
DF

Computing Failure Probabilities for PDEs
with Random Data
Master’s thesis in Engineering Mathematics and Computational Science

OSKAR EKLUND

Department of Mathematical Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020





Master’s thesis 2020:NN

Computing Failure Probabilities for PDEs with
Random Data

OSKAR EKLUND

Department of Mathematical Sciences
Chalmers University of Technology

Gothenburg, Sweden 2020



Computing Failure Probabilities for PDEs with Random Data
Oskar Eklund

© Oskar Eklund, 2020.

Supervisor: Axel Målqvist, Mathematical Sciences
Ass. supervisor: Fredrik Hellman, Mathematical Sciences
Examiner: Annika Lang, Mathematical Sciences

Master’s Thesis 2020:NN
Department of Mathematical Sciences
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX, template by David Frisk
Printed by Chalmers Reproservice
Gothenburg, Sweden 2020

iv



Computing Failure Probabilities for PDEs with Random Data
Oskar Eklund
Mathematical Sciences
Chalmers University of Technology

Abstract
We deal with partial differential equations with random data and in particular Pois-
son’s equation with random data. This equation has a unique solution. The failure
probability is the probability that a functional of that solution is less (or greater)
than a given value. Algorithms for approximating failure probabilities are studied
and tested and a new iterative method of approximating the failure probability is
presented and examined in numerical experiments. As the thesis involves both ran-
dom variables and partial differential equations, both probabilistic problems and
problems with partial differential equations are studied along the way. The results
of the numerical experiments show that the method performed well, with respect to
computational cost, in comparison with a basic Monte Carlo simulation.

Keywords: PDE with random data, failure probability, Monte Carlo method, finite
element method, selective refinement
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1
Introduction

Partial differential equations (PDEs) are widely used for describing physical phe-
nomena. In this project, we take a deeper look into PDEs with random data, that
is, PDEs with stochastic coefficients. With the work of [6] and [7] in mind, we study
algorithms for efficiently computing approximations of failure probabilities arising
from such PDEs. Also, we have developed an algorithm for making the computation
of a failure probability efficient. We present a new method for computing the failure
probability and show two numerical examples where the method, consisting of two
algorithms, is used.

The main problem of this thesis is to, given a convex and polygonal domain D ⊂ R2,
a probability space (Ω,F , P ) and a log-normally distributed random field a, find a
function u such that−∇ · a(ω, x)∇u(ω, x) = f(x), in D,

u(ω, x) = 0, on ∂D,
(1.1)

for a fixed f ∈ L2(D). This model equation has been studied in e.g. [4]. It is a fre-
quently used model in porous media flow. In our project we deal with efficient ways
of approximating failure probabilities for functionals of the solution (the probability
of a functional to be greater or less than some value) to (1.1).

In [6] and [7] a selective refinement algorithm was introduced and used together
with a multilevel Monte Carlo method for approximating failure probabilities. Here,
instead of a selective refinement algorithm, we suggest a variation of this approach
which leads to an iterative algorithm that does not demand for error estimates as in
[6] and [7]. We use the circulant embedding method for generating the data a and
the standard Monte Carlo method.

In Chapter 2 we start by some preliminary definitions followed by formulating the
problem of the thesis. This is followed by two independent chapters; Chapter 3 which
contains the finite element theory used for solving PDEs and Chapter 4 which con-
tains the probabilistic part of the project. Chapter 5 describes the algorithms which
form the method used and Chapter 6 presents the results of the implementation of
the method. Also, a discussion with conclusions and proposals of future work will
be included in Chapter 6, which closes the thesis.
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2
Theoretical background and

problem formulation

In this chapter, we present the theoretical background of the thesis and the problem
we are dealing with. The aim of this chapter is to make the reader familiar with the
theory behind the algorithms and the numerical results.

2.1 Preliminaries
We start by presenting some useful definitions. First, we define a random field.

Definition 2.1.1. Let T be a set and (E, E) be a measurable space. A random
field (a(t), t ∈ T ) taking values in (E, E) is a collection of measurable mappings a(t)
from a probability space (Ω,F ,P).

For us, T will be a subset of R2, E will be R and E will be the Borel σ-algebra
containing all subsets of R, denoted by B(R). With this definition in mind, we
continue with defining a normally distributed random field and then a log-normally
distributed random field, which will be of certain interest in the main problem of
our project.

Definition 2.1.2. A random field (a(t), t ∈ T ) is normally distributed if for all
n ≥ 1 and (t1, . . . , tn) ∈ T n the random vector (a(t1), . . . , a(tn)) is a Gaussian ran-
dom vector.

Worth mentioning here is that we by a Gaussian random vector mean a random
vector, where every finite linear combination of its components is a Gaussian ran-
dom variable.

Definition 2.1.3. A random field (a(t), t ∈ T ) is log-normally distributed if the
random field (ln(a(t)), t ∈ T ) is normally distributed.

2.2 Problem formulation
Now we are ready for formulating the problem of the thesis. We are considering
Poisson’s equation with random data. Let D ⊂ R2 be a convex and polygonal
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2. Theoretical background and problem formulation

domain, (Ω,F ,P) a complete probability space and a a log-normally distributed
random field in D (T = D in Definition 2.1.3). Consider the problem of, given
ω ∈ Ω, finding a function u such that−∇ · a(ω, x)∇u(ω, x) = f(x), in D,

u(ω, x) = 0, on ∂D,
(2.1)

for a fixed f ∈ L2(D). Here, a(ω, x) = eκ(ω,x), with κ being a normally dis-
tributed random field with mean E[κ(·, x)] = 0 and covariance function given by
E[κ(·, x1)κ(·, x2)] = σ2e

−‖x1−x2‖2
ρ . The norm ‖ · ‖2 denotes the Euclidean norm and

the given parameters σ, ρ ∈ R+ are called standard deviation and correlation length,
respectively.

(a) ρ = 0.1 (b) ρ = 0.05 (c) ρ = 0.01

Figure 2.1: Realizations of a.

In Figure 2.1 we see how realizations of a may look like for standard deviation σ = 1
and different correlation lengths ρ. The first question one may ask while looking
at (2.1) is if it admits a unique solution. For this purpose, we look into the work of [4].

Theorem 2.2.1. Equation (2.1) admits a unique solution u, which belongs to
Lp(Ω, H1

0 (D)), for any p > 0.

For a proof of Theorem 2.2.1, we refer to Proposition 2.4 of [4]. We proceed by
defining the failure probability of a functional of the solution u to (2.1), which is
the term of most interest in this project. The failure probability should be seen
as the probability that a given quantity of interest (QoI), expressed in terms of a
functional X of u, is less (or greater) than a given critical value.

Definition 2.2.1. Let u be the unique solution to (2.1), X a functional of u and
y ∈ R. Then the failure probability p of X is given by

p = P({X ≤ y}). (2.2)

For clarity, we mention here that as u is a random variable, also X becomes a
random variable. Thus, it makes sense to talk about the event {X ≤ y} and the
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2. Theoretical background and problem formulation

probability P({X ≤ y}). We follow up with an example which shows how failure
probabilities relate to real world problems, inspired by [6].

Example 2.2.1. Geological sequestration of carbon dioxide (CO2) is performed by
injection of CO2 in an underground reservoir. The fate of the CO2 determines the
success or failure of the storage system. The CO2 propagation is often modeled as
a PDE with random input data, such as a random permeability field. Typical QoIs
include reservoir breakthrough time or pressure at a fault. The value y corresponds
to a critical value which the QoI may not exceed or go below. In the breakthrough
time case, low values are considered failures. In the pressure case, high values are
considered failures. In the latter case, one should negate the QoI to transform the
problem into the form of (2.2).

To compute failure probabilities, we consider the (Bernoulli distributed) random
variable Q, defined by Q = 1{X≤y} and note that p = E[Q]. Later on, we construct
estimators Q̂ to approximate E[Q].

5
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3
Finite element method

In this chapter we consider a deterministic version of (2.1); the boundary value
problem −∇ · A(x)∇u(x) = f(x), in D,

u(x) = 0, on ∂D,
(3.1)

where D ⊂ R2 is a convex and polygonal domain and where we for the diffusion
coefficient A ∈ L∞(D,R2×2) assume it holds

0 < a0 := ess inf
x∈D

inf
v∈R2\{0}

(A(x)v) · v
v · v

,

∞ > a1 := ess sup
x∈D

sup
v∈R2\{0}

(A(x)v) · v
v · v

.

We will present the variational formulation and proceed by introducing the finite
element method for (3.1). For details on the finite element method, see e.g. [3].

3.1 Preliminaries
In this section we present preliminaries required to follow the rest of the chapter.
We define the spaces Lp(D) by

Lp(D) := {u : D → R measurable : ‖u‖Lp(D) <∞}, for p = 1, 2,

with norm

‖u‖Lp(D) :=
(∫

D
|u(x)|p dx

)1/p
.

The space L2(D) is a Hilbert space with respect to the inner product

(u, v) :=
∫
D
u(x)v(x) dx.

To get to the Sobolev spaces used we here introduce the concept of weak derivatives.
Let u ∈ C1

0(D). For all v ∈ C1
0(D) we have∫

D
u
∂v

∂xi
dx = −

∫
D
v
∂u

∂xi
dx, i = 1, 2.

7



3. Finite element method

Now we, for the partial derivatives, introduce the notation

Dαv := ∂|α|v

∂xα1
1 ∂xα2

2
,

where α = (α1, α2) is a multi-index and |α| = α1 + α2.

Definition 3.1.1. If u, v ∈ L1(D) we say that v is the αth-weak derivative of u if∫
D
uDαϕ dx = (−1)|α|

∫
D
vϕ dx, for all φ ∈ C |α|0 (D).

We note that it coincides with the (strong) derivative for u ∈ C1
0(D). Now we let

Hk(D) := {v ∈ L2(D) : Dαv ∈ L2(D) for |α| ≤ k}, for k = 1, 2. (3.2)

Also, we let (v, w)Hk(D) := ∑
|α|≤k

∫
dD

αvDαw dx and

‖v‖Hk(D) := (v, w)1/2
Hk(D) =

 ∑
|α|≤k

∫
D
DαvDαw dx

1/2

. (3.3)

The set (3.2) with norm (3.3) is an example of a Sobolev space, which is a Hilbert
space because of the weak derivatives. We also use the notation

H1
0 (D) := {v ∈ H1(D) : v|∂D = 0}.

We continue with the Cauchy–Schwarz inequality.

Theorem 3.1.1. Let V be a vector space with inner product (·, ·) and norm ‖ · ‖.
Then

|(u, v)| ≤ ‖u‖‖v‖, for all u, v ∈ V.

Also, we have the important Lax–Milgram theorem which gives existence and unique-
ness (in weak sense) of a solution to a given boundary value problem.

Theorem 3.1.2. Let V be a Hilbert space and assume b to be a coercive, bounded
bilinear form and L a bounded linear functional on V . Then, there exists a unique
u ∈ V such that

b(u, v) = L(v), for all v ∈ V.

3.2 Variational formulation
To get to the variational formulation of (3.1), we multiply the equation with a
test function v ∈ H1

0 (D). Also, we integrate over D, use Green’s formula and the
boundary conditions. The variational formulation of (3.1), reads: find u ∈ H1

0 (D)
such that

(A∇u,∇v) = (f, v) for all v ∈ H1
0 (D), (3.4)

where (·, ·) denotes the L2 inner product.

8



3. Finite element method

Theorem 3.2.1. There exists a unique function u ∈ H1
0 (D) fulfilling (3.4).

Proof. We equip H1
0 (D) with the norm | · |H1(D) := ‖∇ · ‖L2(D). This is a norm

on H1
0 (D) because of the Poincaré inequality. We want to apply the Lax–Milgram

theorem. For that purpose, we have to show that the left-hand side of (3.4) is
bounded and coercive and that the right-hand side of (3.4) is bounded. Let u, v ∈
H1

0 (D). We have

|(A∇u,∇v)| ≤ a1|u|H1(D)|v|H1(D),

by the Cauchy–Schwarz inequality, which proves the boundedness of the left-hand
side. Also,

(A∇u,∇u) ≥ a0(∇u,∇u)
= a0|u|2H1(D),

which proves the coercivity of the left-hand side. Finally, by the Poincaré inequality,
there exists a constant C such that

|(f, v)| ≤ ‖f‖L2(D)‖v‖L2(D)

≤ C‖f‖L2(D)|v|H1(D).

The first inequality is satisfied, once again, by the Cauchy–Schwarz inequality. Now
we have boundedness also for the right-hand side, and the Lax–Milgram theorem
gives us the result.
As we have the variational formulation of (3.1), we will make a discretization to get
to the finite element problem.

3.3 Discretization
First we let Th = {K} be a triangulation of D and let h = maxK∈Th(diam(K)). We
assume the triangulation to be shape-regular, i.e., there exists a number ε > 0 such
that every K ∈ Th contains a ball of radius rε with rε ≥ hK

ε
, where hK = diam(K).

Also, we let Vh be the space of continuous piecewise linear polynomials on Th, with
trace 0, i.e.,

Vh = {v ∈ C(D) : v is affine on K for each K ∈ Th, v = 0 on ∂D}.

Now our finite element problem reads: find uh ∈ Vh such that

(A∇uh,∇v) = (f, v) for all v ∈ Vh. (3.5)

Theorem 3.3.1. There exists a unique finite element solution uh ∈ Vh to (3.5).
Proof. Since Vh is a closed subspace of H1

0 (D) the result follows as in the proof of
Theorem 3.1.1.
Next, we want to get an idea of the error that occurs while approximating u by uh,
in terms of h.

9



3. Finite element method

3.4 Error analysis
For the purpose of getting error estimates in terms of h, we want to introduce the
Clément interpolant. Let N denote the nodes of Th and xi be the coordinates of
node i. First, we define the local patches

wi =
⋃
{K ∈ Th : xi ∈ K}

and

w̃K =
⋃
{wi : K ∈ wi}.

Let {φi}i∈N be the set of hat functions spanning Vh. We are ready for the definition
of the Clément interpolant.

Definition 3.4.1. The Clément interpolant Ih : L1(D) → Vh is, for v ∈ L1(D),
given by

Ihv :=
∑
i∈N

∫
wi
v dx∫

wi
1 dxφi.

We continue with a interpolation estimate.

Lemma 3.4.1. For all functions v ∈ H1+s(D), for s = 0, 1, it holds for some
constant C

‖v − Ihv‖L2(K) + hK‖v − Ihv‖H1(K) ≤ Ch1+s
K ‖v‖H1+s(w̃K).

Further, due to the shape-regularity of Th, it holds for some constant C

‖v‖2
H1+s(D) ≤

∑
K∈Th

‖v‖2
H1+s(w̃K) ≤ C‖v‖2

H1+s(D).

For a proof of Lemma 3.4.1, we refer to Section 6.9 in Chapter II of [2]. As we have
this estimate, we are ready for the next lemma. To make the reading easier in the
upcoming proofs, we let b(u, v) = (A∇u,∇v) for u, v ∈ Vh.

Lemma 3.4.2 (Céa’s lemma). Assume u and uh solve (3.4) and (3.5), repsectively.
Then, there exists a constant C such that

‖u− uh‖H1(D) ≤ C min
χ∈Vh
‖u− χ‖H1(D). (3.6)

Proof. For any χ ∈ Vh we have, by (3.4) and (3.5),

b(u− uh, χ− uh) = (f, χ− uh)− (f, χ− uh)
= 0.

Now, using that the bilinear form b is coercive and bounded we get, with coercivity
constant a0 and boundedness constant a1,

a0‖u− uh‖2
H1(D) ≤ b(u− uh, u− uh)

≤ b(u− uh, u− χ) + b(u− uh, χ− uh)
≤ a1‖u− uh‖H1(D)‖u− χ‖H1(D).

10



3. Finite element method

Hence, with C = a1
a0
,

‖u− uh‖H1(D) ≤ C min
χ∈Vh
‖u− χ‖H1(D).

In the next lemma, we combine Lemma 3.4.1 and Lemma 3.4.2 to get to a new
estimate.

Lemma 3.4.3. Assume u ∈ H2(D) and uh solve (3.4) and (3.5), respectively. Then,
there exists a constant C such that

‖u− uh‖H1(D) ≤ Ch‖u‖H2(D). (3.7)

Proof. We use Lemma 3.4.2 with χ = Ihu (in the first inequality) and the two
estimates of Lemma 3.4.1 with s = 1 (in the second inequality) to conclude

‖u− uh‖H1(D) ≤ C‖u− Ihu‖H1(D)

≤ Ch‖u‖H2(D).

Now we want to bound the error in the L2(D)-norm.

Theorem 3.4.1. Assume u and uh solve (3.4) and (3.5), repsectively. Assume also
that there exists a constant C0 such that ||v||H2(D) ≤ C0|| − ∇ · A∇v||L2(D) for all
v ∈ H2(D) ∩H1

0 (D). Let the functional q : Vh → R be defined by

q(v) =
∫
D
vψ dx,

for some ψ ∈ L2(D). Then, there exists a constant C such that

q(u− uh) ≤ Ch2 (3.8)

Proof. We introduce the adjoint problem−∇ · A(x)∇ϕ(x) = ψ(x), in D,
ϕ(x) = 0, on ∂D.

In weak formulation, it reads: find ϕ ∈ H2(D) ∩H1
0 (D) such that

b(v, ϕ) = (v, ψ) for all v ∈ Vh. (3.9)

Now, we get

q(u− uh) = b(u− uh, ϕ)
= b(u− uh, ϕ− Ihϕ)
≤M‖u− uh‖H1(D)‖ϕ− Ihϕ‖H1(D)

≤Mh2‖u‖H2(D)‖ϕ‖H2(D)

≤MC2
0h

2‖ − ∇ · A∇u‖L2(D)‖ − ∇ · A∇ϕ‖L2(D)

= MC2
0‖f‖L2(D)‖ψ‖L2(D)h

2

(3.10)

11



3. Finite element method

To be clear: in the first equality we use (3.9) with v = u − uh and in the second
equality we use that b(u − uh, Ihϕ) = 0. Further, in the third line we used the
boundedness of b with M being the boundedness constant. Then, in the 4th line,
we use Lemma 3.4.3 twice. In the 5th line, we use directly an assumption of the
theorem. Hence, we can conlude that there exists a constant C such that

q(u− uh) ≤ Ch2.

Choosing ψ = u− uh in Theorem 3.3.1. we obtain the following.

Corollary 3.4.1. Assume u and uh solve (3.4) and (3.5), repsectively. Assume also
that there exists a constant C0 such that ‖v‖H2(D) ≤ C0‖ − ∇ · A∇v‖L2(D) for all
v ∈ H2(D) ∩H1

0 (D). Then, there exists a constant C such that

‖u− uh‖L2(D) ≤ Ch2. (3.11)

This estimate will be of particular interest for the upcoming method.

12



4
Probability theory

The first probabilistic problem of the project is the problem of generating normally
distributed random fields, needed for (2.1). The second is the problem of approx-
imating the expectation of random variables. Approximations of expectations is
often done by means of Monte Carlo methods, and so, it is done in this work. This
chapter aims to present first how we are dealing with generating the data and then
the Monte Carlo method.

4.1 Generating data
For generating normally distributed random fields we make use of the circulant em-
bedding method described in [10] to get a realization of a. We will in this section
follow the work of [10]. For further details on the circulant embedding method, see
[5].

Here we consider a two-dimensional domain D ⊂ R2. A normally distributed ran-
dom field {a(x) : x ∈ D} is a second-order field such that the vector of random
variables

a = [a(x1), a(x2), . . . , a(xN)]T

follows the multivariate normal distribution for any x1, . . . , xN ∈ D. This is writ-
ten a ∼ N(µ,C), where µ is the mean vector with entries µi = µ(xi) and C is
the covariance matrix with entries cij = C(xi, xj). The covariance matrix C is by
definition symmetric and non-negative definite. Further, we assume µ = 0. An
observation here is that a pair of independent samples from N(0, C) can be drawn
simultaneously by taking the real and imaginary parts of Y ∼ CN(0, 2C), where
CN denotes the complex normal distribution.

An N × N matrix is said to be a Toeplitz matrix if the entries along each diag-
onal are the same. Also, an N × N matrix is said to be a circulant matrix if it is
a Toeplitz matrix for which each column is a circular shift of the elements in the
preceding column (so that the last entry becomes the first entry). Now, consider
the matrices 1 2 3

2 1 2
3 2 1

 ,
1 3 3

3 1 3
3 3 1

 .
The matrix on the left is symmetric and Toeplitz while the matrix on the right is
symmetric and circulant. We notice that symmetric Toeplitz matrices always can

13



4. Probability theory

be extended to symmetric circulant matrices by adding an extra row and column.
For the symmetric Toeplitz matrix above it would look like this:

1 2 3
2 1 2
3 2 1

 −→


1 2 3 2
2 1 2 3
3 2 1 2
2 3 2 1

 .

We notice further that we do only need to store the first row or column of a symmetric
Toeplitz or circulant matrix to generate the whole matrix. Similarly to this exten-
sion of the above matrix, it is always possible to extend symmetric block Toeplitz
matrices with Toeplitz blocks (BTTB matrices) to symmetric block circulant ma-
trices with circulant blocks (BCCB matrices).

Circulant and BCCB matrices can be factorized using discrete Fourier transforms.
Any BCCB matrix B has the decomposition B = FΛF ∗ where F is the two-
dimensional Fourier matrix, F ∗ is the conjugate transpose of F and Λ is the diagonal
matrix of eigenvalues of B. If B now is a valid covariance matrix (symmetric and
non-negative definite), then samples can be drawn from CN(0, 2B). Then, since
non of the eigenvalues of B are negative, Λ1/2 is well-defined and we can compute

Y = FΛ1/2ξ, where ξ ∼ CN(0, 2I).

It can be shown that Y ∼ CN(0, 2B) and so Z1 = Re(Y) and Z2 = Im(Y) are
independent N(0, B) samples. The multiplications with W can be performed by
applying the discrete Fourier transform and Λ can be obtained by applying an in-
verse discrete Fourier transform to the reduced version of B. The observations above
are the basis for the circulant embedding method.

The N × N covariance matrix C associated with a normally distributed random
field on a two-dimensional domain D is in general not a BCCB matrix. However, if
the sample points xi are uniformly spaced and the covariance function are stationary
(as in our case), then C is a BTTB matrix. Consider now the covariance function

C(xi, xj) = σ2e
−‖xi−xj‖2

ρ .

This is the logarithm of the covariance function of the random field in the main
problem of the thesis. The Toeplitz structure is visible.
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Figure 4.1: Plot of the covariance matrix C associated with covariance function
C(xi, xj) = E[a(xi)a(xj)] = σ2e

−‖xi−xj‖2
ρ , σ = 1, ρ = 1 and a uniform grid of 20× 20

points. The matrix is BTTB with 20× 20 Toeplitz blocks of size 20× 20.

Circulant embedding can be used to generate realizations of stationary normally dis-
tributed random fields provided that the sample points are uniformly spaced. As the
associated covariance matrix C is BTTB and it can be extended to a larger M ×M
BCCB matrix B, samples of N(0, C) can be obtained from samples of N(0, B) by
discarding some elements of the vector. Samples from N(0, B) can be obtained from
the real and imaginary parts of Y ∼ CN(0, 2B) using discrete Fourier transforms,
as stated above.

The above should explain the fundamentals of the method used for generating the
data a of problem (2.1) while working with the numerical example.

4.2 Monte Carlo method

In the project we do approximate expectations and this is done using the Monte
Carlo method. This section discusses the principles of the Monte Carlo method.
For details on the Monte Carlo method, see [8].

We consider a random variable X and the numerical evaluation of E[X] by the
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empirical mean

X̄M := 1
M

M∑
m=1

Xm,

where (Xm)m≥1 are independent simulations having the same distribution as X.
Firstly we present the strong law of large numbers, which assures the almost sure
convergence of X̄M to X.

Theorem 4.2.1. Let X be a real-valued integrable random variable. Then, with
probability 1,

lim
M→∞

X̄M = E[X].

For a proof, see e.g. [8]. Let us continue with the definition of convergence in dis-
tribution.

Definition 4.2.1. A sequence of random variables X̄M is said to converge in dis-
tribution to a random variable X as M → ∞, denoted here by X̄M =⇒ X as
M →∞, if for any bounded continous function ϕ with compact support

E[ϕ(XM)]→ E[ϕ(X)], as M →∞.

With this definition in mind, we continue with the important central limit theorem.

Theorem 4.2.2. Let X be a d-dimensional square integrable random vector with
covariance matrix C with entries cij = Cov(Xi, Xj). Then

√
M(X̄M − E[X]) =⇒ Z, as M →∞

where Z ∼ N(0, C).

This means that if we want to increase the accuracy of E[X] by a factor of 10, it is
necessary to increase M by a factor of 102 = 100. Also, we note that the error is
random and we can’t have a control of the error with probability 1.
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This chapter is the main chapter of the report as the algorithms used for computing
the failure probabilities are described here. We start by describing the selective
refinement algorithm which was used together with a multilevel Monte Carlo method
in [6] and [7]. Then a variation of that algorithm, including methods of how to choose
sample sizes based on Chapter 3 and 4 is described.

5.1 Selective refinement algorithm
Here we consider a model problem M, e.g. a differential operator as in (2.1) and
let u denote the unique solution to

M(u, ω) = 0, (5.1)

where the data ω is sampled from a complete probability space (Ω,F ,P). We also
consider a functional X of the solution u to (5.1). For this section, we follow the
work of [6]. We consider refinement levels ` ∈ N0 and let X ′` be an approximation
of X on level ` and Q′` := 1{X′

`
≤y} be an approximation of Q on level `. We will

here approximate failure probabilities, also this on level `. One first way of defining
accuracy is by assuming

|X −X ′`| ≤ γ`, (5.2)

for some 0 < γ < 1, that is, all approximations on level ` are uniformly bounded
by γ`. As we are interested in computing failure probabilities this assumption may
be stronger than we need, since the failure probability functional Q is very sensi-
tive to perturbations close to y but insensitive for perturbations far from y. This
insensitivity is exploited in the next way of defining accuracy and in the upcoming
algorithm.

Now, let X` be another approximation of X on level `. Here we instead define
the following weakened condition

|X −X`| ≤ γ` or |X −X`| < |X` − y|, (5.3)

where 0 < γ < 1 is fixed, called tolerance factor, and y ∈ R is the critical value
y for which the failure probability should be computed. The selective refinement
algorithm will be for computing an approximation X` fulfilling (5.3). In Figure 5.1
we see an illustration of how condition (5.3) looks like. The numerical error is
allowed to be higher for values far from y.
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y

γ`

X`

|X
−
X
`|

|X −X`| ≤ γ`

|X −X`| < |X` − y|

Figure 5.1: Illustration of (5.3).

The only regularity assumption on the model is that the cumulative distribution
function (cdf), denoted by F , of the random variable X(u) is Lipschitz continuous,
i.e., there exists a constant CL such that for any x1, x2 ∈ R it holds

|F (x1)− F (x2)| ≤ CL|x1 − x2|. (5.4)

Next, as we have the approximation X`, we define Q` = 1{X`≤y} analogously to Q.
We are ready for the first lemma of the section.

Lemma 5.1.1. Under assumptions (5.3) and (5.4), there exists a constant C, not
depending on `, such that

|E[Q` −Q]| ≤ Cγ`. (5.5)

Proof. We split Ω into the events A = {ω ∈ Ω : γ` ≥ |X` − y|} and its complement
Ω \ A. For ω ∈ Ω \ A we have, by (5.3), |X −X`| < |X`− y|. We then get Q` = Q,
since, if X` ≤ y,

|X` − y| = y −X`

≤ y −X + |X −X`|
≤ y −X + |X` − y|,
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which means X ≤ y, and, if X` > y

|X` − y| = X` − y
≤ X − y + |X` −X|
< X − y + |X` − y|,

which means X > y. We have now seen, just using the triangle inequality, that for
ω ∈ Ω \ A we have X` ≤ y ⇔ X ≤ y, which is Q` = Q.

We also note that for the event A we have |X` − X| ≤ γ` by (5.3). This, in
turn, implies |X − y| ≤ |X −X`|+ |X` − y| ≤ 2γ` for the event A. Now we get,

|E[Q` −Q]| =
∣∣∣∣∫
A
Q`(ω)−Q(ω) dP(ω)

∣∣∣∣
≤
∣∣∣∣∫
A

1 dP(ω)
∣∣∣∣

≤ P(|X − y| ≤ 2γ`)
= F (y + 2γ`)− F (y − 2γ`)
≤ 4CLγ`,

using that Q` = Q for ω ∈ Ω \ A in the first line, and the Lipschitz continuity
assumption (5.4) in the last line.
A main feature of the selective refinement algorithm is that it exploits the fact that
Q` = Q for realizations with |X −X`| < |X`− y|. This means that even if the error
is greater than γ`, it might be suffciently accurate to yield the correct value of Q`.
The algorithm is presented below:

Algorithm 1 Selective refinement algorithm
1: Input arguments: level `, realization i, critical value y, tolerance factor γ.
2: Compute X ′0(ωi`).
3: Let j = 0.
4: while j < ` and γj ≥ |X ′j(ωi`)− y|
5: Let j = j + 1.
6: Compute X ′j(ωi`).
7: end while
8: Let X`(ωi`) = X ′j(ωi`)

Lemma 5.1.2. Approximations X` computed using Algorithm 1 satisfy (5.3).
Proof. In each realization in the while-loop of Algorithm 1 we have that γj is the
error tolerance, i.e., |X(ωi`) − X ′j(ωi`)| ≤ γj. The stopping criterion hence implies
(5.3).
Now, in [6], Algorithm 1 is used together with a multilevel Monte Carlo method.
The selective refinement algorithm is based on error estimating. What we do instead
is using a new variation of the selective refinement algorithm described in the next
section.
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5.2 Variation of the selective refinement algorithm
This variation of the selective refinement algorithm is performed for a demonstra-
tional example and the main example, the PDE problem (2.1), and aims for finding
an efficient way of computing the failure probability for that problem. We put focus
on sample sizes and mesh discretizations according to the error analysis of Chapter 3.
The selective refinement algorithm in [6] deals with one realization and individual
error estimates and then uses a multilevel Monte Carlo method for computing an
approximator of the failure probability (it is not necessary to use a multilevel Monte
Carlo method together with the selective refinement algorithm). Now we instead
present an algorithm for directly, by means of a standard Monte Carlo method, com-
pute an approximation of the failure probability. This is to be compared against
the selective refinement algorithm with a standard Monte Carlo method. In the
previous work [6] a posteriori error estimates was used which demanded for a deeper
refinement of all samples to compute errors. Here, we instead iterate until we get a
certain convergence in p so that we do not need error estimates for each sample.

Also here, we introduce a hierarchy of levels ` = 0, 1, . . . , L, which correspond to
different meshes of D. We let N be a start sample size (a sample size on level
` = 0). We also assume we have a given functional X of the solution, which we
are able to compute directly as we have the solution. An example of such an X
is X(u) = maxx∈D u(·, x), which will be used later on in a numerical experiment.
The first thing to do in the algorithm is generating N random fields on the finest
mesh discretization (which corresponds to level L). We want to clarify that we
only generate random fields on the finest discretization. We assume that the nodes
of coarser discretizations are subsets of the nodes of the finer discretizations, i.e.,
N0 ⊂ N1 ⊂ · · · ⊂ NL, if we denote by N` the set of nodes for the discretization on
level `. For the computations on coarser levels than level L, we use the values for
the relevant nodes.

As we have N generated random fields, the next step is to decide sample sizes
N` for ` = 0, 1, . . . , L. We want to point out that we are not taking new samples
for each level. The sample sizes are for deciding the amount of the samples which
should be refined. The idea is to have N0 samples, make computations for them on
level ` = 0, then choose N1 of them with solutions close to y and make computations
for them on level ` = 1. In this fashion we proceed until level ` = L.

Here we assume

N0 = N

N1 = CδN

N2 = Cδ2N

...
NL = CδLN,

(5.6)
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for some fix 0 < C < 1, 0 < δ < 1. This means, we are refining a proportion of Cδ`
of the start sample size on level `. This assumption is based on Lemma 5.1.1. For
a PDE discretization as we work with in this project, δ depends on h. For example,
if the convergence is h2 then δ = 1

4 .

We want to find a good way of deciding C and δ. First we decide δ as in Algo-
rithm 2. We let δ be the average, with respect to the levels, of the average change
of the functional of the solution.

Algorithm 2 Algorithm for finding δ
1: Initialize sample size Nδ (� N)
2: Generate realizations {ωi}Nδi=1 on the finest level L
3: for i = 1, . . . , Nδ

4: for ` = 0, . . . , L
5: Solve (3.5) with A given by the random field generated by ωi and where

Vh depend on `, to get u`(ωi)
6: Compute X(u`(ωi))
7: Let δ = 1

L

∑L−1
`=0

1
Nδ

∑Nδ
i=1

X(u`+1(ωi))
X(u`(ωi))

By ”Solve (3.5) with A given by the random field generated by ωi” we mean that
A represents the random field which becomes given as the realization is done, via
circulant embedding. The dependency of Vh on ` is such that the discretization is
finer for deeper levels `.

To then find C and the approximate failure probability p̃, we use an iterative algo-
rithm where we assume that δ is already given by Algorithm 2. We assume that we
have an exact solution u(ω, ·) as we have a realization ω. In practice, we get this so-
lution by solving the finite element problem for a small h; a smaller h than for ` = L.

The idea is to first choose C0 close to 0 and get sample sizes according to (5.6)
with C = C0. Since C0 is close to 0 the sample sizes N` will decrease fast as `
increases. As we performed Algorithm 2 we had a fix sample size Nδ (same for each
level `) but now we do not have such a sample size. Here we instead, while going
from level ` to `+ 1, choose the N`+1 realizations which have resulted in a QoI X(u)
closest to y. This is because those are most likely to ”change side” (by that we mean
with respect to y if we think of a real line with y in the middle). This is illustrated
in Figure 5.2. At the end, it will mean that for some realizations, the QoI will only
be computed at level ` = 0, for some realizations, the QoI will be computed at
level ` = 1 and some realizations (NL realizations) will be computed at the finest
accuracy (level ` = L). The failure probability will in the end be computed as

p̃ = 1
N0

N0∑
i=1

1{X(u∗(ωi))≤y},

where level index ∗ denotes the deepest level u(ωi) have been solved for, that is, by
means of a Monte Carlo method (described in Chapter 4).
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Figure 5.2: An illustration of one iteration of Algorithm 3 with L = 4, N0 = 10,
N1 = 5, N2 = 3, N3 = 2, N4 = 1. The blue dots are to be refined and the red dots
are finished refined.

As we have also chosen C1 > C0 and performed the same thing as for p̃0, but with
new sample sizes according to (5.6) with C = C1, to get p̃1 we are able to compare
the outcomes. We want the derivative of p̃ with respect to C to be low. In practice
we decide a tolerance tol and look at

∣∣∣ p̃1−p̃0
C1−C0

∣∣∣. A stopping criterion for the algorithm
will be ∣∣∣∣∣ p̃k+1 − p̃k

Ck+1 − Ck

∣∣∣∣∣ < tol. (5.7)
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Algorithm 3 Iterative algorithm for finding C and p̃
1: Initialize sample size N , tolerance tol, C0, k = 0
2: Generate realizations {ωi}Ni=1 on the finest level L
3: Decide sample sizes {N`}L`=0 according to (5.6) with C = C0
4: for i = 1, . . . , N
5: Solve (3.5) with A given by the random field generated by ωi and with the

coarsest mesh (corresponding to ` = 0), to get u0(ωi)
6: Compute X(u0(ωi))
7: for ` = 1, . . . , L
8: Choose the N` of the realizations {ωi}N`−1

i=1 with X(u`−1(ωi)) closest to y
9: for the chosen realizations {ωj} ⊂ {ωi}N`−1

i=1
10: Solve (3.5) with A given by the random field generated by ωi, where Vh

depend on `, to get u`(ωj)
11: Compute X(u`(ωj))
12: Let p̃k = 1

N0

∑N0
i=1 1{X(u∗(ωi))≤y}, where level index ∗ denotes the deepest level

u(ωi) have been solved for
13: Choose C1 > C0 and repeat Step 3-12 with C = C1 in Step 3 to get p̃1
14: while (5.7) is not fulfilled and C < 1
15: k = k + 1
16: Choose Ck+1 > Ck and repeat Step 3-12 with C = Ck+1 in Step 3 to get p̃k+1
17: Let C = Ck
18: Let p̃ = p̃k

The choices of Ck for Step 13 and 16 have in this project been made with C0 = 0.1
and Ck+1 = Ck+0.1, but other, might be non-linear, growths of Ck are also possible.
The reasons of choosing Ck’s in the way it is done are simplicity and that it worked
well for numerical examples.
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This chapter will contain the numerical experiments done in this project. The two
examples are of different types, where the first is of demonstrational purpose while
the second is testing the method (Algorithm 2 and 3) for a quantity of interest of
the solution of (2.1). Lastly, we discuss the results and future work in the third
section.

6.1 A distribution example
In this numerical experiment we are not considering a PDE. Here instead, inspired
by [6], we consider the standard normal distribution. We let the QoI X belong to
the standard normal distribution. Also, we let y = 0.5 and we approximate the fail-
ure probability P({X ≤ y}). The true value of this probability is Φ(0.5) ≈ 0.69146.
The implementation of this example was done using Matlab.

We let the approximations of X ∼ N(0, 1) be given by

Xh = X + h(2Uh − 0.9)/1.1,

where (Uh)h∈{0.1,0.01,...,0.00001} is a family of independent uniformly distributed random
variables on [0, 1] and where Uh is independent of X for every h. Also, we let ` = 0
correspond to h = 0.1, ` = 1 correspond to h = 0.01, ` = 2 correspond to h = 0.001,
` = 3 correspond to h = 0.0001 and ` = 4 =: L correspond to h = 0.00001. We
clarify that for the algorithms this will mean that Step 5 of Algorithm 2 will not be
needed and Step 6 of Algorithm 2 should be interpreted as computing Xh(ωi) (and
similarly for Step 5 and 6 and Step 10 and 11 of Algorithm 3). We used sample
sizes Nδ = 100 and N = 106 for Algorithm 2 and 3 respevtively.

As we performed the algorithms we ended up with δ ≈ 0.32042 and C = 0.3.
This means that the amount of calculations were N0 = N = 106 for level ` = 0,
N1 = CδN = 96126 for level ` = 1, N2 = Cδ2N = 30801 for level ` = 2,
N3 = Cδ3N = 9870 for level ` = 3 and N4 = Cδ4N = 3163 for level ` = L = 4.
Finally, p̃ ≈ 0.692144, if we denote by p̃ the derived approximation of P({X ≤ y}).
This is to be compared with the Monte Carlo result pMC = 0.692142, which is
computed as

pMC = 1
N

N∑
n=1

1xn≤y,
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if we denote by (xn)Nn=1 the realizations of a sequence (Xn)Nn=1 of independent stan-
dard normally distributed random variables.

Assume now that the computational cost C` for one calculation on level ` is

C` = 4`, (6.1)

which is realistic if working with e.g. PDEs and the finite element method where
levels ` correspond to different refinements of the finite element mesh. Then the
cost for the last iteration of Algorithm 4, which computes p̃, is

Cost =
4∑
`=0

N`4` ≈ 3.32× 106,

which is to be compared against the cost of performing the Monte Carlo method,
using the same cost model (6.1) for the deepest level `. This total computational
cost becomes

CostMC = N × 4L ≈ 2.56× 108.

6.2 The maximum
In this section we will describe the results of our algorithm described in Section 5.2
implemented for problem (2.1). The implementation was done using Python coding
together with the FEniCS software, see [9]. Throughout the chapter, we consider
f ≡ 1 and D = [0, 1]× [0, 1] in (2.1).

Figure 6.1: Solution u for problem (2.1).

In Figure 6.1, which was created using ParaView (see [1]), we see how the solution
u behaves for our problem for one realization of a, with σ = 1 and ρ = 0.1. We
continue with a numerical experiment where Algorithm 2 and 3 are tested.

In this numerical experiment, we let the QoI X be given by

X(u) = max
x∈D

u(x),

and we seek an approximation p̃ of p = P({X ≤ y}). We let ` = 0 correspond to
a triangulation of D with 24 × 24 nodes, ` = 1 correspond to a triangulation of D
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with 25× 25 nodes, ` = 2 correspond to a triangulation of D with 26× 26 nodes and
finally ` = 3 =: L correspond to a triangulation of D with 27 × 27 nodes. These
nested meshes of D for ` = 0 and ` = 1 could be seen in Figure 6.2.

Figure 6.2: The triangulations of D used for level ` = 0 and ` = 1.

The parameters used for the log-normal field were here ρ = 0.1 and σ = 0.46,
inspired by [7]. We initialized sample sizes Nδ = 50 for Algorithm 2 and N = 1000
for Algorithm 3. Also, we chose tol = 0.1 and y = 0.075; the choice of y just to
not get a probability close to 1 or 0. With these parameters we got δ ≈ 0.49383,
C = 0.5 and p̃ = 0.611. As we performed the Monte Carlo method with the finest
discretization (the triangulation of D with 27 × 27 nodes) we obtained pMC = 0.6.
Hence we got the error

|p̃− pMC| = 0.011.

The computational cost of performing the last iteration of Algorithm 3 is

Cost =
7∑
`=4

N`4` ≈ 1.56× 106, (6.2)

which is to be compared with the computational cost of performing the Monte Carlo
method for the finest discretization. This cost is

CostMC = N × 4L+3 ≈ 1.64× 107.

We notice how the cost is approximately 10 times lower with our algorithm than it
is for the Monte Carlo method in this case. In the calculations of the computational
cost the factor 4 is involved because of the number of points in the meshes used.
Each level ` is associated to a mesh with 26 × 4` points.

6.3 Discussion
The conclusion for the results is that the example with the maximum as functional
(see Section 6.2) worked out well. The algorithm performed well for that problem.
Worth noticing is that we did only take into account the last iteration of Algorithm 3
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and not the total cost of the method (the full Algorithm 2 and 3) while comparing
costs with the Monte Carlo method. This was because of, firstly, that the cost of
Algorithm 2 is negligible due to the low sample size and, secondly, that the last
iteration of Algorithm 3 is the most computationally heavy of that algorithm. If we
instead look at all iterations of Algorithm 3 and compute the computational cost
for the second numerical example the result becomes

Cost =
∑

C∈{0.1,0.2,...,0.5}

7∑
`=4

NC,`4` ≈ 6.58× 106,

if we denote by NC,` the sample size corresponding to C and the level `, and this is
still lower than the computational cost of performing the Monte Carlo method for
the finest discretization, see (6.2).

Further, we have in this project only looked at numerical examples and not dealt
with theoretical convergence analysis of the approximations to the real solution. We
suggest it as future work. For future work we also suggest testing other QoIs than
the maximum. Here, we looked at the QoI

X(u) = max
x∈D

u(x),

as it was fairly straight-forward to implement but of course other QoIs, such as

X(u) =
∫
D
u(x) dx,

could be of interest.

One more suggestion of future work could be to analyze the role of Nδ and N
and how the choices of these parameters could be optimized. For us, they have been
chosen experimentally.
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