
Parallel computing for 5G
Evaluating the use of CUDA for downlink parallel decoding of
synchronization signals

Master’s thesis in Communication Engineering

Sofia Sundin and Ulrika Yring

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis EX013/2018

Parallel computing for 5G

Evaluation of CUDA for downlink parallel decoding of
synchronization signals

Sofia Sundin and Ulrika Yring

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2018

Parallel computing for 5G
Evaluating the use of CUDA for downlink parallel decoding of synchronization sig-
nals
Sofia Sundin and Ulrika Yring

© SOFIA SUNDIN, ULRIKA YRING, 2018.

Supervisor: Erik Sandgren, Combitech
Andreas Buchberger, Department of Electrical Engineering

Examiner: Thomas Eriksson, Department of Electrical Engineering

Master’s Thesis EX013/2018
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Parallel computing for 5G
Evaluating the use of CUDA for downlink parallel decoding of synchronization sig-
nals
Sofia Sundin and Ulrika Yring
Department of Electrical Engineering
Chalmers University of Technology

Abstract
During recent years the data traffic demands for the mobile networks have increased
rapidly. In the upcoming standard Fifth Generation Cellular Network (5G) the in-
dustry will attempt to address this growing demand and many other new demands
that have risen over the past few years. One researched topic in 5G is wireless
fiber where the aim is to reach fiber speeds within a wireless network. This entails
that User Equipments (UEs) must process signals much faster. This thesis project
investigated the use of a Graphics Processing Unit (GPU), specifically a Compute
Unified Device Architecture (CUDA) platform, for the decoding of three synchro-
nization signals. The three synchronization signals are included in a 5G standard
established by Verizon. To be able to have a reference to compare to the parallel
implementation a system was also conducted in serial on a CPU. The results of
the investigation showed that the parallel system performed, in the majority of test
cases, significantly faster than the serial program. One of the largest time consumers
in the parallel system was that the calculations did not utilize even half of the GPU
resources. This could be drastically decreased using CUDA streams, where using
two streams almost cut the time of decoding in half.

Keywords: 5G, wireless fiber, CUDA, GPU, synchronization signals, CUDA streams,
complexity, throughput, latency

v

Acknowledgements
We would like to offer the most sincere thanks to the supervisors of this thesis, Erik
Sandgren and Andreas Buchberger. Your guidance has helped us greatly in the work
to accomplish this thesis.
A big thanks to Combitech for allowing us to do this rewarding thesis work. Finally
we would like to thank our examiner Thomas Eriksson.

Sofia Sundin, Ulrika Yring, Gothenburg, August 2018

vii

Abbreviations

3GPP Third Generation Partnership Project
5G Fifth Generation Cellular Network
5GTF 5G Terrestrial Fiber
CN Cellular Network
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
ESS Extended Synchronization Signal
FFT Fast Fourier Transform
GPU Graphics Processing Unit
HSDPA High Speed Downlink Package Access
HSPA High Speed Packet Access
ICT Information and Communications Technology
IFFT Inverse Fast Fourier Transform
ITU-R International Telecommunication Unions Radio Sector
LTE Third Generation Partnership Project Long Term Evolution
MP Multiprocessors
OFDM Orthogonal Frequency-Division Multiplexing
PSS Primary Synchronization Signal
SSS Secondary Synchronization Signal
UE User Equipment
V5GTF Verizon 5G Technical Forum

List of Symsbols

Bmax Maximum number of blocks that can run concurrently on a GPU for
maximum block size

Bmax,MP Maximum blocks per multiprocessor
Bmin Maximum number of blocks that can run concurrently on a GPU for

minimum block size
d Synchronization sequence for one OFDM symbol
dl Synchronization sequence for one OFDM symbol dependent on the

OFDM symbol
∆f Subcarrier spacing
k Subcarrier
l OFDM symbol
ncores nVIDIA Cores
NCP Cyclic prefix length
N

(1)
ID Cell identity group

N
(2)
ID Sector identity

N cell
ID Cell identity

nMP Number of Multiprocessors
Tcore Number of threads per CUDA core
Tmax,MP Maximum number of threads per multiprocessor
Ts Sample time
Tsymb Symbol time
Tmax,block Maximum threads per block symbol time
Tmin,block Minimum threads per block
Twarp Warp size

xi

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Background . 1
1.2 Aim . 1
1.3 Scope . 2

1.3.1 Limitations . 2
1.4 Methodology . 2
1.5 Ethics and Environment . 3

2 Fifth Generation Wireless Systems 5
2.1 System properties and technical information 5

2.1.1 Orthogonal Frequency-Division Multiplexing 6
2.1.2 Fast Fourier Transform . 6
2.1.3 Cross correlation . 7
2.1.4 Cell search . 7

2.2 Verizon 5G Terrestrial Fiber Standard 8
2.2.1 Synchronizations signals . 9
2.2.2 OFDM signal generation in baseband 14

3 Compute Unified Device Architecture 15
3.1 Information about PC . 15
3.2 Information about CUDA . 15

3.2.1 Blocks and Threads . 16
3.2.2 cudaMemcpy and cudaMalloc 18
3.2.3 CUDA streams . 18
3.2.4 cudaHostAlloc and cudaMemcpyAsync 18
3.2.5 Reduce . 19

3.3 Throughput and latency . 19

4 Implementation 21
4.1 Reference Data . 21
4.2 Graphics Processing Unit . 22

4.2.1 Memory Allocation and Data Transfer 22
4.2.2 Time to Frequency Domain (FFT) 23

xiii

Contents

4.2.3 Cross correlation . 23
4.2.4 CUDA streams . 26
4.2.5 Complexity . 26

4.3 Central Processing Unit . 30
4.3.1 Time to Frequency Domain (FFT) 30
4.3.2 Cross correlation . 30
4.3.3 Complexity . 31

4.4 Timekeeping . 33

5 Results 35
5.1 Time measurements of the full system for both decoders 35

5.1.1 Measured time for the FFTs of both decoders 36
5.2 Parallel decoder . 38

5.2.1 Measured time for cross correlation in parallel decoder 38
5.3 Serial decoder . 41

5.3.1 Measured time for cross correlation in serial decoder 41
5.3.2 Alternative implementations 42

6 Discussion 45
6.1 Code . 45

6.1.1 Complexity . 45
6.1.2 Cross correlation . 46

6.2 Measured time results . 46
6.2.1 Code excluded from timekeeping 46
6.2.2 Performance of the FFT . 47
6.2.3 Performance of the detection functions 47
6.2.4 Performance of the full program 49
6.2.5 Difference in variation between CPU and GPU 49

6.3 Throughput and latency . 50
6.4 Parallelizing the CPU . 51
6.5 Improvements and future work . 51

7 Conclusion 53

Bibliography 55

xiv

List of Figures

2.1 The relation between cell identity, cell identity group and sector identity 8
2.2 Demonstrating the placement of cell identity groups and how they

are connected to the sector ID . 8
2.3 Relationship between subframes and OFDM symbols 9
2.4 PSS, SSS and ESS are in subframes 0 and 25 but in different subcarriers 10

3.1 Visualization of blocks and threads 17
3.2 Visualization of max reduce function 19

4.1 The PSS reference data in a constellation plot 21
4.2 The SSS reference data in a constellation plot 21
4.3 The ESS reference data in a constellation plot 22
4.4 Cross correlation between sector ID = 1 with itself 22
4.5 Cross correlation between sector ID = 1 and sector ID = 2 22
4.6 Visualization of time consumption for the system with and without

CUDA streams . 27

5.1 Measured time for one subframe running the whole parallel program
with CUDA Streams . 35

5.2 Measured time for one subframe running the whole parallel program
without CUDA Streams . 35

5.3 Measured time for one subframe running the whole serial program . . 36
5.4 Measured time for each run in execution order for the parallel FFT . 37
5.5 Measured time for each run in execution order for the parallel FFT

without transient time . 37
5.6 Measured time for each run in execution order for the serial FFTW . 37
5.7 Histogram of the parallel FFT . 37
5.8 Histogram of the serial FFTW . 37
5.9 Measured time for each run in execution order for the PSS 38
5.10 Measured time for each run in execution order for the SSS 38
5.11 Measured time for each run in execution order for the ESS 39
5.12 Histogram showing time measurements of the PSS cross correlation

kernel . 39
5.13 Histogram showing time measurements of the SSS cross correlation

kernel . 39
5.14 Histogram showing time measurements of the ESS cross correlation

kernel . 40

xv

List of Figures

5.15 Measured time for each run in execution order for the PSS disregard-
ing the first 500 runs . 40

5.16 Measured time for each run in execution order for the SSS disregard-
ing the first 500 runs . 40

5.17 Measured time for each run in execution order for the ESS disregard-
ing the first 500 runs . 40

5.18 Histogram showing time measurements of the PSS cross correlation
for the serial decoder . 41

5.19 Histogram showing time measurements of the SSS cross correlation
for the serial decoder . 41

5.20 Histogram showing time measurements of the ESS cross correlation
for the serial decoder . 41

5.21 Measured run time for PSS cross correlation in the serial decoder in
execution order . 42

5.22 Measured run time for SSS cross correlation in the serial decoder in
execution order . 42

5.23 Measured run time for ESS cross correlation in the serial decoder in
execution order . 42

6.1 Comparison between the different orders of complexity over signal
length n . 45

xvi

List of Tables

2.1 Parameters specified for the v5GTF standard 9
2.2 PSS root indexes . 11
2.3 Time domain indices l mapped to its cyclic shift ∆l 14

3.1 System Information about used PC 15
3.2 System Information about CUDA graphics card 16

4.1 Parameters a and b for PSS, SSS and ESS 27
4.2 Line by line complexity for cross correlation for parallel implementation 28
4.3 Line by line complexity equations for reduce algorithm 29
4.4 Line by line complexity for cross correlation in serial 32
4.5 Line by line complexity for maximum value search in serial 32

5.1 Statistics for the measured run time of the full program for the parallel
decoder with and without CUDA streams as well as the serial decoder 36

5.2 Statistics for the measured run time of the FFTs in both parallel and
serial decoder . 38

5.3 Statistics for the measured run time of the cross correlations for the
parallel decoder . 39

5.4 Statistics for the measured run time of the cross correlations for the
serial decoder . 42

xvii

List of Tables

xviii

1
Introduction

As introduction to this thesis report, background, aim, scope, methodology and
report structure will be presented.

1.1 Background
Communication has always been an important part of society, and as society has
gone through an industrial and technical revolution a large part of the communi-
cation has become digital. It all started with a Morse code message and has now
expanded into 1G, 2G, 3G and the most recent standard 4G.
The upcoming generation of Cellular Networks (CNs) is the 5G. Since data traffic
demands are growing more than ever the industry aspires to achieve higher data
rates, higher bandwidth and lower latency for the new generation of mobile broad-
band. This is made possible with the new high-band spectrum technique [1],[2]. As
the data rates increases and environmental challenges are emerging, the need for
energy efficient systems enlarges. This is one of the bigger challenges to take into
consideration in the design of 5G [3].
During late 2016 Verizon 5G Technical Forum (V5GTF) released the latest version
of their 5G standard, which is a collaboration between a number of large companies
within the telecommunication industry whose mission is to come up with a common
standardization, whereof Ericsson is one [4]. This standard is called 5G Terrestrial
Fiber (5GTF) and has the purpose to replace fiber links with wireless links. As these
wireless links are expected to have similar performance as the fiber, it is sometimes
referred to as wireless 5G fiber.
In Sweden today 46% of households and workplaces do not have access to fiber [5].
When installing wired fiber to the customer, a cable has to be dug down. This
creates economic challenges as prices range from 14 000 - 25 000 SEK. For larger
distances, these numbers only escalate [6],[7]. Additionally, running a fiber creates
many other logistical challenges since a lot of ground and sometimes roads have to
be dug up. Many of these problems could be either decreased or averted with the
help of the 5G wireless fiber. Currently different types of solutions are tested. This
is where this masters thesis plays a role.

1.2 Aim
The aim of this thesis project is to investigate if the performance of the downlink
decoding of the synchronization signals in 5G could be improved by using a CUDA

1

1. Introduction

graphics card. The main goal is to investigate whether or not lower system la-
tency and higher throughput could be obtained using a GPU compared to a Central
Processing Unit (CPU).

1.3 Scope
In this project the mission is to analyze if and how the performance of decoding a
5G downlink signal can be improved by parallelizing the decoding using a CUDA
GPU. The data being decoded is simulated as a recording of what the base station
would send from baseband to the radio antenna. This signal is discrete and has no
noise.
When analyzing the performance, the most essential aspect will be the throughput
and latency of the decoder. In other words, is it possible to increase the number
of samples handled by the system during a fixed amount of time. Other aspects
such as costs and complexity will also be discussed. The initial goal for this thesis
project is to measure throughput during the decoding using the synchronization sig-
nals (primary synchronization signal, secondary synchronization signal and extended
synchronization signal) from the V5GTF standard and not signals with actual mes-
sages.

1.3.1 Limitations
Since the scope of the project is to decode the synchronization signals broadcasted
to a device only a signal decoder will be modeled and not the encoder.
Considering that the major part of this project is to see whether or not throughput
and latency are affected by parallel computing there is no need to add fading to
the recorded signal. In this 5G standard a complex type of beamforming is used
in the Massive-MIMO antenna but with the data recordings provided there is no
need to construct the beamforming mechanism for this case. Since the aim is to find
the time difference between serial and parallel decoding and that the time for this
project is limited the system is not going to perform synchronization. The frames
sent into the system will thereby be limited in variation and nothing will be done to
the reading of the signal with the knowledge of one or more synchronization signals.
To measure the throughput as well as the latency only one subframe will be assessed
at a time. Variations in timing based on the signal length will not be studied.

1.4 Methodology
To conduct this project a significant amount of literature studies (5G standard, pro-
gramming and communication techniques) had to be completed in order to find all
the parameters and methods to decode 5G signals according to the V5GTF standard
as well as how to do calculations on the GPU using the CPU. The major part of the
project was spent writing programs in C and CUDA C. The GPU was directed using
C programming from the CPU. The CPU instructed the GPU, through a program
in the CPU, to do the calculations and thereafter copy all the data blocks to the

2

1. Introduction

GPU. The GPU calculated the blocks and thereafter copied back the data to the
CPU.
The throughput was, at the end of the project, measured using programs in C that
revealed time usage. From this information it is possible to retrieve the throughput
and latency.

1.5 Ethics and Environment
In a world where the greater part of the western world is connected during all hours
of every day, there are still a large amount of places that have no internet available.
Some may argue that since there is a requirement for higher energy efficiency of the
network this could help places that have limited access to the electrical grid, since
this means that diesel generators and such other money consuming tools have to be
used to gain internet access and lowering the energy use would also lower this cost
[8].

3

1. Introduction

4

2
Fifth Generation Wireless Systems

This chapter, covering the fifth generation of wireless systems, includes a brief ex-
planation of the theory behind 5G followed by a thorough explanation of the Verizon
5G Terrestrial Fiber Standard, where the main focus lies upon three synchronization
signals.

2.1 System properties and technical information
The evolution of the CNs has been gradual over, so far, four generations. The first
system was the 1G, this was an analog voice-only system. During the evolution
of 2G, whilst still being focused on voice, the CN became digital and the GSM
technique was introduced. The EDGE technology was introduced in what later
became 2.5G. The third generation, 3G, was the first CN to be centralized around
mobile broadband. 3G was also the start of the organization Third Generation
Partnership Project (3GPP), whose purpose is to make cellular technology standards
global. In 3G High Speed Downlink Package Access (HSDPA) was introduced and
after in what is now called 3.5G came High Speed Packet Access (HSPA). In a later
3G phase, also known as 3.9G, Third Generation Partnership Project Long Term
Evolution (LTE) was introduced [8].
In 4G circuit-switched voice is no longer supported and the updated LTE technique
LTE-advanced is used. This means that the CN can now reach much higher data
rates and account for many types of usages, including machine to machine type
communication. However, the need for high performing Information and Commu-
nications Technology (ICT) systems keeps growing and now it is time for 5G, also
known under the International Telecommunication Unions Radio Sector (ITU-R)
project IMT-2020, which is the United Nation’s international collaboration of set-
ting requirements, without setting any technical specifications, for 5G [8],[9].
Despite LTE being in an initial period of deployment, the communication industry
has been researching and developing the fifth generation of mobile communication
for a rather long period of time. The aspiration for 5G is to wirelessly connect a
large amount of different devices. There are applications that would benefit from
connectivity, one example is traffic safety and control. For this application there
is a demand for both extreme reliability and low latency. Meanwhile, there are
other applications which have very different requirements. One example of this is
massive machine type communication where the data rates and the amount of data
per device are relatively low whilst demanding very low power consumption to save
battery. Another aspect of 5G is that it needs to cover future, yet unknown, fields

5

2. Fifth Generation Wireless Systems

of applications which makes for other requirements [8].

”Connectivity will be provided essentially anywhere,
anytime to anyone and anything” [8]

The expected raise in active devices in 5G entails that a requirement for higher data
rates has been set, this is one of the main properties of 5G. To achieve all of the
mentioned improvements there are three properties that will be revised. The first is
the spectral efficiency, which will be improved but only slightly since it is already so
optimized. The second property is to increase the bandwidth, this does on the other
hand also introduce a lot of challenges since the free bandwidth that will be used is
very high (3-6 GHz and 6-30 GHz) which will affect the quality of the signal over
larger distances and through obstacles like thick walls and rain. Because of this,
new radio access techniques are needed as a compliment to LTE-advanced. The
third one is to increase the number of base stations deployed whilst decreasing the
distance between them [8].

2.1.1 Orthogonal Frequency-Division Multiplexing
Orthogonal Frequency-Division Multiplexing (OFDM) is a version of multicarrier
modulation and was introduced in CNs when designing 4G and is kept when de-
signing 5G [8]. As the name of OFDM entails, the bandwidth of a channel can be
thought of as many smaller sub-channels with frequency spacing ∆f , i.e., the chan-
nel’s allocated bandwidth has been divided into a number of subcarriers. When the
subcarrier signal, sk has not been modulated yet it is defined as

sk =
{

ej2πk∆ft ∀t ∈ [0, Tsymb]
0 elsewhere (2.1)

where k is the subcarrier and symbol time Tsymb, is calculated using Tsymb = 1
∆f .

When sending the signal the transmitter modulates all subcarriers independent from
one another multiplying the subcarrier signal with an information signal according
to

s(n) =
∞∑

n=∞
ckisk(t− iTsymb) (2.2)

where cki is the information symbol at index i [10].

2.1.2 Fast Fourier Transform
To be able to modulate a signal according to OFDM the signal has to be handled in
both frequency and time domain, this can be achieved using a Fast Fourier Transform
(FFT). An FFT is a time efficient way of converting a time domain signal into a
frequency based one as follows

S(k) =
N−1∑
n=0

s(n)e
−j2πnk

N (2.3)

6

2. Fifth Generation Wireless Systems

where N represents the length of the time domain signal s(n) and k represents the
number of frequency representations, where n = k. Transforming a signal from
the frequency domain to the time domain is performed via the Inverse Fast Fourier
Transform (IFFT) which is calculated according to

s(n) =
N−1∑
k=0

S(k)e
j2πnk
N (2.4)

where the IFFT is used to create a time domain signal to transmit and the FFT will,
in the receiver, transform the received time-domain signal to a frequency-domain
signal.

2.1.3 Cross correlation

To be able to find the correlation, and in its turn find the best match between
signals, a cross correlation is used. The cross correlation is the correlation of two
signals as follows

(f ? g)(n) =
∞∑

m=−∞
f ∗(m)g(m+ n) (2.5)

giving as an output a numeric value of how much two signals correspond to each
other, one value for each signal fitting over the other, giving

n = 3 · length(m)− 2 (2.6)

number of outputs from the cross correlation in equation 2.5. The higher the cross
correlation the more alike the two signals are, making this a useful tool when trying
to classify signals.
One alternative way of calculating the cross correlation is by using the FFT, the
IFFT and the complex conjugate

f ? g = IFFT
(
FFT(f) · FFT∗(g)

)
(2.7)

and where the signals have to be padded with at least the size of the signal number
of zeros, giving an alternative way of implementing the cross correlation.

2.1.4 Cell search

For a device to be able to communicate with the 5G network it needs to synchronize
with a base station in the network. The range of where a UE can communicate to
a base station is called a cell. The network consist of 3 types of sector identities,
referred in this report as N (2)

ID , 168 cell identity groups, referred in this report as
N

(1)
ID leading to 504 cell identities, see figure 2.1.

7

2. Fifth Generation Wireless Systems

Figure 2.1: The relation between cell identity, cell identity group and sector iden-
tity

The cell search is not only executed when first trying to connect to the network but
continuously during its run time, to handle mobility of the UEs. To obtain N

(2)
ID ,

N
(1)
ID and the cell identity there are two synchronization signals that are constructed

to find the identities. To determine the sector identity a signal called the Primary
Synchronization Signal (PSS) is used and regarding the cell identity group a signal
called the Secondary Synchronization Signal (SSS) is used. Figure 2.2 represents
how the cell identities are implemented in practice [8].

Figure 2.2: Demonstrating the placement of cell identity groups and how they are
connected to the sector ID

2.2 Verizon 5G Terrestrial Fiber Standard

As explained in 1.1 V5GTF has created a standard for 5G. In this section all theory
is retrieved from V5GTF’s documentation "Verizon 5G TF; Air Interface Working
Group; Verizon 5th Generation Radio Access; Physical channels and modulation
(Release 1)" [11].

8

2. Fifth Generation Wireless Systems

2.2.1 Synchronizations signals
Each radio frame is 10 ms and divided into 50 subframes, lasting 0.2 ms each. For
each subframe there are 1200 subcarriers. In each subframe there are 14 OFDM
symbols in time domain. In table 2.1 set parameters for the v5GTF standard are
found.

Table 2.1: Parameters specified for the v5GTF standard

v5GTF parameters
Number of samples N 2048
Sample time Ts 6.5104 · 10−9 s
Subcarrier spacing ∆f 75 kHz

Each symbol has N samples of data and cyclic prefix lengths of NCP = 160 for
OFDM symbols 0 and 8, and NCP = 144 for the remaining 12 OFDM symbols.
This is represented in figure 2.3. Each sample has a sample time Ts which can be
calculated from the subcarrier spacing using

Ts = 1
N ·∆f . (2.8)

The OFDM symbols are roughly the time of a subframe divided by 14, but differs
a bit since the cyclic prefix lengths are not fixed for all OFDM symbols.

Figure 2.3: Relationship between subframes and OFDM symbols

The synchronization process in the 5GTF standard is divided into three parts; part
one is the PSS covered in section 2.2.1.1 where N (2)

ID is determined, part two is
determining N (1)

ID and subframe from the SSS covered in section 2.2.1.2, and part
three is determining the OFDM symbol from the Extended Synchronization Signal
(ESS) covered in section 2.2.1.3, with the knowledge of cell identity using

N cell
ID = 3 ·N (1)

ID +N
(2)
ID (2.9)

gives the system essential information for future reception and transmission pur-
poses. In figure 2.4 the synchronization signals and their position in both time

9

2. Fifth Generation Wireless Systems

(subframes) and frequency domain (subcarriers) is shown, where all three synchro-
nization signals stretch over multiple subcarriers.

Figure 2.4: PSS, SSS and ESS are in subframes 0 and 25 but in different subcarriers

The data transmission is structured as follows; the base station broadcasts one radio
frame at a time which contains all synchronization data required. No communication
in uplink is needed for this. When decoding the cell identity a cross-correlation is
performed between the received base station signal and signals representing the
different cell identities to find the best match and thereby finding which ID the cell
has as well as synchronization.

2.2.1.1 Primary Synchronization Signal

The primary synchronization is the first signal that the UE will use to decode what
cell identity the base station has by finding the sector identity. The sent signal is
built using a slightly modified Zadoff-Chu sequence

du(n) =

 e−j
πun(n+1)

63 n = 0, 1, 2, ..., 30
e−j

πu(n+1)(n+2)
63 n = 31, 32, 33, ..., 61

(2.10)

where the denominator of the exponent is 63 instead of the length of the sequence
(62).
The benefit of using a Zadoff-Chu sequence is that the peak of the autocorrelation
is very distinct and therefore it is useful when searching for a signal with noise.

10

2. Fifth Generation Wireless Systems

Table 2.2: PSS root indexes

N
(2)
ID u

0 25
1 29
2 34

n =
{

0, 1, ..., 61 for downlink transmission
−5, ...,−1, 62, ..., 66 for resource elements (2.11)

k = n− 31 + NDL
RBN

RB
sc

2 (2.12)

l = 0, 1, ..., 13 (2.13)

For the PSS there are three different reference signals each connected to a N
(2)
ID ,

the reference signals are then calculated according to equation 2.10 using the root
indices as seen in table 2.2. Values du(n) corresponding to n = 0,...,62 will later be
placed in subcarriers k = 569,...,630 and duplicated in all 14 of the OFDM symbols
in subframes 0 and 25. In this step N (2)

ID of the cell is detected and latter known in
detection of N (1)

ID .

2.2.1.2 Secondary Synchronization Signal

The secondary synchronization signal is placed in subframes 0 and 25, in subcarriers
k = 641,...,703 and the OFDM symbols are duplicated in each subcarrier 14 times.
It is thereby possible to detect if it is either subframe 0 or 25 from the SSS. The
calculation of the SSS is more complex than the PSS by combining three different
scrambling sequences in d(n)

d(2n) =
{
s

(m0)
0 (n)c0(n) for subframe 0
s

(m1)
1 (n)c0(n) for subframe 25

(2.14)

d(2n+ 1) =
{
s

(m1)
1 (n)c1(n)z(m0)

1 (n) for subframe 0
s

(m0)
0 (n)c1(n)z(m1)

1 (n) for subframe 25
(2.15)

where s(m0)
0 (n), s(m1)

1 (n), c0(n), c1(n), z(m0)
1 (n), z(m1)

1 (n) are scrambling sequences
defined in subsections 2.2.1.2.1, 2.2.1.2.2 and 2.2.1.2.3. The scrambling sequences
uses the same initial values but different constants in a scrambling equation, using
modulus 2 and 31, to create three different scrambling patterns. In equations

m0 = (m′) mod 31 (2.16)

m1 =
(
m0 +

⌊
m′

31

⌋
+ 1

)
mod 31 (2.17)

m′ = N
(1)
ID + q(q + 1)

2 , q =

N (1)
ID + q′(q′+1)

2
30

, q′ =
⌊
N

(1)
ID

30

⌋
(2.18)

11

2. Fifth Generation Wireless Systems

m0 and m1 are dependent on N (1)
ID . This makes for 168 different SSS.

n =
{

0, 1, ..., 61 for downlink transmission
−5, ...,−1, 62, ..., 66 for resource elements (2.19)

k = n+ 41 + NDL
RBN

RB
sc

2 (2.20)

l = 0, 1, ..., 13 (2.21)

2.2.1.2.1 Sequences s use the previously created m0 and m1, which are depen-
dent on N (1)

ID , to create the sequences

s
(m0)
0 (n) = s̃

(
(n+m0) mod 31

)
(2.22)

s
(m1)
1 (n) = s̃

(
(n+m1) mod 31

)
(2.23)

using the function

s̃(i) = 1− 2x(i), where 0 ≤ i ≤ 30 (2.24)

which is dependent on the initial sequence

x(i+ 5) =
(
x(i+ 2) + x(i)

)
mod 2 0 ≤ i ≤ 25 (2.25)

where x(0) = 0, x(1) = 0, x(2) = 0, x(3) = 0 and x(4) = 1.

2.2.1.2.2 Scrambling sequences c use N (2)
ID to create the sequences

c0(n) = c̃
(
(n+N

(2)
ID) mod 31

)
(2.26)

c1(n) = c̃
(
(n+N

(2)
ID + 3) mod 31

)
(2.27)

using the function

c̃(i) = 1− 2x(i), where 0 ≤ i ≤ 30 (2.28)

which is dependent on the initial sequence

x(i+ 5) =
(
x(i+ 3) + x(i)

)
mod 2 0 ≤ i ≤ 25 (2.29)

where x(0) = 0, x(1) = 0, x(2) = 0, x(3) = 0 and x(4) = 1.

2.2.1.2.3 Scrambling sequences z use N (2)
ID to create the sequences

z
(m0)
0 (n) = z̃

((
n+ (m0 mod 8)

)
mod 31

)
(2.30)

zm1
1 (n) = z̃

((
n+ (m1 mod 8)

)
mod 31

)
(2.31)

12

2. Fifth Generation Wireless Systems

but differs from scrambling sequence c (and s) in the creation of the x sequence

x(i+ 5) =
(
x(i+ 4) + x(i+ 2) + x(i+ 1) + x(i)

)
mod 2 0 ≤ i ≤ 25 (2.32)

where x(0) = 0, x(1) = 0, x(2) = 0, x(3) = 0 and x(4) = 1. Using the function

z̃(i) = 1− 2x(i), where 0 ≤ i ≤ 30. (2.33)

2.2.1.3 Extended Synchronization Signal

The ESS is dependent on the cell ID detected in PSS and SSS, and varies over the
14 different OFDM symbols

d(n) = e−j 25πn(n+ 1)
63 n = 0, 1, ..., 62 (2.34)

d̃l(n) = d
(
(n+ ∆l) mod 63

)
n = 0, 1, ..., 62 (2.35)

using the cyclic shift constants in table 2.3, making it possible to detect OFDM
symbol ID. The initial sequence for x1(n) is already defined as

x1(n+ 31) =
(
x1(n+ 3) + x1(n)

)
mod 2 (2.36)

where Nc = 1600 and sequence initialized with x1(0) = 1, x1(n) = 0, n = 1, 2, ..., 30
and n = 0, 1, ...,MPN − 1, whilst for x2(n) it has to be retrieved from

cinit = 210(i+ 1)
(
2N cell

ID + 1
)

+ 2N cell
ID + 1 (2.37)

cinit =
30∑
i=0

x2(i) · 2i (2.38)

c(n) =
(
x1(n+Nc) + x2(n+Nc)

)
mod 2 (2.39)

x2(n+ 31) =
(
x2(n+ 3) + x2(n+ 2) + x2(n+ 1) + x2(n)

)
mod 2 (2.40)

which are based on the cell ID and the subframe i. Functions 2.34 and 2.35 and the
x sequences are linked using

ri(n) = 1√
2
(
1− 2c(2n)

)
+ j

1√
2
(
1− 2c(2n+ 1)

)
n = 0, 1, ..., 62 (2.41)

dl(n) = ri(n)d̃l(n) n = 0, 1, ..., 62 (2.42)

n =
{
−0, 1, ..., 62 for downlink transmission
−4, ...,−1, 64, ..., 67 for resource elements (2.43)

k = n− 104 + NDL
RBN

RB
sc

2 (2.44)

l = 0, 1, ..., 13. (2.45)

13

2. Fifth Generation Wireless Systems

Table 2.3: Time domain indices l mapped to its cyclic shift ∆l

l ∆l

0 0
1 7
2 14
3 18
4 21
5 25
6 32
7 34
8 38
9 41
10 45
11 52
12 59
13 61

2.2.2 OFDM signal generation in baseband
The baseband signal generation is defined as follows

sl(t) =
−1∑

k=−bNDL
RBN

RB
sc /2c

ak(−),lej2πk∆f(t−NCP,lTs) +
dNDL

RBN
RB
sc /2e∑

k=1
ak(+),lej2πk∆f(t−NCP,lTs)

(2.46)
where the time lies in the interval 0 ≤ t ≤ Ts(N + NCP), a cyclic prefix is con-
sidered in the signal generation and where k(−) = k +

⌊
NDL
RBN

RB
sc /2

⌋
and k(+) =

k +
⌊
NDL
RBN

RB
sc /2

⌋
− 1 represents which subcarriers the different symbols are gener-

ated to.
In equations

ak(−),l =
Ts(N−1)∑
t=0

s(t)e−j2πk∆ft for k = −
⌊
NDL
RBN

RB
sc /2

⌋
, ...,−1 (2.47)

ak(+),l =
Ts(N−1)∑
t=0

s(t)e−j2πk∆ft for k = 1, ...,
⌊
NDL
RBN

RB
sc /2

⌋
(2.48)

the received signal s(t) is modified from N number of samples in time domain to
1200 subcarriers in frequency domain.
When referring back to the reference signals the following equivalences upholds: PSS
and SSS ak,l = d(n) and for ESS ak,l = dl(n) for k = 0, ..., 1199, see equations 2.10,
2.14, 2.15 and 2.10. Where n and k are linearly connected according to equations
2.12, 2.20 and 2.44.

14

3
Compute Unified Device

Architecture

In the beginning of this chapter specifications about the systems used in this project
will be presented. This will be followed by a brief explanation about common CUDA
concepts and the chapter is completed with a discussion about the important trade-
off between time efficiency and latency while using CUDA.

3.1 Information about PC
The CPU, on which all code is executed, that the GPU is connected to is a Taurus,
system model MS-7A59, with the following system information as listed in table 3.1.

Table 3.1: System Information about used PC

System Information
Processor Intel(R) Core(TM) i7-7700K CPU
Processor Speed 4.2 GHz
Number of Cores 4
Number of Logical Processors 8
RAM Memory 16 GB
Operating System Windows 10

3.2 Information about CUDA
In contrast to the traditional type of programming where the code is executed in
a serial sequence in the CPU, the GPU uses many smaller processing units, called
cores, to divide the workload. This makes it possible for the GPU to reach much
higher calculation speeds than the CPU, but only under the right circumstances.
Since the GPU is built out of many small processing units it makes it quite inflexible
in what to calculate which creates a trade-off between the CPU which can perform
a much more complex flow of calculations but can lack in speed whilst the GPU
is faster as long as it gets a big set of data to perform more uniform calculations
on [12]. It is thereby of high importance which calculations to implement for the
parallel program. The GPU platform used in this project is CUDA created by

15

3. Compute Unified Device Architecture

nVIDIA, model Titan Xp [13]. The graphics card has the following specifications as
in table 3.2 [14].

Table 3.2: System Information about CUDA graphics card

System Information
nVIDIA Cores ncores 3840
Memory Speed vmem 11.4Gbps
Number of Multiprocessors nMP 30
Total Available Graphics Memory MGPU 20441MB
Memory Bandwidth BWmem 547.7GB/s
Maximum blocks per Multiprocessors (MP) Bmax,MP 32
Maximum threads per block Tmax,block 1024
Minimum threads per block Tmin,block 32
Number of threads per CUDA core Tcore 16
Warp size Twarp 32
Overload compatible - Yes

3.2.1 Blocks and Threads

When CUDA runs there is an option of how many threads to run at the same time
and how many times. An execution of the kernel code is called a thread [15]. In this
case the maximum number of threads that can run simultaneously on a so called
block is 1024 as mentioned in table 3.2. If more than 1024 threads need to be
executed, there is an option of running the threads in blocks, see figure 3.1. Blocks
are collections of threads that should be executed in parallel, putting a number of
threads in a block ensures that they run at the same time whilst putting threads
in different blocks does not [15]. Which block the threads are in also affects the
memory access. All threads can access the __global__ memory, which is also the
slowest memory to access. The __shared__ memory on the other hand can only
be accessed by the threads within the block, this memory access is faster than the
__global__ one. The fastest memory access is the local memory which can only be
accessed by the thread it is declared in.

16

3. Compute Unified Device Architecture

Figure 3.1: Visualization of blocks and threads

When designing the system in a time efficient way it is important to keep track
of how many blocks can be executed at the same time. This is possible using the
parameters as referenced in table 3.2. To find how many blocks are possible to run
at the same time first the maximum amount of threads per MP (Tmax,MP) has to be
calculated as follows

Tmax,MP = ncores

nMP
· Tcore = 3840

30 · 16 = 2048 threads (3.1)

and with the use of Tmax,MP the maximum amount of blocks that can run simulta-
neously with maximum thread count on the blocks (Bmax) is calculated by

Bmax = Tmax,MP · nMP

Tmax,block
= 2048 · 30

1024 = 60 blocks (3.2)

meaning that 60 blocks of size 1024 threads can be run at the same time. The
maximum amount of running blocks with the minimum thread count per block
(Bmin), note Twarp = minimum thread count / block, can be calculated as follows

Bmin = Bmax,MP · nMP = 32 · 30 = 960 blocks (3.3)

showing that it is possible for the GPU to run 960 blocks of size 32 threads at the
same time.

3.2.1.1 Warps

All threads are executed in groups called warps and an entire warp follows the same
instructions [16]. This means that when a thread encounters an if/else-statement
and only some of the threads within the warp go down the if, the threads within
that warp that did not fit the requirement will wait for the threads in the statement.
The fact that some threads have to wait for the other threads is time consuming and
has to be considered to the greatest extent possible when programming the kernel.

17

3. Compute Unified Device Architecture

The warp size, Twarp, for Titan Xp can be found in table 3.2 and is 32 threads per
warp. It is also important to have the correct amounts of threads per block, so that
all the threads in the warps are used, for the efficiency of the system. The number
of warps per block can be calculated by

warps/block =
⌈
threads/block

Twarp

⌉
(3.4)

and if the number of threads per block is not divisible with the warp size the GPU
will still activate some threads to fill out the warp [16]. Since this means that there
are threads activated that have no instructions this is less efficent than when all
threads in a warp have instructions.

3.2.2 cudaMemcpy and cudaMalloc

When executing CUDA code it is fundamental to first allocate memory using the
command cudaMalloc, after the memory allocation it is also necessary to copy over
all of the data using the command cudaMemcpy since the CPU and the GPU do not
share memory. First when both cudaMemcpy and cudaMalloc have been executed
can the kernel be successfully called on. When the kernel has run there is only the
cudaMemcpy back the data to the CPU memory. This process of allocating memory
and transferring data is time consuming and can take up to 50 times the kernel
timing making it an important aspect while optimizing CUDA code [15],[17].

3.2.3 CUDA streams
When using a GPU to accelerate an application or system there is often either a large
chunk of data to be processed or the CUDA cores are not used to its full potential.
One way to solve these problems is to use CUDA streams. By using streams one can
force the MP to always keep busy. To be able to use CUDA streams the graphics
card must be able to handle overload. As it can be seen in table 3.2 the GPU used
in this thesis is able to handle overload. The point of streams is to make the GPU
work with small parts of the data simultaneously instead of handle all of the data
in serial. If two streams are used, let them be called stream 0 and stream 1, when
stream 0 has used cudaMemcpy on a part of the data, that is supposed to be copied
onto the graphics card, and start to launch the kernel with that part of the data
stream 1 can start copying the next part of the data and when launching the kernel
for that part of the data stream 0 copies the next part and so forth. This way
the application, if streams are used correctly, can have a significant performance
enhancement [18].

3.2.4 cudaHostAlloc and cudaMemcpyAsync

To be able to run CUDA Streams a new set of allocation on the CPU and data
copying tools needs to be utilized. The cudaHostAlloc command is used instead
of the most commonly known malloc, the difference between these two allocation
commands is that the cudaHostAlloc allocates page-locked memory on the CPU.

18

3. Compute Unified Device Architecture

The reason this memory allocation method is used is both since it can perform
faster copies and that the cudaMemcpyAsync requires it. The difference between the
cudaMemcpy and the cudaMemcpyAsync is synchronous respectively asynchronous
meaning that the synchronous function cudaMemcpy will return only when all of the
data transfer is completed, whilst the asynchronous cudaMemcpyAsync will return
as soon as it has been called, with the guarantee that it will be finished at the start
of the next request within the same stream [18].

3.2.5 Reduce
A reduce function is a function where an operation of many elements can get better
efficiency by being computed in parallel using a GPU. To be able to perform this
algorithm the number of input values must be a power of two. After the threads are
initialized the GPU starts by comparing the first value of the first half of the vector
with the first value of the second half of the vector. There are different variations of
a reduce function, such as additions and finding the minimum value. In the reduce
function used in this thesis, the function takes the maximum value and stores the
result in index 1. All running threads performs one of these calculations each until
all values has been counted for once each. After this there are only half the number
of threads left and the procedure starts over again until there is only one value left,
which is the maximum of the entire counted for vector. This procedure is presented
in figure 3.2.

Figure 3.2: Visualization of max reduce function

3.3 Throughput and latency
The code can be optimized regarding to the two important criteria latency and
throughput. Latency, also known as the response time, is important since e.g., in
time-critical applications the UE needs to be connected as fast as possible. Low
latency can be achieved by analyzing smaller packages of data at a time making

19

3. Compute Unified Device Architecture

the data accumulation period as well as the service time shorter [19]. Throughput
differs from the latency in the sense of how many requests are met per time unit
and disregards how long or short the latency for each request is [19],[20].
When it comes to CUDA, when a stream of data is received, the average latency and
average throughput is determined by the length of the data vector that is analyzed
in each iteration. If the vector is short it would get the first data set through the
system very fast. However the issue here with CUDA is that there is both a start up
and a shut down time when transferring the data over from the CPU to the GPU.
This extra time accounts for a considerable percentage of the execution time. For
the long vector the situation would be opposite, the extra time spent by the data
transfer would be smaller in proportion to the amount of data processed but the
latency has to be larger since the system needs to accumulate the data for a longer
period of time.

20

4
Implementation

Since the main part of this thesis is practical, this chapter will explain and present
the implementation of the thesis project. The majority of this chapter will cover
how the system was programmed in C, both for serial decoding, using only a CPU
and for parallel decoding, using the GPU as well.

4.1 Reference Data

To analyze incoming data a set of reference data has to be created. This data is
created before any timing processes and then stored in the PC’s memory to save
time, no reference data should be created during the data receiving process. The
reference data for PSS is created using the equations in section 2.2.1.1 and is shown
in figure 4.1, where three different sequences are created with a data length of 62.
The reference data for SSS is created using the equations in section 2.2.1.2 and is
shown in figure 4.2, where 504 sequences, also at data length 62, are created and
sorted into which N (2)

ID it is based on so it is easy to match which 168 sequences to
perform the cross correlation based on what N (2)

ID is found in the PSS. The ESS is
created according to section 2.2.1.3, shown in figure 4.3, and has 504 · 14 sequences
with a data length of 63 symbols each. All of the symbols in the reference data lies
at a distance of 1√

2 from the origin.

Figure 4.1: The PSS reference data
in a constellation plot

Figure 4.2: The SSS reference data
in a constellation plot

21

4. Implementation

Figure 4.3: The ESS reference data in a constellation plot

When finding the correct sector ID the received synchronization signals are cross
correlated with the reference signals in correct order. In figure 4.4 the scenario of
finding the correct N (2)

ID is found and in figure 4.5 when a match is not found. The
distinct spike in figure 4.4 makes it simple to derive what N (2)

ID is correct.

Figure 4.4: Cross correlation be-
tween sector ID = 1 with itself

Figure 4.5: Cross correlation be-
tween sector ID = 1 and sector ID =
2

4.2 Graphics Processing Unit
In this section the implementations of the parallel decoder, for the three synchro-
nization signals, will be explained in detail. The parallel decoder will be adapted
for the GPU.

4.2.1 Memory Allocation and Data Transfer
As mentioned in section 3.2.2 before stepping into the kernel programs an important
aspect is the time efficiency of the two way data transferring between CPU and GPU.
This was done by allocating all of the memory on the GPU and transfer the reference

22

4. Implementation

data to the GPU before starting the program, letting it be statically saved on the
GPU.

4.2.2 Time to Frequency Domain (FFT)
The equations 2.47 and 2.48 can be implemented in a more efficient way than par-
allelizing the equations by a FFT as defined in section 2.1.2 using the following
equivalences

ak,l =
Ts(N−1)∑
t=0

s(t) · e−j2πk∆ft =
N−1∑
t=0

s(t) · e−j2πk∆fTst =

=
N−1∑
t=0

s(t) · e−j2πk∆f 1
∆fN t =

N−1∑
t=0

s(t) · e
−j2πkt
N = FFT

(
s(t)

)
.

(4.1)

These equivalencies shows how the degeneration of the baseband signal can be done
by using a FFT as defined in equation 2.3.
For doing FFTs on CUDA there is already a pre-installed toolkit to use which
performs FFTs in high speed. The values of k = 1, ..., 600 can be easily accessed in
indexes 1, ..., 600 in the FFT output whilst k = −600, ...,−1 can be retrieved from
indexes 1448, ..., 2047.

4.2.3 Cross correlation
As discussed in section 2.2.1 a cross correlation is performed in order to find what cell
ID the base station, that the UE is trying to connect to, has. The cross correlations
has been implemented separately for primary, secondary and extended signals for
efficiency reasons. When performing the cross correlation the received signal has
been padded with zeros on both sides. The number of zeros on one side is the size of
the signal minus one to fit the cross correlation and is alike for PSS, SSS and ESS.
The signal has length 123 after the padding. After the cross correlation for all three
synchronization signals the kernel is completed with the maximum reduce-algorithm,
see section 3.2.5, to find the NID in question.
The code snippet presented in listing 4.1 represents the cross correlation for the SSS
with only real values. Since the signal in general is complex, calculating the cross
correlation for the PSS and ESS is slightly more involved. All of these deviations
are accounted for in the complexity calculations for the cross correlations.
Since one signal is reached by the memory for each reference signal this makes
the memory access an significant part of the kernel timing. When the signal is
memcpy into the GPU it automatically ends up in the global memory. Here there
are two more considerable alternatives that could help optimize the system. The
first alternative is to transfer the memory to the shared memory in the GPU, the
other alternative is to at the start of the CPU program initialize the signal as the
type __constant__ and then copy the signal to the GPU.

23

4. Implementation

Listing 4.1: Cross correlation
1 __global__ void xCorrSecKernel (int *refSig , int *sig , int * xcorr) {

2 int i = threadIdx .x + blockDim .x * blockIdx .x; // 0 -> Cell identity group #

3 int j = threadIdx .y; // Signal offset

4 int signalSize ; // Size of original signal

5 int thread = j + threadIdx .x * blockDim .y; // Thread index in block

6
7 double corrValues = 0;

8
9 if (thread < 3 * signalSize - 2)

10 sigShared [thread] = sig[thread];

11 __syncthreads ();

12
13 // Cross correlation

14 for (int m = 0; m < signalSize ; m++) {

15 corrValues = corrValues + refSig [m + i * signalSize] * sigShared [m + j];

16 }

17 xcorrShared [thread] = sqrtf (corrValues * corrValues);

18 }

4.2.3.1 Reduce

The reduce part of the cross correlation was implemented as shown in listing 4.2.
The system performs add reduce in the same way as the max reduce is described
in figure 3.2 but when there are only 32 threads left (one warp) 32 threads will
perform 6 calculations each making the final value ending up in index 0. This final
step makes the code more time efficient since not all threads are running in the
final step [21]. To be able to perform the most efficient type of reduce function the
number of elements in the investigated vector needs to be a power of 2.

Listing 4.2: Max reduce function
1 for (unsigned int s = blockDim .x / 2; s > 32; s >>= 1) {

2 if (threadIdx .x < s) {

3 if (xCorr [threadIdx .x] < xCorr [threadIdx .x + s]) {

4 xCorr [threadIdx .x] = xCorr [threadIdx .x + s];

5 }

6 }

7 __syncthreads ();

8 }

9 if (threadIdx .x < 32) {

10 if (xCorr [threadIdx .x] < xCorr [threadIdx .x + 32]) {

11 xCorr [threadIdx .x] = xCorr [threadIdx .x + 32];

12 }

13 if (xCorr [threadIdx .x] < xCorr [threadIdx .x + 16]) {

14 xCorr [threadIdx .x] = xCorr [threadIdx .x + 16];

15 }

16 if (xCorr [threadIdx .x] < xCorr [threadIdx .x + 8]) {

17 xCorr [threadIdx .x] = xCorr [threadIdx .x + 8];

18 }

19 if (xCorr [threadIdx .x] < xCorr [threadIdx .x + 4]) {

24

4. Implementation

20 xCorr [threadIdx .x] = xCorr [threadIdx .x + 4];

21 }

22 if (xCorr [threadIdx .x] < xCorr [threadIdx .x + 2]) {

23 xCorr [threadIdx .x] = xCorr [threadIdx .x + 2];

24 }

25 if (xCorr [threadIdx .x] < xCorr [threadIdx .x + 1]) {

26 xCorr [threadIdx .x] = xCorr [threadIdx .x + 1];

27 }

28 }

29 if (threadIdx .x == 0) {

30 maxCrossCorrelation [blockIdx .x] = xCorr [0];

31 }

4.2.3.2 Cross correlation for the primary synchronization signal

When the kernel is started in one block where 3 · 123 = 369 active threads are
launched in two dimensions of threads. One dimension is three threads (0 to 2) which
are used as N (2)

ID = 0, N (2)
ID = 1 and N (2)

ID = 2. The second dimension represents 123
threads (different fittings of the reference signal over the recorded signal) in y-led
which is also the index for the padded signal. Since there are real and imaginary
parts of the signal the correlation is calculated using the rule of multiplication of
complex numbers.
The cross correlation takes up 369 threads but since the reduce is done in the same
kernel as the cross correlation the number of active threads in the block has to
be equal to any power of two less or equal to 1024. The closest higher number is
512. The cross correlations is thereby performed in one block of size 512 threads.
As calculated in section 3.2 the GPU can hold 60 blocks of the thread size 1024
simultaneously, meaning that one run of the PSS cross correlation takes up 0.83%
of the total available resources.

4.2.3.3 Cross correlation for the secondary synchronization signal

The cross correlation for the SSS does not differ much more from the PSS in more
ways than the dimensions, since in the SSS the system is trying to figure out which
one of 168 cell group identities the signal has as well as that the SSS only has real
values in the complex plane. To be able to perform the cross correlation 168 different
cell identity groups and 123 cases per cross correlation are examined in one block,
this makes for 20664 threads. The 123 cases has to be in the same block, but the
168 cell identity groups do not require this. The third requirement is that the block
size is exactly a power of two. This leads to the constraints

Block Size ≤ Tmax,block
Block Size ≥ 123 · i where i = Cell Identity Groups / Block
Block Size = 2j where j = 0,1,2,...

(4.2)

which has to be satisfied whilst one priority is to get as few blocks as possible to
minimize the reduce outside of the GPU. The amount of blocks for the maximum
amount of cell identity groups per block is

25

4. Implementation

imax,block =
⌈

threads
threads/block

⌉
=
⌈

20664
1024

⌉
= 21 blocks (4.3)

and the cross correlation thereby takes up 21 blocks of size 1024 threads. This makes
one run of the SSS take up 35% of the GPU’s capacity.
Since the block size is 21 and there is no synchronization function for the blocks
this means that to be able to properly compare the 21 values, as well as their
corresponding N (1)

ID , they have to be outputted from the GPU to the CPU and then
later be reduced.

4.2.3.4 Cross correlation for the extended synchronization signal

The code for the cross correlation of the ESS is very similar to the one of the PSS
except for the fact that the signal is longer for the ESS than both the PSS and SSS.
When it comes to the dimensioning of the blocks the cross correlation needs 14·125 =
1750 threads, which makes for

imax,block =
⌈

1750
1024

⌉
= 2 blocks (4.4)

causing the GPU to run 2 blocks of 1024 threads each. This procedure uses 3.33%
of the GPU’s total capacity.

4.2.4 CUDA streams
As mentioned in section 3.2.3 multiple kernels can be executed concurrent using
CUDA streams. To implement this, some consideration into the hardware and
software is made. There are three program kernels that needs to be launched subse-
quently, the cross correlations for PSS, SSS and ESS. Because of this CUDA streams
cannot be used to calculate all the identities simultaneously. However the 14 OFDM
symbols within the subframe can be executed concurrently since there is no restraint
with the OFDM symbols using parameters in order. The kernel executing the most
amounts of threads is the cross correlation for SSS and one execution of that kernel
uses 35% of the GPU’s total amount of available resources, see section 4.2.3.3. Hence
only two streams can run concurrently, since 3 · 35% > 100% and 2 · 35% < 100%.

4.2.5 Complexity
When dealing with the complexity of the system a number of rules to be able to
compare is set up. In a for-loop the number of actions taken are first setting
the initialized variable, then it will check if the variable has reached the maximum
once every iteration, making n + 1 iteration and finally it will have to increase
the variable once every iteration giving n action. So for one for-loop of length
n, it will require 1 + (n + 1) + n actions. All memory relocation and all additions,
subtractions, divisions and so on will also count as one action each. Thoroughly note
that this is only a rough approximation of the complexity made by the authors. The
complexity is estimated by making the size of the synchronization signals become

26

4. Implementation

Figure 4.6: Visualization of time consumption for the system with and without
CUDA streams

large and then calculate how many times each statement of the program is read
by the computer. This means that the complexity calculated in this section is an
estimation the amount of work the program or function carries out.
In table 4.1 the parameters a and b can be found. These parameters are used to
simplify the complexity expressions and are the values used in the cross correlation
that differ for PSS, SSS and ESS. The a for PSS represent the number of sector ID
reference signals to cross correlate the signal with. For SSS a is the number of cell
identity group reference signals the signal is cross correlated with and for ESS it is
the number of reference OFDM symbols to cross correlate the signal with. As for b,
it is set to 2 or 1, depending whether the signal is complex or real.

Table 4.1: Parameters a and b for PSS, SSS and ESS

PSS SSS ESS
a 3 168 14
b 2 1 2

4.2.5.1 Cross correlation

The complexity for the three synchronization signals on thread-level is presented
in table 4.2. The variables a and b can be found in table 4.1. Line 10 in table
4.2 restricts the complexity to the threads that the if-statement is true for. On
line 9 and 11 the complexity equation = 1 and in this case it basically means that
all threads execute this statement once and then moves on to next statement. 2b2

in line 15 originates from the fact that multiplying two real vectors requires less
calculation steps than multiplying two complex vectors. The complexity equations
for the parallel cross correlation functions can be simplified to

n · (4 + 2b2) + 3bn− 2b
a · (2n− 1) + 3b+ 2 (4.5)

and when

27

4. Implementation

lim
n→∞

(
n · (4 + 2b2) + 3bn− 2b

a · (2n− 1) + 3b+ 2
)

=

= (4 + 2b2) lim
n→∞

n+ 3b lim
n→∞

n

a(2n− 1) − 2b lim
n→∞

1
a(2n− 1) + 3b+ 2 =

= (4 + 2b2) lim
n→∞

n+ 3b · 1
2a − 0 + 3b+ 2 (4.6)

the order of complexity is O(n) for one thread. For all active threads the complexity
becomes

lim
n→∞

((
n · (4 + 2b2) + 3bn− 2b

a · (2n− 1) + 3b+ 2
)
· n
)

=

= (4 + 2b2) lim
n→∞

n2 + 3b lim
n→∞

n2

a(2n− 1) − 2b lim
n→∞

n

a(2n− 1) + (3b+ 2) lim
n→∞

n =

= (4 + 2b2) lim
n→∞

n2 + 3b · 1
2a lim

n→∞
n− 2b · 1

2a + (3b+ 2) lim
n→∞

n =

= (4 + 2b2) lim
n→∞

n2 + (3b
2a + 3b+ 2) lim

n→∞
n− b

a
(4.7)

which leads to an order of complexity of O(n2) for all threads joint.

Table 4.2: Line by line complexity for cross correlation for parallel implementation

Line
7 b

9 1
10 b · 3n−2

a·(2n−1)
11 1
14 1 + 2n+ (2n− 1)
15 2b2n

17 2b

4.2.5.2 Reduce

Presented in Table 4.3 is the line by line complexity of the max reduce in parallel
with the vector that the reduce function is performed on is of size n. Note that the
code presented in section 4.2.3.1 does not completely match the real code, but does
just represent the concept of a maximum reduce function. All diversities will be
stated or explained.
For line 4 there are two memory transfers, one to keep track of the cross correlation
value and one to keep track of the property corresponding to the correlation, meaning
the N (2)

ID , N (1)
ID or OFDM symbol. This means that the real code uses two actions.

This is also the case for line 10-27, but here an additional __syncthreads() is
added, making three actions in each one of the if-statement.

28

4. Implementation

Note that for the reduce function to work n has to be a power of two. The number
of threads reaching inside the if-statement on line 2 for all total loops equals

log2(n)−1∑
i=0

2i −
log2(32)∑
i=0

2i = n− 1− 63 = n− 64 (4.8)

representing a probability n−64
n

that the program will jump into to loop for each
iteration. The loop on line 4 is conditional to the value of the cross correlation, an
approximation that the system reaches inside the if-statement with a 0.5 probability
is thereby made. Presented in table 4.3 is the complexity of the max reduce function
row-by-row for one thread. Adding all lines together becomes the expression

4 · log2(n) + 2 · n− 64
n

+ 4 + 511
n

=

= 4 · log2(n) + 6 + 383
n
. (4.9)

As n goes to infinity

lim
n→∞

(
4 · log2(n) + 6 + 383

n

)
=

4 lim
n→∞

(log2(n)) + 6 + 0 (4.10)

the order of complexity is O(log2(n)) for one thread. The complexity for all threads
is on the other hand

lim
n→∞

((
4 · log2(n) + 6 + 383

n

)
· n
)

=

4 lim
n→∞

(n · log2(n)) + 6 lim
n→∞

n+ 383 (4.11)

giving the order of the total complexity O(n · log2(n)) for all joint threads.

Table 4.3: Line by line complexity equations for reduce algorithm

Line
1 1 + (log2(n) + 1) + log2(n) = 2 + 2 · log2(n)
2 log2(n) · 1
3 n−64

n

4 n−64
n
· 0.5 · 2 = n−64

n

7 log2(n) · 1
9 1
10 32

n
· 1

11 32
n
· 0.5 · 3 = 48

n

13-27 5 · (32
n

+ 48
n

) = 430
n

29 1
30 1

n

29

4. Implementation

4.3 Central Processing Unit
In this section the implementation for the serial decoding, for PSS, SSS and ESS is
thoroughly explained. The code for the serial decoder is adapted to the CPU.

4.3.1 Time to Frequency Domain (FFT)
The FFT of the serial code was implemented using programs from FFTW which is
a free library software which can be found online [22]. The programs of this library
are much faster than any code that could have been implemented by the authors of
this report during the time frame of this project.

4.3.2 Cross correlation
The cross correlation functions for the serial decoding are built very similarly to
the kernels in the parallel decoding. There are two separate functions for the cross
correlation of PSS and SSS here as well. The difference between the serial decoding
program and parallel decoding program is that, since nothing is implemented on the
GPU, there is no need to take consideration for threads and blocks and therefore is
simpler to implement. In section 4.2.3 the padding for the signal was explained and
the same method is used for the signal in serial decoding.
The implementations of the cross correlation for PSS, SSS and ESS can be seen in
listing 4.3. The implementation difference in the correlations is that the function for
the SSS does not handle imaginary parts and for the ESS correlation the sizes of the
loops is longer due that ESS is 63 symbols long and the two other are 62 symbols
long.

Listing 4.3: Cross correlation
1 int signalSize ; // Size of original signal

2 int X; // # of reference signals

3
4 for (int nid = 0; nid < X; nid ++){

5 for(int n = 0; n < 2 * signalSize - 1; n++){

6 corrValues = 0;

7 for (int m = 0; m < signalSize ; m++){

8 corrValues = corrValues + refSig [nid * signalSize + m] * sigPad [m + n];

9 }

10 xCorr [nid * (2 * n - 1) + n] = sqrt(corrValues * corrValues);

11 }

12 }

4.3.2.1 Finding the maximum cross correlation

To find the maximum cross correlation there is a value by value search that is the
standard way of finding the maximum in an array which was implemented. There
are other algorithms that can optimize time but none that can give the absolute
max, making them unsuitable for this purpose [23].

30

4. Implementation

Listing 4.4: Find maximum cross correlation value for serial decoder
1 max = xCorr [0][0];

2 for (int i = 0; i < NID2Size ; i++) {

3 for (int j = 0; j < xCorrSize ; j++) {

4 if (max < xCorr [i][j]) {

5 max = xCorr [i][j];

6 NID2 = i;

7 }

8 }

9 }

4.3.2.2 Alternative implementation possibilities

Except for the serial implementations presented in section 4.3 there are other im-
plementation possibilities that might make the system more time efficient which are
presented in this section.

4.3.2.2.1 Alternative 1 One alternative way of implementing the cross corre-
lation is by the calculation technique presented in section 2.1.3 equation 2.7. This
was implemented as a test using the FFTW tool, several for-loops was needed to
do this since FFTW is not able to perform FFT calculations in batches. In each
for-loop a new plan had to be created and later with a simple command the FFT
plan is executed.

4.3.2.2.2 Alternative 2 Another alternative is to implement an time to fre-
quency converter from the definition in section 2.1.2. This alludes to implementing
and coding a 2048 FFT that is especially built for a system with 1200 subcarriers.

4.3.3 Complexity

For the serial implementations of the cross correlation the complexity is determined
in the same way as for the parallel only difference being that there is only one
calculated complexity due to the serial part.

4.3.3.1 Cross correlation

The complexity for the serial cross correlations is mostly dominated by the three for-
loops since there are many tasks to be performed when looping through the signal
but also checking the less than - statement and incrementing the looping variables.
The complexity, for the three synchronization signals, is very similar and only differs
on whether the first loop is corresponding to N (2)

ID , N (1)
ID or OFDM-symbols, seen as

the variable a. The complexity equations for each line can be found in 4.4.

31

4. Implementation

Table 4.4: Line by line complexity for cross correlation in serial

Line
4 1 + (a+ 1) + a = 2a+ 2
5 a ·

(
1 + 2n+ (2n− 1)

)
= 4an

6 a · (2n− 1) · b = 2abn− ab
7 a · (2n− 1) · (1 + (n+ 1) + n) = 4an2 + 2an− 2a
8 a · (2n− 1) · n · 4b = 8abn2 − 4abn
10 a · (2n− 1) · 2b = 4abn− 2ab

where a and b can be found in table 4.1. The variable b is equal to 2 if the signal is
complex and 1 if the signal is real.
All of the complexity equations, in table 4.4, can be simplified to the expression

4an2 + 8abn2 + 6an+ 2abn− 3ab+ 2 (4.12)

and when

lim
n→∞

(
4an2 + 8abn2 + 6an+ 2abn− 3ab+ 2

)
=

(4a+ 8ab) lim
n→∞

n2 + (6a+ 2ab) lim
n→∞

n− 3ab+ 2 (4.13)

the order of complexity is O(n2) for all three synchronization signals.

4.3.3.2 Find maximum value

Complexity equations for the find maximum value function of the serial code is
simple since the code checks all values one time in a linear search where n is the size of
the vector searched through and a is a variable dependent on which synchronization
signal is used, see table 4.1. In table 4.5 the complexity row wise for the find
maximum value function can be found.

Table 4.5: Line by line complexity for maximum value search in serial

Line
1 1
2 1 + (a+ 1) + a = 2a+ 2
3 a · (1 + 2n+ (2n− 1)) = 4an
4 a · (2n− 1) · 1 = 2an− a
5 a · (2n− 1) · 0.5 = an− 0.5a
6 a · (2n− 1) · 0.5 = an− 0.5a

Adding all lines together becomes the expression 3 + 8an. Hence, the order of
complexity is O(n) for the find max function.

32

4. Implementation

4.4 Timekeeping
In order to time the program correctly when computing with a GPU it is necessary to
time CPU and GPU separately. This means that when the kernel for some function
is launched a GPU timer should be set. For the rest of the program that is not
executed on the GPU a regular CPU timer is valid. In order to make an as accurate
reading as possible the functions is located in while-loops that loops 1000 times and
the average is saved as the time is takes to execute some function. In the case of
the serial program since there is no kernels the functions is only timed with a CPU
timer. This while loop is on its hands run several time to get a wider spectra of
what the timing of the system runs may look like.

33

4. Implementation

34

5
Results

The resulting run time for the full system for both the parallel and the serial decoders
and also the separate time for each cross correlation function for both decoders will
be presented in this chapter.

5.1 Time measurements of the full system for both
decoders

The system time measurement is the time it takes for the system to analyze 14
OFDM symbols finding N

(2)
ID , N (1)

ID , N cell
ID , the subframe and the OFDM symbol

number for each OFDM symbol. In figures 5.1 - 5.3 three histograms are presented
showing the distribution of timings of the average time over 1000 runs. Two his-
togram for the parallel case, one including CUDA streams and one without, and
one histogram for the serial case. The results shows that the parallel program is
significantly faster than the serial program.

Figure 5.1: Measured time for one
subframe running the whole parallel
program with CUDA Streams

Figure 5.2: Measured time for one
subframe running the whole parallel
program without CUDA Streams

35

5. Results

Figure 5.3: Measured time for one subframe running the whole serial program

In table 5.1, the statistics for the results when measuring the time for the full parallel
decoder with and without CUDA streams as well as for the full serial decoder is
shown. When using CUDA streams the system’s average time becomes 42.6% faster
then when not utilizing CUDA streams. The serial system is more then 10 times
slower than the system when utilizing CUDA streams but has both lower standard
deviation and lower coefficient of variance.

Table 5.1: Statistics for the measured run time of the full program for the parallel
decoder with and without CUDA streams as well as the serial decoder

Mean Median Standard
deviation

Coefficient
of variance

Parallel with
CUDA streams

7.4668 ms 7.4150 ms 0.1177 ms 0.0158

Parallel without
CUDA streams

13.0213 ms 13.0120 ms 0.1473 ms 0.0113

Serial 105.97 ms 105.97 ms 0.0597 ms 5.6382 ·10−4

5.1.1 Measured time for the FFTs of both decoders

The FFT in the parallel decoder is executed in batches and the FFT in serial
(FFTW) cannot perform batches. Therefor the time is measured for two iterations
of the FFTW and two batches for the FFT in the parallel decoder. The FFTW
times are represented in figure 5.6 and its histogram in figure 5.8.
The parallel FFT, as can be seen in figure 5.4, has a transient time which means
the first 500 values will not be considered, the remaining values are represented in
figure 5.5 and the histogram in figure 5.7.

36

5. Results

Figure 5.4: Measured time for each
run in execution order for the
parallel FFT

Figure 5.5: Measured time for each
run in execution order for the
parallel FFT without transient time

Figure 5.6: Measured time for each run in execution order for the serial FFTW

Figure 5.7: Histogram of the
parallel FFT

Figure 5.8: Histogram of the serial
FFTW

37

5. Results

Table 5.2: Statistics for the measured run time of the FFTs in both parallel and
serial decoder

Mean Median Standard
deviation

Coefficient
of variance

Parallel FFT 0.007 ms 0.007 ms 0.0012 ms 0.1718
Serial FFT 0.007 ms 0.007 ms 0.0518 µs 0.0074

5.2 Parallel decoder

In this section the time measurement are strictly over the kernels, including both
the cross correlation and the max reduce function as mentioned in section 4.2.3, and
does not include any data transfer or any other preparatory tasks.

5.2.1 Measured time for cross correlation in parallel de-
coder

The time measurement of the kernels are run 7000 times for each synchronization
signal. As can be seen in figures 5.9, 5.10 and 5.11 the times are not fully random
in their variation. There is a transient time before the time measurements becomes
somewhat stable. Because of the behaviour on all three of the synchronization
signals the first 500 runs will not be included in any of the remaining results for the
parallel decoder.

Figure 5.9: Measured time for each
run in execution order for the PSS

Figure 5.10: Measured time for
each run in execution order for the
SSS

38

5. Results

Figure 5.11: Measured time for each run in execution order for the ESS

The histograms and the time plots in figures 5.12 - 5.17 display when enough time
has passed for the system to stabilize. There are a few outliers but the majority of
the values stabilizes with a few microseconds in deviation. The averages, medians
and variances are presented in table 5.3.

Table 5.3: Statistics for the measured run time of the cross correlations for the
parallel decoder

Mean Median Standard
deviation

Coefficient
of variation

Cross correlation and
max reduce PSS

0.1891 ms 0.1894 ms 0.8618 µs 0.0046

Cross correlation and
max reduce SSS

0.1005 ms 0.1004 ms 0.8299 µs 0.0083

Cross correlation and
max reduce ESS

0.1827 ms 0.1894 ms 0.6886 µs 0.0038

Figure 5.12: Histogram showing
time measurements of the PSS cross
correlation kernel

Figure 5.13: Histogram showing
time measurements of the SSS cross
correlation kernel

39

5. Results

Figure 5.14: Histogram showing time measurements of the ESS cross correlation
kernel

Figure 5.15: Measured time for
each run in execution order for the
PSS disregarding the first 500 runs

Figure 5.16: Measured time for
each run in execution order for the
SSS disregarding the first 500 runs

Figure 5.17: Measured time for each run in execution order for the ESS disregard-
ing the first 500 runs

40

5. Results

5.3 Serial decoder

In this section the time measurements for the functions calculating the different
NIDs and the OFDM symbol is shown. This includes cross correlation and finding
a maximum function, see section 4.3.2.1, corresponding to the same calculations as
in the parallel section.

5.3.1 Measured time for cross correlation in serial decoder

The normalized histograms for the cross correlations in the serial decoder is pre-
sented in figures 5.18 - 5.20 and as can be seen in figures 5.21 - 5.23, the serial code
does not have a transient time and all of the collected data is thereby presented in
the results in this section. The mean, median, standard deviation and the coefficient
of variance for the time measurements are presented in table 5.4.

Figure 5.18: Histogram showing
time measurements of the PSS cross
correlation for the serial decoder

Figure 5.19: Histogram showing
time measurements of the SSS cross
correlation for the serial decoder

Figure 5.20: Histogram showing time measurements of the ESS cross correlation
for the serial decoder

41

5. Results

Table 5.4: Statistics for the measured run time of the cross correlations for the
serial decoder

Mean Median Standard
deviation

Coefficient
of variance

Cross correlation and
find max PSS

0.108 ms 0.108 ms 0.5847 µs 0.0054

Cross correlation and
find max SSS

3.456 ms 3.456 ms 1.9242 µs 0.0006

Cross correlation and
max reduce ESS

0.567 ms 0.566 ms 2.1307 µs 0.0038

Figure 5.21: Measured run time for
PSS cross correlation in the serial
decoder in execution order

Figure 5.22: Measured run time for
SSS cross correlation in the serial
decoder in execution order

Figure 5.23: Measured run time for ESS cross correlation in the serial decoder in
execution order

5.3.2 Alternative implementations
The alternative implementation of section 4.3.2.2.1, where the FFTW tool was used
to do the cross correlation, slowed down the cross correlation significantly, more

42

5. Results

than double, and is thereby not a preferred solution time performance wise than
the originally implemented cross correlation. The alternative implementation men-
tioned in 4.3.2.2.2, where the FFT was implemented by the authors, is as expected
considerably slower implementation than the FFTW tool.

43

5. Results

44

6
Discussion

In this chapter discussion about the project code implemented in chapter 4 and re-
sults from chapter 5 are presented together with potential improvements and changes
that is relevant to the project.

6.1 Code
In this section the most important and critical parts of the decoders as well as some
properties of the code is discussed. The code implemented in this project is as
efficient as the authors could perform during the time period for this thesis with
their knowledge of C programming.

6.1.1 Complexity
The complexity of the code is a way of determining how many times a function is
executed. This means that a function with higher complexity would take longer time
executing. As figure 6.1 shows, the complexity of O(n) is less complex than O(n2)
which implies that a function with complexity O(n) executes faster than O(n2). For
our system this is correct since one thread in the parallel cross correlation has the
complexity ofO(n) and the serial cross correlation has a complexity ofO(n2) and the
latter is therefor not as fast. The figure derives that the maximum reduce function
for one thread, O(log2(n)), is less complex than the find maximum function, O(n).

Figure 6.1: Comparison between the different orders of complexity over signal
length n

45

6. Discussion

One exception is that the complexity for the whole parallel cross correlator (all
threads combined) has the same complexity as the serial cross correlator but is still
much faster. This stems from the fact that the threads are executed in parallel
leading to the run time for the parallel cross correlator to be faster even though it
has the same complexity as the serial cross correlator. Another exception is that
the whole maximum reduce function (all threads combined) has a higher complexity
than the find maximum function, but the previous argument still holds in this case.
Even though the maximum reduce function has a higher complexity the thread
complexity is still lower and when executing the functions the maximum reduce
function will perform faster.

6.1.2 Cross correlation
The major function in this project is the cross correlation. It is used to detect
N

(2)
ID , N (1)

ID and OFDM symbol. For both the parallel and serial decoder three cross
correlators are implemented, one for each synchronization signal. This could of
course have been created as one cross correlation function being able to handle
all three synchronization signals, but the synchronization signals are so different
that the time to measure length of signal, whether or not the signal is complex
and so forth would take a significant amount of time in our case and since the one
of most important properties of the system is speed the three cross correlations
was especially adapted after which synchronization signal it was correlating. As
mentioned in section 6.1.1 there is a relation between complexity and time and if
one cross correlation were to be implemented instead of three this cross correlator
would have higher complexity which leads to time performance loss.

6.2 Measured time results
In this section the measured times will be compared against each other, serial to
parallel, for all three synchronization signals in the decoders as well as the FFT and
the whole program.
Since it is hard to measure such small time intervals as required for our system all
time measurements are averages of 1000 values for the serial program as well as the
full parallel program. This makes for some difference when comparing serial and
parallel functions that are important to keep in mind. The serial functions will have
a smoothing effect on all its results making outliers and smaller changes over time
less prominent. This might make us miss patterned outliers. During the course of
the project no better way of estimating the time for the CPU has been found. The
GPU timing on the other hand is more precise and one run is enough to get a correct
enough estimate of the kernel timings and outliers can thereby be spotted.

6.2.1 Code excluded from timekeeping
When stating that we are taking time measurements from the full program, the
entire program is actually not timed. This is because we want to draw conclusions
to what we believe would be the real implementation of this system. In a real system

46

6. Discussion

the GPU would not re-allocate memory for each time it receives a signal, and the
system would also not transfer all of the reference data to the GPU every time a
synchronization signal is received. This is why all of the allocations and the majority
of the data transfer happens before the start of the time measurement.
The only data transfer, cudaMemcpy, between CPU and GPU that occurs in the
program is the received signal. This happens before every kernel is launched i.e.,
before the FFT and the three cross correlations. Only the relevant data for the
specific kernel is transferred. When measuring the execution time for the kernels
this transfer is excluded due to the fact that it is possible to transfer data directly
into the GPU in real time, which would most likely be done if such a system was
deployed. These data transfers are however not excluded when measuring the time
for the whole system because there is no straight-forward way of of excluding them..

6.2.2 Performance of the FFT
Regarding the timing of the FFT, one important aspect to keep in mind is that
the parallel program is done in two batches whilst the serial FFTW is done in two
iterations. When looking at the time results, as can be seen in table 5.2, the mean
as well as the median are very close to each other. The accuracy of the parallel FFT
is higher and thereby there are some small, not in the table visible, differences in the
results. Figure 5.6 implies that there is an accuracy issue for the serial whilst the
parallel, presented in figure 5.5, gives no such indications. The standard deviation
and the coefficient of variance on the other hand show some larger differences, where
the serial program shows a more stable result. This stability difference can also be
seen in the histograms for the two FFT’s, see figures 5.7 and 5.8. This result might
be due to the accuracy of the serial program or due to time variations of the GPU, or
a combination of the two. A more in-depth analysis would be required to determine
the exact reason. This, however, is out of the scope of this thesis.

6.2.3 Performance of the detection functions
The time measurements statistics of the decoding of the PSS, SSS and ESS are
presented in tables 5.3 and 5.4 for the serial decoder.
For the decoding of the PSS the mean and the median are larger for the parallel than
the serial decoder, meaning there is no real benefit from parallelizing the decoding
of the PSS. An important aspect here is the fact that the system only uses 0.83%
of the GPU’s available resources, 1.66% when running two streams. Since a GPU is
built on the technique of using many smaller processors instead one, or a few, larger
ones the result might be due to three factors. The first being that the code could
benefit from further optimization. The second factor is that the GPU performs
worse than the CPU for the scope of this project, and the third is that the GPU
is not utilized enough, meaning that the GPU would perform more efficiently for
a more substantial set of data, using a larger share of the threads. The standard
deviation is larger for the parallel but the coefficient of variance is greater for the
CPU. The difference in standard deviations are not surprising since the mean and
median are larger for the parallel functions which often entails a larger standard

47

6. Discussion

deviation, but the fact that the coefficient of variance is greater for the serial than
the parallel speaks against the earlier idea of the GPU having a naturally higher
variance than the CPU. When studying the histograms 5.12 and 5.18 of the PSS,
leaps in the time axis are visible. This is with high probability due to the accuracy
of the timers. Disregarding this deformation of the histograms the two histograms
do not have any extreme outliers and the standard deviation is also visible. The
coefficient of variance on the other hand is harder to detect with the bare eye.
Concerning the SSS the mean and the median are smaller for the parallel than the
serial decoder. This means that it is beneficial to use the GPU i.e., the data is large
enough for the GPU to accomplish faster results than the CPU. The decoding of
the SSS now occupy 35%, 70% with two streams, of the GPU’s available resources.
This strengthens the idea of the GPU not being utilized enough when decoding PSS.
The GPU performs more calculations simultaneously and the CPU has a longer job
queue, improving the time performance of the GPU compared to the CPU. The
standard deviation and the mean derived from the parallel detection of the SSS are
smaller than the corresponding part of the serial decoder, whilst the coefficient of
variance shows larger time deviations for the GPU. When comparing the normalized
histograms, see figures 5.13 and 5.19, one can see that the parallel decoding of SSS
has a slightly less stable system in accordance to the coefficient of variance. This is
contradicting the relationship between the standard deviation and the coefficient of
variation for the PSS. The only factors that have changed code-wise from the kernel
decoding PSS to the kernel decoding SSS is that the program runs in blocks, where
each block outputs a suggested maximum, as well as the amount of threads occupied.
Since the kernel outputs 21 values instead of the N (1)

ID this leads to an offset of the
timing for the SSS kernel since the search for the N (1)

ID is not fully finished when the
kernel is. One reason that makes the SSS faster than the PSS is the fact that the
SSS only handles real values, in contrast to the PSS which has to handle complex
values, adding complexity to the calculations.
The decoding of ESS has a lower parallel mean and median than the serial, making
it beneficial to use a GPU for the detecting the ESS as well. The decoding of
the ESS is the second largest calculation of the three, well noticeable in the time
measurements for the serial decoder where it has the second longest measured time.
In the parallel decoder it takes less time to decode the SSS than the ESS, due to
the difference in complexity, and about the same as the PSS. The ESS uses 3.33%,
6.66% for two streams, of the GPU’s available resources, which is more than for the
PSS kernel but it is still not especially efficient. The standard deviation and the
mean is smaller for the parallel decoding of ESS, while the coefficients of variance
are equal. The equal coefficients of variance are hard to notice when comparing
figures 5.14 and 5.20.

The means and the medians are similar to each other for all three synchronization
signals both in the parallel and serial decoder. This implies that there are no uneven
distributions in the run times.

48

6. Discussion

6.2.4 Performance of the full program
For the time measurements of the full programs i.e., from time domain signal to
N

(1)
ID , N (2)

ID , subframe and OFDM symbol, the parallel decoder with CUDA streams
are by far the fastest one. The parallel decoder without CUDA streams comes in
second in performance, just below double the time. This since with CUDA streams,
the vast majority of the time, the two streams are able to run consecutively, except
for when two data transfers occur at the same time. The third and slowest is the
CPU program. While we note that the CPU program is not yet optimized for speed,
we believe that it overall order would remain the same, especially since there are
some possibilities for optimizing the GPU program further.
The standard deviations of the three cases are almost proportional to the mean for
the two parallel programs, but much smaller for the serial program. The coefficient
of variance is thereby the absolute smallest for the serial code, second is the parallel
program without streams and the parallel with streams is the one with most variance.
Even though the mean of the two parallel programs are almost equal by a factor of
two, the coefficient of variance is not. The three programs all show some variance
but, as seen in histograms 5.1 - 5.2, do not indicate of any extreme outliers. This
might be due to the averaging at the time measurement with the CPU clock.

6.2.4.1 CUDA streams

The use of CUDA streams has proven very efficient as can be seen in table 5.1.
The whole system becomes 42.6% faster without loosing a significant amount of
stability, expressed here as coefficient of variance. The system would have benefited
from using more CUDA streams which was not possible due to the SSS using more
than a third of the threads on the GPU. The SSS resource allocation would have
to be less than a third to allow for one more CUDA stream. The number of CUDA
streams could also have been increased if it was possible to perform the decoding of
the PSS, SSS and ESS simultaneously. This is a constraint one can not get around
since N (1)

ID can not be found before or at the same time as N (2)
ID due to N (1)

ID being
dependent on N (2)

ID . This holds for the OFDM-symbol as well. To find the correct
OFDM symbol using ESS one needs to know what cell ID is used.

6.2.5 Difference in variation between CPU and GPU
The FFT, the decoding of SSS and the full program shows a larger variance in the
GPU than in the CPU. The PSS on the other hand shows a larger variance in the
CPU. However, the variance for decoding ESS is the same in the CPU and the GPU.
The fact that an average is used for all CPU measurements could lead to a smaller
variation for all CPU results, except for the measurements where the precision is
low i.e, when the CPU timer can not measure with enough accuracy. However, we
did not observe any influence of this on the results. The only program that uses the
CPU timer for both parallel and serial is the full program time measurements. In
these the results points towards the parallel program having larger variations. It is
also important to remember that in the full parallel program the data transfers are
included as well and could by themselves include variations.

49

6. Discussion

When gathering the results of the thesis, it was discovered that the system would
become significantly slower at what seemed to be random times. One apparent
example is figure 5.16. These outliers could not be connected to anything that was
implemented during the project and occurred for both tests related to CPU and
GPU. Because of this the outliers are believed to be caused by the host computer
performing background tasks that were not possible to switch off. This has to kept
in mind when interpreting the results. However, the vast majority of the results
was not affected by the background tasks. There are no clear directions on which of
the CPU and the GPU makes for the most variations, a lot of the obtained results
points in both directions.

6.3 Throughput and latency
Disregarding all of the steps reformatting the data and only considering the kernels
cross correlation together with the maximum reduce functions the mean time it
takes for the detection of one OFDM symbol for the parallel system is

0.007 ms
2 + 0.1891 ms + 0.1005 ms + 0.1827 ms = 0.4758 ms

which is longer than the time of a subframe. This system would thereby not work
without accumulating an infinite queue of jobs. The throughput and the latency of
the system are 0.4793 ms whilst the throughput is

1
0.4758 ms/job · 0.2 ms/subframe = 0.4203 jobs/subframe

also displaying its insufficiency. There is a way of making the system closer to
functional though. Considering the kernels separate timings it shows how none of
the four steps exceeds 0.2 ms by themselves. That means that by using more than
one GPU it would be possible to line the four steps in different systems, making the
bottleneck kernel the throughput. The bottleneck in this case is the PSS kernel and
gives the throughput

1
0.1891 ms/job · 0.2 ms/subframe = 1.0576 jobs/subframe

which is sufficient enough for the system to run without queue accumulation. The
latency on the other hand still has the same value. This entails that the system
would only detect one OFDM symbol per subframe. The system is far from being
able to detect all 14 OFDM symbols. However, building such a system usually takes
months and teams of experts. Still the parallel decoder performs substantially better
than the serial decoder whose latency is

0.0035 ms + 0.108 ms + 3.456 ms + 0.567 ms = 4.1345 ms

and the throughput

1
4.1345 ms/job · 0.2 ms/subframe = 0.0484 jobs/subframe

50

6. Discussion

is much lower than for the parallel decoder. The bottleneck, of 3.456 ms, in the
serial program is also much larger than for the parallel program.
For the parallel code the results also shows how much of the time that is spent in
the CPU, the full timing is 7.4668 ms

14 = 0.5333 ms/OFDM symbol, giving the fraction
spent in the GPU

0.4758
0.5333 = 0.8922

which is 89.22% and this shows that the system spends 10.78% of its time in the
CPU. It might be possible to do more calculations in the GPU and thereby further
speed up the system.

6.4 Parallelizing the CPU
One possible method to speed up the serial decoder could have been to use parallel
programming and creating multiple threads for the CPU. The optimization would
have been limited to the number of available cores, in our case 4. This is still by far
lower than the number of available cores in the GPU. Hence, we conclude that we
could close the gap to the GPU, but still not outperform it. Furthermore, the aim of
the thesis was to see how the GPU performed parallel decoding compared to serial
decoding and parallelizing the CPU would not lead us any closer to the answer.

6.5 Improvements and future work
The built programs only cover the synchronization of the 5G system. Future work
would continue with the succeeding steps in the communication between the UE
and the base station, both in uplink and downlink. Regarding the synchronization
part of the project some constraints were set, stated in the limitations section of
this report. One limitation being that the system does not include beamforming.
This could be an extension of this project. Another improvement to this project is
to include synchronization, the objective of this report was to investigate the use of
CUDA could improve performance time-wise and the scope was thereby somewhat
restricted. The natural next step would therefor be to implement so that the system
could receive any part of a signal, using this data to synchronizes itself.

51

6. Discussion

52

7
Conclusion

In this thesis parallelism of decoding the three 5G fiber synchronization signals was
evaluated in comparison to decoding in serial. The hardware of the project limited
the results and the measured times were much higher than expected in a real system
but showed promising results. Under the right hardware conditions as well as more
optimized software this could be a part of future 5G solutions.
The parallel system performed better for both latency and throughput for all syn-
chronization signals except for the decoding of PSS, which used a too small fraction
of the GPU resources to be able to reach the desired advantages of a GPU.
The use of CUDA streams for the GPU showed promising results, accelerating the
system up to 42.6%. In this thesis only two streams were utilized due to hardware
restraints. However, the results could possibly reach an even higher percentage if
improved hardware, more processors, and additional streams were used.

53

7. Conclusion

54

Bibliography

[1] (2018). 5g open for business, Ericsson, [Online]. Available: https://www.
ericsson.com/en/5g?_t_id=1B2M2Y8AsgTpgAmY7PhCfg%3d%3d&_t_q=
5G&_t_tags=language%3aen%2csiteid%3a621ab6dc- 927f- 42e5- 92e7-
e47cbe5f58f3&_t_ip=81.236.111.59&_t_hit.id=Corporate_Web_Cms_
ContentTypes_Pages_SectionStartPage/_3f093b9a- c3e5- 4e9c- b682-
eed0d972654f_en&_t_hit.pos=1 (visited on 02/27/2018) (cit. on p. 1).

[2] High band spectrum - the key to unlocking the next generation of wireless,
ctia. [Online]. Available: https://api.ctia.org/docs/default-source/
default-document-library/5g-high-band-white-paper.pdf (visited on
05/18/2018) (cit. on p. 1).

[3] S. Buzzi, C. L. I, T. E. Klein, H. V. Poor, C. Yang, and A. Zappone, “A
survey of energy-efficient techniques for 5g networks and challenges ahead”,
IEEE Journal on Selected Areas in Communications, vol. 34, no. 4, pp. 697–
709, 2016, issn: 0733-8716. doi: 10.1109/JSAC.2016.2550338 (cit. on p. 1).

[4] (2018). Verizon 5g technical forum, Verizon, [Online]. Available: http://www.
5gtf.net/ (visited on 02/27/2018) (cit. on p. 1).

[5] Hur ser det ut i sverige? - fakta och statistik, ssnf. [Online]. Available: https:
//www.ssnf.org/globalassets/sveriges-stadsnat/fakta-och-statistik/
informationsblad/ssnf_fakta_statistik_hres_ot.pdf (visited on 05/18/2018)
(cit. on p. 1).

[6] Låt oss leka med siffror för fiber, Byafiber. [Online]. Available: http : / /
www.byafiber.se/lat-oss-leka-med-siffror-for-fiber/ (visited on
05/18/2018) (cit. on p. 1).

[7] Priser & villkor, Telia. [Online]. Available: https://www.oppenfiber.se/
anslut/villa/priser-och-villkor (visited on 05/18/2018) (cit. on p. 1).

[8] E. Dahlman, S. Parkvall, and J. Sköld, 4G LTE-Advanced Pro and The Road
to 5G, Third Edition. Oxford: Academic Press, 2016, pp. 1–4, 31–33, 285–288,
527–530, isbn: 978-0-12-804575-6 (cit. on pp. 3, 5, 6, 8).

[9] About international telecommunication union (itu), ITU. [Online]. Available:
https : / / www . itu . int / en / about / Pages / default . aspx (visited on
05/23/2018) (cit. on p. 5).

[10] H. Rohling, OFDM: Concepts for Future Communication Systems, First Edi-
tion. Springer, Berlin, Heidelberg, 2011, pp. 5–9, isbn: 978-3-642-17495-7. doi:
https://doi-org.proxy.lib.chalmers.se/10.1007/978-3-642-17496-4
(cit. on p. 6).

[11] (2018). Verizon 5g tf; air interface working group; verizon 5th generation radio
access; physical channels and modulation (release 1), Verizon, [Online]. Avail-

55

https://www.ericsson.com/en/5g?_t_id=1B2M2Y8AsgTpgAmY7PhCfg%3d%3d&_t_q=5G&_t_tags=language%3aen%2csiteid%3a621ab6dc-927f-42e5-92e7-e47cbe5f58f3&_t_ip=81.236.111.59&_t_hit.id=Corporate_Web_Cms_ContentTypes_Pages_SectionStartPage/_3f093b9a-c3e5-4e9c-b682-eed0d972654f_en&_t_hit.pos=1
https://www.ericsson.com/en/5g?_t_id=1B2M2Y8AsgTpgAmY7PhCfg%3d%3d&_t_q=5G&_t_tags=language%3aen%2csiteid%3a621ab6dc-927f-42e5-92e7-e47cbe5f58f3&_t_ip=81.236.111.59&_t_hit.id=Corporate_Web_Cms_ContentTypes_Pages_SectionStartPage/_3f093b9a-c3e5-4e9c-b682-eed0d972654f_en&_t_hit.pos=1
https://www.ericsson.com/en/5g?_t_id=1B2M2Y8AsgTpgAmY7PhCfg%3d%3d&_t_q=5G&_t_tags=language%3aen%2csiteid%3a621ab6dc-927f-42e5-92e7-e47cbe5f58f3&_t_ip=81.236.111.59&_t_hit.id=Corporate_Web_Cms_ContentTypes_Pages_SectionStartPage/_3f093b9a-c3e5-4e9c-b682-eed0d972654f_en&_t_hit.pos=1
https://www.ericsson.com/en/5g?_t_id=1B2M2Y8AsgTpgAmY7PhCfg%3d%3d&_t_q=5G&_t_tags=language%3aen%2csiteid%3a621ab6dc-927f-42e5-92e7-e47cbe5f58f3&_t_ip=81.236.111.59&_t_hit.id=Corporate_Web_Cms_ContentTypes_Pages_SectionStartPage/_3f093b9a-c3e5-4e9c-b682-eed0d972654f_en&_t_hit.pos=1
https://www.ericsson.com/en/5g?_t_id=1B2M2Y8AsgTpgAmY7PhCfg%3d%3d&_t_q=5G&_t_tags=language%3aen%2csiteid%3a621ab6dc-927f-42e5-92e7-e47cbe5f58f3&_t_ip=81.236.111.59&_t_hit.id=Corporate_Web_Cms_ContentTypes_Pages_SectionStartPage/_3f093b9a-c3e5-4e9c-b682-eed0d972654f_en&_t_hit.pos=1
https://www.ericsson.com/en/5g?_t_id=1B2M2Y8AsgTpgAmY7PhCfg%3d%3d&_t_q=5G&_t_tags=language%3aen%2csiteid%3a621ab6dc-927f-42e5-92e7-e47cbe5f58f3&_t_ip=81.236.111.59&_t_hit.id=Corporate_Web_Cms_ContentTypes_Pages_SectionStartPage/_3f093b9a-c3e5-4e9c-b682-eed0d972654f_en&_t_hit.pos=1
https://api.ctia.org/docs/default-source/default-document-library/5g-high-band-white-paper.pdf
https://api.ctia.org/docs/default-source/default-document-library/5g-high-band-white-paper.pdf
https://doi.org/10.1109/JSAC.2016.2550338
http://www.5gtf.net/
http://www.5gtf.net/
https://www.ssnf.org/globalassets/sveriges-stadsnat/fakta-och-statistik/informationsblad/ssnf_fakta_statistik_hres_ot.pdf
https://www.ssnf.org/globalassets/sveriges-stadsnat/fakta-och-statistik/informationsblad/ssnf_fakta_statistik_hres_ot.pdf
https://www.ssnf.org/globalassets/sveriges-stadsnat/fakta-och-statistik/informationsblad/ssnf_fakta_statistik_hres_ot.pdf
http://www.byafiber.se/lat-oss-leka-med-siffror-for-fiber/
http://www.byafiber.se/lat-oss-leka-med-siffror-for-fiber/
https://www.oppenfiber.se/anslut/villa/priser-och-villkor
https://www.oppenfiber.se/anslut/villa/priser-och-villkor
https://www.itu.int/en/about/Pages/default.aspx
https://doi.org/https://doi-org.proxy.lib.chalmers.se/10.1007/978-3-642-17496-4

Bibliography

able: http://www.5gtf.net/V5G_211_v1p7.pdf (visited on 03/06/2018)
(cit. on p. 8).

[12] What’s the difference between a cpu and a gpu?, nVIDIA, 2009. [Online].
Available: https://blogs.nvidia.com/blog/2009/12/16/whats- the-
difference-between-a-cpu-and-a-gpu/ (visited on 04/16/2018) (cit. on
p. 15).

[13] Nvidia, nVIDIA. [Online]. Available: https://www.nvidia.com/ (visited on
04/16/2018) (cit. on p. 16).

[14] Titan xp, nVIDIA. [Online]. Available: https://www.nvidia.com/en-us/
titan/titan-xp/ (visited on 04/16/2018) (cit. on p. 16).

[15] S. Cook, CUDA Programming - A developers guide to parallel computing with
GPUs. 225 Wyman Street, Waltham, MA 02451, USA: Morgan Kaufmann
Publishers, 2013, pp. 28, 38–39, 44–46, isbn: 978-0-12-415933-4 (cit. on pp. 16,
18).

[16] J. Cheng, M. Grossman, and T. McKercher, Professional CUDA C Program-
ming. 10475 Crosspoint Boulevard, Indianapolis, IN 46256: JohnWiley & Sons,
Inc., 2014, ch. 3, isbn: 978-1-118-73932-7 (cit. on pp. 17, 18).

[17] C. Gregg and K. Hazelwood, “Where is the data? why you cannot debate cpu
vs. gpu performance without the answer”, (IEEE ISPASS) IEEE International
Symposium on Performance Analysis of Systems and Software, pp. 134–144,
2011. doi: 10.1109/ISPASS.2011.5762730 (cit. on p. 18).

[18] J. Sanders and E. Kandrot, Cuda by example - An Introduction to General-
Purpose GPU Programming. 501 Boylston Street, Suite 900, Boston, MA02116,
USA: Addison-Wesley - Pearson Education, Inc., 2010, pp. 192–205, isbn: 978-
0-13-138768-3 (cit. on pp. 18, 19).

[19] A. Butterfield and G. E. Ngondi, A Dictionary of Computer Science, Seventh
Edition. Oxford: Oxford University Press, 2016, isbn: 978-0-19-968897-5 (cit.
on p. 20).

[20] M. Harchol-Balter, Performance Modeling and Design of Computer Systems -
Queueing Theory in Action. 32 Avenue of the Americas, New York, NY 10013-
2473, USA: Cambridge University Press, 2013, pp. 18, 24–25, isbn: 978-1-107-
02750-3 (cit. on p. 20).

[21] Optimizing parallel reduction in cuda, nVIDIA. [Online]. Available: http://
developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/
projects/reduction/doc/reduction.pdf (visited on 04/30/2018) (cit. on
p. 24).

[22] Fft library, FFTW. [Online]. Available: http://www.fftw.org (visited on
05/18/2018) (cit. on p. 30).

[23] L. M. Barone, E. Marinari, G. Organtini, and F. Ricci-Tersenghi, Scientific
Programming—C-Language, Algorithms and Models in Science. 5 Toh Tuck
Link, Singapore 596224, Singapore: World Scientific Publishing Co. Pte. Ltd.,
2013, ch. 18, isbn: 978-9814513401 (cit. on p. 30).

56

http://www.5gtf.net/V5G_211_v1p7.pdf
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://www.nvidia.com/
https://www.nvidia.com/en-us/titan/titan-xp/
https://www.nvidia.com/en-us/titan/titan-xp/
https://doi.org/10.1109/ISPASS.2011.5762730
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
http://www.fftw.org

	List of Figures
	List of Tables
	Introduction
	Background
	Aim
	Scope
	Limitations

	Methodology
	Ethics and Environment

	Fifth Generation Wireless Systems
	System properties and technical information
	Orthogonal Frequency-Division Multiplexing
	Fast Fourier Transform
	Cross correlation
	Cell search

	Verizon 5G Terrestrial Fiber Standard
	Synchronizations signals
	OFDM signal generation in baseband

	Compute Unified Device Architecture
	Information about PC
	Information about CUDA
	Blocks and Threads
	cudaMemcpy and cudaMalloc
	CUDA streams
	cudaHostAlloc and cudaMemcpyAsync
	Reduce

	Throughput and latency

	Implementation
	Reference Data
	Graphics Processing Unit
	Memory Allocation and Data Transfer
	Time to Frequency Domain (FFT)
	Cross correlation
	CUDA streams
	Complexity

	Central Processing Unit
	Time to Frequency Domain (FFT)
	Cross correlation
	Complexity

	Timekeeping

	Results
	Time measurements of the full system for both decoders
	Measured time for the FFTs of both decoders

	Parallel decoder
	Measured time for cross correlation in parallel decoder

	Serial decoder
	Measured time for cross correlation in serial decoder
	Alternative implementations

	Discussion
	Code
	Complexity
	Cross correlation

	Measured time results
	Code excluded from timekeeping
	Performance of the FFT
	Performance of the detection functions
	Performance of the full program
	Difference in variation between CPU and GPU

	Throughput and latency
	Parallelizing the CPU
	Improvements and future work

	Conclusion
	Bibliography

