
previous versions or just because it was written properly, in a portable way. Finally,
a small part of components did not support the architecture and needed substantial
effort in order to be ported, hence it was excluded by the project.

As all the ported software can now be tested on the LEON/GRLIB platform and
on other SPARC-based systems, it is possible to say that the project was successful.
On the other hand, two critical issues still have to be addressed:

• Thorough testing — The project objectives and time deadline did not allow
to thoroughly test every single software component. Moreover, some parts
of MeeGo could not be tested due to a lack of hardware support, as already
described in section 3.2. Surely, the manifestation of architecture-specific bugs
is possible, especially due to the known endianness and storage size problems
related with the porting of C code.

• Maintenance — As said, no recent Linux userland was available before the
completion of this project. On the other hand, in the meantime, a new version
of MeeGo was released. Without maintenance the SPARC MeeGo repositories
are going to become outdated soon.

4.1.3 MeeGo standpoint

While most of the core system components were ported and working, it was possible
to build all the MeeGo-specific components but not to produce an usable MeeGo

61

4 – Conclusions

Netbook system, due to the hardware support problems outlined before. As a con-
sequence, from this point of view, it is possible to say that the project was only
partly successful.

To integrate what was done up to now, section 4.2 describes the actions that
have to be performed to provide a working SPARC MeeGo, as well as possible
future implementation scenarios.

4.2 Future developments

This section describes the next steps that might be taken to provide a fully fledged
MeeGo experience on the LEON/GRLIB platform. While none of the following
could be implemented within the time span of this project, it was interesting to
anticipate some of the engineering decisions that might be taken in future.

4.2.1 Hardware support enhancements

The ported MeeGo was tested on a generic test board. In order to develop a MeeGo-
based product a dedicated board would probably have to be designed, depending
on the product requirements, and the following shortcomings should definitely be
addressed:

• System bus — During the testing phase, when rendering frames at 1024x768
pixels resolution and 24-bit color depth, some annoying flickering effect affected
the screen output. This problem was caused by the saturation of the bus which
introduced some delay in the transmission of the frames and resulted in a loss of
synchronization with the screen. The easiest solution would be to increase the
memory bandwidth by using Double Data Rate (DDR) revision two controller
and memory banks instead of the DDR revision one components used on the
test board. Such controller is already available in GRLIB.

• Video acceleration — Given the embedded nature of the LEON/GRLIB plat-
form and the MeeGo support for it, it is recommended to implement hardware
OpenGL ES 2.0 acceleration and all the related Linux kernel and X server
drivers. Given the size of the task, it might also be considered the possibility
to license an IP core from a third-party.

• Audio playback/recording — The GRLIB core implementing an AC97-compatible
controller should be completed and integrated in the GRLIB platform. Linux
drivers should be written or modified as necessary. Even though not manda-
tory to run MeeGo, audio playback and recording are important features that
any user would expect from the hardware.

62

4 – Conclusions

• Clock — Any board designed to run MeeGo should include a real-world clock,
in order to properly support the calendar and schedule functions of MeeGo.

• Wireless Connectivity — Bluetooth and WiFi connectivity features, which are
also standard on current mobile devices, might be developed as IP cores or
added as USB or PCI third-party expansions. The former case would require
more internal work but lower final hardware costs, while the latter would result
exactly in the opposite situation.

4.2.2 Software infrastructure enhancements

The modified infrastructure used for the project was enough to produce build a fixed
version of SPARC MeeGo. In future, it might be necessary to modify it in order
to better integrate the SPARC porting effort with the official MeeGo distribution.
The following issues should be considered:

• QEMU — The QEMU project is a vital part of the MeeGo infrastructure, and
it is used in several ways to maintain the ARM port: to build software in a
mixed chroot, to create system images and to test applications by emulating
a generic MeeGo device. As illustrated before, the SPARC support of QEMU
is partial and should be improved in order to allow the SPARC port to be
maintained more similarly to the ARM port.

• Native workers — The builds executed in full system emulation are quite slow,
even when DISTCC is used to accelerate them. As an alternative to fixing the
QEMU SPARC user mode emulation, some fast SPARC hardware should be
acquired and used to perform the builds nativelyThis is now possible using the
current SPARC MeeGo to run the build hosts..

• Upstream synchronization — This project focused on porting the stable MeeGo
1.1 version. In future it might be important to synchronize the SPARC MeeGo
releases with the official MeeGo releases. A possible way to implement this
would be contacting the MeeGo development team and obtaining developer
access to the official OBS. Then it would be possible to connect a local OBS in-
stance to the official OBS and forward automatically all the changes performed
upstream to the local system.

4.2.3 MeeGo SDK and tools enhancements

To complete the SPARC MeeGo port, modified versions of the tools and SDK should
be created, in order to support the SPARC target. In particularly, the following
elements were inspected:

63

4 – Conclusions

• MeeGo Image Creator — It is a tool written in Python, which allows to created
custom MeeGo images starting from a repository and an image definition file,
which describes the image contents as well as some configuration variants. The
tool was inspected it was determined that it would easily generate SPARC
images if a working user mode SPARC QEMU existed.

• SDK — The MeeGo SDK provides an environment to develop, build and test
MeeGo applications. Modifying it to target SPARC would require to integrate
a suitable cross compile toolchain and a full system SPARC QEMU. All the
other components might be left unchanged.

64

Appendix A

Package details

This appendix describes in detail the port status, including information about the
packages that were rebuilt with no modification, the packages that were modified
and the packages that were excluded from the port.

A.1 Unmodified packages

The following packages were successfully built for the SPARC architecture without
any modification. This usually implies that the package supports SPARC and the
spec file was written properly.

A.1.1 Core repository

abrt

acct

acl

acpid

adns

alsa-lib

alsa-plugins

alsa-utils

anthy

apr

apr-util

aria2

asciidoc

asio

aspell

aspell-en

at

at-spi

atk

attr

audiofile

audiomanager

augeas

authconfig

autoconf

autoconf213

automake

automake14

automake17

automoc4

autotrace

avahi

baekmuk-ttf-fonts

basesystem

bash

bc

bind

bison

bitmap

bitstream-vera-fonts

bluez

bognor-regis

bootchart

booty

btrfs-progs

build

build-compare

busybox

buteo-mtp

buteo-sync-plugins

buteo-syncfw

buteo-syncml

byacc

bzip2

c-ares

ca-certificates

cabextract

cairomm

catdoc

ccache

ccss

cdrkit

check

chkconfig

chrpath

cjkuni-fonts

65

A – Package details

clucene

clutter

clutter-box2d

clutter-gesture

clutter-gst

clutter-gtk

clutter-imcontext

clutter-qt

cmake

cmake-gui

compface

comps-extras

connman

ConsoleKit

contactsd

contextkit

contextkit-maemo

coreutils

corewatcher

cpio

cppunit

createrepo

cronie

crontabs

cryptsetup-luks

cscope

ctags

cupscupsddk

curl

cvs

cyrus-sasl

d-feet

dblatex

dbus-c++

dbus-glib

dbus-python

dejagnu

dejavu-fonts

deltarpm

desktop-backgrounds

desktop-file-utils

devhelp

device-mapper

device-mapper-multipath

dhcp

dhcpv6

dialog

diffstat

diffutils

distcc

djvulibre

dmidecode

dnsmasq

docbook-dtds

docbook-style-dsssl

docbook-style-xsl

docbook-utils

dos2unix

dosfstools

doxygen

driconf

droid-fonts

dropbear

dsme

dvd+rw-tools

dvipdfm

dvipdfmx

dvipng

eat

ecryptfs-utils

ed

eggdbus

eject

elfutils

emacs

enchant

enscript

eom

epydoc

esound

etherboot

ethtool

evolution-data-server

exempi

exiv2

exo

expat

expect

fakeroot

farsight2

fastinit

fastjar

fdupes

fennec-qt-branding-meego

file

filesystem

findutils

firstboot

flac

flex

fontconfig

fontforge

fontpackages

foomatic

foomatic-db

fprintd

freeglut

freetype

fribidi

fslint

fuse

fuse-sshfs

fvkbd

gamin

gammu

garage-client-services

gawk

gc

GConf-dbus

gd

gdbm

generic-backgrounds

generic-logos

geoclue

gettext

ghostscript

ghostscript-fonts

giflib

gir-repository

git

glade3

glew

glib2

glibmm

gmime

gnet2

gnome-common

gnome-disk-utility

gnome-doc-utils

gnome-icon-theme

gnome-js-common

gnome-keyring

gnome-mime-data

gnome-python2

gnome-vfs2

gnupg

gnutls

gobject-introspection

gperf

gpgme

gpsbabel

gpsd

gpsdrive

graphviz

grep

groff

grubby

gsl

gsm

gssdp

gst-plugins-bad-free

gst-plugins-base

gst-plugins-farsight

gst-plugins-good

gstreamer

gstreamer-python

gtk-doc

gtk-nodoka-engine

gtk-xfce-engine

gtk2

gtk2-engines

gtkglext

gtkmm

gtkspell

guile

gupnp

gupnp-av

gupnp-igd

gupnp-ui

gvfs

gwenhywfar

gypsy

gzip

hardlink

help2man

hicolor-icon-theme

66

A – Package details

html2ps

hunspell

hunspell-en

hwdata

i2c-tools

icon-naming-utils

image-configs

image-manager

ImageMagick

imake

indent

inotify-tools

installer

installer-shell

intltool

iptables

iputils

iso-codes

isomd5sum

jadetex

jana

jasper

joe

json-glib

kasumi

kbd

kcalcore

keyutils

krb5

ladspa

latencytop

latex2html

lcms

less

libaccounts-glib

libaccounts-qt

libao

libarchive

libart_lgpl

libassuan

libasyncns

libatasmart

libatomic_ops

libbonobo

libbonoboui

libburn

libcanberra

libcap

libchamplain

libchewing

libcmtspeechdata

libcontentaction

libcreds2

libcroco

libdaemon

libdbus-c++

libdhcp

libdiscid

libdmx

libdres

libdsme

libedit

liberation-fonts

libevent

libexif

libfakekey

libffi

libfontenc

libfprint

libgcrypt

libgda

libgdbus

libgdl

libgee

libggz

libglade2

libglademm

libgnome

libgnome-keyring

libgnomecanvas

libgnomeui

libgpg-error

libgphoto2

libgsf

libgtop2

libgweather

libhangul

libical

libICE

libid3tag

libIDL

libidn

libiodata

libiptcdata

libisofs

libjingle

libjpeg

libksba

libmatchbox

libmeegochat

libmeegotouch

libmikmod

libmlocknice

libmng

libmp4v2

libmtp

libnice

libnl

libnotify

libofx

libogg

liboil

libopenraw

libpaper

libpcap

libpciaccess

libpng

libprolog

libpthread-stubs

libqmlog

libqttracker

libresource

librsvg2

libsamplerate

libsatsolver

libsexy

libsigc++

libsignon

libsilc

libSM

libsndfile

libsocialweb

libsocialweb-keys

libsocialweb-qt

libspectre

libspiro

libtalloc

libtar

libtasn1

libtdb

libtdb-compat

libtelepathy

libthai

libtheora

libthumbnailer

libtiff

libtool

libtrace

libuninameslist

libusb

libusb1

libuser

libutempter

libv4l

libva

libvisual

libvorbis

libwbxml2

libwmf

libwnck

libwsbm

libX11

libXau

libXaw

libxcb

libXcomposite

libXcursor

libXdamage

libXdmcp

libXevie

libXext

libxfce4menu

libxfce4util

libxfcegui4

libXfixes

libXfont

libXfontcache

libXft

libXi

libXinerama

libxkbfile

libxklavier

libxml2

libxml2-python

libXmu

libXpm

67

A – Package details

libXrandr

libXrender

libXres

libXScrnSaver

libxslt

libXt

libXTrap

libXtst

libXv

libXvMC

libXxf86dga

libXxf86misc

libXxf86vm

libzip

libzypp

linux-firmware

lklug-fonts

lockdev

logrotate

lohit-assamese-fonts

lohit-bengali-fonts

lohit-hindi-fonts

lohit-kannada-fonts

lohit-malayalam-fonts

lohit-oriya-fonts

lohit-punjabi-fonts

lohit-tamil-fonts

lohit-telugu-fonts

loudmouth

lpsolve

lrzsz

lsof

lua

lzo

m17n-contrib

m17n-db

m17n-lib

m4

maemo-video-thumbnailer

mailcap

mailx

make

makebootfat

MAKEDEV

man

man-pages

marmazon

matchbox-keyboard

meego-bookmarks

meego-osc-plugins

meego-packaging-tools

meego-release

meego-rpm-config

meegotouch-applauncherd

meegotouch-applifed

meegotouch-compositor

meegotouch-controlpanel

meegotouch-feedback

meegotouch-feedbackreactionmaps

meegotouch-home

meegotouch-inputmethodengine

meegotouch-inputmethodframework

meegotouch-inputmethodkeyboard

meegotouch-systemui

meegotouch-theme

memuse

mesa-demos

mic2

min

mingetty

minicom

mkcal

mkinitrd

mlocate

mm-common

mobile-broadband-provider-info

moblin-generic-backgrounds

moblin-live

moblin-menus

module-init-tools

mousepad

mozilla-filesystem

mpage

mpc

mpfr

mtd-utils

mtools

n900-camera-firmware

nano

nasm

nc

ncurses

neon

net-tools

netpbm

newt

newt-python

nodoka-theme-gnome

notification-daemon

notification-daemon-engine-nodoka

notify-python

nspr

nss

nss-mdns

ntp

o3read

obex-data-server

obexd

ofono

ohm

ohm-plugins-misc

opal

openconnect

OpenCV

openjade

openjpeg

openldap

openobex

opensp

openssh

openssl-certs

orage

ORBit2

org

osc

ots

PackageKit

packaging-tools

pakchois

pam

pam_pkcs11

pango

pangomm

paps

papyon

parted

passivetex

passwd

patch

patchutils

pavucontrol

pax

pciutils

pcre

perl

perl-Archive-Zip

perl-Array-Compare

perl-Config-IniFiles

perl-Convert-ASN1

perl-Convert-BinHex

perl-Crypt-SSLeay

perl-Crypt-SSLeay

perl-Devel-StackTrace

perl-Devel-Symdump

perl-Devel-Symdump

perl-ExtUtils-Depends

perl-ExtUtils-MakeMaker-Coverage

perl-ExtUtils-PkgConfig

perl-File-BaseDir

perl-File-DesktopEntry

perl-File-MimeInfo

perl-File-Which

perl-Finance-Quote

perl-Font-TTF

perl-gettext

perl-Glib

perl-HTML-Parser

perl-HTML-TableExtract

perl-HTML-Tagset

perl-HTML-Tree

perl-IO-Socket-INET6

perl-IO-Socket-SSL

perl-IO-stringy

perl-JSON

perl-libwww-perl

perl-libxml-perl

perl-MailTools

perl-MIME-Lite

perl-MIME-tools

perl-Net-LibIDN

perl-Net-SMTP-SSL

perl-Net-SSLeay

perl-Parse-Yapp

perl-Pod-Coverage

perl-SDL

perl-SGMLSpm

68

A – Package details

perl-SOAP-Lite

perl-Socket6

perl-Sub-Uplevel

perl-SVG

perl-SVG-Parser

perl-Test-Exception

perl-Test-MockObject

perl-Test-NoWarnings

perl-Test-Number-Delta

perl-Test-Pod

perl-Test-Pod-Coverage

perl-Test-Tester

perl-Test-Warn

perl-Text-Unidecode

perl-Tie-IxHash

perl-TimeDate

perl-Tk

perl-Tree-DAG_Node

perl-UNIVERSAL-can

perl-UNIVERSAL-isa

perl-URI

perl-XML-DOM

perl-XML-LibXML

perl-XML-NamespaceSupport

perl-XML-Parser

perl-XML-RegExp

perl-XML-RegExp

perl-XML-Simple

perl-XML-TreeBuilder

perl-XML-XQL

perl-YAML

phidgetlinux

phonesim

phonon

pidgin

pidgin-sipe

pixman

pkgconfig

plib

plymouth-lite

pm-utils

pmtools

poedit

polkit

polkit-gnome

poppler

popt

poster

powertop

ppl

ppp

prelink

presto-utils

procps

psb-headers

psmisc

psutils

pth

ptlib

pulseaudio

pulseaudio-settings-n900

pycairo

pyclutter

pyclutter-gtk

pygobject2

pygpgme

pygtk2

pygtkglext

pykickstart

PyOpenGL

pyorbit

pyparted

python

python-adns

python-chardet

python-cheetah

python-Coherence

python-configobj

python-crypto

python-dateutil

python-decorator

python-docutils

python-dtopt

python-enchant

python-formencode

python-fpconst

python-gdata

python-imaging

python-iniparse

python-louie

python-lxml

python-magic

python-markdown

python-mutagen

python-nose

python-numeric

python-paste

python-paste-deploy

python-pycurl

python-pygments

python-reportlab

python-setuptools

python-sexy

python-simplejson

python-sqlite2

python-telepathy

python-tempita

python-toscawidgets

python-tw-forms

python-twisted

python-twisted-conch

python-twisted-core

python-twisted-lore

python-twisted-mail

python-twisted-names

python-twisted-news

python-twisted-runner

python-twisted-web

python-twisted-web2

python-twisted-words

python-urlgrabber

python-webob

python-which

python-wsgiproxy

python-xklavier

python-zope-filesystem

python-zope-interface

python-ZSI

pytz

pyxdg

pyXML

PyYAML

qca2

qca2-ossl

qjson

qmf

qt-creator

qt-mobility

qt-obex-ftp-library

qt-web-runtime

qtcontacts-tracker

qtwebkit

quilt

rarian

readline

recode

rest

rhpl

rootfiles

rpm

rpmcheck

rpmdevtools

rpmlint

rpmlint-mini

rpmlint-Moblin

rpmorphan

rpmreaper

rsync

rsyslog

rtkit

ruby

samba

sample-media

sane-backends

scim

scim-anthy

scim-bridge

scim-chewing

scim-hangul

scim-panel-vkb-gtk

scim-pinyin

scim-skk

scons

screen

SDL

SDL_gfx

SDL_image

SDL_mixer

SDL_net

SDL_Pango

SDL_ttf

sed

seed

sensorfw

setup

setuptool

69

A – Package details

sg3_utils

sgml-common

shadow-utils

shared-mime-info

sharutils

skkdic

slang

slib

smartmontools

SOAPpy

sofia-sip

sos

sound-theme-freedesktop

soundtouch

spec-builder

spectacle

speex

speex

squashfs-tools

squeeze

ssmtp

startup-notification

strace

sudo

sw-updater

swi-prolog

swig

symlinks

syncevolution

syncevolution

sysfsutils

sysklogd

system-config-date

system-config-date-docs

system-config-display

system-config-keyboard

system-config-language

system-config-printer

system-config-rootpassword

system-config-users

sysvinit

t1lib

taglib

tar

tcl

tcp_wrappers

tcpdump

tcsh

teckit

telepathy-butterfly

telepathy-farsight

telepathy-filesystem

telepathy-gabble

telepathy-glib

telepathy-haze

telepathy-idle

telepathy-logger

telepathy-logger

telepathy-qt4

telepathy-ring

telepathy-salut

telepathy-sofiasip

telepathy-sofiasip

Terminal

test-definition

testrunner-lite

texi2html

texinfo

texlive-texmf

texlive-texmf-errata

Thunar

tig

time

timed

tinycdb

tix

tk

tmpwatch

tone-generator

totem-pl-parser

tpm-tools

traceroute

tracker

transifex-client

trousers

ttmkfdir

tumbler

twitter-glib

udev

udev-rules-handset-mrst

udev-rules-netbook

udisks

un-core-fonts

unique

unzip

upower

urw-fonts

usb-modeswitch

usb-modeswitch-data

usbutils

usermode

usleep

util-linux-ng

uuid

vala

vamp-plugin-sdk

vibrant-icon-theme

vim

vlgothic-fonts

vorbis-tools

vpnc

vte

WebKit

wget

WiMAX-Network-Service

wimax-tools

wireless-tools

wlanconfig

wpa_supplicant

wv

wxPython

Xaw3d

xbacklight

xbindkeys

xcb-proto

xcb-util

xdg-user-dirs

xdg-user-dirs-gtk

xdg-utils

xdvipdfmx

xerces-c

xfce-utils

xfce4-appfinder

xfce4-battery-plugin

xfce4-datetime-plugin

xfce4-desktop-branding-moblin

xfce4-dev-tools

xfce4-icon-theme

xfce4-mixer

xfce4-panel

xfce4-quicklauncher-plugin

xfce4-session

xfce4-settings

xfce4-taskmanager

xfconf

xfdesktop

xfwm4

xfwm4-theme-nodoka

xfwm4-themes

xhtml1-dtds

xhtml2fo-style-xsl

xinetd

xinput_calibrator

xkeyboard-config

xmlrpc-c

xmltex

xmlto

xorg-x11-apps

xorg-x11-drv-evdev

xorg-x11-drv-fbdev

xorg-x11-drv-intel

xorg-x11-drv-keyboard

xorg-x11-drv-kvm

xorg-x11-drv-mga

xorg-x11-drv-mouse

xorg-x11-drv-mtev

xorg-x11-drv-synaptics

xorg-x11-drv-vesa

xorg-x11-drv-vmmouse

xorg-x11-drv-vmware

xorg-x11-drv-void

xorg-x11-drv-wacom

xorg-x11-filesystem

xorg-x11-font-utils

xorg-x11-fonts

xorg-x11-proto-bigreqsproto

xorg-x11-proto-compositeproto

xorg-x11-proto-damageproto

xorg-x11-proto-dri2proto

xorg-x11-proto-evieext

xorg-x11-proto-fixesproto

xorg-x11-proto-fontcacheproto

xorg-x11-proto-fontsproto

xorg-x11-proto-glproto

xorg-x11-proto-inputproto

xorg-x11-proto-kbproto

70

A – Package details

xorg-x11-proto-randrproto

xorg-x11-proto-recordproto

xorg-x11-proto-renderproto

xorg-x11-proto-resourceproto

xorg-x11-proto-scrnsaverproto

xorg-x11-proto-trapproto

xorg-x11-proto-videoproto

xorg-x11-proto-xcmiscproto

xorg-x11-proto-xextproto

xorg-x11-proto-xf86bigfontproto

xorg-x11-proto-xf86dgaproto

xorg-x11-proto-xf86driproto

xorg-x11-proto-xf86miscproto

xorg-x11-proto-xf86rushproto

xorg-x11-proto-xf86vidmodeproto

xorg-x11-proto-xineramaproto

xorg-x11-proto-xproto

xorg-x11-proto-xproxymgmttproto

xorg-x11-server

xorg-x11-server-utils

xorg-x11-twm

xorg-x11-util-macros

xorg-x11-utils

xorg-x11-utils-iceauth

xorg-x11-utils-rgb

xorg-x11-utils-sessreg

xorg-x11-utils-xcmsdb

xorg-x11-utils-xdpyinfo

xorg-x11-utils-xdriinfo

xorg-x11-utils-xev

xorg-x11-utils-xfd

xorg-x11-utils-xfontsel

xorg-x11-utils-xgamma

xorg-x11-utils-xhost

xorg-x11-utils-xinput

xorg-x11-utils-xlsatoms

xorg-x11-utils-xlsclients

xorg-x11-utils-xlsfonts

xorg-x11-utils-xmodmap

xorg-x11-utils-xprop

xorg-x11-utils-xrandr

xorg-x11-utils-xrdb

xorg-x11-utils-xrefresh

xorg-x11-utils-xset

xorg-x11-utils-xsetroot

xorg-x11-utils-xvinfo

xorg-x11-utils-xwininfo

xorg-x11-xauth

xorg-x11-xbitmaps

xorg-x11-xinit

xorg-x11-xkb-utils

xorg-x11-xtrans-devel

xterm

xz

yasm

yelp

yum

yum-metadata-parser

yum-presto

yum-updatesd

yum-utils

zenity

zile

zip

zsh

zypper

A.1.2 Netbook repository

abiword

aiksaurus

anerley

autogen

babl

banshee-1-branding-meego

bisho

brasero

cdrdao

celestia

cheese

chrome-meego-extension

contacts

dates

dcraw

deluge

dia

empathy

eog

eog-plugins

evince

evolution

file-roller

foobillard

fpm2

frozen-bubble

garage-netbook-ui

gcalctool

gcompris

gconf-editor

gdu-nautilus-extension

gedit

gimp

gnome-bluetooth

gnome-control-center-netbook

gnome-desktop

gnome-games

gnome-media

gnome-menus

gnome-packagekit

gnome-panel

gnome-python2-desktop

gnome-screensaver

gnome-session

gnome-settings-daemon

gnome-terminal

gnome-themes

gnome-user-docs

gnome-user-share

gnome-utils

gnuchess

gnumeric

goffice

google-gadgets

grisbi

gthumb

gtkhtml3

gtkmathview

gtksourceview2

gupnp-tools

homebank

ilmbase

impressive

libgail-gnome

libgdiplus0

libgnomecups

libgnomekbd

libgnomeprint22

libgnomeprintui22

libwpd

libwpg

libwps

link-grammar

marble

matchbox-panel

mathml-fonts

meego-cursor-theme

meego-help

meego-menus

meego-netbook-theme

meego-panel-applications

meego-panel-datetime

meego-panel-devices

meego-panel-myzone

meego-panel-networks

meego-panel-pasteboard

meego-panel-people

meego-panel-status

meego-panel-status

meego-panel-zones

meego-sound-theme

meego-ux-settings

meld

moblin-user-guide

moblin-user-skel

mutter-meego

mx

nautilus

nautilus-python

71

A – Package details

nbtk

netbook-backgrounds

netbook-icon-theme

neverball

OpenEXR

opengl-games-utils

planner

pygtksourceview

quicksynergy

rawstudio

rhythmbox

simple-scan

stellarium

syncevolution-gtk

tasks

totem

transmission

tuxpaint

A.2 Modified packages

The following packages were modified in order to successfully build for SPARC. In
most cases the problems were related to poorly written spec files or minor code
glitches.

A.2.1 Core repository

boost

Added the –disable-long-double build options in the spec file.

cairo

Removed the build dependency to binutils-devel in the spec file.

ctdb

Added a SPARC-specific patch to avoid the faulty generation of some headers at
compile time.

db4

Disabled DISTCC because it caused the build to fail.

dbus

Fixed the environment PATH and added manually the correct build flags (ignored
due to a glitch in the spec file).

e2fsprogs

Disabled x86 specific tests when targeting SPARC.

gdb

Excluded the gdb server because it did not support the SPARC architecture. The
client was fine.

72

A – Package details

gmp

Disabled DISTCC because it caused the build to fail.

icu

Fixed some glitches in the make files which caused the build to fail.

iproute

Removed the build dependencies to tetex-latex and tetex-dvips.

libcap-ng

Changed the –libdir build option in the spec file.

libdrm

Removed the Intel and Radeon specific components.

libproxy

Removed the libproxy-webkit subpackage to resolve a dependency cycle.

libsoup

Removed the –without-gnome build option in the spec file.

ltrace

Backported a patch present in a more recent version of the software.

m2crypto

Fixed a constant definition in the spec file.

meego-lsb

Fixed some architecture conditionals in the spec file.

mesa

Removed the Intel graphic drivers.

73

A – Package details

moblin-icon-theme

Disabled the invokation of gtk-update-icon-cache.

openssl

Added the sslarch=linux-sparcv8 and sslflags=no-asm build options in the spec file.

orc

Fixed an architecture conditional in the spec file.

patchelf

Disabled x86 specific tests when targeting SPARC.

post-build-checks

Fixed several architecture-related glitches in the spec file.

pulseaudio-modules-meego

Added the build option -DAO REQUIRE CAS.

pyOpenSSL

Removed the build dependency to w3m in the spec file.

qt

Disabled DISTCC because it caused the build to fail.

rpm-python

Fixed minor glitches in the spec file.

texlive

Fixed the path to cpp in the spec file.

tzdata

Included a working version of the ZIC utility.

74

A – Package details

uxlaunch

Added a patch that provides the I/O priority constants for SPARC.

wxGTK

Fixed some gcc invokation flags in the configure script.

A.2.2 Netbook repository

abrt-netbook

Removed the build dependency to pkgconfig(libgnome-control-center-extension).

bickley

Added a patch that provides the I/O priority constants for SPARC.

bugle

Disabled a patch that caused the build to fail.

gegl

Removed the build dependency to w3m.

mutter

Fixed the package file list in the spec file.

sunbird

Added the build option –disable-jit in the spec file.

thunderbird

Added the build option –disable-jit in the spec file.

A.3 Excluded packages

The following packages were excluded from the port, usually because they explicitly
did not support the SPARC architecture and the required changes were considered
to consistent to fall withing the project scope. Most exclusions were caused by these
five reasons:

75

A – Package details

1. The package explicitly did not support the SPARC architecture or was de-
signed to work only on a different, specific architecture. For example some
packages contained incompatible assembler code or Just-in-Time (JIT) com-
pilers.

2. The package was meant to be compiled only for x86 systems and to be used to
implement the mixed chroot build technique of the OBS. Since this technique
could not be used to target SPARC, building these packages was pointless.

3. The package was designed to explicitly support or require hardware which was
not available on the LEON/GRLIB platform. This included specific device
drivers and packages containing binary blobs or firmware.

4. The package replicated the functionality already provided by the system-root
package.

5. The package depended on another excluded package.

A.3.1 Core repository

bash-x86 (2)

binutils (4)

bootstub (1)

chromium (5)

cloog (1)

compat-libstdc++-33 (1)

cross-armv5tel-binutils (1)

cross-armv5tel-binutils-accel (2)

cross-armv5tel-gcc (1)

cross-armv5tel-gcc-accel (2)

cross-armv7l-binutils (1)

cross-armv7l-binutils-accel (2)

cross-armv7l-gcc (1)

cross-armv7l-gcc-accel (2)

dev86 (1)

doxymacs (5)

fakechroot (1)

fennec-qt (1)

fw-update (3)

gcc (4)

glibc (4)

glibc-x86 (2)

gmp-x86 (2)

gnu-efi (3)

grub (1)

gupnp-vala (1)

intel-gpu-tools (3)

kernel (3)

kernel-headers (4)

kernel-ivi (3)

kernel-mrst (3)

kernel-netbook (3)

kexec-tools (1)

libgcc-x86 (2)

libsmbios (3)

meego-cross-armv5tel-sysroot (2)

meego-cross-armv7l-sysroot (2)

mpc-x86 (2)

mpfr-x86 (2)

ncurses-libs-x86 (2)

sreadahead (1)

subversion (1)

syslinux (1)

sysprof (1)

system-config-boot (5)

v8 (1)

valgrind (1)

w3m (1)

zlib-x86 (2)

A.3.2 Netbook repository

anjuta (5)

banshee-1 (5)

gnome-sharp2 (5)

gtk-sharp2 (5)

inkscape (5)

mono-addins (5)

mono-core (1)

mono-zeroconf (5)

ndesk-dbus (5)

ndesk-dbus-glib (5)

notify-sharp (5)

taglib-sharp (5)

vym (1)

76

Appendix B

Images content

This appendix lists the packages installed in the system images that were prepared
alongside the testing phase.

B.1 minimal

augeas-libs

basesystem

bash

bzip2

bzip2-libs

chkconfig

ConsoleKit

ConsoleKit-libs

coreutils

cpio

curl

db4

db4-utils

dbus

dbus-glib

dbus-libs

e2fsprogs

e2fsprogs-libs

eggdbus

elfutils-libelf

expat

fastinit

file-libs

filesystem

findutils

gamin

gawk

gdbm

glib2

gnupg2

grep

gzip

hwdata

info

iputils

less

libacl

libattr

libblkid

libcap

libcom_err

libcurl

libgcrypt

libgpg-error

libidn

libksba

liblua

libss

libudev

libusb

libuser

libuuid

libxml2

libzypp

logrotate

MAKEDEV

meego-release

mingetty

moblin-user-skel

module-init-tools

nano

ncurses

ncurses-base

ncurses-libs

net-tools

nspr

nss

nss-softokn-freebl

nss-sysinit

openssh

openssh-server

openssl

pam

passwd

pcre

perl

perl-Compress-Raw-Zlib

perl-CPAN

perl-devel

perl-ExtUtils-MakeMaker

perl-ExtUtils-ParseXS

perl-IO-Compress-Base

perl-IO-Compress-Zlib

perl-libs

perl-Module-Pluggable

perl-Pod-Escapes

perl-Pod-Simple

perl-Test-Harness

polkit

popt

procps

psmisc

pth

readline

rootfiles

rpm

rpm-libs

rsyslog

satsolver-tools

sed

setup

shadow-utils

77

B – Images content

sqlite

sudo

system-root

sysvinit

sysvinit-tools

tzdata

udev

usleep

util-linux-ng

vim-minimal

wget

xz-libs

zlib

zypper

B.2 xorg

augeas-libs

basesystem

bash

bzip2

bzip2-libs

chkconfig

ConsoleKit

ConsoleKit-libs

ConsoleKit-x11

coreutils

cpio

curl

db4

db4-utils

dbus

dbus-glib

dbus-libs

e2fsprogs

e2fsprogs-libs

eggdbus

elfutils-libelf

expat

fastinit

file-libs

filesystem

findutils

fontconfig

freetype

gamin

gawk

gdbm

glib2

gnupg2

grep

gzip

hwdata

info

iputils

less

libacl

libattr

libblkid

libcap

libcom_err

libcurl

libdrm

libfontenc

libgcrypt

libgpg-error

libICE

libidn

libksba

liblua

libpciaccess

libpng

libSM

libss

libtalloc

libudev

libusb

libuser

libutempter

libuuid

libX11

libXau

libXaw

libxcb

libXcursor

libXdmcp

libXext

libXfixes

libXfont

libXft

libxkbfile

libxml2

libXmu

libXpm

libXrender

libXt

libzypp

logrotate

MAKEDEV

meego-release

mesa-dri-swrast-driver

mingetty

moblin-user-skel

module-init-tools

nano

ncurses

ncurses-base

ncurses-libs

net-tools

nspr

nss

nss-softokn-freebl

nss-sysinit

openssl

pam

passwd

pcre

perl

perl-Compress-Raw-Zlib

perl-CPAN

perl-devel

perl-ExtUtils-MakeMaker

perl-ExtUtils-ParseXS

perl-IO-Compress-Base

perl-IO-Compress-Zlib

perl-libs

perl-Module-Pluggable

perl-Pod-Escapes

perl-Pod-Simple

perl-Test-Harness

pixman

pkgconfig

polkit

popt

procps

psmisc

pth

readline

rootfiles

rpm

rpm-libs

rsyslog

satsolver-tools

sed

setup

shadow-utils

sqlite

sudo

system-root

sysvinit

sysvinit-tools

tzdata

udev

usleep

util-linux-ng

vim-minimal

wget

xkeyboard-config

xorg-x11-apps

xorg-x11-drv-evdev

xorg-x11-drv-fbdev

xorg-x11-drv-keyboard

xorg-x11-drv-mouse

xorg-x11-filesystem

xorg-x11-fonts-100dpi

xorg-x11-fonts-75dpi

xorg-x11-font-utils

xorg-x11-server

xorg-x11-server-common

xorg-x11-server-Xorg-setuid

78

B – Images content

xorg-x11-twm

xorg-x11-utils-xhost

xorg-x11-utils-xmodmap

xorg-x11-utils-xrdb

xorg-x11-utils-xsetroot

xorg-x11-xauth

xorg-x11-xbitmaps

xorg-x11-xinit

xorg-x11-xkb-utils

xterm

xz-libs

zlib

zypper

B.3 xfce

alsa-lib

atk

augeas-libs

avahi

basesystem

bash

bzip2

bzip2-libs

cairo

chkconfig

ConsoleKit

ConsoleKit-libs

ConsoleKit-x11

coreutils

cpio

cups-libs

curl

db4

db4-utils

dbus

dbus-glib

dbus-libs

dbus-x11

dejavu-fonts-common

dejavu-lgc-sans-fonts

dejavu-lgc-sans-mono-fonts

dejavu-lgc-serif-fonts

dejavu-sans-fonts

dejavu-sans-mono-fonts

dejavu-serif-fonts

desktop-backgrounds-basic

desktop-file-utils

devhelp

e2fsprogs

e2fsprogs-libs

eggdbus

elfutils-libelf

enchant

exo

expat

fastinit

file-libs

filesystem

findutils

fontconfig

fontpackages-filesystem

freetype

gamin

gawk

GConf-dbus

gdbm

generic-backgrounds

glade3

glade3-libgladeui

glib2

gnome-icon-theme

gnupg2

gnutls

grep

gst-plugins-base

gstreamer

gtk2

gtk-nodoka-engine

gtk-nodoka-engine-extras

gtk-xfce-engine

gzip

hicolor-icon-theme

hunspell

hwdata

info

iputils

jasper

jasper-libs

less

libacl

libattr

libblkid

libcap

libcom_err

libcurl

libdaemon

libdrm

libexif

libfontenc

libgcrypt

libglade2

libgnome-keyring

libgpg-error

libICE

libicu

libidn

libjpeg

libksba

liblua

libnotify

libogg

libpciaccess

libpng

libproxy

libSM

libsoup

libss

libtalloc

libtasn1

libthai

libtheora

libtiff

libudev

libusb

libuser

libutempter

libuuid

libvisual

libvorbis

libwnck

libX11

libXau

libXaw

libxcb

libXcomposite

libXcursor

libXdamage

libXdmcp

libXext

libxfce4menu

libxfce4util

libxfcegui4

libXfixes

libXfont

libXft

libXi

libXinerama

libxkbfile

libxklavier

libxml2

libXmu

libXpm

libXrandr

libXrender

libXres

libxslt

libXt

libXv

libXxf86vm

libzypp

logrotate

MAKEDEV

meego-release

mesa-dri-swrast-driver

mingetty

moblin-user-skel

module-init-tools

mousepad

79

B – Images content

nano

ncurses

ncurses-base

ncurses-libs

net-tools

nodoka-filesystem

nspr

nss

nss-softokn-freebl

nss-sysinit

openssl

orc

pam

pango

passwd

pcre

perl

perl-Compress-Raw-Zlib

perl-CPAN

perl-devel

perl-ExtUtils-MakeMaker

perl-ExtUtils-ParseXS

perl-Glib

perl-IO-Compress-Base

perl-IO-Compress-Zlib

perl-libs

perl-Module-Pluggable

perl-Pod-Escapes

perl-Pod-Simple

perl-Test-Harness

pixman

pkgconfig

polkit

popt

procps

psmisc

pth

rarian

rarian-compat

readline

rootfiles

rpm

rpm-libs

rsyslog

satsolver-tools

sed

setup

shadow-utils

shared-mime-info

sqlite

startup-notification

sudo

system-root

sysvinit

sysvinit-tools

Terminal

Thunar

tzdata

udev

un-core-fonts-batangbold

un-core-fonts-dinaru

un-core-fonts-dinarubold

un-core-fonts-dinarulight

un-core-fonts-dotum

un-core-fonts-dotumbold

un-core-fonts-graphic

un-core-fonts-graphicbold

un-core-fonts-gungseo

un-core-fonts-pilgi

un-core-fonts-pilgibold

unique

urw-fonts

usleep

util-linux-ng

uxlaunch

vim-minimal

vte

WebKit-gtk

wget

xdg-user-dirs

xdg-user-dirs-gtk

xfce4-appfinder

xfce4-battery-plugin

xfce4-datetime-plugin

xfce4-desktop-branding-moblin

xfce4-icon-theme

xfce4-mixer

xfce4-panel

xfce4-quicklauncher-plugin

xfce4-session

xfce4-session-engines

xfce4-settings

xfce4-taskmanager

xfce-utils

xfconf

xfconf-perl

xfdesktop

xfwm4

xfwm4-theme-nodoka

xfwm4-themes

xkeyboard-config

xorg-x11-apps

xorg-x11-drv-evdev

xorg-x11-drv-fbdev

xorg-x11-drv-keyboard

xorg-x11-drv-mouse

xorg-x11-filesystem

xorg-x11-fonts-100dpi

xorg-x11-fonts-75dpi

xorg-x11-font-utils

xorg-x11-server

xorg-x11-server-common

xorg-x11-server-utils

xorg-x11-server-Xorg-setuid

xorg-x11-twm

xorg-x11-utils-iceauth

xorg-x11-utils-rgb

xorg-x11-utils-sessreg

xorg-x11-utils-xcmsdb

xorg-x11-utils-xgamma

xorg-x11-utils-xhost

xorg-x11-utils-xmodmap

xorg-x11-utils-xrandr

xorg-x11-utils-xrdb

xorg-x11-utils-xrefresh

xorg-x11-utils-xset

xorg-x11-utils-xsetroot

xorg-x11-xauth

xorg-x11-xbitmaps

xorg-x11-xinit

xorg-x11-xkb-utils

xterm

xz-libs

zlib

zypper

B.4 netbook

acl

alsa-lib

alsa-utils

anerley

aspell

aspell-en

atk

augeas-libs

autoconf

automake

avahi

avahi-glib

avahi-gobject

avahi-ui

basesystem

bash

bisho

bluez

bluez-libs

btrfs-progs

buteo-mtp

buteo-syncfw

buteo-syncml

buteo-sync-plugins

bzip2

bzip2-libs

ca-certificates

cairo

cheese

chkconfig

chrome-meego-extension

cjkuni-fonts

clutter

80

B – Images content

clutter-gesture

clutter-gtk

clutter-imcontext

connman

ConsoleKit

ConsoleKit-libs

ConsoleKit-x11

contextkit

coreutils

coreutils-libs

cpio

cryptsetup-luks

cups

cups-libs

curl

cyrus-sasl-lib

cyrus-sasl-md5

cyrus-sasl-plain

db4

db4-utils

dbus

dbus-glib

dbus-libs

dbus-python

dbus-x11

dejavu-fonts-common

dejavu-sans-fonts

deltarpm

desktop-file-utils

device-mapper

device-mapper-libs

dhclient

dialog

docbook-dtds

dosfstools

droid-sans-fonts

droid-sans-mono-fonts

droid-serif-fonts

dsme

e2fsprogs

e2fsprogs-libs

ecryptfs-utils

eggdbus

eject

elfutils-libelf

empathy

enchant

enchant-aspell

eog

evince

evince-libs

evolution-data-server

exempi

expat

farsight2

fastinit

file

file-libs

file-roller

filesystem

findutils

firstboot

flac

fontconfig

fontpackages-filesystem

foomatic

foomatic-db

foomatic-db-filesystem

foomatic-db-ppds

freetype

frozen-bubble

fuse

fuse-libs

gamin

garage-client-services

garage-netbook-ui

gawk

gcalctool

gcalctool-doc

GConf-dbus

gdbm

gdu-nautilus-extension

gedit

generic-logos

genisoimage

geoclue

gettext-libs

ghostscript

ghostscript-fonts

giflib

glew

glib2

glx-utils

gmime

gmp

gnome-bluetooth

gnome-bluetooth-libs

gnome-bluetooth-meego

gnome-control-center-netbook

gnome-desktop

gnome-disk-utility

gnome-disk-utility-libs

gnome-disk-utility-ui-libs

gnome-doc-utils

gnome-doc-utils-stylesheets

gnome-games

gnome-games-help

gnome-icon-theme

gnome-keyring

gnome-keyring-pam

gnome-media

gnome-media-libs

gnome-menus

gnome-mime-data

gnome-python2

gnome-python2-canvas

gnome-python2-desktop

gnome-python2-gnomekeyring

gnome-screensaver

gnome-settings-daemon

gnome-terminal

gnome-utils

gnome-vfs2

gnupg2

gnutls

google-gadgets

google-gadgets-meego

gpgme

grep

grubby

gssdp

gst-plugins-bad-free

gst-plugins-base

gst-plugins-good

gstreamer

gthumb

gtk2

gtkhtml3

gtksourceview2

guile

gupnp

gupnp-igd

gvfs

gvfs-gphoto2

gvfs-obexftp

gvfs-smb

gvfs-trash

gypsy

gzip

hicolor-icon-theme

hunspell

hwdata

info

installer-launch

iproute

iputils

iso-codes

isomd5sum

jana

jasper

jasper-libs

json-glib

kbd

kcalcore

keyutils

keyutils-libs

kpartx

krb5-libs

lcms

lcms-libs

less

libaccounts-glib

libaccounts-qt

libacl

libarchive

libart_lgpl

libasyncns

libatasmart

libattr

libblkid

libbonobo

libbonoboui

libcanberra

libcanberra-gtk2

libcap

libchamplain

81

B – Images content

libchewing

libcom_err

libcreds2

libcroco

libcurl

libdaemon

libdeclarative-contacts

libdeclarative-multimedia

libdeclarative-publishsubscribe

libdeclarative-sensors

libdeclarative-serviceframework

libdres

libdrm

libdsme

libedit

libevent

libexif

libffi

libfontenc

libgcrypt

libgdbus

libgdiplus0

libgee

libglade2

libgnome

libgnomecanvas

libgnomekbd

libgnome-keyring

libgnomeui

libgpg-error

libgphoto2

libgsf

libgtop2

libgudev1

libgweather

libhangul

libical

libICE

libicu

libIDL

libidn

libiodata

libiphb

libiptcdata

libjpeg

libksba

liblua

libmeegotouch

libmng

libmtp

libnice

libnl

libnotify

libogg

libopenraw

libopenraw-gnome

libpciaccess

libphonon4

libpng

libprolog

libproxy

libproxy-gnome

libproxy-python

libpurple

libqmlog

libqtcontacts1

libqtcore4

libqtdbus4

libqtdeclarative4

libqtdeclarative4-folderlistmodel

libqtdeclarative4-gestures

libqtdeclarative4-particles

libqtdesigner4

libqtgui4

libqtlocation1

libqtmessaging1

libqtmultimediakit1

libqtnetwork4

libqtopengl4

libqtopiamail1

libqtpublishsubscribe1

libqtscript4

libqtsensors1

libqtserviceframework1

libqtsql4

libqtsql4-sqlite

libqtsvg4

libqtsysteminfo1

libqttest4

libqttracker

libqtversit1

libqtwebkit4

libqtwebkit-qmlwebkitplugin

libqtxml4

libqtxmlpatterns4

libresource

libresource-client

librsvg2

libsignon

libsignon-passwordplugin

libsignon-saslplugin

libsilc

libSM

libsmbclient

libsndfile

libsocialweb

libsocialweb-keys

libsoup

libspectre

libss

libtalloc

libtasn1

libtdb

libtelepathy

libthai

libtheora

libtiff

libtool-ltdl

libtrace

libudev

libusb

libusb1

libuser

libuser-python

libutempter

libuuid

libvisual

libvorbis

libwbxml2

libwnck

libX11

libXau

libXaw

libxcb

libXcomposite

libXcursor

libXdamage

libXdmcp

libXext

libXfixes

libXfont

libXft

libXi

libXinerama

libxkbfile

libxklavier

libxml2

libxml2-python

libXmu

libXpm

libXrandr

libXrender

libXres

libXScrnSaver

libxslt

libXt

libXtst

libXv

libXxf86misc

libXxf86vm

libzypp

linux-firmware

lockdev

logrotate

m2crypto

m4

mailcap

MAKEDEV

matchbox-panel

meego-cursor-theme

meego-help

meego-menus

meego-netbook-theme

meego-panel-applications

meego-panel-datetime

meego-panel-devices

meego-panel-myzone

meego-panel-networks

meego-panel-pasteboard

meego-panel-people

meego-panel-status

meego-panel-web

meego-panel-zones

meego-release

meego-sound-theme

meegotouch-applauncherd

82

B – Images content

meegotouch-applifed

meegotouch-controlpanel

meegotouch-feedback

meegotouch-feedbackreactionmaps

meegotouch-inputmethodengine

meegotouch-inputmethodframework

meegotouch-theme

meego-ux-settings

mesa-dri-swrast-driver

mesa-libGL

mesa-libGLU

mesa-libGLUT

mesa-libOSMesa

mic2

mingetty

minizip

mkinitrd

mobile-broadband-provider-info

moblin-live

moblin-user-skel

module-init-tools

mozilla-filesystem

mtools

mutter

mutter-meego

mutter-meego-branding-upstream

mx

nano

nautilus

nautilus-extensions

ncurses

ncurses-base

ncurses-libs

netbook-backgrounds

netbook-icon-theme

net-tools

neverball

notify-python

nspr

nss

nss-mdns

nss-softokn-freebl

nss-sysinit

ntp

ntpdate

o3read

obexd

obex-data-server

ofono

ohm

ohm-config

ohm-plugin-core

ohm-plugin-resolver

ohm-plugins-misc

opengl-games-utils

openjpeg-libs

openldap

openobex

openssh

openssh-clients

openssh-server

openssl

ORBit2

orc

PackageKit

PackageKit-browser-plugin

PackageKit-device-rebind

PackageKit-glib

PackageKit-gtk-module

PackageKit-qt

PackageKit-zypp

pam

pango

papyon

parted

passwd

pciutils

pcre

perl

perl-Compress-Raw-Zlib

perl-CPAN

perl-devel

perl-ExtUtils-MakeMaker

perl-ExtUtils-ParseXS

perl-File-BaseDir

perl-File-DesktopEntry

perl-File-MimeInfo

perl-gettext

perl-IO-Compress-Base

perl-IO-Compress-Zlib

perl-libs

perl-Locale-Maketext-Simple

perl-Module-Pluggable

perl-Pod-Escapes

perl-Pod-Simple

perl-SDL

perl-Test-Harness

pidgin-sipe

pixman

pkgconfig

plymouth-lite

pm-utils

polkit

polkit-gnome

poppler

poppler-glib

poppler-utils

popt

prelink

procps

psmisc

pth

pulseaudio

pulseaudio-module-x11

pycairo

pygobject2

pygpgme

pygtk2

pygtk2-libglade

pykickstart

pyOpenSSL

pyparted

python

python-decorator

python-iniparse

python-libs

python-numeric

python-pycurl

python-simplejson

python-telepathy

python-urlgrabber

qjson

qtcontacts-tracker

qt-mobility

qt-web-runtime

rarian

rarian-compat

readline

rest

rhpl

rootfiles

rpm

rpm-libs

rpm-python

rsync

rtkit

samba-winbind-clients

sample-media

satsolver-tools

scim

scim-bridge

scim-bridge-clutter

scim-bridge-gtk

scim-chewing

scim-hangul

scim-pinyin

scim-skk

SDL

SDL_gfx

SDL_image

SDL_mixer

SDL_net

SDL_Pango

SDL_ttf

sed

sensorfw

servicefw

setup

sg3_utils-libs

sgml-common

shadow-utils

shared-mime-info

skkdic

sofia-sip

sofia-sip-glib

sound-theme-freedesktop

speex

sqlite

squashfs-tools

startup-notification

strace

sudo

swi-prolog

swi-prolog-lib

swi-prolog-lib-core

syncevolution

83

B – Images content

syncevolution-evolution

syncevolution-gtk

sysklogd

system-config-date

system-config-date-docs

system-config-language

system-config-printer

system-config-printer-libs

system-root

sysvinit

sysvinit-tools

taglib

tar

tasks

telepathy-butterfly

telepathy-farsight

telepathy-filesystem

telepathy-gabble

telepathy-glib

telepathy-haze

telepathy-idle

telepathy-mission-control

telepathy-qt4

telepathy-qt4-farsight

telepathy-ring

telepathy-salut

telepathy-sofiasip

telepathy-stream-engine

time

timed

tinycdb

tmpwatch

totem-pl-parser

tracker

trousers

ttmkfdir

tzdata

udev

udisks

unique

unzip

upower

urw-fonts

usbutils

usermode

usermode-gtk

usleep

util-linux-ng

uxlaunch

vim-minimal

vlgothic-fonts

vlgothic-fonts-common

vte

WebKit-gtk

wget

wireless-tools

wpa_supplicant

xcb-util

xdg-user-dirs

xdg-user-dirs-gtk

xdg-utils

xinetd

xkeyboard-config

xml-common

xorg-x11-apps

xorg-x11-drv-evdev

xorg-x11-drv-fbdev

xorg-x11-drv-keyboard

xorg-x11-drv-mouse

xorg-x11-drv-synaptics

xorg-x11-drv-vesa

xorg-x11-fonts-100dpi

xorg-x11-fonts-ISO8859-1-100dpi

xorg-x11-fonts-misc

xorg-x11-fonts-Type1

xorg-x11-font-utils

xorg-x11-server

xorg-x11-server-common

xorg-x11-server-Xorg

xorg-x11-twm

xorg-x11-utils

xorg-x11-utils-xdpyinfo

xorg-x11-utils-xdriinfo

xorg-x11-utils-xev

xorg-x11-utils-xfd

xorg-x11-utils-xfontsel

xorg-x11-utils-xhost

xorg-x11-utils-xlsatoms

xorg-x11-utils-xlsclients

xorg-x11-utils-xlsfonts

xorg-x11-utils-xmodmap

xorg-x11-utils-xprop

xorg-x11-utils-xrandr

xorg-x11-utils-xrdb

xorg-x11-utils-xsetroot

xorg-x11-utils-xvinfo

xorg-x11-utils-xwininfo

xorg-x11-xauth

xorg-x11-xinit

xorg-x11-xkb-utils

xterm

xz-libs

yelp

yum

yum-metadata-parser

zenity

zlib

zypper

84

Appendix C

Referenced source code

This appendix contains the relevant part of the source code and the patches that
were produced while working on the project, which are referenced elsewhere in the
text.

C.1 Temporary environment

This section contains code and patches related to the temporary build environment.

C.1.1 RPM configuration

This section provides the configuration files added to the RPM installation in the
MeeGo 1.1 chroot in order to target the SPARC architecture.

platform/sparc-linux/macros

1 # Per -platform rpm configuration file.

2

3 #==========================

4 # ---- per -platform macros.

5 #

6 %optflags -mcpu=v8 -m32 -mhard -float --sysroot =/home/meego/root

7

8 %_arch sparc

9 %_vendor leon

10 %_os linux

11 %_gnu -gnu

12 %_target_platform %{ _target_cpu }-%{ _vendor }-%{ _target_os}

13

14 %_host_cpu sparc

15 %_host_vendor leon

16 %_host_os linux

17 %_host %{ _host_cpu }-%{ _host_vendor }-%{ _host_os}-gnu

18

19 %_build i686 -build_pc -linux -gnu

85

C – Referenced source code

20 %_build_cpu i686

21 %_build_vendor build_pc

22 %_build_os linux

23

24 #==========================

25 # ---- configure macros.

26 #

27 %_prefix /usr

28 %_exec_prefix %{ _prefix}

29 %_bindir %{ _exec_prefix }/bin

30 %_sbindir %{ _exec_prefix }/sbin

31 %_libexecdir %{ _exec_prefix }/ libexec

32 %_datarootdir %{ _prefix }/share

33 %_datadir %{ _datarootdir}

34 %_sysconfdir /etc

35 %_sharedstatedir /var/lib

36 %_localstatedir /var

37 %_lib lib

38 %_libdir %{ _prefix }/lib

39 %_includedir %{ _prefix }/ include

40 %_oldincludedir /usr/include

41 %_infodir %{ _datarootdir }/info

42 %_mandir %{ _datarootdir }/man

43 %_initddir %{ _sysconfdir }/rc.d/init.d

44 # Deprecated misspelling , present for backwards compatibility.

45 %_initrddir %{ _initddir}

46

47 %_defaultdocdir %{ _datadir }/doc

48

49 %_smp_mflags %([-z "$RPM_BUILD_NCPUS"] \\\

50 && RPM_BUILD_NCPUS=" ‘/usr/bin/getconf _NPROCESSORS_ONLN ‘"; \\\

51 ["$RPM_BUILD_NCPUS" -gt 1] && echo "-j$RPM_BUILD_NCPUS")

52

53 #==========================

54 # ---- Build system path macros.

55 #

56 %__ar %{_host}-ar

57 %__as %{_host}-as

58 %__cc %{_host}-gcc

59 %__cpp %{_host}-gcc -E

60 %__cxx %{_host}-g++

61 %__ld %{_host}-ld

62 %__nm %{_host}-nm

63 %__objcopy %{_host}-objcopy

64 %__objdump %{_host}-objdump

65 %__ranlib %{_host}-ranlib

66 %__remsh %{ __rsh}

67 %__strip %{ _host}-strip

68

69 #==========================

70 # ---- Build policy macros.

71 #

72 #--------------------------

73 # Expanded at end of %install scriptlet.

74 #

75

76 %__arch_install_post %{nil}

77

78 %__os_install_post \

79 %{ _rpmconfigdir }/brp -compress \

80 brp -strip -sparc \

81 brp -strip -static -archive -sparc \

86

C – Referenced source code

82 brp -strip -comment -note -sparc \

83 %{nil}

84

85 %__spec_install_post\

86 %{? __debug_package :%{ __debug_install_post }}\

87 %{ __arch_install_post }\

88 %{ __os_install_post }\

89 %{nil}

90

91 #--------------------------

92 # Expanded at end of %prep

93 #

94 %__id_u %{__id} -u

95 %__chown_Rhf %{ __chown} -Rhf

96 %__chgrp_Rhf %{ __chgrp} -Rhf

97 %_fixperms %{ __chmod} -Rf a+rX ,u+w,g-w,o-w

98 #--------------------------

99 # Always use %defattr(-,root ,root) in %files (added in rpm -4.0.4)

100 #

101 #%files(n:f:) %%files %{?-f: -f %{-f*}}%{? -n: -n %{-n*}} %{?1}\

102 #%defattr(-,root ,root ,-)\

103 #%{nil}

C.1.2 Automation scripts

This section provides the source code of the automation scripts used to build the
bootstrap repository.

include/env.inc

1 #!/bin/bash

2

3 # BASH SETTINGS

4 set +h

5 umask 022

6

7 # USER CONFIGURATION

8 export SM_VERSION="1.1" # meego version to be built

9 export SM_CACHE_MAXAGE="3600" # amount of seconds after cached files expire

10 export SM_EDITOR="nano" # preferred text editor

11 export SM_REMOTEPORT="5011"

12

13 # GENERATED CONFIGURATION

14 export SM_REPOSITORY="http :// repo.meego.com/MeeGo/releases/$SM_VERSION"

15 export SM_PATH="/home/meego"

16

17 # GENERATED PATHS

18 export SM_PATH_RPMBUILD="$SM_PATH/rpmbuild" # rpmbuild root directory

19 export SM_PATH_SCRIPTS="$SM_PATH/scripts" # sm scripts

20 export SM_PATH_REPOSITORY="$SM_PATH/repository" # generate packages

21 export SM_PATH_ROOT="$SM_PATH/root" # populated sysroot

22 export SM_PATH_CACHE="$SM_PATH/cache" # downloaded packages

23 export SM_PATH_LOGS="$SM_PATH/logs" # downloaded packages

24 export SM_PATH_CONFIGURE_FLAGS="$SM_PATH_SCRIPTS/workarounds/data/configure.

flags"

25 export SM_PATH_COMPILE_FLAGS="$SM_PATH_SCRIPTS/workarounds/data/compile.flags"

26 export SM_PATH_CONFIGURE_CACHE="$SM_PATH_SCRIPTS/workarounds/data/configure.

cache"

27 export SM_PATH_CONFIGURE_HOST="$SM_PATH_SCRIPTS/workarounds/data/configure.host"

87

C – Referenced source code

28 export SM_PATH_CONFIGURE_TARGET="$SM_PATH_SCRIPTS/workarounds/data/configure.

target"

29 export SM_PATH_CONFIGURE_BUILD="$SM_PATH_SCRIPTS/workarounds/data/configure.

build"

30

31 # SSH COMMANDS

32 export SM_SSH_INTO_CHROOT="ssh meego@ivan"

33 export SM_SSH_INTO_NATIVE="ssh meego@ultra1"

34

35 # COMPILER TARGETS AND FLAGS

36 export SM_COMPILE_BUILD="i686 -build_pc -linux -gnu" # where the cross compiler is

executed

37 export SM_COMPILE_HOST="sparc -leon -linux -gnu" # where the compiled code is

executed

38 export SM_COMPILE_TARGET="sparc -leon -linux -gnu" # where the compiled code is

executed

39 export SM_COMPILE_CFLAGS="-mcpu=v8 -m32 -mhard -float --sysroot=$SM_PATH_ROOT -

Xlinker --build -id -L$SM_PATH_ROOT/lib/ -L$SM_PATH_ROOT/usr/lib/"

40 export SM_COMPILE_CXXFLAGS="-mcpu=v8 -m32 -mhard -float --sysroot=$SM_PATH_ROOT -

Xlinker --build -id -L$SM_PATH_ROOT/lib/ -L$SM_PATH_ROOT/usr/lib/"

41 export SM_COMPILE_LDFLAGS="--sysroot=$SM_PATH_ROOT -L$SM_PATH_ROOT/lib/ -

L$SM_PATH_ROOT/usr/lib/"

42

43 # REMOTECLIENT CONFIGURATION

44 export SM_REMOTECLIENT_OVERRIDE=""

45

46 # RPM COMMAND SWITCHES

47 export SM_RPM_TARGET="--target sparc -linux"

48

49 # USEFUL CONFIGURE ENVIRONMENT VARIABLES

50 export CFLAGS="$SM_COMPILE_CFLAGS"

51 export CXXFLAGS="$SM_COMPILE_CXXFLAGS"

52 export CC="${SM_COMPILE_TARGET}-gcc"

53 export CXX="${SM_COMPILE_TARGET}-g++"

54 export AR="${SM_COMPILE_TARGET}-ar"

55 export AS="${SM_COMPILE_TARGET}-as"

56 export RANLIB="${SM_COMPILE_TARGET}-ranlib"

57 export LD="${SM_COMPILE_TARGET}-ld"

58 export STRIP="${SM_COMPILE_TARGET}-strip"

59 export PKG_CONFIG="$SM_PATH_SCRIPTS/wrappers/pkg -config"

60 export PKG_CONFIG_PATH="$SM_PATH_ROOT/usr/lib/pkgconfig"

61 export PKG_CONFIG_SYSROOT_DIR="$SM_PATH_ROOT"

include/functions.inc

1 #!/bin/bash

2

3 # ASK FOR CONFIRMATION

4 # Usage: confirm <question >

5 # Returns: 0 -> Yes , 1 -> No

6 function confirm ()

7 {

8 # prompt question and read answer

9 echo -n "$@ "

10 read -e ANSWER

11

12 # check the answer

13 for RESPONSE in y Y yes YES Yes

14 do

15 if ["_$ANSWER" == "_$RESPONSE"]

16 then

88

C – Referenced source code

17 return 0

18 fi

19 done

20

21 # any answer other than the list above is considerred a "no" answer

22 return 1

23 }

24

25 # CHECK RETURN CODE

26 # Usage: check <program > <code >

27 function check()

28 {

29 # check error code

30 if [[$2 -ne 0]]; then

31 echo "!! Error: $1 exited with error code $2."

32 exit 1

33 fi

34

35 # all good

36 return 0

37 }

38

39 # PRINT LINE

40 # Usage: line <character >

41 function line()

42 {

43 # get terminal width

44 WIDTH=‘tput cols ‘

45

46 # print line

47 for I in ‘seq $WIDTH ‘; do

48 echo -n $1

49 done

50 echo

51 }

52

53 # CHECK IF CACHED FILE IS MISSING/STALE

54 # Usage: cache <path >

55 function cache()

56 {

57 # build file path

58 FILE="$SM_PATH_CACHE/$1"

59

60 # first check if file exists

61 if [[! -f $FILE]]; then

62 echo "missing"

63 return 0

64 fi

65

66 # get relevant timestamps and age

67 MODIFIED=‘stat -c %Y $FILE ‘

68 NOW=‘date ++%s‘

69 ((AGE = $NOW - $MODIFIED))

70

71 # CHECK AGE

72 if [[$AGE -gt $SM_CACHE_MAXAGE]]; then

73 echo "stale"

74 return 0

75 fi

76

77 # still good

78 echo "cached"

89

C – Referenced source code

79 return 0

80 }

81

82 # PRINT MEEGO REPOSITORY URL

83 # Usage: repourl <repo > <arch >

84 function repourl ()

85 {

86 # start building url

87 REPOSITORY="$SM_REPOSITORY/$1/repos/$2"

88

89 # add "/ packages" for binary architectures

90 if [[$2 != "source"]]; then

91 REPOSITORY="$REPOSITORY/packages"

92 fi

93

94 # print result

95 echo $REPOSITORY

96 }

97

98 # PRINT LOCAL REPOSITORY PATH

99 # Usage: repourl <repo > <arch >

100 function repopath ()

101 {

102 # start building path

103 REPOSITORY="$SM_PATH_REPOSITORY/MeeGo/releases/$SM_VERSION/$1/repos/$2"

104

105 # add "/ packages" for binary architectures

106 if [[$2 != "source"]]; then

107 REPOSITORY="$REPOSITORY/packages"

108 fi

109

110 # print result

111 echo $REPOSITORY

112 }

buildclean

1 #!/bin/bash

2

3 # INCLUDE COMMON HEADERS

4 source ‘dirname $0 ‘/ include/env.inc

5 source ‘dirname $0 ‘/ include/functions.inc

6

7 # CHECK ARGUMENTS

8 if [[$# -ne 0]]; then

9 echo "Usage: buildclean"

10 exit 1

11 fi

12

13 # CLEAN RPMBUILD

14 echo "-> Cleaning rpmbuild ..."

15

16 for DIRECTORY in SOURCES SPECS BUILD BUILDROOT TEMP RPMS SRPMS; do

17 fakeroot rm -rf $SM_PATH_RPMBUILD/$DIRECTORY /*

18 check rm $?

19 done

20

21 echo "-> Done."

buildprepare

90

C – Referenced source code

1 #!/bin/bash

2

3 # INCLUDE COMMON HEADERS

4 source ‘dirname $0 ‘/ include/env.inc

5 source ‘dirname $0 ‘/ include/functions.inc

6

7 # CHECK ARGUMENTS

8 if [[-z $1 || -z $2 || (! -z $3 && $3 != "local")]]; then

9 echo "Usage: buildprepare <repo > <package > [local]"

10 exit 1

11 fi

12

13 if [[-z $3]]; then

14 # GET REPOSITORY URL

15 echo "-> Building repository URL ..."

16 REPOSITORY_URL=‘repourl $1 source ‘

17 echo "$REPOSITORY_URL"

18

19 # GET REPOSITORY INDEX IF NEEDED

20 REPOSITORY_INDEX_NAME="repository_index_$1_source"

21 REPOSITORY_INDEX_PATH="$SM_PATH_CACHE/$REPOSITORY_INDEX_NAME"

22 REPOSITORY_INDEX_CACHE=‘cache $REPOSITORY_INDEX_NAME ‘

23

24 if [[$REPOSITORY_INDEX_CACHE != "cached"]]; then

25 echo "-> No cached index found , downloading ..."

26 wget -nv -O $REPOSITORY_INDEX_PATH $REPOSITORY_URL

27 check wget $?

28 touch $REPOSITORY_INDEX_PATH

29 else

30 echo "-> Cached index found , no need to download ..."

31 fi

32

33 # GET PACKAGE LIST

34 echo "-> Extracting package list ..."

35 PACKAGE_LIST=‘cat $REPOSITORY_INDEX_PATH | grep -E -o "href=\".*\. rpm\"" |

grep -E -o "\".*\"" | sed ’s/^.//’ | sed ’s/.$//’‘

36 else

37 # GET REPOSITORY PATH

38 echo "-> Building repository path ..."

39 REPOSITORY_PATH=‘repopath $1 source ‘

40 echo "$REPOSITORY_PATH"

41

42 # GET PACKAGE LIST

43 echo "-> Extracting package list ..."

44 PACKAGE_LIST=‘ls $REPOSITORY_PATH | grep ’\.rpm$ ’‘

45 fi

46

47 echo "-> Found ‘echo $PACKAGE_LIST | wc -w‘ packages."

48

49 # IDENTIFY PACKAGE

50 echo "-> Identifying package ..."

51 PACKAGE_NAME=‘echo $PACKAGE_LIST | tr ’ ’ ’\n’ | grep -E "^$2\-[0-9a-zA-Z\~\._

]+\-[0-9a-zA-Z\~\._]+src\.rpm"‘

52

53 if [[-z $PACKAGE_NAME]]; then

54 echo "!! Error: package does not exist."

55 exit 1

56 fi

57

58 # GET PACKAGE IF NEEDED

59 if [[-z $3]]; then

60 echo "-> Found \"$PACKAGE_NAME\", probing cache ..."

91

C – Referenced source code

61 PACKAGE_PATH="$SM_PATH_CACHE/$PACKAGE_NAME"

62 PACKAGE_URL="$REPOSITORY_URL/$PACKAGE_NAME"

63 PACKAGE_CACHE=‘cache $PACKAGE_NAME ‘

64

65 if [[$PACKAGE_CACHE != "cached"]]; then

66 echo "-> No cached package found , downloading ..."

67 wget -nv -O $PACKAGE_PATH $PACKAGE_URL

68 check wget $?

69 touch $PACKAGE_PATH

70 else

71 echo "-> Cached package found , no need to download ..."

72 fi

73 else

74 echo "-> Found \"$PACKAGE_NAME\", copying ..."

75 PACKAGE_PATH="$REPOSITORY_PATH/$PACKAGE_NAME"

76 fi

77

78 # CLEAN RPMBUILD

79 buildclean

80 check buildclean $?

81

82 # EXTRACT PACKAGE

83 echo "-> Extracting package contents ..."

84 rpmdev -extract -f -C $SM_PATH_RPMBUILD/TEMP $PACKAGE_PATH

85 check rpmdev -extract $?

86

87 # MOVE FILES IN THE CORRECT FOLDERS

88 echo "-> Moving files.."

89 for FILE in ‘find $SM_PATH_RPMBUILD/TEMP/ -name *.spec ‘; do

90 mv -v $FILE $SM_PATH_RPMBUILD/SPECS;

91 check mv $?

92 done

93

94 rm -rfv $SM_PATH_RPMBUILD/SOURCES

95 check rm $?

96

97 cp -rv ‘find $SM_PATH_RPMBUILD/TEMP -mindepth 1 -maxdepth 1 -type d‘

$SM_PATH_RPMBUILD/SOURCES

98 check cp $?

99

100 # PERFORM COMMON TESTS AND DISPLAY WARNINGS

101 for FILE in ‘find $SM_PATH_RPMBUILD/SPECS/ -name *.spec ‘; do

102 echo "-> Analyzing \"$FILE\"..."

103

104 RESULT=‘cat $FILE | grep ’%check ’‘

105 if [[! -z $RESULT]]; then

106 echo -e "\tWarning: check section present."

107 fi

108

109 RESULT=‘cat $FILE | grep ’%reconfigure ’‘

110 if [[! -z $RESULT]]; then

111 echo -e "\tWarning: %reconfigure macro present."

112 fi

113 done

114

115 echo "-> Done."

buildperform

1 #!/bin/bash

2

92

C – Referenced source code

3 # INCLUDE COMMON HEADERS

4

5 source ‘dirname $0 ‘/ include/env.inc

6 source ‘dirname $0 ‘/ include/functions.inc

7

8 # CHECK ARGUMENTS

9

10 if [[! ($# -eq 0 || ($# -eq 1 && ($1 == "prep" || $1 == "force")))]];

then

11 echo "Usage: buildperform [prep|force]"

12 exit 1

13 fi

14

15 # GET SPEC FILE AND CHECK FOR MULTIPLES

16

17 SPEC_FILE=‘find $SM_PATH_RPMBUILD/SPECS -name "*.spec"‘

18 SPEC_COUNT=‘find $SM_PATH_RPMBUILD/SPECS -name "*.spec" | wc -l‘

19

20 case $SPEC_COUNT in

21 0)

22 echo "-> No spec file found."

23 echo "-> Nothing to do."

24 exit 0 ;;

25 1)

26 echo "-> Found 1 spec file." ;;

27 *)

28 echo "-> Found $SPEC_COUNT spec files."

29 echo "-> Sorry , behaviour undefined." ;;

30 esac

31

32 # FIX RPMBUILD CONFIGURATION

33

34 #echo "-> Fixing rpmbuild configuration ... (Overwriting \" $SM_PATH /. rpmrc \")"

35 #echo "optflags: sparc $SM_COMPILE_CFLAGS" > $SM_PATH /. rpmrc

36

37 # MAKE SURE THE BUILD DIRECTORIES ARE NOT POLLUTED

38

39 for DIRECTORY in BUILD BUILDROOT; do

40 rm -rfv $SM_PATH_RPMBUILD/$DIRECTORY /*

41 check rm $?

42 done

43

44 # SETUP THE RPMBUILD FLAGS

45

46 if [[$1 == "force"]]; then

47 FLAGS="--nodeps"

48 else

49 FLAGS=""

50 fi

51

52 # PERFORM BUILD

53

54 if [[! -z $1 && $1 == "prep"]]; then

55 echo "-> Executing %prep stage ..."

56 rpmbuild -bp $SM_RPM_TARGET $SPEC_FILE

57 check "rpmbuild" $?

58 echo "-> Done."

59 else

60 echo "-> Executing build ..."

61 rpmbuild -ba $FLAGS $SM_RPM_TARGET $SPEC_FILE

62 check "rpmbuild" $?

63 echo "-> Done."

93

C – Referenced source code

64 fi

buildcheck

1 #!/bin/bash

2

3 # INCLUDE COMMON HEADERS

4 source ‘dirname $0 ‘/ include/env.inc

5 source ‘dirname $0 ‘/ include/functions.inc

6

7 # CHECK ARGUMENTS

8 if [-z "$1"]; then

9 echo "Usage: buildcheck <repo >"

10 exit 1

11 fi

12

13 # FIND BINARY PACKAGES

14 echo "-> Looking for binary packages ..."

15 BINARY_PACKAGES=‘find $SM_PATH_RPMBUILD/RPMS -name ’*.rpm ’‘

16 BINARY_COUNT=‘echo -n $BINARY_PACKAGES | wc -w‘

17 echo "-> Found $BINARY_COUNT."

18

19 if [[$BINARY_COUNT -eq 0]]; then

20 echo "-> Nothing to do."

21 exit 0

22 fi

23

24 # GET REPOSITORY URLs

25 echo "-> Building repository base URL..."

26 REPOSITORY_URL_BASE=‘repourl $1 ia32 ‘

27 echo "$REPOSITORY_URL_BASE"

28

29 # GET REPOSITORY INDEXES AND PACKAGE LISTS IF NEEDED

30 declare -A REPOSITORY_INDEX_NAME

31 declare -A REPOSITORY_INDEX_PATH

32 declare -A REPOSITORY_INDEX_CACHE

33 declare -A PACKAGE_LIST

34

35 for ARCH in i586 i686 noarch; do

36 REPOSITORY_INDEX_NAME[$ARCH]="repository_index_$ {1} _ia32_${ARCH}"

37 REPOSITORY_INDEX_PATH[$ARCH]="$SM_PATH_CACHE/${REPOSITORY_INDEX_NAME[$ARCH]}"

38 REPOSITORY_INDEX_CACHE[$ARCH]=‘cache ${REPOSITORY_INDEX_NAME[$ARCH]}‘

39

40 if [[${REPOSITORY_INDEX_CACHE[$ARCH]} != "cached"]]; then

41 echo "-> No cached index found for arch \"$ARCH\", downloading ..."

42 wget -nv -O ${REPOSITORY_INDEX_PATH[$ARCH]} $REPOSITORY_URL_BASE/$ARCH

43 check wget $?

44 touch ${REPOSITORY_INDEX_PATH[$ARCH]}

45 else

46 echo "-> Cached index found for arch \"$ARCH\", no need to download ..."

47 fi

48

49 echo "-> Extracting package list for arch \"$ARCH\"..."

50 PACKAGE_LIST[$ARCH]=‘cat ${REPOSITORY_INDEX_PATH[$ARCH]} | grep -E -o "href=\"

.*\. rpm\"" | grep -E -o "\".*\"" | sed ’s/^.// ’ | sed ’s/.$//’‘

51 echo "-> Found ‘echo ${PACKAGE_LIST[$ARCH]} | wc -w‘ packages."

52 done

53

54 # FOR EACH LOCAL PACKAGE

55 for PACKAGE_PATH in ‘echo $BINARY_PACKAGES ‘; do

56 # GET REAL PACKAGE NAME

94

C – Referenced source code

57 PACKAGE_NAME=‘basename $PACKAGE_PATH | sed -r ’s/\-[0-9a-zA-Z\~\._]+\-[0-9a-

zA-Z\~\._]+(sparc|noarch).rpm$//’‘

58 echo "-> Investigating \"$PACKAGE_NAME\"..."

59

60 # CHECK BINARIES ARCHITECTURE

61 echo -e "\t-> Verifying that all ELF binaries are Sparc ..."

62 if [[-d $SM_PATH_RPMBUILD/TEMP/buildcheck]]; then

63 sudo rm -rf $SM_PATH_RPMBUILD/TEMP/buildcheck

64 check rm $?

65 fi

66 mkdir $SM_PATH_RPMBUILD/TEMP/buildcheck

67 check mkdir $?

68 rpmdev -extract -f -C $SM_PATH_RPMBUILD/TEMP/buildcheck $PACKAGE_PATH > /dev/

null

69 check rpmdev -extract $?

70 PACKAGE_TEMP_DIR=‘find $SM_PATH_RPMBUILD/TEMP/buildcheck -mindepth 1 -maxdepth

1 -type d‘

71

72 for FILE in ‘find $PACKAGE_TEMP_DIR ‘; do

73 FILE_RELATIVE=${FILE#$PACKAGE_TEMP_DIR}

74 if [[-L $FILE]]; then

75 echo -e "\t\t-> Found link \"$FILE_RELATIVE\" to \"‘readlink $FILE ‘\" "

76 else

77 OUTPUT=‘sparc -leon -linux -gnu -readelf -h $FILE 2>&1‘

78 if [[$? -eq 0]]; then

79 echo -ne "\t\t-> Found binary \"$FILE_RELATIVE\"... "

80 CHECK=‘echo $OUTPUT | grep "Machine: Sparc"‘

81 if [[$? -eq 0]]; then

82 echo "OK"

83 else

84 echo "BAD"

85 line "-"

86 echo $OUTPUT

87 line "-"

88 fi

89 fi

90 fi

91 done

92

93 sudo rm -rf $SM_PATH_RPMBUILD/TEMP/buildcheck

94 check rm $?

95

96 # IDENTIFY PACKAGE

97 echo -e "\t-> Trying to locate package in the official repository ..."

98

99 PACKAGE_FOUND =0

100 for ARCH in i586 i686 noarch; do

101 PACKAGE_NAME_OFFICIAL=‘echo ${PACKAGE_LIST[$ARCH]} | tr ’ ’ ’\n’ | grep -E "

^$PACKAGE_NAME \-[0-9a-zA-Z\~\._]+\-[0-9a-zA-Z\~\._]+$ARCH\.rpm"‘

102 if [[-z $PACKAGE_NAME_OFFICIAL]]; then

103 echo -e "\t-> Not found in arch \"$ARCH\"."

104 else

105 echo -e "\t-> Found in arch \"$ARCH\" with name \"$PACKAGE_NAME_OFFICIAL\"

."

106 PACKAGE_ARCH_OFFICIAL=$ARCH

107 PACKAGE_FOUND =1

108 break

109 fi

110 done

111

112 if [[$PACKAGE_FOUND -eq 0]]; then

113 echo "!! Error: package does not exist in official repository."

95

C – Referenced source code

114 continue # there may be more packages to investigate , so we do not exit

115 fi

116

117 # GET PACKAGE FROM OFFICIAL REPOSITORY IF NEEDED

118 PACKAGE_PATH_OFFICIAL="$SM_PATH_CACHE/$PACKAGE_NAME_OFFICIAL"

119 PACKAGE_URL_OFFICIAL="$REPOSITORY_URL_BASE/$ARCH/$PACKAGE_NAME_OFFICIAL"

120 PACKAGE_CACHE_OFFICIAL=‘cache $PACKAGE_NAME_OFFICIAL ‘

121

122 if [[$PACKAGE_CACHE_OFFICIAL != "cached"]]; then

123 echo -e "\t-> No cached package found , downloading ..."

124 wget -nv -O $PACKAGE_PATH_OFFICIAL $PACKAGE_URL_OFFICIAL

125 check wget $?

126 touch $PACKAGE_PATH_OFFICIAL

127 else

128 echo -e "\t-> Cached package found , no need to download ..."

129 fi

130

131 # GET PACKAGE CONTENT LISTS

132 echo -e "\t\t-> Comparing package contents ..."

133

134 rpm -qlp $PACKAGE_PATH > $SM_PATH_RPMBUILD/TEMP/${$}_list_local

135 check rpm $?

136

137 rpm -qlp $PACKAGE_PATH_OFFICIAL > $SM_PATH_RPMBUILD/TEMP/${$}_list_official

138 check rpm $?

139

140 # COMPUTE DIFFERENCES AND DISPLAY RESULTS

141 diff -y $SM_PATH_RPMBUILD/TEMP/${$}_list_local $SM_PATH_RPMBUILD/TEMP/${$}

_list_official > $SM_PATH_RPMBUILD/TEMP/${$}_diff_all

142 RESULT=$?

143 cat $SM_PATH_RPMBUILD/TEMP/${$}_diff_all | grep -E ’>|\||<’ >

$SM_PATH_RPMBUILD/TEMP/${$}_diff

144

145 if [[$RESULT -eq 0]]; then

146 echo -e "\t\t-> GOOD: Both packages have the same file list."

147 else

148 echo -e "\t\t-> BAD: There are some differences:"

149 line "-"

150 echo -e " Local\t\t\t\t\t\t\t\tOfficial"

151 line "-"

152 cat $SM_PATH_RPMBUILD/TEMP/${$}_diff | sed ’s/^/ /g’

153 line "-"

154 fi

155

156 rm $SM_PATH_RPMBUILD/TEMP/${$}_list_local

157 check rm $?

158 rm $SM_PATH_RPMBUILD/TEMP/${$}_list_official

159 check rm $?

160 rm $SM_PATH_RPMBUILD/TEMP/${$}_diff_all

161 check rm $?

162 rm $SM_PATH_RPMBUILD/TEMP/${$}_diff

163 check rm $?

164 done

buildsave

1 #!/bin/bash

2

3 # INCLUDE COMMON HEADERS

4 source ‘dirname $0 ‘/ include/env.inc

5 source ‘dirname $0 ‘/ include/functions.inc

96

C – Referenced source code

6

7 # CHECK ARGUMENTS

8 if [-z "$1"]; then

9 echo "Usage: buildsave <repo >"

10 exit 1

11 fi

12

13 # MOVE BINARY PACKAGES

14 echo "-> Looking for binary packages ..."

15 BINARY_COUNT=‘find $SM_PATH_RPMBUILD/RPMS -name ’*.rpm ’ | wc -l‘

16 BINARY_PATH=‘repopath $1 sparc ‘

17 echo "-> Found $BINARY_COUNT."

18

19 if [[$BINARY_COUNT -gt 0]]; then

20 cp -rv $SM_PATH_RPMBUILD/RPMS/* $BINARY_PATH

21 check mv $?

22 echo "-> Updating repository metadata ..."

23 #createrepo -c $SM_PATH_CACHE/repository -pd $BINARY_PATH

24 #check createrepo $?

25 fi

26

27 # MOVE SOURCE PACKAGES

28 echo "-> Looking for source packages ..."

29 SOURCE_COUNT=‘find $SM_PATH_RPMBUILD/SRPMS -name ’*.rpm ’ | wc -l‘

30 SOURCE_PATH=‘repopath $1 source ‘

31 echo "-> Found $SOURCE_COUNT."

32

33 if [[$SOURCE_COUNT -gt 0]]; then

34 cp -rv $SM_PATH_RPMBUILD/SRPMS/* $SOURCE_PATH

35 check mv $?

36 echo "-> Updating repository metadata ..."

37 #createrepo -c $SM_PATH_CACHE/repository -pd $SOURCE_PATH

38 #check createrepo $?

39 fi

40

41 echo "-> Done."

repoclean

1 #!/bin/bash

2

3 # INCLUDE COMMON HEADERS

4 source ‘dirname $0 ‘/ include/env.inc

5 source ‘dirname $0 ‘/ include/functions.inc

6

7 # CHECK ARGUMENTS

8 if [[$# -ne 0]]; then

9 echo "Usage: repoclean"

10 exit 1

11 fi

12

13 # ASK FOR CONFIRMATION

14 confirm "-> This will completely wipe your local (generated) repository. Would

you like to continue? [y/N]"

15 if [[$? -ne 0]]; then

16 echo "-> Ok, aborting."

17 exit 0

18 fi

19

20 # DELETE ROOT DIRECTORY CONTENTS

21 echo "-> Deleting local repository ..."

97

C – Referenced source code

22 rm -rfv $SM_PATH_REPOSITORY

23 check rm $?

24 echo "-> Done."

25

26 echo "-> Recreating repository structure ..."

27 for REPOSITORY_NAME in core netbook; do

28 mkdir -pv ‘repopath $REPOSITORY_NAME source ‘

29 check mkdir $?

30 mkdir -pv ‘repopath $REPOSITORY_NAME sparc ‘

31 check mkdir $?

32 done

33

34 echo "-> Done."

rootpopulate

1 #!/bin/bash

2

3 # INCLUDE COMMON HEADERS

4 source ‘dirname $0 ‘/ include/env.inc

5 source ‘dirname $0 ‘/ include/functions.inc

6

7 # CHECK ARGUMENTS

8 if [[$# -ne 0]]; then

9 echo "Usage: rootpopulate"

10 exit 1

11 fi

12

13 PACKAGE_CURRENT =1

14 PACKAGE_COUNT=‘find $SM_PATH/repository -wholename */ releases/$SM_VERSION /*/

repos/sparc/packages /*.rpm -not -name *.src.rpm | wc -l‘

15

16 for PACKAGE_FILE in ‘find $SM_PATH/repository -wholename */ releases/$SM_VERSION

/*/ repos/sparc/packages /*. rpm -not -name *.src.rpm ‘; do

17 echo -e "\t($PACKAGE_CURRENT/$PACKAGE_COUNT) $PACKAGE_FILE"

18 ((PACKAGE_CURRENT ++))

19 sudo rpm -i --noscripts --nodeps --ignorearch --ignoreos --force --root=

$SM_PATH_ROOT $PACKAGE_FILE

20 check rpm $?

21 done

rootinstall

1 #!/bin/bash

2

3 # INCLUDE COMMON HEADERS

4 source ‘dirname $0 ‘/ include/env.inc

5 source ‘dirname $0 ‘/ include/functions.inc

6

7 # CHECK ARGUMENTS

8 if [[$# -ne 2]]; then

9 echo "Usage: rootinstall <repo > <package >"

10 exit 1

11 fi

12

13 # IDENTIFY PACKAGE

14 REPOSITORY_PATH=‘repopath $1 sparc ‘

15 PACKAGE_NAME=‘echo "$2" | sed ’s/\+/\\\+/g’‘

16 PACKAGE_PATH=‘find $REPOSITORY_PATH -regextype posix -extended -type f -regex "^

$REPOSITORY_PATH /(sparc|noarch)/$PACKAGE_NAME \-[0-9a-zA-Z\~\._\+]+\ -[0 -9a-

zA-Z\~\._\+]+(sparc|noarch)\.rpm$"‘

98

C – Referenced source code

17

18 if [[-z $PACKAGE_PATH]]; then

19 echo "-> Error: package does not exist."

20 exit 1

21 else

22 echo "-> Identified package \"$PACKAGE_PATH\"."

23 fi

24

25 # INSTALL PACKAGE

26 echo "-> Installing package ..."

27 sudo rpm -i -vv --noscripts --nodeps --ignorearch --ignoreos --force --root=

$SM_PATH_ROOT $PACKAGE_PATH

28 check rpm $?

29 echo "-> Done."

workaround

1 #!/bin/bash

2

3 # INCLUDE COMMON HEADERS

4 source ‘dirname $0 ‘/ include/env.inc

5 source ‘dirname $0 ‘/ include/functions.inc

6

7 # CHECK ARGUMENTS

8 if [[$# -lt 2]]; then

9 echo "Usage: workaround <name > <action > [parameter]"

10 exit 1

11 fi

12

13 # CHECK WORKAROUND and ACTION

14 WORKAROUND_ACTIONS=‘find $SM_PATH_SCRIPTS/workarounds -name $1 -* -exec basename

{} \; | sed "s/$1 -//g"‘

15

16 if [[-z $WORKAROUND_ACTIONS]]; then

17 echo "!! Error: workaround not found."

18 exit 1

19 fi

20

21 if [[! -f $SM_PATH_SCRIPTS/workarounds/$1-$2]]; then

22 echo "!! Error: workaround \"$1\" has no action \"$2\"."

23 exit 1

24 fi

25

26 # CHECK STATUS

27 if [[-f ‘dirname $0 ‘/ workarounds/status/$1]]; then

28 STATUS="enabled"

29 else

30 STATUS="disabled"

31 fi

32

33 # EXECUTE REQUEST

34 case $2 in

35 status)

36 echo "-> Workaround $STATUS." ;;

37 enable)

38 if [[$1 == "all"]]; then

39 ‘dirname $0 ‘/ workarounds/$1-$2

40 exit 0

41 fi

42 if [[$STATUS == "enabled"]]; then

43 echo "!! Error: workaround already enabled."

99

C – Referenced source code

44 exit 1

45 fi

46 touch ‘dirname $0 ‘/ workarounds/status/$1

47 ‘dirname $0 ‘/ workarounds/$1-$2

48 echo "-> Workaround enabled." ;;

49 disable)

50 if [[$1 == "all"]]; then

51 ‘dirname $0 ‘/ workarounds/$1-$2

52 exit 0

53 fi

54 if [[$STATUS == "disabled"]]; then

55 echo "!! Error: workaround already disabled."

56 exit 1

57 fi

58 rm ‘dirname $0 ‘/ workarounds/status/$1

59 ‘dirname $0 ‘/ workarounds/$1-$2

60 echo "-> Workaround disabled." ;;

61 *)

62 if [[$1 == "all"]]; then

63 ‘dirname $0 ‘/ workarounds/$1-$2

64 exit 0

65 fi

66 if [[$STATUS == "disabled"]]; then

67 echo "!! Error: workaround is disabled."

68 exit 1

69 fi

70 $SM_PATH_SCRIPTS/workarounds/$1 -$2 $3

71 if [[$? -eq 0]]; then

72 echo "-> Workaround action executed."

73 fi

74 ;;

75 esac

C.1.3 Kernel and Loader patches

This section contains the patches that were applied to the Linux kernel and the glibc
loader in order to implement the transparent remote execution capabilities.

kernel-remote-execution.patch

1 --- ubuntu -lucid.orig/fs/exec.c 2011 -06 -17 14:29:19.000000000 +0200

2 +++ ubuntu -lucid.new/fs/exec.c 2011 -06 -17 14:32:47.000000000 +0200

3 @@ -56,9 +56 ,11 @@

4 #include <linux/fsnotify.h>

5 #include <linux/fs_struct.h>

6 #include <linux/pipe_fs_i.h>

7 +# include <linux/elf.h>

8

9 #include <trace/events/fs.h>

10

11 +# include <asm/byteorder.h>

12 #include <asm/uaccess.h>

13 #include <asm/mmu_context.h>

14 #include <asm/tlb.h>

15 @@ -1346,6 +1348 ,46 @@

16

17 EXPORT_SYMBOL(search_binary_handler);

18

19 +int bin_type_sparc(const char *filename , const char **argv)

100

C – Referenced source code

20 +{

21 + int fd, len;

22 + Elf32_Ehdr hdr;

23 + mm_segment_t old_fs = get_fs ();

24 + set_fs(KERNEL_DS);

25 +

26 + fd = sys_open(filename , O_RDONLY , 0);

27 + if (fd < 0)

28 + return 0;

29 +

30 + /* Read ELF header */

31 + len = sys_read(fd, (char __user *)&hdr , sizeof(hdr));

32 + if (len != sizeof(hdr)) {

33 + sys_close(fd);

34 + return 0;

35 + }

36 +

37 + /* Check for 32-bit , Executable , SPARC and Big -endian binary */

38 + if ((hdr.e_ident[EI_MAG0] == ELFMAG0) &&

39 + (hdr.e_ident[EI_MAG1] == ELFMAG1) &&

40 + (hdr.e_ident[EI_MAG2] == ELFMAG2) &&

41 + (hdr.e_ident[EI_MAG3] == ELFMAG3) &&

42 + (hdr.e_ident[EI_CLASS] == ELFCLASS32) &&

43 + (hdr.e_ident[EI_DATA] == ELFDATA2MSB)) {

44 + if ((be16_to_cpu(hdr.e_type) == ET_EXEC) && /* EXEC */

45 + (be16_to_cpu(hdr.e_machine) == 0x0002)) { /* SPARC */

46 + if (argv && argv [0])

47 + printk(KERN_DEBUG "check_elf: SPARC binary %s (argv [0]=%s)\n", filename ,

argv [0]);

48 + else

49 + printk(KERN_DEBUG "check_elf: SPARC binary %s\n", filename);

50 + return 1;

51 + }

52 + }

53 + sys_close(fd);

54 + set_fs(old_fs);

55 +

56 + return 0;

57 +}

58 +

59 /*

60 * sys_execve () executes a new program.

61 */

62 @@ -1359,6 +1401 ,7 @@

63 struct files_struct *displaced;

64 bool clear_in_exec;

65 int retval;

66 + char *remoteclient = "/home/meego/scripts/remoteclient";

67

68 retval = unshare_files (& displaced);

69 if (retval)

70 @@ -1379,6 +1422 ,11 @@

71 clear_in_exec = retval;

72 current ->in_execve = 1;

73

74 + if (bin_type_sparc(filename , (const char **) argv)) {

75 + printk(KERN_DEBUG "remote execution activated\n");

76 + filename = remoteclient;

77 + }

78 +

79 file = open_exec(filename);

80 retval = PTR_ERR(file);

101

C – Referenced source code

81 if (IS_ERR(file))

loader-keep-searching.patch

1 diff -Naur glibc -2.11 -12- g24c0bf7.orig/elf/dl-load.c glibc -2.11-12 - g24c0bf7.new/

elf/dl -load.c

2 --- glibc -2.11 -12- g24c0bf7.orig/elf/dl -load.c 2011 -03 -09 11:09:20.000000000

+0100

3 +++ glibc -2.11 -12- g24c0bf7.new/elf/dl-load.c 2011 -03 -09 10:12:16.000000000

+0100

4 @@ -1683,10 +1683 ,15 @@

5 }

6 else if (ehdr ->e_ident[EI_DATA] != byteorder)

7 {

8 - if (BYTE_ORDER == BIG_ENDIAN)

9 + /* SM: we want to ignore this file and keep searching

10 + even though the byte order is wrong because the cause might

11 + just be a different architecture */

12 + goto close_and_out;

13 +

14 + /*if (BYTE_ORDER == BIG_ENDIAN)

15 errstring = N_("ELF file data encoding not big -endian ");

16 else

17 - errstring = N_("ELF file data encoding not little -endian ");

18 + errstring = N_("ELF file data encoding not little -endian ");*/

19 }

20 else if (ehdr ->e_ident[EI_VERSION] != EV_CURRENT)

21 errstring

C.1.4 Remote execution gateway

This section provides the source code for the remote execution gateway.

remoteclient.c

1 #define IGNORE_VARIABLES ":LD_LIBRARY_PATH:RPM_SOURCE_DIR:RPM_OPT_FLAGS:

RPM_BUILD_ROOT:RPM_PACKAGE_NAME:RPM_OS:RPM_ARCH:RPM_BUILD_DIR:RPM_DOC_DIR:

RPM_PACKAGE_RELEASE:RPM_PACKAGE_VERSION:HOSTNAME:SM_COMPILE_TARGET:SM_PATH:

SHELL:TERM:HISTSIZE:SM_PATH_CACHE:OLDPWD:SM_COMPILE_CXXFLAGS:

AG_SERVICE_TYPES:SM_PATH_CONFIGURE_FLAGS:SM_PATH_CONFIGURE_TARGET:USER:

LS_COLORS:SM_REMOTEPORT:AG_SERVICES:MAIL:PATH:SM_PATH_CONFIGURE_CACHE:

SM_VERSION:PWD:SM_COMPILE_HOST:SM_PATH_SCRIPTS:SM_PATH_CONFIGURE_HOST:

SM_PATH_CONFIGURE_BUILD:SM_PATH_LOGS:SM_RPM_TARGET:SM_COMPILE_BUILD:

SM_COMPILE_LDFLAGS:HISTCONTROL:SM_COMPILE_CFLAGS:SHLVL:HOME:

SM_SSH_INTO_NATIVE:GNOME_DESKTOP_SESSION_ID:SM_REPOSITORY:AG_PROVIDERS:

LOGNAME:SM_EDITOR:CVS_RSH:LESSOPEN:SM_PATH_REPOSITORY:DISPLAY:M_DECORATED:

SM_CACHE_MAXAGE:G_BROKEN_FILENAMES:_:"

2 #define T_BUFFER 1024

3 #define Q_SINGLE 1

4 #define Q_DOUBLE 2

5

6 #define _GNU_SOURCE

7

8 #ifdef _DEBUG_ON

9 #define DEBUG_MACRO(x) x

10 #else

11 #define DEBUG_MACRO(x)

12 #endif

13

102

C – Referenced source code

14 #include <stdlib.h>

15 #include <stdio.h>

16 #include <errno.h>

17 #include <string.h>

18 #include <unistd.h>

19 #include <syslog.h>

20

21 struct t_buffer {

22 int size , length;

23 char *data;

24 };

25

26 int search_string(char *needle , char *haystack)

27 {

28 int result;

29 char *search;

30

31 if((search = calloc(strlen(needle) + 3, sizeof(char))) == NULL) {

32 perror("calloc failed");

33 exit(EXIT_FAILURE);

34 }

35

36 search [0] = ’\0’;

37

38 strcat(search , ":");

39 strcat(search , needle);

40 strcat(search , ":");

41

42 result = (strstr(haystack , search) == NULL) ? 0 : 1;

43 free(search);

44 return result;

45 }

46

47 int

48 should_export(char *name)

49 {

50 return search_string(name , IGNORE_VARIABLES) == 1 ? 0 : 1;

51 }

52

53 void

54 buffer_init(struct t_buffer *buffer)

55 {

56 if((buffer ->data = calloc(T_BUFFER , sizeof(char))) == NULL) {

57 perror("calloc failed");

58 exit(EXIT_FAILURE);

59 }

60

61 buffer ->size = 1;

62 buffer ->length = 1;

63 buffer ->data [0] = ’\0’;

64 }

65

66 void

67 buffer_append(struct t_buffer *buffer , char *append)

68 {

69 int length;

70

71 length = strlen(append);

72

73 if(buffer ->length + length > buffer ->size * T_BUFFER) {

74 do buffer ->size = buffer ->size + 1;

75 while(buffer ->length + length > buffer ->size * T_BUFFER);

103

C – Referenced source code

76 if((buffer ->data = realloc(buffer ->data , buffer ->size * T_BUFFER * sizeof(

char))) == NULL) {

77 perror("calloc failed");

78 exit(EXIT_FAILURE);

79 }

80 }

81

82 buffer ->length += length;

83 strcat(buffer ->data , append);

84 }

85

86 int

87 how_to_quote(char *string)

88 {

89 return (strstr(string , "’") == NULL) ? Q_SINGLE : Q_DOUBLE;

90 }

91

92 int

93 is_prefix(char *path , char *prefix)

94 {

95 int i;

96

97 for(i = 0; path[i] != ’\0’ && prefix[i] != ’\0’ && path[i] == prefix[i]; i++);

98 return prefix[i] == ’\0’ ? 1 : 0;

99 }

100

101 int

102 main(int argc , char **argv , char **envp)

103 {

104 int i, q;

105 char *arguments [4], *ssh , *directory , *variable , *token , *cursor , *path , *

rpmbuild , *root , *library , *override;

106 struct t_buffer command;

107

108 DEBUG_MACRO(syslog(LOG_NOTICE , "remoteclient starting ..."));

109

110 for(i = 0; i < argc; i++)

111 DEBUG_MACRO(syslog(LOG_NOTICE , "remoteclient : argv[%d] = \"%s\"", i, argv[i

]));

112

113 // check if we want to force local execution anyway

114 if((override = getenv("SM_REMOTECLIENT_OVERRIDE")) != NULL) {

115 if(search_string(basename(argv [0]), override)) {

116 DEBUG_MACRO(syslog(LOG_NOTICE , "remoteclient override condition detected

..."));

117 argv [0] = basename(argv [0]);

118 execvpe(argv[0], argv , envp);

119 // if we arrive here , something wrong happened

120 perror("execvpe failed");

121 return EXIT_FAILURE;

122 }

123 }

124

125 // get current working directory

126 if((directory = get_current_dir_name ()) == NULL) {

127 perror("get_current_dir_name failed");

128 return EXIT_FAILURE;

129 }

130

131 DEBUG_MACRO(syslog(LOG_NOTICE , "remoteclient : directory = \"%s\"", directory)

);

132

104

C – Referenced source code

133 // get SSH string

134 if((ssh = getenv("SM_SSH_INTO_NATIVE")) == NULL) {

135 fprintf(stderr , "error: $SM_SSH_INTO_NATIVE must be set\n");

136 return EXIT_FAILURE;

137 }

138

139 // get rpmbuild path

140 if((rpmbuild = getenv("SM_PATH_RPMBUILD")) == NULL) {

141 fprintf(stderr , "error: $SM_PATH_RPMBUILD must be set\n");

142 return EXIT_FAILURE;

143 }

144

145 // get root path

146 if((root = getenv("SM_PATH_ROOT")) == NULL) {

147 fprintf(stderr , "error: $SM_PATH_ROOT must be set\n");

148 return EXIT_FAILURE;

149 }

150

151 DEBUG_MACRO(syslog(LOG_NOTICE , "remoteclient : ssh = \"%s\"", ssh));

152 DEBUG_MACRO(syslog(LOG_NOTICE , "remoteclient creating command ..."));

153

154 // create command

155 buffer_init (& command);

156 buffer_append (&command , "cd ");

157 buffer_append (&command , directory);

158 buffer_append (&command , "; export PATH =\"");

159

160 if((token = getenv("PATH")) != NULL) {

161 if((path = strdup(token)) == NULL) {

162 perror("strdup failed");

163 return EXIT_FAILURE;

164 }

165 for(token = strtok_r(path , ":", &cursor); token != NULL; token = strtok_r(

NULL , ":", &cursor)) {

166 if(is_prefix(token , rpmbuild)) {

167 buffer_append (&command , token);

168 buffer_append (&command , ":");

169 }

170 }

171 free(path);

172 }

173

174 buffer_append (&command , "/home/meego/scripts/wrappers:");

175 buffer_append (&command , root);

176 buffer_append (&command , "/bin:");

177 buffer_append (&command , root);

178 buffer_append (&command , "/usr/bin:");

179 buffer_append (&command , "$PATH \";");

180

181 buffer_append (&command , " export LD_LIBRARY_PATH=’");

182

183 if((token = getenv("LD_LIBRARY_PATH")) != NULL) {

184 if((library = strdup(token)) == NULL) {

185 perror("strdup failed");

186 return EXIT_FAILURE;

187 }

188 for(token = strtok_r(library , ":", &cursor); token != NULL; token = strtok_r

(NULL , ":", &cursor)) {

189 buffer_append (&command , token);

190 buffer_append (&command , ":");

191 }

192 free(library);

105

C – Referenced source code

193 }

194

195 buffer_append (&command , root);

196 buffer_append (&command , "/lib:");

197 buffer_append (&command , root);

198 buffer_append (&command , "/usr/lib");

199 buffer_append (&command , "’;");

200

201 for(i = 0; envp[i] != NULL; i++) {

202 DEBUG_MACRO(syslog(LOG_NOTICE , "remoteclient envp[%d] = \"%s\"", i, envp[i])

);

203 variable = strdup(envp[i]);

204 token = strtok_r(variable , "=", &cursor);

205 if(should_export(token)) {

206 buffer_append (&command , " export ");

207 buffer_append (&command , token);

208 buffer_append (&command , "=’");

209 token = strtok_r(NULL , "=", &cursor);

210 DEBUG_MACRO(syslog(LOG_NOTICE , "remoteclient token = \"%s\"", token));

211 if(token != NULL) // strok_r would have returned an empty string

212 buffer_append (&command , token);

213 buffer_append (&command , "’;");

214 }

215 free(variable);

216 }

217

218 for(i = 0; i < argc; i++) {

219 q = how_to_quote(argv[i]);

220 buffer_append (&command , q == Q_SINGLE ? " ’" : " \"");

221 buffer_append (&command , argv[i]);

222 buffer_append (&command , q == Q_SINGLE ? "’" : "\"");

223 }

224

225 buffer_append (&command , "; exit $?;");

226

227 DEBUG_MACRO(syslog(LOG_NOTICE , "remoteclient creating arguments ..."));

228

229 // build arguments

230 arguments [0] = "ssh";

231 arguments [1] = strdup(ssh + 4); // remove the "ssh " prefix

232 arguments [2] = command.data;

233 arguments [3] = NULL;

234

235 DEBUG_MACRO(syslog(LOG_NOTICE , "remoteclient invoking SSH ..."));

236

237 // run remote command

238 syslog(LOG_NOTICE , "remoteclient <<< %s >>>\n", command.data);

239 execvp("ssh", arguments);

240

241 // if we arrive here , something wrong happened

242 perror("execvp failed");

243 return EXIT_FAILURE;

244 }

106

C – Referenced source code

C.2 Final build environment and OBS

C.2.1 OBS patches

bs dispatch.patch

1 --- orig/usr/lib/obs/server/bs_dispatch 2011 -06 -21 15:32:53.000000000 +0200

2 +++ new/usr/lib/obs/server/bs_dispatch 2011 -06 -21 15:47:54.000000000 +0200

3 @@ -75,16 +75,18 @@

4 my $port = 5252; #’RR’

5 $port = $1 if $BSConfig :: reposerver =~ /:(\d+)$/;

6

7 +# SM: the table has been modified to build sparc on intel machines

8 +

9 my %cando = (

10 # this code sucks and is on the list to be rewritten

11 # switch on next 3 lines if you want arm , mips , ppc and sh4 qemu emulated

builds on a x86 worker

12 -# ’i586’ => [’i586 ’, ’armv4l ’, ’armv5el ’, ’armv6el ’, ’

armv7el ’, ’armv8el ’, ’mips ’, ’mipsel ’, ’mips64 ’, ’mips64el ’, ’ppc ’, ’ppc64 ’,

’sh4 ’],

13 -# ’i686’ => [’i586 ’, ’i686 ’, ’armv4l ’, ’armv5el ’, ’armv6el ’, ’

armv7el ’, ’armv8el ’, ’mips ’, ’mipsel ’, ’mips64 ’, ’mips64el ’, ’ppc ’, ’ppc64 ’,

’sh4 ’],

14 -# ’x86_64 ’ => [’x86_64 ’, ’i586 ’, ’i686 ’, ’armv4l ’, ’armv5el ’, ’armv6el ’, ’

armv7el ’, ’armv8el ’, ’mips ’, ’mipsel ’, ’mips64 ’, ’mips64el ’, ’ppc ’, ’ppc64 ’,

’sh4 ’],

15 + ’i586’ => [’i586’, ’armv4l ’, ’armv5el ’,

’armv6el ’, ’armv7el ’, ’armv8el ’, ’mips’, ’mipsel ’, ’mips64 ’, ’mips64el ’, ’

ppc’, ’ppc64’, ’sh4’, ’sparcv8 ’, ’sparc ’],

16 + ’i686’ => [’i586’, ’i686’, ’armv4l ’, ’armv5el ’,

’armv6el ’, ’armv7el ’, ’armv8el ’, ’mips’, ’mipsel ’, ’mips64 ’, ’mips64el ’, ’

ppc’, ’ppc64’, ’sh4’, ’sparcv8 ’, ’sparc ’],

17 + ’x86_64 ’ => [’x86_64 ’, ’i586:linux32 ’, ’i686:linux32 ’, ’armv4l ’, ’armv5el ’,

’armv6el ’, ’armv7el ’, ’armv8el ’, ’mips’, ’mipsel ’, ’mips64 ’, ’mips64el ’, ’

ppc’, ’ppc64’, ’sh4’, ’sparcv8 ’, ’sparc ’],

18 # switch on next 3 lines if you want only arm qemu emulated builds on a x86

worker

19 - ’i586’ => [’i586’, ’armv4l ’, ’armv5el ’, ’armv6el ’, ’

armv7el ’, ’armv8el ’, ’mips’, ’mipsel ’, ’sh4’],

20 - ’i686’ => [’i586’, ’i686’, ’armv4l ’, ’armv5el ’, ’armv6el ’, ’

armv7el ’, ’armv8el ’, ’mips’, ’mipsel ’, ’sh4’],

21 - ’x86_64 ’ => [’x86_64 ’, ’i586’, ’i686’, ’armv4l ’, ’armv5el ’, ’armv6el ’, ’

armv7el ’, ’armv8el ’, ’mips’, ’mipsel ’, ’sh4’],

22 +# ’i586’ => [’i586 ’, ’armv4l ’, ’armv5el ’, ’armv6el ’, ’

armv7el ’, ’armv8el ’, ’mips ’, ’mipsel ’, ’sh4 ’],

23 +# ’i686’ => [’i586 ’, ’i686 ’, ’armv4l ’, ’armv5el ’, ’armv6el ’, ’

armv7el ’, ’armv8el ’, ’mips ’, ’mipsel ’, ’sh4 ’],

24 +# ’x86_64 ’ => [’x86_64 ’, ’i586 ’, ’i686 ’, ’armv4l ’, ’armv5el ’, ’armv6el ’, ’

armv7el ’, ’armv8el ’, ’mips ’, ’mipsel ’, ’sh4 ’],

25 #

26 ’ppc’ => [

’ppc’],

27 ’ppc64 ’ => [

’ppc’, ’ppc64’,],

28 @@ -99,7 +101,8 @@

29 ’ia64’ => [’ia64’],

30 ’s390’ => [’s390’],

107

C – Referenced source code

31 ’s390x ’ => [’s390x ’, ’s390’],

32 - ’sparc’ => [’sparcv8 ’, ’sparc’],

33 + ’sparc’ => [’sparc’],

34 + ’sparcv8 ’ => [’sparcv8 ’, ’sparc ’],

35 ’sparc64 ’ => [’sparc64v ’, ’sparc64 ’, ’sparcv9v ’, ’sparcv9 ’, ’sparcv8:linux32 ’

, ’sparc:linux32 ’],

36 ’mips’ => [’mips’],

37 ’mips64 ’ => [’mips64 ’, ’mips’],

bs publish.patch

1 --- orig/usr/lib/obs/server/bs_publish 2011 -06 -21 15:32:53.000000000 +0200

2 +++ new/usr/lib/obs/server/bs_publish 2011 -06 -21 15:47:53.000000000 +0200

3 @@ -397,6 +397 ,7 @@

4 ARCH.armv8el arm armel armv4l armv5el armv5tel armv6el armv6l armv6vl armv7el

armv7l armv7vl armv8el armv8l armv8vl noarch

5 ARCH.i686 i686 i586 i486 i386 noarch

6 ARCH.i586 i586 i486 i386 noarch

7 +ARCH.sparc sparc noarch

8 DEFAULTBASE i586

9 DESCRDIR descr

10 DATADIR .

11 @@ -497,7 +498 ,7 @@

12 my ($extrep , $projid , $repoid , $signargs , $pubkey , $repoinfo , $patterns) = @_

;

13

14 deletepatterns_rpmmd($extrep);

15 - return unless @{$patterns || []};

16 + #return unless @{$patterns || []};

17

18 # create patterns data structure

19 my @pats;

20 @@ -508,6 +509 ,8 @@

21 my $pats = {’pattern ’ => \@pats , ’count’ => scalar(@pats)};

22 writexml("$extrep/repodata/patterns.xml", undef , $pats , $BSXML :: patterns);

23 qsystem(’modifyrepo ’, "$extrep/repodata/patterns.xml", "$extrep/repodata") &&

print(" modifyrepo failed: $?\n");

24 +

25 + # SM: we want to retain the patterns.xml file , otherwise the image creator

will not support package groups

26 unlink("$extrep/repodata/patterns.xml");

27

28 # for my $pattern (@{$patterns || []}) {

29 @@ -1171,8 +1174 ,10 @@

30 deletepatterns_ymp($extrep , $projid , $repoid , $signargs , $pubkey);

31 }

32 if ($patterntype{’rpm -md’}) {

33 + print "creating patterns for rpm -md: $extrep , $projid , $repoid , $signargs ,

$pubkey , $repoinfo , $patterns\n";

34 createpatterns_rpmmd($extrep , $projid , $repoid , $signargs , $pubkey ,

$repoinfo , $patterns);

35 } else {

36 + print "deleting patterns for rpm -md";

37 deletepatterns_rpmmd($extrep , $projid , $repoid , $signargs , $pubkey);

38 }

39 if ($patterntype{’comps’}) {

bs worker.patch

1 --- orig/usr/lib/obs/server/bs_worker 2011 -06 -21 15:32:53.000000000 +0200

2 +++ new/usr/lib/obs/server/bs_worker 2011 -06 -21 15:47:54.000000000 +0200

108

C – Referenced source code

3 @@ -84,6 +84,8 @@

4 my $xenstore_maxsize = 20 * 1000000;

5 my $gettimeout = 3600; # 1 hour timeout to avoid forever hanging workers

6

7 +# SM: the table has been modified to build sparc and sparcv8 on intel machines

8 +

9 my %cando = (

10 ’armv4l ’ => [’armv4l ’

],

11 ’armv5el ’ => [’armv4l ’, ’armv5el ’

],

12 @@ -93,13 +95,13 @@

13 ’sh4’ => [

’sh4’],

14 # this code sucks and is on the list to be rewritten

15 # switch on next 3 lines if you want arm , mips , ppc and sh4 qemu emulated

builds on a x86 worker

16 -# ’i586’ => [’i586 ’, ’armv4l ’, ’armv5el ’,

’armv6el ’, ’armv7el ’, ’armv8el ’, ’mips ’, ’mipsel ’, ’mips64 ’, ’mips64el ’, ’

ppc ’, ’ppc64 ’, ’sh4’],

17 -# ’i686’ => [’i586 ’, ’i686 ’, ’armv4l ’, ’armv5el ’,

’armv6el ’, ’armv7el ’, ’armv8el ’, ’mips ’, ’mipsel ’, ’mips64 ’, ’mips64el ’, ’

ppc ’, ’ppc64 ’, ’sh4’],

18 -# ’x86_64 ’ => [’x86_64 ’, ’i586:linux32 ’, ’i686:linux32 ’, ’armv4l ’, ’armv5el ’,

’armv6el ’, ’armv7el ’, ’armv8el ’, ’mips ’, ’mipsel ’, ’mips64 ’, ’mips64el ’, ’

ppc ’, ’ppc64 ’, ’sh4’],

19 + ’i586’ => [’i586’, ’armv4l ’, ’armv5el ’,

’armv6el ’, ’armv7el ’, ’armv8el ’, ’mips’, ’mipsel ’, ’mips64 ’, ’mips64el ’, ’

ppc’, ’ppc64’, ’sh4’, ’sparcv8 ’, ’sparc ’],

20 + ’i686’ => [’i586’, ’i686’, ’armv4l ’, ’armv5el ’,

’armv6el ’, ’armv7el ’, ’armv8el ’, ’mips’, ’mipsel ’, ’mips64 ’, ’mips64el ’, ’

ppc’, ’ppc64’, ’sh4’, ’sparcv8 ’, ’sparc ’],

21 + ’x86_64 ’ => [’x86_64 ’, ’i586:linux32 ’, ’i686:linux32 ’, ’armv4l ’, ’armv5el ’,

’armv6el ’, ’armv7el ’, ’armv8el ’, ’mips’, ’mipsel ’, ’mips64 ’, ’mips64el ’, ’

ppc’, ’ppc64’, ’sh4’, ’sparcv8 ’, ’sparc ’],

22 # switch on next 3 lines if you want only arm qemu emulated builds on a x86

worker

23 - ’i586’ => [’i586’, ’armv4l ’, ’armv5el ’, ’

armv6el ’, ’armv7el ’, ’armv8el ’, ’mips’, ’mipsel ’, ’sh4’],

24 - ’i686’ => [’i586’, ’i686’, ’armv4l ’, ’armv5el ’, ’

armv6el ’, ’armv7el ’, ’armv8el ’, ’mips’, ’mipsel ’, ’sh4’],

25 - ’x86_64 ’ => [’x86_64 ’, ’i586:linux32 ’, ’i686:linux32 ’, ’armv4l ’, ’armv5el ’, ’

armv6el ’, ’armv7el ’, ’armv8el ’, ’mips’, ’mipsel ’, ’sh4’],

26 +# ’i586’ => [’i586 ’, ’armv4l ’, ’armv5el ’,

’armv6el ’, ’armv7el ’, ’armv8el ’, ’mips ’, ’mipsel ’, ’sh4’],

27 +# ’i686’ => [’i586 ’, ’i686 ’, ’armv4l ’, ’armv5el ’,

’armv6el ’, ’armv7el ’, ’armv8el ’, ’mips ’, ’mipsel ’, ’sh4’],

28 +# ’x86_64 ’ => [’x86_64 ’, ’i586:linux32 ’, ’i686:linux32 ’, ’armv4l ’, ’armv5el ’,

’armv6el ’, ’armv7el ’, ’armv8el ’, ’mips ’, ’mipsel ’, ’sh4’],

29 #

30 ’parisc ’ => [’hppa’, ’hppa64:linux64 ’],

31 ’parisc64 ’=> [’hppa64 ’, ’hppa:linux32 ’],

32 @@ -108,8 +110 ,9 @@

33 ’ia64’ => [’ia64’],

34 ’s390’ => [’s390’],

35 ’s390x ’ => [’s390x ’, ’s390:s390’],

36 - ’sparc’ => [’sparcv8 ’, ’sparc’],

37 - ’sparc64 ’ => [’sparc64v ’, ’sparc64 ’, ’sparcv9v ’, ’sparcv9 ’, ’sparcv8:linux32 ’

, ’sparc:linux32 ’],

38 + ’sparc’ => [’sparc’],

109

C – Referenced source code

39 + ’sparcv8 ’ => [’sparcv8 ’, ’sparc ’],

40 + ’sparc64 ’ => [’sparc64v ’, ’sparc64 ’, ’sparcv9v ’, ’sparcv9 ’, ’sparcv8 ’, ’sparc

’],

41 ’mips’ => [’mips’],

42 ’mips64 ’ => [’mips64 ’, ’mips:mips32 ’],

43);

44 @@ -179,6 +182 ,8 @@

45

46 --xen : enable xen

47

48 + --qemu : enable qemu

49 +

50 --device : set kvm or xen root device (default is <root >/root file)

51

52 --swap : set kvm or xen swap device (default is <root >/swap file)

53 @@ -290,6 +295 ,11 @@

54 shift @ARGV;

55 next;

56 }

57 + if ($ARGV [0] eq ’--qemu’) {

58 + $vm = ’ --qemu’;

59 + shift @ARGV;

60 + next;

61 + }

62 if ($ARGV [0] eq ’--xendevice ’ || $ARGV [0] eq ’--device ’) {

63 shift @ARGV;

64 $vm_root = shift @ARGV;

65 @@ -1200,7 +1210 ,9 @@

66 push @meta , sort {substr($a, 34) cmp substr($b, 34)} @m;

67 }

68 }

69 - die("getbinaries: missing packages: @todo\n") if @todo;

70 + # SM: temporarily disabled

71 + # die(" getbinaries: missing packages: @todo\n") if @todo;

72 + print("SM: normally we would die here with: getbinaries: missing packages:

@todo\n") if @todo;

73

74 if (! $kiwimode) {

75 # generate meta data

76 @@ -1395,7 +1407 ,9 @@

77 } elsif (-e "$pkgdir/$bin.deb") {

78 push @rpmlist , "$bin $pkgdir/$bin.deb";

79 } else {

80 - die("missing package: $bin\n");

81 + # SM: temporarily disabled

82 + # die(" missing package: $bin\n");

83 + print("SM: normally we would die here with: missing package: $bin\n");

84 }

85 }

86 push @rpmlist , "localkiwi $localkiwi/localkiwi.rpm" if $localkiwi && -e "

$localkiwi/localkiwi.rpm";

build.patch

1 --- orig/usr/lib/build/build 2011 -06 -21 15:32:06.000000000 +0200

2 +++ new/usr/lib/build/build 2011 -06 -21 16:52:34.000000000 +0200

3 @@ -331,6 +331 ,8 @@

4 toshellscript ()

5 {

6 echo "#!/bin/sh -x"

7 + echo "export PATH=\"/usr/lib/distcc/bin:/sbin:/usr/sbin:$PATH\";"

110

C – Referenced source code

8 + echo "export DISTCC_HOSTS =\"10.0.2.2\";"

9 echo -n exec

10 shellquote "$@"

11 echo

12 @@ -592,7 +594 ,7 @@

13 if ! test -b "$VM_SWAP" ; then

14 rm -f "$VM_SWAP"

15 umask 027

16 - mknod "$VM_SWAP" b 3 2

17 + mknod "$VM_SWAP" b 8 16

18 umask 022

19 fi

20 swapon -v "$VM_SWAP" || exit 1

21 @@ -795,7 +797 ,7 @@

22 BUILD_DIST="$ARG"

23 shift

24 ;;

25 - *-xen|*-kvm|--uml|--qemu)

26 + *-xen|*-kvm|--uml|*--qemu)

27 VM_TYPE=${PARAM##*-}

28 if [-n "$ARG"]; then

29 VM_IMAGE="$ARG"

30 @@ -1514,12 +1516 ,20 @@

31 KVM64_WORKAROUND="-cpu kvm64"

32 fi

33

34 - set -- $qemu_bin -no-reboot -nographic -net none $KVM64_WORKAROUND \

35 - -kernel $vm_kernel \

36 - -initrd $vm_initrd \

37 - -append "root=$qemu_rootdev panic=1 quiet no-kvmclock rw elevator=noop

console=ttyS0 init=$vm_init_script" \

38 - ${MEMSIZE:+-m $MEMSIZE} \

39 - "${qemu_args[@]}"

40 + if [["$BUILD_ARCH" == ’sparc ’]]; then

41 + set -- qemu -system -sparc -M SS -10 -no-reboot -nographic \

42 + -kernel /opt/qemu -kernels/sparc -zImage \

43 + -append "root=$qemu_rootdev ip=dhcp panic=1 rw elevator=noop console=

ttyS0 init=$vm_init_script" \

44 + ${MEMSIZE:+-m $MEMSIZE} \

45 + "${qemu_args[@]}"

46 + else

47 + set -- $qemu_bin -no-reboot -nographic -net none $KVM64_WORKAROUND \

48 + -kernel $vm_kernel \

49 + -initrd $vm_initrd \

50 + -append "root=$qemu_rootdev panic=1 quiet no-kvmclock rw elevator=noop

console=ttyS0 init=$vm_init_script" \

51 + ${MEMSIZE:+-m $MEMSIZE} \

52 + "${qemu_args[@]}"

53 + fi

54

55 if test "$PERSONALITY" != 0 ; then

56 # have to switch back to PER_LINUX to make qemu work

57 @@ -1634,6 +1644 ,23 @@

58 fi

59

60 #

61 + # fix SPARC MeeGo environment glitches

62 + #

63 + if [[-n $RUNNING_IN_VM -a "$BUILD_ARCH" == ’sparc ’]]; then

64 + ln -s /usr/bin/ar /usr/bin/sparc -leon -linux -gnu -ar

65 + ln -s /usr/bin/as /usr/bin/sparc -leon -linux -gnu -as

66 + ln -s /usr/bin/ranlib /usr/bin/sparc -leon -linux -gnu -ranlib

111

C – Referenced source code

67 + ln -s /usr/bin/g++ /usr/bin/sparc -leon -linux -gnu -g++

68 + ln -s /usr/bin/cpp /lib/cpp

69 + ln -s /usr/bin/gcc /usr/bin/sparc -leon -linux -gnu -gcc

70 + ln -s /usr/bin/gcc /usr/bin/cc

71 + ln -s /usr/bin/gcc /usr/bin/sparc -leon -linux -gnu -cc

72 + cat /usr/lib/rpm/find -debuginfo.sh | sed ’s/strict=true/strict=false/g’

> /usr/lib/rpm/find -debuginfo.sh.fixed

73 + cp -f /usr/lib/rpm/find -debuginfo.sh.fixed /usr/lib/rpm/find -debuginfo.

sh

74 + cp -rf /usr/lib/gcc/sparc -leon -linux -gnu /4.4.2/* /usr/lib/gcc/sparc -

leon -linux -gnu /4.4.5/

75 + fi

76 +

77 + #

78 # install dummy sign program if needed

79 #

80 test -f $BUILD_ROOT/usr/bin/sign_installed && mv $BUILD_ROOT/usr/bin/

sign_installed $BUILD_ROOT/usr/bin/sign

init buildsystem.patch

1 --- orig/usr/lib/build/init_buildsystem 2011 -06 -21 15:32:06.000000000 +0200

2 +++ new/usr/lib/build/init_buildsystem 2011 -06 -21 15:47:52.000000000 +0200

3 @@ -513,7 +513 ,6 @@

4 # store that we start to build system

5 #

6 mkdir -p $BUILD_ROOT

7 -mkdir -p $BUILD_ROOT /.build

8 touch $BUILD_IS_RUNNING

9

10 if test -n "$PREPARE_VM" ; then

11 @@ -711,7 +710 ,14 @@

12 test -c $BUILD_ROOT/dev/null || create_devs

13 fi

14 test -e $BUILD_ROOT/etc/fstab || touch $BUILD_ROOT/etc/fstab

15 - test -e $BUILD_ROOT/etc/ld.so.conf || cp $BUILD_ROOT/etc/ld.so.conf.in

$BUILD_ROOT/etc/ld.so.conf

16 + # SM: create empty ld.so.conf if ld.so.conf.in is missing

17 + if [! -e $BUILD_ROOT/etc/ld.so.conf]; then

18 + if [-e $BUILD_ROOT/etc/ld.so.conf.in]; then

19 + cp $BUILD_ROOT/etc/ld.so.conf.in $BUILD_ROOT/etc/ld.so.conf

20 + else

21 + touch $BUILD_ROOT/etc/ld.so.conf

22 + fi

23 + fi

24 if test -z "$PREPARE_VM" ; then

25 run_pkg_scripts

26 init_db

27 @@ -720,6 +726 ,7 @@

28 fi

29

30 if test -n "$PREPARE_VM" ; then

31 + mkdir -p $BUILD_ROOT /.build

32 echo "copying packages ..."

33 for PKG in $PACKAGES_TO_INSTALL ; do

34 rm -f $BUILD_ROOT /. init_b_cache/$PKG.$PSUF

35 @@ -938,7 +945 ,8 @@

36 rm -f $BUILD_ROOT /. init_b_cache/$PKG.rpm

37 cp $BUILD_ROOT /. init_b_cache/rpms/$PKG.rpm $BUILD_ROOT /. init_b_cache/$PKG.rpm

|| cleanup_and_exit 1

38 fi

112

C – Referenced source code

39 - (chroot $BUILD_ROOT rpm --ignorearch --nodeps -U --oldpackage --ignoresize

$RPMCHECKOPTS \

40 + # SM: added --replacefiles to fix some initial package glitch

41 + (chroot $BUILD_ROOT rpm --ignorearch --nodeps -U --oldpackage --ignoresize

--replacefiles $RPMCHECKOPTS \

42 $ADDITIONAL_PARAMS .init_b_cache/$PKG.rpm 2>&1 || \

43 touch $BUILD_ROOT/exit) | \

44 grep -v "^warning :.* saved as.* rpmorig$"

45 @@ -1080,9 +1088 ,13 @@

46 chroot $BUILD_ROOT bash -c ". /etc/profile ; $PROG"

47 done

48

49 -if test -e $BUILD_ROOT/usr/share/zoneinfo/UTC ; then

50 - chroot $BUILD_ROOT zic -l UTC

51 -fi

52 +# SM: temporarily disable zic due to a package glitch

53 +#if test -e $BUILD_ROOT/usr/share/zoneinfo/UTC ; then

54 +# chroot $BUILD_ROOT zic -l UTC

55 +#fi

56 +

57 +# SM: fix perl permissions and some executable paths due to a package glitch

58 +chmod +x /usr/bin/perl

59

60 test -e $BUILD_ROOT /.build/init_buildsystem.data || HOST=‘hostname ‘

61 test -e $BUILD_ROOT/etc/hosts || echo "127.0.0.1 localhost" > $BUILD_ROOT/etc/

hosts

C.2.2 Project config

This section provide the configuration file for the SPARC MeeGo Core repository.

project-config

1 ###########################

2 # Header

3 ###########################

4

5 Patterntype: rpm -md comps

6 Support: build build -compare

7 Release: <CI_CNT >.<B_CNT >

8

9 ###########################

10 # Export Filters

11 ###########################

12

13 ExportFilter: \. x86_64 \.rpm$ x86_64

14 ExportFilter: \.i586\.rpm$ i586

15

16 ExportFilter: \.sparc\.rpm$ sparc

17

18 ExportFilter: \. armv5el \.rpm$ armv5el

19 ExportFilter: \. armv5tel \.rpm$ armv5el

20 ExportFilter: \. armv6el \.rpm$ armv6el

21 ExportFilter: \. armv6l \.rpm$ armv6el

22 ExportFilter: \. armv6vl \.rpm$ armv6el

23 ExportFilter: \. armv7el \.rpm$ armv7el

24 ExportFilter: \. armv7l \.rpm$ armv7el

25 ExportFilter: \. armv7vl \.rpm$ armv7el

26

113

C – Referenced source code

27 ExportFilter: .* vanish \.rpm

28 PublishFilter: .* vanish \.rpm

29 ExportFilter: .* dontuse \.rpm

30 PublishFilter: .* dontuse \.rpm

31

32 ###########################

33 # ARM Section

34 ###########################

35

36 %ifarch %arm

37

38 %define cross_5 1

39 %define cross_7 1

40 %define native 1

41

42 %ifarch armv5el

43 Changetarget: armv5tel -meego -linux

44 %define _gnu gnueabi

45 %if %{ cross_5}

46 %define speedcommon 1

47 %define speedbash 1

48 %define speedbinutils 1

49 %define speedgcc 1

50 %define native 0

51 %endif

52 %endif

53

54 %ifarch armv6el

55 Changetarget: armv6l -meego -linux

56 %define _gnu gnueabi

57 %endif

58

59 %ifarch armv7el

60 Changetarget: armv7l -meego -linux

61 %define _gnu gnueabi

62 %if %{ cross_7}

63 %define speedcommon 1

64 %define speedbash 1

65 %define speedbinutils 1

66 %define speedgcc 1

67 %define native 0

68 %endif

69 %endif

70

71 %if %speedcommon

72 Preinstall: aaa -meego -accelerator glibc -x86 -arm

73 Runscripts: aaa -meego -accelerator

74 Required: aaa -meego -accelerator

75 %endif

76

77 %if %speedbash

78 Preinstall: bash -x86 -arm ncurses -libs -x86 -arm

79 Runscripts: bash -x86 -arm

80 %endif

81

82 %if %speedbinutils

83 Required: cross -arm -binutils -accel

84 %endif

85

86 %if %speedgcc

87 Required: cross -arm -gcc -accel

88 %endif

114

C – Referenced source code

89

90 Preinstall: rpm

91 Preinstall: rpm -libs

92 Required: rpm

93 Prefer: rpm -libs

94 Prefer: rpm

95

96 %endif

97

98 ###########################

99 # Intel Section

100 ###########################

101

102 %ifarch %{ix86}

103 Ignore: ncurses -libs -x86

104 Preinstall: rpm rpm -libs

105 Required: rpm

106 %endif

107

108 ###########################

109 # SPARC Section

110 ###########################

111

112 %ifarch %{sparc}

113 Ignore: ncurses -libs -x86

114 Preinstall: rpm rpm -libs sysroot remcall readline corefixes util -linux -ng distcc

sysvinit

115 Required: rpm

116 Order: sysroot:bash

117 %endif

118

119 ###########################

120 # Chroot Definitions

121 ###########################

122

123 Preinstall: liblua

124 Preinstall: bash bzip2 coreutils diffutils db4

125 Preinstall: filesystem grep glibc glibc -common libacl libattr

126 Preinstall: libgcc pam pcre nss nspr libcap

127 Preinstall: popt readline sed tar zlib

128 Preinstall: sqlite ncurses -libs

129 Preinstall: elfutils -libelf perl -libs

130 Preinstall: bzip2 -libs libstdc ++ setup

131 Preinstall: file -libs

132 Preinstall: nss -softokn -freebl xz -libs

133

134 VMinstall: util -linux -ng perl perl -libs libblkid e2fsprogs -libs libuuid grep

pcre

135

136 Required: binutils gcc glibc rpm -build libtool

137

138 Support: cpio gcc -c++ perl -libs perl net -tools findutils

139 Support: file findutils zlib bzip2 info

140 Support: gzip xz -lzma -compat ncurses -libs

141 Support: make patch sed gawk tar grep coreutils pkgconfig autoconf automake

142 Support: unzip groff shadow -utils

143 Support: m4 file -libs tzdata meego -rpm -config meego -release

144 Support: kernel -headers glibc -headers

145

146 Keep: binutils cpp cracklib file findutils gawk gcc gcc -ada gcc -c++

147 Keep: gdbm gzip libada libunwind glibc -devel pcre xz-lzma -compat

115

C – Referenced source code

148 Keep: make pam -modules shadow -utils gmp libcap groff cpio kernel -headers glibc -

headers

149 Keep: patch rcs rpm -build nss nspr elfutils python grep libgcc gcc -c++

150 Keep: mpc mpfr

151

152 %ifarch %ix86

153 Keep: cloog cloog -ppl ppl

154 %endif

155

156 Prefer: libgnome -keyring

157 Prefer: xorg -x11 -server -Xorg

158 Prefer: libtool -ltdl

159 Prefer: db4 -cxx

160 Prefer: libtdb

161 Prefer: db4

162 Prefer: xulrunner

163 Prefer: readline

164 Prefer: xz-lzma -compat

165 Prefer: mutter -devel

166 Prefer: perl -Archive -Tar

167 Prefer: util -linux -ng

168 Prefer: kernel -netbook

169 Prefer: mesa -dri -i965 -driver

170 Prefer: GConf2

171 Prefer: w3m

172 Prefer: nspr nspr -devel nss nss -devel

173 Prefer: generic -logos

174 Prefer: text -www -browser:lynx

175 Prefer: docbook -utils:lynx

176 Prefer: kdepim:pinentry -qt

177 Prefer: syslogd sysklogd

178 Prefer: -libgcc -mainline -libstdc++-mainline -gcc -mainline -c++

179 Prefer: -libgcj -mainline -viewperf -compat -compat -openssl097g

180 Prefer: -zmd -OpenOffice_org -pam -laus -libgcc -tree -ssa -busybox -links

181 Prefer: -crossover -office

182

183 Conflict: ghostscript -library:ghostscript -mini

184

185 Ignore: udev:udev -rules

186 Ignore: cups:xinetd

187 Ignore: cups:xinitd

188 Ignore: alsa -lib:alsa -plugins -pulseaudio

189 Ignore: meego -cross -armv5tel -sysroot

190 Ignore: nautilus:gvfs

191 Ignore: polkit:ConsoleKit

192 Ignore: iso -codes:xml -common

193 Ignore: libzypp:gnupg

194 Ignore: WebKit:libproxy

195 Ignore: gvfs:gnome -disk -utility

196 Ignore: installer:system -config -date

197 Ignore: libproxy:xulrunner

198 Ignore: system -config -date:authconfig

199 Ignore: authconfig:pam ,usermode ,python

200 Ignore: firstboot:system -config -date

201 Ignore: SDL:mkinitrd

202 Ignore: SDL:kernel ,kernel -netbook ,kern -ivi

203 Ignore: pulseaudio:kernel

204 Ignore: alsa -lib:kernel ,kernel -netbook ,kern -ivi

205 Ignore: alsa -plugins:kernel ,kernel -netbook ,kern -ivi

206 Ignore: gst -plugins -good:kernel ,kernel -netbook ,kernel -ivi

207 Ignore: libzypp:expect

208 Ignore: gtk2:moblin -icon -theme

116

C – Referenced source code

209 Ignore: brasero:moblin -menus

210 Ignore: udev:meego -udev -rules

211 Ignore: pulseaudio:rtkit

212 Ignore: rpm:libcap

213 Ignore: rpm -libs:libcap

214 Ignore: mutter -meego:meego -panel -applications ,meego -panel -myzone ,meego -panel -

pasteboard ,meego -panel -people ,meego -panel -status ,meego -web -browser -panel ,

meego -panel -media ,zenity

215 Ignore: db4:util -linux -ng

216 Ignore: fuse -sshfs:fastinit

217 Ignore: dhcp:fastinit

218 Ignore: libgnomeprint22:fastinit

219 Ignore: gvfs:fastinit

220 Ignore: meego -ux -settings:mutter ,mutter -meego ,mojito ,gnome -vfs2 ,nautilus ,meego -

gtk -engine

221 Ignore: mutter -moblin:clutter -gtk ,zenity

222 Ignore: gnome -desktop:gnome -user -docs

223 Ignore: gnome -settings -daemon:gnome -control -center

224 Ignore: avahi:fastinit

225 Ignore: fastinit:udev

226 Ignore: udev:fastinit

227 Ignore: PackageKit:udev

228 Ignore: cvs:vim -minimal

229 Ignore: bluez:fastinit

230 Ignore: aspell:aspell -en

231 Ignore: installer:squashfs -tools

232 Ignore: fuse:kernel

233 Ignore: fuse:fastinit

234 Ignore: fastinit:module -init -tools

235 Ignore: hwdata:module -init -tools

236 Ignore: gzip:less

237 Ignore: xmlto:text -www -browser

238 Ignore: docbook -utils:text -www -browser

239 Ignore: gtk2:hicolor -icon -theme

240 Ignore: docbook -dtds:openjade

241 Ignore: xmlto:passivetex

242 Ignore: GConf -dbus:openldap

243 Ignore: perl:rsyslog ,tcsh ,logrotate

244 Ignore: rpm:curl ,crontabs ,logrotate

245 Ignore: texinfo -tex:tetex

246 Ignore: xorg -x11 -server:hal -info

247 Ignore: gcc:libgomp

248 Ignore: autoconf:imake

249 Ignore: ConsoleKit:dbus ,dbus -devel

250 Ignore: fastinit:kernel ,udev ,ethtool ,mingetty

251 Ignore: tetex:tetex -fonts ,desktop -file -utils

252 Ignore: pam:glib2

253 Ignore: util -linux -ng:ConsoleKit -libs

254 Ignore: gettext -devel:libgcj ,libstdc++-devel

255 Ignore: pam -modules:resmgr

256 Ignore: bind -utils:bind -libs

257 Ignore: alsa:dialog ,pciutils

258 Ignore: portmap:syslogd

259 Ignore: fontconfig:freetype2

260 Ignore: fontconfig -devel:freetype2 -devel

261 Ignore: xorg -x11 -libs:freetype2

262 Ignore: xorg -x11:x11 -tools ,resmgr ,xkeyboard -config ,xorg -x11 -Mesa ,libusb ,

freetype2 ,libjpeg ,libpng

263 Ignore: arts:alsa ,audiofile ,resmgr ,libogg ,libvorbis

264 Ignore: libxml2 -devel:readline -devel

265 Ignore: gnome -vfs2:gnome -mime -data ,desktop -file -utils ,cdparanoia ,dbus -1,dbus -1-

glib ,krb5 ,hal ,libsmbclient ,fam ,file_alteration

117

C – Referenced source code

266 Ignore: libgda:file_alteration

267 Ignore: gnutls:lzo ,libopencdk

268 Ignore: libgnomecanvas -devel:glib -devel

269 Ignore: libgnomeui:gnome -icon -theme ,shared -mime -info

270 Ignore: gnome -pilot:gnome -panel

271 Ignore: postfix:pcre

272 Ignore: docbook_4:iso_ent ,sgml -skel ,xmlcharent

273 Ignore: docbook -xsl -stylesheets:xmlcharent

274 Ignore: tetex:xorg -x11 -libs ,expat ,fontconfig ,freetype2 ,libjpeg ,libpng ,

ghostscript -x11 ,xaw3d ,gd,dialog ,ed

275 Ignore: mailx:smtp_daemon

276 Ignore: cron:smtp_daemon

277

278 ###########################

279 # Compile Flags

280 ###########################

281

282 %define __global_cflags -O2 -g -pipe -Wall -Wp,-D_FORTIFY_SOURCE =2 -

fexceptions -fstack -protector --param=ssp -buffer -size=4 -Wformat -Wformat -

security

283

284 Optflags: i386 %{ __global_cflags} -m32 -march=i386 -mtune=generic -fasynchronous

-unwind -tables

285 Optflags: i486 %{ __global_cflags} -m32 -march=i486 -fasynchronous -unwind -tables

286 Optflags: i586 %{ __global_cflags} -m32 -march=core2 -mssse3 -mtune=atom -mfpmath

=sse -fasynchronous -unwind -tables -fno -omit -frame -pointer

287 Optflags: i686 %{ __global_cflags} -m32 -march=core2 -mssse3 -mtune=atom -mfpmath

=sse -fasynchronous -unwind -tables -fno -omit -frame -pointer

288

289 Optflags: armv5tel %{ __global_cflags} -fmessage -length =0 -march=armv5te -mlittle

-endian

290 Optflags: armv6l %{ __global_cflags} -fmessage -length =0 -march=armv6 -mlittle -

endian -mfpu=vfp -mfloat -abi=softfp -D__SOFTFP__

291 Optflags: armv7l %{ __global_cflags} -fmessage -length =0 -march=armv7 -a -mtune=

cortex -a8 -mlittle -endian -mfpu=vfpv3 -mfloat -abi=softfp -D__SOFTFP__

292

293 Optflags: sparc %{ __global_cflags} -mcpu=v8 -m32 -mhard -float -Xlinker --build -

id

294

295 ###########################

296 # RPM Macros

297 ###########################

298

299 Macros:

300

301 %moblin_version 2

302 %meego_version 1

303 %meego 1.1

304 %opensuse_bs 1

305 %vendor MeeGo

306 %_vendor meego

307 %_default_patch_fuzz 2

308

309 %py_ver %(echo ‘python -c "import sys; print sys.version [:3]"‘)

310 %py_prefix %(echo ‘python -c "import sys; print sys.prefix"‘)

311 %py_libdir %{ py_prefix }/lib/python %{ py_ver}

312 %py_incdir /usr/include/python %{ py_ver}

313 %py_sitedir %{ py_libdir }/site -packages

314 %py_dyndir %{ py_libdir }/lib -dynload

315 %py_comp python -c "import compileall; import sys; compileall.compile_dir

(sys.argv[1], ddir=sys.argv [1][len(’$RPM_BUILD_ROOT ’):])"

118

C – Referenced source code

316 %py_ocomp python -O -c "import compileall; import sys; compileall.

compile_dir(sys.argv[1], ddir=sys.argv [1][len(’$RPM_BUILD_ROOT ’):])"

317

318 %ext_info .gz

319 %ext_man .gz

320

321 %info_add (:-:) test -x /sbin/install -info -a -f %{?2}%{?!2:%{ _infodir }}/%{1}%

ext_info && /sbin/install -info --info -dir =%{?2}%{?!2:%{ _infodir }}

%{?2}%{?!2:%{ _infodir }}/%{1}% ext_info \

322 %{nil}

323

324 %info_del (:-:) test -x /sbin/install -info -a ! -f %{?2}%{?!2:%{ _infodir }}/%{1}%

ext_info && /sbin/install -info --quiet --delete --info -dir =%{?2}%{?!2:%{

_infodir }} %{?2}%{?!2:%{ _infodir }}/%{1}% ext_info \

325 %{nil}

326

327 %_smp_mflags -j1

C.2.3 Deployable worker

This section provides the startup scripts written for the deployable worker package.

obs.sh

1 #!/bin/bash

2

3 CFG_INSTANCES=’1’ # number of parallel build jobs , 0 means all the available

cores

4 CFG_INSTANCE_MEMORY =’1024’ # amount of RAM allocated for each instance

5 CFG_SERVER_IP = ’192.168.0.39 ’ # IP address of the obs server

6 CFG_SERVER_FQDN=’ivan.site ’ # fully qualified domain name of the obs server

7

8 OBS_PATH="‘dirname $0 ‘/ chroot"

9

10 LINE=‘tput cols ‘

11 LINE="-‘seq -s "-" $LINE | sed ’s/[0 -9]//g’‘"

12

13 if [["‘whoami ‘" != ’root ’]]; then

14 tput setaf 1

15 echo "!! ERROR: this script needs root privileges"

16 tput sgr0

17 exit 1

18 fi

19

20 if [["$CFG_INSTANCES" == ’0’]]; then

21 tput setaf 1

22 echo "!! ERROR: please edit the script and set CFG_INSTANCES"

23 tput sgr0

24 exit 1

25 fi

26

27 if [[! -d $OBS_PATH]]; then

28 tput setaf 1

29 echo "!! ERROR: the OBS directory does not exist"

30 tput sgr0

31 exit 1

32 fi

33

34 echo $LINE

119

C – Referenced source code

35

36 echo "-> PINGING SERVER ..."

37 ping -c 1 $CFG_SERVER_IP > /dev/null

38 if [[$? != 0]]; then

39 tput setaf 1

40 echo "!! ERROR: server at $CFG_SERVER_IP did not answer ping"

41 tput sgr0

42 exit 1

43 fi

44

45 echo "-> CHECKING LOCAL NETWORK PORTS ..."

46 BUSY_PORTS=‘netstat -l --numeric --numeric -ports --protocol=inet | grep -E ’^tcp

.*$’ | awk ’{ print $4 }’ | cut -d’:’ -f’2’ | grep -E ’^(5252) |(5352)$’ | tr

’\n’ ’ ’ | sed ’s/\ $//g’‘

47 if [[! -z $BUSY_PORTS]]; then

48 tput setaf 1

49 echo "!! ERROR: some required ports are already bound ($BUSY_PORTS)"

50 tput sgr0

51 exit 1

52 else

53 echo "required ports are free"

54 fi

55

56 echo "-> FIXING CONFIGURATION ..."

57

58 echo "dns configuration"

59 cp /etc/resolv.conf $OBS_PATH/etc

60

61 echo "worker configuration"

62 echo "CFG_SERVER_IP =\"$CFG_SERVER_IP\"" > $OBS_PATH/etc/buildhost.config

63 echo "OBS_REPO_SERVERS =\"$CFG_SERVER_IP :5252\"" >> $OBS_PATH/etc/buildhost.

config

64 echo "OBS_SRC_SERVER =\"$CFG_SERVER_IP :5352\"" >> $OBS_PATH/etc/buildhost.config

65 echo "OBS_WORKER_INSTANCES =\"$CFG_INSTANCES\"" >> $OBS_PATH/etc/buildhost.config

66 echo "OBS_WORKER_JOBS =\"1\"" >> $OBS_PATH/etc/buildhost.config

67 echo "OBS_VM_TYPE =\"qemu\"" >> $OBS_PATH/etc/buildhost.config

68 echo "OBS_VM_KERNEL =\"none\"" >> $OBS_PATH/etc/buildhost.config

69 echo "OBS_VM_INITRD =\"none\"" >> $OBS_PATH/etc/buildhost.config

70 echo "OBS_INSTANCE_MEMORY =\"$CFG_INSTANCE_MEMORTY\"" >> $OBS_PATH/etc/buildhost.

config

71

72 echo "hosts configuration"

73 cp /etc/hosts $OBS_PATH/etc

74 echo "$CFG_SERVER_IP $CFG_SERVER_FQDN" >> $OBS_PATH/etc/hosts

75

76 echo "-> CLEANING OLD LOGS ..."

77 rm -vf $OBS_PATH/root/distccd.log

78 rm -vf $OBS_PATH/root/worker_logs /*

79

80 echo "-> MOUNTING REQUIRED FILESYSTEMS ..."

81 mount -vt proc proc $OBS_PATH/proc

82 mount -vt sysfs sysfs $OBS_PATH/sys

83 mount -v -o bind /dev $OBS_PATH/dev

84

85 echo "-> CHROOTING INTO OBS ..."

86

87 echo $LINE

88 tput setaf 4

89 chroot $OBS_PATH i386 /root/obs.sh $CFG_INSTANCES $CFG_SERVER_IP

$CFG_SERVER_FQDN $CFG_INSTANCE_MEMORY

90 tput sgr0

91 echo $LINE

120

C – Referenced source code

92

93 echo "-> SAVING LOGS ..."

94 DIR_LOGS="‘dirname $0 ‘/logs/‘date +’%s’‘"

95 mkdir -p $DIR_LOGS/worker_logs

96 cp -v $OBS_PATH/root/distccd.log $DIR_LOGS

97 cp -v $OBS_PATH/root/worker_logs /* $DIR_LOGS/worker_logs

98

99 echo "-> UNMOUNTING FILESYSTEMS ..."

100 umount -v $OBS_PATH/dev

101 umount -v $OBS_PATH/sys

102 umount -v $OBS_PATH/proc

103

104 OBS_MOUNTS="‘cat /etc/mtab | grep $OBS_PATH ‘"

105

106 if [[! -z $OBS_MOUNTS]]; then

107 tput setaf 1

108 echo "!! ERROR: some mountpoints were not correctly unmounted , please do that

manually"

109 echo $OBS_MOUNTS

110 tput sgr0

111 fi

112

113 echo $LINE

114 tput setaf 5

115 echo "-> THANKS FOR YOUR CYCLES !!!"

116 tput sgr0

117 echo $LINE

obs-in.sh

1 #!/bin/bash

2

3 echo "‘whoami ‘ @ ‘uname -a‘"

4

5 echo -n "-> STARTING DISTCCD ... "

6 export DISTCCD_PATH="/opt/sparc -linux -4.4.2 - toolchains/multilib/bin"

7 /opt/distcc/bin/distccd --no-detach --jobs $1 --allow 127.0.0.1 --log -stderr --

verbose &> /root/distccd.log &

8 echo "DONE"

9

10 echo -n "-> STARTING WORKERS ... "

11 rcobsworker start &> /dev/null

12 echo "DONE"

13

14 tput bold

15 echo

16 echo -e " :--:"

17 echo -e " | UP & RUNNING ... |"

18 echo -e " | (DO NOT PRESS CTRL+C, KILL OR OTHERWISE TERMINATE THE PROCESS) |"

19 echo -e " | PRESS RETURN TO QUIT! |"

20 echo -e " :--:"

21 tput sgr0

22 tput setaf 4

23

24 read

25

26 echo -n "-> TERMINATING DISTCCD ... "

27 killall distccd &> /dev/null

28 echo "DONE"

29

30 echo -n "-> TERMINATING WORKERS ... "

121

C – Referenced source code

31 rcobsworker stop &> /dev/null

32 killall qemu -system -sparc &> /dev/null

33 echo "DONE"

C.3 Kernel configurations

This section provides the kernel configuration files generated for the project. The
configuration files have been shortened here by removing all comments.

C.3.1 QEMU

This section provides the configuration file for the kernel used to boot QEMU. The
configuration applies to the 2.6.38 stock Linux kernel.

kernel-config-qemu

CONFIG_SPARC=y

CONFIG_SPARC32=y

CONFIG_BITS=32

CONFIG_ARCH_USES_GETTIMEOFFSET=y

CONFIG_GENERIC_CMOS_UPDATE=y

CONFIG_AUDIT_ARCH=y

CONFIG_MMU=y

CONFIG_HIGHMEM=y

CONFIG_ZONE_DMA=y

CONFIG_NEED_DMA_MAP_STATE=y

CONFIG_NEED_SG_DMA_LENGTH=y

CONFIG_GENERIC_ISA_DMA=y

CONFIG_ARCH_NO_VIRT_TO_BUS=y

CONFIG_CONSTRUCTORS=y

CONFIG_HAVE_IRQ_WORK=y

CONFIG_EXPERIMENTAL=y

CONFIG_BROKEN_ON_SMP=y

CONFIG_INIT_ENV_ARG_LIMIT=32

CONFIG_CROSS_COMPILE="sparc-leon-linux-gnu-"

CONFIG_LOCALVERSION=""

CONFIG_LOCALVERSION_AUTO=y

CONFIG_SWAP=y

CONFIG_SYSVIPC=y

CONFIG_SYSVIPC_SYSCTL=y

CONFIG_POSIX_MQUEUE=y

CONFIG_POSIX_MQUEUE_SYSCTL=y

CONFIG_TINY_RCU=y

CONFIG_LOG_BUF_SHIFT=14

CONFIG_NAMESPACES=y

CONFIG_UTS_NS=y

CONFIG_IPC_NS=y

CONFIG_USER_NS=y

CONFIG_PID_NS=y

CONFIG_NET_NS=y

CONFIG_SYSCTL=y

CONFIG_ANON_INODES=y

CONFIG_UID16=y

CONFIG_SYSCTL_SYSCALL=y

CONFIG_KALLSYMS=y

CONFIG_HOTPLUG=y

CONFIG_PRINTK=y

CONFIG_BUG=y

CONFIG_ELF_CORE=y

CONFIG_BASE_FULL=y

CONFIG_FUTEX=y

CONFIG_EPOLL=y

CONFIG_SIGNALFD=y

CONFIG_TIMERFD=y

CONFIG_EVENTFD=y

CONFIG_SHMEM=y

CONFIG_AIO=y

CONFIG_VM_EVENT_COUNTERS=y

CONFIG_PCI_QUIRKS=y

CONFIG_COMPAT_BRK=y

CONFIG_SLAB=y

CONFIG_HAVE_OPROFILE=y

CONFIG_HAVE_ARCH_TRACEHOOK=y

CONFIG_HAVE_DMA_ATTRS=y

CONFIG_HAVE_DMA_API_DEBUG=y

CONFIG_HAVE_ARCH_JUMP_LABEL=y

CONFIG_SLABINFO=y

CONFIG_RT_MUTEXES=y

CONFIG_BASE_SMALL=0

CONFIG_BLOCK=y

CONFIG_LBDAF=y

CONFIG_IOSCHED_NOOP=y

CONFIG_IOSCHED_DEADLINE=y

CONFIG_IOSCHED_CFQ=y

CONFIG_DEFAULT_CFQ=y

CONFIG_DEFAULT_IOSCHED="cfq"

CONFIG_INLINE_SPIN_UNLOCK=y

CONFIG_INLINE_SPIN_UNLOCK_IRQ=y

CONFIG_INLINE_READ_UNLOCK=y

CONFIG_INLINE_READ_UNLOCK_IRQ=y

CONFIG_INLINE_WRITE_UNLOCK=y

CONFIG_INLINE_WRITE_UNLOCK_IRQ=y

122

C – Referenced source code

CONFIG_HZ_100=y

CONFIG_HZ=100

CONFIG_RWSEM_GENERIC_SPINLOCK=y

CONFIG_GENERIC_FIND_NEXT_BIT=y

CONFIG_GENERIC_HWEIGHT=y

CONFIG_GENERIC_CALIBRATE_DELAY=y

CONFIG_ARCH_MAY_HAVE_PC_FDC=y

CONFIG_EMULATED_CMPXCHG=y

CONFIG_SELECT_MEMORY_MODEL=y

CONFIG_FLATMEM_MANUAL=y

CONFIG_FLATMEM=y

CONFIG_FLAT_NODE_MEM_MAP=y

CONFIG_PAGEFLAGS_EXTENDED=y

CONFIG_SPLIT_PTLOCK_CPUS=4

CONFIG_ZONE_DMA_FLAG=1

CONFIG_BOUNCE=y

CONFIG_DEFAULT_MMAP_MIN_ADDR=4096

CONFIG_NEED_PER_CPU_KM=y

CONFIG_SUN_PM=y

CONFIG_SERIAL_CONSOLE=y

CONFIG_SBUS=y

CONFIG_SBUSCHAR=y

CONFIG_PCI=y

CONFIG_PCI_SYSCALL=y

CONFIG_SUN_OPENPROMFS=y

CONFIG_SPARC32_PCI=y

CONFIG_BINFMT_ELF=y

CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS=y

CONFIG_BINFMT_MISC=y

CONFIG_NET=y

CONFIG_PACKET=y

CONFIG_UNIX=y

CONFIG_XFRM=y

CONFIG_XFRM_USER=y

CONFIG_NET_KEY=y

CONFIG_INET=y

CONFIG_IP_FIB_HASH=y

CONFIG_IP_PNP=y

CONFIG_IP_PNP_DHCP=y

CONFIG_TCP_CONG_CUBIC=y

CONFIG_DEFAULT_TCP_CONG="cubic"

CONFIG_UEVENT_HELPER_PATH="/sbin/hotplug"

CONFIG_STANDALONE=y

CONFIG_PREVENT_FIRMWARE_BUILD=y

CONFIG_FW_LOADER=y

CONFIG_FIRMWARE_IN_KERNEL=y

CONFIG_EXTRA_FIRMWARE=""

CONFIG_OF=y

CONFIG_OF_PROMTREE=y

CONFIG_OF_DEVICE=y

CONFIG_OF_NET=y

CONFIG_BLK_DEV=y

CONFIG_BLK_DEV_LOOP=y

CONFIG_BLK_DEV_CRYPTOLOOP=y

CONFIG_BLK_DEV_RAM=y

CONFIG_BLK_DEV_RAM_COUNT=16

CONFIG_BLK_DEV_RAM_SIZE=4096

CONFIG_MISC_DEVICES=y

CONFIG_EEPROM_93CX6=y

CONFIG_HAVE_IDE=y

CONFIG_SCSI_MOD=y

CONFIG_SCSI=y

CONFIG_SCSI_DMA=y

CONFIG_SCSI_NETLINK=y

CONFIG_SCSI_PROC_FS=y

CONFIG_BLK_DEV_SD=y

CONFIG_CHR_DEV_SG=y

CONFIG_SCSI_SPI_ATTRS=y

CONFIG_SCSI_FC_ATTRS=y

CONFIG_SCSI_ISCSI_ATTRS=y

CONFIG_SCSI_LOWLEVEL=y

CONFIG_SCSI_QLOGICPTI=y

CONFIG_SCSI_SUNESP=y

CONFIG_NETDEVICES=y

CONFIG_DUMMY=y

CONFIG_MII=y

CONFIG_NET_ETHERNET=y

CONFIG_SUNLANCE=y

CONFIG_INPUT=y

CONFIG_INPUT_MOUSEDEV=y

CONFIG_INPUT_MOUSEDEV_PSAUX=y

CONFIG_INPUT_MOUSEDEV_SCREEN_X=1024

CONFIG_INPUT_MOUSEDEV_SCREEN_Y=768

CONFIG_INPUT_JOYDEV=y

CONFIG_INPUT_EVDEV=y

CONFIG_INPUT_EVBUG=y

CONFIG_INPUT_KEYBOARD=y

CONFIG_KEYBOARD_ATKBD=y

CONFIG_KEYBOARD_SUNKBD=y

CONFIG_INPUT_MOUSE=y

CONFIG_MOUSE_PS2=y

CONFIG_MOUSE_PS2_ALPS=y

CONFIG_MOUSE_PS2_LOGIPS2PP=y

CONFIG_MOUSE_PS2_SYNAPTICS=y

CONFIG_MOUSE_PS2_TRACKPOINT=y

CONFIG_MOUSE_SERIAL=y

CONFIG_SERIO=y

CONFIG_SERIO_SERPORT=y

CONFIG_SERIO_LIBPS2=y

CONFIG_VT=y

CONFIG_CONSOLE_TRANSLATIONS=y

CONFIG_VT_CONSOLE=y

CONFIG_HW_CONSOLE=y

CONFIG_VT_HW_CONSOLE_BINDING=y

CONFIG_DEVKMEM=y

CONFIG_SERIAL_8250=y

CONFIG_SERIAL_8250_PCI=y

CONFIG_SERIAL_8250_NR_UARTS=4

CONFIG_SERIAL_8250_RUNTIME_UARTS=4

CONFIG_SERIAL_SUNCORE=y

CONFIG_SERIAL_SUNZILOG=y

CONFIG_SERIAL_SUNZILOG_CONSOLE=y

CONFIG_SERIAL_SUNSU=y

CONFIG_SERIAL_SUNSU_CONSOLE=y

CONFIG_SERIAL_SUNSAB=y

CONFIG_SERIAL_SUNSAB_CONSOLE=y

CONFIG_SERIAL_CORE=y

CONFIG_SERIAL_CORE_CONSOLE=y

CONFIG_CONSOLE_POLL=y

CONFIG_UNIX98_PTYS=y

CONFIG_DEVPTS_MULTIPLE_INSTANCES=y

CONFIG_LEGACY_PTYS=y

CONFIG_LEGACY_PTY_COUNT=256

CONFIG_HW_RANDOM=y

123

C – Referenced source code

CONFIG_DEVPORT=y

CONFIG_ARCH_WANT_OPTIONAL_GPIOLIB=y

CONFIG_SSB_POSSIBLE=y

CONFIG_VGA_ARB=y

CONFIG_VGA_ARB_MAX_GPUS=16

CONFIG_VIDEO_OUTPUT_CONTROL=y

CONFIG_FB=y

CONFIG_FIRMWARE_EDID=y

CONFIG_FB_CFB_FILLRECT=y

CONFIG_FB_CFB_COPYAREA=y

CONFIG_FB_CFB_IMAGEBLIT=y

CONFIG_FB_MODE_HELPERS=y

CONFIG_FB_TILEBLITTING=y

CONFIG_FB_SBUS=y

CONFIG_FB_TCX=y

CONFIG_BACKLIGHT_LCD_SUPPORT=y

CONFIG_LCD_CLASS_DEVICE=y

CONFIG_LCD_PLATFORM=y

CONFIG_BACKLIGHT_CLASS_DEVICE=y

CONFIG_BACKLIGHT_GENERIC=y

CONFIG_DISPLAY_SUPPORT=y

CONFIG_DUMMY_CONSOLE=y

CONFIG_FRAMEBUFFER_CONSOLE=y

CONFIG_FRAMEBUFFER_CONSOLE_ROTATION=y

CONFIG_FONT_SUN8x16=y

CONFIG_FONT_SUN12x22=y

CONFIG_HID_SUPPORT=y

CONFIG_HID=y

CONFIG_RTC_LIB=y

CONFIG_RTC_CLASS=y

CONFIG_RTC_HCTOSYS=y

CONFIG_RTC_HCTOSYS_DEVICE="rtc0"

CONFIG_RTC_INTF_SYSFS=y

CONFIG_RTC_INTF_PROC=y

CONFIG_RTC_INTF_DEV=y

CONFIG_RTC_DRV_M48T59=y

CONFIG_SUN_OPENPROMIO=y

CONFIG_EXT2_FS=y

CONFIG_EXT2_FS_XATTR=y

CONFIG_EXT2_FS_POSIX_ACL=y

CONFIG_EXT2_FS_SECURITY=y

CONFIG_EXT2_FS_XIP=y

CONFIG_EXT3_FS=y

CONFIG_EXT3_DEFAULTS_TO_ORDERED=y

CONFIG_EXT3_FS_XATTR=y

CONFIG_EXT3_FS_POSIX_ACL=y

CONFIG_EXT3_FS_SECURITY=y

CONFIG_EXT4_FS=y

CONFIG_EXT4_FS_XATTR=y

CONFIG_EXT4_FS_POSIX_ACL=y

CONFIG_EXT4_FS_SECURITY=y

CONFIG_EXT4_DEBUG=y

CONFIG_FS_XIP=y

CONFIG_JBD=y

CONFIG_JBD2=y

CONFIG_FS_MBCACHE=y

CONFIG_FS_POSIX_ACL=y

CONFIG_FILE_LOCKING=y

CONFIG_FSNOTIFY=y

CONFIG_DNOTIFY=y

CONFIG_INOTIFY_USER=y

CONFIG_AUTOFS4_FS=y

CONFIG_FUSE_FS=y

CONFIG_CUSE=y

CONFIG_GENERIC_ACL=y

CONFIG_PROC_FS=y

CONFIG_PROC_KCORE=y

CONFIG_PROC_SYSCTL=y

CONFIG_PROC_PAGE_MONITOR=y

CONFIG_SYSFS=y

CONFIG_TMPFS=y

CONFIG_TMPFS_POSIX_ACL=y

CONFIG_CONFIGFS_FS=y

CONFIG_MISC_FILESYSTEMS=y

CONFIG_ROMFS_FS=y

CONFIG_ROMFS_BACKED_BY_BLOCK=y

CONFIG_ROMFS_ON_BLOCK=y

CONFIG_NETWORK_FILESYSTEMS=y

CONFIG_NFS_FS=y

CONFIG_LOCKD=y

CONFIG_NFS_COMMON=y

CONFIG_SUNRPC=y

CONFIG_SUNRPC_GSS=y

CONFIG_RPCSEC_GSS_KRB5=y

CONFIG_MSDOS_PARTITION=y

CONFIG_SUN_PARTITION=y

CONFIG_NLS=y

CONFIG_NLS_DEFAULT="iso8859-1"

CONFIG_TRACE_IRQFLAGS_SUPPORT=y

CONFIG_ENABLE_MUST_CHECK=y

CONFIG_FRAME_WARN=1024

CONFIG_MAGIC_SYSRQ=y

CONFIG_DEBUG_KERNEL=y

CONFIG_DETECT_HUNG_TASK=y

CONFIG_BOOTPARAM_HUNG_TASK_PANIC_VALUE=0

CONFIG_BKL=y

CONFIG_DEBUG_BUGVERBOSE=y

CONFIG_DEBUG_MEMORY_INIT=y

CONFIG_HAVE_ARCH_KGDB=y

CONFIG_KGDB=y

CONFIG_KGDB_SERIAL_CONSOLE=y

CONFIG_KGDB_TESTS=y

CONFIG_DEFAULT_SECURITY_DAC=y

CONFIG_DEFAULT_SECURITY=""

CONFIG_CRYPTO=y

CONFIG_CRYPTO_ALGAPI=y

CONFIG_CRYPTO_ALGAPI2=y

CONFIG_CRYPTO_AEAD2=y

CONFIG_CRYPTO_BLKCIPHER=y

CONFIG_CRYPTO_BLKCIPHER2=y

CONFIG_CRYPTO_HASH=y

CONFIG_CRYPTO_HASH2=y

CONFIG_CRYPTO_RNG2=y

CONFIG_CRYPTO_PCOMP2=y

CONFIG_CRYPTO_MANAGER=y

CONFIG_CRYPTO_MANAGER2=y

CONFIG_CRYPTO_MANAGER_DISABLE_TESTS=y

CONFIG_CRYPTO_NULL=y

CONFIG_CRYPTO_WORKQUEUE=y

CONFIG_CRYPTO_CBC=y

CONFIG_CRYPTO_ECB=y

CONFIG_CRYPTO_PCBC=y

CONFIG_CRYPTO_CRC32C=y

CONFIG_CRYPTO_MD4=y

124

C – Referenced source code

CONFIG_CRYPTO_MD5=y

CONFIG_CRYPTO_MICHAEL_MIC=y

CONFIG_CRYPTO_SHA256=y

CONFIG_CRYPTO_SHA512=y

CONFIG_CRYPTO_AES=y

CONFIG_CRYPTO_ARC4=y

CONFIG_CRYPTO_BLOWFISH=y

CONFIG_CRYPTO_CAST5=y

CONFIG_CRYPTO_CAST6=y

CONFIG_CRYPTO_DES=y

CONFIG_CRYPTO_SERPENT=y

CONFIG_CRYPTO_TWOFISH=y

CONFIG_CRYPTO_TWOFISH_COMMON=y

CONFIG_BITREVERSE=y

CONFIG_GENERIC_FIND_LAST_BIT=y

CONFIG_CRC16=y

CONFIG_CRC32=y

CONFIG_LIBCRC32C=y

CONFIG_HAS_IOMEM=y

CONFIG_HAS_IOPORT=y

CONFIG_HAS_DMA=y

CONFIG_NLATTR=y

C.3.2 GR-LEON4-ITX

This section provides the configuration file for the kernel used to boot the test board.
The configuration applies to the LEON branch of the 2.6.38 Linux kernel.

kernel-config-leon

CONFIG_SPARC=y

CONFIG_SPARC32=y

CONFIG_BITS=32

CONFIG_ARCH_USES_GETTIMEOFFSET=y

CONFIG_GENERIC_CMOS_UPDATE=y

CONFIG_AUDIT_ARCH=y

CONFIG_MMU=y

CONFIG_HIGHMEM=y

CONFIG_ZONE_DMA=y

CONFIG_NEED_DMA_MAP_STATE=y

CONFIG_NEED_SG_DMA_LENGTH=y

CONFIG_GENERIC_ISA_DMA=y

CONFIG_ARCH_NO_VIRT_TO_BUS=y

CONFIG_CONSTRUCTORS=y

CONFIG_EXPERIMENTAL=y

CONFIG_LOCK_KERNEL=y

CONFIG_INIT_ENV_ARG_LIMIT=32

CONFIG_CROSS_COMPILE=""

CONFIG_LOCALVERSION=""

CONFIG_LOCALVERSION_AUTO=y

CONFIG_SWAP=y

CONFIG_SYSVIPC=y

CONFIG_SYSVIPC_SYSCTL=y

CONFIG_TREE_RCU=y

CONFIG_RCU_FANOUT=32

CONFIG_LOG_BUF_SHIFT=14

CONFIG_SYSFS_DEPRECATED=y

CONFIG_SYSFS_DEPRECATED_V2=y

CONFIG_BLK_DEV_INITRD=y

CONFIG_INITRAMFS_ROOT_UID=0

CONFIG_INITRAMFS_ROOT_GID=0

CONFIG_RD_GZIP=y

CONFIG_INITRAMFS_COMPRESSION_NONE=y

CONFIG_SYSCTL=y

CONFIG_ANON_INODES=y

CONFIG_EMBEDDED=y

CONFIG_UID16=y

CONFIG_SYSCTL_SYSCALL=y

CONFIG_KALLSYMS=y

CONFIG_PRINTK=y

CONFIG_BUG=y

CONFIG_ELF_CORE=y

CONFIG_BASE_FULL=y

CONFIG_FUTEX=y

CONFIG_EPOLL=y

CONFIG_SIGNALFD=y

CONFIG_TIMERFD=y

CONFIG_EVENTFD=y

CONFIG_SHMEM=y

CONFIG_AIO=y

CONFIG_HAVE_PERF_EVENTS=y

CONFIG_PERF_USE_VMALLOC=y

CONFIG_VM_EVENT_COUNTERS=y

CONFIG_PCI_QUIRKS=y

CONFIG_COMPAT_BRK=y

CONFIG_SLAB=y

CONFIG_HAVE_OPROFILE=y

CONFIG_HAVE_ARCH_TRACEHOOK=y

CONFIG_HAVE_DMA_ATTRS=y

CONFIG_USE_GENERIC_SMP_HELPERS=y

CONFIG_HAVE_DMA_API_DEBUG=y

CONFIG_SLABINFO=y

CONFIG_RT_MUTEXES=y

CONFIG_BASE_SMALL=0

CONFIG_MODULES=y

CONFIG_MODULE_UNLOAD=y

CONFIG_STOP_MACHINE=y

CONFIG_BLOCK=y

CONFIG_LBDAF=y

CONFIG_IOSCHED_NOOP=y

CONFIG_IOSCHED_DEADLINE=y

CONFIG_IOSCHED_CFQ=y

CONFIG_DEFAULT_CFQ=y

CONFIG_DEFAULT_IOSCHED="cfq"

CONFIG_INLINE_SPIN_UNLOCK=y

CONFIG_INLINE_SPIN_UNLOCK_IRQ=y

125

C – Referenced source code

CONFIG_INLINE_READ_UNLOCK=y

CONFIG_INLINE_READ_UNLOCK_IRQ=y

CONFIG_INLINE_WRITE_UNLOCK=y

CONFIG_INLINE_WRITE_UNLOCK_IRQ=y

CONFIG_MUTEX_SPIN_ON_OWNER=y

CONFIG_SMP=y

CONFIG_NR_CPUS=32

CONFIG_HZ_100=y

CONFIG_HZ=100

CONFIG_RWSEM_GENERIC_SPINLOCK=y

CONFIG_GENERIC_FIND_NEXT_BIT=y

CONFIG_GENERIC_HWEIGHT=y

CONFIG_GENERIC_CALIBRATE_DELAY=y

CONFIG_ARCH_MAY_HAVE_PC_FDC=y

CONFIG_EMULATED_CMPXCHG=y

CONFIG_SPARC32_SMP=y

CONFIG_SELECT_MEMORY_MODEL=y

CONFIG_FLATMEM_MANUAL=y

CONFIG_FLATMEM=y

CONFIG_FLAT_NODE_MEM_MAP=y

CONFIG_PAGEFLAGS_EXTENDED=y

CONFIG_SPLIT_PTLOCK_CPUS=4

CONFIG_ZONE_DMA_FLAG=1

CONFIG_BOUNCE=y

CONFIG_DEFAULT_MMAP_MIN_ADDR=4096

CONFIG_SUN_PM=y

CONFIG_SERIAL_CONSOLE=y

CONFIG_SPARC_LEON=y

CONFIG_UBOOT_LOAD_ADDR=0x40004000

CONFIG_UBOOT_FLASH_ADDR=0x00080000

CONFIG_UBOOT_ENTRY_ADDR=0xf0004000

CONFIG_SBUS=y

CONFIG_SBUSCHAR=y

CONFIG_PCI=y

CONFIG_PCI_SYSCALL=y

CONFIG_PCI_DEBUG=y

CONFIG_SUN_OPENPROMFS=y

CONFIG_SPARC32_PCI=y

CONFIG_BINFMT_ELF=y

CONFIG_BINFMT_MISC=y

CONFIG_NET=y

CONFIG_PACKET=y

CONFIG_UNIX=y

CONFIG_XFRM=y

CONFIG_INET=y

CONFIG_IP_FIB_HASH=y

CONFIG_IP_PNP=y

CONFIG_IP_PNP_DHCP=y

CONFIG_INET_TUNNEL=y

CONFIG_INET_XFRM_MODE_TRANSPORT=y

CONFIG_INET_XFRM_MODE_TUNNEL=y

CONFIG_INET_XFRM_MODE_BEET=y

CONFIG_INET_DIAG=y

CONFIG_INET_TCP_DIAG=y

CONFIG_TCP_CONG_CUBIC=y

CONFIG_DEFAULT_TCP_CONG="cubic"

CONFIG_IPV6=y

CONFIG_INET6_XFRM_MODE_TRANSPORT=y

CONFIG_INET6_XFRM_MODE_TUNNEL=y

CONFIG_INET6_XFRM_MODE_BEET=y

CONFIG_IPV6_SIT=y

CONFIG_IPV6_NDISC_NODETYPE=y

CONFIG_DNS_RESOLVER=y

CONFIG_RPS=y

CONFIG_WIRELESS=y

CONFIG_STANDALONE=y

CONFIG_PREVENT_FIRMWARE_BUILD=y

CONFIG_OF=y

CONFIG_OF_DEVICE=y

CONFIG_OF_MDIO=y

CONFIG_BLK_DEV=y

CONFIG_BLK_DEV_LOOP=y

CONFIG_BLK_DEV_CRYPTOLOOP=y

CONFIG_BLK_DEV_RAM=y

CONFIG_BLK_DEV_RAM_COUNT=16

CONFIG_BLK_DEV_RAM_SIZE=4096

CONFIG_XILINX_SYSACE=y

CONFIG_HAVE_IDE=y

CONFIG_SCSI_MOD=y

CONFIG_SCSI=y

CONFIG_SCSI_DMA=y

CONFIG_SCSI_PROC_FS=y

CONFIG_BLK_DEV_SD=y

CONFIG_SCSI_WAIT_SCAN=m

CONFIG_SCSI_LOWLEVEL=y

CONFIG_NETDEVICES=y

CONFIG_PHYLIB=y

CONFIG_NET_ETHERNET=y

CONFIG_MII=y

CONFIG_GRETH=y

CONFIG_NET_PCI=y

CONFIG_E100=y

CONFIG_8139TOO=y

CONFIG_8139TOO_PIO=y

CONFIG_NETDEV_1000=y

CONFIG_DL2K=y

CONFIG_INPUT=y

CONFIG_INPUT_MOUSEDEV=y

CONFIG_INPUT_MOUSEDEV_PSAUX=y

CONFIG_INPUT_MOUSEDEV_SCREEN_X=1024

CONFIG_INPUT_MOUSEDEV_SCREEN_Y=768

CONFIG_INPUT_JOYDEV=y

CONFIG_INPUT_EVDEV=y

CONFIG_INPUT_EVBUG=y

CONFIG_INPUT_KEYBOARD=y

CONFIG_KEYBOARD_ATKBD=y

CONFIG_KEYBOARD_SUNKBD=y

CONFIG_INPUT_MOUSE=y

CONFIG_MOUSE_PS2=y

CONFIG_MOUSE_PS2_ALPS=y

CONFIG_MOUSE_PS2_LOGIPS2PP=y

CONFIG_MOUSE_PS2_SYNAPTICS=y

CONFIG_MOUSE_PS2_TRACKPOINT=y

CONFIG_MOUSE_SERIAL=y

CONFIG_SERIO=y

CONFIG_SERIO_SERPORT=y

CONFIG_SERIO_LIBPS2=y

CONFIG_VT=y

CONFIG_CONSOLE_TRANSLATIONS=y

CONFIG_VT_CONSOLE=y

CONFIG_HW_CONSOLE=y

CONFIG_DEVKMEM=y

CONFIG_SERIAL_SUNCORE=y

CONFIG_SERIAL_SUNZILOG=y

126

C – Referenced source code

CONFIG_SERIAL_SUNZILOG_CONSOLE=y

CONFIG_SERIAL_CORE=y

CONFIG_SERIAL_CORE_CONSOLE=y

CONFIG_SERIAL_GRLIB_GAISLER_APBUART=y

CONFIG_SERIAL_GRLIB_GAISLER_APBUART_CONSOLE=y

CONFIG_UNIX98_PTYS=y

CONFIG_LEGACY_PTYS=y

CONFIG_LEGACY_PTY_COUNT=256

CONFIG_HW_RANDOM=y

CONFIG_DEVPORT=y

CONFIG_ARCH_WANT_OPTIONAL_GPIOLIB=y

CONFIG_SSB_POSSIBLE=y

CONFIG_MFD_SUPPORT=y

CONFIG_VGA_ARB=y

CONFIG_VGA_ARB_MAX_GPUS=16

CONFIG_FB=y

CONFIG_FB_CFB_FILLRECT=y

CONFIG_FB_CFB_COPYAREA=y

CONFIG_FB_CFB_IMAGEBLIT=y

CONFIG_FB_TILEBLITTING=y

CONFIG_FB_GRVGA=y

CONFIG_BACKLIGHT_LCD_SUPPORT=y

CONFIG_LCD_CLASS_DEVICE=m

CONFIG_BACKLIGHT_CLASS_DEVICE=y

CONFIG_BACKLIGHT_GENERIC=y

CONFIG_DUMMY_CONSOLE=y

CONFIG_FRAMEBUFFER_CONSOLE=y

CONFIG_FONT_SUN8x16=y

CONFIG_LOGO=y

CONFIG_LOGO_LINUX_MONO=y

CONFIG_LOGO_LINUX_VGA16=y

CONFIG_LOGO_LINUX_CLUT224=y

CONFIG_LOGO_SUN_CLUT224=y

CONFIG_SOUND=y

CONFIG_SOUND_OSS_CORE=y

CONFIG_SOUND_OSS_CORE_PRECLAIM=y

CONFIG_SND=y

CONFIG_SND_TIMER=y

CONFIG_SND_PCM=y

CONFIG_SND_RAWMIDI=y

CONFIG_SND_SEQUENCER=y

CONFIG_SND_OSSEMUL=y

CONFIG_SND_MIXER_OSS=y

CONFIG_SND_PCM_OSS=y

CONFIG_SND_PCM_OSS_PLUGINS=y

CONFIG_SND_SUPPORT_OLD_API=y

CONFIG_SND_VERBOSE_PROCFS=y

CONFIG_SND_VMASTER=y

CONFIG_SND_RAWMIDI_SEQ=y

CONFIG_SND_MPU401_UART=y

CONFIG_SND_AC97_CODEC=y

CONFIG_SND_DRIVERS=y

CONFIG_SND_PCI=y

CONFIG_SND_ALI5451=y

CONFIG_SND_ATIIXP=y

CONFIG_SND_ATIIXP_MODEM=y

CONFIG_SND_INTEL8X0=y

CONFIG_SND_USB=y

CONFIG_SND_SPARC=y

CONFIG_AC97_BUS=y

CONFIG_HID_SUPPORT=y

CONFIG_HID=y

CONFIG_USB_HID=y

CONFIG_USB_SUPPORT=y

CONFIG_USB_ARCH_HAS_HCD=y

CONFIG_USB_ARCH_HAS_OHCI=y

CONFIG_USB_ARCH_HAS_EHCI=y

CONFIG_USB=y

CONFIG_USB_DEVICEFS=y

CONFIG_USB_DEVICE_CLASS=y

CONFIG_USB_EHCI_HCD=y

CONFIG_USB_EHCI_TT_NEWSCHED=y

CONFIG_USB_OHCI_HCD=y

CONFIG_USB_OHCI_LITTLE_ENDIAN=y

CONFIG_USB_STORAGE=y

CONFIG_RTC_LIB=y

CONFIG_RTC_CLASS=y

CONFIG_RTC_HCTOSYS=y

CONFIG_RTC_HCTOSYS_DEVICE="rtc0"

CONFIG_RTC_INTF_SYSFS=y

CONFIG_RTC_INTF_PROC=y

CONFIG_RTC_INTF_DEV=y

CONFIG_RTC_DRV_M48T59=y

CONFIG_SUN_OPENPROMIO=y

CONFIG_EXT2_FS=y

CONFIG_EXT2_FS_XATTR=y

CONFIG_EXT2_FS_POSIX_ACL=y

CONFIG_EXT2_FS_SECURITY=y

CONFIG_EXT3_FS=y

CONFIG_EXT3_DEFAULTS_TO_ORDERED=y

CONFIG_EXT3_FS_XATTR=y

CONFIG_EXT4_FS=y

CONFIG_EXT4_FS_XATTR=y

CONFIG_JBD=y

CONFIG_JBD2=y

CONFIG_FS_MBCACHE=y

CONFIG_FS_POSIX_ACL=y

CONFIG_FILE_LOCKING=y

CONFIG_FSNOTIFY=y

CONFIG_DNOTIFY=y

CONFIG_INOTIFY_USER=y

CONFIG_AUTOFS4_FS=y

CONFIG_ISO9660_FS=y

CONFIG_UDF_FS=y

CONFIG_UDF_NLS=y

CONFIG_FAT_FS=y

CONFIG_MSDOS_FS=y

CONFIG_VFAT_FS=y

CONFIG_FAT_DEFAULT_CODEPAGE=437

CONFIG_FAT_DEFAULT_IOCHARSET="iso8859-1"

CONFIG_PROC_FS=y

CONFIG_PROC_KCORE=y

CONFIG_PROC_SYSCTL=y

CONFIG_PROC_PAGE_MONITOR=y

CONFIG_SYSFS=y

CONFIG_TMPFS=y

CONFIG_MISC_FILESYSTEMS=y

CONFIG_ROMFS_FS=y

CONFIG_ROMFS_BACKED_BY_BLOCK=y

CONFIG_ROMFS_ON_BLOCK=y

CONFIG_NETWORK_FILESYSTEMS=y

CONFIG_NFS_FS=y

CONFIG_NFS_V3=y

CONFIG_ROOT_NFS=y

127

C – Referenced source code

CONFIG_LOCKD=y

CONFIG_LOCKD_V4=y

CONFIG_NFS_COMMON=y

CONFIG_SUNRPC=y

CONFIG_SUNRPC_GSS=y

CONFIG_RPCSEC_GSS_KRB5=y

CONFIG_PARTITION_ADVANCED=y

CONFIG_MSDOS_PARTITION=y

CONFIG_LDM_PARTITION=y

CONFIG_SUN_PARTITION=y

CONFIG_NLS=y

CONFIG_NLS_DEFAULT="iso8859-1"

CONFIG_NLS_CODEPAGE_437=y

CONFIG_NLS_CODEPAGE_850=y

CONFIG_NLS_CODEPAGE_852=y

CONFIG_NLS_ISO8859_1=y

CONFIG_NLS_ISO8859_2=y

CONFIG_NLS_UTF8=y

CONFIG_TRACE_IRQFLAGS_SUPPORT=y

CONFIG_ENABLE_MUST_CHECK=y

CONFIG_FRAME_WARN=1024

CONFIG_MAGIC_SYSRQ=y

CONFIG_DEBUG_KERNEL=y

CONFIG_DETECT_HUNG_TASK=y

CONFIG_BOOTPARAM_HUNG_TASK_PANIC_VALUE=0

CONFIG_DEBUG_BUGVERBOSE=y

CONFIG_DEBUG_INFO=y

CONFIG_RCU_CPU_STALL_DETECTOR=y

CONFIG_KEYS=y

CONFIG_DEFAULT_SECURITY_DAC=y

CONFIG_DEFAULT_SECURITY=""

CONFIG_CRYPTO=y

CONFIG_CRYPTO_ALGAPI=y

CONFIG_CRYPTO_ALGAPI2=y

CONFIG_CRYPTO_AEAD=y

CONFIG_CRYPTO_AEAD2=y

CONFIG_CRYPTO_BLKCIPHER=y

CONFIG_CRYPTO_BLKCIPHER2=y

CONFIG_CRYPTO_HASH=y

CONFIG_CRYPTO_HASH2=y

CONFIG_CRYPTO_RNG2=y

CONFIG_CRYPTO_PCOMP2=y

CONFIG_CRYPTO_MANAGER=y

CONFIG_CRYPTO_MANAGER2=y

CONFIG_CRYPTO_MANAGER_DISABLE_TESTS=y

CONFIG_CRYPTO_NULL=y

CONFIG_CRYPTO_WORKQUEUE=y

CONFIG_CRYPTO_AUTHENC=y

CONFIG_CRYPTO_CBC=y

CONFIG_CRYPTO_ECB=y

CONFIG_CRYPTO_PCBC=y

CONFIG_CRYPTO_HMAC=y

CONFIG_CRYPTO_CRC32C=y

CONFIG_CRYPTO_MD4=y

CONFIG_CRYPTO_MD5=y

CONFIG_CRYPTO_MICHAEL_MIC=y

CONFIG_CRYPTO_SHA1=y

CONFIG_CRYPTO_SHA256=y

CONFIG_CRYPTO_SHA512=y

CONFIG_CRYPTO_AES=y

CONFIG_CRYPTO_ARC4=y

CONFIG_CRYPTO_BLOWFISH=y

CONFIG_CRYPTO_CAST5=y

CONFIG_CRYPTO_CAST6=y

CONFIG_CRYPTO_DES=y

CONFIG_CRYPTO_SERPENT=y

CONFIG_CRYPTO_TWOFISH=y

CONFIG_CRYPTO_TWOFISH_COMMON=y

CONFIG_CRYPTO_DEFLATE=y

CONFIG_BITREVERSE=y

CONFIG_GENERIC_FIND_LAST_BIT=y

CONFIG_CRC16=y

CONFIG_CRC_ITU_T=y

CONFIG_CRC32=y

CONFIG_LIBCRC32C=y

CONFIG_ZLIB_INFLATE=y

CONFIG_ZLIB_DEFLATE=y

CONFIG_DECOMPRESS_GZIP=y

CONFIG_HAS_IOMEM=y

CONFIG_HAS_IOPORT=y

CONFIG_HAS_DMA=y

CONFIG_NLATTR=y

128

References

[1] Admob Mobile Metrics Metrics Highlights May 2010.
http://metrics.admob.com/wp-content/uploads/2010/06/

May-2010-AdMob-Mobile-Metrics-Highlights.pdf

http://goo.gl/7Cu2h

Accessed 18 Jul 2011.

[2] ARM MeeGo Wiki.
http://wiki.meego.com/ARM

Accessed 18 Jul 2011.

[3] Dropping sparc32 for lenny.
http://lists.debian.org/debian-sparc/2007/04/msg00044.html

http://goo.gl/JedtE

Accessed 18 Jul 2011.

[4] FT.com Markets Data ARM Holdings PLC.
http://markets.ft.com/ft/tearsheets/performance.asp?s=ARMH:NSQ

http://goo.gl/SLTH2

Accessed 18 Jul 2011.

[5] Getting Started with the MeeGo SDK 1.1 for Linux MeeGo Wiki.
http://wiki.meego.com/SDK/Docs/1.1/Getting_started_with_the_MeeGo_SDK_for_

Linux

http://goo.gl/fmFMo

Accessed 18 Jul 2011.

[6] GRLEON4ITX Brochure.
http://www.gaisler.com/doc/LEON4_Mini-ITX_Mainboard.pdf

http://goo.gl/FRDm0

Accessed 18 Jul 2011.

[7] GRLEON4ITX LEON4 Development Board.
http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=

339&Itemid=

129

References

http://goo.gl/V6mCV

Accessed 18 Jul 2011.

[8] How to compile a Ubuntu Lucid kernel.
http://blog.avirtualhome.com/2010/05/05/how-to-compile-a-ubuntu-lucid-kernel

http://goo.gl/tyMhz

Accessed 18 Jul 2011.

[9] Installation Quick Start OpenSUSE 11.4.
http://doc.opensuse.org/products/opensuse/openSUSE/opensuse-startup/art.

osuse.installquick.html

http://goo.gl/GD3zh

Accessed 18 Jul 2011.

[10] Intel and Nokia Merge Software Platforms for Future Computing Devices.
http://www.intel.com/pressroom/archive/releases/2010/20100215corp.htm

http://goo.gl/AnIU7

Accessed 18 Jul 2011.

[11] LEON Development Boards.
http://www.gaisler.com/cms/index.php?option=com_content&task=section&id=

9&Itemid=29

http://goo.gl/G6CQM

Accessed 18 Jul 2011.

[12] LEON4 Processor.
http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=

338&Itemid=231

http://goo.gl/9mYgu

Accessed 18 Jul 2011.

[13] LEON4 Product Sheet.
http://www.gaisler.com/doc/LEON4_32-bit_processor_core.pdf

http://goo.gl/XvKav

Accessed 18 Jul 2011.

[14] Markets & Applications.
http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=

119&Itemid=40

http://goo.gl/BVpI2

Accessed 18 Jul 2011.

[15] Maximum RPM.
http://www.rpm.org/max-rpm

Accessed 18 Jul 2011.

130

References

[16] MeeGo Architecture Layer View.
https://meego.com/developers/meego-architecture/

meego-architecture-layer-view

http://goo.gl/YLx0F

Accessed 18 Jul 2011.

[17] MeeGo Build Service.
http://build.meego.com

Accessed 18 Jul 2011.

[18] meegocoreia32maddesysroot1.1.log.
http://mirrors4.kernel.org/meego/releases/1.1/core/images/

meego-core-ia32-madde-sysroot/meego-core-ia32-madde-sysroot-1.1.log

http://goo.gl/uPlly

Accessed 18 Jul 2011.

[19] Nokia and Microsoft Announce Plans for a Broad Strategic Partnership to Build
a New Global Mobile Ecosystem.
http://www.microsoft.com/presspass/press/2011/feb11/02-11partnership.mspx

http://goo.gl/APPAF

Accessed 18 Jul 2011.

[20] OpenSUSE Build Service.
http://en.opensuse.org/Portal:Build_Service

http://goo.gl/hrOqg

Accessed 18 Jul 2011.

[21] Public Key Criptography Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Public-key_cryptography

http://goo.gl/h4gAv

Accessed 18 Jul 2011.

[22] RPM Package Manager.
http://rpm5.org

Accessed 18 Jul 2011.

[23] SDK MeeGo Wiki.
http://wiki.meego.com/SDK

Accessed 18 Jul 2011.

[24] Slackware Package Management.
http://www.slackbook.org/html/package-management.html%

urlhttp://goo.gl/QGy3e

Accessed 18 Jul 2011.

131

References

[25] SOC Library.
http://www.gaisler.com/cms/index.php?option=com_content&task=section&id=

13&Itemid=125

http://goo.gl/BrfJG

Accessed 18 Jul 2011.

[26] SSH Authentication Protocol.
http://www.ietf.org/rfc/rfc4252.txt

Accessed 18 Jul 2011.

[27] The Debian package management tools.
http://www.debian.org/doc/FAQ/ch{-}pkgtools.en.html

% urlhttp://goo.gl/FQFko

Accessed 18 Jul 2011.

[28] The SPARC Architecture Manual Version 8.
http://www.sparc.org/standards/V8.pdf

http://goo.gl/tfG9f

Accessed 18 Jul 2011.

[29] Version 7 Unix Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Version_7_Unix

http://goo.gl/jQVjO

Accessed 18 Jul 2011.

[30] Xfce Desktop Environment.
http://www.xfce.org

Accessed 18 Jul 2011.

132

