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Abstract
This thesis is assessing the snow model FSM 2.0 in predictions of snow dynamics
in forest terrain. Two versions of the model have been used. One with default set-
tings and another with alternative local parameterizations of canopy characteristic
for input data. Experimental data acquisition was conducted in sub-alpine forest
terrain, during the 2019 snow season, Landwasser Valley of Graubunden Canton
in Switzerland. Site locations were selected to cover dense and canopy gap struc-
tures. Processing and analyzing of field data was done in parallel to the field work.
Observed data proves the significance of implementing local parameters in forest
snow modeling. Results from the FSM 2.0 assessment show that using local canopy
characteristics for the site characteristics input data, improves model predictions
for incoming longwave radiaton for both dense and canopy gap sites. It also clearly
improves incoming shortwave radiation for dense sites, and makes a fair prediction
for canopy gap sites.

Keywords: Snow Hydrology, Snow model, forest snow, snow dynamics, snow in for-
est, sub-canopy meteorological data, Snow Energy Balance, canopy characteristics,
LiDAR, small scale canopy parameters .
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1
Introduction

1.1 Background and Motivation

Earth is often referred to as the Blue Planet as majority of the planet surface is
covered by water. However, only around 2.5% of the water on earth is freshwater,
and the majority of this is stored deep underground or in glaciers difficult to ac-
cess [1]. The terrestrial water cycle consists of all phases of water, see Figure 1.1.
Climate change increases the global temperature which will intensify the water cy-
cle’s movement and magnitude of water transportation in and out of its reservoirs.
This impact will differ greatly depending on the location. Generally polar areas and
tropics will experience an increase in precipitation whereas subtropics will become
drier [2].

Figure 1.1: Global terrestrial flow of water (excluding Antarctica). We are cur-
rently withdrawing more freshwater from renewable freshwater resources than the
climate system can replenish. Snow is an important storage for freshwater. The
numbers are shown in the 1000s of km3 per year. [1]
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1. Introduction

The flow of water should be the main focus in water resources assessments.
The climate system puts an upper limit on the circulation rate of available renewable
freshwater resources (RFWR). Although current global withdrawals are well below
the upper limit, more than two billion people live in highly water-stressed areas
because of the uneven distribution of RFWR in time and space. Climate change
is expected to accelerate water cycles and thereby increase the available RFWR.
This would slow down the increase of people living under water stress; however,
changes in seasonal patterns and increasing probability of extreme events may offset
this effect. Reducing current vulnerability will be the first step to prepare for such
anticipated changes.

Freshwater is vital for all living organisms. Snow is an important part of
freshwater in the hydrological cycle of high-altitude and alpine regions [3]. It is
therefore important to be able to model snow. Perhaps especially so as the climate
change will make precipitation events more unpredictable in these regions. The
area that experience seasonal snow in the Northern Hemisphere is vast, see Figure
1.2. The majority of this region is also covered in forest as can be seen in Figure
1.3. Accurate snow models in forest terrain will predict flood risk during the spring
season melt, and help hydro-power plants make better decisions. Over time, climate
change effects on freshwater storage in snow could be observed. An improvement of
snow models in forests will advance predictions of how the hydrological cycle will
adapt to following changes in forest cover due to logging, management, wildfires etc.

Snow is a storage reservoir for freshwater. If large snow packs melt quickly,
the runoff could exceed ground water replenishment rates resulting in floods. Pomery
and Granger published in 1997 that the peak annual runoff in boreal forest is asso-
ciated with spring snow melt [5]. In Canada, 40 to 60 percent of the annual stream
flow in forests is due to the spring snow melt event [6]. With warmer temperatures
snow will accumulate later in the fall, and melt earlier in the spring, potentially
affecting the timing and potentially the intensity of seasonal runoff. The increase
in air temperature will increase the occurrence of intense precipitation events, and
increase the soil temperature, affecting the accumulation of snow [7]. Snow accumu-
lation in forest terrain is further complicated by canopy characteristics, which affect
the sub-canopy micro meteorological climate.

Snow Water Equivalent (SWE), is a measurement of the amount of water
contained within the snowpack. Theoretically it would be the volume of water if
the entire snowpack would melt instantaneously. SWE can be calculated by taking
snow measurements by collecting snow samples and weighing the snow. This is a
time consuming process and is only done in specific locations. With meteorological,
and canopy characteristics data, snow models can predict SWE and snow melt for
large areas efficiently [9]. Several snow models have been created to calculate the
snow dynamics from meteorological data. However, in forests terrain, the canopy
cover affects all fluxes that determine the mass and energy exchange between the
snowpack and the atmosphere. This makes the snow modelling in forests partic-
ularly complex. Meteorological used as driving inputs to snow models are mainly
acquired from stationary weather stations located in open sites. Snow data are also
usually acquired from open site landscapes. Therefore there is less data available to
help model development validate their model performances in forest sites. Current
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1. Introduction

Figure 1.2: Snow covered surfaces in the Northern Hemisphere from February
2017. The picture is acquired from NASA National Snow and Ice Data Center’s
online tool: EASE-Grid 2.0, which generates the figure from brightness temperature
captured on a weekly basis with a grid cell of 25x25km from satellite Nimbus-7 [4].

snow models all have room for improvement for accurately presenting the snow dy-
namics in forest areas [10]. This thesis will investigate the sub-canopy climate in
forest terrain with different canopy characteristics and validate FSM 2.0 modelling
performance of snow in sub-alpine forest terrain.

1.2 Research Objectives and Aims
A reason for the under performance in current snow models in forest terrain could
be due to unsatisfactory way of representing forest characteristics models. Factorial
Snow Model 2.0, created by Richard Essary [11], allows alternative process parame-
terization (input data) to the model. FSM 2.0 is based on commonly used equations
(in the land surface modelling) such as prognostic albedo calculations based on
CLASS and ISBA [12], yet its flexible structure makes it an ideal tool to test al-
ternative process parameterizations against each other. This study is performed by
collection of meteorological data from four different forest sites (two of which are
used in the analysis) with varying canopy structures, comparing the observed data

CHALMERS, Architecture and Civil Engineering , Examensarbete ACEX20-19-43 3



1. Introduction

Figure 1.3: Map of global Leaf Area Index (LAI) from July 2018, acquired through
Copernicus Global Land Services, LAI 300m (2019) [8]

with the output from FSM 2.0. The goal of this thesis is to asses how different
strategies of implementing the canopy structure affect FSM 2.0 ability to reproduce
the complex, local sub-canopy micro meteorological climate and therefore its impact
on the snow cover dynamics.

Research Questions

• How do observed incoming long-and short-wave radiation fluxes to the snow
surface, differ between canopy densities and meteorological conditions?

• How well does FSM 2.0 reproduce sub-canopy incoming radiating fluxes for
contrasting canopy structures and meteorological conditions?

1.3 Outline of Thesis
After the introduction, a theory chapter will present the physics for local sub-canopy
climates in forests. The methods used to acquire real data and data analysis will
be explained in detail in the third chapter. Chapter four, results and discussion,
presents the most important findings during the assessment of FSM 2.0. Graphs
will visualize FSM 2.0 performance, discussion will be incorporated in the chapter.
Lastly, the conclusions will be stated concise and clearly before references.

4 CHALMERS, Architecture and Civil Engineering , Examensarbete ACEX20-19-43



2
Theory

2.1 Snow Processes in Forest Terrain
Snow cover dynamics are determined by its mass balance and its energy balance.
Mass balance being the balance of incoming and outgoing masses, comprised of snow
precipitation, snow sublimation and snow melt. This thesis will focus on the energy
balance, which is comprised of the fluxes determining the energy exchange at the
interfaces between snowpack, atmosphere and ground, see Figure 2.1.
Internal energy of the snow pack, per unit area and time (see Equation 2.1), is the
sum of the six fluxes and is called the Snow Energy Balance Equation.

dU/dt = SWR + LWR + THF + PCH +GHF + PHF (2.1)

• SWR - Shortwave Radiation (W/m2)

• LWR - Longwave Radiation (W/m2)

• THF - Turbulent Heat Fluxes (Sensible and Latent) (W/m2)

• GHF - Ground Heat Flux (W/m2)

• PHF - Precipitation Heat Advection (W/m2)

• PCH - Phase Change Heat of Snow (W/m2)

Forests affect the meteorological variables impact on the snowpack, making
modelling snow dynamics in forest more complex than in an open landscape.

Tree canopies intercept precipitation and simultaneously create shaded ar-
eas on the ground. The shaded areas receive less amount of Shortwave Radiation
(SWR) which creates a spatial exposure of SWR. Shaded snow areas may be ex-
posed to higher amount of Longwave Radiation (LWR) than non-shaded areas, if
the shading is a result of nearby trees. LWR is constantly emitted by canopies and
tree trunks. Canopies also affect the ground snow albedo because of unloading of
twigs, pine cones and branches along with other debris, shading parts of the snow
surface.

The precipitated snow masses, intercepted by the canopies, will either melt,
sublimate to the atmosphere, or unload on the ground. Unloading occurs when
the snow mass reaches the branch’s maximum load capacity. Unloading of snow
masses contributes to spatial variation of the ground snow pack, which can be further
enhanced by spatial exposure of SWR, leading to a patchy snow cover in the spring,

CHALMERS, Architecture and Civil Engineering , Examensarbete ACEX20-19-43 5



2. Theory

exposing the ground surface. Patches in snow cover have a strong effect on the
sensible heat flux, as bare ground increases the mean air temperature which in turn
increases the sensible heat flux, and ultimately speeds up the snow melting process
[13]. All these processes are strongly dependent on the canopy structure. Because
canopy structure can be very heterogeneous with in a forest stand, all these processes
can exhibit strong local variations making forest snow modelling very challenging.

Figure 2.1: The components of the energy balance of snow, seen in Equation 2.1.
These processes from these components are strongly affected by the forest canopy
characteristics, which makes the energy balance equation complex to solve for forest
environments. The figure is acquired from the article Snow Cover and Snowmelt in
Forest Regions (2011) by R. Essery and T. Jonas [14].

The first three fluxes in the Snow Energy Balance Equation (Eq. 2.1), SWR,
LWR and THF, impact the snow dynamics the most, which is why these are the
focus of this thesis.

2.2 Canopy Characteristics
Canopy characteristics impact the micro-meteorological climate in forests, thereby
influencing snow processes of accumulation and melting. This section will present
parameters used to describe the canopy characteristics.

Leaf Area Index (LAI)
Leaf Area Index (LAI) is a commonly used parameter to determine how much SWR
penetrates to the ground. The definition is; leaf area per unit of ground surface or for
needle-leaf forests; the needle-area per unit of ground surface [15]. Theoretically, an
LAI of 1 would mean that 1m2 ground would be completely covered of leaves if they
were arranged perfectly. However, leaves and or needles in canopies are overlapping
each other, resulting in Leaf Area Index over 1 not covering the ground perfectly as

6 CHALMERS, Architecture and Civil Engineering , Examensarbete ACEX20-19-43



2. Theory

in theory. In reality there is always smaller or larger gaps in canopies for SWR to
penetrate through. But LAI is still the most conventional approach to explain the
canopy leaves/needles covrage. LAI can be established with hemispherical photos,
see Figure 3.12, calculated into binary values. Which is the process used in this
thesis.

Sky View Fraction (SVF)
Sky View Fraction (SVF) is by definition the visible fraction of the sky seen from a
specific point below the canopy. Just like LAI, SVF can be calculated with hemi-
spherical photos, which has been done in this study.

Canopy Closure (CC)
Canopy Closure (CC) is defined as the fraction of ground the canopy masks, when
looking from above the canopy down to the ground. CC is based on the canopy
height model derived from LiDAR data.

Mean Canopy Height (MCH)
Mean Canopy Height (MCH) is the arithmetic mean of tree heights in a specified
area (radius). Canopy height models in this thesis are based on processed LiDAR
data from September 2010. More details on LiDAR and the calculations of canopy
characteristics will be presented in Chapter 3: Methods.

2.3 Snow Modelling

There are currently many working snow models for the industry to use. However,
every single one experience problems modelling snow in forests because of its complex
nature [10]. Factorial Snow Model 2.0 (FSM 2.0) is not an exception, but it has a
multi-model approach which allows the user to control many aspects of the input
data, a feature making this model user friendly and adaptable.

FSM 2.0 is coded in FORTRAN90 and the result is processed, analyzed and
assessed against observed data in MatLab. FSM 2.0 input data of site characteristics
in terms of canopy structure parameters to calculate the snow energy balance for
which it derives outputs such as sub-canopy incoming shortwave radiation, SWE,
sub-canopy incoming longwave radiation, sub-canopy air temperature, etc. Equation
2.2 an example where input data of canopy structure, LAI, is used to calculate the
transmission of SWR through the canopy. In this thesis SVF and CC is calculated
through binarized hemispherical photos and used as input data to FSM 2.0. They
are estimated by the model if they are not given as an input. LAI and MCH
however, are required input data for the model to run. Driving meteorological data
for the model, such as precipitation, wind speed, relative humidity, air pressure, air
temperature, incoming LWR and SWR [11] are collected from a permanent weather
station located in an open site in Davos. Details of meteorological data acquisition
will be presented in detail in Chapter 3: Methods. This section will present the
theory of how the model FSM 2.0 process the input data to predict the three most
affluent components in the snow energy balance.

CHALMERS, Architecture and Civil Engineering , Examensarbete ACEX20-19-43 7



2. Theory

Shortwave Radiation
Shortwave Radiation (SWR) can easily be measured with sensors, but it can also be
calculated with information of Leaf Area Index. SWR lies within the range of 0.2µm
and 0.3µm, but because it has travelled through the atmosphere it will reach the
snow directly and in diffused (scattered) form. Because driving meteorological data
is acquired from an open site weather station, the incoming SWR (above canopy)
contains both the diffused and the direct component. However, in the model calcu-
lations of sub-canopy incoming SWR it will treat the incoming SWR (above) as it is
diffused, resulting in a sub-canopy SWR with less over estimations than if the two
components would be treated separately. The transmission (τcdir) of direct incoming
SWR can be calculated with Beer-Lambert’s Law [14] with the input data of LAI
and solar angle, see Equation 2.2. The equation used by the model in this thesis
is, Eq. 2.4, where the transmission factor of SWR through the canopy is treated
constant see Eq. 2.3, independent on current solar angle.

τcdir = e(−κ · LAI/sinθ) (2.2)

• κ = Empirical radiation extinction parameter derived from orientation and
clumping of canopy characteristics [14] which is by default 0.5 for FSM 2.0
[12].

• LAI = Leaf Area Index

• θ = Solar Angle

Canopy transmission of diffused incoming SWR is calculated similarly, by
removing the division of solar angee. If Sky View Fraction, SVF, is an input data
(like it is in this thesis, derived from hemispherical photos) FSM 2.0 will use the
SVF value as the constant transmission fraction through the canopy for incoming
diffuse SWR [12].

τc = SV F (2.3)

Factorial Snow Model 2.0 calculates incoming sub-canopy SWR with Equa-
tion 2.4 [12], additionally accounting for reflection of the top of snow covered canopy.

SWRsci = (1 − αc)τc · SWRatm (2.4)

• SWRsci = Sub-canopy Incoming SWR (W/m2)

• αc = Fraction of reflected SWR of the snow covered canopy (albedo)
αc = fveg[(1 − fcs)αc0 + fcsαcs]

• τc = Transmission fraction through canopy for diffuse SWR

• SWRatm = Above Canopy Incoming SWR (W/m2)

8 CHALMERS, Architecture and Civil Engineering , Examensarbete ACEX20-19-43



2. Theory

Figure 2.2: An illustration of incoming SWR and LWR to the snow surface in
forests. Incoming SWR are partly reflected back to the atmosphere by the snow
covered canopy (αc), and partly transmitted through the canopy (τc), before reaching
the snow surface on the ground (SWRsci, SWR sub-canopy incoming). Incoming
comes from surrounding trees, and the atmosphere. When clouds are present they
emit LWR too.

Longwave Radiation
Longwave Radiation (LWR) is emitted by all objects. Incoming LWR affecting the
ground snow in forests comes from the atmosphere and surrounding trees. LWR
is constantly emitted, while SWR is only emitted during sunlit hours. The LWR
from trees are dependent on SWR from the day, as it heats up the tree canopy and
trunks.

Longwave Radiation ranges between 4 and 100µm. FSM 2.0 uses atmo-
spheric LWR (LWRatm) as one of the driving meteorological data collected by
weather station.

FSM 2.0 uses Stefan Boltzmann law to estimate the LWRsci, which af-
fects the snow processes on the ground. FSM 2.0 needs data of the above canopy
Longwave Radiation, (LWRatm), to give an output of LWRsub−canopy, see equation
2.5.

LWRsci = (SV F )(LWRatm) + (1 − SV F )σ T 4
canopy (2.5)

• SVF = Sky View Fraction

CHALMERS, Architecture and Civil Engineering , Examensarbete ACEX20-19-43 9



2. Theory

• LWRatm = incoming LWR above canopy, usually measured at local weather
stations (W/m2)

• σ = 5.67 · 10−8(W/m2/K4) Boltzmann constant

• Tcanopy = Temperature of canopy (◦K)

Canopy temperature is an important component of Equation 2.5, which
varies vertically in boreal trees [16]. However, the extensive study on canopy tem-
perature by Webster (2017) concludes that air temperature can sufficiently be used
as Tcanopy [16]. FSM 2.0 is aimed to be developed into a full landscape model which
is why it estimates Tcanopy thorugh coupling of the snowpack and the canopy in the
energy balance, see Equation 2.1. LWR is a major contributor to the melting pro-
cesses in forest terrain as it is continuous day and night. Therefore equation 2.5 is
of extra interest.

Turbulent Heat Fluxes
Turbulent Heat Fluxes of the energy balance of snow in forests have two compo-
nents, latent and sensible. The latent component is driven by wind and humidity
gradients and has previously been studied at SLF. This thesis will focus on the sen-
sible component which is driven by temperature gradient between snow surface and
air.

Hsensible = ρaircpCHUa(Tsurface − Tair) (2.6)

• ρair = Density of air (1.2754 kg/m3)

• cp = Heat capacity of air (1005J/K/kg)

• CH = Transfer coefficient

• Ua = Wind speed (m/s)

• Tsurface = Surface temperature (◦K)

• Tair = Air temperature (◦K)

10 CHALMERS, Architecture and Civil Engineering , Examensarbete ACEX20-19-43



3
Methods

The methods used in this thesis comprises three main parts; experimental data
acquisition in the field, data processing and analyses of the field data, and meth-
ods used to acquire needed canopy characteristic and meteorological input data for
Factorial Snow Model 2.0 (FSM 2.0).

3.1 Experimental Data Acquisition
Collection of micro-meteorological data was conducted throughout the 2019 spring
snow season in a sub-alpine forest in South Eastern Switzerland, see Figure 3.1.
Collection sites varied in canopy structure in attempt to capture the forest’s hetero-
geneity.
The campaign captured sub-canopy micro-meteorological data at each station syn-
chronously with only minor data gaps during inclement weather, when some mete-
orological sensor could not operate accurately. The sites during the campaign were
carefully selected to include a variety of canopy structures;

• OS, Open Site (in an open area, with no nearby trees)

• FS1, Forest Site 1 (straight under a canopy gap in semi-dense forest)

• FS2, Forest Site 2 (in dense forest)

After 8 weeks stations at FS1 and FS2 were moved to new sites (named FS3, FS4
respectively) which had similar canopy characteristics but slightly different (greater
canopy gap and a bit less dense location). However, the analyses and processing of
acquired data will be limited to the first 8 weeks, which is why only these sites are
presented. The forest sites FS1, FS2 and the OS were all located within a radius
of approximately 800m of each other in Laret, see Figure 3.2. Laret was chosen
because of its accessibility and already established SLF projects, which enables the
field data from this project to be used in other projects.

3.1.1 Meteorological Stations
Each meteorological station was built and wired in-house at SLF. The stations were
designed to be transportable in rough terrain and easy to set up, see Figure 3.3.
The stations were equipped with sensors measuring wind speed and direction, air
temperature, long wave and shortwave radiation, as well as snow bulk temperature.

CHALMERS, Architecture and Civil Engineering , Examensarbete ACEX20-19-43 11



3. Methods

(a) Research project location in Switzer-
land

(b) Field Site Location
in Landwasser Valley,
Graubunden Canton.

Figure 3.1: Location of the stations. Maps are retrieved from The Swiss Federal
Geographical Information online map tool, Geodata © swisstopo [17]

Figure 3.2: The three circles represent the three station sites, Open Site (OS),
Forest site 1 FS1 and Forest site 2 FS2. The new permanent meteorological station
in Laret is marked with a capital M. This station only started operations in the
2019 season. The map is generated with the online map tool from The Swiss Federal
Geographical Information Geodata © swisstopo [17].
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3. Methods

(a) During set-up of the open site
station

(b) FS1 station in operation

Figure 3.3: Overview of the mini-meteorological stations
OS and FS1 at their specific locations in Laret.

In addition, the station at Forest Site 1, (in a canopy gap) was also equipped with
an infrared sensor, capturing the snow surface temperature.

All sensors attached to the stations carried a specific task. The wind sensor,
Gill WindSonic ultrasonic anemometer (Figure 3.4) collected wind speed and di-
rection within the range of 0-60m/s, from 0-360◦ with an accuracy of +/- 2%. The
air temperature sensor, Vaisala INTERCAP Temperature Probe HMP60 , (Figure
3.5) placed approximately 1.5m above the snow surface recorded the sub-canopy air
temperature.
The Shortwave Radiation (SWR) and Longwave Radiation (LWR) sensors, Kipp
and Zonen CMP3 Pyranometer, and CGR3 Pyrgeometer respectively, (Figures 3.8
and 3.9) capture incoming radiation. It is important for the surfaces of the sensors
to be leveled horizontally and cleared from any snow, ice or other debris in order
to measure accurate radiation. A camera (Figure 3.6) was therefore attached to
the pole, facing the sensors, programmed to take a picture every 60 minutes. The
pictures effectively identified time periods when data from the sensors were not
accurate and had to be filtered out due to snow/ice formation on top of the sensor’s
lenses.
Every 3-4 days the stations were visited for battery replacement and downloading of
the collected meteorological data. The data logger, Campbell CR1000, was placed
in an insulated black box, protected from inclement weather (Figure 3.7). The black
box also hosted the battery, sensor lens cleaning cloths and all excessive cable cords.
The box itself was covered by a white cloth to reflect incoming radiation and to
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Figure 3.4: Wind sensor Figure 3.5: Air tempera-
ture Sensor Figure 3.6: Camera

Figure 3.7: Box with log-
ger

Figure 3.8: Side-view of
SWR and LWR sensors

Figure 3.9: Top view of
SWR, LWR sensors

minimize heating. A laptop with sufficient hard drive memory was used to transfer
the data from the stations to the office. During visits any eventual snow and ice
build-up on sensors were carefully removed with lens cloths.

3.2 Data Processing and Analysis of Field Data

Sub-canopy micro-meteorological data was recorded in parallel at 15 seconds, and
at 1 minute intervals by the logger located in the blackbox, see Figure 3.7. This
caused the file saved by the logger to become large when doing the download every 3-
4days. A field laptop with the required hardware was used to download the logger’s
file. The file was then loaded up from laptop to SLF hard drives. From here, an
analysis of the camera photos was done to identify time periods when the sensors’
lenses were covered by snow or ice and therefore feeding the logger with inaccurate
data. Identified inaccurate data was then filtered out before the files were compiled
in chronological order and processed through a script, written in MatLab, into 1hr
aggregations. The time periods filtered out can be seen in Figure 3.10 as gaps in
the graphs. The accurate data was chosen to be combined into 1 hour aggregations
because it is one of the time outputs of FSM 2.0. Finally, interesting data was
extracted from the campaign and used in the assessment of the snow model.
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Figure 3.10: Aggregated (1hr) of SWR and LWR during the campaign, from
26.01.2019 to 26.03.2019.

Figure 3.11: Observed non-aggregated data of SWR during a 3 day period, with
2 consecutive days of clear skies followed by a day of overcast.

3.3 Input Data for FSM 2.0
FSM 2.0, needs specific site characteristics and meteorological driving variables
(weather) in order to produce output parameters such as SWE. FSM 2.0 also needs
site characteristics such as geographical location, CC, MCH, LAI and SVF which
was gathered through different methods which will also be covered in below sections.

3.3.1 Forest Characteristics
Leaf Area Index (LAI) was calculated with the help of hemispherical photos taken
at the sites. An upward looking fish-eye camera with a 180◦ field of view was placed
on a plate at the exact spot of the LWR and SWR sensor, enabling to capture
the canopy effects. On the plate, a compass and a leveling instrument was also
mounted to ensure correct level and direction of the photos. Since the camera was
manually focused with aperture and ISO, every shooting consisted of three pictures
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3. Methods

(a) Hemispherical Photo of FS1 (b) Binarized Hemispherical Photo of
FS1

Figure 3.12: Hemispherical Photos

with different exposure settings. This gives a selection to chose the best fitted
picture in the processing. Hemisfer, developed by Schleppi P., and Thimonier A.,
among others at Swiss Federal Institute for Forest, Snow and Landscape Research
WSL (WSL), was used to process the hemispherical photos into binary images that
ultimately calculates the LAI [18], [19]. Hemisfer is designed to estimate the LAI
from the light transmission in hemispherical photos. It calculates LAI based on six
different methods from the binarized picture in Figure 3.12(b). The following six
LAI calculation methods are used by Hemisfer:

• Miller (1967)

• Miller (1967) as implemented in the Li-Cor LAI-2000

• Lang (1987)

• Norman and Campbell (1989)

• Thimonier et al. (2010)

• Gonsamo et al. (2018)

In this thesis, an average value of all six results was calculated and used as LAI
input for FSM 2.0.

Sky View Fraction (SVF) was calculated based on the binarized images
from Hemisfer. Canopy Closure (CC) and Mean Canopy Height (MCH) was both
derived and calculated from Airborne Light Detecting and Ranging data (LiDAR)
point clouds taken from helicopter flights over the sites with a Reigl LMS Q560
Sensor in September 2010. The sensor emits a laser signal towards the ground and
a reflected part of the signal will come back to the sensor. With this information
a terrain model of the site, a digital surface model and canopy height model can
be created [20]. The LiDAR data from 2010 is the newest to this date. Growth of
trees has not been able to be accounted for. However a validation of existing trees
matching the maps was done before the data was used. The validation eliminates
usage of trees that do not longer exist at the sites.
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(a) A digitalized image made from 276 points of raw
LiDAR data in Laret. [20].

(b) 2D map of the area of FS1 created
from LiDAR Data. Notice that the
forest ground is white, and that tree
peaks are orange-red, opposite color-
code of figure (a).

Figure 3.13: Digitalization of LiDAR Data
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3.3.2 Meteorological Data
FSM 2.0 needs meteorological driving data from the local site in order to run. Hourly
meteorological driving data was collected from the SwissMetNet station DAV2 (au-
tomatic meteorological stations run by MeteoSwiss) located nearby Davos. Correc-
tions on the precipitation rate and the air temperature were made to the data from
DAV2 in order to compensate for its slightly higher altitude and south location of
the Wolfgang pass. The field sites are located north of the Wolfgang pass at an
altitude of 1507m.a.s.l while weather station DAV2 is located at 1590m.a.s.l. The
Wolfgang pass has orographic influence, meaning that air mass is forced to move
from a lower altitude (field site) to a higher elevation quickly without losing any
thermodynamic heat allowing the air to be cooled down and raise the air humidity
rapidly and create clouds, and under right conditions also precipitation. Correc-
tions factors determined through previous similar work conducted in the area to
1.25 (gain) for the field sites in Laret [21].

Following meteorological data was extracted for the time period at hourly
resolution and used as input to FSM 2.0:

• Incoming SWR (W/m2)

• Incoming LWR (W/m2)

• Snowfall Rate (kg/m2/s)

• Rainfall Rate (kg/m2/s)

• Air Temperature (Kelvin)

• Relative Humidity (%)

• Wind Speed (m/s)

• Surface Air Pressure (Pa)

Using meteorological data from Davos stationary weather station provides
consistent data, without data gaps, which would be the case the OS station was
used to provide the meteorological input data for the model. The Open Site station
had frequent data gaps due to snowfall and ice build up on its sensors, this made
the Davos weather station more suited to provide driving meteorological data for
the entire season. Unfortunately the permanent weather station in Laret, marked
M in Figure 3.1, was not able to provide meteorological data for this season.
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4
Results and Discussion

4.1 Observed Data

There are significant differences in the observed sub-canopy micro-meteorological
data for Forest Site 1 and 2. This confirms that the local forest heterogeneity
has a substantial impact on the micro climate, arguing for snow models to take this
complexity into account. An example of the significant differences between locations
is seen in Figure 4.1 where sub-canopy incoming shortwave radiation is plotted on
a day with clear skies. FS1, the gap site is shown in green, which in contrast to
the dense site, FS2, in red, receives significantly more SWR. When the solar angle
of the sun stands directly above the canopy gap, the sub-canopy incoming SWR
is drastically increased, this is seen as the spikes of the green line. Some of these
spikes are therefore reaching the Open site stations levels (plotted in blue). The
top graph in Figure 4.1 presents discrepancy in LWR between sites. The difference
in LWR is only about 40W/m2 compared to SWR magnitude of roughly 700W/m2

at the maximum point, about 17 times the magnitude. The accumulated LWR for
the two forest sites are significantly different, which is ultimately what effects the
snow melting. Tree canopies are heated by the incoming SWR during the day, and
emits LWR constantly, also during night time. A day with high levels of incoming
SWR results in warmer trees and more LWR emitted during night. Because of the
cloud absence during clear sky conditions, the incoming LWR from the atmosphere
is minimized, which leaves the trees as the main source of emitted LWR. Hence
why the dense site in red receives the highest LWR. Despite the close proximity of
the forest sites, as seen in the map of Laret (Fig. 3.2), they are experiencing very
different sub-canopy radiation.

During overcast conditions and variable cloud cover, sub-canopy incoming
LWR are fairly the same for the two forest sites, see top graph of Figure 4.2. The
OS has a large dip in LWR during midday when the clouds temporarily separate
exposing the blue sky which has lower radiating temperature than clouds, creating
this temporarily dip as seen in top graph in Figure 4.2. Despite the similar sub-
canopy incoming LWR during overcast conditions for the forest sites, their site
characteristics clearly affects the sub-canopy incoming SWR as seen in bottom graph
of Figure 4.2.

The observed sub-canopy meteorological data evidently shows discrepancies
between the dense and gap site. These findings confirm the importance of accounting
for local canopy characteristics in forest snow models.
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4. Results and Discussion

Figure 4.1: Observed data of sub-canopy incoming longwave radiation (top graph)
and sub-canopy incoming shortwave radiation (bottom graph), for all three data
acquisition sites during a day with clear sky conditions, 2019-03-23.
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Figure 4.2: Observed data of sub-canopy incoming longwave radiation (top graph)
and sub-canopy incoming shortwave radiation (bottom graph), for all three data
acquisition sites (OS, FS1, FS2) during a day with overcast conditions and vari-
able cloud cover, 2019-02-22.

4.2 FSM 2.0 Performance
Two versions of FSM 2.0 are used in the assessment of its performance. Version 1
(v.1) is the original default version of FSM 2.0 where only canopy characteristics
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4. Results and Discussion

of LAI and MCH are used as input. The other canopy characteristics that FSM
2.0 needs, SVF and CC is derived within FSM from the given LAI. Because LAI is
derived from hemispherical photos its value will always be over 0 (only hemispherical
photos taken in large open site areas can be completely free of canopy and therefore
value of 0). Because LAI is over 0, the radius considered to calculate MCH has to
be large enough to include trees. A small radius of 2m from the LiDAR point cloud
maps could potentially not see any trees, this does not work in the default mode. A
radius of 10m is therefore used in the calculation of MCH for v.1. The default model
is based on established equations and parameterization used for large scale modelling
by the landscape modelling community to derive these other canopy characteristics.
Community Land Model (CLM), the Canadian Land Surface Scheme (CLASS), and
the Interaction Soil-Biosphere-Atmosphere (ISBA) are all established land surface
models which are used within the snow modelling predictions FSM 2.0 [12].

The other version, v.3, is an attempt to include local scale differences. Noth-
ing is changed in the calculations within FSM 2.0, but an alternative parameteri-
zation is done externally for all canopy characteristics. LAI is calculated the same
way as in v.1, CC is calculated based on LiDAR cloud point maps of 5m radius, and
SVF is also calculated externally, derived from the hemispherical photos. Because
of this, MCH is decoupled from LAI which means that a smaller, more local radius
of 5m, can be used, which is done in version 3.

Both versions assume all SWR radiation from the atmosphere to be diffuse,
which means that FSM 2.0 will take SVF as a constant transmission factor of the
canopy, τc, independent of the solar angle, see Equation 2.4. But because the driving
meteorological data (SWR inlcuded) is taken from an open site weather station, FSM
output will have smooth curve following the solar angle, despite using a constant
transmission factor.
Performance of FSM 2.0 is presented as an assessment of the entire campaign be-
tween 2019-01-26 and 2019-03-26 for v.1 and v.3. FSM outputs have then been
extracted for specific days, assessing its performance across weather and forest sites.
The statistical measures used to assess the performance of FSM 2.0 are Root Square
Mean Error and Pearsons Correlation Covariance.

Root mean squared error, RMSE =
√√√√ 1
n

n∑
t=1

e2
t (4.1)

Pearson’s Correlation Covariance, covx,y =
∑n

i=1(xi − x̄)(yi − ȳ)
n− 1 (4.2)

4.2.1 Longwave Radiation
FSM 2.0 results of sub-canopy incoming LWR is fairly consistent with the observed
data as shown in Figure 4.3. However, v.3 shows a better prediction than v.1 with
RMSE of only 15.3 compared to v.1 RMS error of 23.9 for the dense site. This is
probably an effect of more detailed description of the canopy characteristics in v.3.
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4.2.2 Shortwave Radiation
In Figure 4.4, it is clear that both versions have most difficulties to predict sub-
canopy incoming SWR for the gap site. Given the spatial variability in the green
points on the far right, it seems as both v.1 and v.3 are overestimating sub-canopy
incoming SWR. Version 3 is slightly better at predicting in the gap site. However,
v.3 performs substantially better in predicting the same meteorological variable for
the dense site. The RMSE is only 6.3 compared to the gap site error of 79.1. Again,
despite over-estimations at the gap site for both versions, v.3 outperforms v.1.

4.2.3 Air Temperature
Version 3 is also performing better at predicting sub-canopy air temperature, as seen
in Figure 4.5. This can be expected knowing its performance for the radiations.
LWR, SWR and THF are the three most influencing fluxes in the Snow Energy
Equation (Eq. 2.1), and air temperature is a driving variable in the sensible energy
equation (Eq. 2.6) of turbulent heat fluxes, which suggest that using the v.3 over
the default version will give better predictions of SWE and ultimately snow melt
date.
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Figure 4.3: Version comparison of FSM 2.0 performance of LWRsci for forest site
1 and 2. Each point represents aggregated values of 1 hour.
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Figure 4.4: Version comparison of FSM 2.0 performance of SWRsci for forest site
1 and 2. Each point represents aggregated values of 1 hour.
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Figure 4.5: Version comparison of FSM 2.0 performance of ATsci for forest site 1
and 2. Each point represents aggregated values of 1 hour.
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RMSE Performance of FSM 2.0
Meteo variables Version 1 Version 3

FS1 FS2 FS1 FS2
LWRsci 25,5 23,9 12,4 15,3
SWRsci 83,5 34,4 79,1 6,3

ATsc 5,3 3,4 2,7 2,3

Table 4.1: Summary of the two FSM 2.0 versions’ performances.

4.3 FSM 2.0 Performance Across Weather Con-
ditions

As seen in Table 4.1, v.3 outperforms v.1 in all categories comparing the Root Mean
Square Error. The following section will investigate the two versions performances,
at the gap and dense site, during specific weather: clear sky and overcast conditions.

Figure 4.6 is an extraction of v.1 and v.3 outputs of sub-canopy incoming
LWR for a day with clear sky conditions and a day with overcast conditions. The
outputs of FSM 2.0 v.3 are impressive in both weather scenarios, with maximum
differences of roughly just 15 and 45W/m2. An overestimation of sub-canopy in-
coming LWR means that the model is overestimating the canopy temperature, see
Equation 2.5. Since canopy temperature is unknown for the model and calculated by
simultaneously solving the energy balance equation at each time interval it could be
that the method used in FSM 2.0 (1-layer canopy) might not be accurate enough.
This is a possible improvement area, where a several-layer canopy calculation in
FSM 2.0 might give a better estimated canopy temperature, or substituting canopy
temperature to air temperature like previous research have shown can be sufficient
[16].

For sub-canopy incoming shortwave radiation v.3 performs noticeably better
at the dense site, compared to the the gap site. This is true for both clear sky and
overcast conditions see Figure 4.7. The peak is underestimated by both v.1 and
v.3 during clear sky conditions for the gap site with approximately 150W/m2. For
the dense site the versions performs vastly different. V.3 predicts the peak within
10W/m2 while v.1 overestimates it with about 75W/m2.

The accumulated sub-canopy SWR for an entire day is overestimated by
both versions. Basically the area underneath FSM outputs in v.1 (purple) and v.3
(pink) are greater than the area underneath the observed data (blue). This is further
visualized for v.3 in a bar chart in Figure 4.8 which also shows the accumulated LWR
predictions for v.3.

The accumulated overestimation for both versions is due to the assumption
of constant τc. Potential improvement to the model would be to assign different
transmission factors to the hemispherical photos which would be taken into consid-
eration in LAI. Alternatively find a replacement for LAI.

From Figure 4.8 (a) it is evident that the best performing version, v.3, is
overestimating the total radiation during clear sky conditions for the gap site. The
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consequence of this is that FSM 2.0 v.3 overestimates the energy released to the snow
cover in the snow energy balance. The excess energy will stimulate phase change
of the snow, that is snow melting, which ultimately leads to an underestimation of
current SWE and an earlier snow melt date. But v.3 is predicting total radiation in
the dense site very well which would assume that the SWE and snow melt date for
this site will be quite accurate.

The overestimation made by both versions, of peak temperature in Figure
4.9 (a) during clear sky conditions is a great example of how local parameters for the
input data makes an important difference in the predicted output. Version 1 predicts
that during clear sky conditions in late March the sub-canopy air temperature will
reach 35◦C right before noon, while the truth is that the sub-canopy air temperature
reaches its peak of 10◦C shortly after noon. Version 3 is also predicting the peak to
be slightly before noon, however, instead of predicting an outrageous temperature of
35◦C it estimates the peak to be approximately 11◦C. Version 1 is performing better
during overcast conditions, which could stem from the local canopy parameters of
CC, MCH and SVF not having such a big affect in cloudy conditions since the
incoming SWR will be less. Interestingly, v. 3 underestimates the sub-canopy
temperature for the gap site during overcast conditions. This could be the result of
the underestimation at midday in incoming LWR as seen in Figure 4.6 (b) for the
gap site.
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Figure 4.6: LWRsci for a clear sky day (a) and a day with overcast conditions (b).
Comparing observation to FSM 2.0 v.3 output.
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Figure 4.7: SWRsci for a clear sky day (a) and a day with overcast conditions (b).
Comparing observation to FSM 2.0 v.3 output.
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5
Conclusion

It is proven that two forest sites in close proximity have crucially different sub-canopy
micro-meteorological climates. Implementing local canopy characteristics have a
positive effect on micro-meteorological sub-canopy climate predictions for the snow
model, as version 3 with these local parameters used in the input data continually
outperforms the default version 1. Furthermore, results of version 3 prove that
incoming sub-canopy shortwave radiation can be considered diffused in FSM 2.0,
and still predict micro-meteorological data fairly well. However, this is the most
difficult sub-canopy meteorological variable for FSM 2.0 to predict. Particularly so
in forest canopy gap where the direct incoming shortwave radiation has a strong
impact. A multi-layer canopy approach in the calculations of temperature canopy
within FSM 2.0 could be a solution to predictions of sub-canopy incoming SWR.
Another solution could be to improve SVF, which is used as the transmission factor
of the canopy affecting the fraction of SWR going through the canopy. SVF is
derived from the binarized hemispherical photos which could be taken at a higher
resolution. A third solution could be to implement the direct SWR for the most vital
periods: during solar noon. However, since diffused SWR is already overestimating
the total SWR, adding direct SWR might contribute to better peak predictions
but an overall worse prediction. Lastly, if different transmission factors could be
attached to the hemispherical photos, dependent on the solar path, the incoming
sub-canopy SWR might be improved. This would require implementation of solar
path for each specific site for each hour and day throughout the campaign, which
would make the model even more complex.

5.1 Further Research
Using several stations in more sites would increase the possibility to assess the model
in locations that are in between dense and a canopy gap. Analyzing data from a
broad variety of forest canopies could potentially show correlations between canopy
characteristics and sub-canopy climate that could be implemented to the canopy
characteristics that FSM 2.0 estimates in version 1.

Measuring the snow surface temperature could improve the Turbulent Heat
Flux as the gradient between the surface and air temperature is a driving factor
of the sensible heat flux. This thesis project was limited to one Infrared sensor
measuring the snow surface temperature, at the gap site. The data collected from
this was very noisy, suggesting that testing and calibrating such sensor should be
done carefully and well in advance to the field work season.
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Lastly, two obvious limitations to this thesis is the dated LiDAR cloud
points from 2010 and using meteorological input data from Davos weather station.
Old LiDAR data will affect the accuracy of canopy characteristics derived from this
data. However, all LiDAR data was validated before use, meaning that trees that
do not exists anymore, due to logging or natural incidences, is eliminated from the
LiDAR data. Despite this, it has not been able to consider the growth of the trees.
Using meteorological data from a weather station in Davos, meant that precipitation
and air temperature had to be corrected. Weather can be very local, such as cloud
variability. If future research were to use meteorological data from a weather station
closer to the field sites, like the new permanent meteorological station in Laret, seen
in the map as M in Figure 3.1, then FSM 2.0 would have more accurate weather
information of the field sites, and therefore likely to improve its outputs.
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