

Electronic Stability Control Assessment Methods – A Study in the Correlation Between Subjective Assessment and Objective Measurement in Vehicle Testing

Master's thesis in Automotive Engineering

Axel Niklasson

Department of Mechanics and Maritime Sciences CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2019

Electronic Stability Control Assessment Methods

A Study in the Correlation Between Subjective Assessment and Objective Measurement in Vehicle Testing

Axel Niklasson

Department of Mechanics and Maritime Sciences Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2019 Electronic Stability Control Assessment Methods A Study in the Correlation Between Subjective Assessment and Objective Measurement in Vehicle Testing Axel Niklasson

© Axel Niklasson, 2019-06-04

Examiner and Academic Supervisor Ingemar Johansson Professor of the Practice, Vehicle Engineering and Autonomous Systems Chalmers University of Technology Senior Advisor, Wheel Suspension CEVT

Industrial Supervisor Peter Wiborg Development Engineer, Vehicle Dynamics CEVT

Master's Thesis 2019:22 Department of Mechanics and Maritime Sciences Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: + 46 (0)31-772 1000

Cover: Lynk & Co promotion material with masked test vehicle. Source: <u>https://www.carbuyer.co.uk/lynk-co-03-concept-release-images</u>

Name of the printers / Department of Mechanics and Maritime Sciences Göteborg, Sweden 2019-06-04

Electronic Stability Control Assessment Methods A Study in the Correlation Between Subjective Assessment and Objective Measurement in Vehicle Testing Master's thesis in Automotive Engineering Axel Niklasson Department of Mechanics and Maritime Sciences Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics Chalmers University of Technology

Abstract

This report describes the work to include objective measurement methods in real car electronic stability control testing, conducted at CEVT vehicle dynamics department. Current testing methodology is focused on subjective assessment by the driver, with no objective way to judge test data. By post processing logged test data from single and double lane change maneuvers and correlating it to the subjective assessment of the test driver, objective rating methods were established. To gather reliable data, dedicated vehicle testing of both Lynk & Co and competitor cars was carried out at Volvo Hällered Proving Ground by expert drivers. To measure the performance of competitor cars, a new measurement equipment set-up was created for benchmark testing, consisting of steering effort sensor and inertial measurement unit.

As part of the project, a simulation study of single lane change was also carried out, to enhance understanding of the vehicle's behavior and to bridge the gap between simulation and real car testing. The simulation drive case was also tested in the real vehicle.

The result of these processes is rating limits on side slip, yaw rate, longitudinal jerk and longitudinal velocity delta for both single and double lane change. When verified these limits can be the foundation for objective requirements on single and double lane change performance.

Key words:

Vehicle dynamics, Electronic stability control, ESC, Electronic stability program, ESP, Subjective assessment, Objective measurement, Vehicle rating, Lane change, Vehicle testing

Contents

2

	Abstr	act		1
	Conte	ents.		2
	Prefa	ce		5
	Notat	ions	and Abbreviations	6
1	Int	rodu	ction	7
	1.1	Sco	pe	8
	1.2	Del	iverables	8
	1.3	Lim	itations	9
	1.4	Pro	blem Definition	9
2	Bac	ckgro	ound	10
	2.1	Dοι	ıble and Single Lane Change Maneuver	12
3	Me	thod	ology	14
	3.1	Lite	erature Study	14
	3.2	Тос	l Development	15
	3.2	.1	Data Logging	16
	3.2	.2	Steering Curve	16
	3.2	.3	Data Processing	19
	3.3	Veh	icle Testing	23
	3.3	.1	Questionnaire	23
	3.3	.2	Test plan	25
	3.3	.3	Test Equipment	27
	3.4	CAE	E Study	29
	3.4	.1	Simulation – Real Car Correlation Testing	33
4	Res	sults		34
	4.1	Tes	ting Results	34
	4.2	Sim	ulation – Real Car Correlation Testing	37
5	Cor	nclus	ion	40
	5.1	Rat	ing Limits	40
	5.2	Rat	ing Application	43
	5.2	.1	Input Tab	43
	5.2	.2	Rating Tab	44
	5.2	.3	Steering Tab	44
	5.2	.4	Longitudinal Performance Tab	45

	5.2	2.5 Lateral Performance Tab	45						
6	Dis	scussion							
	6.1 Simulation Testing								
	6.2 Verification								
	6.3	Lateral Performance Limits							
	6.4	Steering Ratio	47						
	6.5	Questionnaire	47						
	6.6	VER Scale Usage	47						
	6.7	Testing	47						
	6.8	Differentiated Signals							
	6.9	High Cars							
	6.10	Implementation							
	6.11	Subjective Assessments Age							
	6.12	Expert Drivers	49						
7	Ree	ecommendations/Future Work	50						
8	Ref	eferences	51						
A	Qu	lestionnaire	52						
В	DL	LC Subjective Assessment	53						
С	DL	LC Test Results	56						
D	DL	LC Subjective vs Objective Scatter Plots	59						
E	SLO	C Subjective Assessment	86						
F	SLO	C Test Results							
G	SLO	C Subjective vs Objective Scatter Plots							

CHALMERS, Mechanics and Maritime Sciences, Master's Thesis 2019:22

4

Preface

This master thesis has been conducted at the division of Vehicle Engineering and Autonomous Systems under the examination of Professor of the Practice Ingemar Johansson. The project was based at CEVT Vehicle Dynamics Department in Lindholmen, Gothenburg.

I would like to express my gratitude to the entire department for their involvement and interest in my work. In particular, Peter Wiborg was an excellent supervisor who provided the project with experience, wisdom and driving skills. I would also like to thank Niclas Harbig and Karl-Johan Hagelin who took time out their day to partake in vehicle testing for this project. Thanks to Jan Hellberg who provided CAE simulations in the beginning of the project. Thank you to the mechanics at Säve and Hällered Proving Grounds for preparing, servicing and retrieving the test cars. Finally, thanks to Ingemar for your dedicated involvement and interest for my work throughout the project.

Notations and Abbreviations

Notations

a_x	Longitudinal acceleration	$[m/s^2]$
β	Body side slip	[deg]
j_x	Longitudinal jerk	$[m/s^3]$
v_y	Lateral velocity	[m/s]
v_x	Longitudinal velocity	[km/h, unless else is states]
ω_z	Yaw rate	[deg/s]
$\dot{\omega}_z$	Yaw acceleration	$[deg/s^2]$

Abbreviations

А	Aggressive
CAE	Computer Aided Engineering
CAN	Controller Network Area
DLC	Double Lane Change
ESC	Electronic Stability Control
ESP	Electronic Stability Program
HPG	Volvo Hällered Proving Ground
IMU	Inertial Measurement Unit
М	Medium
NHTSA	National Highway Traffic Safety Administration
NVH	Noise Vibration Harshness
S	Smooth
SAE	Society of Automotive Engineers
SLC	Single Lane Change
SUV	Sport Utility Vehicle
SWA	Steering Wheel Angle
VDDM	Vehicle Dynamics Domain Master
VER	Vehicle Engineering Rating

1 Introduction

Electronic Stability Control (ESC) is a legal requirement to assist the driver if the vehicle is not following the driver's request, e.g. over- or understeering. It can also be referred to as Electronic Stability Program (ESP). United States National Highway Traffic Safety Administration (NHTSA) defines ESC as a system [1]

- That augments vehicle directional stability by applying and adjusting the vehicle brake torques individually to induce a correcting yaw moment to a vehicle
- That is computer-controlled with the computer using a closed-loop algorithm to limit vehicle oversteer and to limit vehicle understeer
- That has a means to determine the vehicle's yaw rate and to estimate its side slip or side slip derivative with respect to time
- That has means to monitor driver steering inputs
- That has an algorithm to determine the need, and a means to modify engine torque, as necessary, to assist the driver in maintaining control of the vehicle
- That is operational over the full speed range of the vehicle (except at vehicle speeds less than 20 km/h (12.4 mph), when being driven in reverse, or during system initialization)

For high cars, including Sport Utility Vehicles (SUV), ESC also protects against roll-over in severe driving scenarios. In addition, ESC includes value adding functions to enhance vehicle dynamics. The way the ESC is engaged by the driver's input will impact the driver's perception of the car. Companies can utilize this to enhance the brand or model identity, ranging from stable and safe with a lot of brake engagement to loose and sporty with less help from the system.

The final stages of ESC development are carried out in complete vehicle tests and includes calibration, tuning and validation of the ESC software. The testing is performed by expert drivers in isolated maneuvers representing specific driving scenarios, as well as more freely based on the limit driving. The isolated tests include single and double lane changes, sine with dwell, slalom, throttle release in turn etc. Vehicle performance is currently evaluated on the driver's subjective assessment in terms of chassis balance and the quality of ESC engagement. During development testing, the car's internal CAN (Controller Area Network) communication is logged on a laptop computer and external equipment is used for more accurate measurement of vehicle state variables. Competitor cars are also driven in benchmark testing.

CEVT wishes to include objective measurement methods as a complement to subjective assessment when rating ESC tests. Quantifiable targets on the parameters that are already logged are required. This is to improve the test documentation and communication of test results to related departments and suppliers and to establish objective requirements on ESC performance. To provide complementary objective test rating the valid parameters and target values need to be identified and a data post processing tool will be created. In the current rating system, the test driver gives a subjective assessment according to the scale in Figure 1 after each performed test. The scale is derived from the Society of Automotive Engineers (SAE) vehicle engineering rating (VER) scale for ride and handling [2].

Subjective rating										
Vehicle Engineering Rating (VER)	1	2	3	4	5	6	7	8	9	10
Evaluation of Attr. Performance	Very Bad		Bad		ОК		Good		Very Good	
Customer wants		Average customer		Critical customer		Satisfied customers		World	Class	
Customer Satisfaction	repurchase		complains.		complains		Satisfied customers		WORU Class	
Figure 1: Rating scale for subjective assessment										

1.1 Scope

The envisioned solution to include objective measurement methods in ESC testing is to create a data post processing rating tool, using signals from the CAN system and additional measurement equipment. The tool shall complement the subjective assessment of test performance. The algorithm will include different vehicle state parameters to judge if the test is pass/failed and guide the final test rating.

1.2 Deliverables

The following deliverables are expected from the master thesis project:

- Literature study
- Computer Aided Engineering (CAE) study of one test maneuver (with the purpose to learn more about the vehicle and assess the correlation between simulation and testing)
- Select the software to be used for the rating tool
- Post processing tool for test rating
- Input data format to suit different driving scenarios and vehicle models
- Output format to suit the expected parameters to be presented
- Instructions on how to use the rating tool
- Vehicle test (including planning and execution)
- Master thesis presentation
- Master thesis report

1.3 Limitations

The following limitations are defined for the project:

- The analysis tool to use software which is available for the vehicle dynamics development department
- Rating tool to suit only single and double lane change
- External measurement equipment limited to external inertial measurement unit (IMU) and steering effort sensor
- Tests only to be performed by experienced test drivers
- Driving robots will not be used
- Existing simulation models will be used in CAE study
- Only high mu (summer conditions) will be assessed
- Objective measurements of Noise Vibration Harshness (NVH) will not be made
- The VER rating principle currently used by the test and development group will be used
- Rating limits to suit cars of compact SUV/crossover class

1.4 Problem Definition

Vehicle project development loops require extensive real vehicle testing to reach the desired and required performance. As real vehicle testing loops are highly cost and time consuming, the strive for increased testing efficiency is important. Testing is always limited by the costs of producing prototype vehicles, track rent and measurement equipment. Subjective assessment has historically been a primary vehicle dynamics performance indicator. The inherent drawbacks with subjective testing is that it always influenced by the tester's values, skill and experience. The use of objective measure methods can increase the ability to predict a new vehicle's behavior in the simulation design loops and the project can reach a higher maturity stage at the start of real car testing. Objective data is more consistent between test drivers and is also easier communicated outside the test group compared to subjective data.

A challenge for the project is to develop a tool that is generic enough to be usable for a variety of test drivers with different rating sensibilities and vehicles with different characteristics. Other questions for the project are:

- Select software for the post processing
- Establish the relevant parameters for test rating
- Establish the input and output formats
- Will data from external measurement equipment be enough to base the algorithm on?

The rating tool needs to be compatible with current logging output formats and be forward compatible with various other logging outputs. Different data logging programs might be used in the future by the testing team, for instance, when only external equipment is used for a test or if a different ESC supplier is used.

2 Background

10

Performing lane changes is a major task in ESC testing. Different variations of the lane change maneuver are carried out throughout the automotive industry, including vehicle development but also test drives by journalists and verification tests during certification of the vehicle.

Two examples of test maneuvers with cone tracks are ISO 3888 and the Teknikens Värld moose test [3], [4]. ISO 3888 is a standardized test procedure which includes two tracks for high vs. low entry speed. The tracks represent the car having to maneuver around an obstacle in the current lane of the road. The car is steered to the adjacent lane and then returned to the first lane in a continuous motion. The entire maneuver is performed off-throttle. The width of the tracks is scaled proportionally to the track width of the car. The tests are judged on entry speed into the first gate and on average speed through the track, as well as on subjective assessment. Objective measurement has not been recommended for test rating according to the description in the ISO standard, since the timing and corrections made by the driver greatly affects test performance. ISO 3888-2 states:

"Owing to driver influence (driving strategy) in this closed loop test, there is no possibility of an objective measurement of vehicle dynamics data, only subjective evaluation is recommended."

This project aims to establish objective measured lane change testing with the use of open track testing and state of the art measurement equipment.

A similar cone track test has also been popularized by the Swedish motor magazine Teknikens Värld. A difference in test procedure in this test is the width of the track is kept constant for all vehicles. This test is only measured on entry speed when performed by Teknikens Värld and subjectively assessed. In both test procedures knocked over or moved cones results in a failed test pass.

Legislation in most automotive markets include passing an objectified double lane change test, commonly known as the sine with dwell test. The test is performed with a steering robot which is programmed to follow a specific open loop steering curve, see Figure 2. The steering wheel angle (SWA) follows a sine curve with an extra dwell time on the second peak value, to counteract the inertia of the vehicle when returning it the first lane. The steering curve has a frequency of 0.7 Hz and dwell time, t_d , of 0.5 seconds. The amplitude is dependent on the vehicle's behavior in several pre-test maneuvers, but is usually in the range of 270 to 300 degrees. To pass the test, yaw rate and lateral displacement must be within a certain range at specified times. The sine with dwell test does not follow a specific cone track, it only specifies a minimum lateral displacement of the vehicle's center of gravity during the maneuver, representing the vehicle fully leaving the first lane.

In development work at CEVT the majority of lane change tests are carried out without a cone track in an open handling area. Test are carried out at specified entry speeds and with a predefined steering pattern. The steering pattern is originally derived from the ISO 3888 tests, as the fastest way to drive through the track with a well-tuned ESC is to follow a curve similar to the sine with dwell curve, e.g. a smooth curve with no corrections. Not making corrections to the SWA input allows the brake controllers to be utilized to maximum extent. Compared to the sine with dwell curve, the ISO 3888 curve has three peaks (the first and third peak has the same sign). The third peak comes from straightening out the car when returning into the first lane. Figure 3 shows the measured SWA in a ISO 3888 test performed at CEVT. The curve can be estimated as a sine wave up to the negative peak, where it stays at the peak value for approximately 1.5 seconds. The third peak is similar in amplitude to the first two but has a slightly lower frequency when ramping out back to zero.

Figure 3: ISO 3888/TV SWA

2.1 Double and Single Lane Change Maneuver

The curve in Figure 3 is the base for the free hand double lane change (DLC). Of the previous mentioned tests, the double lane change is the one most commonly run during ESC development. Tests are run with initial speed 80, 100, 120 and 150 km/h. For each speed, tests with three different levels of steering application (smooth, medium and aggressive) are run. The aggressive (A) steering application level is derived from curve type showed in the figure above. It also follows a sine wave with a dwell at the second peak. The dwell time in this case is not dependent on making the return to the first lane within the track limits but rather on the vehicle's rotational response in the second lane. The third peak's amplitude and frequency is dependent on the counter measure to the last oversteer. The smooth (S) level should follow the same curve but with significantly lower amplitude and frequency. It should be hard enough to just cause a slight ESC intervention. The medium (M) level can be a purely intermediate step between the smooth and aggressive levels, but can also be used as a robustness test with a more asymmetrical SWA curve. For instance, a smooth turn-in to the second lane with an aggressive return might be used to create a more randomized use case. For the work in this project the medium drive case is treated purely as an intermediate step.

The maneuver can be divided into an open loop part and a reactive part. Up to the point t_4 (start of dwell, see Figure 4) there are no corrections made by the driver and the steering curve follows the sine wave. The dwell time and counter steer back in the first lane will however depend on the car's reaction to the open loop part. An understeered car will have a longer dwell time while an oversteered car should have shorter dwell time and larger counter steer amplitude.

Figure 4: Ideal DLC steering curve

12

Both single and double lane change maneuvers are part of the ESC test catalog. In the single lane change the car does not return to the first lane and the steering curve is just a single period sine wave with no dwell component to it, see Figure 5. It is run at the same speeds as the DLC and has the same three levels of steering input. During ESC development the focus is on double lane change maneuvers as it a more complete maneuver. Single lane changes are mostly run in the final validation phase of each vehicle project.

Figure 5: Ideal SLC steering curve

3 Methodology

The following section is a description of the methods used throughout this master thesis project. A basic outline of the project workflow is depicted in Figure 6.

3.1 Literature Study

A literature study was carried out in the early stages of the project. It covered research on subjective and objective vehicle testing as well as the legal requirements on ESC systems and related ISO standards, see list of papers in section 8 References.

3.2 Tool Development

For each maneuver a rating algorithm was developed. The algorithm uses logged parameters to place the test on the current rating scale for subjective assessment, see Figure 1 in section 1. The algorithm is not required to give the final test score. It should rather work as tool to limit the rating scale with the final grade still being decided trough subjective assessment. The tool should also identify what part of the maneuver triggered the rating limitation. The output of the rating tool could either be included directly in the logging program or run through an auxiliary application. Automatic test rating is not required.

At the start of the project, logged data from previous validation testing was used to develop the algorithm before the vehicle testing described in section 3.3 was carried out. Comments on vehicle behavior and an overall test grade is typically attached to the log file and test case matrix. The validation log files did not contain IMU signals which limited their relevance as foundation for rating limits.

Reif states in the book *Brakes, Brake Control and Driver Assistance Systems* as part of the Bosch Professional Automotive Information-series that the primary parameters of dynamic handling assessment are [5]:

- Steering wheel angle
- Lateral Acceleration
- Longitudinal Acceleration
- Yaw rate
- Side slip and roll angle

This statement combined with know-how from CEVT ESC calibrators formed the rating assessment system stated in this section.

3.2.1 Data Logging

Data from ESC tuning is logged on a laptop computer using Bosch MM6 and Bosch Uniview. All internal CAN-signals in the Vehicle Dynamics Domain Master (VDDM), which is the data node that contains the ESC controllers, are logged. The propulsion and chassis CAN-network communication is also logged from the OBD-2 sockets. In Uniview, both vehicle state variables and controller parameters can be displayed graphically, see Figure 7. For most of the data analysis in this project the log files were exported to .mat format and analyzed in MATLAB. For more accurate measurements of vehicle state variables an external IMU is often used. However, none of the log files in the validation data sets available at the start if this project contained IMU signals.

Figure 7: Bosch Uniview graphic interface, showing SWA (orange), lateral acceleration (pink), yaw rate (green), side slip (white) and longitudinal acceleration (blue)

3.2.2 Steering Curve

The steering input for each log file in the validation data sets was analyzed to find the steering curve for each aggressiveness level of each single and double lane change maneuver. The measured SWA was estimated as the ideal sine curves described in section 2.1, to find the amplitude and frequency of the steering input. For DLC, the amplitude for turn-in and dwell is the mean of any peaks in SWA between t_1 and t_5 (see Figure 4, section 2.1) while the estimated counter amplitude is the measured SWA counter peak value. The frequency is calculated using the time passed between SWA passing through 0 degrees (with a tolerance of +/- 2 degrees). See Figure 8 for measured and ideal steering curves. The plot also shows a reference curve (dotted line) which is the average steering curve for that particular maneuver.

Figure 8: Measured, estimated and reference steering curves for DLC

The reference curve is based on the average steering across all validation data sets available at the start of the project. The data is shown in Table 1.

Ref. Curve	SWA Amp Mean [deg]	SWA Amp Std Dev	Fq Mean [Hz]	Fq Std Dev	Dwell Time Mean [s]	Dwell Std Dev	Counter SWA Mean [deg]	Counter Std Dev	Counter Time Mean [s]	Counter Time Std Dev
DLC01										
80 S	90	9	0.6	0.06	0.2	0.1	-65	5	0.9	0.10
DLC02										
80 M	140	20	0.7	0.09	0.7	0.3	-50	15	0.9	0.3
DLC03										
80 A	200	25	0.7	0.08	0.7	0.2	-60	20	1.0	0.4
DLC04										
100 S	70	6	0.6	0.04	0.3	0.1	-40	30	1.0	0.1
DLC05	105	05	0 -	0.00		o -		4 5	1.0	0.0
100 M	125	25	0.7	0.08	0.9	0.5	-30	15	1.0	0.3
DLC06	165	25	0.0	0.00	1.0	0.4	50	25	0.0	0.4
100 A	165	35	0.8	0.08	1.0	0.4	-50	35	0.9	0.4
120 S	65	10	0.6	0.03	0.6	0.6	-40	20	1.0	0.1
DI C09	05	10	0.0	0.03	0.0	0.0	-40	20	1.0	0.1
120 M	100	20	0.6	0.08	0.8	03	-35	15	0.9	0.2
DLC09	100	20	0.0	0.00	0.0	0.5	55	15	0.9	0.2
120 A	135	30	0.7	0.04	1.0	0.3	-45	25	1.2	0.6
DLC10			-				-	-		
150 S	45	5	0.6	0.02	0.30	0.2	-35	5	1.0	0.1
DLC11										
150 M	70	25	0.7	0.1	0.5	0.3	-45	15	1.0	0.2
DLC12										
150 A	85	20	0.8	0.1	0.5	0.2	-45	15	0.9	0.5

Table 1: DLC steering data across all data sets

The same method was used for the single lane change. Figure 9 shows how the ramp out frequency back to 0 degrees SWA often is lower than for the rest of the maneuver.

Figure 9: Measured, estimated and reference steering curves for SLC

The data for the single lane change reference curves is shown in Table 2.

Ref. Curve	SWA Mean [deg]	SWA Mean Std Dev	Fq 1 Mean [Hz]	Fq 1 Std Dev	Fq 2 Mean [Hz]	Fq 2 Std Dev
SLC01 80 S	75	12	0.7	0.1	0.5	0.1
SLC02 80 M	120	15	0.8	0.1	0.3	0.1
SLC03 80 A	180	25	0.8	0.1	0.3	0.1
SLC04 100 S	65	10	0.7	0.1	0.5	0.1
SLC05 100 M	105	15	0.9	0.2	0.2	0.1
SLC06 100 A	150	20	0.8	0.1	0.3	0.1
SLC07 120 S	50	5	0.8	0.2	0.4	0.2
SLC08 120 M	90	15	0.9	0.1	0.4	0.2
SLC09 120 A	140	25	0.9	0.1	0.2	0.1
SLC10 150 S	45	5	0.8	0.2	0.4	0.2
SLC11 150 M	65	5	0.8	0.1	0.3	0.1
SLC12 150 A	100	20	0.8	0.1	0.4	0.1

Table 2: SLC steering	ı data	across	all	data	sets
-----------------------	--------	--------	-----	------	------

3.2.3 Data Processing

Rating of both single and double lane changes was divided into a lateral and longitudinal sub rating. The idea behind it is to separate yaw damping and side slip build-up into one rating category and the quality of brake application into another. A factor which has been disregarded in this analysis is brake noise. Noise measurements are not made during ESC tuning even though noise and vibrations from the brake system is subjectively assessed while testing.

3.2.3.1 Lateral performance

The vehicle's lateral performance in lane change maneuvers is based on how well the system mitigates oversteer. Critical measures include maximum rear axle side slip, which describes how large the slide is allowed to become. It is also important to consider how fast the car build into a slide, e.g. how well it is yaw damped.

Roll angle was not considered as the validation data sets available at the start of the project did not contain roll measurement. There should be a maximum allowed value on lateral displacement of the vehicle's center of gravity during lane changes. This correlates to being able to stay within the road limits in a real traffic scenario. FMVSS126 stipulates a minimum lateral displacement for the sine with dwell test [1]. This has not yet been implemented.

3.2.3.1.1 Side Slip

The side slip signal is defined according to Equation (1).

$$\beta = \frac{180}{\pi} * \operatorname{atan}\left(\frac{\left(v_{y} - \frac{l_{r} * \pi * \omega_{z}}{180}\right)}{\max[v_{x}, 1]}\right) [deg]$$
(1)

With v_x and v_y in m/s and ω_z in deg/s. l_r is the distance (in meter) between the IMU and the car's rear axle. Test drivers often describe the car as too loose when the side slip becomes exceedingly large.

For DLC, the three side slip peaks corresponding to SWA turn-in, dwell and counter steer peaks are used as rating variables, see Figure 10.

Figure 10: DLC side slip curve

For SLC, the two side slip peaks corresponding to each SWA peak are used rating variables, see Figure 11.

Figure 11: SLC side slip curve

3.2.3.1.2 Yaw Rate and Yaw Acceleration

Similarly to side slip, yaw rate peaks are used as rating variables, see Figure 12.

Figure 12: DLC yaw rate curve

20

Yaw acceleration is defined as the derivative of Yaw Rate, Equation (2):

$$\dot{\omega}_{z}(t) = \frac{d\omega}{dt} \left[\frac{deg}{s^{2}} \right]$$
(2)

A car with little yaw damping can perceived as having a "snappy" and uncontrollable oversteer behavior, instead of linearly and predictably building oversteer. As there is more noise and shorter time steps on the IMU yaw rate signal compared to the internal signal, it had to be filtered with a time average filter (Equation (3)) with *windowsize* = 5:

$$\dot{\omega}_{z,IMU}(n) = \frac{1}{windowsize} \left(\dot{\omega}_z(n) + \dot{\omega}_z(n-1) + \dots + \dot{\omega}_z \left(n - (windowsize - 1) \right) \right)$$
(3)

Yaw acceleration at two locations is chosen as a measure of the vehicles yaw damping. First location is the first peak in yaw acceleration, which correspond to the initial slide when turning into the adjacent lane. The second location is where yaw rate changes sign, e.g. how aggressive the car is in its switch of rotational direction, according to Equation (4).

$$\dot{\omega}_{z,2} = \frac{d\omega_z}{dt}\Big|_{\omega_z = 0} \tag{4}$$

This is located close to the second SWA peak. Both locations are defined in the same manner for single and double lane change, see Figure 13.

Figure 13: DLC yaw rate and acceleration curves

3.2.3.2 Longitudinal Performance

The vehicle's longitudinal performance is defined by the quality of the ESC intervention. The ESC might limit oversteer and roll over risk in a safe way by over-braking the vehicle throughout the maneuver. Even though legal requirements are met, an over-braked car will reduce customer satisfaction in terms of comfort and handling. This can be caused by the brakes being applied too harshly, causing a sudden jerk in the vehicle or by braking for too long while the car feels stable.

3.2.3.2.1 Longitudinal Jerk

Jerk is used as measure to see how smooth the brakes decelerate the vehicle during the maneuver. The longitudinal acceleration signal is differentiated with respect to time to find the jerk levels, according to Equation (5). High jerk levels are related to intrusive ESC intervention.

$$j_{\chi}(t) = \frac{da_{\chi}}{dt} \left[\frac{m}{s^3} \right]$$
(5)

As there is noise on the longitudinal acceleration signal, the jerk signal is filtered with a time average filter according to Equation (6):

$$j_{x,filtered}(n) = \frac{1}{windowsize} \left(j_x(n) + j_x(n-1) + \dots + j_x(n-(windowsize-1)) \right)$$
(6)
CHALMERS Mechanics and Maritime Sciences Master's Thesis 2019:22 21

For the internal acceleration signal windowsize = 5 was used. As there was more noise on the IMU acceleration signal, windowsize = 25 was used for IMU logging. The longitudinal acceleration and jerk curves can be seen in Figure 14.

Figure 14: DLC longitudinal acceleration and jerk curves

3.2.3.2.2 Speed Loss

Another issue that can lower the lane change performance is the brakes being applied too early or not releasing fast enough when the car is stabilized, scrubbing off too much speed during the maneuver. Therefore, the longitudinal velocity difference between the beginning and end of the maneuver is also considered. The speed loss is defined as the longitudinal velocity difference between the start and end of steering, see Equation (7). A longitudinal velocity plot in a double lane change is shown in Figure 15.

$$\Delta v_x = v_x(t_1) - v_x(t_8) \tag{7}$$

Figure 15: DLC longitudinal velocity curve

3.3 Vehicle Testing

To gather relevant and up to date data and get an opportunity to collect subjective assessment in real time, a test session dedicated for this master thesis was performed. Three experienced test drivers performed tests and gave their subjective assessment. Test planning, including vehicles, equipment and track time was done by the student. This was the first ESC benchmarking at CEVT to include objective measurement which meant a new measurement set-up had to be created.

The usual ESC validation test catalog for single and double lane changes was used. Both Lynk & Co and competitor cars were tested. A test questionnaire was created to gather subjective assessment for each test run.

3.3.1 Questionnaire

To formalize the gathering of subjective assessment for each test, a questionnaire (see Appendix A) was created in Microsoft Excel. Assessment of single and double lane change maneuvers were divided in three categories; ESC intervention, Chassis and Steering input with further sub assessments. ESC intervention has the following subcategories:

Intrusiveness

Measure of how hard the brake interventions feel in the car. Judged both in terms of comfort and performance. No intervention means that no braking force can be registered by the driver.

Stability

Assessment of side slip. A stable car should follow the driver's steering input well, while a loose car is sliding a lot.

Pressure release

Measure of how fast the brakes pressure is released after the car has been stabilized.

Noise

Assessment of NVH level during maneuver. Including pump noise and brake squeal.

The basic chassis character is also considered, to be able to derive if a certain test performance is due the car's chassis or brake control tuning. For instance, a very soft chassis tuning combined with harsh brake interventions might exaggerate an unwanted behavior.

Balance

General assessment of chassis balance. Understeered (below 5), neutral (5) or oversteered (above 5).

Ride

General assessment of ride character. Hard (below 5), neutral (5) or soft (above 5).

A self-assessment of the driver's steering input is also made. The idea is to estimate how well the steering curve is tracking to the ideal sine curves. This can then be compared to the plotted curves in the rating program.

Corrections

Were there any corrections made to the steering input during the maneuver? This would show up as "sawing" or steps in the steering curve.

Curve symmetry

Was the SWA amplitude the same in both directions and was the steering wheel at zero degrees at the start and end of the maneuver?

The SAE scale for verification engineering rating is used with incremental 0.25 steps in accordance with previous CEVT rating methodology [2]. Gaspar Gil used a manual questionnaire (pen & paper) and found that rating by marking a dot on a horizontal line instead of just writing down the number caused test drivers to utilize incremental rating steps to further extent [6]. Therefore, horizontal scroll bars were implemented in the Excel sheet to select rating grade. Some categories range linearly from very bad (0) to very good (10), while others have a middle optimum, such as understeered – neutral – oversteered. There are also comment fields for each rating category as not all information in the subjective assessment can be documented with just the rating grades.

3.3.2 Test plan

Three cars (competitor cars C1 and C2 and CEVT project B1) were tested at Volvo Hällered Proving Ground (HPG) in Västra Götaland, Sweden. All three cars are in the compact SUV/crossover class. The competitor cars were kept to their standard specification apart from tires, which had to be changed to not wear out the only set of standard tires. Vehicle C1 was changed from Bridgestone Alenza 235/55 R18 to a new set of Continental Premium Contact 235/55 R18 and C2 was changed from Bridgestone Dueler 225/60 R18 to a scrubbed set of Continental Eco Contact 235/55 R18.

Each car was tested in a single work day at the HPG brake & handling area. Three experienced ESC test drivers of CEVT vehicle dynamics department were scheduled to drive the cars. To keep track conditions and tire wear as consistent as possible between the different drivers, SLC was tested by all drivers before starting DLC testing. This meant the driver's made two 45-minute test sessions during the day. The original plan was let all three test drivers drive each car, but planning issues meant only vehicle C2 was driven by everyone, C1 was driven by two drivers and B1 was driven by only one. The daily test plan followed the routine stated below:

- Equipment installation and shakedown
- SLC 80 km/h S
- SLC 80 km/h M
- SLC 80 km/h A
- SLC 100 km/h S
- SLC 100 km/h M
- SLC 100 km/h A
- SLC 120 km/h S
- SLC 120 km/h M
- SLC 120 km/h A
- SLC 150 km/h S
- SLC 150 km/h M
- SLC 150 km/h A
- Driver change
- Repeat SLC for each driver

- DLC 80 km/h S
- DLC 80 km/h M
- DLC 80 km/h A
- DLC 100 km/h S
- DLC 100 km/h M
- DLC 100 km/h A
- DLC 120 km/h S
- DLC 120 km/h M
- DLC 120 km/h A
- DLC 150 km/h S
- DLC 150 km/h M
- DLC 150 km/h A
- Driver change
- Repeat DLC for each driver

Vehicle C1 tests were only carried out to 120 km/h M level as it was not deemed safe to perform the most extreme drive cases after poor results in SLC 80 km/h A and SLC 100 km/h A. 150 km/h was therefore not carried out for C2 either to save testing time.

3.3.3 Test Equipment

Vehicle B1 was equipped with standard ESC test equipment. The standard measurement setup includes:

- VDDM D5 XCP Test Unit
- Inertial Measurement Unit OxTS RT3100
- 4x Brake Pressure Transducers
- 2x Vector VX1132 VxBox
- GI-Electronic GmbH DS2 M8/6 MBox

As there was no existing measurement set-up for competitor cars, a new set-up was created for this test. The set-up consisted of OxTS RT3100 IMU, Sensor Developments steering effort sensor 01184 and an Vector VX1132 VxBox. Both vehicle B1 and competitor cars were logged through Bosch MM6. The measurement set-up is shown in Figure 16. The steering effort sensor includes an auxiliary steering wheel mounted to the cars original steering wheel. The auxiliary steering wheel has a smaller radius than the original and when mounted does not allow adjustment of steering wheel position, both of which will impact the driver's comfort and perception of steering feedback. The steering effort sensor can also measure steering torque, but it was decided to not log this signal since it would require an extra software calibration when installed in a new vehicle. With a stressed test schedule and no apparent reason to log steering torque logging was limited to only steering wheel angle. The installation time for the competitor car setup was approximately 1.5 hours for two persons.

Figure 16: Competitor car measurement set-up, including steering effort sensor, IMU, measurement laptop and VxBox

During each run at speeds 80, 100 and 120 km/h lane changes in both directions were made. These maneuvers were divided into two data sets to produce more data in a time efficient manner. Figure 17 shows an MM6 log of one run which will produce two data points. A consequence of this is the subjective assessment carried out after the run will be the same for both data points, so if there is a large variance between the maneuvers, there is a risk of mismatch between the measured data and subjective assessment. In most cases of large difference

between the maneuvers, it was noted in the comments and the subjective rating was changed accordingly.

Figure 17: MM6 log of one run containing maneuvers in both directions

The data sets are summarized in Table 3.

28

Car	Driver	Date	DLC Data Sets	SLC Data Sets
C1	Peter Wiborg	20190409	2	2
C1	Niclas Harbig	20190409	2	2
C2	Peter Wiborg	20190410	2	2
C2	Niclas Harbig	20190410	2	2
C2	Karl-Johan Hagelin	20190410	2	1
B1	Peter Wiborg	20190411 &	2	4
		20190416		

3.4 CAE Study

To gain more understanding of how the vehicle behaves in the different stages of the maneuver, CAE simulation of single lane change was studied. Simulating the tests in an ideal environment provided a good platform to try the algorithms at an early stage of the project and to remove the influence of erroneous signals due to measurement inaccuracy, signal noise etc. It was also a way to include vehicle dynamics theory in the project. As the scope of this project is not focused on CAE, it should only support the testing activity. Therefore, existing CAE models was used.

ADAMS full car simulations were obtained from CEVT Chassis & Powertrain CAE department. The CAE models are of vehicle project A1 and does not include ESC control systems. The simulations follow a different test catalog compared to the ESC testing. The maneuver with the most similarity between the test catalogs is the single lane change (denoted VLC in the simulations). All simulations are carried out with initial velocity 80 km/h and SWA frequency 0.5 Hz. SWA amplitude increases in increments between 25 to 225 degrees, see Table 4. Simulations of lane change in both directions (left and right) are made.

Name	Velocity	SWA Amplitude	SWA Frequency
VLC01 L/R	80 km/h	25°	0.5 Hz
VLC02 L/R	80 km/h	37.5°	0.5 Hz
VLC03 L/R	80 km/h	50°	0.5 Hz
VLC04 L/R	80 km/h	62.5°	0.5 Hz
VLC05 L/R	80 km/h	75°	0.5 Hz
VLC06 L/R	80 km/h	100°	0.5 Hz
VLC07 L/R	80 km/h	125°	0.5 Hz
VLC08 L/R	80 km/h	150°	0.5 Hz
VLC09 L/R	80 km/h	175°	0.5 Hz
VLC10 L/R	80 km/h	200°	0.5 Hz
VLC11 L/R	80 km/h	225°	0.5 Hz

Table 4: ADAMS full car simulation test catalog

When analyzing the simulation results, it was found that runs VLC07-11 caused the car to spin making the results invalid. To find a similar ESC test the steering input and lateral performance of the simulation was compared to the ESC test logs from various vehicle project B models. Table 5 shows vehicle state variables at their first and second peaks (denoted 1 and 2). Side slip signal was not included in the simulation results and was calculated according to the same formula (Equation (1)) used in Bosch MM6 for measurements in the real vehicle.

$$\beta = \frac{180}{\pi} * \operatorname{atan}\left(\frac{\left(v_{y} - \frac{l_{r} * \pi * \omega_{z}}{180}\right)}{\max[v_{\chi}, 1]}\right) [deg]$$
(1)

With v_x and v_y in m/s and ω_z in deg/s. l_r is the distance (in meter) between the IMU and the car's rear axle.

Name	SWA amp [deg]	Lat Acc 1 [m/s ²]	Lat Acc 2 [m/s ²]	Side Slip 1 [deg]	Side Slip 2 [deg]	Yaw Rate 1 [deg/s]	Yaw Rate 2 [deg/s]
VLC L 3	50	5.79	-5.77	-3.49	3.43	17.17	-16.84
VLC L 4	62.5	6.77	-6.74	-4.47	4.35	20.87	-20.23
VLC L 5	75	7.54	-7.64	-5.51	5.35	24.20	-23.35
VLC L 6	100	8.41	-9.24	-8.03	9.31	29.77	-34.25
VLC R 3	50	-5.83	5.72	3.51	-3.40	-17.33	16.70
VLC R 4	62.5	-6.84	6.70	4.50	-4.32	-21.04	20.06
VLC R 5	75	-7.61	7.59	5.46	-5.31	-24.35	23.21
VLC R 6	100	-8.47	9.10	8.08	-9.29	-29.88	34.35

Table 5: VLC Simulation results, green rows show the most similarity to ESC 80 km/h S test

Analyzing the valid simulation results (VLC01-VLC06) shows side slip (in red) phase time increases with steering wheel angle amplitude, see Figure 18.

Figure 18: Simulation side slip curves for VLC01-06

Yaw rate (Figure 19) does not have the same linear increase of phase time and at high SWA the phase time decreases. At higher SWA angles the tires leave the linear range which might contribute to the inconsistent phase times.

Figure 19: Simulation yaw rate results for VLC01-06

The lateral acceleration curves show some inconsistencies, which can be attributed to the aggressive entry and exit to the sine wave, see Figure 20.

Figure 20: Simulation lateral acceleration results for VLC01-06

The results from real vehicle testing in vehicle B2 and B3 with ESC are shown in Table 6 below. The values shown are the mean across three data sets.

Run	SWA	Fq Mean	Lat Acc 1	Lat Acc 2	Side	Side	Yaw	Yaw
	Mean	[Hz]	Mean	Mean	Slip 1	Slip 2	Rate 1	Rate 2
	[deg]		$[m/s^2]$	[m/s ²]	Mean	Mean	Mean	Mean
					[deg]	[deg]	[deg/s]	[deg/s]
SLC 80 S	68.23	0.78	-6.74	6.42	-3.64	3.14	-21.22	19.79
SLC 80 M	127.27	0.84	-8.33	7.08	-6.52	5.16	-33.98	31.50
SLC 80 A	186.85	0.81	-8.34	6.03	-6.42	5.04	-35.38	32.99

Table 6: Real car results for 80 km/h single lane changes

Judging from these results SLC 80 km/h S is the only real car test that can be compared to simulation test runs. The most interesting simulation drive cases for comparison to real vehicle performance are VLC4 and 5 which are in the range of the ESC 80 km/h S test.

The simulation results show how increasing SWA amplitude increases the "severity" of the maneuver, which is why it is important to cover a wide range of amplitudes. SWA amplitudes around 62.5 to 75 is where the tires are believed to enter the non-linear range the car is less stable throughout the maneuver. With SWA amplitude 100 degrees the car is close to losing control. It is interesting to note that ESC 80 km/h S level is also in the range of 62.5 to 75 degrees SWA amplitude, which is described as an easy maneuver barely requiring ESC intervention. At ESC 80 km/h M level, the SWA amplitude is around 125 degrees. Comparatively, in VLC07 (125 degrees) the simulated vehicle (without ESC) has already lost control and spun. As seen in Figure 21 side slip continues to increase to 35 degrees a second after the steering input is stopped and the yaw rate is continuously high indicating that the car is about to spin.

Figure 21: VLC07 simulation results
3.4.1 Simulation – Real Car Correlation Testing

To compare real vehicle performance to the simulated model and see the effect of ESC, a test session where the simulation runs were recreated in the real vehicle was conducted. Vehicle A2 was tested at Säve Proving Ground March 27th, 2019. The sinusoidal steering curve of the simulation input was recreated by an experienced test driver. To achieve a frequency of 0.5 Hz a metronome set to 60 bpm (beats per minute) was used to time the steering input. The steering tempo should match the metronome such that each SWA peak should come at the metronome tick. Both VLC 4 (62.5 degrees SWA) and VLC 5 (75 degrees SWA) was run with and without ESC. The ESC was disabled by disconnecting one of the wheel speed sensors. The external IMU was not available for this test session so the car's internal logging had to be used.

The simulation vehicle is A1 with Michelin Primacy 235/55R18 100 V tires. At the time of this test only A2 on Continental Sport Contact 235/50 R19 99 V tires was available for testing. Table 7 shows the weights for vehicle A1 and A2. Curb 0 is vehicle weight without any passengers and curb 2 is loaded with driver (68 kg) and one passenger (68 kg) in front seats + 14 kg in luggage compartment. The simulation model is loaded at curb 2. Vehicle A2 had been loaded to match the control model curb 0 weight. It was not possible to check the curb 2 weight, as there are no permanent scales at Säve Proving Ground.

	Simulation	A1 (Weight	A1 (Actual)	A2 (Weight	A2 (Actual)
		Book)		Book)	
Weight Total	N/A /	1979 kg /		1915 kg/	1918 kg/
Curb0/Curb2	2123 kg	2129 kg		2065 kg	~2090 kg
Weight Front	N/A /	1114 kg/		1089 kg/	1093 kg/
Curb0/Curb2	1177 kg	1186 kg		1162 kg	N/A
Weight Rear	N/A /	865 kg/		829 kg/	825 kg/
Curb0/Curb2	946 kg	943 kg		903 kg	N/A
Weight Dist.	N/A /	56%/		57 %/	57 %/
Curb0/Curb2	55 %	56 %		56%	N/A

Table 7: Vehicle weight for different vehicle configurations

4 Results

This section covers the results from the test session specifically dedicated for this project and the simulation correlation testing.

4.1 Testing Results

The results from the dedicated test session was post-processed and analyzed to find subjective and objective data trends.

The steering curves for all test maneuvers were checked against the reference curves defined in section 3.2.2 to make sure the steering input was representative for the maneuver. If the steering amplitude was outside the standard deviation for that particular maneuver, the result was disregarded. In some cases, the result was moved from one level to another, for instance from 80 km/h A to 80 km/h M if the amplitude was within the medium range.

The valid runs were post-processed in MATLAB according to section 3.2.3 and further analyzed in Microsoft Excel, where the measured data was compared to the subjective assessments. Table 8 shows the data input for C2 PW DS1. Data points that exceed rating limits (see section 5.1) show in red (failed) or orange (bad). Tables for all DLC data sets can be found in Appendix C and SLC in Appendix F.

Table 8: C2 PW DS1 data input, green SWA amplitude is within the standard deviation, yellow is on the limit but OK. Orange and red data points have exceeded rating limits.

Trace	SWA Amp	Lat Acc 1 👻	Lat Acc 2 🔻	Lat Acc 3 👻	Side Slip 1 👻	Side Slip 2 👻	Side Slip 3 👻	Yaw Rate 1 💌	Yaw Rate 2 👻	Yaw Rate 3 👻	Yaw Acc 1 👻	Yaw Acc 2 🔻	Long Acc 👻	Long Jerk 👻	Delta vx 👻	VER -
AN_20190410_050	A 92,3	2 -8,28	9,18	-5,89	2,66	-3,46	1,78	-20,32	24,21	-14,11	-88,93	74,93	-1,29	-2,24	8,57	7,5
AN_20190410_051	A 143,6	9 -11,02	10,97	-6,82	4,66	-5,82	2,83	-31,87	32,46	-19,67	-180,53	156,93	-2,31	-4,49	8,10	6,75
AN_20190410_052	A 180,6	2 -11,81	13,21	-8,51	6,20	-10,78	4,22	-36,64	52,10	-35,16	-190,27	256,27	-4,68	-12,32	25,92	6,75
AN_20190410_053	A 75,7	6 -8,65	8,80	-7,43	3,23	-3,02	2,47	-20,28	20,48	-16,14	-90,13	42,53	-1,35	-2,21	8,53	6,75
AN_20190410_054	A 106,7	9 -10,82	10,88	-5,11	4,54	-4,73	1,86	-25,75	32,40	-10,35	-140,13	123,20	-4,59	-7,35	14,36	6,75
AN_20190410_055	A 152,9	B -11,95	13,67	-5,50	7,17	-11,62	1,99	-37,19	59,80	-15,94	-180,93	176,93	-6,24	-10,99	30,74	6,75
AN_20190410_056	A 70,4	0 -9,01	8,94	-5,46	2,91	-2,97	1,41	-19,39	15,24	-11,74	-85,47	46,80	-1,65	-3,60	9,47	7,5
AN_20190410_057	A 92,9	2 -11,09	12,83	-7,31	6,63	-6,09	2,56	-32,73	43,97	-23,50	-146,00	143,73	-6,26	-12,24	27,32	6,5
AN_20190410_058	A 120,4	4 -11,71	14,28	-9,28	6,99	-12,75	3,96	-30,46	55,47	-29,82	-171,07	163,07	-6,42	-16,00	28,37	6,5
AN_20190410_060	A 57,8	-6,31	10,09	-5,82	1,70	-3,82	1,46	-11,99	17,72	-11,24	-55,20	32,00	-1,75	-5,68	10,08	7,5
AN_20190410_061	A 65,7	4 -8,94	10,28	-6,03	2,99	-3,32	2,04	-18,21	16,48	-14,57	-81,47	68,27	-2,26	-5,20	9,32	7,5
AN 20190410 062	A 92.4	-10.99	12 21	-5.63	5 5 1	-4.69	1 90	-26.05	27.27	-12.42	-152.40	00 00	-6.12	-15.22	16.62	7

Table 9 shows the corresponding subjective assessments. See Appendix B for all DLC data sets and Appendix E for SLC.

Trace 🗸	Intrusiveness 🔻	Stability 🔻	Pressure Release	Noise 🔻	Balance 🔻	Ride 🔻	VER -	Comment 🗸
AN_20190410_050A	2	10	4	10	5	8	7,5	Smooth interv., slow exit speed
AN_20190410_051A	7,5	8,5	2,75	3,25	5	8	6,75	Intrus., safe
AN_20190410_052A	7,5	4	2,5	2,5	6	8	6,75	Intrus, initial OS
AN_20190410_053A	3	8	2,75	8,5	4	8	6,75	Intrus., long interv. US
AN_20190410_054A	8	8,5	2	3	5	8	6,75	Hard and long interv.
AN_20190410_055A	7	4	1,5	1,5	3,5	8	6,75	Hard and long interv., US, slow release
AN_20190410_056A	2	8	4	8,75	4	8	7,5	Too much braking
AN_20190410_057A	7	3	2,75	3	7,5	8	6,5	Intrus
AN_20190410_058A	7,5	4	2,5	3	7,5	8	6,5	Initial OS
AN_20190410_060A	2	8	4	8,75	4	8	7,5	Lot of braking
AN_20190410_061A	7,25	3,75	3,75	3,75	2,75	8	7,5	Lot of braking
AN_20190410_063A	5	4	4	10	6	8	7	Initial OS, no confidence

Table 9: C2 PW DS1 subjective assessment

The data points were then plotted against subjective assessment to find correlating factors. Most noteworthy, side slip and yaw rate was plotted against balance, jerk and delta v_x was plotted against intrusiveness. As an example, Figure 22 - Figure 25 shows the scatter plots for DLC 80 km/h A. This method

was used on all peak values and on all test cases. All DLC scatter plots can be found in Appendix D and SLC in Appendix G.

Figure 22: Balance rating plotted against dwell side slip peak. 5 is neutral behavior, above oversteered, below understeered. Red lines indicate rating limits

Figure 23: Balance rating plotted against dwell yaw rate peak. 5 is neutral behavior, above oversteered, below understeered. Red lines indicate rating limits

Figure 24: Intrusiveness rating plotted against longitudinal jerk. Red line indicates rating limit

Figure 25: Intrusiveness rating plotted against delta v_x. Red line indicates rating limit

The general trends across all data sets and both maneuvers are that vehicle C1 is very oversteered with the highest side slip and yaw rate values. This behavior was most noticeable in SLC. Vehicle C2 had overall good remarks but had 11 runs in total where it was too oversteered and exceeded the lateral performance limits. Vehicle B1 was over-braked and intrusive across most runs. The hard brake interventions caused the car to understeer at the end of the maneuvers, but the car felt safe across all runs and oversteer limits were only exceeded once across six data sets.

4.2 Simulation – Real Car Correlation Testing

Figure 26 - Figure 29 shows comparisons between simulation results and the result in the real vehicle. It had previously been identified that side slip estimation calculated with the internal logging signals underestimates the side slip compared to the IMU measurements. This might explain why the simulation and real car side slip curves (in black) differ from each other. In total, nine runs where made in order to achieve a representative steering curve for each drive case. The run with best steering curve tracking for each drive case is shown in the figures below. A slight reduction in peak values can be observed with the ESC ON.

Figure 26: VLC04 Real car test result ESC OFF

Figure 27: VLC04 Real car test result ESC ON

Figure 28: VLC05 Real car test result ESC OFF

Figure 29: VLC05 Real car test result ESC ON

38

The peak values of the logged variables are shown in Table 10. All variables show a reduction in peak value with ESC ON, especially at the second peak. It should be noted that the ESC software was in early development at the time of this test and not properly tuned yet. The subjective assessment was that the ESC intervention was a bit intrusive and mistimed during the lane changes.

Run	Lat Acc 1	Lat Acc 1	Yaw Rate 1	Yaw Rate 2	Side Slip 1	Side Slip 2
VLC 4	-6.84 m/s ²	6.70 m/s ²	-21.04	20.05	4.50 deg	-5.51 deg
Sim			deg/s	deg/s		
VLC 4	-7.38 m/s ²	7.41 m/s ²	-20.26	20.09	2.08 deg	-1.96 deg
ESC OFF			deg/s	deg/s		
VLC 4	-6.89 m/s ²	6.47 m/s^2	-20.00	16.73	1.70 deg	-1.51 deg
ESC ON	-	-	deg/s	deg/s	_	_
VLC 5	7.54 m/s ²	-7.64 m/s ²	24.20	-23.35	-4.32 deg	5.35 deg
Sim	-	-	deg/s	deg/s	_	_
VLC 5	8.38 m/s ²	-8.11 m/s ²	25.35	-27.64	-3.02 deg	2.53 deg
ESC OFF	-	-	deg/s	deg/s	_	_
VLC 5	8.09 m/s ²	-7.36 m/s ²	25.35	-23.72	-2.32 deg	1.88 deg
ESC ON			deg/s	deg/s		_

Table 10: Simulation vs real car VLC results comparison

5 Conclusion

The testing results described in the section 4.1 was also used to find objective rating limits for each maneuver. Furthermore, the steering curve estimation, performance post-processing and rating limits were included in a standalone MATLAB application to collect all aspects of this project in one format.

5.1 Rating Limits

The scatter plots showed in section 4.1 was used to find cut-off values where the test is failed. With the trends showed by the graphs combined with the comments on the runs, rating limits for DLC was established, see Table 11.

The dwell side slip *bad* rating of 11 degrees is derived from a rule of thumb previously used by ESC calibrators as a maximum acceptable value. A *failed* limit at 13 degrees was also implemented. A limit on the counter slide when returning to the first lane (peak 3) was established. Side slip is allowed to be maximum 5 degrees and yaw rate 40 deg/s at this peak. The smooth drive cases do not push the lateral performance of the vehicle to the point that any clear trends could be identified, therefore only longitudinal performance limits are implemented for these drive cases. Yaw acceleration limits could only be found in 80 and 100 km/h aggressive drive cases.

Longitudinal jerk was more critically rated by the drivers in 80 km/h S compared to other drive cases and was given a limit of 10 m/s³. The remaining drive cases were given the limit 15 m/s³. Delta v_x naturally increases with each steering level and velocity increase. As 150 km/h testing was limited, there was not sufficient data to find proper limits, instead the 120 km/h was used in 150 km/h as well.

Table 11: DLC rating limits

	Side	Side	Side	Yaw	Yaw	Yaw	Yaw	Long	Delta
	Slip 2	Slip 2	Slip 3	Rate 2	Rate 3	Acc 1	Acc 2	Jerk	Vx
Rating	Failed	Bad	Failed	Failed	Failed	Failed	Failed	Failed	Failed
DLC01								-10	15
80 S								m/s ³	km/h
DLC02	13	11 deg	5 deg	50	40			-15	25
80 M	deg			deg/s	deg/s			m/s ³	km/h
DLC03	13	11 deg	5 deg	60	40	220	300	-15	35
80 A	deg			deg/s	deg/s	deg/s ²	deg/s ²	m/s ³	km/h
DLC04								-15	20
100 S								m/s ³	km/h
DLC05	13	11 deg	5 deg	50	40			-15	25
100 M	deg			deg/s	deg/s			m/s ³	km/h
DLC06	13	11 deg	5 deg	60	40	220	300	-15	35
100 A	deg			deg/s	deg/s	deg/s ²	deg/s ²	m/s ³	km/h
DLC07								-15	20
120 S								m/s ³	km/h
DLC08	13	11 deg	5 deg	50	40			-15	30
120 M	deg			deg/s	deg/s			m/s ³	km/h
DLC09	13	11 deg	5 deg	60	40			-15	40
120 A	deg			deg/s	deg/s			m/s ³	km/h
DLC10								-15	20
150 S								m/s ³	km/h
DLC11	13	11 deg	5 deg	50	40			-15	30
150 M	deg			deg/s	deg/s			m/s ³	km/h
DLC12	13	11 deg	5 deg	60	40			-15	40
150 A	deg			deg/s	deg/s			m/s ³	km/h

The SLC did not generate as clear results as DLC for finding lateral performance limits, see Table 12. Lateral limits could only be identified on the aggressive drive cases. The same jerk levels as in DLC was used. Delta v_x also follows an increasing trend with steering input and velocity. As in DLC, 150 km/h uses the same limits as 120 km/h.

	Side	Side	Side	Yaw	Yaw	Long	Delta
	Slip 1	Slip 2	Slip 2	Rate 1	Rate 2	Jerk	Vx
Rating	Failed	Failed	Bad	Failed	Failed	Failed	Failed
SLC01						-10 m/s ³	10 km/h
80 S							
SLC02						-15 m/s ³	20 km/h
80 M						-	
SLC03	8 deg	11 deg	8 deg		60 deg/s	-15 m/s ³	25 km/h
80 A							
SLC04						-15 m/s ³	10 km/h
100 S							
SLC05						-15 m/s ³	20 km/h
100 M							
SLC06	8 deg	11 deg	8 deg		60 deg/s	-15 m/s ³	25 km/h
100 A							
SLC07						-15 m/s ³	10 km/h
120 S							
SLC08						-15 m/s ³	25 km/h
120 M							
SLC09	9 deg	11 deg	8 deg		60 deg/s	-15 m/s ³	30 km/h
120 A							
SLC10						-15 m/s ³	10 km/h
150 S							
SLC11						-15 m/s ³	25 km/h
150 M							
SLC12	9 deg	11 deg	8 deg		60 deg/s	-15 m/s ³	30 km/h
150 A							

Table 12: SLC rating limits

5.2 Rating Application

The steering curve estimation, rating limits and rating documentation was integrated into a standalone application, using MATLAB App Designer. This was done to have a single interface for that includes all aspects of test performance that would be easier to use in test vehicle.

5.2.1 Input Tab

The first tab shown when the application is opened is an input tab (Figure 30). A .mat log file can be loaded into the program with the *Open* button. When the log file is selected the SWA is automatically plotted in the window to the right as a visual indication that the log file has been loaded into the program. In this tab the maneuver (DLC/SLC), car type (High/Low), measurement equipment (IMU/SWA meter) and velocity and steering level can be chosen by the user.

5.2.2 Rating Tab

The rating tab (Figure 31) has three sliders that is used to give subjective assessment of the test run. Longitudinal and lateral rating can be given separately, as well as an overall rating. There is also a comment field for each rating which is automatically loaded with the objective and subjective ratings. The user's comments can be added and saved as a .txt file in a selected directory together with all ratings in .csv format.

承 UI Fig	jure							-	٥	\times
Input	Rating	Steering	Longitudinal Performance	Lateral Performance						
	Lo	engitudinal erfomance Rating		' ' ' ' 7 8 9 10		Longitudinal Performance Comment	Jank Instrumeness rating failed Speed Loss Not limiting rating			
	Pe	Lateral rformance Rating		' ' ' ' 7 8 9 10		Lateral Performance Comment	Side Stip Turu-in not limiting rating Dwell not limiting rating Side silp rating counter, failed			
		Overall		' ' ' ' 7 8 9 10		Overall Comment	Transin on Ulming rating Deel not liming rating Counter Not limiting rating			
	Filer	Directory name:	PW_20190322_001B							
	Sa	ave Rating	Save Comments							
								165		
4	ρ	H C		8 🤷 🗐	💹 🔡 🤸 I	P 📴 🕫	¢ ^R ^ 🛥 🧖 d× swe	2019-0	5-15	2

Figure 31: Rating program rating tab

5.2.3 Steering Tab

The steering tab (Figure 32) shows the measured, estimated and reference steering curves. The reference is updated based on the selected speed and steering level in the input tab.

UI Figure Input Rating Steerin Measured SWA	g Longitudinal Performance Lateral Performance Turn-in SWA peak -218 44 deg Deel SWA peak (Fing. 211 76 deg Countertier SWA peak -123 66 deg	200 - Bettereo come DLCOS 80 A	- ¤ ×
Estimated SWA	Arrolitude 218.05 dep Frequency: 0.71 Hz Dwell time: 0.22 s Counter Time: 0.86 s	190	
	Reference SWA Curve ON OFF		
Reference Curve	Amplitude: 197.95 deg Prequency: 0.72 Hz Counter SWA Amplitude: 60.13 deg		
		23 24 25 28 27 28 Time [s]	29
Figure 32: R	ating program steering		2019-04-05 1

44 Cł

CHALMERS, Mechanics and Maritime Sciences, Master's Thesis 2019:22

5.2.4 Longitudinal Performance Tab

In the longitudinal performance tab (Figure 33) the longitudinal acceleration (blue) and jerk (black) is plotted over the measured and estimated steering curves (grey). In the text boxes the deceleration and jerk peak values are shown as well as the velocity delta. The rating limits for the selected test case are displayed and if they are exceeded a text message is displayed.

Figure 33: Rating program longitudinal performance tab

5.2.5 Lateral Performance Tab

The lateral performance tab (Figure 34) displays the lateral acceleration, side slip, yaw rate and yaw acceleration curves. The text boxes show the peak values of all signals and the rating limits. If the limits are exceeded, an information message is displayed.

Figure 34: Rating program lateral performance tab

6 Discussion

The following discussion points have been raised on the methods, results and conclusion of this project.

6.1 Simulation Testing

Section 3.4.1 describes the testing performed to correlate real car performance with the full car simulation results. When the tests were performed the correct vehicle model and test equipment was not available, therefore it was only seen as a "beta" test to see if the metronome timing and wheel speed sensor removal would work as intended. A proper test would be to drive the correct vehicle model with its reference tires (Michelin Primacy 235/55 R18) and correct load. The IMU should also be utilized for accurate measurements. To make sure the that the entry speed is the same for each run, the cars speed limiter should be used as it is hard for the driver to find the timing of the metronome and the same time keep the correct speed at the start of the maneuver. Furthermore, more test runs should be made so that there are at least three traces with acceptable steering curve for each drive case, in order to trust the repeatability of the results. To fully correlate the simulation model to real car performance objective testing with a steering robot also should be made.

6.2 Verification

The rating limits that has been established in this report are inherently consistent with the available data, since this data has been the foundation for the rating limits. To verify that the limits are reasonable over larger data sets further testing should be conducted, preferably with vehicle projects and competitor cars that have not yet been tested. The testing has only included competitor cars from the Asian market so a natural progression would be to test European cars in the same class to see if different cultural vehicle performance trends are identifiable.

If these limits survive a similar test session, they can act as foundation for objective ESC requirements. If the limits turn out to be false, the methodology described in this report can still be used to find new limits. The rating limits for 150 km/h are at this stage an engineering judgement estimation and requires extra scrutiny during verification.

6.3 Lateral Performance Limits

Yaw acceleration measurement did not result in clear correlation with lateral performance assessment. A contributing factor might be the non-equidistant sampling rate, which is described further in section 6.8. With larger data sets, a correlation curve might be found after future testing.

Roll angle did not exist as a measured parameter in the validation data sets and is not usually used assessment parameter in current testing and was therefore also overlooked as a rating parameter. Some OEMs use roll angle as a control variable in the stability controllers, so an investigation in roll limits is recommended. The test drivers also commented on excessive roll in both competitor cars during lane changes. Lateral displacement criteria were also disregarded as the local position signals from the IMU were faulty in the measurement set-up and no solution had been found at the time of testing.

The lateral performance limits only act on too high oversteer and not understeer. In the current data sets, the instances where cars have understeered in the maneuver have been caused by a too hard brake intervention. The ESC counters the slide by mainly braking the front outside wheel, if the brake torque is too high it will saturate the front axle grip and the car will start to understeer. Therefore, the dwell part of the DLC often is understeered in an intrusively tuned car. In high mu conditions it is assumed that understeer due to chassis balance is rare enough that lateral understeer limits are not needed. For wet weather or winter conditions this might not be the case.

6.4 Steering Ratio

Steering ratio has not been accounted for when analyzing the steering curves. All Lynk & Co cars used in this project has the same steering ratio, so the only difference in wheel angle between cars would be due to suspension and steering geometry, which was assumed to be neglectable. The windows for correct steering amplitude are also quite large. A correction factor for steering ratio could be implemented for different vehicle projects and competitor cars.

6.5 Questionnaire

After processing the test data and plotting it against subjective assessments, the balance rating proved more usable than the stability rating. The balance rating includes all information of the stability rating as well as over- or understeer characteristic. A five (neutral) in balance basically equaled a ten in stability, while a slightly oversteered or highly understeered car both would end up with a stability rating of around five. Severe oversteer would give stability rating below 2.5. An improvement would be to only give balance ratings, but to one for each turn of the maneuver. For DLC turn-in, dwell and counter balance and SLC first and second turn balance.

The steering input assessment ended up not being used to save time during testing. If large corrections were made it was noted in the comments. Checking the steering curves against the reference curves in post analysis was enough to judge the steering input.

6.6 VER Scale Usage

For this project CEVT's use routines of the SAE VER was applied. Rather than using the entire range of the scale (from 1 to 10) it effectively ranges from 5 to 9 in 0.25 step increments, with 7 being assessed as "OK" or production ready. The use of the SAE scale in its traditional sense was discussed but not implemented in the project, mainly to avoid confusion with using two different scales in parallel.

6.7 Testing

Due to measurement equipment limitations, only one car could be tested each day. Ideally all cars would have been tested simultaneously and letting drivers

rotate between cars to keep track conditions as consistent as possible. It was originally planned to drive one test cycle in vehicle B1 every day as and use its VDDM logging as a daily reference. However, issues with its data logging equipment meant it was not ready at the first two days of testing and was therefore not driven as a daily reference.

6.8 Differentiated Signals

Late in the project it was found out that the sampling time for the IMU signal is not equidistant, which means a differentiation with respect to time will result in a false signal in some sense (according to Bosch MM6 Help section). The moving average filter should counter this in some measure, but the signal cannot be trusted to the same degree as the pure signals. This applies to both the yaw acceleration and jerk signals.

6.9 High Cars

The rating limits have been established for high cars in the compact SUV/crossover class and in accordance with CEVT/Lynk & Co brand identity. It reasonable to assume that low cars (sedans, hatchbacks etc.) will require a different set of limits. Goméz Gil states that subjective assessment is vehicle class dependent and even if the same measurements are used, the results in one class may not be extrapolated onto the next. The result may serve as a hint on how to rate the next class [7]. Low cars do not carry the risk of rolling over in lane change maneuvers and are therefore not equipped with roll-over mitigation controllers, which often causes the intrusive ESC interventions. This will probably lead to stricter limits on delta v_x for low cars. Cars with a "sporty" branding might also require higher lateral performance limits.

6.10 Implementation

The limits on side slip and yaw rate peaks along with delta v_x can easily be implemented in the current ESC testing routines without having to use extra Excel-sheets or MATLAB programs. Log files are usually checked in between runs and the signals needed are part of the standard plot display. There is no perceived increase in workload or time to manually check the side slip, yaw rate and delta v_x values in Bosch Uniview in between runs. The rating application can be used in the later sign-off and validation stages of a project when deeper analysis needed. Even though the program was intended to for usage in the test vehicle on track, it is perhaps more effectively used for desktop post analysis in conjunction with testing. The time and effort to "cut" the maneuver part out of the log file, resave it and open it in the rating program is a bit too long of a process for the test vehicle environment. It is a useful tool for inexperienced test drivers to learn the drive cases and the steering effort required.

6.11 Subjective Assessments Age

The subjective assessment of vehicle performance will age over time, while the objective measurement will stay the same [8]. What was state of the art performance when ESC was introduced in the mid 1990's will be perceived as unrefined and probably unsafe by today's standards [5]. At the same time objective measurements of the same maneuver in the same car will basically look the same if it was performed 1995 or yesterday. This means that as performance

evolves across the automotive industry the requirements and rating limits need to evolve too. It is unclear how long the results of this project will stay relevant, but at some point, the current limits will become dated.

6.12 Expert Drivers

The preferred use of expert drivers over normally skilled drivers is common in automotive research and development [6]. Even though expert drivers do not represent the average customer, the highly technical nature of vehicle testing requires deep knowledge of vehicle dynamics. The high intensity maneuvers also require skill and experience to perform the test correctly while still having the mental capacity to feel what is happening with the car at all times.

7 Recommendations/Future Work

To improve the maturity level of the vehicle when real car testing is begun, increasing correlation and understanding between simulation and real car performance and CAE simulation is continually strived for. The idea being that the more work can be carried out prior to real car testing the more effective the sessions will become. Currently, ESC is not simulated in terms of vehicle dynamics performance in house at CEVT. When that simulation step is implemented the result of this project can help predict the subjective vehicle assessment from CAE simulation results. This project's main benefit for the CAE team is the definition of ESC drive cases that can be used as simulation input. SLC A for each velocity is the most recommended maneuver as it is closer to an open loop maneuver than DLC, and is the only SLC level with defined lateral performance limits. Correlation between CAE and testing results have not been shown with this project. As mentioned in section 6.1 objective measurements with steering robot and subjective testing with the correct vehicle model are needed.

The rating tool and methods developed in this project can also be utilized in a ESC equipped driver in the loop simulator. In the virtual environment different ESC concepts and calibrations could be tested at a higher rate and with more freedom compared to real car testing. Given the correct data output format, the application could be modified to suit simulator testing as well.

This project begun the work to find the correlation between subjective assessments and objective measurement at a basic level. The process to find rating limits has been a strictly manual task. The state of the art solution for this would be to utilize machine learning to find actual correlation curves. This is of course a highly complex and non-linear task which require both advanced mathematical models and extensive testing.

The recommended continuation of this project would be to perform a second compact SUV/crossover class test to verify the current rating limits. Secondly, two similar test sessions should be performed with low cars to find a second set rating limits. Similar methodology used in this project could also be implemented for more maneuvers such as slalom and throttle release in turn, to provide a wider picture of ESC performance. Furthermore, rating limits for winter conditions could also be established using the same methodology.

8 References

- [1] NHTSA, "FMVSS 126 Electronic Stability Control Systems for Light Vehicles," NHTSA, 2015.
- [2] SAE International, "Subjective Rating Scale for Vehicle Ride and Handling," SAE International, 2016.
- [3] ISO, "ISO 3888: Passenger cars: Test track for a severe lane-change manoeuvre," ISO, 2011.
- [4] Rabe, "Teknikens Värld Moose Test," Bonnier, [Online]. Available: https://teknikensvarld.se/taggar/moose-test/. [Accessed 6 April 2019].
- [5] K. Reif, Brakes, Brake Control and Driver Assistance Systems (Bosch Professional Automotive Information), Friedrichschafen: Springer Fachmedien, 2014.
- [6] G. L. N. B. D. Gil Goméz, "Findings from subjective evaluations and driver ratings of vehicle dynamics: steering and handling," *International Journal of Vehicle Mechanics and Mobility*, vol. 53, no. 10, pp. 1416-1438, 2015.
- [7] G. L. Gil Goméz, "Correlations of subjective assessments and objective metrics for vehicle handling and steering: a walk through history," *Int. J. Vehicle Design*, vol. 72, no. 1, pp. 17-67, 2016.
- [8] G. L. Gil Goméz, "Towards efficient vehicle dynamics development: From subjective assessments to objective metrics, from physical to virtual testing," KTH Royal Institute of Technology, Stockholm, 2017.

A Questionnaire

DLC 80 km/h S ESC Intervention Intrusiveness					Rating	5
No intervention		Neutral		Harsch		
1	2.5	5	7.5	10		
Stability	2.0	C C	110		5	5
Loose				Stable		
<				>		
1	2.5	5	7.5	10		
Pressure release					5	,
Slow		Neutral		Fast		
<				>		
1	2.5	5	7.5	10		
Noise					5	,
High noise		Slight		No noise		
<				>		
1	2.5	5	7.5	10		
Comment:						
Chassis						
Balance					5	;
Understeered		Neutral		Oversteered		
<				>		
1	2.5	5	7.5	10		
Ride					5	;
Hard		Neutral		Soft		
<				>		
1	2.5	5	7.5	10		
Comment:						
Steering Input					5	,
Corrections						
Large		Small		None		
<				>		
1	2.5	5	7.5	10		
Curve Symmetry					5	,
Very Bad	Bad	Neutral	Good	Very Good >		
1	2.5	5	7.5	10		
Comment:						
Overall score						;
Very Bad	Bad	Neutral	Good	Very Good		
<				>		
1	2.5	5	7.5	10		

CHALMERS, Mechanics and Maritime Sciences, Master's Thesis 2019:22

B DLC Subjective Assessment

	C1 PW DS1								
Test	Trace	Intrusiveness 🔻	Stability 🔻	Pressure Release 🔻	Noise 🔻	Balance 🔻	Ride 🔻	VER 🔻	Comment 🔹
DLC 80 km/h S	PW_20190409_033A	0	10	5	10	5	7	9	ОК
DLC 80 km/h M	PW_20190409_034A	5	3,5	5	10	7,5	8,5	6	Loose, soft chassis (roll)
DLC 80 km/h A	PW_20190409_036	5	2	5	7,25	8,5	9	6,5	Loose, soft chassis (roll)
DLC 100 km/h S	PW_20190409_038A	0	10	5	10	5	7	9	Good
DLC 100 km/h M	PW_20190409_039	7	2,5	5	5	8	8	7	Intrus. End of maneuever
DLC 100 km/h A	PW_20190409_040	5	2	5	7,5	7,5	8	5,5	Loose had to abort
DLC 120 km/h S	PW_20190409_041A	0	10	5	10	5	6	9	ОК
DLC 120 km/h M	PW_20190409_042	5	2,5	5	7,25	7,5	8	7,5	ОК
DLC 120 km/h A									
DLC 150 km/h S									
DLC 150 km/h M									
DLC 150 km/h A									

	C1 PW DS2	PW DS2											
Test	Trace	Ŧ	Intrusivenes: 🔻	Stability 🔻	Pressure F 🔻	Noise 🔹	Balance 🔻	Ride 🔻	VER 🔻	Comment 🔹			
DLC 80 km/h S	PW_20190409_033B		0	10	5	10	5	7	9	ОК			
DLC 80 km/h M	PW_20190409_034B		5	3,5	5	10	7,5	8,5	6	Loose, soft chassis (roll)			
DLC 80 km/h A	PW_20190409_037		8	2	5	7,25	8,5	9	6,5	Loose, soft chassis (roll)			
DLC 100 km/h S	PW_20190409_038B		0	10	5	10	5	7	9	Good			
DLC 100 km/h M													
DLC 100 km/h A													
DLC 120 km/h S	PW_20190409_041B		0	10	5	10	5	7	9	ОК			
DLC 120 km/h M	PW_20190409_043		5	2,5	5	7,25	7,5	8	7,5	Had to abort during dwell			
DLC 120 km/h A													
DLC 150 km/h S													
DLC 150 km/h M													
DLC 150 km/h A													

	C1 NH DS1								
Test	Trace	 Intrusivene: - 	Stability 🔻	Pressure F 🔻	Noise 🔻	Balance -	Ride 🔻	VER 👻	Comment 🗸
DLC 80 km/h S	PW_20190409_045A	5	7,5	5	9	5	8	7	OK, lots of roll
DLC 80 km/h M	PW_20190409_046A	7,25	7,25	5	7,5	4	8	5,5	OK, lots of roll
DLC 80 km/h A									Lots of roll, feels uncontrollable
DLC 100 km/h S	PW_20190409_047A	2	7	5	9	4	9	7	Lots of roll, US
DLC 100 km/h M	PW_20190409_048A	5	7,5	5	9	4	9	7	Lots of roll, US
DLC 100 km/h A	PW_20190409_049	8	2	5	2,5	7,5	9	5	Lots of roll, loose
DLC 120 km/h S	PW_20190409_050	2	7,5	5	9	4	9	7	Lots of roll, US
DLC 120 km/h M	PW_20190409_051A	8	3	5	2	7	9	6	Intrus., no confidence, late interventions
DLC 120 km/h A									
DLC 150 km/h S									
DLC 150 km/h M									
DLC 150 km/h A									

	C1 NH DS2								
Test	Trace	 Intrusivene: • 	Stability 🔻	Pressure F 🔻	Noise 🔻	Balance 🔻	Ride 🔻	VER 🔻	Comment 🔻
DLC 80 km/h S	PW_20190409_044B	0	10	5	10	5	8	7	OK, lots of roll
DLC 80 km/h M	PW_20190409_046B	7,25	7,25	5	7,5	4	8	5,5	Lots of roll, feels uncontrollable
DLC 80 km/h A									
DLC 100 km/h S	PW_20190409_047B	2	7	5	9	4	9	7	Lots of roll, US
DLC 100 km/h M	PW_20190409_048B	5	7,5	5	9	4	9	7	Lots of roll, US
DLC 100 km/h A									
DLC 120 km/h S									
DLC 120 km/h M	PW_20190409_051B	8	3	5	2	7	9	6	Intrus., no confidence, late interventions
DLC 120 km/h A									
DLC 150 km/h S									
DLC 150 km/h M									
DLC 150 km/h A									

	C2 PW DS1								
Test	Trace	Intrusiveness 🔻	Stability 🔻	Pressure Release	Noise 🔻	Balance 🔻	Ride 🔻	VER 👻	Comment 🔹
DLC 80 km/h S	AN_20190410_050A	2	10	4	10	5	8	7,5	Smooth interv., slow exit speed
DLC 80 km/h M	AN_20190410_051A	7,5	8,5	2,75	3,25	5	8	6,75	Intrus., safe
DLC 80 km/h A	AN_20190410_052A	7,5	4	2,5	2,5	6	8	6,75	Intrus, initial OS
DLC 100 km/h S	AN_20190410_053A	3	8	2,75	8,5	4	8	6,75	Intrus., long interv. US
DLC 100 km/h M	AN_20190410_054A	8	8,5	2	3	5	8	6,75	Hard and long interv.
DLC 100 km/h A	AN_20190410_055A	7	4	1,5	1,5	3,5	8	6,75	Hard and long interv., US, slow release
DLC 120 km/h S	AN_20190410_056A	2	8	4	8,75	4	8	7,5	Too much braking
DLC 120 km/h M	AN_20190410_057A	7	3	2,75	3	7,5	8	6,5	Intrus
DLC 120 km/h A	AN_20190410_058A	7,5	4	2,5	3	7,5	8	6,5	Initial OS
DLC 150 km/h S	AN_20190410_060A	2	8	4	8,75	4	8	7,5	Lot of braking
DLC 150 km/h M	AN_20190410_061A	7,25	3,75	3,75	3,75	2,75	8	7,5	Lot of braking
DLC 150 km/h A	AN_20190410_063A	5	4	4	10	6	8	7	Initial OS, no confidence

	C2 PW DS2											
Test	Trace	 Intrusivene 	Stability 🔻	Pressure F 🔻	Noise 🔻	Balance 🔻	Ride 🔻	VER 🔻	Comment 🔻			
DLC 80 km/h S	AN_20190410_050B	2	10	4	10	5	8	7,5	Smooth interv., slow exit speed			
DLC 80 km/h M	AN_20190410_051B	7,5	8,5	2,75	3,25	5	8	6,75	Intrus., safe			
DLC 80 km/h A	AN_20190410_052B	7,5	4	2,5	2,5	6	8	6,75	Intrus, initial OS			
DLC 100 km/h S	AN_20190410_053B	3	8	2,75	8,5	4	8	6,75	Intrus., long interv. US			
DLC 100 km/h M	AN_20190410_054B	8	8,5	2	3	5	8	6,75	Hard and long interv.			
DLC 100 km/h A	AN_20190410_055B	7	4	1,5	1,5	3,5	8	6,75	Hard and long interv., US, slow release			
DLC 120 km/h S	AN_20190410_056B	2	8	4	8,75	4	8	7,5	Too much braking			
DLC 120 km/h M	AN_20190410_057B	7	3	2,75	3	7,5	8	6,5	Intrus			
DLC 120 km/h A	AN_20190410_058B	7,5	4	2,5	3	7,5	8	6,5	Initial OS			
DLC 150 km/h S	AN_20190410_059B	2	8	4	8,75	4	8	7,5	Lot of braking			
DLC 150 km/h M	AN_20190410_060B	7,25	3,75	3,75	3,75	2,75	8	7,5	Lot of braking			
DLC 150 km/h A	AN 20190410 061B	5	4	4	10	6	8	7	Initial OS, no confidence			

	C2 NH DS1 Trace v Intrusivent v Stability v Pressure v Noise v Balance v Ride v VFR v Comment v													
Test	Trace	 Intrusivene 	Stability 🔻	Pressure 🔻	Noise 🔹	Balance 🔻	Ride 🔻	VER 🔻	Comment					
DLC 80 km/h S	AN_20190410_0114	۸ C	10	5	10	5	6	9	Good, soft chassis					
DLC 80 km/h M	AN_20190410_0134	8 8	7,5	4	2,5	5,5	7	7,5	Initial OS, saves it good, slight intrus.					
DLC 80 km/h A														
DLC 100 km/h S	AN_20190410_014	\ З	8	5	9	5	7	8	Slight intrus., soft chassis					
DLC 100 km/h M	AN_20190410_0164	8,75	4,25	2,75	2,25	5,75 8		7	Initial OS, safe, intrus.					
DLC 100 km/h A														
DLC 120 km/h S	AN_20190410_0174	۸ C	10	5	9	5	7	8,5	Good					
DLC 120 km/h M	AN_20190410_0194	8,5	8	2	2	5,5	8	6,5	Intrus., initial OS, safe					
DLC 120 km/h A														
DLC 150 km/h S														
DLC 150 km/h M														
DLC 150 km/h A														

	C2 NH DS2								
Test	Trace	Intrusiveness 🔻	Stability 🔻	Pressure Release	Noise 🔻	Balance 🔻	Ride 🔻	VER 🔻	Comment 🗸
DLC 80 km/h S	AN_20190410_011B	0	10	5	10	5	6	9	Good, soft chassis
DLC 80 km/h M	AN_20190410_012B	2,5	8,5	5	7,75	4,5	7	5	Soft chassis, US
DLC 80 km/h A	AN_20190410_013B	8	7,5	4	2,5	5,5	7	7,5	Initial OS, saves it good, slight intrus.
DLC 100 km/h S	AN_20190410_014B	3	8	5	9	5	7	8	Slight intrus., soft chassis
DLC 100 km/h M	AN_20190410_016B	8,75	4,25	2,75	2,25	5,75	8		Initial OS, safe, intrus.
DLC 100 km/h A									
DLC 120 km/h S	AN_20190410_017B	0	10	5	9	5	7	8,5	Good
DLC 120 km/h M	AN_20190410_019B	8,5	8	2	2	5,5	8	6,5	Intrus., initial OS, safe
DLC 120 km/h A									
DLC 150 km/h S									
DLC 150 km/h M									
DLC 150 km/h A									

Test	Trace	 Intrusiveness 	Stability 💌	Pressure Release	Noise 🔻	Balance 💌	Ride 🔻	VER 💌	Comment 🗸					
DLC 80 km/h S	AN_20190410_039	0	10	5	10	5	6	8	Good					
DLC 80 km/h M	AN_20190410_040	3	4	5	10	6,5	8	6,75	OS return to first lane					
DLC 80 km/h A	AN_20190410_041	5	3,5	5	7,5	8	8	7,5	OS					
DLC 100 km/h S	AN_20190410_042	0	10	5	9	5	8	7,75	Good					
DLC 100 km/h M	AN_20190410_043	7	5	4	5	6,5	8	6,5	Intrusive return, loose second lane					
DLC 100 km/h A	AN_20190410_044	6	0,5	5	7,25	9	8,25	3	Loose					
DLC 120 km/h S	AN_20190410_045	2	8	5	8,75	4	8	7	US second lane					
DLC 120 km/h M	AN_20190410_046	5	7,5	5	5	2,75	8	7,25	US second lane					
DLC 120 km/h A	AN_20190410_047	7	8	4	5	3	8	7	Harsh interv. second lane					
DLC 150 km/h S														
DLC 150 km/h M														
DLC 150 km/h A														

	B1 PW DS1													
Test	Trace	 Intrusiv 	Stabilit [,] 🔻	Pressur 🔻	Noise 🔻	Balance 🔻	Ride 🔻	VER 🔻	Comment 🔹					
DLC 80 km/h S	PW_20190416_016A	8,5	4,5	2	2	3	7	5,5	Intrusive US					
DLC 80 km/h M	PW_20190416_016A_18	8	4,5	3	2,5	2,75	7	6,5	Intrusive US					
DLC 80 km/h A	PW_20190416_017A	8	4	3	2,5	2,5	7	6	Intrusive US					
DLC 100 km/h S	PW_20190416_019A	6	4	3	2,5	2,75	7	5,5	Intrusive US					
DLC 100 km/h M	PW_20190416_019A_22	8	4	2	2,5	2,5	7	6	Intrusive US					
DLC 100 km/h A	PW_20190416_020A	8	4,5	2,75	2,75	3,75	7	6	Intrusive US					
DLC 120 km/h S	PW_20190416_023A	7,5	4,5	2,5	3	2,5	7,5	7	Intrusive US					
DLC 120 km/h M	PW_20190416_023A_25	8	4	2	2,5	2,5	7	6	Intrusive US					
DLC 120 km/h A	PW_20190416_024A	9	3	1,5	2	2	7,5	6	Intrusive US					
DLC 150 km/h S	PW_20190416_026	5	5	5	8	5	7	6,75	Loose initially					
DLC 150 km/h M	PW_20190416_026_28	5	6	4	7,5	4,5	7,5	7	US in second lane					
DLC 150 km/h A	PW_20190416_027	5,5	5	4	5	4	7	7	US in second lane					

	B1 PW DS2								
Test	Trace	Intrusiv 👻	Stability 🔻	Pressur 🔻	Noise 🔻	Balance 🔻	Ride 💌	VER 🔻	Comment 💌
DLC 80 km/h S	PW_20190416_016B	8,5	4,5	2	2	3	7	5,5	Intrusive US
DLC 80 km/h M	PW_20190416_016B_18	8	4,5	3	2,5	2,75	7	6,5	Intrusive US
DLC 80 km/h A	PW_20190416_017B	8	4	3	2,5	2,5	7	6	Intrusive US
DLC 100 km/h S	PW_20190416_019B	8	4	3	2,5	2,75	7	5,5	Intrusive US
DLC 100 km/h M	PW_20190416_019B_22	8	4	2	2,5	2,5	7	6,5	Intrusive US
DLC 100 km/h A	PW_20190416_020B	8	4,5	2,75	2,75	3,75	7	6	Intrusive US
DLC 120 km/h S	PW_20190416_023B	7,5	4,5	2,5	3	2,5	7,5	7	Intrusive US
DLC 120 km/h M	PW_20190416_023B_25	8	4	2	2,5	2,5	7	6	Intrusive US
DLC 120 km/h A	PW_20190416_024B	9	3	1,5	2	2	7,5	6	Intrusive US
DLC 150 km/h S									
DLC 150 km/h M									
DLC 150 km/h A									

C DLC Test Results

	C1 PW DS1													
Test	Trace	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 🔻	Side Slip 3 🔻	Yaw Rate 1 🔻	Yaw Rate 2 🔻	Yaw Rate 3 🔻	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 🔻	Delta vx 🔻	VER 🔻
DLC 80 km/h S	PW_20190409_033A	78,69	2,06	-2,38	1,70	-17,85	20,37	-14,23	-73,60	82,20	-1,28	-3,92	8,53	9
DLC 80 km/h M	PW_20190409_034A	130,95	5,30	-9,51	5,29	-35,13	49,56	-43,51	-206,20	268,60	-3,86	-12,52	15,23	6
DLC 80 km/h A	PW_20190409_036	156,79	8,08	-11,33	4,14	-37,64	58,87	-33,59	-211,80	340,60	-4,79	-18,25	25,96	6,5
DLC 100 km/h S	PW_20190409_038A	71,13	1,95	-3,14	2,12	-14,29	23,17	-15,73	-67,20	79,00	-2,19	-9,10	6,26	9
DLC 100 km/h M	PW_20190409_039	96,99	3,71	-5,82	2,21	-26,29	34,83	-16,86	-133,20	173,60	-3,58	-10,24	14,26	7
DLC 100 km/h A														5,5
DLC 120 km/h S														9
DLC 120 km/h M	PW_20190409_042	83,66	3,17	-4,83	4,00	-20,39	27,57	-29,31	-148,87	107,80	-3,44	-10,88	15,88	7,5
DLC 120 km/h A														
DLC 150 km/h S														
DLC 150 km/h M														
DLC 150 km/h A														

	C1 PW DS2													
Test	Trace	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 🔻	Side Slip 3 🔻	Yaw Rate 1 🔻	Yaw Rate 2 🔻	Yaw Rate 3 🔻	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 🔻	Delta vx 🔻	VER 🔻
DLC 80 km/h S	PW_20190409_033B	81,54	2,39	-2,35	1,89	-19,20	22,76	-14,05	-87,40	79,60	-1,51	-4,48	8,82	9
DLC 80 km/h M	PW_20190409_034B	167,44	6,21	-13,04	5,46	-36,53	55,68	-44,29	-191,60	275,80	-4,26	-18,01	18,72	6
DLC 80 km/h A	PW_20190409_037	190,44	9,06	-21,04	5,71	-40,44	69,44	-46,61	-245,60	315,00	-6,30	-23,13	45,14	6,5
DLC 100 km/h S	PW_20190409_038B	74,66	2,77	-2,79	2,43	-19,38	19,59	-17,02	-99,00	80,00	-1,69	-6,25	9,36	9
DLC 100 km/h M														
DLC 100 km/h A														
DLC 120 km/h S	PW_20190409_041B	65,11	2,55	-2,56	1,44	-17,52	19,05	-9,84	-82,73	87,33	-1,50	-6,68	11,63	9
DLC 120 km/h M														7,5
DLC 120 km/h A														
DLC 150 km/h S														
DLC 150 km/h M														
DLC 150 km/h A														

	C1 NH DS1													
Test	Trace	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 🔻	Side Slip 3 🔻	Yaw Rate 1 🔻	Yaw Rate 2 🔻	Yaw Rate 3 🔻	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 💌	Delta vx 🔻	VER 🔻
DLC 80 km/h S	PW_20190409_045A	98,54	3,26	-3,88	3,28	-25,49	27,84	-23,11	-159,07	124,00	-1,63	-5,55	9,54	7
DLC 80 km/h M	PW_20190409_046A	143,99	7,38	-11,33	5,29	-37,81	53,20	-37,67	-210,60	274,80	-4,05	-17,95	24,88	5,5
DLC 80 km/h A														
DLC 100 km/h S	PW_20190409_047A	70,29	2,40	-3,04	2,51	-18,66	21,89	-18,55	-89,40	96,20	-1,71	-6,52	10,58	7
DLC 100 km/h M	PW_20190409_048A	88,74	3,26	-3,47	3,84	-24,53	25,28	-26,95	-135,20	62,00	-1,88	-7,07	12,67	7
DLC 100 km/h A	PW_20190409_049	130,91	7,88	-15,36	6,64	-35,43	57,44	-54,08	-218,00	200,20	-6,10	-15,08	39,20	5
DLC 120 km/h S	PW_20190409_050	61,54	2,58	-2,81	2,81	-21,08	19,05	-20,47	-108,00	63,00	-1,81	-5,95	12,02	7
DLC 120 km/h M	PW_20190409_051A	81,68	3,57	-3,77	5,06	-23,80	25,13	-32,20	-128,20	104,80	-2,61	-7,48	15,08	6
DLC 120 km/h A														
DLC 150 km/h S														
DLC 150 km/h M														
DLC 150 km/h A														

	C1 NH DS2													
Test	Trace	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 💌	Side Slip 3 🔻	Yaw Rate 1 🔻	Yaw Rate 2 💌	Yaw Rate 3 🔻	Yaw Acc 1 💌	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 🔻	Delta vx 🔻	VER 👻
DLC 80 km/h S														7
DLC 80 km/h M	PW_20190409_046B	138,01	5,44	-7,41	3,90	-33,91	42,68	-27,03	-177,40	231,20	-2,98	-9,80	15,44	5,5
DLC 80 km/h A														
DLC 100 km/h S	PW_20190409_047B	67,80	2,22	-2,80	2,38	-16,92	19,67	-16,99	-86,80	85,60	-1,71	-7,01	12,02	7
DLC 100 km/h M	PW_20190409_048B	100,85	4,17	-5,29	4,46	-26,55	31,25	-30,48	-161,80	125,00	-2,82	-8,51	16,42	7
DLC 100 km/h A														
DLC 120 km/h S														
DLC 120 km/h M	PW_20190409_051B	93,39	4,96	-4,52	5,42	-25,68	32,63	-33,42	-127,60	186,80	-4,10	-10,52	22,82	6
DLC 120 km/h A														
DLC 150 km/h S														
DLC 150 km/h M														
DLC 150 km/h A														

	C2 PW DS1													
Test	Trace <	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 🔻	Side Slip 3 🔻	Yaw Rate 1 💌	Yaw Rate 2 🔻	Yaw Rate 3 🔻	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 💌	Delta vx 🔻	VER 👻
DLC 80 km/h S	AN_20190410_050A	92,32	2,66	-3,46	1,78	-20,32	24,21	-14,11	-88,93	74,93	-1,29	-2,24	8,57	7,5
DLC 80 km/h M	AN_20190410_051A	143,69	4,66	-5,82	2,83	-31,87	32,46	-19,67	-180,53	156,93	-2,31	-4,49	8,10	6,75
DLC 80 km/h A	AN_20190410_052A	180,62	6,20	-10,78	4,22	-36,64	52,10	-35,16	-190,27	256,27	-4,68	-12,32	25,92	6,75
DLC 100 km/h S	AN_20190410_053A	75,76	3,23	-3,02	2,47	-20,28	20,48	-16,14	-90,13	42,53	-1,35	-2,21	8,53	6,75
DLC 100 km/h M	AN_20190410_054A	106,79	4,54	-4,73	1,86	-25,75	32,40	-10,35	-140,13	123,20	-4,59	-7,35	14,36	6,75
DLC 100 km/h A	AN_20190410_055A	152,98	7,17	-11,62	1,99	-37,19	59,80	-15,94	-180,93	176,93	-6,24	-10,99	30,74	6,75
DLC 120 km/h S	AN_20190410_056A	70,40	2,91	-2,97	1,41	-19,39	15,24	-11,74	-85,47	46,80	-1,65	-3,60	9,47	7,5
DLC 120 km/h M	AN_20190410_057A	92,92	6,63	-6,09	2,56	-32,73	43,97	-23,50	-146,00	143,73	-6,26	-12,24	27,32	6,5
DLC 120 km/h A	AN_20190410_058A	120,44	6,99	-12,75	3,96	-30,46	55,47	-29,82	-171,07	163,07	-6,42	-16,00	28,37	6,5
DLC 150 km/h S	AN_20190410_060A	57,82	1,70	-3,82	1,46	-11,99	17,72	-11,24	-55,20	32,00	-1,75	-5,68	10,08	7,5
DLC 150 km/h M	AN_20190410_061A	65,74	2,99	-3,32	2,04	-18,21	16,48	-14,57	-81,47	68,27	-2,26	-5,20	9,32	7,5
DLC 150 km/h A	AN_20190410_063A	82,48	5,51	-4,68	1,89	-26,95	32,32	-12,43	-152,40	88,80	-6,12	-15,23	16,63	7

	C2 PW DS2													
Test	Trace 🔹	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 🔻	Side Slip 3 🔻	Yaw Rate 1 💌	Yaw Rate 2 🔻	Yaw Rate 3 🔻	Yaw Acc 1 🔻	Yaw Acc 2 💌	Long Acc 🔻	Long Jerk 💌	Delta vx 🔻	VER 👻
DLC 80 km/h S	AN_20190410_050B	93,41	2,43	-3,76	2,44	-19,94	25,90	-17,07	-61,73	99,20	-1,63	-2,40	9,14	7,5
DLC 80 km/h M	AN_20190410_051B	133,83	5,55	-5,50	1,30	-34,88	40,21	-12,49	-156,00	160,13	-5,00	-11,73	18,72	6,75
DLC 80 km/h A	AN_20190410_052B	159,13	7,43	-7,59	0,63	-40,90	52,29	-7,32	-182,80	215,47	-5,69	-12,45	23,58	6,75
DLC 100 km/h S	AN_20190410_053B	85,49												6,75
DLC 100 km/h M	AN_20190410_054B	102,14	5,07	-5,24	1,73	-30,20	36,35	-14,55	-128,80	152,13	-5,59	-10,96	25,78	6,75
DLC 100 km/h A	AN_20190410_055B	157,72	7,57	-12,84	1,94	-36,59	61,59	-16,61	-167,33	242,53	-5,96	-12,24	33,05	6,75
DLC 120 km/h S														7,5
DLC 120 km/h M														6,5
DLC 120 km/h A	AN_20190410_058B	116,21	7,67	-8,87	2,30	-35,85	50,68	-18,26	-188,13	205,87	-6,08	-11,32	31,57	6,5
DLC 150 km/h S	AN_20190410_060B	45,46	1,98	-3,68	1,58	-11,18	19,12	-9,39	-58,13	8,67	-1,47	-3,63	9,50	7,5
DLC 150 km/h M	AN_20190410_062B	74,54	5,79	-5,13	2,23	-25,54	39,67	-13,08	-148,40	161,60	-5,74	-13,52	18,40	7,5
DLC 150 km/h A	AN 20190410 063B	80,48	6,02	-5,43	1,76	-27,76	40,04	-11,39	-156,00	146,67	-6,28	-14,11	22,43	7

	C2 NH DS1													
Test	Trace 🔹	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 🔻	Side Slip 3 🔻	Yaw Rate 1 🔻	Yaw Rate 2 🔻	Yaw Rate 3 🔻	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 🔻	Delta vx 🔻	VER 🔻
DLC 80 km/h S	AN_20190410_011A	79,38	2,61	-2,47	1,59	-20,19	20,59	-13,98	-77,00	69,20	-1,50	-5,30	8,78	9
DLC 80 km/h M	AN_20190410_013A	141,28125	5,96	-6,09	2,16	-36,21	44,88	-14,05	-211,73	274,20	-5,48	-12,61	23,44	7,5
DLC 80 km/h A														
DLC 100 km/h S	AN_20190410_014A	65,37	2,04	-3,29	2,24	-15,63	20,80	-16,34	-71,40	76,20	-1,61	-6,25	10,76	8
DLC 100 km/h M	AN_20190410_016A	117,84	5,57	-6,58	2,29	-34,81	44,83	-18,76	-177,40	201,00	-5,96	-17,56	26,35	7
DLC 100 km/h A														
DLC 120 km/h S	AN_20190410_017A	55,36	2,26	-2,75	1,39	-14,96	17,38	-10,27	-64,00	90,53	-1,59	-10,09	9,83	8,5
DLC 120 km/h M	AN_20190410_019A	91,85	5,74	-5,83	1,14	-29,52	40,98	-9,84	-209,20	104,20	-7,27	-21,87	27,47	6,5
DLC 120 km/h A														
DLC 150 km/h S														
DLC 150 km/h M														
DLC 150 km/h A														

	C2 NH DS2													
Test	Trace	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 🔻	Side Slip 3 🔻	Yaw Rate 1 🔻	Yaw Rate 2 🔻	Yaw Rate 3 🔻	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 🔻	Delta vx 🔻	VER 🔻
DLC 80 km/h S	AN_20190410_011B	82,73	2,51	-2,95	2,44	-18,86	21,70	-20,02	-82,60	71,20	-1,67	-4,84	10,26	9
DLC 80 km/h M	AN_20190410_012B	115,40	4,51	-4,23	3,37	-29,62	29,17	-22,73	-141,60	144,80	-2,51	-10,44	12,24	8
DLC 80 km/h A	AN_20190410_013B	160,20	8,00	-7,29	0,87	-39,19	54,44	-12,60	-174,40	183,00	-6,68	-17,04	30,71	7,5
DLC 100 km/h S	AN_20190410_014B	74,22	2,95	-3,03	1,55	-18,50	19,83	-11,77	-66,20	50,60	-2,00	-5,80	10,98	8
DLC 100 km/h M	AN_20190410_016B	104,15	6,13	-3,90	1,98	-31,60	32,47	-14,54	-163,20	165,20	-6,43	-17,03	26,82	7
DLC 100 km/h A														
DLC 120 km/h S	AN_20190410_017B	59,08	2,13	-2,76	1,91	-13,12	17,08	-14,69	-54,80	93,60	-2,20	-14,41	11,59	8,5
DLC 120 km/h M	AN_20190410_019B	93,66	6,02	-5,59	2,28	-26,09	40,68	-20,46	-139,80	127,80	-7,38	-21,00	40,36	6,5
DLC 120 km/h A														
DLC 150 km/h S														
DLC 150 km/h M														
DLC 150 km/h A														

	C2 KIH DS1													
Test	Trace	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 🔻	Side Slip 3 🔻	Yaw Rate 1 🔻	Yaw Rate 2 🔻	Yaw Rate 3 🔻	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 🔻	Delta vx 🔻	VER 🔻
DLC 80 km/h S	AN_20190410_039	103,54												8
DLC 80 km/h M	AN_20190410_040	136,23	3,89	-6,83	6,88	-29,47	31,67	-43,31	-117,60	170,53	-2,55	-5,44	14,26	6,75
DLC 80 km/h A	AN_20190410_041	161,20	7,77	-13,91	6,00	-39,02	62,96	-41,31	-170,00	215,20	-5,26	-8,43	27,50	7,5
DLC 100 km/h S	AN_20190410_042	67,18	2,08	-2,80	1,88	-14,90	18,85	-14,72	-50,13	68,67	-1,59	-3,60	10,22	7,75
DLC 100 km/h M	AN_20190410_043	114,09	4,47	-8,22	4,75	-29,14	36,69	-35,33	-74,13	142,13	-5,21	-12,99	26,03	6,5
DLC 100 km/h A	AN_20190410_044	196,84	8,49	-21,29	4,89	-35,60	69,36	-44,22	-183,07	239,73	-8,90	-16,69	49,68	3
DLC 120 km/h S	AN_20190410_045	48,93	1,66	-1,83	1,72	-11,72	11,69	-12,92	-33,20	42,27	-1,50	-2,67	11,23	7
DLC 120 km/h M	AN_20190410_046	80,37	3,95	-3,91	3,69	-22,89	27,34	-23,41	-79,33	103,60	-2,98	-6,85	15,62	7,25
DLC 120 km/h A	AN_20190410_047	101,26	8,07	-7,85	2,42	-31,06	50,96	-19,43	-155,47	208,27	-6,44	-11,47	34,85	7
DLC 150 km/h S														
DLC 150 km/h M														
DLC 150 km/h A														

	31 PW DS1													
Test	Trace	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 🔻	Side Slip 3 🔻	Yaw Rate 1 🔻	Yaw Rate 2 🔻	Yaw Rate 3 💌	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 🔻	Delta vx 🔻	VER 👻
DLC 80 km/h S	PW_20190416_016A	88,24	2,56	-4,09	1,07	-21,48	29,89	-10,52	-92,50	141,80	-5,53	-13,57	23,58	5,5
DLC 80 km/h M	PW_20190416_016A_18	127,29	5,93	-6,66	3,07	-32,17	47,32	-12,94	-119,10	287,20	-5,76	-14,14	32,22	6,5
DLC 80 km/h A	PW_20190416_017A	207,27	6,31	-5,20	1,97	-39,92	47,33	-10,24	-200,10	198,70	-6,75	-20,09	37,48	6
DLC 100 km/h S	PW_20190416_019A	71,13	2,85	-5,12	3,19	-20,44	27,96	-23,91	-70,98	130,70	-3,59	-10,87	12,46	5,5
DLC 100 km/h M	PW_20190416_019A_22	89,97	4,74	-4,43	3,06	-27,18	27,58	-24,82	-118,60	145,60	-5,10	-16,63	16,96	6
DLC 100 km/h A	PW_20190416_020A	173,48	5,58	-4,57	1,42	-35,63	40,44	-8,60	-178,40	140,60	-7,89	-19,58	42,55	6
DLC 120 km/h S	PW_20190416_023A	49,29	2,95	-3,68	2,70	-16,46	18,99	-16,96	-68,33	96,75	-1,64	-7,92	9,54	7
DLC 120 km/h M	PW_20190416_023A_25	81,78	4,79	-4,30	0,65	-25,77	32,56	-6,66	-103,40	206,60	-6,13	-14,02	38,30	6
DLC 120 km/h A	PW_20190416_024A	141,80	6,70	-3,52	1,83	-32,75	38,56	-7,37	-153,60	131,80	-9,19	-16,64	49,72	6
DLC 150 km/h S														6,75
DLC 150 km/h M	PW_20190416_026_28	57,72	4,44	-3,91	1,46	-22,27	30,16	-6,88	-92,22	138,40	-5,84	-16,52	34,20	7
DLC 150 km/h A	PW_20190416_027	90,28	6,45	-5,06	1,35	-28,50	33,90	-15,24	-155,60	130,00	-7,61	-11,49	48,06	7

	B1 PW DS2													
Test	Trace	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 🔻	Side Slip 3 🔻	Yaw Rate 1 🔻	Yaw Rate 2 🔻	Yaw Rate 3 🔻	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 🔻	Delta vx 🔻	VER -
DLC 80 km/h S	PW_20190416_016B	101,01	3,84	-4,61	1,08	-25,71	36,28	-7,22	-93,48	204,50	-5,89	-20,00	26,24	5,5
DLC 80 km/h M	PW_20190416_016B_18	130,63	4,53	-4,28	1,68	-28,63	36,54	-8,17	-124,60	221,40	-5,89	-12,87	33,19	6,5
DLC 80 km/h A	PW_20190416_017B	209,10	5,55	-2,94	1,88	-35,18	31,53	-11,32	-184,80	133,10	-8,16	-18,06	41,04	6
DLC 100 km/h S	PW_20190416_019B	78,09	3,65	-3,97	1,17	-22,99	29,47	-9,12	-77,28	163,40	-5,88	-15,63	39,38	5,5
DLC 100 km/h M														6,5
DLC 100 km/h A	PW_20190416_020B	185,04	5,90	-3,49	1,17	-35,30	38,72	-8,17	-173,40	171,40	-7,48	-14,76	47,05	6
DLC 120 km/h S	PW_20190416_023B	58,30	2,96	-6,01	4,26	-18,69	23,84	-32,28	-63,18	85,24	-4,16	-17,58	20,12	7
DLC 120 km/h M	PW_20190416_023B_25	75,26	3,77	-3,86	1,71	-19,53	28,86	-8,95	-76,61	126,40	-6,13	-15,72	44,96	6
DLC 120 km/h A	PW_20190416_024B	150,60	6,38	-3,63	1,27	-32,52	39,79	-13,15	-167,10	116,00	-8,63	-15,48	49,75	6
DLC 150 km/h S														
DLC 150 km/h M														
DLC 150 km/h A														

62

64

66

E SLC Subjective Assessment

	C1 PW DS1													
Test	Trace	 Intrusiveness 	Stability 🔻	Pressure Release	Noise 🔻	Balance 🔻	Ride 🔻	VER 🔻	Comment 🔹					
SLC 80 km/h S	PW_20190409_005	A 0	10	5	10	5	5	9	No intervention					
SLC 80 km/h M														
SLC 80 km/h A	PW_20190409_007	4 8,5	4	4,5	2,75	6	5	6,5	Intrusive					
SLC 100 km/h S	PW_20190409_008	A 0	10	5	10	5	5	9	No intervention					
SLC 100 km/h M	PW_20190409_009	A 7	4	3,5	2	7	7	7,5	ОК					
SLC 100 km/h A	PW_20190409_010	3,5	0	5	10	10	10	4	Had to abort, too loose					
SLC 120 km/h S	PW_20190409_012	A 0	10	5	10	5	5	9	No intervention					
SLC 120 km/h M	PW_20190409_013	۹ 5	2,5	4,75	2,5	8	7,5	7	Little intrusive					
SLC 120 km/h A														
SLC 150 km/h S														
SLC 150 km/h M														
SLC 150 km/h A														

	C1 PW DS2								
Test	Trace	 Intrusiveness 	Stability 🔻	Pressure Release 🔻	Noise 🔻	Balance 🔻	Ride 🔻	VER 🔻	Comment 🔹
SLC 80 km/h S	PW_20190409_005	в О	10	5	10	5	5	9	No intervention
SLC 80 km/h M									
SLC 80 km/h A	PW_20190409_007	В 7	4	4,5	2,75	6	5	6,5	
SLC 100 km/h S	PW_20190409_008	в О	10	5	10	5	5	9	No intervention
SLC 100 km/h M									
SLC 100 km/h A	PW_20190409_009	в 7	4	3,5	2	7	7	6	Too loose
SLC 120 km/h S	PW_20190409_012	в О	10	5	10	5	5	9	No intervention
SLC 120 km/h M									
SLC 120 km/h A									
SLC 150 km/h S									
SLC 150 km/h M									
SLC 150 km/h A									

	C1 NH DS1	C1 NH DS1													
Test	Trace	Intrusiveness 🔻	Stability 🔻	Pressure Release	Noise 👻	Balance 🔻	Ride 🔻	VER 👻	Comment -						
SLC 80 km/h S	PW_20190409_021A	5	10	5	10	5	8	8	Very soft chassis						
SLC 80 km/h M	PW_20190409_022A	4	3	5	5	6,5	8	6,5	Bit loose						
SLC 80 km/h A															
SLC 100 km/h S	PW_20190409_023A	0	10	5	9	5	8	7	Soft chassis						
SLC 100 km/h M	PW_20190409_027A	9,5	2,75	3	3,5	6,75	7,75	4	Loose, harsh, mistimed interv.						
SLC 100 km/h A															
SLC 120 km/h S	PW_20190409_029A	5	7	4,75	5	6	8,5	7	ОК						
SLC 120 km/h M															
SLC 120 km/h A															
SLC 150 km/h S															
SLC 150 km/h M															
SLC 150 km/h A															

	C1 NH DS2								
Test	Trace	Intrusiveness 🔻	Stability 💌	Pressure Release 🔻	Noise 🔻	Balance 💌	Ride 🔻	VER 🔻	Comment 🗸
SLC 80 km/h S		0	10	5	10	5	7	9	Good
SLC 80 km/h M	PW_20190409_022B	4	3	5	5	6,5	8	6,5	ОК
SLC 80 km/h A									
SLC 100 km/h S	PW_20190409_023B	0	10	5	9	5	8	7	Soft chassis
SLC 100 km/h M	PW_20190409_027B	9,5	2,75	3	3,5	6,75	7,75	4	Loose, harsh, mistimed interv.
SLC 100 km/h A									
SLC 120 km/h S	PW_20190409_028B	0	10	5	10	5	8	6,5	ОК
SLC 120 km/h M		5	7	4,75	5	6	8,5	7	ОК
SLC 120 km/h A									
SLC 150 km/h S									
SLC 150 km/h M									
SLC 150 km/h A									

	C2 PW DS1								
Test	Trace	Intrusiveness 🔻	Stability 👻	Pressure Release	Noise 🔻	Balance 💌	Ride 🔻	VER 👻	Comment 🗸
SLC 80 km/h S	AN_20190410_020A	2	10	5	9	5	6	8	Small interv.
SLC 80 km/h M	AN_20190410_021A	7	9	3	5	4,5	6,5	7	Intrusive
SLC 80 km/h A	AN_20190410_022A	6	8,5	2,5	3	4,5	6,5	7,5	Intrus., slow to release, safe
SLC 100 km/h S	AN_20190410_023A	0	10	5	10	5	6,5	8,5	Good
SLC 100 km/h M	AN_20190410_024A	6,5	8	2,5	2,5	5	6,5	7	Bit hard interv., slow to release
SLC 100 km/h A	AN_20190410_025A	9,25	4,5	1,75	1,25	6,25	6,5	7	Harsh and late interv.
SLC 120 km/h S	AN_20190410_026A	5	7,5	5	8,75	5	6	7	Bit intrusive
SLC 120 km/h M	AN_20190410_027A	5,25	9	5	2,5	5	6,5	7,75	Hard but fast interv.
SLC 120 km/h A	AN_20190410_028A	7,5	4	2,5	2,5	7	6,5	6,75	Loose and high roll
SLC 150 km/h S	AN_20190410_029A							7	Loose initially then harsh
SLC 150 km/h M									
SLC 150 km/h A									

	C2 PW DS2												
Test	Trace 🔹	Intrusiveness 🔻	Stability 💌	Pressure Release	Noise 🔻	Balance 💌	Ride 🔻	VER 👻	Comment 🗸				
SLC 80 km/h S	AN_20190410_020B	2	10	5	9	5	6	8	Small interv.				
SLC 80 km/h M	AN_20190410_021B	7	9	3	5	4,5	6,5	7	Intrusive				
SLC 80 km/h A	AN_20190410_022B	6	8,5	2,5	3	4,5	6,5	7,5	Intrus., slow to release, safe				
SLC 100 km/h S	AN_20190410_023B	0	10	5	10	5	6,5	8,5	Good				
SLC 100 km/h M	AN_20190410_024B	6,5	8	2,5	2,5	5	6,5	7	Bit hard interv., slow to release				
SLC 100 km/h A	AN_20190410_025B	9,25	4,5	1,75	1,25	6,25	6,5	7	Harsh and late interv.				
SLC 120 km/h S	AN_20190410_026B	5	7,5	5	8,75	5	6	7	Bit intrusive				
SLC 120 km/h M	AN_20190410_027B	5,25	9	5	2,5	5	6,5	7,75	Hard but fast interv.				
SLC 120 km/h A	AN_20190410_028B	7,5	4	2,5	2,5	7	6,5	6,75	Loose and high roll				
SLC 150 km/h S	AN_20190410_029B							7	Loose initially then harsh				
SLC 150 km/h M													
SLC 150 km/h A													

	C2 NH DS1								
Test	Trace	Intrusiveness 🔻	Stability 💌	Pressure Release	Noise 🔻	Balance 💌	Ride 💌	VER 👻	Comment 🗸
SLC 80 km/h S	AN_20190410_002A	2	10	5	10	5	6	8	Small intervention but good
SLC 80 km/h M	AN_20190410_003A	7,5	8	7,25	5	5	6	7,5	Better stability than Toyota
SLC 80 km/h A									
SLC 100 km/h S	AN_20190410_005A	5	8	5	10	3,5	6	7,5	Slight US, feels like soft side wall tires
SLC 100 km/h M									
SLC 100 km/h A	AN_20190410_006A	6,5	8	2,75	4,25	5	6	7,5	Long interv., brake on inside wheel, safe
SLC 120 km/h S	AN_20190410_007A	0	10	5	8,75	5	6	7,5	Good, soft chassis
SLC 120 km/h M	AN_20190410_009A	7	10	3	4	4	7,5	7,5	Safe, intrusive, soft chassis
SLC 120 km/h A									
SLC 150 km/h S	AN_20190410_010	0	10	5	10	5	6	9	Good
SLC 150 km/h M									
SLC 150 km/h A									

	C2 NH DS2								
Test	Trace	Intrusiveness 🔻	Stability 🔻	Pressure Release	Noise 🔻	Balance 🔻	Ride 🔻	VER 🔻	Comment 🗸
SLC 80 km/h S	AN_20190410_0018	s 0	10	5	10	5	6	9	Good and stable
SLC 80 km/h M	AN_20190410_003E	7,5	8	7,25	5	5	6	7,5	Better stability than Toyota
SLC 80 km/h A									
SLC 100 km/h S	AN_20190410_004E	6 0	10	5	10	5	6	9	Stable
SLC 100 km/h M	AN_20190410_006	6,5	8	2,75	4,25	5	7,5	7,5	Long interv., brake on inside wheel, safe
SLC 100 km/h A									
SLC 120 km/h S	AN_20190410_0078	s 0	10	5	8,75	5	6	7,5	Good, soft chassis
SLC 120 km/h M	AN_20190410_0098	7	10	3	4	4	7,5	7,5	Safe, intrusive, soft chassis
SLC 120 km/h A									
SLC 150 km/h S									
SLC 150 km/h M									
SLC 150 km/h A									

	C2 KJH DS1	C2 KIH DS1												
Test	Trace	 Intrusiveness 	 Stability 	Pressure Release	Noise 🔻	Balance 🔻	Ride 🔻	VER 🔻	Comment 🔹					
SLC 80 km/h S	AN_20190410_030	A	0 10) 5	10	5	6	9	Good					
SLC 80 km/h M	AN_20190410_031	A	0 10) 5	10	5	6	9	Good					
SLC 80 km/h A	AN_20190410_032	A	8 4	۶ 5	2	6	6	7	Harsh					
SLC 100 km/h S	AN_20190410_033	A	0 8	5 5	10	5	7	8	Lots of roll, controllable					
SLC 100 km/h M	AN_20190410_034	A	8 8	3,5	2	5	7	6,5	Harsh, faulty interv.					
SLC 100 km/h A	AN_20190410_035		8 8	5 5	1,75	5	6,75	7,5	Harsh, safe					
SLC 120 km/h S	AN_20190410_036		0 10	5	10	5	6	8	Good					
SLC 120 km/h M	AN_20190410_037	6	.5 7,5	i 4	3	5	8	7,5	Good, slow to release					
SLC 120 km/h A	AN_20190410_038	4,7	5 7,25	4,75	8,75	6	6	6	Turn-in OS, harsh					
SLC 150 km/h S														
SLC 150 km/h M														
SLC 150 km/h A														

	C2 KJH DS2													
Test	Trace	•	Intrusiveness 🔻	Stability	•	Pressure Release	Noise	•	Balance 💌	Rid	e 👻	VER	•	Comment <
SLC 80 km/h S	AN_20190410_030)B	0		10	5	1	.0	5		6		9	Good
SLC 80 km/h M	AN_20190410_031	B	0		10	5	1	.0	5		6		9	Good
SLC 80 km/h A	AN_20190410_032	2B	8		4	5		2	6		6		7	Harsh
SLC 100 km/h S	AN_20190410_033	BB	0		8	5	1	.0	5		7		8	Lots of roll, controllable
SLC 100 km/h M	AN_20190410_034	ŀВ	8		8	3,5		2	5		7	6,	5	Harsh, faulty interv.
SLC 100 km/h A														
SLC 120 km/h S														
SLC 120 km/h M														
SLC 120 km/h A														
SLC 150 km/h S														
SLC 150 km/h M														
SLC 150 km/h A														

	B1 PW DS1	PW DS1													
Test	Trace	Intrusiveness 🔻	Stability 💌	Pressure Release	Noise 🔻	Balance 💌	Ride 🔻	VER 🔻	Comment 🔹						
SLC 80 km/h S	PW_20190411_005A	8,5	7,5	2	2	4	6	6	Intrusive, US						
SLC 80 km/h M	PW_20190411_006A	8	7,5	2	2	4	6	5,5	Intrusive, US						
SLC 80 km/h A	PW_20190411_007A	8	7,5	2	2	4	6	6	Intrusive, US						
SLC 100 km/h S	PW_20190411_008A	5	7,5	3	2,5	4	6	7	ОК						
SLC 100 km/h M	PW_20190411_009A	8,5	3	2	2	2	6	5	Intrusive, US						
SLC 100 km/h A	PW_20190411_010A	7,5	5	2,75	2,75	3,25	6	6	Intrusive, US						
SLC 120 km/h S	PW_20190411_011A	6,5	7,5	2,5	2,5	4	6	6,5	Intrusive, US						
SLC 120 km/h M	PW_20190411_012A	7,75	4	2,5	2,5	2,5	6	7	Intrusive, US						
SLC 120 km/h A	PW_20190411_013A	7,5	4,5	3	3	3,5	6								
SLC 150 km/h S	PW_20190411_015	6	8,5	4	4	4,5	6	7	Bit harsh						
SLC 150 km/h M		6	5	4	4	5	7	6	Loose						
SLC 150 km/h A	PW_20190411_020	6	2,5	4	7,25	8	7,5	5,5	Woobly						

	B1 PW DS2								
Test	Trace 🔹	Intrusiveness 🔻	Stability 🔻	Pressure Release 🔻	Noise 🔻	Balance 💌	Ride 🔻	VER 👻	Comment 🔹
SLC 80 km/h S	PW_20190411_005B	8,5	7,5	2	2	4	6	6	Intrusive, US
SLC 80 km/h M	PW_20190411_006B	8	7,5	2	2	4	6	5,5	Intrusive, US
SLC 80 km/h A	PW_20190411_007B	8	7,5	2	2	4	6	6	Intrusive, US
SLC 100 km/h S	PW_20190411_008B	5	7,5	3	2,5	4	6	6,5	ОК
SLC 100 km/h M	PW_20190411_009B	8,5	3	2	2	2	6	5	Intrusive, US
SLC 100 km/h A	PW_20190411_010B	7,5	5	2,75	2,75	3,25	6	6	Intrusive, US
SLC 120 km/h S	PW_20190411_011B	6,5	7,5	2,5	2,5	4	6	6,5	Intrusive, US
SLC 120 km/h M	PW_20190411_012B	7,75	4	2,5	2,5	2,5	6	6,5	Intrusive, US, wide
SLC 120 km/h A	PW_20190411_014	7,5	4,5	3	3	3,5	6	7	Intrusive, US
SLC 150 km/h S									
SLC 150 km/h M									
SLC 150 km/h A									

	B1 PW DS3								
Test	Trace	Intrusiv 🔻	Stability 🔻	Pressur 🔻	Noise 🔻	Balance 🔻	Ride 🔹	VER 🔻	Comment <
SLC 80 km/h S	PW_20190416_002A	8,5	7,5	2	2	4	6	8	Intrusive
SLC 80 km/h M	PW_20190416_002A_4	7,5	8	2,5	2,5	4	6	6	Intrusive
SLC 80 km/h A	PW_20190416_003A	7,5	8	2,5	2,5	4	6	6,5	Intrusive
SLC 100 km/h S	PW_20190416_005A	8,5	7,5	2,5	2,5	4	6	6	Intrusive
SLC 100 km/h M	PW_20190416_005A_7	8,5	4,5	2	2	2	7,5	5,5	Intrusive, US
SLC 100 km/h A	PW_20190416_006A	8	5	2,75	2,75	2	7,25	6	Intrusive, US
SLC 120 km/h S	PW_20190416_008A	7,25	4,75	2,5	2,5	4	7	6	Intrusive, US
SLC 120 km/h M	PW_20190416_009A	8,5	4	2,5	2,5	3,5	7,5	5,5	Intrusive, US
SLC 120 km/h A									
SLC 150 km/h S	PW_20190416_011	5,5	8,5	4,75	4	5	6	7,5	Intrusive, OK for speed
SLC 150 km/h M	PW_20190416_011_14	5,25	8	4	4	5	7	7	ОК
SLC 150 km/h A	PW_20190416_012	6	2,5	4	7,25	8	7,5	6,75	Loose initially, wide

	B1 PW DS4								
Test	Trace	Intrusiveness	Stability 🔻	Pressure Release	Noise 🔻	Balance 🔻	Ride 🔻	VER 🔻	Comment 🔻
SLC 80 km/h S	PW_20190416_002B	8,5	7,5	2	2	4	6	8	Intrusive
SLC 80 km/h M	PW_20190416_002B_4	7,5	8	2,5	2,5	4	6	6	Intrusive
SLC 80 km/h A	PW_20190416_003B	7,5	8	2,5	2,5	4	6	6,5	Intrusive
SLC 100 km/h S	PW_20190416_005B	8,5	7,5	2,5	2,5	4	6	6	Intrusive
SLC 100 km/h M		8,5	4,5	2	2	2	7,5	5,5	Intrusive, US
SLC 100 km/h A	PW_20190416_006B	8	5	2,75	2,75	2	7,25	6	Intrusive, US
SLC 120 km/h S	PW_20190416_008B	7,25	4,75	2,5	2,5	4	7	6	Intrusive, US
SLC 120 km/h M	PW_20190416_008B_10	8	4	2,5	2,5	4,5	7,5	6	Intrusive, US
SLC 120 km/h A	PW_20190416_009B	8,5	4	2,5	2,5	3,5	7,5	5,5	Intrusive, US
SLC 150 km/h S									
SLC 150 km/h M									
SLC 150 km/h A									

F SLC Test Results

	CI PW DS1											
Test	Trace 🔹	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 🔻	Yaw Rate 1 🔻	Yaw Rate 2 🔻	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 👻	Delta vx 🔻	VER 👻
SLC 80 km/h S	PW_20190409_005A	63,00	1,82	-1,84	-18,96	14,41	-65,60	88,80	-1,28	-4,36	3,35	9
SLC 80 km/h M												
SLC 80 km/h A	PW_20190409_007A	203,89	9,05	-9,71	-43,85	63,69	-272,20	406,80	-7,03	-19,25	9,32	6,5
SLC 100 km/h S	PW_20190409_008A	52,43	1,99	-2,17	-16,00	17,15	-78,80	95,80	-1,29	-8,18	4,03	9
SLC 100 km/h M	PW_20190409_009A	108,36	5,26	-5,35	-31,06	41,70	-210,20	257,80	-4,31	-14,72	10,62	7,5
SLC 100 km/h A	PW_20190409_010	160,01	7,77	-28,22	-38,28	67,37	-225,60	297,60	-5,42	-13,92	14,04	4
SLC 120 km/h S	PW_20190409_012A	48,30	2,45	-2,07	-17,21	14,39	-89,80	72,60	-2,41	-4,88	7,34	9
SLC 120 km/h M	PW_20190409_013A	78,06	3,54	-5,41	-23,30	32,03	-114,00	89,60	-4,35	-8,24	14,11	7
SLC 120 km/h A												
SLC 150 km/h S												
SLC 150 km/h M												
SLC 150 km/h A												

	C1 PW DS2											
Test	Trace	- SWA Amp -	Side Slip 1 🔻	Side Slip 2 🔻	Yaw Rate 1 🔻	Yaw Rate 2 🔻	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 👻	Delta vx 🔻	VER 👻
SLC 80 km/h S	PW_20190409_005	3 72,93	2,67	-1,50	-22,14	15,89	-104,00	77,40	-1,12	-3,10	4,57	9
SLC 80 km/h M												
SLC 80 km/h A	PW_20190409_0078	3 159,23	5,77	-7,60	-36,77	52,62	-270,73	232,40	-6,61	-12,83	7,13	6,5
SLC 100 km/h S	PW_20190409_008	67,74	3,22	-2,62	-22,69	20,37	-110,40	135,40	-2,07	-10,24	5,47	9
SLC 100 km/h M												
SLC 100 km/h A	PW_20190409_0098	3 151,75	8,23	-10,41	-37,40	59,40	-264,53	480,80	-7,86		11,45	6
SLC 120 km/h S	PW_20190409_0128	46,93	2,34	-1,85	-17,54	12,80	-84,40	66,20	-1,55	-4,96	8,35	9
SLC 120 km/h M												
SLC 120 km/h A												
SLC 150 km/h S												
SLC 150 km/h M												
SLC 150 km/h A												

	C1 NH DS1											
Test	Trace 🔹	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 🔻	Yaw Rate 1 🔻	Yaw Rate 2 🔻	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 🔻	Delta vx 🔻	VER 👻
SLC 80 km/h S	PW_20190409_021A	84,01	3,22	-3,37	-26,21	23,83	-143,20	126,40	-1,41	-5,99	3,64	8
SLC 80 km/h M	PW_20190409_022A	107,86	4,59	-5,24	-33,80	37,55	-202,40	231,60	-2,09	-6,29	6,48	6,5
SLC 80 km/h A												
SLC 100 km/h S	PW_20190409_023A	53,26	1,76	-2,41	-16,90	16,85	-112,47	72,00	-1,83	-8,88	3,85	7
SLC 100 km/h M	PW_20190409_027A	93,66	5,01	-5,42	-30,10	39,08	-224,44	213,20	-2,94	-11,22	9,54	4,00
SLC 100 km/h A												
SLC 120 km/h S	PW_20190409_029A	57,84	2,90	-2,77	-21,57	19,15	-102,80	72,80	-1,77	-4,62	6,05	7
SLC 120 km/h M												
SLC 120 km/h A												
SLC 150 km/h S												
SLC 150 km/h M												
SLC 150 km/h A												

	C1 NH DS2											
Test	Trace	SWA Amp 👻	Side Slip 1 🔻	Side Slip 2 🔻	Yaw Rate 1 🔻	Yaw Rate 2 🔻	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 👻	Delta vx 🔻	VER 👻
SLC 80 km/h S												9
SLC 80 km/h M	PW_20190409_022E	115,72	5,36	-4,83	-34,17	38,40	-278,33	228,00	-4,82	-15,92	10,30	6,5
SLC 80 km/h A												
SLC 100 km/h S	PW_20190409_023E	64,58	2,54	-2,58	-18,98	19,01	-82,40	40,00	-1,49	-4,77	6,80	7
SLC 100 km/h M	PW_20190409_027E	100,74	4,78	-6,51	-29,10	35,91	-174,00	103,40	-3,86	-9,18	9,29	4
SLC 100 km/h A												
SLC 120 km/h S	PW_20190409_028E	51,71	2,26	-2,72	-15,86	19,52	-79,00	83,00	-1,71	-9,04	6,88	6,5
SLC 120 km/h M												
SLC 120 km/h A												
SLC 150 km/h S												
SLC 150 km/h M												
SLC 150 km/h A												

	C2 PW DS1											
Test	Trace	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 🔻	Yaw Rate 1 🔻	Yaw Rate 2 🔻	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 🔻	Delta vx 🔻	VER 👻
SLC 80 km/h S												8
SLC 80 km/h M	AN_20190410_021A	107,32	4,98	-3,80	-32,19	30,49	-146,40	191,60	-2,19	-9,11	3,46	7
SLC 80 km/h A	AN_20190410_022A	151,03	6,38	-5,85	-40,91	47,20	-219,73	270,20	-7,39	-36,45	13,00	7,5
SLC 100 km/h S	AN_20190410_023A	63,19	2,91	-2,19	-19,97	16,85	-87,60	125,80	-1,64	-4,04	4,46	8,5
SLC 100 km/h M	AN_20190410_024A	92,76	4,35	-4,24	-28,87	30,48	-170,67	165,20	-4,94	-15,28	9,40	7
SLC 100 km/h A	AN_20190410_025A	166,77	7,79	-11,44	-41,88	66,32	-187,27	432,53	-5,72	-25,59	12,35	7
SLC 120 km/h S	AN_20190410_026A	46,38	2,37	-1,75	-14,26	12,27	-77,40	47,80	-1,60	-9,67	5,18	7
SLC 120 km/h M	AN_20190410_027A	85,57	4,83	-4,57	-28,99	34,01	-197,87	160,00	-5,97	-14,53	10,12	7,75
SLC 120 km/h A	AN_20190410_028A	142,69	8,79	-8,83	-34,79	60,36	-155,60	280,40	-7,67	-22,52	21,46	6,75
SLC 150 km/h S												
SLC 150 km/h M												
SLC 150 km/h A												

	C2 PW DS2											
Test	Trace 🔹	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 💌	Yaw Rate 1 💌	Yaw Rate 2 💌	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 💌	Long Jerk 🔻	Delta vx 👻	VER 👻
SLC 80 km/h S	AN_20190410_020B	76,56	2,90	-2,65	-22,12	18,97	-93,20	123,60	-1,16	-6,61	3,92	8
SLC 80 km/h M	AN_20190410_021B	124,70	5,08	-5,14	-35,58	41,64	-214,90	183,40	-5,02	-26,85	9,79	7
SLC 80 km/h A	AN_20190410_022B	167,02	6,65	-6,73	-38,45	54,79	-171,40	313,20	-7,78	-32,07	17,53	7,5
SLC 100 km/h S	AN_20190410_023B	63,79	3,44	-2,59	-23,06	19,55	-92,20	63,20	-1,56	-6,03	5,26	8,5
SLC 100 km/h M	AN_20190410_024B	96,41	5,44	-4,52	-30,84	34,26	-153,80	234,60	-7,12	-18,06	14,26	7
SLC 100 km/h A	AN_20190410_025B	169,04	8,75	-7,87	-39,32	61,12	-225,80	338,60	-6,53	-13,56	11,45	7
SLC 120 km/h S	AN_20190410_026B	58,54	3,00	-2,81	-18,53	19,69	-96,80	116,00	-2,42	-7,84	6,59	7
SLC 120 km/h M	AN_20190410_027B	87,86	5,06	-4,35	-29,05	34,76	-150,80	160,80	-6,24	-22,24	11,95	7,75
SLC 120 km/h A	AN_20190410_028B	139,59	8,67	-10,49	-35,63	62,02	-206,20	208,40	-5,65	-16,24	13,00	6,75
SLC 150 km/h S												
SLC 150 km/h M												
SLC 150 km/h A												

CHALMERS, Mechanics and Maritime Sciences, Master's Thesis 2019:22

	C2 NH DS1											
Test	Trace	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 🔻	Yaw Rate 1 🔻	Yaw Rate 2 🔻	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 🔻	Delta vx 🔻	VER 👻
SLC 80 km/h S	AN_20190410_002A	75,34	2,42	-2,57	-22,02	19,90	-98,20	92,40	-1,68	-5,92	4,86	8
SLC 80 km/h M	AN_20190410_003A	102,24	4,49	-4,26	-30,97	30,68	-169,20	192,20	-1,93	-5,60	6,34	7,5
SLC 80 km/h A												
SLC 100 km/h S	AN_20190410_005A	72,94	3,22	-2,96	-23,03	22,32	-112,00	103,40	-1,60	-8,81	5,08	8
SLC 100 km/h M												
SLC 100 km/h A	AN_20190410_006A	124,71	7,53	-6,47	-36,06	49,98	-196,40	229,40	-7,24	-17,16	20,23	7,5
SLC 120 km/h S	AN_20190410_007A	50,39	2,57	-1,90	-16,94	11,94	-95,00	68,40	-2,00	-7,45	6,16	8,5
SLC 120 km/h M	AN_20190410_009A	95,13	5,30	-6,06	-28,58	43,29	-179,00	148,00	-7,50	-19,40	15,91	7,5
SLC 120 km/h A												
SLC 150 km/h S	AN_20190410_010	34,09	1,71	-1,95	-10,45	11,46	-63,67	34,00	-1,52	-12,63	3,71	9
SLC 150 km/h M												
SLC 150 km/h A												

	C2 NH DS2											
Test	Trace	SWA Amp 🔻	Side Slip 1 💌	Side Slip 2 💌	Yaw Rate 1 💌	Yaw Rate 2 💌	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 💌	Long Jerk 💌	Delta vx 👻	VER
SLC 80 km/h S	AN_20190410_001B	52,58	1,71	-1,41	-13,66	14,14	-56,80	53,20	-1,36	-13,57	6,59	9
SLC 80 km/h M	AN_20190410_003B	129,36	6,49	-6,07	-36,44	47,24	-180,00	240,60	-5,68	-12,08	15,37	7,5
SLC 80 km/h A												
SLC 100 km/h S	AN_20190410_004B	57,48	2,20	-2,50	-16,40	17,50	-60,00	58,00	-1,52	-6,45	6,95	9
SLC 100 km/h M	AN_20190410_006B	105,99	5,58	-5,99	-30,59	42,60	-171,20	190,80	-5,90		15,08	7,5
SLC 100 km/h A												
SLC 120 km/h S	AN_20190410_007B	51,34	2,49	-2,50	-15,38	16,98	-61,40	75,00	-1,55	-3,32	6,91	8,5
SLC 120 km/h M	AN_20190410_009B	93,21	6,13	-5,04	-29,30	39,75	-154,40	169,40	-5,97	-13,48	26,64	7,5
SLC 120 km/h A												
SLC 150 km/h S												
SLC 150 km/h M												
SLC 150 km/h A												

	C2 KJH DS1											
Test	Trace 🔹	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 🔻	Yaw Rate 1 🔻	Yaw Rate 2 🔻	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 🔻	Delta vx 🔻	VER 👻
SLC 80 km/h S	AN_20190410_030A	35,51	0,98	-0,87	-9,07	9,03	-63,20	48,00	-1,05	-6,16	3,02	9
SLC 80 km/h M	AN_20190410_031A	96,63	3,20	-3,18	-24,30	23,26	-116,07	107,20	-0,91	-4,44	2,81	9
SLC 80 km/h A	AN_20190410_032A	174,36	6,64	-9,60	-39,81	59,31	-167,00	355,60	-7,31	-25,51	8,21	7
SLC 100 km/h S	AN_20190410_033A	64,73	3,22	-1,73	-20,96	12,99	-121,07	67,20	-1,34	-3,68	5,15	8
SLC 100 km/h M	AN_20190410_034A	95,12	4,28	-5,51	-26,67	37,83	-117,60	210,20	-3,51	-12,68	6,19	6,5
SLC 100 km/h A	AN_20190410_035	148,36	8,17	-6,15	-35,62	54,24	-169,20	273,60	-6,37	-17,32	21,82	7,5
SLC 120 km/h S	AN_20190410_036	50,30	2,19	-1,98	-14,67	13,32	-59,40	46,60	-1,46	-5,07	5,98	8
SLC 120 km/h M	AN_20190410_037	67,21	3,50	-2,76	-21,25	18,35	-120,13	98,80	-2,37	-6,07	7,38	7,5
SLC 120 km/h A	AN_20190410_038	140,64	8,68	-6,42	-32,23	54,08	-189,13	266,80	-7,56	-20,13	21,74	6
SLC 150 km/h S												
SLC 150 km/h M												
SLC 150 km/h A												

	C2 KJH DS2											
Test	Trace	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 💌	Yaw Rate 1 💌	Yaw Rate 2 💌	Yaw Acc 1 💌	Yaw Acc 2 💌	Long Acc 💌	Long Jerk 💌	Delta vx 🔻	VER 👻
SLC 80 km/h S	AN_20190410_030B	54,41	1,43	-1,26	-14,02	13,08	-49,60	46,60	-0,72	-3,00	2,52	9
SLC 80 km/h M	AN_20190410_031B	112,40	4,19	-4,98	-28,29	38,64	-123,80	213,60	-1,52	-7,51	3,38	9
SLC 80 km/h A	AN_20190410_032B	207,97	9,66	-5,57	-41,22	58,47	-176,60	246,40	-8,52	-23,88	26,93	7
SLC 100 km/h S	AN_20190410_033B	72,43	3,07	-2,69	-22,59	18,14	-93,20	90,80	-1,30	-4,00	5,15	8
SLC 100 km/h M	AN_20190410_034B	94,51	4,19	-4,97	-25,75	33,96	-99,20	172,60	-3,18	-10,04	8,82	6,5
SLC 100 km/h A												
SLC 120 km/h S												
SLC 120 km/h M												
SLC 120 km/h A												
SLC 150 km/h S												
SLC 150 km/h M												
SLC 150 km/h A												

	B1 PW DS1											
Test	Trace	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 🔻	Yaw Rate 1 🔻	Yaw Rate 2 🔻	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 🔻	Delta vx 🔻	VER 👻
SLC 80 km/h S	PW_20190411_005/	58,64	2,43	-2,05	-21,42	19,69	-79,00	129,57	-1,23	-4,31	3,74	6
SLC 80 km/h M	PW_20190411_006	103,71	4,84	-2,78	-35,09	32,87	-177,76	172,62	-8,01	-18,60	20,70	5,5
SLC 80 km/h A	PW_20190411_007/	155,61	6,18	-2,17	-36,44	35,92	-229,39	114,38	-9,22	-24,35	29,09	6
SLC 100 km/h S	PW_20190411_008/	55,23	3,18	-2,94	-22,56	22,71	-152,77	191,42	-1,67	-8,84	4,61	7
SLC 100 km/h M	PW_20190411_009/	120,24	6,26	-2,70	-36,81	36,80	-173,63	108,60	-10,25	-20,92	38,99	5
SLC 100 km/h A	PW_20190411_010/	172,84	7,66	-5,10	-36,88	47,11	-187,24	101,34	-9,58	-18,65	33,37	6
SLC 120 km/h S	PW_20190411_011/	48,34	3,60	-3,40	-20,45	26,35	-74,62	238,50	-4,17	-13,27	9,04	6,5
SLC 120 km/h M	PW_20190411_012/	85,86	5,73	-3,33	-32,84	33,77	-186,60	143,60	-7,49	-21,56	26,75	7
SLC 120 km/h A	PW_20190411_013/	170,66	9,33	-4,39	-36,55	44,81	-208,69	171,66	-10,14		37,76	
SLC 150 km/h S	PW_20190411_015	47,73	4,04	-3,90	-20,49	30,36	-80,56	122,24	-5,43	-17,22	14,08	7
SLC 150 km/h M												
SLC 150 km/h A	PW 20190411 020	120,72	8,26	-11,96	-37,22	56,51	-202,39	83,81	-8,38	-22,93	18,61	5,5

	B1 PW DS2											
Test	Trace	SWA Amp 🔻	Side Slip 1 💌	Side Slip 2 🔻	Yaw Rate 1 💌	Yaw Rate 2 🔻	Yaw Acc 1 💌	Yaw Acc 2 💌	Long Acc 🔻	Long Jerk 💌	Delta vx 🔻	VER 👻
SLC 80 km/h S	PW_20190411_005B	76,57	3,42	-3,72	-25,92	29,22	-98,60	221,65	-6,55	-19,98	13,68	6
SLC 80 km/h M	PW_20190411_006B	98,20	4,87	-3,12	-32,45	31,97	-160,09	182,82	-7,48	-18,39	21,13	5,5
SLC 80 km/h A	PW_20190411_007B	169,87	5,52	-2,82	-37,62	38,05	-232,98	197,38	-7,91	-22,60	24,77	6
SLC 100 km/h S	PW_20190411_008B	62,05	3,77	-3,07	-25,42	26,96	-105,83	186,23	-6,52	-20,46	13,07	6,5
SLC 100 km/h M	PW_20190411_009B	130,23	7,08	-2,28	-35,80	30,72	-151,23	176,43	-10,09	-20,61	36,76	5
SLC 100 km/h A	PW_20190411_010B	171,24	6,92	-3,78	-36,01	46,48	-211,16	224,44	-8,78	-19,56	30,13	6
SLC 120 km/h S	PW_20190411_011B	50,50	3,19	-3,26	-20,39	25,15	-81,27	95,82	-6,89	-22,44	12,89	6,5
SLC 120 km/h M	PW_20190411_012B	122,59	8,07	-4,00	-32,61	40,62	-177,25	102,41	-9,39	-19,55	39,85	6,5
SLC 120 km/h A	PW_20190411_014	158,91	7,24	-3,90	-33,45	42,80	-209,45	179,17	-9,20	-25,03	34,34	7
SLC 150 km/h S												
SLC 150 km/h M												
SLC 150 km/h A												

CHALMERS, Mechanics and Maritime Sciences, Master's Thesis 2019:22

	B1 PW DS3											
Test	Trace 🔹	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 🔻	Yaw Rate 1 🔻	Yaw Rate 2 🔻	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 🔻	Delta vx 🔻	VER 👻
SLC 80 km/h S	PW_20190416_002A	61,88	2,41	-2,43	-21,53	21,24	-82,58	133,56	-1,28	-3,46	2,74	9
SLC 80 km/h M	PW_20190416_002A_4	140,81	4,95	-2,40	-36,64	31,07	-189,01	160,22	-9,56	-17,36	23,29	6
SLC 80 km/h A	PW_20190416_003A	152,61	5,64	-2,99	-37,69	34,72	-196,99	185,21	-10,74	-19,10	27,43	6,5
SLC 100 km/h S	PW_20190416_005A	66,58	3,47	-3,37	-23,38	27,44	-99,61	168,34	-6,79	-18,79	14,90	6
SLC 100 km/h M	PW_20190416_005A_7	80,57	4,50	-2,59	-28,51	28,50	-132,61	283,88	-8,20		21,71	5,5
SLC 100 km/h A	PW_20190416_006A	152,81	6,56	-3,03	-35,77	38,31	-192,46	161,82	-10,13		32,90	6
SLC 120 km/h S	PW_20190416_008A	51,95	3,29	-3,18	-19,69	25,59	-64,20	190,47	-6,57	-18,44	10,66	6
SLC 120 km/h M	PW_20190416_009A	100,41	5,30	-2,08	-30,44	27,85	-153,81	94,41	-9,61	-23,69	28,40	5,5
SLC 120 km/h A												
SLC 150 km/h S	PW_20190416_011	49,80	3,99	-3,69	-18,98	28,29	-47,60	131,87	-5,72	-13,67	13,64	7,5
SLC 150 km/h M	PW_20190416_011_14	55,39	4,04	-4,35	-20,98	31,09	-88,69	171,38	-6,15	-18,68	15,66	7
SLC 150 km/h A	PW_20190416_012	97,75	7,85	-4,29	-31,08	43,07	-152,84	169,32	-9,61	-37,59	19,48	6,75

	B1 PW DS4											
Test	Trace	SWA Amp 🔻	Side Slip 1 🔻	Side Slip 2 🔻	Yaw Rate 1 🔻	Yaw Rate 2 💌	Yaw Acc 1 🔻	Yaw Acc 2 🔻	Long Acc 🔻	Long Jerk 🔻	Delta vx 🔻	VER 👻
SLC 80 km/h S	PW_20190416_002B	73,47	3,12	-3,33	-24,64	25,20	-93,19	172,96	-1,38	-3,84	4,21	9
SLC 80 km/h M	PW_20190416_002B_4	134,09	4,70	-1,72	-33,98	27,09	-190,00	114,22	-9,68	-28,17	24,88	6
SLC 80 km/h A	PW_20190416_003B	179,39	5,95	-3,59	-37,66	39,90	-199,58	206,73	-9,15	-19,16	29,66	6,5
SLC 100 km/h S	PW_20190416_005B	61,44	3,81	-3,05	-24,61	27,00	-96,49	185,54	-7,39	-19,24	13,39	6
SLC 100 km/h M												
SLC 100 km/h A	PW_20190416_006B	143,41	5,35	-2,50	-33,13	37,85	-178,81	154,80	-9,10	-19,43	31,61	6
SLC 120 km/h S	PW_20190416_008B	52,68	3,65	-2,49	-21,50	21,65	-71,36	154,61	-6,66	-19,88	12,20	6
SLC 120 km/h M	PW_20190416_008B_10	77,91	4,75	-2,86	-28,51	32,50	-132,81	173,07	-9,90	-18,30	24,62	6
SLC 120 km/h A	PW_20190416_009B	118,90	5,80	-2,93	-32,79	36,20	-155,20	138,02	-10,47		34,31	5,5
SLC 150 km/h S												
SLC 150 km/h M												
SLC 150 km/h A												

G SLC Subjective vs Objective Scatter Plots

