
Dialogue modeling using
recurrent neural networks
Master’s thesis in Computer Science

VIKTOR ANDERLING
JONATHAN ORRÖ

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

Master’s thesis 2016

Dialogue modeling using
recurrent neural networks

VIKTOR ANDERLING
JONATHAN ORRÖ

Department of Computer Science and Engineering
Division of Computing Science

Machine Learning and Computational Biology
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2016

Dialogue modeling using recurrent neural networks
VIKTOR ANDERLING
JONATHAN ORRÖ

© VIKTOR ANDERLING, JONATHAN ORRÖ, 2016.

Supervisor: Mikael Kågebäck, Department of Computer Science and Engineering
Examiner: Peter Damaschke, Department of Computer Science and Engineering

Master’s Thesis 2016
Department of Computer Science and Engineering
Division of Computing Science
Machine Learning and Computational Biology
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2016

iv

Dialogue modeling using recurrent neural networks
VIKTOR ANDERLING
JONATHAN ORRÖ
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg

Abstract
As the importance of computers in everyday life increases, so does the demand for
better human-computer interfaces. Natural language, being our most natural form
of communication, combined with man’s innate tendency of anthropomorphism,
motivates the idea of a talking machine. Existing dialogue systems have the problem
of being unable to answer out-of-domain questions as well as being tedious to design.
While these systems are developed with hand-crafted rules, the goal of this thesis is
to investigate if a dialogue system could be automatically trained to speak instead.

Our aim is to test whether a model trained on a dialogue corpus can compare to
existing dialogue systems. We trained a recurrent neural network using the sequence-
to-sequence method, preserving the state of the model during the course of the
conversation. The resulting network is end-to-end trainable. User testing was used
to evaluate the model and compare it to the other dialogue systems.

The final model can answer appropriately to common phrases such as greetings
and valedictions. It also generates replies in correct English. However, the results
do not stretch any further than that. Giving the model a more complicated input
usually results in a nonsensical reply, which prevents it from having a coherent
conversation with the user.

We present a few hypotheses as to why we did not get better results, with
suggestions on how they could be solved. We display high hopes for future work in
the area and present a few suggestions of what could be the next steps.

Keywords: chatbot, dialogue, dialogue modeling, dialogue system, artificial neural
networks, recurrent neural networks, rnn, lstm, user testing, deep learning

v

Acknowledgements
We thank Mikael Kågebäck for the support and all the useful feedback. We also
thank all the people that participated in the evaluation of our chatbot and David
Benyon who provided us with the questionnaire for the user evaluation.

Viktor Anderling, Jonathan Orrö, Gothenburg, May 2016

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Related Work 3

3 Background 5
3.1 Neural networks . 5

3.1.1 Feed forward neural networks 6
3.1.2 Weight Optimization . 7
3.1.3 Recurrent Neural Networks 8
3.1.4 Long short-term memory . 9

3.2 Tokenizing . 11
3.3 Word embedding . 12
3.4 Sequence-to-sequence . 14

3.4.1 Attention . 15
3.5 Hyperparameter optimization . 15
3.6 Regularization . 16

3.6.1 Dropout . 17
3.6.2 Gradient clipping . 17
3.6.3 Dropword . 18

4 Model details 19
4.1 State-resetting model . 19
4.2 State-preserving model . 20
4.3 Hyper parameter optimization . 20

5 Data sets 21
5.1 Plain text version . 21
5.2 Conversations data set . 21

6 Evaluation 25
6.1 Test procedure . 25
6.2 Questionnaire . 26
6.3 Participants and Data . 26

ix

Contents

7 Results and discussion 27
7.1 General behaviour of the chatbot . 27
7.2 User evaluation . 27

7.2.1 Questionnaire answers . 28
7.2.2 Interviews . 28

7.3 Model performance . 28
7.3.1 Training time . 30
7.3.2 Choice of hyper parameters 30
7.3.3 State-preserving model . 33

7.4 Further work . 33
7.4.1 Alignment and attention . 33
7.4.2 Method of preserving the state 34
7.4.3 Method of partitioning data into conversations 34
7.4.4 Out of vocabulary inference 35

8 Conclusion 37

Bibliography 39

A User testing questionnaire I

x

List of Figures

3.1 An example of a feed forward neural network. The circles are neurons
and the arrows are the weighted connections. This network has three
input neurons, two output neurons and two hidden layers with five
neurons each. 6

3.2 A visualization of a single recurrent cell at time t to the left, and the
same cell unrolled in time to the right. Note that the cell affects both
the cells in the next layer and the cells in the same layer and next
time step. 8

3.3 A layer of LSTM-cells at layer l and time step t. The ellipses denote
element wise application of the operation inside it. The boxes is an
application of the transform T defined in section 3.1.3 followed by the
activation function in the box. Merging lines means concatenation of
the vectors. 11

3.4 The vector difference between the words describes semantic differ-
ences. All the vector differences between these words are roughly the
same, since they all describe a man and woman of a certain type.
Image taken from [1]. 13

3.5 A sequence-to-sequence model which encodes the sentence "How are
you?" and produces during decoding the sentence "I am fine. <EOS>".
When decoding, the previously generated output is used as input for
the next time step, except for the first word, where <GO> is used as
input. The decoder stops when an <EOS> is generated. 14

3.6 Figure of two different networks trained on classifying crosses and
dots in a 2-D space. The dotted line represents the classification
boundary that the network has learned. The network to the left has
learned the true classification boundary, while the network to the
right has overfitted, which will cause it to perform worse on data not
in the training set. 17

3.7 To the left is a network without dropout and to the right is an example
of the same network with dropout. Some neurons have randomly been
dropped, shown by an X in them. 17

5.1 An example on how lines are formatted in the plain text version of
the OpenSubtitles dataset. No additional information is given about
the lines, other than their order. 22

xi

List of Figures

5.2 An example on how lines are formatted in the XML version of the
OpenSubtitles dataset. Every line has a start time stamp and an end
time stamp. 23

5.3 This graph shows the time between lines from a single movie in our
data set where each bar corresponds to one line. The line number on
the horizontal axis denotes its chronological index in the movie and
∆t denotes the time in seconds between itself and the previous line. . 24

6.1 An excerpt of four examples from a total of 26 statements which was
used in the user evaluation . 26

7.1 An example of some inputs and responses from a chatbot trained with
neural networks. We can see that its responses are nonsensical. The
chatbot does however produce complete and correct sentences and
not just random words. 29

7.2 The figure shows our training losses in blue and evaluation losses in
red during training for one of the models. As we can see both losses
are still decreasing past step 14000, which is a sign that the network
had not converged at the time the user evaluation were conducted. . . 31

7.3 The validation error of four different network sizes after training of
24000 steps. Note that the lowest error is 3.306 and the highest is
3.536, so the difference in error between the smallest and the largest
model is 0.23 . 32

xii

List of Tables

7.1 Selected statements from the questionnaire and a corresponding av-
erage score for each tested chatbot. The score ranges between -2 and
2. 30

xiii

List of Tables

xiv

1
Introduction

The idea behind a talking machine has been around for at least 60 years, ever since
Alan Turing presented the famous Turing test [2]. This is a test to tell if a machine
is smart enough to fool a human into thinking that the machine is a human as well.
Today talking machines are often referred to as dialogue systems or chatbots. In
1966 Weizenbaum created ELIZA [3], which is often referred to as the first chatbot.
Since then many chatbots have been created with different purposes. Some chatbots
are created with a very specific purpose in mind, like automated customer support
or aid in the booking of train tickets. Others are simply created to have someone to
talk to for entertainment [4].

Many of these chatbots are created using some sort of rule-based system, such
as AIML [5] or Lingubot [6]. In a rule-based system the creator of it must explicitly
define what kind of response the chatbot should give for each possible input. This
severely limits the amount of variation that a system of this kind can produce. While
this is often acceptable for chatbots with a specific purpose and a known domain,
it is very hard to construct a convincing one purposed for general conversation by
using a rule-based system.

In recent years, there have been some great successes within the area of deep
learning [7], notably with the use of recurrent neural networks (RNNs). More and
more, researchers have shown interest in applying neural networks to areas such
as natural language processing. In this thesis, this work is continued by using a
recurrent neural network for dialogue modeling to create a general chatbot.

The benefit of having a trained dialogue system is that there are, in theory, no
limits to the input or output of the system. Instead of choosing a pre-made answer
based on specified inputs, the network will generate the answer dynamically. This
removes the need to develop a script for the chatbot, which is a time consuming
and difficult process. A trained chatbot could in addition to being easier to build,
possibly also produce better results than what a hand crafted script could ever
achieve. A trained chatbot could potentially be very useful for general conversation,
because it would not necessarily need to know any specific information and could
therefore make effective use of a trained chatbot’s dynamically generated output.

Chatbots for general conversation might be of use as a complement to domain
specific chatbots. Reeves et al. showed in a study that people tend to connect
and talk to computers as though they were human [8], which makes the chatbots
often receive out-of-domain interactions in the form of small talk. People also find
a computer more helpful when they can feel that it has a personality, as shown by
Bickmore et al. [9]. It could therefore be argued that out-of-domain conversation is
important, even for chatbots geared for a specific purpose or domain.

1

1. Introduction

The goal of this thesis is to explore the territory of dialogue modeling using
recurrent neural networks and to investigate how the performance of a general model
trained on a dialogue corpus compares to that of rule-based chatbots. Our focus is
to create a chatbot capable of having conversations with humans and in turn make
these conversations as natural as possible.

The model proposed uses the now popular sequence-to-sequence model originally
proposed by Sutskever et al. in 2014 [10]. This model excels in problems that require
mapping of one sequence to another. Dialogue can be simplified to a problem of
this kind, where one sequence is an utterance the correct response is its mapping.

The dialogue system is evaluated using an evaluation scheme based on user
testing, where 10 participants test our chatbot together with a few other chatbots.

In the end, some potential could be seen in the model. The chatbot managed to
find some very common patterns in the english language, such as answering ’Hello’
to greeting phrases and ’Goodbye’ to valedictions. It also generated complete and
correct english sentences most of the time. However, the chatbot was incapable
of having coherent conversations since most of the responses given where out-of-
context to the dialogue. The participants of the tests rated it as the worst chatbot
and interviews with the testers showed that the conversations with the chatbot felt
very random. The discussion of this thesis presents some errors that might have
prevented the model to achieve satisfactory results and suggests what can be done
to get an improvement for future work.

2

2
Related Work

Many different approaches to dialogue modeling have been made in the field. Even
though the approach made in this thesis is somewhat novel, the model is heavily
based on other language models. Since dialogue systems are hard to evaluate using
automatic methods, which are often the preferable method in machine learning, an
evaluation method based on user testing was used. This section describes a few
other works highly related to this thesis.

Vinyals and Le published in 2015 a paper [11] describing a model very similar
to the one proposed in this thesis, where they developed what they called a Neural
Conversation Model (NCM). They used a sequence-to-sequence model trained on a
movie subtitle corpus and received some intriguing results. The sample dialogues
they published indicates that they had produced a basic chatbot that also has a
simple knowledge base, from only training on the dialogue corpus. The model is
evaluated by letting participants compare its answers to questions with answers
made by Cleverbot [4] to the same questions. For every question, the participant
was tasked to choose the best answer. In total there were four participants and if
three or four of them agreed on one answer, that one was considered best. Using this
evaluation scheme they showed that their NCM performed better than Cleverbot.

Another approach to dialogue modeling using a movie subtitle corpus was made
by Ameixa et al. in 2014 [12]. They wanted to create a system for handling out-
of-domain interactions for systems designed to answer questions within a specific
domain. Their method was to split the subtitle corpus into utterance and response
pairs and use these as their data set. When receiving a message the system would
then search the data set to find the utterance that most resembles the message and
simply output its corresponding response.

They evaluated their system by letting people rate answers to selected out-of-
domain interactions. Even though the model was simple, their system seemed to
provide reasonable answers to a majority of the utterances.

The techniques used in this thesis have been used for other purposes than dia-
logue modeling. Sutskever et al. used a multi-layered LSTM sequence-to-sequence
model in 2014 for machine translation [10], which was primarily focused on French
to English translation. They trained the model on the WMT’ 14 French-English
data set, which includes phrases in French and their English translation. It received
a BLEU score which nearly beat what was the best score at that time.

A significant amount of the resources for of this thesis has been spent on finding
an appropriate evaluation method. However, this is not the first time the need for
evaluating a dialogue system has arisen.

Walker et al. developed a system in 1997 called PARADISE [13] (PARAdigm for

3

2. Related Work

DIalogue system Evaluation) and is a system often cited even today. The framework
is developed for performance evaluation on task oriented dialogue systems where the
user has a clear task to perform when initiating the interaction. Examples of where
a task oriented dialogue system could be used are train ticket bookings or customer
support.

PARADISE focuses on evaluating how effective such a dialogue system is and
does this by running user tests where users have a clear task to accomplish during the
test. Different metrics are collected during the test, such as how many commands
were used, how long it took to complete the task, how many times the dialogue
system did not understand the user etc. The dialogue system is then evaluated
based on these metrics. The PARADISE system is also highly focused on producing
results that can then be used to compare different dialogue system to each other.

Another more recent attempt at dialogue system evaluation was made by R.
Higashinaka et al. in 2015 [14]. They focused their evaluation on something they
called system breakdowns, which is a point in the conversation where the dialogue
system made a mistake severe enough that the conversation could not continue.

Higashinaka collected the data by asking other researchers from around the
world to chat with their system, and then collected all the chatlogs. In total the
study used data from about 1200 dialogues, which was manually annotated on the
places where a breakdown occurred and commented on what type of breakdown it
was. The evaluation would then be performed on the annotated data to identify
what type of breakdowns can occur and how often.

Lastly, C. Smith et al. created in 2011 a dialogue system which they called
an ‘affective conversation agent’, which was designed to figure out what emotions
the user were feeling and use this information when speaking [15]. This dialogue
system uses both speech recognition and speech synthesis, which allows the user to
physically talk to it. The conversation agent also has a 3D-modeled avatar that
changes its expression based on the mood it tries to conceive. To gain information
on how it should express itself, a camera is used to detect the users current mood
from facial expressions.

This dialogue system was evaluated in an accompanying paper by Benyon et
al. [16]. Since the original paper tried to develop a natural dialogue system, the
evaluation also focused on evaluating the naturalness of the conversation. They
performed user testing sessions and based the evaluation on three different parts:
metrics taken during the testing, answers from a questionnaire handed out to the
users after the testing sessions and the chat logs themselves.

4

3
Background

To understand the model used for this thesis, some background knowledge in the
area of neural networks and deep learning is required. This section will describe the
basics of neural networks, how they are trained and the architecture in which they
are used for dialogue modeling.

3.1 Neural networks

Neural networks is a type of mathematical model often used to statistically model
patterns in a dataset. It is inspired by how the human brain is believed to function
[17].

In the brain, neurons connects to each other via their synapses, which is a
one way connection. These connections can be of varying strength. A neuron can
fire an electrical signal, and does this when it has gotten enough stimulus from
other neurons via their synapses. This signal is then transmitted to other neurons
which this neuron’s synapses connects to [18]. In this thesis, the terms cell and
neuron will be used interchangeably. In artificial neural networks, this phenomena
is commonly simplified with a model of the neuron introduced in 1943 by McCulloch
and Pitts [17]. The value, or output of an artificial neuron xi is updated by the values
of all other neurons xk that connects to it, where i, k ∈ [1, ..., n] and n is the number
of neurons. The output of these neurons xk is weighted by a factor wi,k corresponding
to the strength of the connection neuron k has to i. Additionally, each neuron i has
an associated bias value bi. A single connection to a neuron can be seen as modeling
a line similar to the line equation xi = wi,k · xk + bi, thus many neurons can model
many lines and capture more complex patterns.

More formally, the value of a neuron i is calculated in equation 3.1, where xk
is the value of neuron k, wi,k is the weight from neuron k to i and bi is the bias of
neuron i. Note that a weight of 0 corresponds to those neurons effectively having
no connection.

xi = g

bi +
n∑
k 6=i

wi,k · xk

 (3.1)

The function g is the neuron’s activation function, usually either tanh or the logistic
function. Its purpose is to scale the value of the neuron such that it always stays
inside some interval. The logistic function, denoted here as σ (.), is defined in equa-
tion 3.2 and can take values in the range [0, 1). Recall that the neurons in the brain
fire a signal given enough stimulus. By using the logistic function, the output of a

5

3. Background

Figure 3.1: An example of a feed forward neural network. The circles are neurons
and the arrows are the weighted connections. This network has three input neurons,
two output neurons and two hidden layers with five neurons each.

neuron is effectively modeled by the probability that it will fire rather than being
binary on or off.

σ(α) = 1
1 + e−α

(3.2)

If several of these neurons are connected to each other, we get a neural network.
Some neurons will be what is called input neurons, their state being set from the
start. Given some sort of starting state, the other neurons can be updated according
to the rule given in equation 3.1. The idea behind a neural network is that there
should exist a combination of values for the weights and biases that lets the network
produce the desired output given a corresponding input. This section will describe
the type of neural network used in this thesis. It will also describe how the network
is trained and optimized to find the right weights and biases.

3.1.1 Feed forward neural networks
A common type of neural networks are the feed-forward type of networks. Feed-
forward neural networks are categorized by how the information flows through them:
it only flows forward. In other words, they are directed acyclic graphs (DAGs). Feed-
forward networks are among the simplest possible networks and one of the first that
was used [19]. They are comprised of layers of neurons, where neurons in one layer
are connected to some or all in the next. The first layer is called the input layer,
the last is the output layer and the layers in between are the hidden layers. The
simplest form of feed forward network is a fully connected one, where each neuron in
one layer is connected to all neurons in the next one. See figure 3.1 for an example.

Much like in the general neural network, information flows between neurons by
weighted sums of the connected neurons followed by an activation function. Given
a weight matrix W l where W l(i, k) is the weight from neuron k in layer l − 1 to
neuron i in layer l, the biases bl(i) and a layer of hidden neurons hl, the value for
the i’th neuron hl(i) in layer l is calculated as shown in equation 3.3. Note that we
use the logistic function as the activation function.

6

3. Background

hl(i) = σ

(
b(i) +

∑
k

W l(i, k) · hl−1(k)
)

(3.3)

Taking all neurons of a layer into account, the neurons in the next layer hl is
calculated with the matrix multiplication in equation 3.4. Recall that hl is a vector
of neurons, thus σ(.) will be applied element-wise on its argument.

hl = σ
(
W lhl−1 + bl

)
(3.4)

The input layer has no connection to it, instead its values are set manually each time
the network is run. Likewise, the output layer has no connections from it, since its
values are taken as the result of the network’s computations. Because the network
is arranged as a DAG, given the values of one layer, the values for the next layer
can be updated simultaneously. Thus, by setting the values for the input layer, the
following layers is calculated consecutively until the values for the output layer can
be obtained.

To make the network output something meaningful, we need some means of ad-
justing the weights to improve the output. For this a method called backpropagation
is used and is described in section 3.1.2.

3.1.2 Weight Optimization
We have seen how a feed forward neural network can give a corresponding output
q(x) given some input x if it has its weights set correctly. However, finding the
correct weights is far from trivial. If each of the neurons in the output layer of
the network represents different classes that we want the network to learn, we can
see the output layer as a distribution of the probabilities of the classes that the
network believes an input x belongs to. For example, if the network has 3 classes,
given an input x the network might predict q(x) = (0.1, 0.75, 0.15), meaning that
it believes the second class is most probable to belong to x. Given a correct label
p(x), for example (0, 1, 0), we can tell if the network made a correct prediction (in
this case it did). We need a way to know how bad a certain set of weights are
given the correct labels and the predicted probabilities, calling this the entropy of
the network. We define H(p, q) as the entropy, where p(x) ∈ {0, 1}|x| is the true
probability (the correct label) and q(x) is the predicted probability of data point
x. For this we must define a loss function. One of the most common loss functions
is called cross entropy and is defined in equation 3.5. A subset of all data points
N , called mini-batch, is usually used when calculating the loss to make the training
more tractable.

H(p, q) = − 1
N

N∑
x

p(x) · log q(x) (3.5)

We also need an algorithm to minimize this loss function with respect to the
weights of the network. This algorithm can vary greatly depending on the task,
but usually involves calculating gradients of the weights in the network. This is
called backpropagation and is done by applying the chain rule on the derivative

7

3. Background

of the loss function back through the layers in the network. The most common
optimization method for neural networks is Stochastic Gradient Descent (SGD).
The SGD-algorithm uses backpropagation to calculate the gradients for each weight
in the network and minimizes the loss function by iteratively taking small steps in
the direction of the negative gradient. An update of SGD is defined in equation 3.6,
where Wt is the weights at time t of the network, η > 0 is the step size or learning
rate and ∇H(p, q) are the gradients.

Wt+1 = Wt − η∇H(p, q) (3.6)

The learning rate η needs to be set manually, but there are more advanced
optimization methods which can lessen the importance of this parameter slightly.
One of these is the Adaptive gradient algorithm (AdaGrad) which was introduced
by Duchi et al. [20]. It is an optimizer that assigns individual learning rates for each
weight in the network dynamically during training. AdaGrad is especially useful for
optimizing on sparse features, such as when the output classes is a bag of words.
The algorithm will then give more importance to less frequently occurring features,
enforcing a form of equity.

3.1.3 Recurrent Neural Networks
Regular feed forward networks cannot take input sequences of arbitrary lengths.
This is required for many applications such as text processing where the length of
each sentences may vary. For example, one might use each word of a sentence one by
one as input. Since normal feed forward networks has no persistent state, it is not
possible to detect dependencies between cohesive words being input to the network
at different times. Recurrent neural networks solves this issue by introducing a
recurrent connection from a neuron’s previous state to its next one. A visualization
of a single recurrent cell can be seen in figure 3.2.

b b b

hl−1
t

hl
t

hl+1
t

hl−1
1

hl
1

hl+1
1 hl+1

2

hl
2

hl−1
2

hl+1
3

hl
3

hl−1
3

hl+1
T

hl
T

hl−1
T

b b b

b b b

Figure 3.2: A visualization of a single recurrent cell at time t to the left, and the
same cell unrolled in time to the right. Note that the cell affects both the cells in
the next layer and the cells in the same layer and next time step.

8

3. Background

We define hlt as the hidden neurons at layer l and time step t. To make following
equations simpler, we also define linear transformation for an input or layer h of
length α, a weight matrix W of size β × α and a bias vector b of size β.

Tα, β (h) = Wh+ b (3.7)

This transformation is equivalent and a shorthand to the equation 3.4 for a feed
forward network in section 3.1.1, but without the activation function applied. For a
standard recurrent neural network, hlt is updated according to equation 3.8, where
layer l − 1 and l contains m and n neurons respectively.

hlt = σ
(
Tm,n

(
hl−1
t

)
+ Tn, n

(
hlt−1

))
(3.8)

Note that each instance of Tα, β (.) has its own unique weight matrix W and bias
vector b. The first term inside the logistic function in equation 3.8 contains the
transformation from the previous layer l − 1 at the current time step t, while the
second term contains the transformation from the current layer l at the previous
time step t − 1, thus clearly demonstrating how the network indeed looks at itself
one step back in time.

3.1.4 Long short-term memory
While the RNN has a memory because it feeds its states forward in time, in practice
the network will quickly forget patterns after a couple of steps. It has been shown
by Bengio et al. that it is very difficult to train a standard RNN to find patterns
that exist over a large number of steps [21]. To solve this problem, an extension to
the standard RNN called Long Short-Term Memory (LSTM) is often used instead.

An LSTM network is built up by LSTM cells just like an RNN is built up by
McCulloch-Pitts neurons. Every cell has input and output, and is connected to
itself to get the temporal aspect. Just like in RNNs, LSTM networks usually have
multiple layers with many cells in each layer. Figure 3.3 shows a basic LSTM cell.
This is a single cell k in layer l at time step t. In this figure the output is a single
entry in the input vector to the next layer and next time step. There are several
variations of LSTM, where the one described here is the original model presented
by Hochreiter and Schmidhuber in 1997 [22].

The basic concept behind an LSTM cell is to use something called gates to
control what information the cell will remember, forget and output. These gates
allow the cell to remember information significantly longer than the neuron of a
standard RNN.

Recall from section 3.1.3 that the output of layer l at time step t is defined as hlt.
Similarly, clt is defined as the memory states for layer l at time step t. The memory
state acts as a persistent memory and is the main feature of the LSTM. The full
equation to calculate the new memory state is described in equation 3.9.

clt = f lt � clt−1 + ilt � glt (3.9)

Where � is element-wise multiplication. The different parts of this equation will
be explained in detail below. First, the old memory state is element-wise multiplied

9

3. Background

by ft. This is the forget mechanism. ft is defined in equation 3.10 and calculates
which properties of clt−1 that should be forgotten.

f lt = σ

[
Tm+n, n

(
hl−1
t

hlt−1

)
+ bf

]
(3.10)

Recall that the size of layer l − 1 and l is m and n, thus the transformation T
is done on a vector of size m + n into a vector of size n. The use of element wise
logistic function guarantees that the values are between 0 and 1, where 0 would
mean completely forget and 1 completely remember what is currently stored in the
memory state.

Note that an additional bias term bf is added to the forget gate, which is set to
1.0. This allows the model to store information more easily during the early stages
of training as shown by Jozefowicz et al. [23].

After this information from the input and the previous output is added to the
memory state by adding ilt � glt. The input gate ilt decides how much of each input
that should be added and glt are the actual values that will be used as input to the
cell. ilt and glt are calculated in equations 3.11 and 3.12.

ilt = σ

[
Tm+n, n

(
hl−1
t

hlt−1

)]
(3.11)

glt = tanh
[
Tm+n, n

(
hl−1
t

hlt−1

)]
(3.12)

Note that glt use the tanh function instead of the logistic function. This allows
the input values to the LSTM to take on values between −1 and 1. The tanh
function is basically just a translated and rescaled logistic function, as seen in the
equality in equation 3.13

tanh(x) = 2σ(2x)− 1 (3.13)
After the memory state is updated, it needs to be decided what the cell should

output. This is done with the last gate ot, which regulates what properties of our
memory state we will use in the output and is described in equation 3.14.

olt = σ

[
Tm+n, n

(
hl−1
t

hlt−1

)]
(3.14)

The output for the current layer hlt is calculated as shown in equation 3.15,
which is sent to the next layer and time step. The tanh function is first applied to
the memory state to normalize it to the interval [-1, 1] and the result is then scaled
with the output gate.

hlt = olt ∗ tanh
(
clt
)

(3.15)
In equation 3.16, lstm(.) is denoted as a function calculating the next output

of an LSTM-cell according to equations 3.9 to 3.15 (The internal memory state is
implicitly updated).

hlt = lstml
t

(
hl−1
t , hlt−1

)
(3.16)

10

3. Background

sigm sigm

×

tanh sigm

×

tanh

× +clt−1 clt

hl−1
t

hl
t−1 hl

t

hl
t

f l
t

ilt

glt

olt

Figure 3.3: A layer of LSTM-cells at layer l and time step t. The ellipses denote
element wise application of the operation inside it. The boxes is an application of
the transform T defined in section 3.1.3 followed by the activation function in the
box. Merging lines means concatenation of the vectors.

3.2 Tokenizing
When training a neural network on a word to word basis, it is not very practical
to use the actual words as input. The interest does not lie in how the word is
constructed, only what word it is. Therefore the text is tokenized before it is passed
on to the network, which simply means that every unique word is replaced by an
identifying number.

A vocabulary is created by finding each unique word that occurs in the chosen
data set (corpus) and adding them to an indexed list. Having a vocabulary that
covers all possible words is usually both unnecessary and unfeasible, since a larger
vocabulary will increase computation of the losses/gradients (see section 3.1.2). In-
stead, it is common to use a subset of the full vocabulary, containing only some of
the most commonly occurring words.

Because some of the more unusual words in the corpus will appear in the training
data, but not in the vocabulary, there must be some way of representing them. The
simplest way to solve this is by replacing all occurrences of an out-of-vocabulary
word with a special token that is treated by the network as a single word. Every
instance of out-of-vocabulary words would then be treated as though they were the
same words.

It is common to represent the input to the network as a one-hot vector. A
permutation of this vector represents a word in the input vocabulary. This vector
is the same length as the size of the vocabulary used, and all elements in the vector
except for one is set to 0. A one-hot vector having its element at index i set to 1
will thus represent the word at index i in the input vocabulary.

11

3. Background

3.3 Word embedding
As mentioned in section 3.2, one-hot vectors are convenient to use as input due to
their simple bag-of-words-like structure. However, when training a neural network
on this kind of input, the network will not be able to understand semantic similarities
between words in the vocabulary, since the inputs are basically just represented by
their indices in the vocabulary. This means that not only will the network need to
be trained for its intended purpose, but it will also need to be trained to understand
how each word correlates to each other. To avoid this a process called embedding is
used to translate the one-hot-vector into a lower dimensional vector that contains
semantic information about the word.

Usually, one layer in front of the network is designated to linearly project the
one-hot input vector onto its embedding. For example, consider a one-hot input
vector v and an embedding matrix E. The projected input v′ is then calculated
by the matrix product of v and E, such that v′ = Ev. The embedding matrix E
is trained the same way as the rest of the network. While it is not unusual that
the size of the vocabulary, and thus the size of v, is around 100 000, the size of v′
is usually well below 1000. This shows that the embedded word is a much more
compact representation than the sparse one-hot vector.

The idea is that each row Ei, which we call a word vector, in E should represent
some kind of semantic meaning of word i in the vocabulary. This semantic meaning
should be invariant to any model which one would want to apply it to. Therefore, it
is reasonable to assume that these word vectors can be pre-computed and inserted
into the model from the start of a training. This will allow the network to achieve
better results earlier, which can reduce training time significantly.

One method of training these word vectors is by using GloVe [24], which is
an unsupervised learning algorithm that analyzes the co-occurence of words in a
corpus. The result of the algorithm is a high-dimensional vector for each word,
which can be used as pre-trained word embeddings for a neural network. The GloVe
vectors also has interesting Euclidian properties, where similar words will appear
close to each other in vector space. The closest five neighbours of the word frog,
for example, are: frogs, toad, litoria, leptodactylidae and rana [1]; where litoria
and rana are genuses of frogs and leptodactylidae is a family of frogs. Another
important feature of GloVe vectors is that the vector difference between two words
describes the semantic difference between these two words. This means that the
vector difference between, for example, man and woman are roughly the same as
the difference between king and queen. See figure 3.4 for more examples on this
feature.

Another advantage to pre-trained word vectors is that these only needs to be
trained once, and can then be copied and used for training of subsequent models.
Thus, it can be trained with a substantially larger corpus than the one used for
training the model.

12

3. Background

Figure 3.4: The vector difference between the words describes semantic differences.
All the vector differences between these words are roughly the same, since they all
describe a man and woman of a certain type. Image taken from [1].

13

3. Background

How you? <GO>

I am fine. <EOS>

I am fine.are

Figure 3.5: A sequence-to-sequence model which encodes the sentence "How are
you?" and produces during decoding the sentence "I am fine. <EOS>". When
decoding, the previously generated output is used as input for the next time step,
except for the first word, where <GO> is used as input. The decoder stops when
an <EOS> is generated.

3.4 Sequence-to-sequence

An increasingly popular technique for using RNNs with natural language processing
is sequence-to-sequence (seq2seq). It is a generative neural network model which
given a string of inputs produces a string of outputs, both of arbitrary lengths.

A sequence-to-sequence model is made of a recurrent neural network with L
layers and is divided into an encoder and a decoder. The decoder usually has an
attention model attached to it, which is described in section 3.4.1. The input is a
tokenized sentence with length T , which is converted into a string of one-hot vectors
(x1, x2, ..., xT). At each time step, a word xt is embedded into a vector x′t = E · xt,
where E is the embedding matrix of size d×|V |, where d is the number of embedding
dimensions and |V | is the size of the vocabulary. The embedded word x′i is then
fed as the input to the encoder, which consists of a multi-layered recurrent neural
network with LSTM-cells.

In the first layer of the encoder at time step t, the input is set to the embedded
word x′t. The first layer is calculated according to equation 3.16 in section 3.1.4,
such that h1

t = lstm
(
x′t, h

1
t−1

)
and following layers hlt = lstm

(
hl−1
t , hlt−1

)
. When

calculating the LSTM during the first time step where t = 1, an initial state hl0 is
used. Thus, the first LSTM update for all layers becomes hl1 = lstm

(
hl−1

1 , hl0
)
.

When all T inputs has been fed to the encoder, the network will be used for
decoding. The idea is that the last state hT for the network should contain semantic
information about the whole input sentence. hT is kept and used as the initial state
for the decoder. At each time step t > T , the network will output a word wt. The
network will be run until a special end-of-sentence symbol is produced.

The input to the decoder xt at time t > T consists of the last word wt−1 that
the network generated, where the first decoder input is a special GO symbol. The
predicted word wt at decoding time t is calculated in equation 3.17, where V (iw)
is the i’th word in the vocabulary and Ot is the output of probability distributions
with length |V |. An example run of a sequence-to-sequence network can be seen in
figure 3.5. The string "How are you?" are fed one word at a time to the network,
and it will generate words until it generates a special EOS token.

iw = argmax (Ot)
wt = V (iw)

(3.17)

14

3. Background

3.4.1 Attention
Attention is a technique that allows a model to focus on different parts of the input
during different times of inference. When generating matching sequences, some
words might be more relevant than others during different stages, especially if the
input sentence contains different kinds of information.

The following attention model is based on the one described by Vinyals et al. [25].
The attention model is shown in equation 3.18, where dLt is hidden state of the last
layer in the decoder at time t and hLi is the i’th hidden state at the last layer of
the encoder, which represents the i’th word of the encoder input where i = 1, ..., T .
The vector v and matrices W1 and W2 are learnable parameters, which means that
they are backpropagated and optimized along with the other parameters (weights)
of the network. If the encoder and decoder hidden states in the model are of the
same size, W1 and W2 will be square matrices. The mask ati represents how much
attention to be put on encoder input word i, and the final attention a′t is calculated
as a weighted sum of all encoder states.

uti = vT tanh(W ′
1h

L
i +W ′

2d
L
t)

ati = σ(uti)

a′t =
T∑
i=1

atih
L
i

(3.18)

The attention vector a′t is concatenated with the embedded decoder input and
linearly transformed into y′t to have the correct input size. The embedded yt can use
the same embedding matrix as the encoder. The attention-affected y′t is then fed as
input into the decoder, as shown in equation 3.19.

y′t = T(n+d),d

(
a′t
yt

)
(3.19)

The decoder uses y′t as the input to the first layers, and the hidden state of the
last layer dLt is combined with the attention calculated with the new decoder state
dLt+1 to form the output distribution Ot, as seen in equation 3.20

Ot = T2n,|V |

(
a′t+1
dLt

)
(3.20)

3.5 Hyperparameter optimization
Neural networks can be seen as a function that takes some input and produces an
output. This could of course be a very complicated function, with hundreds or
thousands of parameters. Every weight in the network would, for example, be a
parameter in this function. The reason the network is then trained is to find the
values for these parameters that will enable the network to do the task it is designed
to do.

15

3. Background

There are however other parameters in a network that are not modified when
training the network. An example would be the number of layers there are in
a network, or how many neurons are in each layer. These parameters are meta-
parameters and will not directly affect how the network performs; rather, they will
affect the capacity of the network and how well the network trains. Even if a
network has perfect meta-parameters it still needs to be trained to perform well.
On the contrary, a perfectly trained network will still be limited by its size. These
meta-parameters are usually called hyper-parameters.

Hyper-parameters needs to be manually set before training and it is important
that they are set to good values. Finding these values is however not a trivial task,
though there are a few techniques that are commonly used. One of them is called
Grid Search.

When using grid search one first defines the hyper-parameters that a search is
performed on and the search space for each parameter. These search spaces are
simply sets of possible values. The network is then trained on all different combina-
tions of values, creating different models. Their performance is evaluated and the
best setting of hyper-parameters can then be determined. A setting is evaluated by
running the network with the selected hyper-parameter values with evaluation data,
which is separate from the training data. The average error can be computed using
a loss function such as cross entropy (3.5), or some other performance test.

For example, given two hyper-parameters, number of layers L and number of
neurons in each layer N , a search space can be defined as seen in equation 3.21.

N = {1400, 1600, 1800, 2000}
L = {2, 3, 4, 5}

(3.21)

The next step would be to train the network with every possible configuration
of these values. When the network has finished training, the network is run with
evaluation data and the average loss is calculated. The settings that produces the
lowest loss will be the best configuration.

3.6 Regularization

When training large models with many variables on a complex data set they are
very prone to overfitting. Overfitting is when the learning model detects patterns
in details of the data that are not general patterns. An overfitted model tends to be
bad at predicting and generalizing on unseen data, see figure 3.6 for an example. In
the figure a line has been fitted to the data to separate the red dots from the blue
crosses. If a new point is added and had to be labeled by the model, the one to the
left would probably perform much better than the model to the right. The model
to the right has been fitted too hard on the data.

Regularization methods are the main way to prevent overfitting. The regular-
ization methods used in this thesis are described below.

16

3. Background

b

b
b b

b

b

b

b

b

b

b

b

b

b

b
b

b

bb

b

b

b

b

b

b

b

b

++
+

+
+

+
+

++

+ +

+

+ +

+

++

+ +
++

+

+

+

b

b
b b

b

b

b

b

b

b

b

b

b

b

b
b

b

bb

b

b

b

b

b

b

b

b

++
+

+
+

+
+

++

+ +

+

+ +

+

++

+ +
++

+

+

+

Has overfittedHas not overfitted

Figure 3.6: Figure of two different networks trained on classifying crosses and
dots in a 2-D space. The dotted line represents the classification boundary that
the network has learned. The network to the left has learned the true classification
boundary, while the network to the right has overfitted, which will cause it to perform
worse on data not in the training set.

⊗ ⊗
⊗⊗

Without dropout With dropout

Figure 3.7: To the left is a network without dropout and to the right is an example
of the same network with dropout. Some neurons have randomly been dropped,
shown by an X in them.

3.6.1 Dropout
Dropout is a widely used regularization method developed by Srivistava et al. in
2014 [26]. The method is very simple. During training, neurons are dropped tem-
porarily with a certain probability. The dropped neurons will not produce any
output and will not affect neurons connected to it. The intuition behind the idea is
that units will not co-adapt and in turn will decrease overfitting. Srivistava et al.
proposes that a dropout probability of 50% is near optimal for most networks and
shows empirically that networks that uses dropout outperforms networks that does
not use them in many different areas. See figure 3.7 for en example of a network
using dropout.

3.6.2 Gradient clipping
Gradient clipping is aimed at combating the exploding gradient problem that often
occurs in recurrent neural networks trained with the backpropagation algorithm.

17

3. Background

The problem, which was described in detail by Bengio et al. in 1994 [21], depicts
how during training the gradients for certain weights in the network tend to grow
exponentially in size, which negatively affects the performance of the network.

One way to avoid it is to perform gradient norm clipping, a method developed
by Pascanu et al. in 2012 [27]. This is done by clipping all the gradients if some of
them are too large. Gradient clipping is formalized in the algorithm below, where
||x̂|| is the l2 norm of x̂.

Calculate gradients and store in ĝ;
if ||ĝ|| >= threshold then

ĝ ← threshold
||ĝ|| ĝ

end

||x̂|| =
√∑
x∈x̂

x2

When using gradient clipping, the threshold is an additional hyper parameter
in the model that needs to be set before training.

3.6.3 Dropword
Dropword is a regularization technique rather similar to dropout and is also very
simple. It was proposed by Kågebäck and Salomonsson in 2016 [28], where they
trained a network to learn the meaning of words in a text by looking at the words
textual context. To decrease the dependency the network has on individual words,
random words would be dropped and replaced by a special tag.

18

4
Model details

Two slightly different sequence-to-sequence models were trained separately. In one
model the state of the network was reset between each line and in the other it was
preserved between lines during a conversation. In this section both of these models
are described.

4.1 State-resetting model
The state-resetting model is a sequence-to-sequence model based on the one pre-
sented by Vinyals et al. [25]. Sequence-to-sequence is described in more detail in
section 3.4. Before testing, the model was trained for 14000 time steps with a batch
size of 64 using the AdaGrad optimizer. A single neural network with 2 layers and
1700 LSTM cells was used for both encoding and decoding. 90000 of the most
commonly occurring words were used for the vocabulary. For words not in the vo-
cabulary, a special UNK token was used. Gradient clipping was applied with a
norm threshold of 5. Dropout with probability 0.5 was applied to all non-recurrent
connections. A similar method to dropword described in section 3.6.3 was also used,
though only punctuation was dropped. This was motivated by seeing early during
training that the model fitted very strongly to the type of punctuation that appeared
in the input. The dropword applied here could potentially make the model be less
dependent on whether a sentence ended with a question mark or not, and more on
the actual content of the sentence.

The model used pre-trained GloVe vectors [24] with 300 dimensions as initial
word embeddings (see section 3.3). Since the GloVe embeddings EGloV e were not
trained on the data set used for training the model, about 10% of the words in the
vocabulary did not have an embedding in EGloV e. For each word (vi, ..., vj) in the
vocabulary, including special tokens, which did not already have an embedding in
EGloV e, new embeddings (ei, ..., ej) were generated and appended to EGloV e such that
a new embedding matrix E = EGloV e||(ei, ..., ej) was acquired. These new embed-
dings were randomly initialized with the same per-dimension mean and variance as
the pre-trained embeddings in EGloV e. The new embedding matrix E is then jointly
trained with the network.

When training and testing the first sequence-to-sequence model, the initial mem-
ory state and hidden state for the first word in each sentence was set to all zeroes
such that:

h0 = [0, 0, ..., 0, 0]
c0 = [0, 0, ..., 0, 0]

(4.1)

19

4. Model details

During user testing, which is described in section 6, noise was applied to the
output distribution of the model. It was observed that the network would otherwise
produce answers with very little variation. The noise was applied at each time
step to produce O′t as shown in equation 4.2, where Ot is the predicted probability
distribution of words in V at time t, γ ∈ [0, 1) is the noise level and R is a vector
of uniformly randomized numbers such that ∀r ∈ R; r ∈ [0, 1). During the user
testing, the noise level γ was set to be 0.2.

O′t = (Ot −min(Ot))⊗ (1−R · γ) (4.2)

4.2 State-preserving model
The second sequence-to-sequence model uses the same parameters as the first one.
The difference from the state-resetting model is that here the memory state and
hidden state of the network is preserved between sentences in the same conversation.
See section 5.2 on how the conversations were extracted from our data set. For
every conversation (x1, x2, x3, ..., xs−1, xs), where xi is the i:th sentence in the
conversation and s is the number of lines in the conversation, training-data points
consisting of an input and a target were created on the form {xi, xi+1}, such that a
conversation of inputs is ({x1, x2}, {x3, x4}, ..., {xs−1, xs}). When the model has
been fed {xi, xi+1} and generated an EOS -token at time t, the states ct and ht for
the network is kept and used as the initial state for the data point {xi+2, xi+3}, such
that h0 := ht and c0 := ct. When the previous conversation ends and a data point
{x1, x2} from new conversation is used, the states are initialized to zeroes as shown
in equation 4.1.

4.3 Hyper parameter optimization
Hyper parameter optimization was performed on our network as described in sec-
tion 3.5. The only parameters that were optimized was the layer size and the number
of layers.

The search space used for the layer size was 1100, 1300, 1500, 1700 and number
of layers was 2, 3, 4, 5. Since both of these parameters affected memory usage and
there was a limit to how much memory that could be used when performing the
training, not all of the possible combinations of values could be tested. It was found
that the trade-off of using larger and fewer layers gave the best performance, thus
two layers of 1700 neurons each were used.

20

5
Data sets

During training the OpenSubtitles data set [29] were used. This is a data set con-
sisting of movie subtitles from thousands of movies and TV series taken from the
OpenSubtitles website [30]. The data set is available as a plain text version, which
is a single text file of every subtitle available where every line in the text file is a
line uttered in a movie. It is also available in XML format that contains additional
meta data about the timing of the lines in a movie. Every line is accompanied by
starting and ending time stamps and the data set is split up into the movies they
belong to. Both versions of the data set were used.

The data sets were tokenized before training (see section 3.2) and put into
utterance-response pairs, where one line would be the utterance and the line follow-
ing it would be its response.

The state resetting model was trained using the plain text version of the data
set, since the model did not require any more information than the actual lines. The
state preserving model however required a data set split up into conversations. To
do this, the time stamps included in the XML version of the data set were used.
This section will describe how the different data sets were prepared and used during
training.

5.1 Plain text version
For the state resetting model, the plain text version of the OpenSubtitles data set
was used. Since there are no information in this data set from what movie, scene or
even character a line is originating, an assumption was made that every other line is
a response to the one before it. The data set was not perfectly formatted, so some
pre-processing had to be made to remove noise. An example of how the plain text
version is formatted can be seen in figure 5.1.

5.2 Conversations data set
The state preserving model needed a data set separated into conversations to know
when to preserve the network’s state and when to reset it. To be able to split the
data set the XML-version of the OpenSubtitles data set was used. The XML-version
has extra meta data about the scripts such as time stamps for when every line is
spoken in a movie. These time stamps are important meta data which was used to
split the data set into conversations. Figure 5.2 shows an example of how the XML
data set was formatted.

21

5. Data sets

I did not hit her, I did not... Oh, hi Mark!
Oh, hey Johnny, what’s up?
I have a problem with Felicia, she said I hit her.
What? Well, did you?
No, I did not!

Figure 5.1: An example on how lines are formatted in the plain text version of
the OpenSubtitles dataset. No additional information is given about the lines, other
than their order.

An assumption was made that if two lines were spoken with a short time between
them, they would be part of the same conversation. On the contrary, if two lines
were spoken with a long enough delay, they are part of different conversations. This
of course is not a perfect assumption, since movies can cut quickly between different
scenes or several conversations can be going on in parallel.

Following this assumption, there should be some value δtmax where, if the time
between two consecutive lines is less than or equal to δtmax, they are part of the
same conversation. However, if the time between them is larger than δtmax they
should be the last and the first line of two different conversations.

To help find a good value for δtmax, the time between consecutive lines was
plotted from several movies. An example of such a graph, showing only the lines of
one movie can be seen in figure 5.3. Every point in the graph is a line spoken in the
movie, where its numerical index in the movie is shown along the horizontal axis
and its corresponding value along the vertical axis is how many seconds ago the last
line was spoken. The lines varies in height which means that time between spoken
lines varies. A clear pattern can be seen, where a tall line is often followed by many
small. Given the original assumption, this would mean that a tall line is the start of
a new conversation and all the small lines following it are part of this conversation.
Using this information, a reasonable value for δtmax could be found more easily.

If δtmax is chosen to be too large, conversations that do not belong together will
be grouped together. This will introduce noise to the model when a new conversation
will start with the memory of old conversations. If δtmax is chosen to be too small,
conversations will be fragmented, resulting in not being able to remember things
said in a conversation since the state will be reset in the middle of it. In the end,
it was deemed safer to make an over estimate compared to an under estimate. A
value of 25 seconds was used for δtmax when generating the data.

22

5. Data sets

<s id="78">
<time id="T110S" value="00:06:37,090" />
<w id="78.1">It</w>
<w id="78.2">says</w>
<w id="78.3">that</w>
<w id="78.4">.</w>
<time id="T110E" value="00:06:39,024" />

</s>
<s id="79">

<time id="T111S" value="00:06:39,092" />
<w id="79.1">The</w>
<w id="79.2">system</w>
<w id="79.3">,</w>
<w id="79.4">it</w>
<w id="79.5">’s</w>
<w id="79.6">a</w>
<w id="79.7">monarchy</w>
<w id="79.8">.</w>
<time id="T111E" value="00:06:40,616" />

</s>

Figure 5.2: An example on how lines are formatted in the XML version of the
OpenSubtitles dataset. Every line has a start time stamp and an end time stamp.

23

5. Data sets

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
0

20

40

60

80

100

120

140

160

180

200

Line number

∆t

Figure 5.3: This graph shows the time between lines from a single movie in our
data set where each bar corresponds to one line. The line number on the horizontal
axis denotes its chronological index in the movie and ∆t denotes the time in seconds
between itself and the previous line.

24

6
Evaluation

When creating a dialogue system focused on general conversation, there is a need
to find a way to evaluate how good or ’natural’ the conversation it produces is.
Evaluating how natural a dialogue feels is not a trivial task. It is hard to even
define what natural means. Optimally, there would be a way to computationally
analyze the results and get a numerical score of how the dialogue system performs.
This score could then easily be compared to other dialogue systems. Since creating
an evaluation method of this kind would be a research topic by itself, user testing
is used instead to evaluate the results.

The user evaluation method used in this thesis is based on the method described
by Benyon et al. [16]. The principle of the test is to let participants test the dialogue
system and give their impressions on how the conversation felt via a questionnaire
and an interview.

Since no well known method to evaluate the chatbot is used, there is no data
to compare the results to. Therefore, data is collected by testing other chatbots in
the same manner. A human, which the participants are made to believe is another
chatbot, is also evaluated and is used as a golden standard for how a conversation
companion should behave. In total, 4 different chatbots and a human are tested.
During the test the state-preserving model, state-resetting model, ALICE [5], Cle-
verbot [4] and the human are evaluated. The participants are not given information
beforehand on the details or ordering of the chatbots and they are not informed that
one of them is a human.

6.1 Test procedure
The test was done physically on location at Chalmers University. The participant
used a computer during the whole test and was directed to two webpages, one
with the chat client that the participant used to talk to the chatbots and the other
containing questionnaires the participant answered after every chatbot.

Since it was important that the participant did not know what chatbot it was
talking to, a webbased chat client was used that communicated with a server that
ran the chatbots. The same chat client could then be used for all chatbots, so there
were no clues for the participant to know what it was talking to.

The test began by letting the participant talk to the first chatbot, which in all
tests was ALICE. They were given instructions to pretend that the chatbot was
human and to try and connect with it. The participant was given 5 minutes to
talk with the chatbot about any subject. After the time was up, the participant

25

6. Evaluation

The conversation was coherent
The Chatbot demonstrated emotion at times
The conversation between myself and the Chatbot felt natural
I thought the Chatbot remembered earlier parts of the conversation

Figure 6.1: An excerpt of four examples from a total of 26 statements which was
used in the user evaluation

answered a questionnaire and a short interview was held where the participant was
asked to rate the chatbots in relation to each other and to come with any feedback
or comments.

6.2 Questionnaire
The questionnaire was the primary evaluation tool. It was answered directly after
the participant had held a conversation with a chatbot, and was filled in once for
every chatbot that was tested. It is made up of 26 statements about the quality
of the conversation and the participant was tasked to rate these statements on a
five point scale from "Strongly disagree" to "Strongly agree". See Figure 6.1 for
examples on statements from the questionnaire. The full questionnaire is available
in appendix A.

The statements used in the questionnaire is a subset of the 33 statements devel-
oped by Benyon et al. [16]. Since they evaluate a different type of chatbot in their
paper, only 26 of the statements were deemed relevant.

These statements were developed around six different themes empirically shown
to be significant for successfully creating human connection with a digital compan-
ion [31]. The themes are naturalness, utility, participant-companion relationship,
emotion demonstrated, personality and social attitudes.

6.3 Participants and Data
The user test had 10 participants in total. The ages ranged from 23 to 61, with
an average age of 33. Most of the participants were students from either Chalmers
University or the University of Gothenburg. All of the participants spoke english
as a second language, but most rated their ability to speak and understand it as
very good. Answers to the questionnaire, chat logs from the chat sessions and notes
taken by us during the interviews was collected and used in the evaluation.

26

7
Results and discussion

In this section we will first give a description of how the final model behaves when
talked to and then present the results from the user evaluation. We will also discuss
the model performance and what might be done to improve it. Finally, we present
a few ideas for further work.

7.1 General behaviour of the chatbot

The final model is unable to have a continuous conversation, and this is due to the
fact that its replies often feel nonsensical. Most of the time the chatbot gives answers
that are out of context and does not convey any sense of understanding of what the
user is saying. See figure 7.1 for a typical example of what a typical conversation
looks like. The dialogue system will not stick to a topic, instead saying something
different after every reply and when asked a direct question it rarely answers it.
When the question "Are roses green?" is asked to the system, it replies with "I can’t
see you.", an answer that would only be appropriate in a very specific context.

Even though the chatbot did not perform well as a conversation agent, we did
however see some results. It has found some patterns from the dialogue, most
notably that a greeting should be answered by another greeting and the same for
valedictions. When a user says ’hello’, ’hi’ or another greeting it most often answers
appropriately. The same is true for valedictions such as ’goodbye’ or ’farewell’.
The chatbot also learned to speak nearly perfect english. It is rare that it uses
incorrect grammar, though happens sometimes. It also uses correct punctuation,
always terminating sentences with a period, an exclamation mark or a question
mark. This does show that there are some patterns, although possibly small, to find
in dialogue with the relatively simple model used in this thesis.

7.2 User evaluation

Two different models were developed during the thesis work and both models were
evaluated side by side. How the evaluation was done is described in section 6. To
have something to compare our models to we also tested a human and two other
chatbots: Alice [5] and Cleverbot [4]. The testing gave us two main sets of data to
evaluate the model from: interviews and answers to the questionnaire.

27

7. Results and discussion

7.2.1 Questionnaire answers
The answers to the statements in the questionnaire was converted to numerical
values, where -2 would be "Strongly disagree" and 2 would be "Strongly agree". The
average score for each chatbot was calculated for every statement. See table 7.1 for
some examples of scores for a few selected statements. We cannot formulate a single
score from this data for every chatbot in a meaningful way, but we can look at the
scores we got on individual statements and evaluate the results from there.

Looking at the scores it is clear that both our models performed poorly. The
models scored consistently worse than every other chatbot on all of the statements
and it did not get a positive score on any of the statements except for ’I found the
chatbot boring’. As we can see in table 7.1, even on statements such as ’I found
the chatbot entertaining’, where all of the other chatbots got a good score, our
models got a negative score. Both of our models got scores close to each other, most
probably because both of them acted in a very similar manner.

7.2.2 Interviews
At the end of the test we performed a short interview with the participant. We
asked the participants to rank the chatbots on the quality of the dialogue, from the
most natural to the least. Every participant rated one of our two models as the
worst of them all. There were no preference to one of the two models, each of them
were ranked last approximately 50% of the time.

We also asked the participants to list the chatbots they could consider being
used as a conversation companion. The human and Cleverbot was listed by every
participant, ALICE was picked by three of the participants but none of our models
where listed by any participant. When asked why they would not consider any of
our models, the same reasons were given by everyone: that the conversation felt
completely random and that the they did not seem to listen to the participant.

The participants were also asked to compare our two models with each other.
Most answered that they did not notice much difference, that they both felt like the
same chatbot. Some of them commented that one felt slightly better than the other,
but there were no consistency in which was ranked better than the other. This is
probably due to on of the models getting ’lucky’ and giving slightly better answers
than the other for this particular participant.

7.3 Model performance
We have some ideas as to why the network did not perform as well as we had initially
hoped. However, these ideas are mostly speculations based on intuition.

A difficulty when assessing the results is how much one can trust the evaluation
error during training (see figure 7.2). Using cross entropy is not necessarily the
optimal loss function for evaluating our network during training. For each input
sentence, there are numerous possible outputs that are just as valid as the provided
target sentence. This means that we may see a false negative error on whether the
model performance is increasing or not. While it will still be possible to see if and

28

7. Results and discussion

user: hi!
chatbot: hello.
user: how are you?
chatbot: you’ve been so much
user: i’ve been so much?
chatbot: i’m not going to do that, i mean, you’re a fool.
user: i am not a fool!
chatbot: it’s a little thing.
user: ok.
chatbot: i don’t know.
user: what is your name?
chatbot: you’re not going.
user: what are you doing?
chatbot: i’ve had to ask you.
user: what do you want to ask me?
chatbot: i don’t know why you’re a fool.
user: i do not think i am a fool.
chatbot: i’m not going to be a man.
user: ok.
chatbot: that’s the idea that’s the best.
user: are roses red?
chatbot: yes.
user: are roses green?
chatbot: i can’t see you.
user: are apples red?
chatbot: i’m sorry, scarlett.
user: i have to leave now!
chatbot: i don’t know.
user: goodbye.
chatbot: goodbye, dear.

Figure 7.1: An example of some inputs and responses from a chatbot trained with
neural networks. We can see that its responses are nonsensical. The chatbot does
however produce complete and correct sentences and not just random words.

29

7. Results and discussion

Statement Alice Cleverbot Human First model Second model
The conversation between
myself and the Chatbot felt
natural

-0.6 0.2 1.3 -1.7 -1.0

The Chatbot’s responses
were always appropriate

-1.0 -0.8 1.3 -1.4 -1.1

The Chatbot demonstrated
emotion at times

0.6 0.6 0.0 -0.7 -0.2

The conversation was coher-
ent

-0.1 -0.2 1.3 -1.3 -1.4

I found the Chatbot enter-
taining

0.9 1.3 0.8 0.0 -0.3

Table 7.1: Selected statements from the questionnaire and a corresponding average
score for each tested chatbot. The score ranges between -2 and 2.

when the model overfits, the effect of this may lead to belief that the model has
converged while in reality it is still improving.

7.3.1 Training time
The simplest hypotheses about the model performance is that the network did not
train for long enough. A network reaches a point where it performs optimally after
a certain amount of training, and we believe that our models were far from reaching
that point.

Both of the models were trained for 14 000 steps at a batch size of 64, which
means that they each saw 900 000 data points in total.

If we look at the training losses and the evaluation error from the training we
can see that neither of them has converged (see figure 7.2, because both are still
going down. A network that has not yet converged is a sign that it can still learn
more about the data. However, this does not necessarily mean that the network will
perform better if left to train for longer, though it is a good indicator of it.

7.3.2 Choice of hyper parameters
Many hyper-parameters were fixed during the hyper-parameter optimization and
were therefore not optimized. That includes the learning rate, the dropout rate and
the dropword rate. These parameters were instead guessed by intuition, and thus
there is no guarantee that the values for these are optimal. They are somewhat
important for both how fast the network learns and how well it performs when it is
done training, so optimizing these could have improved our results.

The size of our network could also have been an issue. In general, the size of
a network dictates how advanced rules it can learn, therefore it could be that our
network was not large enough to be able to learn enough interesting rules to model
dialogue of good quality. Jozéfowicz et al. recently did an exploration into the limits
in natural language modeling with RNNs and used models as large as 8000 cells per

30

7. Results and discussion

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
·104

4

5

6

7

8

Number of steps

Training losses
Evaluation losses

Figure 7.2: The figure shows our training losses in blue and evaluation losses in red
during training for one of the models. As we can see both losses are still decreasing
past step 14000, which is a sign that the network had not converged at the time the
user evaluation were conducted.

31

7. Results and discussion

200 300 400 500 600 700 800 900 1,000 1,100

3.32

3.34

3.36

3.38

3.4

3.42

3.44

3.46

3.48

3.5

3.52

Neurons in each layer

error

Figure 7.3: The validation error of four different network sizes after training of
24000 steps. Note that the lowest error is 3.306 and the highest is 3.536, so the
difference in error between the smallest and the largest model is 0.23

layer [32]. Their findings seem to indicate that the bigger a network, the better it
performs.

When Vinyals and Le performed a similar experiment as the one presented in
this thesis, they used a two layered LSTM with 4096 cells in each layer [11]. In
comparison, we also used a two layered network but with only 1700 cells in each
layer. This is a significant difference so it is fair to believe that a larger network
could perform better. It would be interesting to train the state-preserving model
described in this thesis using more neurons, in the form of larger and perhaps more
layers.

We did some additional testing on models of different sizes to see if it is rea-
sonable to assume that a larger network size will increase the performance of our
model. In figure 7.3 we demonstrate the evaluation errors of four models of differ-
ent sizes that each has been trained for 24000 steps. Each of the models seemed
to have converged, though the errors were still decreasing very slightly. What we
can conclude is that larger network sizes seems to result in smaller validation errors,
however the difference in error might be marginal. Additionally, since there seems to
be no indication of the validation error to increases for larger sizes, we can conclude
that there is room to test models with larger sizes without overfitting.

32

7. Results and discussion

7.3.3 State-preserving model
Two models were trained and tested during the thesis work: one where hidden states
were reset between every line of training and another where the hidden states was
preserved between lines during a conversation. The idea behind the second model
was to train the network on keeping a context during a conversation, so it could
more easily remember earlier parts of it. However in the end, neither of the models
were able to provide even a very basic conversation, and it therefore hard to know
if this second model worked as we hoped.

7.4 Further work
Some new approaches are discussed here as further work. If one would train a
model similar to the one described in this thesis, these suggestions could be taken
into consideration.

7.4.1 Alignment and attention
The attention model that we use (see section 3.4.1) was initially used in a setting
of translating sentences between different languages. It is not unreasonable to think
that the same attention model would work for dialogue modeling. However, since
we model conversations, a more appropriate attention mechanism would look not
only on one input sentence, but perhaps on several input sentences. For example,
the sum in equation 3.18 in section 3.4.1 could sum over all hidden encoder states
from the whole conversation. The new sum would be as seen in equation 7.1, where
τ is the number of words read by the encoder throughout the whole conversation
(see equation 7.2) and α is some attention scaling factor which could be higher
for newer sentences and lower for older sentences. However, this might become
computationally expensive as the number of words in a conversation grows.

a′t =
τ∑
i=1

atih
L
i α (7.1)

According to Sutskever et al. [10], it is good to reverse input sentences when
translating text using their sequence-to-sequence model. They showed this em-
pirically with better translations, but their explanation was vague and more of a
speculation. According to them, the average distance (measured in recurrent time
steps) between words corresponding each other becomes lower when the input sen-
tence is reversed. Unlike the data used for translation, our data set does not contain
pairs where words at a specific position of either input or target necessarily cor-
responds to words at the same position of the other. We do not even know what
"corresponds to" would mean in this context. In the worst case, since our data set
is so noisy and unpredictable, reversing the input sentence could very well be detri-
mental to the result. However, there might exist some kind of general pattern of
words corresponding to each other. Finding this pattern could potentially allow for
a ’hack’ similar to the reversing of input sentences, resulting in increased perfor-
mance of the model. It would be interesting to see if just reversing the input would

33

7. Results and discussion

yield any performance gains on a dialogue model. However, it is not trivial to what
extent the input should be reversed. For example, either each line could be reversed
individually, or whole conversations could be reversed.

7.4.2 Method of preserving the state

As described in section 4, the last state of the decoder is used as the initial state
of the encoder. This has at least one problem. When the network switches from
encoding mode to decoding mode, it is provided with a GO symbol. However, when
a new sentence is fed to the network in the same conversation and the network
switches back to encoding mode, there is no special symbol provided to the network
that lets it know that this is happening. This could potentially degrade the quality
of the output of the network. It would be interesting to test if feeding the network
two different start symbols, one GOenc for starting the encoding, and one GOdec for
starting the decoding.

Using the last state of the decoder is not necessarily the only way to preserve
the state of the model. For example, the last state of the encoder could be used
instead. The downside to this is that the network would not remember the response
it had given for each input sentence. However, it might be easier to train the model
when only preserving the encoder states, since it will not have to switch between
encoder and decoder mode. The network will only remember the utterances of its
conversation partner, but perhaps this is sufficient for creating a dialogue model.
During a conversation, the state of the encoder at each input sentence will be affected
by that it has read a stream of input sentences that start at the first sentence of
the conversation. Thus, the encoder state at time t will now be hτ . τ is defined in
equation 7.2, where X = (x1, x2, ...) is a conversation of sentences and |x| is the
length of the vector x.

τ =
X∑
xi

|xi| (7.2)

7.4.3 Method of partitioning data into conversations

In section 5.2 we talk about how we partition the OpenSubtitles data set into con-
versations. Recall that a new conversation is started after a set amount of time has
passed since the last line. This time threshold was chosen by intuition. Thus, there
might be a better threshold that divides the data set more accurately. However,
no matter what threshold value we choose, there is always a possibility that one or
more conversations get lumped together or cut of in the middle. An optimal data
set would be annotated where each conversation begins and ends.

We believe that there might be better ways to split the data into conversations.
One proposal that was out of scope for this thesis was to use unsupervised learning
techniques, such as clustering algorithms to automatically partition the data set.
Not only might the cut-offs be more accurate, but there might not even be a need
to chose a global threshold value if the conversations are clustered together.

34

7. Results and discussion

7.4.4 Out of vocabulary inference
During the interviews of the user testing, a frequent comment on several chatbots
was that they did not remember the participant’s name. This is expected for our
model, since it does not process words that are not in the vocabulary and there is no
guarantee that an arbitrary name will be in it. In feature-engineered chatbots, this
can be easily solved by having a module that explicitly matches common phrases
relating names, and simply memorizes the participants name. However, this is a
problem that extends beyond remembering names. To have a general solution one
must integrate it into the end to end trainable model.

Weston et al. [33] proposes a novel idea to model previously unseen words during
inference and training of the model. The idea is based on the intuition that when
humans find a word which they do not recognize, they will try to find out the
meaning of it by looking at the context of where the word was used. In Weston’s
model, the context of a word is abstracted to be its neighboring words. One word to
the left and one to the right of the unknown word is used as context, which means
that the one-hot input vector will need to be three times the previous size. The
three parts of the input represents the input word, the word to the left and the
word to the right. As an example, with the vocabulary [how, is, feeling, ?] and
the input sentence "how is Boromir feeling?", the one-hot input vector of the third,
unseen word Boromir, will be [0, 0, 0, 0 || 0, 1, 0, 0 || 0, 0, 1, 0] (here, || is used as the
concatenation symbol). Training a neural network on this type of input should allow
for it to learn to understand the semantics of sentences that contain an unknown
word. However, our network would fail when queried about words which is out of
vocabulary, such as asking "what is my name?" after having previously told it your
name. Since it does not memorize specific words uttered to it, there is no possibility
for the network to output a specific word which is not in its vocabulary. Weston
uses a network architecture they call memory networks to explicitly store sentences,
which makes it possible for the network to remember the actual words.

35

7. Results and discussion

36

8
Conclusion

The final model presented in this thesis did not meet our initial expectations. We
expected to produce at least a dialogue system capable of having very basic conver-
sations, similar to the results achieved by Vinyals and Le. [11]. We proposed a few
reasons as to why we did not get the expected result, but our belief is that the main
issue is the small size of our model combined with a too short training time.

The chatbot did however show some results. We managed to train a model that
always generates complete and correct sentences, though they do not make sense in
the context of the conversation. The model also answers appropriately to common
phrases such as greetings and valedictions, showing that the chatbot has at least
some potential to learn to produce relevant responses.

Deciding on a method to evaluate the dialogue system was a significant part
of the work in this thesis. Evaluating how well a dialogue system converses, as
it turns out, is a hard task. The method we settled on using seemed appropriate
for our specific setting. Since the systems are scored on many different areas, it is
possible to find the strengths and weaknesses of the different systems. However, if
one would need to compare a large number of dialogue systems, this method would
get too unwieldy. Our belief is that more research needs to be made in the area of
evaluating dialogue systems with focus on how natural the dialogue is.

Even though the final model did not meet our expectations, we believe dia-
logue systems trained with machine learning techniques has potential and that it is
definitively worth investigating on how to improve them.

37

8. Conclusion

38

Bibliography

[1] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe:
Global Vectors for Word Representation. http://nlp.stanford.edu/
projects/glove/, 2014 (accessed May 26, 2016).

[2] Alan M. Turing. Computing machinery and intelligence. Mind, 59(236):433–
460, 1950.

[3] Joseph Weizenbaum. Eliza; a computer program for the study of natural lan-
guage communication between man and machine. Commun. ACM, 9(1):36–45,
January 1966.

[4] Rollo Carpenter. Cleverbot.com - A Clever Bot - Speak to an AI with some
actual intelligence? http://www.cleverbot.com/, 2015 (accessed March 14,
2016).

[5] The A.L.I.C.E. AI Foundation. Free A.I.M.L. Alice set. https:
//code.google.com/archive/p/aiml-en-us-foundation-alice/, 2011 (ac-
cessed March 14, 2016).

[6] Creative Virtual. Smart help solutions - Improve Customer Service & Customer
Engagement. http://www.creativevirtual.com/, 2016 (accessed May 25,
2016).

[7] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[8] Byron Reeves and Clifford Nass. The Media Equation: How People Treat Com-
puters, Television, and New Media Like Real People and Places. Cambridge
University Press, New York, NY, USA, 1996.

[9] Timothy Bickmore and Justine Cassell. How about this weather? Social Dia-
logue with Embodied Conversational Agents. In Kerstin Dautenhahn, editor,
Socially Intelligent Agents: The Human in the Loop, number FS-00-04 in AAAI
Technical Report, pages 4–8, Menlo Park, California, 2000. AAAI Press.

[10] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learn-
ing with neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 27, pages 3104–3112. Curran Associates, Inc., 2014.

[11] Oriol Vinyals and Quoc V. Le. A neural conversational model. CoRR,
abs/1506.05869, 2015.

[12] David Ameixa, Luisa Coheur, Pedro Fialho, and Paulo Quaresma. Luke, i am
your father: Dealing with out-of-domain requests by using movies subtitles. In
Timothy Bickmore, Stacy Marsella, and Candace Sidner, editors, Intelligent
Virtual Agents: 14th International Conference, IVA 2014, Boston, MA, USA,

39

http://nlp.stanford.edu/projects/glove/
http://nlp.stanford.edu/projects/glove/
http://www.cleverbot.com/
https://code.google.com/archive/p/aiml-en-us-foundation-alice/
https://code.google.com/archive/p/aiml-en-us-foundation-alice/
http://www.creativevirtual.com/

Bibliography

August 27-29, 2014. Proceedings, pages 13–21, Cham, 2014. Springer Interna-
tional Publishing.

[13] Marilyn A. Walker, Diane J. Litman, Candace A. Kamm, Ace A. Kamm, and
Alicia Abella. Paradise: A framework for evaluating spoken dialogue agents. In
Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics, pages 271–280, 1997.

[14] Ryuichiro Higashinaka, Masahiro Mizukami, Kotaro Funakoshi, Masahiro
Araki, Hiroshi Tsukahara, and Yuka Kobayashi. Fatal or not? Finding er-
rors that lead to dialogue breakdowns in chat-oriented dialogue systems. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 2243–2248, Lisbon, Portugal, September 2015. Association
for Computational Linguistics.

[15] Cameron Smith, Nigel Crook, Johan Boye, Daniel Charlton, Simon Dobnik,
David Pizzi, Marc Cavazza, Stephen Pulman, Raul Santos De La Camara, and
Markku Turunen. Interaction strategies for an affective conversational agent. In
Proceedings of the 10th International Conference on Intelligent Virtual Agents,
IVA’10, pages 301–314, Berlin, Heidelberg, 2010. Springer-Verlag.

[16] David Benyon, Björn Gambäck, Preben Hansen, Oli Mival, and Nick Webb.
How was your day? Evaluating a conversational companion. In IEEE Transac-
tions on Affective Computing (Volume:4 , Issue: 3), pages 299–311, London,
England, 2013. IEEE.

[17] Warren S. McCulloch andWalter Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[18] Robert Stufflebeam. Neurons, synapses, action potentials, and neurotransmis-
sion. http://www.mind.ilstu.edu/curriculum/neurons_intro/neurons_
intro.php, 2008 (accessed June 13, 2016).

[19] Frank Rosenblatt. The perceptron: a probabilistic model for information stor-
age and organization in the brain. Psychological review, 65(6):386, 1958.

[20] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. The Journal of Machine Learning
Research, 12:2121–2159, 2011.

[21] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term de-
pendencies with gradient descent is difficult. Trans. Neur. Netw., 5(2):157–166,
March 1994.

[22] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[23] Rafal Józefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical explo-
ration of recurrent network architectures. In Francis R. Bach and David M. Blei,
editors, ICML, volume 37 of JMLR Proceedings, pages 2342–2350. JMLR.org,
2015.

[24] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:
Global vectors for word representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543, 2014.

[25] Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Ge-
offrey E. Hinton. Grammar as a foreign language. CoRR, abs/1412.7449, 2014.

40

http://www.mind.ilstu.edu/curriculum/neurons_intro/neurons_intro.php
http://www.mind.ilstu.edu/curriculum/neurons_intro/neurons_intro.php

Bibliography

[26] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[27] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the ex-
ploding gradient problem. CoRR, abs/1211.5063, 2012.

[28] Kågebäck Mikael and Hans Salomonsson. Word sense disambiguation using a
bidirectional lstm. ArXiv e-prints, 1606.03568, June 2016.

[29] Jörg Tiedemann. News from OPUS - A collection of multilingual parallel cor-
pora with tools and interfaces. In N. Nicolov, K. Bontcheva, G. Angelova, and
R. Mitkov, editors, Recent Advances in Natural Language Processing, volume V,
pages 237–248. John Benjamins, Amsterdam/Philadelphia, Borovets, Bulgaria,
2009.

[30] OpenSubtitles. Subtitles - download movie and TV series subtitles from the
biggest open subtitles database. http://www.opensubtitles.org/, 2016 (ac-
cessed May 26, 2016).

[31] David Benyon and OliMival. Landscaping personification technologies: from in-
teractions to relationships. In Proceedings of the Conference on Human Factors
in Computing Systems, pages 3657–3662, Florence, Italy, 2008. ACM.

[32] Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui
Wu. Exploring the limits of language modeling. CoRR, abs/1602.02410, 2016.

[33] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. CoRR,
abs/1410.3916, 2014.

41

http://www.opensubtitles.org/

Bibliography

42

A
User testing questionnaire

The conversation between myself and the Chatbot felt natu-
ral

• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

I thought the conversation was appropriate

• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

I thought the Chatbot remembered earlier parts of the con-
versation

• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

I liked the behaviour of the Chatbot

• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

I

A. User testing questionnaire

I felt I could correct the Chatbot when necessary
• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

I found the Chatbot entertaining
• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

I found the Chatbot engaging
• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

I feel that the Chatbot is trustworthy
• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

Over time I think I would build up a relationship with the
Chatbot

• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

I thought the Chatbot acted independently
• Strongly Disagree
• Disagree
• Undecided
• Agree

II

A. User testing questionnaire

• Strongly Agree

The Chatbot’s responses were always appropriate
• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

The Chatbot showed empathy towards me
• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

The Chatbot had an open and agreeable personality
• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

The Chatbot demonstrated emotion at times
• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

The Chatbot got to know me during the conversation
• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

The Chatbot has a sensible attitude
• Strongly Disagree
• Disagree
• Undecided

III

A. User testing questionnaire

• Agree
• Strongly Agree

The Chatbot is rather like me

• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

The Chatbot surprised me at times

• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

The Chatbot anticipated my needs

• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

The conversation was coherent

• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

The Chatbot was polite

• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

IV

A. User testing questionnaire

The Chatbot was humorous
• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

The Chatbot was friendly with me
• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

The Chatbot is a good listener
• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

I found the Chatbot boring
• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

I thought the Chatbot was responsive
• Strongly Disagree
• Disagree
• Undecided
• Agree
• Strongly Agree

V

	List of Figures
	List of Tables
	Introduction
	Related Work
	Background
	Neural networks
	Feed forward neural networks
	Weight Optimization
	Recurrent Neural Networks
	Long short-term memory

	Tokenizing
	Word embedding
	Sequence-to-sequence
	Attention

	Hyperparameter optimization
	Regularization
	Dropout
	Gradient clipping
	Dropword

	Model details
	State-resetting model
	State-preserving model
	Hyper parameter optimization

	Data sets
	Plain text version
	Conversations data set

	Evaluation
	Test procedure
	Questionnaire
	Participants and Data

	Results and discussion
	General behaviour of the chatbot
	User evaluation
	Questionnaire answers
	Interviews

	Model performance
	Training time
	Choice of hyper parameters
	State-preserving model

	Further work
	Alignment and attention
	Method of preserving the state
	Method of partitioning data into conversations
	Out of vocabulary inference

	Conclusion
	Bibliography
	User testing questionnaire

