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Abstract

This thesis is devoted to the applications of holographic duality to condensed matter
physics. It is centered around a ‘bottom-up’ approach where the starting point is the
postulation of a reasonable gravitational bulk theory action, as opposed to the ‘top-down’
models where a specific duality is derived from a string theory setting. The main mo-
tivation for taking a holographic approach to condensed matter physics is the potential
ability to perform reliable computations for strongly interacting quantum many-body
systems, in the absence of a quasiparticle description. The duality maps a strongly cou-
pled quantum field theory to a weakly interacting gravitational theory, which in principle
can be solved perturabtively using ordinary general relativity. An introduction to some
of the main topics of bottom-up holography is given. This includes a brief introduction
to large N field theories, the AdS/CFT correspondance, the holographic dictionary, the
holographic renormalization group, holographic thermodynamics, and the Hawking-Page
transition and its interpretation in the light of AdS/CFT. Finally, a minimal bottom-up
toy model for holographic superconductivity is studied. By imposing a mixed bound-
ary condition at the boundary of AdS space, a dynamical photon is incorporated in the
strongly coupled superconductor. This allows charged collective excitations, e.g. plas-
mons, to be studied. A linear response analysis of the minimal holographic supercon-
ductor is performed numerically, in an attempt to compute plasmon dispersion relations.
It turns out that the mixed boundary condition, accounting for charged collective ex-
citations, will likely have to be modified for this particular holographic superconductor
model, since the computed plasmon dispersion relation indicates an instability at large
momenta. The precise way in which the mixed boundary condition has to be modified
remains unclear.
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1
Introduction

In the last decade, the recent applications of the holographic gauge/gravity duality to
condensed matter physics has developed into a new promising research area [1]–[3]. In
particular, the holographic method has the potential of dealing with certain strongly in-
teracting quantum many-body systems, a regime inaccessible from a conventional field
theory approach with a quasiparticle description. The field of holographic condensed mat-
ter physics or ‘AdS/CMT’1 is characterized by a cross-fertilization between many different
areas of physics, including string theory, gravitational and black hole physics, quantum
field theory, quantum information theory, and of course condensed matter physics. From
a condensed matter perspective, it is the study of strongly interacting, long-range entan-
gled, quantum many-body systems without quasiparticles. For the gravitational physicist
it is the study of black hole geometries which are asymptotic to anti-de Sitter (AdS) space.
In the context of quantum field theory (QFT) or string theory, it is the study of the sta-
tistical physics of large N matrix field theories and their dual gravitational description.

The holographic duality is rooted in the AdS/CFT correspondence or gauge/gravity
duality which was originally proposed by Juan Maldacena in 1997 [4]. He argued that
N = 4 super-Yang-Mills theory in four spacetime dimensions, which is a conformal field
theory (CFT) as well as a gauge theory, has a dual description in terms of supergravity
on AdS5×S5. He then proposed the AdS/CFT conjecture stating that a gravitational
theory in AdS space has a dual description in terms of a CFT. The argument behind the
AdS/CFT correspondence is based on considerations of an open/closed string duality in
string theory. Although it technically has the status of a conjecture, plenty of empirical
evidence supporting its claims has accumulated throughout the years and there is no
doubt that the conjecture holds true.

Holographic duality is a generalized notion of an AdS/CFT-like correspondence. It
identifies a ’t Hooft large N quantum field theory2 with a classical gravitational theory
in one higher dimension. The best understood dualities are those where the gravitational
spacetime is asymptotic to AdS space. In this case the QFT can be thought of as living on
the ‘conformal boundary’ of the gravitating AdS spacetime. For this reason it is common
to refer to the QFT as the boundary QFT or simply boundary theory. The gravitational
theory is then properly referred to as the bulk theory. Note that the QFT does not have
to be a CFT in a general holographic duality.

Many of the useful aspects of holography are generic and independent of the specific
underlying duality. A specific duality may be motivated by a specific string theory con-

1A pun on ‘AdS/CFT’, the best understood and original version of gauge/gravity dualities. AdS
stands for anti-de Sitter, the dynamical spacetime of the gravitational theory. CMT stands for condensed
matter theory.

2The N here refers to the number of ‘colour’ degrees of freedom. A large N matrix field theory
transforms in the adjoint of some gauge symmetry group, e.g. U(N), in the limit of large N . We give
an introduction to large N field theories in Chapter 2.
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1. Introduction

sideration, or it may simply be postulated by an educated guess. The former approach
is commonly referred to as a top-down construction, whereas the latter approach is re-
ferred to as a bottom-up construction. Since the top-down construction is derived from a
specific string theory model, it has the advantage of inheriting quantum consistency and
UV completion. Furthermore, the gravitational theory and dual quantum field theory
will be known in a top-down construction. The downside is that it may be difficult to
find a string theory construction from which the desired condensed matter system can
be obtained by a consistent truncation. The advantage of the bottom-up approach is
that one may postulate a gravitational theory by considering which properties one want
to impose on the dual QFT. One can then directly study the parameter space of the
theory and compare with real life experiments. The downside is that such a theory is
necessarily phenomenological and one cannot guarantee that it is UV complete, although
UV completion is usually not a high priority for condensed matter theories since these
generally deal with emergent low energy phenomena. In this thesis we will exclusively be
considering bottom-up models, bypassing any explicit string theoretic construction and
making the material accessible even for those readers unfamiliar to string theory.

The key feature of the large N limit is that it corresponds to a classical limit in the
dual gravitational theory. Quantum gravity is still rather poorly understood and reliable
computations cannot be performed in current theories of quantum gravity. The regime
outside the large N limit is therefore also currently inaccessible. Although field theories
with a large number of colour degrees of freedom seems rather artificial and irrelevant for
real life condensed matter physics, many of the results from holography calculations seems
to be rather generic and valid even for small and finite N . However, the large N limit
is not only an unwanted artefact. It comes with a notion of a mean field and can for
example allow one to work in a thermodynamical limit where it otherwise would not be
possible. Ultimately though, experiments will have to confirm whether or not holographic
condensed matter physics provide any useful models for real life physical systems such as
the high-temperature superconductors.

Two important aspects of holography when it comes to its applications to condensed
matter physics are the following:

• The extra dimension of the bulk spacetime geometrizes the renormalization group
(RG) scale of the boundary QFT. The near boundary region captures the high
energy, UV processes of the dual QFT, and the deep interior captures the emergent
low energy, IR physics.

• Classical black holes are dissipative and have a thermodynamic interpretation.
Adding a black hole to the interior of the bulk spacetime encodes for thermody-
namic properties in the boundary QFT, e.g. a finite temperature and dissipative
processes.

The identification of the extra radial dimension in the bulk spactime with the RG scale of
the dual QFT allows us to extract the emergent low energy physics relevant for applica-
tions to condensed matter physics, while at the same time removing all of the dependence
on the UV complete theory, which we are ignorant of in a bottom-up approach. In fact,
all of the standard renormalization physics of QFT is captured in the dual gravitational
description. This ‘holograpic renormalization theory’ is one of the main topics of Chap-
ter 4. Knowing that the low energy physics is captured in the deep interior of the bulk
spacetime, adding a black hole in this region should intuitively only affect the low energy

2



1. Introduction

processes. This encodes for dissipative processes and thermodynamic quantities, e.g. a
temperature and entropy, in the effective low energy description of the boundary QFT.

1.1 T-linear resistivity of strange metals and Planck-
ian dissipation

The primary benefit with the holographic approach to condensed matter physics is its
potential ability to provide a description of strongly interacting quantum many-body
systems in which reliable computations can be performed. This includes ‘non-Fermi liq-
uids’ such as the strange metal normal state of cuprate high Tc superconductors. Ever
since the discovery in the 1980s of the linear temperature dependence of the resistivity
in this strange metal phase [3], [5], condensed matter theorists have sought for an ex-
planation for this seemingly simple relation. No satisfactory such description have yet
to be found from conventional condensed matter considerations, which are usually based
on quasiparticle transport. Although these models can give rise to a linear temperature
dependence they do not rule out other more complex dependencies and fail to explain
why it is precisely the linear dependence that has been measured in the laboratory. Ar-
guably, a linear temperature dependence reflects a very simple physical behavior and it is
reasonable to assume that such a simple physical behaviour is rooted in a strong physical
principle. Holography has provided a new take on this long lasting conundrum. It has
been suggested that the electrons in the strange metal might be in a strongly interacting,
maximally entangled state, where all of the electrons are entangled with one another [3].
Furthermore, it has been argued that the scattering rate of these electrons, as a function
of temperature, reach the ‘Planckian limit’ where they dissipate energy and momentum
at the fastest rate allowed by the uncertainty principle of quantum mechanics [6], [7].
This ‘Planckian dissipation’ is set by Planck’s constant h̄, suggesting that the principle
behind the T-linear resistivity observed in the strange metals will involve new fundamen-
tal physics. Planckian dissipation also appears to be a generic property of the strongly
interacting, maximally entangled, compressible quantum matter which are ideally de-
scribed by holography. Moreover, these maximally entangled quantum states behaves as
a perfect fluid characterized by a universal ratio of shear viscosity η by volume density
of entropy s [8],

η

s
= h̄

4πkB
. (1.1)

This minimal viscosity of certain strongly interacting quantum field theories was derived
from a holographically dual gravitational AdS spacetime with a black hole. It is a conse-
quence of basic properties of black holes, as is the Planckian dissipation in this context.

Understanding the strange metal phase of high Tc superconductors is essential for
understanding the phase transition between the normal and superconducting state, as well
as the mechanism behind the high Tc superconducting phase transition. The standard
BCS theory works well for superconductors with low transition temperatures but fails in
explaining the behaviour of high Tc superconductors. A better understanding of high Tc
superconductors and their strange metal normal state is an important step towards being
able to engineer materials which are superconducting at room temperature.
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1. Introduction

1.2 The objectives
The purpose of this thesis is twofold. First, it is intended as a fairly easy read intro-
duction to the subject of holographic duality and its applications to condensed matter
physics. In particular, it should be comprehensible for the undergraduate student who has
taken courses in quantum field theory, general relativity, and condensed matter physics3.
However, the reader which has not had any exposure to the path integral formalism or
the renormalization group may need to complement some parts with additional reading.
Although the holographic duality is derived from string theory, the bottom-up approach
allows us to bypass the string theoretical framework more or less completely in this work.
The only exceptions are our qualitative derivation of the AdS/CFT correspondance in
3.2 and the discussion of Wilson loops in 6.2 where some string theory terminology has
been used. Both 3.2 and 6.2 may be skimmed over or even skipped completely without
the loss of any vital information for chapters to come.

Second, the goal is to study dispersion relations in a holographic superconductor toy
model. This toy model is a minimal bottom-up construction of holographic superconduc-
tivity originally introduced by Hartnoll, Herzog and Horowitz [9], [10]. The holographic
superconductors are strongly coupled systems and they are candidates for modeling high
Tc superconductors such as cuprates or pnictides. The high Tc cuprate superconduc-
tors are thought to consists of two dimensional superconducting layers stacked on top
of each other, with the Coulomb interaction responsible for the dynamics between the
layers [11], [12]. The Coulomb interaction gives rise to plasmon modes which has been
studied previously in holographic models [12]–[16]. The new experimental technique of
momentum-resolved electron energy-loss spectroscopy (M-EELS) has facilitated the mea-
surment of plasmon properties in strange metals [17]. Thus, holographic plasmon physics
is an area of holography where it should be possible to verify its predictions with exper-
imental measurments. We study the linear response in our holographic superconductor
toy model and compute dispersion relations of longitudinal quasi-normal modes. By in-
corporating the plasmon boundary condition derived in [13] we attempt to compute a
plasmon dispersion relation for the superconductor. It turns out that the plasmon bound-
ary condition will need to be modified for the superconductor model and the computed
plasmon dispersion relation is not to be trusted.

1.3 Some notes on conventions
Here we summarize some of the conventions used in this thesis. When not stated oth-
erwise, we work in natural units where c = h̄ = 1. For the signature of the metric we
use positive signs for spatial coordinates and negative signs for time components. When
it comes to dimensions in holographic models d is used as the number of spatial dimen-
sions in the boundary QFT, i.e. d+ 1 is the spacetime dimension of the boundary QFT
and d + 2 is the spacetime dimension of the bulk gravity theory. If not explicitly stated
otherwise, an integral measure dd+2x denotes a volume element of the bulk spacetime
including the time and radial coordinates. Capital latin letters will be used for indices
ranging over all of the d+ 2 coordinates in the bulk spacetime whereas greek indices will
range over the d+ 1 ‘flat’ coordinates shared by the bulk and the boundary. Lower-case
latin indices will range only over the d spatial boundary coordinates.

3Even just a basic solid state physics course will suffice as a condensed matter background.
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2
Large N Field Theories

This chapter is devoted to a brief overview of large N field theories and their connection to
the AdS/CFT correspondance and holography. Although the AdS/CFT correspondance
is rooted in string theory, much of the physics it gives rise to is accessible without using
any of the mathematical machinery of string theory by taking a bottom-up approach. In
a bottom-up approach we only need to know about the classical gravity content of the
holographic duality, and how to interpret gravitational quantities in terms of quantities
in the dual QFT. The translation between the two sides of the duality is accomplished
using the holographic dictionary which is the subject of Chapter 4. Here we give a
brief discussion of the field-theoretical background of holography, which is essential for
understanding what kind of quantum field theories and condensed matter systems one is
dealing with in holography.

The quantum field theories described by holography are matrix large N field theories.
These can for example be gauge field theories transforming in the adjoint representation
of some symmetry group, e.g. U(N), in the limit of large N . As fields transforming in the
adjoint they are most conveniently represented as N ×N -matrices with gauge invariant
interaction terms being functions of traces of the fields. One of the main advantages of
the holographic approach is that a strongly coupled QFT correspond to a weakly coupled
gravitational theory, as will be elaborated on in 3.2.

A familiar example for the high energy physicist of a matrix field theory is the non-
Abelian Yang-Mills gauge theory, characterized by a U(N) or SU(N) gauge group1. The
matrix fields transform in the adjoint of the gauge group. Part of the foundations of
holography and the AdS/CFT correspondence was laid already in the 1970s by ’t Hooft
in [19]. There he considered a U(N) gauge theory in the limit of large N with g2N held
fixed, where g is the U(N) coupling constant. This limit is now commonly known as
the ’t Hooft large N limit and g2N is referred to as the ’t Hooft coupling. It allowed for
a diagrammatic expansion in 1/N with the leading contributions coming from ‘planar
diagramms’. Furthermore, it was expected that the ’t Hooft large N limit was somehow
related to string theory. However, it remained until the discovery of the AdS/CFT
correspondance [4] until the connection with string theory became clear.

There are other types of large N limits of quantum field theories, e.g. vector large N field
theories where the fields transform in the vector representation of some symmetry group
rather than the adjoint. We will consider such a vector large N limit in 2.2 as to demon-
strate the existence of a saddle point description, a trait which the vector large N limit
has in common with the ’t Hooft matrix large N limit. The saddle point description in
the matrix large N limit is, however, of a completely different kind.

1The U(N) and SU(N) gauge groups are related as U(N) = (SU(N)/ZN )×U(1) [18]. The elements
of ZN are already included in U(1) and are therefore excluded from SU(N) by taking the quotient group
SU(N)/ZN . However, the Lie algebra of SU(N) and SU(N)/ZN are identical. Thus, the U(N) and
SU(N) gauge theories essentially differ only by a decoupled Maxwell field, i.e. a photon.

5



2. Large N Field Theories

Since path (or functional) integrals will be used quite frequently in parts of this work
we proceed with a short summary of the basic rules in this formalism. Then we derive a
saddle point description of a vector large N theory in 2.2. In 2.3 we introduce some of the
basic quantities of matrix large N field theories as well as the most essential properties
for its application to bottom-up holography.

2.1 Correlation functions in the path integral repre-
sentation

In general, physical observables in a QFT are constructed from the expectation values
and multi-point correlation functions2 of the field operators. These expectation values
and multi-point functions are the basic set of observables that characterize the QFT. In
the path integral formalism the partition function or vacuum amplitude is given by

ZQFT =
∫
DΦ eiI[Φ] , (2.1)

where Φ denotes collectively the field degrees of freedom and I[Φ] is the microscopic
action. The action is an integral over a Lagrangian density L(x). A generating functional
for multi-point functions can be constructed from the partition function by adding source
terms to the action,

ZQFT[hi] =
∫
DΦ eiI[Φ]+i

∫
dd+1xhi(x)Oi(x) , (2.2)

where hi(x) is a set of external fields coupled to local field variablesOi(x) of the QFT, (the
indices i are summed over). The QFT here is defined in d+ 1 spacetime dimensions. In
the language of linear response theory, the external field hi(x) is referred to as the source
and the field variable Oi(x) as the response. Any multi-point function of local operators
can then be calculated by taking functional derivatives of the generating functional with
respect to the sources, taking the limit of vanishing sources in the end,

〈Oi1(x1)Oi2(x2)...Oin(xn)〉 = (−i)n 1
ZQFT

δ

δhi1(x1)
δ

δhi2(x2) ...
δZQFT[hi]
δhin(xn)

∣∣∣∣
hi=0

. (2.3)

Thus, the partition function contains all the relevant information about the spectrum of
the QFT, a fact that will be important when translating a QFT observable to a dynamical
field in the gravitating dual description, which is the subject of the next chapter. Note
that only classical field variables goes in the path integral. The non-commuting nature of
the field operators automatically comes out of the formalism when computing correlation
functions using the generating functional. Also note that the generating functional (2.2)
equals the expectation value of exp

(
i
∫
dd+1xhi(x)Oi(x)

)
, and some authors write

ZQFT[hi] ≡
〈
ei
∫
dd+1xhi(x)Oi(x)

〉
. (2.4)

In the case of a free field theory the Lagrangian consists only of kinetic terms and mass
terms which are both quadratic. Hence, the path integral then becomes Guassian and
can be evaluated analytically. In the next section we demonstrate how to calculate such
a Guassian functional integral.

2The expectation value is just the one-point correlation function.
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2. Large N Field Theories

2.2 The vector large N limit
In a conventional, non-holographic, approach to condensed matter physics, it is far more
common to work with vector rather than matrix field theories. In contrast to the ma-
trix large N field theories, the vector large N field theories are effectively free in the
large N limit [1], [2]. Although the matrix field theories are the ones relevant for holog-
raphy, we present here a brief demonstration of the saddle point description realized in
the large N limit of vector field theories.

In particular, we consider a vector large N bosonic field theory with an O(N) sym-
metry. The results for other types of vector field theories are similar since the vector
large N mean field is rather generic [2]. Due to the imposed O(N) symmetry, interac-
tions are restricted to be functions of φ · φ = φi φ

i, where φi is the bosonic vector field.
For concreteness, we consider a theory with a φ4 interaction term and an action given by

S =
∫
dd+1x

(
−1

2∂µφi ∂
µφi − m2

2 φi φ
i − λ

4!
(
φi φ

i
)2
)
, (2.5)

with i = 1, 2, ..., N . For small values of the coupling constant λ the theory is weakly
interacting and can be analyzed using a standard diagrammatic perturbation expansion
in λ. However, for a strongly interacting theory characterized by a large λ, perturbation
theory cannot be used. The usefulness of the vector large N field theories comes from the
fact that such models are effectively free in the large N limit. The partition function can
be evaluated in terms of saddle points of an effective action for a set of non-fluctuating
operators obeying

〈Oi1 Oi2 ...Oin〉 = 〈Oi1〉 〈Oi2〉 ... 〈Oin〉+O
( 1
N

)
, (2.6)

to leading order in large N . The theory at large but finite N can then be studied
perturbatively, expanding in powers of 1/N around the classical large N limit solution.

The idea is to perform a Hubbard-Stratonovich transformation of the action (2.5).
This transformation makes use of a standard Guassian integral to introduce an auxiliary
field. The purpose is to linearize the quadratic term in the action. The partition function
for our O(N) bosonic field theory is

Z =
∫ ∏

k

Dφk e
iS , (2.7)

with the action S being given by (2.5). The Hubbard-Stratonovich transformation makes
use of the functional generalization of the Guassian integral,

1√
2πα

∫ ∞
−∞

dy e−
y2
2α−ixy = e−

α
2 x

2
, (2.8)

valid for Re(α) > 0. Introducing an auxiliary scalar field σ(x) to substitute for y and
substituting φi φi for x in (2.8), we have

Z =
∫ ∏

k

Dφk e
i
∫
dd+1x

[
− 1

2∂µφi ∂
µφi−m

2
2 φi φ

i− λ
4!(φi φi)

2
]

=
∫ ∏

k

DφkDσ

√
6
iπλ

e
i
∫
dd+1x

[
− 1

2∂µφi ∂
µφi−m

2
2 φi φ

i+ 6
λ
σ2−φi φi σ

]
.

(2.9)
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2. Large N Field Theories

The overall square root factor can be dropped since it will not affect any correlation
functions generated by Z. Integrating the kinetic term by parts, assuming no boundary
contributions, and then integrating out the φk fields, we get

Z =
∫ ∏

k

DφkDσ e
i
∫
dd+1x[ 1

2φi(∂2−m2−2σ)φi+ 6
λ
σ2]

=
∫ ∏

k

DφkDσ e

∫
dd+1x dd+1y

[
− i

2φi(x)δ(d+1)(x−y)
(
−∂2

(y)+m
2+2σ(y)

)
φi(y)

]
ei
∫
dd+1x 6

λ
σ2

=
∫
Dσ

[
det

(
2πi δ(d+1)(x− y)(−∂2

(y) +m2 + 2σ(y))
)]−N2 ei

∫
dd+1x 6

λ
σ2

=
∫
Dσ [det(2πi)]−

N
2 e
−N2 tr log

[
δ(d+1)(x−y)(−∂2

(y)+m
2+2σ(y))

]
ei
∫
dd+1x 6

λ
σ2

=
∫
Dσ eiN

∫
dd+1x( 6

λ̂
σ2+ i

2 log(−∂2+m2+2σ)) ,

(2.10)

where we have once again thrown away an overall constant factor [det(2πi))]−N/2 in the
last step. The standard identity detA = etr logA was used to absorb the effect of the N
functional determinants into a redefinition of the action. In the last step we have also
redefined the coupling constant as λ̂ = λN , in order to extract a factor of N from the
action. Thus, after a Hubbard Stratonovich transformation the action reads

S = N
∫
dd+1x

(6
λ̂
σ2 + i

2 log
(
−∂2 +m2 + 2σ

))
. (2.11)

This is an effective action for the auxiliary field σ(x), which must be a function of φi φi in
order to preserve the O(N) symmetry. Since φi φi is a sum of the squares of N fluctuating
fields, we should expect that fluctuations of σ are subleading in N , (the argument here
is essentially the central limit theorem).

In the large N limit, with λ̂ held fixed, the dominating contributions to the partition
function comes from the saddle points of the effective action (2.11). Furthermore, since
the vector large N mean field is effectively free, we can study the regime of large but
finite N by a perturbative diagrammatic expansion in 1/N around the mean field saddle
point solution. The diagrammatic expansion has the structure of a conventional weak-
coupling perturbation expansion. However, in the large N limit only a subset of the
diagrams are summed over. In terms of our original model (2.5), this corresponds to each
correlation function being approximated by its ‘maximal loop decomposition’ to leading
order in large N [2]. Consequently, in the large N limit higher order correlation functions
factorize into a product of expectation values of classical operators as in (2.6).

The vector large N limit has clearly some similarities with the classical limit h̄ → 0.
Restoring h̄, the partition function is given by

Z =
∫ ∏

k

Dφk e
i
h̄
S , (2.12)

and in the limit h̄ → 0 the theory can be semi-classically expanded around the sad-
dle points of the action in powers of h̄. However, in contrast to the classical limit, the
saddle point equations in the large N limit depends on the coupling constant and can
therefore capture non-trivial quantum physics which the semi-classical or weakly inter-
acting theories are unable to capture. This is one of the motivations for considering such
large N models.
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2. Large N Field Theories

2.3 Matrix large N field theories
We have now seen how the vector large N field theories allows for a mean field saddle
point description of the theory. There is a novel kind of a saddle point description for
the matrix large N field theories. In contrast to the vector large N theories, the mean
field saddle point description of the matrix large N theories is encoded in a gravitating
theory in one higher dimension.

In the strongly coupled gauge theories which are realized in several top-down con-
structions, the field operators are large N ×N matrices ΦI transforming in the adjoint of
the gauge group. One then considers normalized gauge invariant operators of the form
[20]

Oi = 1
N

TrFi (ΦI , ∂ΦI) . (2.13)

Here Fi(ΦI , ∂ΦI) are arbitrary functions of the matrix fields and their derivatives. Fur-
thermore, Fi is defined without any traces or explicit dependence on N . The simplest
example of such a function is a product of n matrix fields,

Oi = 1
N

Tr (ΦI1ΦI2 ...ΦIn) . (2.14)

Operators of the form (2.13) are called single-trace operators and in the large N limit,
the expectation value of a product of single-trace operators factorize into the product of
the expectation values of the single-trace operators [1], [21],

〈Oi1 Oi2 ...Oin〉 = 〈Oi1〉 〈Oi2〉 ... 〈Oin〉+O
( 1
N

)
. (2.15)

Thus, single-trace operators behave as classical variables in the large N limit. Note that
in this product is not a multi-point correlation function, as all the single trace-operators
should be evaluated at the same point in spacetime. This factorization further implies
that the variance of these single-trace operators vanish in the large N limit, and con-
sequently, the statistical ensemble of field configurations summed over in the partition
function reduces to a single point [2], as first discovered by Witten [21]. He postulated
that there should be a ‘master field’ formulation of matrix large N field theories where
this localization to a single configuration is manifest. As it turns out this master field
formulation seems to be a string theory, and it is deeply connected to the AdS/CFT
correspondence.

One can also construct more general ‘multi-trace’ operators by forming products of
single-trace operators. Then, to leading order in large N , the expectation values of
any multi-trace operator factorizes into a product of expectation values of single-trace
operators. Hence, multi-trace operators disappear from the spectrum in the large N limit.
However, multi-trace operators can be used to deform a theory at large but finite N ,
effectively resulting in a change of boundary conditions for the bulk fields. We will
discuss the topic of multi-trace interactions in 4.2.3.

Having constructed single-trace operators from the matrix fields, we consider an action

I[Oi] = N2W [Oi] . (2.16)

Here the functional W [Oi] is defined with no dependence on N . The powers of N in
the definitions (2.13) and (2.16) are chosen to guarantee the existence of a well-defined
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large N limit [20]. However, we will often omit extracting the explicit dependence of N
in this way, and then we just have to keep in mind that single-trace operators goes as
1/N and the action goes as N2.

In 3.2 we present a rather non-technical summary of the argument behind the Ad-
S/CFT conjecture. The role of the large N limit and the limit of strong ’t Hooft coupling
in holography will then be made clear. However, it is worth to point out here why these
limits are so essential for the applications of holographic duality to condensed matter
physics. In general, the bulk theories in holography are full string theories of quantum
gravity in higher dimensional spaces. These theories of quantum gravity are not yet
well understood and one cannot use them to perform reliable holographic computations.
However, there exists two key simplifying limits in which the holographic approach of de-
scribing quantum field theories and condensed matter systems by their dual gravitational
theory becomes practical [1]:

• In the large N limit the AdS radius L is much larger than the Planck length scale
lP . As a consequence, effects due to quantum gravity which are suppressed by
powers of lP/L may be neglected, justifying us to work in the classical limit.

• In the limit of strong ’t Hooft coupling g2N →∞ the AdS radius is much larger than
the string length scale ls. Considering a derivative expansion of the bulk action one
may keep only the terms that are at most quadratic in derivatives. Higher order
derivatives are suppressed by powers of ls/L. Moreover, an excited string state
typically has a mass m ∼ 1/ls and therefore most of the excitations acquire large
masses in the strong coupling limit. Only a few low energy string states are left in
the spectrum. This means that it is reasonable to consider only a small number of
bulk fields having small masses.

Taking the large N limit and limit of strong ’t Hooft coupling in the quantum field theory,
the dual gravitational theory effectively reduces to ordinary general relativity on a bulk
spacetime with one extra dimension. In addition there will be only a small content of
light bulk fields which needs to be considered when describing low energy phenomena.

There are some caveats regarding the second point above. For one thing, bulk theories
stemming from top-down constructions are generally supergravity defined on some ten- or
eleven-dimensional spacetime. These higher dimensional spacetime manifolds generally
have the form of an anti-de Sitter space times a compact space. In Maldacenas original
holographic model [4] the bulk spacetime geomerty is AdS5×S5. In this case the compact
space is a five dimensional sphere. This compact space can be considered an internal
space which introduces an infinite tower of Kaluza-Klein modes to the bulk theory. With
the inclusion of these modes the bulk theory may obtain a larger number of light fields [1].
In bottom-up holography one assumes that the internal space and the infinite tower of
modes living there have been removed by a consistent truncation of the underlying string
theory. Finding consistent truncations of string theory, reducing the dimensionality of
the bulk space and removing undesired Kaluza-Klein modes, are problems left for the
top-down holographist.

Another caveat to the second point above regarding the limit of strong ’t Hooft cou-
pling is that there may in principle exist a finite number of higher order derivative terms
with an unsuppressed coupling. Such higher derivative terms effectively introduces ad-
ditional bulk fields which often turns out to be ghosts. Fine tuning the bulk theory is
required to turn these ghosts into well-behaved physical bulk fields. An infinite number
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of unsuppressed higher derivative terms would, however, correspond to a non-local action
[1].

We end our discussion about matrix large N field theories and the ’t Hooft large N limit
here. For further information on the topic and an introduction to the planar diagram-
matic structure and double line notation we refer to the original paper [19], but see also
[2].
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3
Black Holes, the Holographic
Principle and the AdS/CFT

Correspondance

In this chapter we give a brief review of some of the historical developments of black
hole physics in the 20th centuary which eventually led to the proposition of ‘the holo-
graphic principle’ [22], [23]. We follow up with a qualitative derivation of the AdS/CFT
correspondance [4], the first realization of the holographic principle in a model of quan-
tum gravity and the best understood version of a holographic duality. The AdS/CFT
correspondance is deduced from a string theory setting and thus require some concepts
thereof. The readers who which may safely skip 3.2 where we discuss the argument be-
hind the AdS/CFT correspondance at a qualitative level without going in to too much
technicalities. In 3.3 we provide a short review of anti-de Sitter space since this spacetime
is a fundamental part of the best understood versions of holographic duality.

3.1 A breif review of black hole physics and the holo-
grapic principle

Much of the foundations of holography was laid already in the late 1960s and 1970s by
the groundbreaking work on black holes by Bekenstein, Hawking, Penrose, and collabora-
tors. This includes the ‘singularity theorems’, the ‘no-hair theorems’, the thermodynamic
interpretation of black holes, Hawking’s discovery that black holes quantum mechanically
radiate, and Hawking’s information paradox. The singularity theorems proved that ordi-
nary matter in general relativity collapses and produces singular spacetimes, making the
black hole solutions physically relevant contrary to what was previously assumed. The
no-hair theorems stated that the black hole solutions in general relativity1 are uniquely
determined by the massM , the charge Q, and the angular momentum J of the black hole.
However, the area AH of the horizon and the surface gravity2 κ are other useful charac-
terizing properties of a black hole to consider. A precise resemblance of the four laws of
thermodynamics was found for the mechanics of black holes in [25]. More precisely, they
found the following four laws:

1. The surface gravity κ of a stationary black hole is constant over the horizon.

1In 3+1 spacetime dimensions and when asymptotic to flat spacetime.
2For stationary spacetimes with a Killing horizon, the surface gravity is defined as the force required

at infinity to hold a unit mass in place an infinitesimal distance above the horizon. For the case of
non-Killing horizons we refer the interested reader to [24].
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2. For adiabatic changes,

δM = κ

8πGN
δAH + ΩδJ + ΦδQ , (3.1)

where GN is Newtons constant.

3. The area of the horizon never decreases with time, i.e. δAH ≥ 0.

4. It is impossible by any idealized procedure to reduce the surface gravity κ to zero
by a finite sequence of operations.

These laws are the analogues of the zeroth through third laws of thermodynamics. This
interpretation was further enhanced by the Bekenstein-Hawking formula for the entropy
of a black hole [26], [27],

SBH = kBAH
4lPlanck

≡ kBAH
4h̄GN

, (3.2)

as well as Hawking’s discovery [27] that black holes semi-classically radiate at a temper-
ature,

T = h̄κ

2π . (3.3)

Here lPlanck =
√
h̄GN is the Planck length in 3+1 dimensions, kB is Boltzmann’s constant,

and h̄ is of course Planck’s constant. We have chosen units where the speed of light is
one. With these formulas for the entropy and temperature of a black hole, and with
the identification of M as the energy of a black hole by Einsteins E = mc2 law, (3.1) is
precisely the first law of thermodynamics, δE = TδS.

The thermodynamic interpretation of classical black holes led to an immediate contra-
diction. Equilibrium thermodynamics are macroscopic properties of a system emerging
from the statistical mechanics of its microscopic constituents. The black hole entropy
should measure the number of microstates giving rise to the same thermodynamic prop-
erties, in terms of the horizon area in units of Planck length squared. Hence, the black
hole must have a microscopic description. This directly contradicts the no-hair theorems
specifying that a black hole has no distinguishing features beyond its total mass, electric
charge, and angular momentum. As a further consequence of these no-hair theorems, the
Hawking radiation must be thermal, i.e. a mixed quantum state [2]. If a pure state then
were to cross the horizon, and only a mixed state carrying less information could ever
radiate from the black hole, information would be lost. This is Hawking’s famous ‘in-
formation paradox’ [28]. A quantum theory without conservation of information would
necessarily have to be non-unitary. Since unitarity is an essential feature of quantum
theories as we know them, it would arguably be highly undesirable to discard the con-
servation of information when constructing a theory of quantum gravity. Although the
information paradox to this day remains unsolved, it is generally believed that informa-
tion somehow should not get lost when crossing the horizon of a black hole. Various
speculative resolutions to the paradox have been proposed, e.g. a firewall3 at the horizon
[29] and the ER=EPR conjecture [30].

Bekenstein’s realization that a black hole has an entropy proportional to the area of its
event horizon, as given by (3.2), is remarkable. First, the Bekenstein-Hawking formula
involves h̄, kB, GN, and c (if c is not set to one), thus merging quantum mechanics,

3A firewall at the horizon is a paradox on its own known as the ‘AMPS firewall paradox’.
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statistical physics, gravity and special relativity in one formula. Second, it tells us that
the entropy of a black hole is not extensive, i.e. it does not scale with the volume of
the space it occupies. Instead the black hole entropy scales with the area of its confining
surface. We refer the reader to [31] for a recent review of black hole entropy and some of
the main developments that has occurred since Bekenstein’s original proposal [26].

The observation that black hole entropy scales with the area led ’t Hooft to propose
that the observable degrees of freedom in a theory of quantum gravity in 3+1 spacetime
dimensions could be stored in a 2 dimensional lattice evolving in time [22]. Susskind
subsequently elaborated on this idea [23]. Supposedly, all the physical phenomena in our
three dimensional world can be projected onto a two dimensional lattice at the spatial
boundaries, with one discrete degree of freedom stored per Planck area. This idea be-
came known as ‘the holographic principle’ after the analogy with an holographic image.
The holographic principle poses some severe restrictions on possible theories of quantum
gravity. Despite these restrictions a model of quantum gravity consistent with the holo-
graphic principle remained elusive, until the discovery of the AdS/CFT correspondance
[4].

3.2 The AdS/CFT correspondance
The AdS/CFT correspondance is a conjecture stating that certain compactifications of
M/string theory on AdS spacetimes are dual to various matrix large N conformal field
theories. The prototype example is that of type IIB supergravity on AdS5× S5 which is
dual to N = 4 U(N) super-Yang-Mills theory in 3+1 spacetime dimensions. N = 4 is
an extended supersymmetry where the supersymmetry generators carries a usual spinor
index but also an additional index i = 1, 2, ...,N counting the number of independent
spinor charges. Here we present an outline of the argument behind this particular duality
of type IIB superstring theory and N = 4 super-Yang-Mills theory.

Any consistent string theory must posses both open and closed strings. For instance,
a one loop diagram of an open string is equal to a tree level diagram of a closed string,
after a reparametrization of the worldsheet coordinates [2]. In this way it is possible to
view certain processes of a string theory from both an open and closed string perspective.
This is known as the open/closed string duality.

In particular, we consider a large but fixed number N of D3 branes stacked parallel
to each other in a 9+1 dimensional spacetime. Recall that a D-brane (Dirichlet brane)
is a hyperplane spanned by the Dirichlet boundary conditions of an open string. A
Dp-brane is an object with p spatial dimensions, e.g. a D0-brane is a point particle, a
D1-brane is a string etc. Thus, we are considering three dimensional objects embedded
in nine spatial dimensions, stacked upon each other. Furthermore, D-branes are non-
perturbative solitons of string theory, i.e. they are localized finite energy states which
can interact with each other.

D-branes are gravitating objects and how strongly they gravitate is determined by
their tension as well as the strength of the gravitational force [1]. The tension of N
D3-branes goes like N/gs, where gs is the string coupling constant. The strength of the
gravitational force on the other hand goes as g2

s . We define a coupling constant,
λ = 4πgsN . (3.4)

It can then be show that when λ� 1 gravitational effects can be neglected, whereas when
λ� 1 the branes gravitate strongly [32]. The string coupling constant gs determines the
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strength of the interactions between the strings. For small gs we have free open strings
on the branes and type IIB closed strings propagating over the whole spacetime.

The trick is to consider the low energy limit of this model of N parallel D3-branes
on both sides of the open and closed string duality. More precisely, we consider energies
smaller than the string energy scale E � 1/ls = 1/

√
α′, where ls is the string length and

α′ is the slope parameter. Alternatively, we can think of the energies as being bounded
and taking α′ → 0. Moreover, one takes the limit of small λ on the open string side and
the limit of large λ on the closed string side. By the open/closed string duality, the open
and closed string sides describe the same physical system, albeit in different regimes of
weak/strong coupling λ.

Consider first the low energy excitations on the open string side, in the limit of
vanishing gravitational effects λ � 1. In this regime the D3-branes are fixed in a 9+1
dimensional flat spacetime. The low energy degrees of freedom are the excitations of open
strings stretching between any of the N D3-branes and free closed strings propagating
on the full spacetime4. The low energy open string excitations are massless gauge fields
Aµ propagating on the branes. There are N2 such open strings because each of the two
endpoints may be fixed on any of the N D3-branes. In the low energy limit these N2

open strings are described by N = 4 U(N) super-Yang-Mills theory in 3+1 dimensions.
This is a superconformal field theory with an action,

SSYM = 1
4πgs

∫
d4x Tr

(
F 2 +DµΦDµΦ + iΨ̄γµDµΨ + iΨ̄[Φ,Ψ]− [Φ,Φ]2

)
. (3.5)

Here F is the U(N) field strength and Dµφ = ∂µφ + i[Aµ, φ] is the U(N) covariant
derivative. The super-Yang-Mills coupling constant gSYM is related to the string coupling
constant as g2

SYM = gs. There are six bosonic fields Φ and four fermionic fields Ψ, all
transforming in the adjoint of U(N). In U(N) Yang-Mills theory one U(1) Maxwell field
decouples and the remaing theory is SU(N) Yang-Mills theory [32]. The gauge group
indices also labels which of the N D3-branes the corresponding string begin and end on.
Using our definition of λ (3.4), the coupling in the action can be rewritten as N/λ. Thus,
λ has the form of a ’t Hooft coupling. In conclusion, the low energy excitations of N
parallel D3-branes in the limit of small λ takes the form of a weakly interacting matrix
large N theory, namely N = 4 SU(N) super-Yang-Mills theory in 3+1 dimensions, and
free type IIB closed strings on a 9+1 dimensional flat space.

We now turn to the closed string side of the duality. In the low energy limit the
excitations on the branes and the ones on the entire spacetime are still decoupled. How-
ever, in the limit of large λ � 1 the strong gravitational force causes the D3-branes to
collapse upon themselves, forming a ‘black brane’. Black branes are black hole solutions
with translationally invariant planar horizons5 [33], as opposed to the spherical horizons
of the black holes that exist in our universe. Because the D-branes carry a Ramond-
Ramond charge the black brane will be charged and thus described by an analogue to
the Reissner-Nordström (RN) black hole solution. The horizon is defined as a surface of
infinite gravitational redshift, and it is located an infinite distance away from any point
on the spacetime at the end of an infinite throat [32]. The low energy excitations of the
black brane system are partly the closed string excitations occuring in the near horizon

4The zero modes of the soliton are also part of the low energy excitations of the system.
5In a d + 2-dimensional spacetime the black brane horizon will be a d dimensional Euclidean space.

However, in the following chapters we will simply refer to these objects as black holes and the spatial
direction orthogonal to the horizon will be referred to as a radial direction.

16



3. Black Holes, the Holographic Principle and the AdS/CFT Correspondance

region, due to the increasing redshift for an observer at infinity. This region is commonly
referred to as the near horizon geometry. Low energy excitations of closed strings far
away from the black brane, at an asymptotically flat spacetime, are the other part of
the systems low energy excitations. In the case of a black brane formed by collapsing
D3-branes, the near horizon geometry is that of AdS5× S5. The metric of this spacetime
can be written as

ds2 = r2

L2ηµνdx
µdxν + L2

r2 dr
2 + L2dΩ2

5 , (3.6)

where the horizon is located at r = 0, ηµν is the Minkowski metric and dΩ2
5 is the metric of

the five sphere. The AdS radius L is related to the string length ls and the ten dimensional
Planck length lP as

L = λ1/4ls = (4πN)1/4lP . (3.7)

In the limit of strong ’t Hooft coupling λ � 1 and large N , the AdS radius is seen to
be much larger than both the string length and the Planck length. As a consequence, in
these limits one can neglect the effects of highly excited string states and quantum gravity,
which are suppressed by powers of ls/L and lP/L, respectively. As mentioned, part of
the low energy excitations will be described by the excitations of closed strings in the
near horizon region. Since the closed string sector includes gravitons, these excitations
includes ordinary classical gravitational perturbations of the near horizon geometry (3.6).

By the open/closed string duality, we have described the low energy excitations of
N parallel D3-branes in two different limits. In the limit of small ’t Hooft coupling λ
they are described by weakly interacting N = 4 U(N) super-Yang-Mills theory, a matrix
large N superconformal field theory, plus low energy excitaions of free type IIB closed
strings on a flat 9+1 dimensional spacetime. On the other hand, in the limit of large λ
they are described by classical gravitational perturbations about the near horizon AdS5×
S5 geometry, plus low energy excitations of free type IIB closed strings on a flat 9+1
dimensional spacetime similar to the ones on the open string side. In the low energy
limit this decoupling occurs for all values of λ. Since the two sides should describe the
same physical system in the two different regimes of λ� 1 and λ� 1, and since we have
decoupled a free closed string sector in 9+1 flat spacetime on each side, it is reasonable
to conjecture that type IIB superstring theory on AdS5× S5 should be a description of
strongly interacting N = 4 U(N) super-Yang-Mills theory in 3+1 dimensions. In other
words, the classical gravitational dynamics of the near horizon geometry (3.6) should
describe a strongly interacting matrix large N field theory. This is the effective classical
‘master field’ description of a matrix large N field theory postulated by Witten in [21].

The argument for the AdS/CFT conjecture is further enhanced by symmetry consid-
erations. The N = 4 U(N) super-Yang-Mills theory in 3+1 spacetime dimensions is a
superconformal field theory, i.e. it possesses supersymmetry and is invariant under the
conformal transformations. The symmetries of the dual type IIB superstring theory on
AdS5× S5 must then have exactly these symmetries. The supersymmetry transformations
of the super-Yang-Mills theory mixes the bosonic and fermionic fields among each other
under rotations. This rotational symmetry is precisely the isometry group of the five
sphere S5. Furthermore, the conformal group in 3+1 spacetime dimensions is SO(2, 4),
which is precisely the isometry group of AdS5 [1], [2], [32]. In fact, the boundary of AdS5
at r = ∞ inherits the conformal symmetries of the isometry group. This motivates us
to think of the N = 4 super-Yang-Mills theory as living on this ‘conformal boundary’ of
AdS5 space.
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The duality we have found here is between N = 4 SU(N) super-Yang-Mills theory in
four spacetime dimensions and type IIB supergravity on AdS5× S5, which is a ten dimen-
sional spacetime. At first glance, this may seem to be inconsistent with the holographic
principle which suggests that the gravitational theory should live in a space with one
higher dimension than the quantum field theory. However, the five-sphere is a compact
space and we can think of it as an internal space carrying excitations of massive modes
living on AdS5. For every field in the full ten dimensional spacetime we get an infinite
tower of fields in AdS5, one for each spherical harmonic on the five-sphere [1]. The mass
of these Kaluza-Klein modes is proportional to the angular momentum of the spherical
harmonics. In this way we interpret the four dimensional Yang-Mills theory as the dual
of a gravitational theory on the five dimensional AdS5. It is then rightfully referred
to as a holographic duality, consistent with the holographic principle. There is an im-
portant caveat here, however. The Kaluza-Klein modes generically causes the emergent
low energy field theory to grow extra dimensions, something which is highly undesired
when considering applications to condensed matter physics. The most common way to
deal with this issue is to find consistent truncations of string theory models, where it is
possible to keep only a finite number of these Kaluza-Klein modes. Finding consistent
truncations of string theory is an objective of the top-down approach to holography. We
will not be considering these issues in this thesis, as we take the more pragmatic bottom-
up approach to holography. The interested reader is referred to [1] and the subsequent
references listed there.

We have now presented the argument for the specific duality between type IIB super-
string theory on AdS5× S5 and N = 4 U(N) super-Yang-Mills theory in 3+1 spacetime
dimensions. However, analogue arguments hold for many other types of supergravity
theories defined on various spacetimes which are the product of an anti-de Sitter space
and some compact space. These are found to be dual to other kinds of superconfor-
mal field theories. Moreover, holographic dualities are thought to exist which are even
more general in the sense that the quantum field theory does not need to possess confor-
mal symmetry. Much of the material in this thesis is based upon the existence of such
generalized dualities.

3.3 Anti-de Sitter space
Anti-de Sitter space is a fundamental ingredient in AdS/CFT and plays a crucial role
in the holographic dualities relevant for condensed matter applications. It is therefore
appropriate to review some of its most important features in the context of holography.
In the process some standard concepts of differential geometry will be introduced.

It is instructive to classify AdS space with regard to its symmetries. Recall that a
diffeomorphism is a smooth, one-to-one map from a manifold to itself. It can be thought
of as the active transformation of the corresponding passive coordinate transformation. A
diffeomorphism under which the metric is invariant is called an isometry. The symmetries
of a spacetime manifold are its isometries. The Lie derivative Lξ gives the rate of change
under a diffeomorphism along the integral curves of a vector ξµ. More precisely, under a
diffeomorphism generated by ξµ the metric transforms as

gµν → gµν + Lξgµν = gµν +∇µξν +∇νξµ , (3.8)
where ∇µ is the covariant derivative. Thus, vectors ξµ that satisfy ∇µξν + ∇νξµ =
0 generate isometries of the spacetime. These vectors are called Killing vectors and
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∇µξν + ∇νξµ = 0 is called Killing’s equation. For every symmetry of the spacetime
there is a corresponding distinct Killing vector. Since the metric is a symmetric 2-tensor,
it has D(D + 1)/2 independent components in D dimensions. There can then be at
most D(D + 1)/2 independent Killing equations and consequently equally many Killing
vectors. Spaces with this maximal number of Killing vectors are referred to as maximally
symmetric spaces. There are exactly three maximally symmetric spacetimes, and these
are Minkowski space, de Sitter space, and anti-de Sitter space. The Killing vectors form
a group under rotations called the isometry group of the space. The isometry group of
a D dimensional Minkowski space is the Poincaré group ISO(1, D − 1) consisting of the
Lorentz transformations SO(1, D − 1) and spacetime translations. The isometry groups
of de Sitter space and anti-de Sitter space are SO(1, D) and SO(2, D − 1), respectively,
the latter being isomorphic to the conformal group.

These Lorentzian maximally symmetric spacetimes have a Euclidean analogue. In
particular, D dimensional Minkowski space is the Lorentzian verion of (flat) Euclidean
space RD. Similarly, de Sitter space and anti-de sitter space in D dimensions are the
Lorentzian versions of the sphere SD and hyperboloid HD, respectively. The manifolds
RD, SD, and HD are the three maximally symmetric spaces with Euclidean signature.

The three maximally symmetric spacetimes are solutions to Einstein’s equation in
vacuum with the addition of a cosmological constant Λ,

Rµν −
1
2gµν(R− 2Λ) = 0 . (3.9)

Minkowski space, de-Sitter space, and anti-de Sitter space are the maximally symmetric
solutions with Λ = 0, Λ > 0, and Λ < 0, respectively. In other words, anti-de Sitter space
is the maximally symmetric spacetime with a negative cosmological constant.

3.3.1 Embedding and global coordinates
It is often useful to describe a certain topology, e.g. SD−1, as a surface embedded in a
higher dimensional Euclidean space RD. In this way the D − 1 dimensional sphere is
defined by the points that satisfy the constraint

x2
1 + x2

2 + ...+ x2
D = R2 , (3.10)

where R is the radius of the sphere. The constraint equation makes the SO(D) symmetry
manifest, which is in fact the isometry group of SD−1.

Similarly the D − 1-dimensional hyperboloid HD−1 can be defined by the points in
RD satisfying

−x2
1 + x2

2 + x2
3 + ...+ x2

D = −R2 . (3.11)

Here it is possible to take an alternative perspective and view x1 as a time coordinate.
The D−1-dimensional hyperboloid is then viewed as a surface embedded in D-dimesional
Minkowski space R1,D−1. The hyperboloid has a SO(1, D − 1) symmetry, as is directly
seen from the defining constraint equation (3.11).

Now, D-dimensional anti de-Sitter space AdSD can similarly be defined as a surface
embedded in a higher dimensional space, albeit in an embedding space R2,D−1 with two
time coordinates. The constraint equation for AdSD is then given by

−x2
−1 − x2

0 + x2
1 + x2

2 + ...+ x2
D−1 = −L2 . (3.12)
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The SO(2, D − 1) isometry group of AdSD is again manifest in the constraint equation.
Note, however, that even though the embedding space has two time directions the em-
bedded AdS space has only one time direction. This is of course because the constraint
equation (3.12) makes the two time coordinates dependent. Solving (3.12) amounts to
finding a specific coordinate system for anti de-Sitter space. A particular solution to
(3.12) is given by

X−1 = L coshµ cos τ ,
X0 = L coshµ sin τ ,
X1 = L sinhµ cos θ1 ,

X2 = L sinhµ sin θ1 cos θ2 ,

X3 = L sinhµ sin θ1 sin θ2 cos θ3 ,

...
XD−2 = L sinhµ sin θ1 sin θ2 . . . cos θD−2 ,

XD−1 = L sinhµ sin θ1 sin θ2 . . . sin θD−2 ,

(3.13)

where 0 ≤ µ < ∞, 0 ≤ τ < 2π, 0 ≤ θi < π (for i = 1, . . . , D − 3), and 0 ≤ θD−2 < 2π.
The corresponding metric is

ds2 = −dX2
−1 − dX2

0 + dX2
1 + · · ·+ dX2

D−1

= L2
(
− cosh2 µ dτ 2 + dµ2 + sinh2 µ dΩ2

D−2

)
,

(3.14)

where dΩ2
D−2 is the metric on SD−2. Note that the timelike coordinate τ is periodic,

τ ∼ τ + 2π. For this reason it is common practise to extend the range of τ to the entire
real line R. The coordinates (3.13) with the extended range of τ is the universal cover of
AdSD [34].

It is often useful to map the hyperbolic coordinate µ to a finite range by a coordinate
transformation sinhµ = tan ρ, with 0 ≤ ρ ≤ π/2 for D > 2 and −π/2 ≤ ρ ≤ π/2 for
D = 2. The metric then takes the form

ds2 = L2

cos2 ρ

(
−dτ 2 + dρ2 + sin2 ρ dΩ2

D−2

)
. (3.15)

The overall factor L2/cos2 ρ in the metric does not affect the topology of the space. Thus,
a metric of the form

ds2 ∼ −dτ 2 + dρ2 + sin2 ρ dΩ2
D−2 (3.16)

describe a space which is topologically equivalent to AdSD. Consider first the case of
AdS3. The topologically equivalent metric,

ds2 ∼ −dτ 2 + dρ2 + sin2 ρ dθ2 , (3.17)

describes a cylinder with radial direction ρ and longitudinal direction τ . The topology of
AdS3 is illustrated in Fig. 3.1. AdS3 is the interior of the cylinder. For the single cover
of AdS3 where 0 ≤ τ < 2π the boundaries at the top and bottom of the cylinder should
be identified. Thus, the topology of the single cover is that of a torus. On the other
hand, the universal covering space of AdS3 is obtained by stacking an infinite number of
cylinders on top of each other. The shaded area in Fig. 3.1 is the Poincaré patch which
is the topic of 3.3.2. Now, for the general case of AdSD the S1 coordinate θ is extended
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τ

θ

ρ

Figure 3.1: The topology of AdS3. For the single cover of AdS3 the top and bottom
boundaries should be identified. For the universal cover an infinite number of copies
should be stacked on top of each other, as the coordinate τ is unrolled on the real axis.
The Poincaré patch covers the shaded area.

to hyperspherical coordinates on SD−2. One may still picture the space as a cylinder,
keeping in mind that there are D − 3 additional spherical directions at every point on
the cylinder.

The boundary at ρ = π/2 is strictly not part of the anti-de Sitter space. It does,
however, inherit the full invariance under the conformal group SO(2, D−1), the isometry
group of AdSD [35]. For this reason ρ = π/2 is referred to as the conformal boundary of
AdS space. Note that in physical units this boundary is located an infinite distance away
from any point in AdSD.

3.3.2 Poincaré coordinates
In the context of the AdS/CFT correspondence there is a more convenient choice of
coordinates than the global coordinates (3.13) considered above. These coordinates solves
the AdS constraint equation (3.12) as follows:

X−1 = 1
2z

(
L2 + z2 − t2 +

D−2∑
i=1

x2
i

)
,

X0 = L

z
t ,

Xi = L

z
xi , i = 1, 2, . . . , D − 2 ,

XD−1 = 1
2z

(
L2 − z2 + t2 −

D−2∑
i=1

x2
i

)
,

(3.18)

where 0 ≤ z <∞, −∞ < t <∞, and −∞ < xi <∞. In these coordinates the metric is

ds2 = L2

z2

(
−dt2 + dz2 + dx2

1 + · · ·+ dx2
D−2

)
. (3.19)

As opposed to the global coordinate system (3.13) the coordinates (3.18) only covers half
of AdS space [34]. These coordinates are called Poincaré coordinates and the portion of
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AdS space which they cover6 is known as the Poincaré patch, see Fig. 3.1.
The conformal boundary is located at z = 0 in these coordinates. Furthermore, there

is a ‘horizon’ of infinite redshift7 at z = ∞. Up to an overall conformal factor the
boundary is a Minkowski space R1,D−2. Since the quantum field theories in holography
are defined on the boundary of the bulk space, the Poincaré coordinates are particularly
useful for describing relativistic field theories in flat space.

In the global coordinates (3.13) the topology of the conformal boundary is R×SD−2,
(assuming the temporal coordinate has been unrolled to the real line, otherwise the
topology is S1×SD−2). The spatial volume of the boundary is then finite and carries an
associated length scale, namely the radius of the sphere (which is coincident with the
AdS radius L itself). The conformal boundary of the Poincaré patch, however, has no
such associated length scale since it is infinite. Thus, depending on if one uses global
coordinates or Poincaré coordinates for AdS space, the conformal invariance of the dual
field theory may or may not be broken. Note, however, that it takes two scales to break
the scale invariance. In Chapter 5 we will introduce a temperature scale to the theory
and then the global AdS coordinates will in fact break the conformal symmetry of the
boundary field theory.

Sometimes we prefer to use a the coordinate r ≡ L2/z instead of the z-coordinate
defined above. The metric is then

ds2 = r2

L2ηµνdx
µdxν + L2

r2 dr
2 , (3.20)

where ηµν is the Minkowski metric. The ‘horizon’ is then located at r = 0 and the
conformal boundary at r =∞.

We end our discussion of anti-de Sitter space here. There is of course more to be said
on this topic and the interested reader is referred to [34], [35].

6To be precise, the unshaded portion in Fig. 3.1 is also a Poincaré patch. It is covered by the same
Poincaré coordinates (3.18) but with −∞ < z ≤ 0.

7It can be thought of as a ‘zero size’ black hole horizon. In Chapter 5 we will add a black hole to the
interior of the bulk spacetime, which is characterized by a finite size horizon of infinite redshift at some
finite radius z = z+.
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4
The Holographic Dictionary

Having reviewed the essential features of large N field theories as well as some of the
qualities of the AdS/CFT correspondance, we proceed with a somewhat more technical
chapter devoted to the universal ‘holographic dictionary’. This refers to the rules for
translating the quantities of the gravitational bulk theory to the corresponding observ-
ables in the dual quantum field theory. The main ingredient in this dictionary is the
GKPW formula, which will be introduced in 4.1. We use this GKPW formula to calcu-
late the expectation value and two-point correlation function of a CFT operator in terms
of the leading and subleading behavior of the dual AdS bulk field near the conformal
boundary. We find that the subleading part is proportional to the expectation value of
the CFT operator and that the ratio of the subleading and leading parts are proportional
to the two-point function. These results turns out to be rather generic and independent
of the specific holographic model.

One of the most essential properties of the holographic duality, at least when it comes
to its application to condensed matter physics, is the notion that the renormalization
group flow of the boundary QFT is geometrized by the gravitational bulk spacetime.
More precisely, the extra radial dimension of the bulk is dual to the renormalization
group scale of the boundary QFT. Processes close to the boundary correspond to the
high energy, short distance, UV physics of the QFT whereas the deep interior encodes
the low energy, large scale, IR physics of the QFT. This is the essence of holographic
renormalization theory, a topic that we introduce briefly in 4.2. We conclude this chapter
with a short discussion of the global/local symmetry correspondence in gauge/gravity
dualities.

4.1 The GKPW formula
As mentioned in our discussion of large N field theories, the basic observables of a
QFT are the multi-point correlation functions of field operators. In the case of matrix
large N field theories, the basic observables are the expectation values and multi-point
correlation functions of single-trace operators. Furthermore, the correlation functions can
be generated from the path integral representation of the partition function by taking
functional derivatives in the usual way.

For a theory with gravity it is in general difficult to define observables due to the fact
that the spacetime itself is dynamical. However, when the spacetime has a boundary,
observables can be defined on the boundary, since a boundary of a spacetime is not
dynamical [1]. In AdS/CFT dualities and the applications of holography to condensed
matter physics, the dynamical bulk spacetimes are asymptotically AdS, and as such they
share the conformal boundary of AdS space. One can then consider various types of
boundary value problems for the gravitational bulk theory where boundary values are
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specified for each bulk field. For instance, Dirichlet boundary values may be imposed
on the conformal boundary, giving rise to quasi-normal modes (QNMs). Moreover, the
partition function can be constructed as a function of the boundary values of the bulk
fields. In particular, consider a set of bulk fields {φi(x, r)} with Dirichlet boundary
values limr→∞ φi(x, r) = hi(x) on the conformal boundary. Here r is the radial bulk
coordinate and the argument x denotes collectively all remaining spacetime coordinates.
The partition function of this bulk theory can then be written as

ZBulk[hi(x)] =
∫
φi→hi

(∏
i

Dφi

)
eiS[φi] , (4.1)

where S [φi] is the bulk theory action.
A necessary requirement for a given matrix large N QFT and gravitational theory

to be holographically dual is the existance of a one-to-one correspondance between ob-
servables in the two dual theories. Gubser, Klebanov and Polyakov, and independently
Witten, discovered the right prescription for relating observables in the duality by equat-
ing the partition functions of the respective theories [36], [37],

ZQFT[hi(x)] =
∫
φi→hi

(∏
i

Dφi

)
eiS[φi] . (4.2)

This is commonly referred to as the GKPW formula. More precisely, the partition func-
tion of the gravitational bulk theory with bulk fields {φi(x, r)}, taking boundary values
{hi(x)}, is equated to the generating functional of the QFT with sources {hi(x)} for the
local single-trace operators {Oi(x)}. In this way, the bulk fields {φi} are identified as the
dual quantities corresponding to the QFT operators {Oi}.

Since the large N limit in the QFT corresponds to the classical limit in the grav-
itational theory, the gravitational partition function can be evaluated semi-classically,

ZBulk[hi(x)] = eiS[φ∗i ] , (4.3)

where {φ∗i } is a solution to the equations of motion subject to the boundary conditions
limr→∞ φ

∗
i (x, r) = hi(x).

4.1.1 A CFT expectation value in AdS gravity
As a simple illustration of the GKPW rule in action we will calculate the expectation
value of a local operator in a CFT from the dual AdS gravity description. In particular,
we consider a real scalar field in an AdS background spacetime. The gravitational bulk
theory action is taken to be

S =
∫
AdS

dd+2x
√
−g

(
−1

2g
MN∂Mφ ∂Nφ−

1
2m

2φ2
)
, (4.4)

where g is the determinant of the AdS metric gMN . Capital latin letters will be used for
indices ranging over bulk coordinates whereas indices with greek letters range only over
the ‘flat’ coordinates shared by the bulk spacetime and the boundary QFT. Integrating
by parts, the action can be written as a sum of a bulk term and boundary term as follows:

S = 1
2

∫
AdS

dd+2x
√
−g φ

(
∇2 −m2

)
φ− 1

2

∮
∂AdS

dd+1x
√
−γ φ ∂nφ . (4.5)

24



4. The Holographic Dictionary

Here γMN is the induced metric on the boundary, defined as γMN = gMN − nMnN with
nM an outwards directed unit normal vector to the boundary. The normal derivative ∂n is
defined as ∂n = nMg

MN∂N . The following formula for the generalization of the Laplacian
to curved spacetimes has also been used:

∇2φ = 1√
−g

∂M
(√
−ggMN∂Nφ

)
. (4.6)

We will use Poincaré coordinates where the AdS metric takes the form

ds2 = gMNdx
MdxN = r2

L2ηµνdx
µdxν + L2

r2 dr
2 . (4.7)

Here L is the AdS radius, ηµν is the Minkowski metric, and r is the extra radial coordinate
of the bulk, orthogonal to the coordinates xµ shared by the boundary and the bulk. In
these coordinates the ‘horizon’ of infinite redshift is located at r = 0 and the conformal
boundary at r =∞. It then follows that

√
−g =

(
r

L

)d
, nM = L

r
δMr , ∂n = r

L
∂r , γµν = r2

L2ηµν , (4.8)

where δMr is the Kronecker delta.
To employ the GKPW formula we want to evaluate the partition function of the

gravitational theory semi-classically, as in (4.3). To this end, we need to solve the equation
of motion for the real scalar field in the bulk. In fact, it suffices to find the asymptotic
behavior of the solution as r → ∞ since the leading near boundary part of the solution
is what we will interpret as the source of the dual operator in the QFT.

The boundary term of the action (4.5) does not contribute to the equation of motion
for the real scalar field, which is directly seen to be a Klein-Gordon equation,(

∇2 −m2
)
φ = 0 . (4.9)

However, the boundary term will turn out to be useful later for dealing with a divergent
term. To solve this wave equation we decompose the field into plane waves in the flat
spacetime coordinates shared by the bulk and boundary,

φ(r, t, x) = ϕ(r)e−iωt+ik·x . (4.10)

Substituting this plane wave decomposition in (4.9), using (4.6) for the Laplacian as well
as our choice of coordinates (4.7), we find

(∇2 −m2)φ = 1√
−g

∂M
(√
−ggMN∂Nφ

)
−m2φ

=
(
L

r

)d [
∂r

((
r

L

)d r2

L2∂rφ

)
− ∂t

((
r

L

)d L2

r2 ∂tφ

)
+ ∂xi

((
r

L

)d L2

r2 ∂xiφ

)]
−m2φ

=
(
L

r

)d [( r
L

)d+2
∂2
rφ+ d+ 2

L

(
r

L

)d+1
∂rφ+

(
r

L

)d−2 (
−∂2

t + ∂2
xi

)
φ

]
−m2φ

=
(
r

L

)2
[
ϕ′′(r) + d+ 2

r
ϕ′(r) +

(
(ω2 − k2)L4

r4 − m2L2

r2

)
ϕ(r)

]
e−iωt+ik·x = 0 .

(4.11)

25



4. The Holographic Dictionary

Thus, the wave equation has been reduced to an ordinary second order differential equa-
tion for the radial dependence of the scalar field,

ϕ′′(r) + d+ 2
r

ϕ′(r) +
(

(ω2 − k2)L4

r4 − m2L2

r2

)
ϕ(r) = 0 . (4.12)

To find the asymptotic behavior of ϕ(r) near the conformal boundary r →∞, we assume
a power dependence: ϕ(r) = ϕ0r

α, where ϕ0 is a constant. Substituting this ansats into
(4.12) results in

α(α− 1)rα−2 + α
d+ 2
r

rα−1 +
(

(ω2 − k2)L4

r4 − m2L2

r2

)
rα = 0 , (4.13)

and in the limit r →∞ this reduces to a quadratic algebraic equation for α,

α2 + (d+ 1)α−m2L2 = 0 . (4.14)

Solving this equation for α yields

α± = −d+ 1
2 ±

√
(d+ 1)2

4 +m2L2 . (4.15)

Since the scalar field is supposed to be real, the power of its r dependence better has to
be real as well. This means that the expression in the square root is not allowed to be
negative, resulting in a constraint on the mass squared of the scalar field known as the
Breitenlohner-Freedman (BF) bound [38],

m2L2 ≥ −(d+ 1)2

4 . (4.16)

The AdS space can remain stable in the presence of scalar fields with negative mass
squared as long as the BF bound is satisfied. If the BF bound is not satisfied the scalar
field acquires perturbatively unstable tachyonic modes. Relativistic field theories with
perturbatively unstable fluctuations are non-unitary [2], [39]. We will not consider the
non-unitary theories associated with a BF bound breaking mass in the UV. However,
violations of the BF bound in the IR will turn out to give rise to a dual gravitational
description of spontaneous symmetry breaking in the boundary QFT. In the gravitational
language, the symmetry breaking is captured in a Higgs mechanism, and this can give rise
to superconducting states. We will elaborate on this point in our treatment of holographic
superconductivity in Chapter 7.

We define ∆ as the larger root of the equation ∆2 − (d+ 1)∆−m2L2 = 0, i.e.

∆ = −α− = d+ 1
2 +

√
(d+ 1)2

4 +m2L2 . (4.17)

For now we simply quote the fact that ∆ is the scaling dimension of the CFT operator
dual to the bulk scalar field1 [2]. The near boundary behaviour of the on-shell bulk scalar
field in momentum space can then be written as

φ∗(ω, k, r) =
[
A(ω, k) +O

(
r−1

)] ( r
L

)−d−1+∆
+
[
B(ω, k) +O

(
r−1

)] ( r
L

)−∆

= A(ω, k)
(
r

L

)−d−1+∆
+B(ω, k)

(
r

L

)−∆
+ · · · ,

(4.18)

1We present an argument for this statement in 4.2.2.
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where we have extracted factors of the AdS radius L from the implicit definitions of
A(ω, k) and B(ω, k) in order to express the radial power dependence in a dimensionless
quantity. Here A(ω, k) is the leading part of φ close to the conformal boundary and
B(ω, k) is the subleading part. (The asterisk is used to denote that the field configuration
is a solution to the equation of motion, i.e. evaluated on-shell.) Transforming back to
position space, the asymptotic solution takes the following form:

φ∗(x, r) = A(x)
(
r

L

)−d−1+∆
+B(x)

(
r

L

)−∆
+ · · · . (4.19)

The GKPW formula now instruct us to identify limr→∞ φ as the source of the dual
CFT single-trace operator O(x). There is an immediate problem here, however, since
−d− 1 + ∆ > 0 and consequently φ diverges when approaching the conformal boundary.
As mentioned before, the radial dimension in the bulk translates to the renormalization
group scale of the boundary QFT; dynamics near the boundary correspond to high energy
physics of the dual QFT while the deep interior of the bulk encodes for the low energy
physics of the QFT. This divergence should therefore be interpreted as a short distance,
UV divergence of the CFT. In the gravitational description, however, this divergence is
simply a consequence of integrating over the infinite volume of the bulk spacetime. A
direct way to handle such divergences is to regulate the theory, and this can be done
quite nicely in the gravitational description.

A straightforward way to regulate the theory, as proposed by GKPW, is to introduce
a cutoff boundary at a distance r = ε−1 and modify the theory such that the limit ε→ 0
is well defined. Evaluating the action (4.5) on-shell, the bulk term vanishes. In our choice
of AdS coordinates (4.7), using (4.8), the regulated on-shell action equals

S[φ∗] = −1
2

∮
r=ε−1

dd+1x
√
−γ φ∗(x, r) ∂nφ∗(x, r)

= −1
2

∮
r=ε−1

dd+1x
(
r

L

)d+2
φ∗(x, r) ∂rφ∗(x, r) .

(4.20)

Inserting our near boundary solution (4.19), we get

S[φ∗] = −1
2

∮
r=ε−1

dd+1x
(
r

L

)d+2
[
A(x)

(
r

L

)−d−1+∆
+B(x)

(
r

L

)−∆
+ · · ·

]

×
[

∆− d− 1
L

A(x)
(
r

L

)−d−2+∆
− ∆
L
B(x)

(
r

L

)−1−∆
+ · · ·

]

= − 1
2L

∮
r=ε−1

dd+1x
(
r

L

)d+2 [
(∆− d− 1)A(x)A(x)

(
r

L

)2∆−2d−3

− (d+ 1)A(x)B(x)
(
r

L

)−d−2
+ · · ·

]
= 1

2L

∮
r=ε−1

dd+1x
(
r

L

)d [
(d+ 1−∆)A(x)A(x)

(
r

L

)2∆−2d−1

+ (d+ 1)A(x)B(x)
(
r

L

)−d
+ · · ·

]
.

(4.21)

The problematic UV divergence is contained in the first term since all other terms are
regular at ε → 0. To remove this divergence we make use of the fact that equations of
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motion derived from an action are independent of any boundary term. Furthermore, if a
boundary term is completely defined in terms of boundary data, then it does not affect
the boundary conditions of the bulk fields. Thus, we can add a boundary counterterm to
the action in order to cancel the UV divergent term, (analogous to how one would add
counterterm diagrams in renormalized perturbation theory in the context of QFT). In
particular, we add the following boundary counterterm to our original action (4.5):

Sct[φ∗] = −d+ 1−∆
2L

∮
r=ε−1

dd+1x
√
−γφ∗2(x, r)

= −d+ 1−∆
2L

∮
r=ε−1

dd+1x
(
r

L

)d+1
[
A(x)

(
r

L

)−d−1+∆
+B(x)

(
r

L

)−∆
+ · · ·

]

×
[
A(x)

(
r

L

)−d−1+∆
+B(x)

(
r

L

)−∆
+ · · ·

]

= −d+ 1−∆
2L

∮
r=ε−1

dd+1x
(
r

L

)d [
A(x)A(x)

(
r

L

)2∆−2d−1

+ 2A(x)B(x)
(
r

L

)−d
+ · · ·

]
.

(4.22)

The complete regulated on-shell action then equals

S[φ∗] = 2∆− d− 1
2L

∮
r=ε−1

dd+1x
(
r

L

)d+1
[
A(x)B(x)

(
r

L

)−d−1
+ · · ·

]
, (4.23)

and we can now take the limit ε→ 0, restoring the infinite volume of our AdS bulk space,

S[φ∗] = 2∆− d− 1
2L

∮
∂AdS

dd+1xA(x)B(x) . (4.24)

Now, the generating functional for the scalar CFT operator O(x) is given by

ZCFT[h(x)] =
∫
DΦ eiS[Φ]+i

∫
dd+1xh(x)O(x) , (4.25)

where h(x) is the source of O(x) and Φ denotes collectively the field theory degrees of
freedom, (of course, in the path integral everything is strictly speaking classical functions).
The expectation value of the operator O(x) in the presence of the source h(x) is given
by

〈O(x)〉h = −i 1
ZCFT[h]

δ

δh(x)ZCFT[h] . (4.26)

The GKPW rule now tells us that the gravitational partition function should equal the
CFT generating funtional, and that the leading near boundary behavior A(x) of the bulk
scalar field should be interpreted as the source h(x) of the dual CFT operatorO(x). Using
the semi-classically evaluated gravitational partition function (4.3), and the expression
for the on-shell action (4.24), we find

〈O(x)〉A = δS[φ∗]
δA(x) = 2∆− d− 1

2L

(
B(x) + δB(x)

δA(x)A(x)
)
. (4.27)
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Now, since φ∗ is a solution to a linear equation, B(x) = (δB(x)/δA(y))A(y) holds as a
matrix equation2 [1]. It follows that

〈O(x)〉h = 2∆− d− 1
L

B(x) . (4.28)

Hence, as a consequence of identifying the leading near boundary behavior A(x) of the
bulk field as the source of the CFT operator, the subleading behavior B(x) is proportional
to its excpectation value (or in the language of linear response theory, its response). This
result is quite general; if one identifies the leading near boundary behavior of a bulk field
as the source of the dual QFT operator, then the subleading behavior should be identified
as its expectation value [1]. The source could for instance be the chemical potential and
the expectation value the associated charge density.

4.1.2 A CFT two-point function in AdS gravity
Thus far, our analysis has been performed in position space. However, for the propose
of e.g. studying bulk fluctuation modes in linear response theory, working with the
momentum space representation is much more convenient. It is then useful to have a
formula for the two-point correlation function in momentum space. Here we will continue
the analysis of the previous section and derive an expression for the momentum space
two-point function of the scalar CFT operator, in terms of the leading and subleading
near boundary behaviours of the corresponding bulk field.

In the previous section, we showed that the regulated on-shell bulk action for our
theory of a real scalar field in AdS space equals

S[φ∗] = 2∆− d− 1
L

∮
∂AdS

dd+1x
1
2A(x)B(x) . (4.29)

Writing A and B in their Fourier integral representations, we get an expression for the
on-shell action in momentum space,

S[φ∗] = 2∆− d− 1
L

∮
∂AdS

dd+1x
1
2

∫ dd+1k

(2π)d+1 e
ik·xA(k)

∫ dd+1p

(2π)d+1 e
ip·xB(p)

= 2∆− d− 1
2L

∫ dd+1k

(2π)d+1 A(k)
∫ dd+1p

(2π)d+1 B(p)
∮
∂AdS

dd+1x ei(k+p)·x

= 2∆− d− 1
2L

∫ dd+1k

(2π)d+1 A(k)
∫
dd+1pB(p)δ(k + p)

= 2∆− d− 1
L

∫ dd+1k

(2π)d+1
1
2A(k)B(−k) ,

(4.30)

where we have used the following standard identity of the Dirac delta function:

δ(k) =
∫ ddx

(2π)d e
ik·x . (4.31)

Furthermore, in momentum space, the expression for the expectation value of the CFT
operator O(k), in the presence of a source h(k), is given by

〈O(k)〉h = 2∆− d− 1
L

B(k) . (4.32)

2In the sense that the variables x and y are viewed as indices, Bx = (δB/δA)xyAy.
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Now, the semi-classical bulk theory partition function is given by Z = exp(iS[φ∗]), and
the GKPW prescription equates it to the generating functional of the dual CFT. The
leading near boundary behaviour A(k) of the bulk scalar field should then be identified
as the source h(k) of the CFT operator. The two-point function of the operator O(k)
can then be calculated in the bulk theory by taking two derivatives of the semi-classical
partition function with respect to A, and setting A = 0 in the end. Using the expression
(4.32) for the expectation value, and the fact that A and B are linearly proportional, we
get

〈O(−k)O(k)〉 = −i(2π)d+1 1
Z

δ2Z

δA(k)δA(−k)

∣∣∣∣
A=0

= 1
Z

δ

δA(k)

(
2∆− d− 1

L
B(k)Z

) ∣∣∣∣
A=0

= 2∆− d− 1
L

δB(k)
δA(k)

= 2∆− d− 1
L

B(k)
A(k) .

(4.33)

In other words, the two-point function of the scalar operator is given by the ratio of the
subleading to the leading near boundary behavior of the corresponding bulk field3. This
result turns out to be quite generic, valid also for other holographic models. For a careful
derivation of this result directly from the GKPW formula, bypassing the linear response
assumption that A and B are linearily proportional, we refer the reader to [2].

The retarded Green’s function describes the causal linear response of the system to a
small perturbation of the sources. In particular, consider small changes in a set of sources
δhi resulting in small changes in the corresponding responses δ 〈Oi〉. In momentum space,
the retarded Green’s function is then defined as

δ 〈Oi(k)〉 = GR
OiOj(k)δhj(k) . (4.34)

For the case at hand with a single scalar operator O(k) sourced by h(k), the retarded
Green’s function is given by

GR
OO(k) = δ 〈O(k)〉

δh(k) . (4.35)

Now, the expectation value 〈O〉 is given by (4.32), and with h = A it follows that

GR
OO(k) = 2∆− d− 1

L

B(k)
A(k) . (4.36)

We have thus found that the two-point function of the operator O equals its retarded
Green’s function, and it is proportional to the ratio of the subleading to leading near
boundary behaviour of the dual bulk field.

Before moving on to the holographic renormalization group, some final remarks are
in order. A solution to the bulk equations of motion is uniquely determined by a set
of Dirichlet boundary conditions4 at the conformal boundary and regularity conditions

3In position space, the two-point function formula reads 〈O(x1)O(x2)〉 = 2∆−d−1
L

B(x2)
A(x1)

4It is also possible to impose more general mixed boundary conditions corresponding to multi-trace
interactions in the field theory, which are suppressed by large N .
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at the zero (or finite) size horizon in the deep interior. More precisely, the regularity
conditions are imposed on the Euclidean bulk fields obtained by performing a Wick
rotation to imaginary time. When translated to real time, the retarded Green’s function
is obtained by analytically continuing the Euclidean Green’s function from the upper
half frequency plane. Under this analytic continuation the regularity conditions in the
Euclidean theory translates into ‘infalling’ boundary conditions in real time, i.e. modes
in the bulk must be falling into the horizon, as opposed to emerging out from it. If
one instead want to consider the advanced Green’s function, then one should impose
outgoing boundary conditions on the bulk fields. However, since we only are interested in
the retarded Green’s function due to its causal structure, infalling boundary conditions
should be imposed on the bulk fields at the horizon.

It is possible to evaluate the solution to the Klein-Gordon equation in the bulk explic-
itly using Green’s functions or Bessel functions [2], [36], [37]. In particular, the leading
and subleading near boundary behaviors of the real scalar field in the bulk have a fixed
power law dependence in momentum space. The two-point function is then found to be
proportional to |k|2∆−d−1, which is exactly the scaling behavior expected for the two-point
function of a scalar operator with scaling dimension ∆ in a CFT. This is one of the many
empirical evidences for the validity of the AdS/CFT correspondance.

Finally, three- or higher-point correlation functions are most conveniently dealt with
using ‘Witten diagrams’. Three-point functions in AdS/CFT was calculated in e.g. [40].
The formalism of Witten diagrams is beyond the scope of this thesis and will not be
needed for our purposes. However, the interested reader is referred to [2], [37].

4.2 Holograpic renormalization theory

As we have stressed before, one of the most essential features of the holographic duality
is the notion that the extra radial dimension in the bulk captures the renormalization
physics of the boundary QFT. It allows us to integrate out the specific details of the
short distance, UV physics and isolate the universal long distance, IR dynamics relevant
for condensed matter systems. Beta functions and running couplings can be calculated
directly from the gravitational theory. Finally, the structure of UV divergences can be
determined and systematically removed. Here we only cover a few selected topics on
holographic renormalization and refer the interested reader to [41] for additional material
on the subject.

4.2.1 The holographic Wilsonian renormalization group
In holographic condensed matter physics or ‘AdS/CMT’, we are primarily interested
in the emergent low energy phenomena of strongly interacting quantum systems with
a huge number of microscopic constituents. The high energy physics of the underlying
holographic theory is therefor rather unimportant. Indeed, we have mentioned that one of
the advantages with the top-down approach to holography is that it guarantees quantum
consistancy and UV completion. In the context of ‘AdS/CMT’, having a UV complete
theory is of little practical importance and something which is only conceptually desired.
This is good news for bottom-up holography since a bottom-up model only has to be
the effective low energy description of a consistently truncated string theory, severely
reducing the demands on the top-down implementation.
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Returning to our example of a massive real scalar field in a pure AdS background, we
show how one can take a Wilsonian perspective on renormalization and integrate out the
high energy, short distance dynamics. In this way we can isolate the universal emergent
low energy physics associated with an IR fixed point. This will allow us to relate the
second order bulk equation of motion (4.9) to a first order renormalization group flow
equation. We closely follow [1], which built on work from [42]–[44].

A QFT defined below some UV cutoff Λ is completely specified by its partition func-
tion,

ZΛ
QFT =

∫
Λ
DΦ eiIeff.[Φ] . (4.37)

Here Φ collectively denotes all the field theory degrees of freedom and the path integral
is over all field configurations at energy scales below the cutoff Λ. The effective action
Ieff.[Φ] = I0[Φ] + IUV[Φ] at the cutoff scale Λ is the sum of the original microscopic action
I0[Φ] and terms IUV[Φ] arising when integrating out the degrees of freedom at energy
scales above Λ from the UV complete path integral5,

ZQFT =
∫
DΦ eiI0[φ] . (4.38)

Requiring the partition function to be independent of the cutoff scale gives rise to renor-
malization group equations for IUV. In principle, by taking the cutoff scale to low energies
we obtain the emergent low energy physics.

In the gravitational bulk, we consider again a cutoff to the volume of AdS. However,
we switch from the previously used radial coordinate r to the ‘inverse’ radial coordinate
z = L2/r defined in (3.18). The AdS metric is then given by (3.19) and the conformal
boundary is located at z = 0 and the ‘horizon’ at z = ∞. The cutoff surface is placed
at z = ε. The bulk fields {φi(x)} now take on boundary values {φεi} at this cutoff rather
than at the conformal boundary of AdS. The resulting truncated gravitational partition
function is then given by

Zε[φεi ] =
∫
φi→φεi

Dφi e
iS[φi] . (4.39)

The gravitational action S[φi] is of the form

S =
∫
z>ε

dd+2x
√
−gL(φi, ∂Mφi) + SB[φi, ε] , (4.40)

where L is the Lagrangian of the bulk theory and SB denotes collectively all the bound-
ary action terms defined at the cutoff surface z = ε. The boundary action SB can be
interpreted as the terms arising from integrating out bulk field degrees of freedom in the
region z < ε [43].

When regulating the bulk and boundary theories with a volume and UV cutoff, re-
spectively, it is natural to generalize the GKPW formula (4.2) to

Zε[φεi ] =
∫

Λ
DΦ eiIeff.[Φ] =

∫
Λ
DΦ eiI0[Φ]+i

∫
dd+1xφεi(x)Oi(x) . (4.41)

In other words, the values of the bulk fields at the cutoff boundary z = ε acts as sources
for local single-trace gauge invariant operators in an effective QFT valid at scales below
the cutoff Λ. Furthermore, we will show that the boundary action SB is related to the
effective action IUV by a Legandre transformation, (near a fixed point and up to some

5Although we will often simply refer to IUV[Φ] as the effective field theory action.
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renormalization [43]). In fact, the gravitational boundary action will be interpreted as
dual to the effective field theory action IUV. However, there is a significant caveat to
the generalized GKPW rule (4.41) as well as the identification of SB with IUV proposed
above. The precise relation between the field theory cutoff Λ and the gravitational cutoff
ε is in general not clear. Thus, the identification of integrating out high energy degrees
of freedom above the cutoff Λ in the QFT with integrating out bulk degrees of freedom
at z < ε cannot be made precise. In fact, determining the precise relation between Λ and
ε would likely amount to a proof of holography [1].

In the following we restrict ourselves to the case of a single bulk scalar field for
notational clarity. The analogous results for the general case of a set of bulk scalar fields
are easily retrieved by adding a bunch of subscripts i on the fields, their boundary values
and their dual operators. Now, the full bulk partition function (4.1) is related to the
truncated partition function (4.39) by,

Z[h] =
∫
Dφε Zε[φε]Zε

UV[φε, h] , (4.42)

where
ZUV[φε, h] =

∫ φ→h

φ→φε
DφeiS[φ] , (4.43)

is the bulk partition function integrated over the modes at 0 < z < ε which are cut out
of the truncated partition function, and with boundary conditions at each end. Invoking
the generalized GKPW formula, we then have

Z[h] =
∫
Dφε

∫
Λ
DΦ eiI0[Φ]+i

∫
dd+1xφε(x)O(x)ZUV[φε, h] , (4.44)

which is equated to the full quantum partition function (4.37), (note that (4.38) and
(4.37) are equal since we require that the QFT partition function be independent of the
cutoff scale.) Changing order of functional integrations, it follows that∫

Λ
DΦ eiI0[Φ]+iIUV[O] =

∫
Λ
DΦ eiI0[Φ]

∫
Dφε ei

∫
dd+1xφε(x)O(x)ZUV[φε, h] , (4.45)

which gives us an expression for the effective field theory action IUV[O] for the single-trace
operator O (built from the field theory degrees of freedom Φ) in terms of bulk quantities,

eiIUV[O] =
∫
Dφε ei

∫
dd+1xφε(x)O(x)ZUV[φε, h] . (4.46)

Taking the semi-classical limit yields the Legandre transform relation between the effec-
tive field theory action IUV and the gravitational boundary action SB,

IUV[O] =
∫
dd+1xφε∗(x)O(x) + SB[φε∗, ε] , (4.47)

where the vanishing of the first derivative at the saddle point implies that

O(x) = −δSB[φε∗, ε]
δφε∗(x) . (4.48)

Furthermore, it directly follows from (4.47) that

φε∗(x) = δIUV[O]
δO(x) . (4.49)
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Note that O as given by (4.48) is the canonical momentum along the radial direction
conjugate to φε∗, up to a sign.

Now, consider the previous bulk scalar field Lagrangian (4.4) generalized to an arbi-
trary potential,

L = −1
2g

MN∂Mφ ∂Nφ− V (φ) , (4.50)

in a static background spacetime with a metric of the form

ds2 = gMNdx
MdxN = γµν(z)dxµdxν + gzzdz

2 . (4.51)

The action in the presence of a cutoff boundary has the form of a Lagrangian term plus
a boundary term,

S =
∫
z>ε

dd+2x
√
−gL(φ, ∂Mφi) + SB[φ, ε] . (4.52)

Varying this action with respect to φ gives,

δS =
∫
z>ε

dd+2x
√
−g

(
∂L
∂φ

δφ+ ∂L
∂(∂Mφ)δ(∂Mφ)

)
+ δSB[φ, ε]

=
∫
z>ε

dd+2x
√
−g

(
∂L
∂φ
− 1√
−g

∂M

(
√
−g ∂L

∂(∂Mφ)

))
δφ

+
∫
z=ε

dd+1x
√
−γ nM

∂L
∂(∂Mφ)δφ+

∫
z=ε

dd+1x
δSB[φ, ε]
δφ

δφ .

(4.53)

Here we have integrated by parts in the last equality and nM is an outwards directed unit
normal vector to the cutoff boundary. Specifically, in our coordinates nM = −√gzzδMz.
Requiring that the variation of the action vanish for any δφ which is zero at z = ε, the
Euler-Lagrange equations of motion follows from the ‘bulk’ term,

1√
−g

∂M
(√
−ggMN∂Nφ

)
− ∂V

∂φ
= 0 . (4.54)

Furthermore, we also get the following boundary condition at z = ε:

δSB

δφ
= −
√
−γnz

∂L
∂(∂zφ) = −

√
−ggzz∂zφ ≡ Πz , (4.55)

where we have used that γgzz = g and in the last equality Πz is precisely the conjugate
momenta to φ under radial evolution, defined as

Πz = δS

δ(∂zφ) . (4.56)

In the large N limit the bulk partition function is evaluated at a saddle point as in
(4.3). Thus, we are interested in evaluating the action (4.52) on a solution to (4.54)
with boundary condition (4.55). Our choice of placing the cutoff boundary at z = ε is
arbitrary, and hence the value of the on-shell action, as well as the solution itself, should
be independent of ε. Requiring that the derivative of the on-shell action with respect to
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ε vanish, we get the following flow equation:

0 = d

dε
S = d

dε

∫
z>ε

dd+2x
√
−gL+ ∂εSB[φ, ε] +

∫
z=ε

dd+1x
δSB[φ, ε]
δφ(x, z) ∂zφ(x, z)

= d

dε

∫ ∞
ε

dz
∫
dd+1x

√
−gL+ ∂εSB[φ, ε] +

∫
z=ε

dd+1xΠz ∂zφ

= −
∫
z=ε

∫
dd+1x

√
−gL+ ∂εSB[φ, ε] +

∫
z=ε

dd+1xΠz ∂zφ

= ∂εSB[φ, ε] +
∫
z=ε

dd+1x
(
Πz ∂zφ−

√
−gL

)
,

(4.57)

where we have used (4.55). The last integrand is exactly the Hamiltonian density H for
evolution in the radial direction [43]. Thus, the Hamiltonian generates the flow of SB,

∂εSB[φ, ε] = −
∫
z=ε

dd+1xH . (4.58)

Note that this flow equation should be treated as a functional equation and one should
not impose the equation of motion (4.54) when evaluating it. We can write this equation
in a more explicit form using (4.50) and (4.55),

√
gzz∂εSB[φ, ε] = −

∫
z=ε

dd+1x
√
gzz

(
Πz ∂zφ−

√
−gL

)
= −

∫
z=ε

dd+1x
√
−g
√
gzz

(
−gzz(∂zφ)2 + 1

2g
MN∂Mφ ∂Nφ+ V (φ)

)

= −
∫
z=ε

dd+1x
√
−γ

 1
2γ

(
δSB

δφ

)2

+ 1
2g

µν∂µφ ∂νφ+ V (φ)
 ,

(4.59)

where the greek indices run over the boundary coordinates only. The gravitational bound-
ary action SB can now be expanded in powers of φ as follows:

SB[φ,ε] =
∑
n

∫
dd+1x

√
−γαn(x, ε)φn(x, ε) . (4.60)

Inserting this expansion into the above flow equation specifies how the expansion coeffi-
cients αn flow with the volume cutoff ε.

We can now derive the corresponding flow equation for the effective field theory action
IUV[O], using the previously derived Legendre transform relation (4.47). Taking the
derivative with respect to ε of the left hand side of (4.47), we get

d

dε
IUV[O] = ∂εIUV[O] +

∫
dd+1x

δIUV[O]
δO(x) ∂εO(x) . (4.61)

The same derivative applied to the right hand side of (4.47) yields,
∫
dd+1x (O(x)∂εφε∗(x) + φε∗(x)∂εO(x)) + ∂εSB[φε∗, ε] +

∫
dd+1x

δSB[φε∗, ε]
δφε∗(x) ∂εφ

ε
∗ . (4.62)

Now, using (4.48) and (4.49) when equating (4.61) with (4.62), we get a quite simple
result,

∂εIUV[O] = ∂εSB[φε∗, ε] . (4.63)
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Thus, the effective field theory action IUV[O] satisfy the same first order flow equation
(4.59) as the gravitational on-shell boundary action SB[φε∗, ε]. Using (4.48), we can then
write the flow equation for IUV as follows:

√
gzz∂εIUV[O] =

∫
dd+1x

√
−γ

(
1

2γO
2 + 1

2g
µν∂µφ

ε
∗ ∂νφ

ε
∗ + V (φε∗)

)
, (4.64)

where φε∗ is translated into field theoretical quantities by (4.49).
The effective field theory action IUV[O] can now be expanded in powers of the single-

trace operator O,
IUV[O] =

∑
n

∫
dd+1x

√
−γλn(x,Λ)On(x) . (4.65)

The expansion coefficients λn are the coupling constants of the effective field theory.
When inserted into the functional flow equation (4.64), we can find the beta functions for
all couplings λn [1]. In conclusion, by varying the bulk volume cutoff ε, we have found
first order renormalization group flow equations for running couplings in a QFT with
some UV cutoff Λ. This shows that the interpretation of the bulk radial coordinate as
being dual to the field theoretical RG parameter is certainly justified, although the exact
relation between the cutoffs Λ and ε is in general not known.

4.2.2 Renormalization group flows and alternative quantization
An important aspect of the renormalization group in holography is that it allows us to
depart from the conformal field theories in AdS/CFT dualities. There are many inter-
esting statistical and condensed matter systems which are well described by conformal
field theories [45], [46], in particular systems at their thermodynamic or quantum6 critical
points where a phase transition occurs. However, a lot of condensed matter systems of
interest does not exhibit invariance under the conformal transformations. In particular,
the superconductor toy model we will study in Chapter 7 exhibits both a nonzero temper-
ature and chemical potential. This introduces two scales to the system which will break
the conformal invariance. The renormalization group allows us to flow from the UV fixed
point theories characterized by conformal invariance to IR fixed points describing novel
emergent low energy physics. The interpretation of the radial direction as the RG scale
enables us to follow the RG flow in the gravitational description; the change in geometry
in the deep interior, departing from the asymptotic AdS near the conformal boundary,
captures the emergent IR physics whilst reflecting the loss of conformal invariance.

The way in which we can induce such an RG flow is to turn on a relevant operator.
Hence, we should identify which bulk fields are dual to relevant operators. Recall from
4.1.1 that the asymptotic behavior of a real scalar field in the bulk with action (4.4) is

lim
r→∞

φ(x, r) = A(x)
(
r

L

)−d−1+∆
+B(x)

(
r

L

)−∆
, (4.66)

where ∆ was defined as the larger root of the equation ∆2 − (d+ 1)∆−m2L2 = 0,

∆ = d+ 1
2 +

√
(d+ 1)2

4 +m2L2 . (4.67)

6A quantum critical point signifies a zero temperature quantum phase transition.
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We quoted the fact that ∆ is the scaling dimension of the dual CFT operator. Here we
define ∆+ as the larger root and ∆− as the smaller root to the aforementioned equation,

∆± = −α∓ = d+ 1
2 ±

√
(d+ 1)2

4 +m2L2 . (4.68)

For most bulk masses we need to take ∆ = ∆+ in (4.66) in order for A(x) to be interpreted
as the leading near boundary behaviour or boundary value of the bulk field. However,
in this section we will see how there is a range of bulk masses which allows for an
‘alternative quantization’ scheme where we take ∆− as the solution in (4.66). Finally,
note how ∆+ = d+ 1−∆−.

As mentioned earlier, one of the crucial justifications of the AdS/CFT correspondance
is the fact that AdS space has an SO(d + 1, 2) isometry group, which is precisely the
conformal group in d+1 spacetime dimensions. The d+2 dimensional pure AdS geometry
(4.7) is perturbed by adding sources {hi} for CFT operators at the boundary. The
resulting perturbations must preserve the isometries of the AdS background and therefore
transforms under the SO(d+ 1, 2) symmetry group, suggesting that these perturbations
are dually described by excitations of a d + 1 dimensional CFT. In particular, the AdS
metric (4.7) has a scaling symmetry,

(t, x, r)→
(
λt, λx,

r

λ

)
. (4.69)

A source h(x) for a single-trace operatorO(x) are added to the field theoretical generating
functional in the following way:

ZCFT =
∫
DΦ eiI0+i

∫
dd+1xh(x)O(x) , (4.70)

where I0 is the microscopic action of the CFT. In the case of our real scalar field in a pure
AdS geometry, the source h(x) is equated to the leading near boundary behaviour A(x) in
(4.66). The scalar field, just like the metric field, must be invariant under the isometries
of AdS. In particular, it must be invariant under the scaling transformation (4.69), i.e.
φ(x, r) → φ(λx, r/λ). By (4.66), it then follows that h(x) (which is identified as A(x))
transforms as h(x) → λ−d−1+∆h(λx) under this scaling transformation. Furthermore,
the integral measure scales as dd+1x→ λd+1dd+1x. Thus, from the generating functional
(4.70) we see that the CFT operator O(x) must transform as

O(x)→ λ−∆O(λx) , (4.71)

under the scaling transformation (4.69). This is precisely the scaling of a CFT operator
with conformal dimension ∆ [1], [2]. Note how the scaling dimension of the CFT operator
is set by the mass of the bulk field by (4.67). This is a central result relating the scaling
dimension of a scalar operator in the CFT to the mass of the dual scalar field in the bulk.

Recall that relevant and irrelevant operators are defined as operators which magnitude
always increase and always decrease, respectively, under RG transformations which takes
the system from a higher energy scale to a lower one. A marginal operator is neither
relevant nor irrelevant. The scalar CFT operator dual to the real scalar field in the
bulk is relevant if the scaling dimension ∆ < d + 1 [2]. Furthermore, it is irrelevant for
∆ > d + 1 and marginal for ∆ = d + 1. From the definition of ∆ in terms of the bulk
field mass squared (4.67), it follows that massive scalar fields with m2 > 0 are dual to
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irrelevant operators. A massless scalar field is dual to a marginal operator, (although the
operator dimension will in general acquire corrections [2]). A relevant operator, necessary
for inducing RG flows to new IR fixed points, therefore has to be dual to a scalar field with
a negative mass squared, m2 < 0. In a flat spacetime such scalar fields would describe
tachyons and signal an instability of the theory. However, as we have already argued in
4.1.1, AdS space can remain stable for scalar fields with negative mass squared as long
as the BF bound (4.16) is satisfied. In fact, the BF bound precisely guaranties that the
scaling dimension ∆ is real. Thus, a relevant scalar operator in the CFT is dual to a
scalar field in the bulk with a mass squared in the range − (d+1)2

4 ≤ m2L2 < 0. Similar
results for the relevancy of operators are found for fields with spin [2].

It has been established in [47] that a necessary condition for a scalar CFT operator to
be unitary requires its scaling dimension to be bounded from below by ∆ ≥ (d− 1)/2, in
d+ 1 spacetime dimensions. However, the lowest possible value of the scaling dimension
according to (4.67) is ∆ = (d+ 1)/2 and it is realized precisely when the mass squared of
the bulk scalar field equals the BF bound. Somehow, we still have to account for unitary
operators with scaling dimension in the range (d−1)/2 ≤ ∆ ≤ (d+1)/2. For these values
of the scaling dimension both asymptotic modes in (4.66) fall off sufficiently quickly to
be normalizable [1], [2]. Thus, either mode can be taken to be the source, and the other
the response. For scaling dimensions in the range between the unitary bound and the BF
bound, we may identify the leading near boundary behavior of the bulk field with the
response and the subleading behavior with the source. Quantizing the bulk theory having
made these prescriptions leads to what is known as alternative quantization. In contrast,
quantizing the bulk theory with our usual prescription of identifying the leading mode
with the source and the subleading mode with the response, is commonly referred to as
standard quantization. The alternatively quantized and standard quantized bulk theories
are dual to two different boundary CFTs [48]. In fact, the alternatively quantized bulk
scalar field is perhaps best interpreted as dual to a scalar CFT operator with scaling
dimension ∆−. As noted above, ∆+ = d + 1 −∆−. Hence, taking ∆− instead of ∆+ as
the scaling dimension precisely exchanges the role of the leading and subleading modes
in (4.66).

Scalar operators having scaling dimensions in the range (d−1)/2 ≤ ∆ ≤ (d+1)/2 can
occur only in the alternative quantization scheme, and when the mass of the dual bulk
field is in the range − (d+1)2

4 ≤ m2L2 ≤ − (d+1)2

4 + 1. In standard quantization this range
of the bulk field mass corresponds to a scaling dimension d+1

2 ≤ ∆+ ≤ d+1
2 + 1. The two

different CFTs resulting from the two different quantization schemes are related by an
RG flow induced by a certain ‘double-trace deformation’. Double-trace deformations and
more general multi-trace deformations is the subject of the next section. Here we just
state that the composite operator7 O2

∆−(x) is relevant and induce an RG flow to a new IR
fixed point. The RG flows from double-trace deformations in matrix large N CFTs does
not affect the bulk geometry [2]. In fact, this particular composite operator flow affects
only the scaling dimension ∆− of the single-trace operator itself, and it flows precisely to
∆+. Hence, the emergent IR theory is ‘standardly’ quantized.

7The subscript ∆− denotes that the operator has scaling dimension ∆−, arising from an alternatively
quantized bulk theory.
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4.2.3 Multi-trace deformations and generalized boundary con-
ditions

As we have emphasized in Chapter 2, one of the essential features of the t’Hooft matrix
large N limit is the factorization property of products of gauge invariant single-trace
operators, i.e. multi-trace operators. To leading order in large N , the expectation value
of a multi-trace operator factorize into a product of the expectation values of the single-
trace operators constituting the multi-trace operator. Hence, in the large N limit multi-
trace operators vanish from the spectrum of the theory. However, at large but finite N we
can deform the theory by adding a multi-trace interaction term to the action. Here we will
show that this kind of multi-trace deformation of the QFT holographically corresponds
to using a more general set of mixed boundary conditions for the bulk fields [2], [20], [49].
We also show how a double-trace deformation results in a Dyson re-summation of the
Green’s function, which results in the RPA (random phase approximation) formula for
the Green’s function. This RPA formula is actually obtained in the strict large N limit.

Consider again a matrix large N QFT with field degrees of freedom Φ(x), a single-
trace scalar operator O(x) constructed from Φ(x), and an action I0[Φ]. To compute the
generating functional of the QFT,

ZQFT[h] =
∫
DΦ eiI0[Φ]+i

∫
dd+1xh(x)O(x) , (4.72)

the GKPW rule instructs us to compute the AdS bulk partition function with the scalar
field φ(x, r) dual to O(x) taking boundary value h(x) at the conformal boundary. With
A(x) and B(x) being the leading and subleading near boundary behavior of φ(x, r),
respectively, as in (4.66), the boundary condition is A(x) = h(x). The generating func-
tional (4.72) equals the partition function of the QFT in the presence of a source term
W [O] added to the action, where W [O] =

∫
dd+1xh(x)O(x). As we showed in 4.1.1,

B(x) (up to an overall constant) equals the expectation value of O(x). If we write
W [B] =

∫
dd+1xh(x)B(x), then the boundary condition is

A(x) = δW [B]
δB(x) . (4.73)

A multi-trace deformation of the theory is obtained by adding a perturbationW [x,O, ∂O]
to the action, where W [x,O, ∂O] is a local non-linear functional of O(x) and its deriva-
tives. The partition function is then

ZQFT =
∫
DΦ eiI0[Φ]+iW [x,O,∂O] . (4.74)

The prescription for incorporating multi-trace deformations in the gravitational descrip-
tion is to substitute O(x) for B(x) in W , and then impose the boundary condition (4.73)
on the bulk scalar field at the conformal boundary [20].

It is straightforward to generalize this result to a set of bulk scalar fields φi(x, r) with
masses mi, dual to a set of single-trace scalar operators Oi(x) with scaling dimensions
∆i. The near boundary behavior of the bulk scalar fields are given by

lim
r→∞

φi(x, r) = Ai(x)
(
r

L

)−d−1+∆i

+Bi(x)
(
r

L

)−∆i

. (4.75)
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The bulk masses mi are related to the corresponding scaling dimensions ∆i by8

∆i = d+ 1
2 +

√
(d+ 1)2

4 +m2
iL

2 . (4.76)

The leading and subleading behaviors Ai(x) and Bi(x) are identified with the sources
and expectation values of the operators Oi(x), respectively. A multi-trace deformation
W [x,Oi, ∂Oi] of the QFT is incorporated in the bulk theory by imposing the boundary
conditions

Ai(x) = δW [x,Bi, ∂Bi]
δBi

, (4.77)

on the bulk fields at the conformal boundary of AdS.
Returning to the case of a single scalar operator O, we consider a double-trace defor-

mation,

W [O] =
∫
dd+1x

(
h(x)O(x) + f

2O
2(x)

)
, (4.78)

where h is the source of O and f is a coupling constant. The boundary condition one
should impose on the bulk scalar field is then

A(x) = δW [B]
δB(x) = h(x) + fB(x) . (4.79)

Now, in 4.1.2, we derived the following formula for the retarded momentum space Green’s
function of the operator O:

G0(k) = 〈O(−k)O(k)〉 = 2∆− d− 1
L

B(k)
A(k) . (4.80)

The subscript 0 has been added to emphasis that this refers to the Green’s function of the
undeformed theory. We will now derive an expression for the retarded Green’s function of
the double-trace deformed theory, which we will denote by G. Thus, we should continue
our analysis in momentum space.

As shown in 4.1.2, the regulated on-shell bulk action for our theory of a real scalar
field in AdS space is given by

S[φ∗] = 2∆− d− 1
L

∫ dd+1k

(2π)d+1
1
2A(k)B(−k) . (4.81)

We begin by absorbing the factor of (2∆− d− 1)/L into a redefinition of the dynamical
field B, i.e. we take B → L/(2∆− d− 1)B. Then the overall factor of (2∆− d− 1)/L is
removed from the on-shell action, and the undeformed Green’s function is simply given
by G0 = B/A. Inverting this relation, we can write A = B/G0. Now, substituting this
expression for A in the regulated on-shell action gives

S[φ∗] =
∫ dd+1k

(2π)d+1
1
2B(k) 1

G0(k)B(−k) . (4.82)

Transforming to momentum space, the double-trace potential (4.78) reads

W [B] =
∫ dd+1k

(2π)d+1

(
h(k)B(−k) + f

2B(k)B(−k)
)
, (4.83)

8Assuming masses satisfying the BF-bound. For masses between the unitary bound and the BF-bound
the possibility of alternative quantization discussed in the previous section applies here too.
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and we can add this potential directly to the action,

S[φ∗] =
∫ dd+1k

(2π)d+1

(
1
2B(k) 1

G0(k)B(−k) + h(k)B(−k) + f

2B(k)B(−k)
)
. (4.84)

Now, varying the action with respect to the dynamical field B, we get the following
equation of motion:

1
G0(k)B(k) + h(k) + fB(k) = 0 , (4.85)

where we have used that G0(k) = G0(−k), in accordance with the well established result
G0(k) ∝ |k|2∆−d−1, see e.g. [49]. Solving this equation for B, we find

B(k) = − G0(k)
1 + fG0(k)h(k) , (4.86)

and substituting this expression for B in the action gives

S[φ∗] =
∫ dd+1k

(2π)d+1

(
1
2

G0

(1 + fG0)2h
2 − G0

1 + fG0
h2 + f

2
G2

0
(1 + fG0)2h

2
)

= −1
2

∫ dd+1k

(2π)d+1
G0

1 + fG0
h2 ,

(4.87)

where h2 = h(k)h(−k) and G0 = G0(k). The two-point correlation function of O for the
deformed theory can now be calculated by differentiating the generating functional twice
with respect to the source h, in the usual way. Because the respective partition functions
of the bulk and boundary theories are set equal by the GKPW prescription, the two-point
function can be calculated in the gravitational theory by differentiating the semi-classical
bulk partition function Z = exp(iS[φ∗]) twice with respect to h, and setting h to zero in
the end,

G(k) = 〈O(−k)O(k)〉 = −i(2π)d+1 1
Z

δ2Z

δh(−k)δh(k)

∣∣∣∣
h=0

= G0(k)
1 + fG0(k) ≡ G0(k)

∞∑
n=0

(−fG0(k))n .
(4.88)

This is precisely the RPA form of the Green’s function that follows from a Dyson re-
summation [2]. Since we evaluated the gravitational partition function semi-classically,
this result is exact in the large N limit.

4.3 The global/local symmetry correspondence
So far we have seen how expectation values, Green’s functions and RG flows in the
strongly interacting field theory can be computed in the dual gravitational theory. How-
ever, an obvious question arises here; which is the field theoretical operator corresponding
to a given bulk field? This is in general a hard question to answer, even in a top-down
construction where the bulk and boundary theories are known explicitly. One could even
argue that it is not the right question to ask. Indeed, the bulk theory is in its own right
a complete description of a strongly coupled quantum field theory. The bulk fields and
their interactions define the QFT operators, their spectrum and correlation functions.

41



4. The Holographic Dictionary

Even if the QFT operator algebra and Lagrangian where known, one would not be able
to use this to perform reliable calculations, employing e.g. perturbation theory, due to
the inherent strong coupling. However, it is still desirable to know how to interpret the
quantities of the bulk theory in terms of familiar observables in quantum field theory,
in order to determine which quantities are of interest to condensed matter applications.
The most prominent approach to match up bulk fields with operators in the dual QFT
is to appeal to symmetry arguments.

Up to this point we have only considered real scalar bulk fields dual to scalar single-
trace operators. The GKPW rule is, however, valid also for fields with spin or internal
symmetries. For instance, consider a U(1) Maxwell gauge symmetry in the bulk space-
time, described by a Maxwell gauge field AM . Under a local U(1) transformation, the
bulk gauge field transforms as AM → AM +∇Mχ, where χ is an arbitrary scalar function
of the bulk spacetime coordinates. In particular, we consider a χ which is nonzero on
the asymptotic boundary. This is called a ‘large’ gauge transformation. The gauge field
in the bulk is coupled to a current Jµ on the boundary. Note that the bulk field index
M run over one more value than the boundary current index µ, since the bulk spacetime
has one more spatial dimension. In order to match the bulk field AM with the boundary
current Jµ we must make use of that AM is a gauge field. It is possible to fix a gauge
such that the component of the gauge field along the radial direction vanish, i.e. Ar = 0.
This choice of gauge fixing is called radial gauge. We can then couple the gauge field to
the current on the boundary by adding a standard ‘JA-coupling’ boundary term,∫

dd+1x
√
−γJµAµ , (4.89)

to the bulk action. Here γ is the induced metric on the conformal boundary. Under a
‘large’ gauge transformation, this coupling term transforms to∫

dd+1x
√
−γ (Aµ +∇µχ) Jµ =

∫
dd+1x

√
−γ (AµJµ − χ∇µJ

µ) , (4.90)

where we have integrated the second term by parts. For the bulk theory to be invariant
under this gauge transformation, the action itself must be invariant. In particular, the
coupling term (4.89) has to be gauge invariant. It follows that ∇µJ

µ = 0 must hold, i.e.
the current operator Jµ must be conserved in order for the coupling (4.89) to be gauge
invariant. The current is then naturally identified as the symmetry current of a global
U(1) symmetry, since Noether’s theorem tells us that such a current is always conserved.
Then according to the GKPW formula, the bulk gauge field AM is dual to a conserved
current Jµ of a global symmetry in the boundary field theory.

This is the standard approach of identifying a boundary QFT operator to a Maxwell
field in the bulk. However, note that the condition for the coupling term (4.89) to be
gauge invariant is only that the current is conserved. This guarantees at least a global
symmetry in the boundary QFT, but it is only a minimal requirement. Indeed, in several
top-down models, e.g. Maldacenas original type IIB supergravity on AdS5×S5 dual to
N = 4 super-Yang-Mills theory in d = 4 dimensions, the boundary QFT in fact possess
local symmetry. A boundary QFT with only a global U(1) symmetry does not contain
a dynamical photon, i.e. it does not incorporate any electrodynamics into the theory.
This would require a local U(1) symmetry. Although one can only be sure to have a
global symmetry in the boundary QFT, there are ways in which one can account for
electrodynamics. The standard approach is to weakly gauge the theory, meaning that
one explicitly weakly couple the boundary theory to a dynamical photon. This can be
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achieved by adding a F µνFµν term to the QFT action, where Fµν = ∂µAν − ∂νAµ is
the electromagnetic field strength. The effective action for the photon will then capture
electrodynamical phenomena, see e.g. [10] where this is done for the superconductor toy
model that we will study in Chapter 7.

Another way to incorporate a dynamical photon in the boundary QFT is to use the
U(1) field strength in the bulk to identify a U(1) gauge theory in the boundary QFT,
as proposed in [13]. This amounts to imposing a mixed boundary condition on the
bulk Maxwell field at the conformal boundary. Moreover, this is equivalent to a (current-
current) double-trace deformation of the QFT which results in an RPA form of the Green’s
function, as we saw in the previous section. Electrodynamics in the boundary QFT has
been studied previously using the double-trace deformation approach [12], [14]. In our
treatment of holographic superconductivity in Chapter 7, we will attempt to account for
a dynamical photon in the boundary QFT by imposing the mixed boundary condition
proposed in [13].

Now consider the metric field gMN of the bulk spacetime. This is a symmetric 2-
tensor field covariant under arbitrary diffeomorphisms of the spacetime. The gravitional
theory itself is invariant under these diffeomorphisms. This diffeomorphism invariance
reflects a redundancy in the description of the theory, namely, the freedom to choose a
coordinate system. In this regard it is similar to gauge invariance, which also reflects a
redundancy of the theory, manifesting itself in the freedom to choose a ‘gauge’. In this
way, it is natural to think of gMN as a kind of gauge field. Just as the U(1) gauge field is
massless as long as the U(1) symmetry is unbroken, so is the metric field massless unless
the diffeomorphism invariance is broken.

We know that the metric field is sourced by the energy-momentum tensor and vice
versa, as described by Einstein’s equations. Because the energy-momentum tensor is a
rank-2 tensor the metric field has spin-2. We are thus led to identify the bulk metric
field as dual to the energy momentum tensor in the boundary QFT, in complete analogy
with how the bulk Maxwell field AM was identified as dual to the current Jµ in the
boundary QFT. In particular, consider a pure gravitational theory in AdS space. The
bulk metric field at the conformal boundary should be identified as the source for the
dual CFT energy-momentum tensor. In a relativistic conformal field theory the spin-0
and spin-1 parts of the energy-momentum tensor are fixed by conformal invariance and
Lorentz invariance, respectively [2]. The dynamical part of the energy-momentum tensor
is thus a pure spin-2 field. Furthermore, the energy momentum tensor is a marginal
operator with conformal dimension ∆ = d+ 1. There is a mass-scaling relation for spin-2
fields, analogous to the relation (4.67) for spin-0 fields, and the fact that a marginal CFT
operator is dual to a massless bulk field holds also for spin-2 fields [2]. The bulk field
dual to the energy-momentum tensor of the CFT should thus be a massless spin-2 field9.
The only real candidate is the metric field, since general relativity is the only known
consistent theory of a massless spin-2 field. The Lorentz invariance of the CFT energy-
momentum tensor is captured by the conservation law ∇µT

µν = 0. Thus, similar to the
bulk Maxwell field and dual conserved current, the bulk metric field is dual to a conserved
current of a global symmetry in the boundary field theory, namely, the energy-momentum
tensor which is the Noether current associated with global spacetime translations. This

9The spin here characterizes how the energy-momentum tensor of the CFT behaves under Lorentz
transformations. Since the CFT can be thought of as defined on the boundary of the bulk spacetime,
the dual bulk field should also be a spin-2 field. However, the bulk field spin characterizes how the field
transforms under ‘local’ Lorentz transformations.
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follows the standard identification scheme where a gauge field in the bulk correspond to a
conserved current of the corresponding global symmetry in the boundary theory. In this
way one identifies local symmetries in the bulk with global symmetries in the boundary.
In this sense, a holographic duality can be thought of as a global/local symmetry duality.
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5
Holographic Thermodynamics

Up to this point we have been exclusively dealing with a gravitational theory in pure
AdS space, holographically dual to a conformal field theory ‘livning’ on the conformal
boundary of AdS. Conformal field theories lack an intrinsic scale and are highly relevant
for statistical and condensed matter physics in the context of describing the scale invariant
physical systems realized at thermodynamic or quantum critical points, where a phase
transition occurs [45], [46]. However, we would like to be able to model physical systems
which does possess various scales, e.g. a temperature and chemical potential. In this
chapter we introduce a temperature scale to our boundary field theory by introducing a
black brane with a ‘finite size’ planar horizon in the bulk spacetime. The planar horizon
is of course infinite but we use the linguistic of spherical black holes where a finite size
horizon is located at a finite radius from the singularity. It is then appropriate to also refer
to the black brane as a black hole. The thermodynamic properties of this black hole will
translate into the same thermodynamic properties in the boundary theory. For instance,
the boundary QFT will have a temperature coinciding with the Hawking temperature of
the black hole, as well as an entropy coinciding with the Bekenstein-Hawking entropy.

Even with the inclusion of a black hole in the bulk spacetime, the boundary field
theory will still be a conformal field theory, albeit at a finite temperature, since there
is only this one temperature scale. To break the scale invariance a second scale has to
be introduced. In the next chapter we break the scale invariance by considering a fi-
nite volume boundary space which comes with an associated length scale. This gives
rise to a Hawking-Page phase transition in the bulk spacetime which is interpreted as a
confinement-deconfinement transition in the dual QFT. Next, in our treatment of holo-
graphic superconductors in Chapter 7, the scale invariance is broken by considering a
charged black hole, giving rise to a finite chemical potential in the boundary QFT.

This chapter starts of with introducing thermal field theories and the Schawarschild
black hole in AdS space. The Hawking temperature of this black hole is calculated. We
then proceed with calculating the free energy and entropy of this black hole solution,
which is interpreted as the free energy and entropy of the boundary theory, respectively.

5.1 Black holes in AdS space and thermal field the-
ories

A quantum field theory is related to a thermal field theory at equilibrium by a Wick
rotation, t → −iτ . Here one considers the Euclidean time τ to be periodic with a
periodicity β = 1/(kBT ) = 1/T , where T is the temperature of the thermal theory and
kB is Boltzmann’s constant, which is one in our choice of units. The partition function
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of the thermal field theory is given by

ZTFT(T ) =
∫
S1×Rd

DΦe−IE [Φ] , (5.1)

where IE[Φ] is the Euclidean field theory action and S1 is the imaginary time circle. The
holographic dictionary remains valid in the Euclidean signature. There is, however, a
caveat here: the field theory is now defined on a nontrivial background space topology,
S1 × Rd, and the bulk space must therefore approach this geometry at spatial infinity.
Using the GKPW formula to evaluate the thermal partition function semi-classically, we
get

ZTFT(T ) = e−SE [g∗MN ] , (5.2)

where SE is the Euclidean Einstein-Hilbert action with a negative cosmological constant
Λ = −d(d+ 1)/(2L2),

SEH = − 1
2κ2

∫
dd+2x

√
g

(
R + d(d+ 1)

L2

)
, (5.3)

and g∗MN is a metric that solves Einstein’s equation subject to appropriate boundary
conditions respecting the thermal field theory background geometry. The solution is a
black hole geometry with a metric

ds2 = r2

L2f(r)dτ 2 + L2

f(r)r2dr
2 + r2

L2dx
2
i . (5.4)

The function f(r) is called the emblackening factor and the imaginary time coordinate
τ is directly identified with the one in the dual thermal field theory. The periodicity
of τ is then also the inverse temperature of the black hole Hawking radiation. The
boundary condition at spatial infinity, r →∞, is to require that the black hole geometry
asymptote to the S1×Rd geometry of the thermal field theory. We must therefore require
that f(r) → 1 as r → ∞. Rotating back to real time, we see that gtt = (r/L)2f(r) and
the radius of the (outer) horizon is hence given by the largest solution to f(r) = 0.
The emblackening factor can in general not be determined analytically except in some
sufficiently simple theories including the present pure AdS gravity theory. In this case
the emblackening factor is given by

f(r) = 1− M

rd+1 , (5.5)

where M is the mass of the black hole. The unique solution to f(r) = 0 is then r+ =
M1/(d+1). Thus, we can rewrite the emblackening factor as

f(r) = 1−
(
r+

r

)d+1
. (5.6)

The notion of a dynamical spacetime with a finite size black hole horizon as being a dual
description of a QFT at a finite temperature is further justified by the interpretation
of the bulk radial direction as the field theory RG energy scale. The high energy UV
phenomena should be rather unaffected by a finite temperature given that the energy is
‘high’ compared to the temperature scale. On the other hand, the low energy IR dynam-
ics is highly affected by a finite temperature. Sufficiently low energy, long wavelength
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processes will in fact be screened by the temperature, making it effectively act as an
IR cutoff. This is perfectly encoded in the black hole horizon in the bulk since it only
affects the geometry in the deep interior, corresponding to the low energy region of the
dual QFT. The asymptotic near boundary geometry is not affected as was made sure by
imposing f(r) → 1 as r → ∞. Furthermore, the horizon chops of the geometry in the
deep interior at r = r+, in perfect coherence with the low energy screening effect of the
temperature.

We are now in a position to derive a relation between the horizon radius r+ and the
temperature T of the black hole. The metric (5.4) can be written as

ds2 = h(r)dτ 2 + 1
h(r)dr

2 + r2

L2dx
2
i , (5.7)

with
h(r) = gtt(r) = grr(r) = r2

L2f(r) . (5.8)

We expand the metric near the horizon while noting that h(r+) = 0,

ds2 = h′(r+)(r − r+)dτ 2 + 1
h′(r+)(r − r+)dr

2 + r2
+
L2dx

2
i + · · · (5.9)

Next, we perform a change of variables,

τ → ϕ = h′(r+)
2 τ ,

r → ρ = 2
√
r − r+

h′(r+) ,
(5.10)

in which the metric takes the following form:

ds2 = ρ2dϕ2 + dρ2 + r2
+
L2dx

2
i + · · · (5.11)

Note that f ′(r+) = (d + 1)/r+ > 0 and consequently h′(r+) > 0, so we can omit the
absolute value of h′(r+) when squaring ρ. However, in the general case one would have
to replace every h′(r+) by its absolute value.

Since the imaginary time τ is defined on a circle, so is ϕ. Thus, the coordinates ϕ
and ρ are identified as polar coordinates on a two-dimensional plane, with of course ϕ
being the compact angular coordinate and ρ the radial coordinate. Note that the horizon
is located at the origin ρ = 0 in these polar coordinates. In order to avoid a conical
singularity at the horizon the coordinate ϕ must have a periodicity ϕ ∼ ϕ + 2π. The
definition of ϕ in terms of τ then directly implies that τ has a periodicity of 4π/h′(r+).
Now, recall that we have already made the identification τ ∼ τ + 1/T . Thus, we arrive
at an expression of the black hole temperature in terms of bulk quantities,

T = h′(r+)
4π = r2

+f
′(r+)

4πL2 = (d+ 1)r+

4πL2 . (5.12)

It is worth mentioning that if we where to restore physical constants the formula for the
temperature would read

T = h̄c

kB

(d+ 1)r+

4πL2 . (5.13)
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This result is in direct opposition to the analogous result for spherical Schwarzchild black
holes asymptotic to flat space seen in our universe. The temperature of these black holes
are inversely proportional to the horizon radius and, consequently, the larger black holes
will be cooler than the smaller ones. Apparently this is not the case for the planar black
holes in AdS space considered here, since the temperature here is linearly proportional to
the horizon radius. A larger black hole will thus be hotter than a smaller one. However,
this is again in perfect synchrony with the geometrization of the boundary theory RG
scale. As the temperature increases, more and more low energy processes should be
screened out by the temperature. This is precisely what happens in the bulk as the
horizon radius grows; more and more of the IR region in the deep interior disappears
behind the growing horizon. Moreover, with an increasing temperature, the dynamics at
the temperature scale get increasingly closer to the UV dynamics. This is encoded in
the growing horizon as well, since the near horizon region expands outwards toward the
asymptotic boundary where the UV phenomena lives.

The temperature relation (5.13) was a consequence of demanding regularity of the
Euclidean black hole geometry at the horizon. For bulk theories in a Euclidean signature
with various field contents, one generally requires the different modes to be regular at the
horizon. When Wick rotated back to real time these regularity conditions translates into
intuitive ‘infalling’ boundary conditions at the horizon. The fields in the bulk must only
be falling into the black hole and not emerging out from it. This encodes for dissipative
processes in the dual field theory since any mode in the bulk will eventually disappear
behind the horizon and thus acquire a finite lifetime.

5.2 Free energy and entropy
By the GKPW formula, the (Helmholtz) free energy in the semi-classical limit is given
by

F = −T lnZQFT(T ) = TSE[g∗MN ] , (5.14)
where SE is the bulk theory Euclidean action and g∗MN is the black hole geometry (5.4).
Computing the free energy of the theory therefore amounts to evaluating the on-shell
Euclidean action.

As is usually the case in holography, one has to take into consideration boundary
contributions to the action. The S1 × Rd geometry on the conformal boundary is fixed.
We introduce a cutoff surface at r = R and impose Dirichlet boundary conditions on the
metric fluctuations δgMN on this cutoff surface. In order to have a well defined variational
problem in the limit R → ∞, given the fixed conformal boundary, there should not be
any boundary terms proportional to ∂rδgMN after integrating the action by parts. This
requires the addition of a ‘Gibbons-Hawking-York’ boundary term to the action [50], [51],

SGHY = 1
2κ2

∫
S1×Rd

dd+1x
√
h(−2K)

∣∣∣∣
r=R

. (5.15)

Here h is the reduced determinant of the induced metric hMN on the cutoff boundary
and K = hMNKMN is the trace of the extrinsic curvature KMN of the induced metric,
defined as

KMN = hKMh
L
N∇KnL , (5.16)

where∇M is the covariant derivative with respect to gMN , and nM is an outwards directed
normal vector to the cutoff surface. The extrinsic curvature characterizes the way a
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submanifold is embedded in a manifold. Here it characterizes how the cutoff surface is
embedded as a boundary of the bulk space.

Furthermore, even with the addition of a Gibbons-Hawking-York boundary term we
will, as usual, encounter a divergence upon taking R → ∞, resulting from integrating
over an infinite volume. This infinite volume divergence correspond to a UV divergence
in the boundary QFT and can be regulated directly in the bulk theory by the addition of
a boundary counterterm to the action. This counterterm depends only on the intrinsic
geometry of the boundary. Hence, it does not alter the bulk equations of motion. We
generalize the convention in [50] to AdS geometries and choose the counterterm such that
the on-shell action vanish for pure AdS space1. For our Schwarzchild black hole in AdS
space (5.4), the counterterm is as follows:

Sct = 1
2κ2

∫
S1×Rd

dd+1x
√
h

2d
L

∣∣∣∣
r=R

. (5.17)

We will now show that this counterterm indeed precisely cancels the infinite volume
divergance encountered in the unregulated on-shell action.

With the addition of the Gibbons-Hawking-York term and the counterterm, the total
gravitational Euclidean action to be considered is

SE = SEH + SGHY + Sct , (5.18)

where SEH is the Euclidean Einstein-Hilbert action with a negative cosmological constant,

SEH = − 1
2κ2

∫ R

r+
dr
∫
S1×Rd

dd+1x
√
g

(
R + d(d+ 1)

L2

)
. (5.19)

Here the R in the integrand of course denotes the Ricci scalar and not the cutoff radius.
There should be no confusion about the meaning of R in the following calculation since
we will evaluate the Ricci scalar and then R will always refer to the cutoff radius. In fact,
the Ricci scalar and square root of the determinant of the metric (5.4) is

R = −(d+ 1)(d+ 2)
L2 ,

√
g =

(
r

L

)d
. (5.20)

Thus, the Einstein-Hilbert action takes the following form,

SEH = − 1
2κ2

∫ 1/T

0
dτ
∫ R

r+
dr
∫
Rd
ddx

(
r

L

)d (
−2(d+ 1)

L2

)

= 1
2κ2

2
L2T

∫ R

r+
dr(d+ 1)

(
r

L

)d ∫
Rd
ddx

= 1
2κ2

2
LT

[(
R

L

)d+1
−
(
r+

L

)d+1
] ∫

Rd
ddx .

(5.21)

The normal vector nM should be in the positive r-direction and satisfy nMnNgMN = 1.
It is straightforward to verify that it is indeed given by nM = r

√
f/LδMr where δMN

is the Kronecker delta. Recall from 4.1.1 that the induced metric is defined as hMN =
gMN − nMnN . The induced metric then exactly takes the form of the black hole metric

1In [50] they considered geometries asymptotic to Minkowski space and consequently imposed the
condition that the on-shell action vanish for Minkowski space.
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(5.4), but with a vanising rr-component. The reduced determinant h of the induced
metric is computed by taking the determinant of hµν , where the greek indices as usual run
only over the coordinates orthogonal to the radial coordinate. Thus,

√
h = (r/L)d+1√f .

In the computation of the trace of the extrinsic curvature, we utilize the fact that the
induced metric is orthogonal to the normal vector nM and that hµν = gµν ,

K = hMNK
MN = hMNh

MKhNL∇KnL = hKL
(
∂KnL − ΓIKLnI

)
= −hµνΓrµνnr . (5.22)

Here ΓKMN is the Cristoffel symbol with respect to gMN . The two Cristoffel symbols we
need are

Γrττ = −r
3f

L4

(
f + rf ′

2

)
, Γrxixi = −r

3f

L4 . (5.23)

Now, nr = grrn
r = L/(r

√
f) and we can compute K,

K = −hττΓrττnr −
d∑
i=1

hxixiΓrxixinr

= L2

r2f

r3f

L4

(
f + rf ′

2

)
L

r
√
f

+ d
L2

r2
r3f

L4
L

r
√
f

=
√
f

L

(
d+ 1 + rf ′

2f

)
.

(5.24)

The Gibbons-Hawking-York boundary term (5.15) is then given by

SGHY = 1
2κ2

∫
S1×Rd

dd+1x
(
r

L

)d+1√
f

[
−2
√
f

L

(
d+ 1 + rf ′

2f

)] ∣∣∣∣
r=R

= − 1
2κ2

(
R

L

)d+1 [2f(d+ 1)
L

+ Rf ′

L

] ∫ 1/T

0
dτ
∫
Rd
ddx

= − 1
2κ2

1
T

(
r

L

)d+1
[

2(d+ 1)
L

(
1−

(
r+

r

)d+1
)

+ d+ 1
L

(
r+

r

)d+1
] ∫

Rd
ddx

∣∣∣∣
r→∞

= − 1
2κ2

d+ 1
LT

[
2
(
R

L

)d+1
−
(
r+

L

)d+1
] ∫

Rd
ddx ,

(5.25)

where we have used that f(R) = 1 − (r+/R)d+1 in the third equality. Finally, the
counterterm (5.17) is

Sct = 1
2κ2

∫
S1×Rd

dd+1x
(
r

L

)d+1√
f

2d
L

∣∣∣∣
r=R

= 1
2κ2

2d
LT

(
R

L

)d+1
√

1−
(
r+

R

)d+1 ∫
Rd
ddx

= 1
2κ2

2d
LT

[(
R

L

)d+1
− 1

2

(
r+

L

)d+1
+O

( 1
Rd+1

)] ∫
Rd
ddx ,

(5.26)

where we have expanded the square root in powers of (r+/R)d+1 � 1. Now adding up
(5.21), (5.25), and (5.26), we get an expression for the complete Euclidean bulk action,
which we then substitute in (5.14) to calculate the free energy of the black hole solution.
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The terms with a positive power of R cancel and we can thus take the limit R → ∞.
The result for the free energy is

F = − 1
2κ2

1
L

(
r+

L

)d+1 ∫
Rd
ddx . (5.27)

Note that the free energy indeed vanishes for pure AdS obtained by setting r+ = 0. Fur-
thermore, the free energy is proportional to the spatial volume of the conformal boundary
on which the field theory is defined, as is the expected result for a quantum field theory.
Using the relation (5.13) between the temperature and horizon radius, the free energy
can be expressed as

F = −2π
κ2

( 4πL
d+ 1

)d T d+1

d+ 1

∫
Rd
ddx . (5.28)

The entropy of the black hole and thermal field theory is then given by

S = −∂F
∂T

= 2π
κ2

( 4πL
d+ 1

)d
T d
∫
Rd
ddx = 1

4GN

(
r+

L

)d ∫
Rd
ddx , (5.29)

where we have used that κ = 8πGN with GN being Newtons constant. This is in fact
precisely the Bekenstein-Hawking entropy of the black hole (3.2), as is confirmed by
calculating the ‘area’ of the horizon2,

A =
∫
Rd
ddx
√
g
∣∣∣∣
r=r+

=
(
r+

L

)d ∫
Rd
ddx . (5.30)

We have thus shown that the entropy of our finite temperature boundary CFT is equal to
the Bekenstein-Hawking entropy of the black hole in the bulk. The expressions we have
derived for the free energy and entropy are written in terms of bulk quantities, (r+,L, and
GN). In order to express the thermodynamic quantities in terms of field theory quantities
one would need an explicit top-down construction of the duality. However, it is worth
mentioning that in the canonical example of 3 + 1 dimensional large N super-Yang-Mills
theory dual to supergravity on AdS5×S5, the black hole entropy is proportional to N2.
This suggest that the boundary gauge theory dual to an AdS black hole spacetime is in a
deconfined state. This statement will be explored in the next chapter which is about the
thermal ‘Hawking-Page transition’ and the related confinement-deconfinement transition
in the dual field theory.

2It is more correct to use the word volume here as opposed to area, but we stick with the terminology
of spherical black holes in 3+1 dimensional spacetime to guide our intuitions.
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6
The Hawking-Page Transition and
Confinement in Gauge Theories

In the previous chapter we introduced a temperature scale to our holographic duality by
adding a black hole in the deep interior of the bulk spacetime. This induced a temperature
in the boundary field theory coincident with the Hawking temperature of the black hole.
Here we will introduce yet another scale to our system in a more rudimentary manner by
considering a boundary space with a finite volume. In fact, this can be done in a natural
and straightforward way by exchanging the Poincaré coordinates for AdS space, which we
have been working with so far, for global coordinates. Recall from 3.3 that the Poincaré
coordinates cover only the Poincaré patch of AdS space. The conformal boundary in
Poincaré coordinates is a Minkowski space, making it a natural choice of coordinates
when considering relativistic boundary QFTs. However, the global coordinates (3.13)
cover the entire AdS space and the topology of the Euclidean boundary space is then
S1×Sd.

There are precisely two isotropic solutions to Einstein’s equation in Euclidean signa-
ture which are asymptotic to ‘global AdS’, as proved already in the 1980s by Hawking
and Page [52]. One is a Schwarzschild black hole solution with an imaginary time com-
pactified on a circle. In the case of global AdS, however, the black holes are spherical as
opposed to the planar black holes, or rather black branes, which are the corresponding
solutions one obtains for the Poincaré patch of AdS space. The other solution is of course
the global AdS solution (3.13), but with a periodic imaginary time. The global AdS so-
lution with a periodic imaginary time is referred to as ‘thermal AdS’. The corresponding
boundary field theory will acquire a finite temperature despite the lack of a black hole
horizon in the bulk spacetime.

We concluded the last chapter by stating that black hole entropy in the case of su-
pergravity on AdS5×S5, dual to large N super-Yang-Mills theory in 3+1 dimensions, is
proportional to N2. Since N2 counts the ‘colour’ degrees of freedom in the super-Yang-
Mills gauge theory, this suggests that these degrees of freedom are not confined in a gauge
invariant singlet, and that the black hole solution in fact describes the deconfined phases
of the gauge theory. On the other hand, the thermal AdS solution has no horizon and
consequently no entropy of order N2. The confined states of the gauge theory should
have an entropy of order unity, since the order N2 degrees of freedom are then confined
in a gauge invariant singlet state. In the large N limit, corresponding to the classical
limit in the gravitational theory which we are working in, contributions of order one to
the entropy will be suppressed by the leading large N contribution. The fact that the
thermal AdS solution does not have an entropy of order N2 suggests that it may describe
the confined states of the boundary theory [2].

In order to determine which of the two competing thermal solutions is realized in a
given system, one can compare their free energies as a function of temperature and AdS
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radius L. The solution with the lower free energy will correspond to the thermodynami-
cally preferred state.

We will first analyse the thermodynamics of the two qualitatively different thermal
solutions to Einstein’s equation, and in particular, calculate their free energies. We will
find that a thermal phase transition occurs at a particular critical temperature, which
depends on the number of spatial dimensions and the AdS radius. This is in fact the
‘Hawking-Page transition’ [52]. We will then give a brief discussion of confinement in
gauge theories, and its interpretation in holography. By computing a static quark po-
tential, both in the zero and finite temperature case, we analyse the confined/deconfined
nature of large N gauge theories in holographic duality. However, this computation is
done in Poincaré coordinates, which correspond to an infinite volume conformal bound-
ary, and therefore cannot be applied to the spacetimes involved in the Hawking-Page
transition. We end the static quark potential analysis by briefly mention the result in
[53] for the finite volume case, which suggests that the Hawking-Page transition precisely
correspond to a confinement-deconfinement phase transition in the holographically dual
QFT.

6.1 Thermodynamics of AdS space
The Euclidean metric of the two isotropic spacetimes asymptotic to ‘global AdS’ takes
the following form [52], [53]:

ds2 = f(r)dτ 2 + dr2

f(r) + r2dΩ2
d , (6.1)

where dΩ2
d is the metric of the d dimensional sphere Sd with unit radius. The emblackening

factor is given by

f(r) = 1 + r2

L2 − ωdMr−d+1 , ωd = 2κ2

dVol(Sd)
, (6.2)

where M is the mass of the black hole and Vol(Sd) is the volume of the d dimensional
sphere. The thermal AdS solution is obtained by taking M = 0. Note that the black
hole solution is asymptotic to pure AdS. The largest solution r+ to f(r) = 0 with M 6= 0
determines the location of the horizon. Whereas the thermal AdS spacetime is defined
for 0 ≤ r <∞, the black hole spacetime is restricted to the region r+ ≤ r <∞.

Expanding the metric (6.1) near the horizon and changing coordinates according to
(5.10) (replacing h with f), we get

ds2 = ρ2dφ2 + dρ2 + r2
+dΩ2

d + · · · (6.3)

From (6.2) it directly follows that

f ′(r+) = 2r+

L2 + (d− 1)ωdMr−d+ . (6.4)

However, using that f(r+) = 0 it also follows that

ωdMr−d+ = 1
r+

+ r+

L2 = L2 + r2
+

r+L2 , (6.5)
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and we can thus write
f ′(r+) = (d− 1)L2 + (d+ 1)r2

+
r+L2 . (6.6)

Since clearly f ′(r+) > 0, the absolute sign when squaring ρ = 2
√

(r − r+)/f ′(r+) can be
omitted. In order to avoid a conical singularity at ρ = 0 we must require φ ∼ φ + 2π.
The Euclidean time τ = 2φ/f ′(r+) then has a periodicity of 4π/f ′(r+) which is identified
as the inverse temperature. Hence, the temperature of the black hole solution is given by

T = (d− 1)L2 + (d+ 1)r2
+

4πr+L2 . (6.7)

We now follow the prescription outlined in 5.2 to compute the free energies and determine
the thermodynamically preferred solution.

Recall from 5.2 that the free energy is proportional to the on-shell Euclidean bulk
action, βF = S[g∗]. For a pure gravitational theory in vacuum, the action consists of an
Einstein-Hilbert term plus suitable boundary terms, in particular a Gibbons-Hawking-
York term and a counterterm. We choose our counterterm such that the on-shell action
vanish for the thermal AdS solution. Thus, we are essentially setting the free energy of
the thermal AdS solution to zero. Consider the case of d = 2, i.e. 4 bulk spacetime
dimensions. The counterterm that does the job is

Sct = 1
2κ2

∫
S1×S2

d3x
√
h

4
L

√
1 + L2

r2

∣∣∣∣
r=R

, (6.8)

where h as usual is the determinant of the induced metric on the boundary. The Euclidean
Einstein-Hilbert action (5.3) evaluated on the solution (6.1) is given by

SEH = 3
L2κ2

∫
d4x
√
g , (6.9)

where we have used that R = −(d + 2)(d + 1)/L2 is the Ricci scalar for the geometry
(6.1). Thus, the on-shell Einstein-Hilbert action is simply given by a constant times the
bulk volume. For the thermal AdS spacetime, we get

SEH = 3
L2κ2

∫ β′

0
dτ
∫ R

0
drr2

∫
S2
dΩ = 4πβ′

L2κ2R
3 , (6.10)

and for the black hole spacetime,

SEH = 3
L2κ2

∫ β

0
dτ
∫ R

r+
drr2

∫
S2
dΩ = 4πβ

L2κ2

(
R3 − r3

+

)
. (6.11)

Now, the Gibbons-Hawking-York term is given by

SGHY = 1
2κ2

∫
S1×S2

d3x
√
h (−2K)

∣∣∣∣
r=R

. (6.12)

The trace of the extrinsic curvature is

K = f ′

2
√
f

+ 2
√
f

r
. (6.13)

It is straightforward to verify that the total on-shell action SEH + SGHY + Sct vanish for
the thermal AdS solution with f(r) = 1 + r2/L2 and arbitrary β′. For the black hole
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solution where f(r) = 1+ r2/L2−ω2Mr−1 and β = 1/T , with T given by (6.7), one finds

SGHY = 1
2κ2

∫ β

0
dτ
∫
S2
dΩR2

√
f

(
− f ′√

f
− 4
√
f

R

)

= 4πβ
L2κ2

(
−3R3 − 2RL2 + 3

2ω2ML2
)
,

(6.14)

and

Sct = 1
2κ2

∫ β

0
dτ
∫
S2
dΩ4R2

L

√
f

√
1 + L2

R2

= 4πβ
L2κ2

(
2R3 + 2RL2 − ω2ML2

)
.

(6.15)

The on-shell action for the black hole solution is then

SBH = SEH + SGHY + Sct = 4πβ
L2κ2

(1
2ω2ML2 − r3

+

)
. (6.16)

Using (6.7) to evaluate β, as well as the fact that the thermal AdS on-shell action vanish
with our choice of counterterm, we find

SBH − SAdS =
16π2r2

+

(
L2 − r2

+

)
2κ2 (3r2

+ + L2) , (6.17)

where SAdS denotes the thermal AdS on-shell action. In the general case of d + 2 bulk
spacetime dimensions, this expression would read [2], [53]

SBH − SAdS =
4πVol(Sd)rd+

(
L2 − r2

+

)
2κ2 ((d+ 1)r2

+ + (d− 1)L2) . (6.18)

The difference in on-shell actions SBH − SAdS is positive1 for r+ < L and negative for
r+ > L, indicating a phase transition at r+ = L, corresponding to a critical temperature
Tc = d/(2πL) according to (6.7). Plotting the free energy F as a function of T indeed
reveals a first order transition at Tc, characterized by a discontinuity in the derivative of
F with respect to T , as shown in Fig.6.1. Here the constant values d = 2, L = 1, and
2κ2 = 1 have been used. For T < Tc the thermal AdS space is the thermodynamically
preferred solution and the free energy is zero. For T > Tc the black hole geometry is the
preferred solution with a negative free energy, monotonically decreasing in temperature.
This phase transition between two different stationary spacetime configurations is known
as the Hawking-Page transition, named after its discoverers [52]. Remarkably, it shows
that a Schwarzschild black hole in AdS space is not stable at low temperatures; a cold
black hole can ‘uncollapse’ into pure AdS space. The fact that black holes in AdS can
become unstable is an essential feature when it comes to the applications of holography
to condensed matter physics, as it enables a gravitational description of thermodynamical
or quantum phase transitions. Indeed, in the minimal holographic superconductor toy
model to be introduced in Chapter 7, the gravitational description of the superconducting
phase transition utilizes the instability of a charged ‘Reissner-Nordström’ black hole to
perturbations of a scalar field.

1Here we are assuming d > 0. For d = 0 it is negative for any r+.

56



6. The Hawking-Page Transition and Confinement in Gauge Theories

Figure 6.1: The free energy F of the preferred state as a function of temperature T (left)
and the derivative of the free energy with respect to temperature (right). At Tc = 1/π
there is a first order phase transition from the thermal AdS solution to the black hole
solution. The derivative is discontinuous at the critical temperature. The constant values
d = 2, L = 1, and 2κ2 = 1 have been used.

One can now calculate the thermodynamic energy, 〈E〉 = −∂ lnZ
∂β

, as well as entropy
of the black hole spacetime. The results are those which should be expected; the total
energy of the black hole is equal to its mass, 〈E〉 = M , and the entropy is in precise
accordance with the Bekenstein-Hawking formula [52], [53].

It is possible to arrive at (6.18) by directly calculating the difference in on-shell actions
for the black hole and thermal AdS spacetimes [52], [53]. The surface terms will not
contribute because the black hole correction to the emblackening factor vanish too rapidly
at infinity [53]. Furthermore, the infinite volume divergences cancels when computing the
difference in actions. The difference in on-shell actions is then essentially the difference in
bulk volumes, according to (6.9). However, there is one important caveat to keep in mind
here. One has to make sure that the bulk geometries compared are dual to boundary
theories at the same temperature. The black hole must have a fixed temperature given
by (6.7), in order for the spacetime to be smooth. The thermal AdS spacetime, however,
may be defined at any temperature, i.e. the periodicity of the imaginary time may be
chosen arbitrarily. Thus, one introduces a cutoff surface at some radial distance r = R,
and then define the imaginary time circle of the thermal AdS solution in terms of the
black hole inverse temperature, in such a way that the two time circles have the same
proper length at the cutoff surface. In the end of the calculation the limit R → ∞ is
taken, so the temperatures of the two solutions match at the conformal boundary.

Setting the proper lengths of the imaginary time circles at the cutoff radius equal for
the thermal AdS and black hole solution, one finds

β′
√

1 + R2

L2 = β

√
1 + R2

L2 − ωdMR−d+1 , (6.19)

where β′ = 1/T ′ and β = 1/T are the inverse temperatures of the thermal AdS solution
and black hole solution, respectively. When computing the difference in bulk volumes,
this is the relation one should use to define β′ in terms of β to make sure that the
respective dual field theories are defined at the same temperature.
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Lτ

Ls

Figure 6.2: A standard rectangular Wilson loop contour for determining the static
quark potential. The top and bottom sides are along a spatial direction, whereas the left
and right sides are along the temporal direction.

6.2 Wilson loops and confinement

The Hawking-Page transition was discovered more than a decade before the AdS/CFT
correspondence. However, it was not until the discovery of the latter that the meaning of
the transition was fully understood. Witten showed in [53], by a Wilson loop calculation,
that the Hawking-Page transition is the gravitational description of a confinement/de-
confinement transition in the dual boundary field theory.

In gauge theory2, the local gauge symmetry transformations are elements of a Lie
group. A Lie group defines a differential manifold with non-trivial curvature and a notion
of connections and covariant derivatives. The Wilson loop is a gauge invariant operator
which depends on the holonomy3 of the gauge connection. Here we are using terminology
from differential geometry, but keep in mind that the gauge connection is really just the
gauge field Aµ itself. Particles charged under the gauge symmetry group are commonly
referred to as a quarks, in analogy with QCD. The quarks are in turn sources of the gauge
fields.

A quark that is parallel transported around a closed contour γ on the group manifold
will pick up a phase factor P exp

(
i
∮
γ A

)
, where P is the path ordering operator and

A = Aµdx
µ is the gauge one-form. The path ordering is necessary for non-Abelian gauge

theories, because of the non-commuting nature of the gauge fields. The Wilson loop is
defined as

W (γ) = TrPei
∮
γ
A
, (6.20)

where the trace is taken over the fundamental representation of the gauge group. The
Wilson loop can be thought of as the phase factor associated with the propagation of
a quark anti-quark pair around a closed contour. Its expectation value allows us to
determine whether the field theory vacuum is in a confining or deconfining state. In
the zero temperature case, the textbook approach is to consider the contour to be a
rectangle with two sides along the (imaginary) time direction, and two sides along a
spatial direction, as indicated in Fig. 6.2. The length of the sides along the temporal
and spatial direction are denoted as Lτ and Ls, respectively. This contour allows one to
obtain the static potential V (Ls) between an infinitely massive quark anti-quark pair4,
separated a distance Ls, from the expectation value of the Wilson loop. In the Euclidean

2For a more thorough review over the vast subject of gauge theory, we refer the reader to [54].
3The holonomy of a connection on a differential manifold essentially measures the amount a vector

rotates under parallel transportation around a closed curve.
4This is in complete analogy with the Coulomb potential between two separated opposite electrical

charges in the theory of electromagnetism. The infinite mass of the quarks is required in order to keep
the separation distance between them fixed, in the presence of the force associated with the potential.
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theory, when taking the limit Lτ →∞, one finds

lim
Lτ→∞

〈W (γ)〉 ∼ e−LτV (Ls) , (6.21)

Next, one also takes the limit Ls →∞; if the potential grows linearly (or faster) with Ls,
the gauge theory is in a confining state, but if the potential goes to a constant value (or
decays with Ls), the theory is in a deconfining state. We see that a confining state with
a linearly growing potential gives rise to an area law,

log 〈W (γ)〉 ∼ A(γ) , (6.22)

where A(γ) denote the minimal area enclosed by γ. On the other hand, a deconfining
phase with V (Ls)→ constant results in a perimeter law,

log 〈W (γ)〉 ∼ L(γ) . (6.23)

Moreover, the area and perimeter laws also hold for large but arbitrary spatial contours.
In the finite temperature case, the aforementioned area law still holds for spatial

Wilson loops. However, a proper order parameter for confinement is the temporal Wilson-
Polyakov loop [2], [53], [55], [56],

P (x) = Tr
(
Pei

∫ β
0 Aτdτ

)
. (6.24)

More precisely, its expectation value is an order parameter for deconfinement. A probe
quark will induce a change in the free energy of the system. This change in free energy
is measured by the expectation value of the Wilson-Polyakov loop; 〈P (x)〉 ∼ e−F (T )/T .
An infinite amount of energy is required to separate quarks from a singlet state in the
confining phase of a gauge theory, and as a consequence, the induced change in free energy
by a probe quark should be infinite. Thus, 〈P (x)〉 = 0 for a gauge theory in the confining
phase. In the deconfining phase, however, a probe quark will change the free energy by a
finite amount. Hence, 〈P (x)〉 6= 0 signals that the gauge theory is in a deconfining state.

A method for calculating the expectation value of Wilson loops in large N field theo-
ries was proposed in [57]. The string theoretical realisation of large N Wilson loops was
also studied in [58]. Since the Wilson loop is a non-local operator, its dictionary entry
cannot be obtained from the GKPW formula. Instead, one has to turn to the string
theoretical foundation of the holographic duality. In string theory, a quark in the funda-
mental representation correspond to an endpoint of an open string, the endpoint being
restricted to live on a D-brane. The string itself account for the forces acting on the
quark. Consider an open string whose two end points corresponds to a quark and anti-
quark, respectively. As the quark anti-quark pair propagates around the loop, the string
will trace out a worldsheet. It is therefore reasonable to assume that the expectation
value of the Wilson loop should go as

〈W (γ)〉 ∼ e−SNG , (6.25)

where SNG is the on-shell Euclidean Nambu-Goto action of the string, measuring the
proper area of the string worldsheet. We choose coordinates σm, with m = 0, 1, to
parametrize the string worldsheet. The coordinates of the string in the bulk spacetime is
denoted by XM = XM(σ0, σ1), where M = 0, 1, . . . , d + 1. The Nambu-Goto action is
defined as

SNG = 1
2πα′

∫
d2σ

√
det(GMN∂mXM∂nXN) , (6.26)
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where α′ is the ‘slope parameter’ conventionally used in string theory, and GMN is the
bulk metric. Note that hmn = GMN∂mX

M∂nX
N is the induced metric on the string

worldsheet.
Although the endpoints of the string is restricted to the Wilson loop, defined on the

boundary space where the gauge theory lives, the string itself may extend into the interior
of the bulk. The contour γ on the boundary space is then extended into a surface, or
rather worldsheet, in the bulk space. Determining this worldsheet amounts to finding the
stationary points of the Nambu-Goto action (6.26).

6.2.1 Static quark potential at zero temperature

We use the dictionary entry (6.25) for the expectation value of the Wilson loop to com-
pute the static quark anti-quark potential for a zero temperature gauge theory. This
calculation was originally done in [57], and has been done in [2]. We consider the zero
temperature field theory as living in an infinite flat space, and it is therefore convinient
to choose AdS in Poincaré coordinates as the bulk space. Choosing a rectangle with one
side in the temporal direction as contour for the Wilson loop, as illustrated in Fig. 6.2,
and using (6.21), the potential is given by

V (Ls) = lim
Lτ→∞

SNG

Lτ
. (6.27)

The only subtlety in this calculation comes from the fact that the conformal boundary is
located an infinite distance away. The area of the string worldsheet will therefore formally
diverge. However, it is possible to regularize the on-shell Nambu-Goto action to obtain
a finite result.

For simplicity, we consider the case of a five dimensional AdS bulk space. The pure
AdS Euclidean metric in Poincaré coordinates is given by

ds2 = r2
(
dτ 2 + dx2 + dy2 + dz2

)
+ dr2

r2 , (6.28)

where we have set the AdS radius to unity. In these coordinates, the Wilson loop rectangle
can be taken as the boundary of the domain −Lτ/2 ≤ τ ≤ Lτ/2, −Ls/2 ≤ x ≤ Ls/2, in
the boundary space. The parametrization of the string worldsheet is conveniently chosen
as σ0 = τ and σ1 = x. Furthermore, we choose to work in static gauge5 where Xτ = τ ,
Xx = x. Since these are precisely the worldsheet parameters and XM are the coordinates
of the string worldsheet in the bulk space, it directly follows that Xy and Xz should be
constants, assuming XM are orthogonal coordinates. However, the string can move in
the radial direction as well. We consider a static configuration and write Xr ≡ R(x).

With this choice of coordinates and with the metric (6.28), the determinant of the
intrinsic metric on the worldsheet can be evaluated as follows:

h = det
(
GMN(X)∂X

M

∂σm
∂XN

∂σn

)
= Gττ (R)

(
Gxx(R) +Grr(R)R′2

)
= R4 +R′2 . (6.29)

5The theory is invariant under reparametrizations of the worldsheet coordinates. The gauge freedom
here is due to this reparametrization invariance.
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The Nambu-Goto action is then given by

SNG = 1
2πα′

∫ Lτ/2

−Lτ/2
dτ
∫ Ls/2

−Ls/2
dx
√
h

= Lτ
2πα′

∫ Ls/2

−Ls/2
dxR2

√
1 + R′2

R4 .

(6.30)

Thus, the system is effectively one-dimensional and the action is the integral over a
Lagrangian,

L(R(x), R′(x)) = Lτ
2πα′R

2

√
1 + R′2

R4 . (6.31)

The conjugate momentum to R(x) is then

P (x) = ∂L
∂R′

= Lτ
2πα′

R′

R2
√

1 + R′2

R4

, (6.32)

and the Hamiltonian of the system is given by

H(R,P ) = PR′ − L(R,R′) = − Lτ
2πα′

R2√
1 + R′2

R4

. (6.33)

Since the Hamiltonian has no explicit x dependence, it is conserved with respect to
‘evolution’ in x,

dH

dx
= ∂H

∂R

dR

dx
+ ∂H

∂P

dP

dx
= −P ′R′ +R′P ′ ≡ 0 , (6.34)

where we have used Hamilton’s equations,

∂H

∂R
= −P ′ , ∂H

∂P
= R′ . (6.35)

It then follows directly from (6.33) that

R2√
1 + R′2

R4

= constant . (6.36)

The endpoints of the string are attached to the Wilson loop on the boundary space where
the radial coordinate is formally infinite, R(−Ls/2) = R(Ls/2) = ∞. A sketch of the
string extending into the bulk is shown in Fig. 6.3. Now, starting from x = −Ls/2 and
increasing x, the radial coordinate of the string decreases until it reaches a turning point,
which by symmetry must be located at x = 0. At the turning point, R′(x) = 0 and R(x)
acquires its minimal value R0. Increasing x further the radial coordinate will increase
towards infinity at x = Ls/2. Evaluating (6.36) at x = 0, we can thus determine the
constant,

R2√
1 + R′2

R4

= R2
0 . (6.37)

Solving this equation for R′, we get

R′ = ±R2
√
R4

R4
0
− 1 , (6.38)
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R = 0

R

x

R = R0 R =∞

x = −Ls
2

x = Ls
2

Figure 6.3: A string attached to the Wilson loop on the boundary space at R = ∞
and extending into the bulk space. The radial coordinate of the string takes its minimal
value R0 at the turning point of the string.

where the negative solution is valid for −Ls ≤ x ≤ 0, and the positive solution is valid
for 0 ≤ x ≤ Ls/2. Integrating the above differential equation from x = 0 to x = Ls/2,
we find a relation between Ls and R0,

Ls = 2
∫ Ls/2

0
dx = 2

∫ ∞
R0

dR
1

R2
√
R4/R4

0 − 1
= 2
R0

∫ ∞
1

dy
1

y2
√
y4 − 1

= 2
√

2π3/2

Γ(1/4)2R0
.

(6.39)

Moreover, using (6.37) and (6.38) to change the integration variable from x to R, the
Nambu-Goto action (6.30) can be rewritten as

SNG = Lτ
2πα′

∫ Ls/2

−Ls/2
dxR2

√
1 + R′2

R4 = Lτ
πα′

∫ ∞
R0

dR
R2

R2
0

√
R4/R4

0 − 1

= LτR0

πα′

∫ ∞
1

dy
y2

√
y4 − 1

.

(6.40)

This integral is divergent. As usual, the reason for this divergence has to do with the
infinite volume of the bulk space. The properly regularized action is6 [2], [57]

SNG = LτR0

πα′

[∫ ∞
1

dy

(
y2

√
y4 − 1

− 1
)
− 1

]
= −2

√
πLτR0

Γ(1/4)2α′
= − 4

√
2π2Lτ

Γ(1/4)4α′Ls
. (6.41)

where we have used (6.39) to write R0 in terms of Ls in the last equality. Now, the heavy
quark potential is given by (6.27),

V (Ls) = lim
Lτ→∞

SNG

Lτ
= − 4

√
2π2

Γ(1/4)4α′Ls
. (6.42)

The potential is Coloumb-like with a 1/Ls behaviour. This is in fact a consequence of the
conformal invariance [57]. Also note that 4

√
2π2/(Γ(1/4)4α′) > 0 so the potential is of

6One way to evaluate the integral is to multiply the integrand by a factor of yλ, integrate the two
terms separately, and set λ = 0 at the end [57].
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r+ R0 R =∞

Ls

r+ R =∞

Ls

Figure 6.4: The two possible string configurations in the finite temperature case. On
the left, the Wilson loop is not large enough for the string to reach the horizon before the
turning point is reached. In this case the string does not feel the presence of the horizon
and the situation is similar to the zero temperature case. On the right, the Wilson loop is
large enough for the string to reach beyond the horizon and rupture into two disconnected
strings, falling into the horizon.

the form −c/Ls with a positive constant c, i.e. it is an attractive potential, as expected
for a quark anti-quark pair. As mentioned earlier, the decay of the potential with Ls
signals that the gauge theory is in a deconfining state. This is precisely what we expect
for a boundary theory in infinite volume [53].

6.2.2 Static quark potential at finite temperature
The finite temperature case of the calculation in the previous section has been considered
in [56], [59]. The finite temperature of the infinite volume boundary theory is accounted
for by the addition of a black hole horizon in the bulk space. Here there are two quali-
tatively different string configurations possible, as depicted in Fig. 6.4. One possibility
is that the Wilson loop on the boundary is small enough for the attached string not to
reach the horizon in the bulk. In that case the string configuration is similar to that in
the zero temperature case, with a turning point at some radial distance larger than the
horizon radius. The other possibility is that the Wilson loop is large enough for the string
to fall into the horizon and ‘break’ into two disconnected strings.

In the finite temperature case, the Euclidean bulk geometry is now given by

ds2 = r2
(
f(r)dτ 2 + dx2 + dy2 + dz2

)
+ dr2

r2f(r) , (6.43)

with the emblackening factor
f(r) = 1−

(
r+

r

)4
. (6.44)

As in the zero temperature case, we have set the AdS radius to unity. Consider first
the configuration where the string does not reach the horizon and has a turning point
at R0, as shown on the left side of Fig. 6.4. Using the same coordinates as in the zero
temperature case, the determinant of the intrinsic metric on the string worldsheet is now

h = det
(
GMN(X)∂X

M

∂σm
∂XM

∂σm

)
= R2f(R)

(
R2 + R′2

R2f(R)

)
= R4 − r4

+ +R′2 . (6.45)
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It then follows that the Nambo-Goto action is given by

SNG = 1
2πα′

∫ Lτ/2

−Lτ/2
dτ
∫ Ls/2

−Ls/2
dx
√
h = Lτ

2πα′
∫ Ls/2

−Ls/2
dx
√
R4 − r4

+ +R′2 . (6.46)

Now, the conjugate momentum to R(x) is

P (x) = δSNG

δR′(x) = Lτ
2πα′

R′√
R4 − r4

+ +R′2
, (6.47)

and the Hamiltonian is

H(R,P ) = − Lτ
2πα′

R4 − r4
+√

R4 − r4
+ +R′2

. (6.48)

Since the Hamiltonian has no explicit x-dependence,

dH

dx
= 0 ⇒

R4 − r4
+√

R4 − r4
+ +R′2

= constant . (6.49)

Evaluating the above expression at the turning point R = R0 where R′ = 0, we find

R4 − r4
+√

R4 − r4
+ +R′2

=
√
R4

0 − r4
+ . (6.50)

Solving for R′ yields
dR

dx
= ±

√√√√(R4 − r4
+)(R4 −R4

0)
R4

0 − r4
+

, (6.51)

and integrating this we obtain a formal expression for Ls,

Ls = 2
∫ Ls/2

0
dx = 2

∫ ∞
R0

dR

√√√√ R4
0 − r4

+

(R4 − r4
+)(R4 −R4

0)

= 2
R0

√√√√1− r4
+

R4
0

∫ ∞
1

dy
1√(

y4 − r4
+
R4

0

)
(y4 − 1)

.
(6.52)

Using (6.46) and (6.51), an expression for the static quark potential (6.27) follows,

V = 1
2πα′

∫ Ls/2

−Ls/2
dx
√
R4 − r4

+ +R′2 = 1
πα′

∫ ∞
R0

dR

√√√√R4 − r4
+

R4 −R4
0

= R0

πα′

∫ ∞
1

dy

√√√√y4 − r4
+/R

4
0

y4 − 1 .

(6.53)

Just as in the zero temperature case, this integral is divergent. The properly regularized
static quark potential is given by [59]

V (R0) = R0

πα′

∫ ∞
1

dy
√√√√y4 − r4

+/R
4
0

y4 − 1 − 1
− 1 + r+

R0

 . (6.54)
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Now, in order to find the dependence of the static quark potential on the spatial side
length Ls of the Wilson loop, one uses (6.52) to eliminate R0 from (6.54) in favor of Ls.
Here one has to resort to numerical methods, as opposed the zero temperature case where
the analogue of this step could be done analytically. We will simply quote the results.

Note that the relations (6.52) and (6.54) are only valid for sufficiently small Ls, where
the string has not reached the horizon and the string configuration is as illustrated on
the left side of Fig. 6.4. For a given temperature, or equivalently, horizon radius r+,
there exists a length scale L∗ for which the string does not reach the horizon if Ls < L∗.
Furthermore, L∗ should decrease with increasing temperature since r+ increases with
temperature. One finds from the numerical analysis that the static quark potential will
have a Coulomb like behaviour, V (Ls) ∼ −1/Ls for Ls < L∗. The area and perimeter
laws for Wilson loops now tells us that the corresponding dual gauge theory is in a
deconfined state.

For Ls > L∗, however, the string configuration will be that of two disconnected strings
dropping through the horizon, as depicted on the right side of Fig. 6.4. In this case the
static quark potential is simply given by [2]

V = − r+

πα′
. (6.55)

This is manifestly independent of Ls and the dual gauge theory should therefore again be
in the deconfining phase. Thus, the infinite volume boundary theory is in a deconfined
state at any temperature, zero or finite. This is the expected result [53]. In other words,
no confinment-deconfinement phase transition can occur in a conformal gauge theory
living on a boundary space with infinite spatial volume.

This is not the case for a finite volume boundary theory. Indeed, the ‘global AdS’
bulk spaces involved in the Hawking-Page transition have dual quantum field theories
defined on finite volume spaces. If we consider the same finite temperature theory in
global AdS coordinates, the conformal boundary has finite volume and the field theory
living there is no longer a CFT. Here one indeed finds a phase transition between a
confining and deconfining phase, as was argued in [53]. When Ls < L∗ the Wilson loop
is sufficiently small to only probe the high energy, short distance processes. These are
insensitive to the finite temperature, which affects only low energy phenomena. This is
geometrically encoded in the bulk spacetime, where the string attached to the Wilson
loop does not reach deep enough to feel the presence of the black hole horizon. In this
case the boundary gauge theory is found to be in a confining state. On the other hand,
when Ls > L∗ the Wilson loop will probe low energy, large distance physics which are
highly sensitive to the finite temperature. The string in the bulk space now reach the
horizon and breaks into two disconnected strings, signaling a transition from a confining
to a deconfining state in the dual gauge theory. This confinement-deconfinement phase
transition should be interpreted as the holographic dual to the Hawking-Page transition,
which essentially is the transition between a thermal AdS space with a black hole horizon,
and one without. The way in which this transition is geometrically described by a string
stretching in the dynamical bulk spacetime once again supports the interpretation of the
extra bulk dimension as the RG energy scale of the dual QFT.

In conclusion, the large N conformal field theories of AdS/CFT dualities are in a
deconfining phase at any finite temperature when they live in infinite volume. Breaking
the conformal invariance by introducing a length scale associated with a finite volume is
enough to create a stable confining ground state. In the dual gravitational theory, this
is described by the presence or absence of a black hole horizon. If a horizon exists, the
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dual QFT must be in a deconfining phase. Otherwise, a finite temperature QFT, which
necessarily is dual to ‘thermal AdS’, must be in a confining phase. The infinite volume
CFT at zero temperature is, however, deconfining. Since the Hawking-Page transition
is the thermal phase transition between a ‘thermal AdS’ spacetime and an AdS black
hole spacetime, we interpret it as the holographic dual of a confinment-deconfinement
transition in gauge theory.

At first sight, the fact that the Hawking-Page transition, which is claimed to be a
thermal phase transition, occurs as at finite volume seems to be in conflict with ther-
modynamic principle, stating that thermodynamic critical points can exist only in the
thermodynamic limit7. The infinite volume associated with the thermodynamic limit
suppresses thermal fluctuations. In the finite volume holographic duality, it is in fact
the large N limit which is responsible for the existence of a thermal phase transition, as
thermal fluctuations are suppressed at large N in a similar way as they are suppressed in
the thermodynamic limit [2]. This is an instance where we explicitly see the mean field
nature of the large N limit come to life.

7The thermodynamic limit is defined as the limit of a large number of microscopic degrees of freedom
N , where the volume V of the space containing the microscopic degrees of freedom grows in proportion
to N , i.e. N →∞ and V →∞ with N/V = constant.
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7
Holographic Superconductors

In this chapter we turn to the subject of holographic superconductivity, one of the earlier
applications of the AdS/CFT correspondance to condensed matter physics. It was first
discovered by Gubser in 2008 [60]. The same year a minimal bottom-up model for holo-
graphic superconductivity was constructed by Hartnoll, Herzog, and Horowitz [9], [10].
We will exclusively work with this minimal bottom-up toy model here.

The holographic duality maps a strongly coupled QFT with a superconducting ground
state to a gravitational theory in one higher dimension. In the original model of a minimal
holographic superconductor, the QFT is strictly speaking that of a charged ‘superfluid’
condansate, a state spontaneously breaking a global U(1) symmetry. The charged su-
perfluid does not have a dynamical photon which would require a local U(1) symmetry,
characteristic of Maxwell’s theory of electrodynamics. In order to study properties emerg-
ing from a dynamical charge response such as charged collective excitations, e.g. plasmon
modes, the theory must contain a dynamical photon. The standard procedure is to weakly
gauge the superfluid theory, promoting it to a superconductor [2], [10]. However, we will
take a different approach. By introducing a set of mixed boundary conditions on the
conformal boundary of AdS, one can account for a dynamical photon in the dual QFT
[13].

After introducing electrodynamical effects in this way, we will attempt to investigate
the behaviour of charged collective excitations, or more specifically, plasmons, in holo-
graphic superconductors. In particular, we attempt to calculate dispersion relations for
plasmon modes. It should be noted that introducing a set of mixed boundary conditions
is equivalent to performing a multi-trace deformation of the theory, as explained in 4.2.3.
The mixed boundary condition proposed in [13] is in fact equivalent to a double-trace
deformation, resulting in a Dyson re-summation of the dynamical charge susceptibility.
Plasmons in holographic theories have been studied previously using the double-trace
deformation approach in e.g. [12], [14]. To the best of my knowledge, plasmons have not
previously been studied in this holographic superconductor model. It turns out, however,
that the mixed boundary condition most likely needs to be modified for this particular
model.

The strongly coupled QFT describing a superconductor is charactarized by the exis-
tance of a critical temperature Tc, at which it undergoes a phase transition between a
superconducting and normal state. Below the critical temperature the DC conductivity
becomes infinite. This strongly interacting superconductor is a candidate model for the
high Tc superconductors realized in e.g. cuprates and pnictides [3]. Since the discovery of
high Tc superconductors in the 1980s, theoretical physicists have struggled with formu-
lating a satisfying theory describing these systems. The well understood BCS (Bardeen-
Cooper-Schrieffer) theory of superconductivity does not capture the behaviour of the
high Tc superconductors accurately. In BCS theory, the superconductivity is explained
by the formation Cooper pairs and their condensation into an Einstein-Bose condansate.
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However, the mechanism responsible for the superconductiviy in high Tc superconductors
remains unknown. The hope is that the holographic models of superconductors will shed
some light on the issue of high Tc superconductivity.

The normal state of the holographic superconductor is a Reissner-Nordström (RN)
metal, which is a type of ‘strange metal’. We have not included the topic of RN black
hole solutions and strange metals1 in this thesis and will solely focus on the supercon-
ducting phase. For a complete understanding of the superconducting phase transition,
however, an understanding of both the superconducting and normal phase is required.
Understanding the competition between these two phases is a necessary requirement for
understanding what determines the critical temperature Tc, and how it eventually could
be raised to room temperature.

Again, the QFT describing the superconductor has a holographically dual gravita-
tional description in terms of a dynamical bulk spacetime, having one additional spatial
dimension. The gravitating bulk spacetime is taken to be asymptotic to AdS space, and
the QFT is defined on the conformal AdS boundary of the bulk spacetime. The boundary
QFT has a large N limit, in which quantum corrections in the bulk theory are suppressed.
Since quantum effects in the gravitational theory are poorly understood, we are restricted
to work in the large N limit. Any realistic theory of a strongly coupled superconducting
system is not likely to have an infinite number of colour charges, which are associated
with the large N limit. However, many of the physical properties of the system which
can be studied in the large N limit are thought to be generic, insensitive to a departure
from the large N limit to finite and small N .

In the minimal bottom-up model of a holographic superconductor to be studied, the
field content in the bulk consists of a metric field, a Maxwell gauge field, and a charged
scalar field. A charged scalar field is necessarily complex, as can easily be verified by
calculating the associated Noether current. In the dual gravitational theory, the super-
conducting phase transition is described by an instability of a charged Reissner-Nordström
black hole to perturbations by the charged scalar field. For Hawking temperatures below
Tc, the black hole acquires scalar hair, i.e. an atmosphere of a charged scalar condensate
forms around the horizon where the complex scalar field has non-vanishing amplitude.
This does not violate the famous ‘no-hair theorems’ since these where derived for black
holes in a four dimensional flat spacetime, and they are not valid for black holes in AdS
space. In the boundary QFT description, the formation of scalar hair correspond to
the dual charged scalar operator forming a ‘superfluid’ condensate. The formation of a
charged scalar condensate around the black hole ‘spontaneously’ break the U(1) gauge
symmetry2 in the bulk theory. The superfluid condensate in the quantum theory spon-
taneously break the global U(1) symmetry associated with a conserved current (which is
the dual quantity of the U(1) gauge field in the bulk theory); in the condensed phase,
the charged scalar operator acquires a nonzero expectation value in the absence of an
external source.

Since the charged operator that condense is a scalar, the theory is that of an s-wave
1The interested reader is referred to e.g. [2] for an excellent introduction to the subject of strange

metals and RN black holes in holography.
2It has been argued that a local continuous symmetry cannot be spontaneously broken [61], (see [62]

for an introduction to spontaneous symmetry breaking.) What is happening around the black hole is that
the scalar field acquires an negative effective mass squared, resulting in unstable tachyonic modes. This
triggers a Higgs mechanism which break the U(1) gauge symmetry. It is perhaps somewhat incorrect to
attach ‘spontaneous’ to this symmetry breaking, even though it is not triggered by an external source.
Many authors does, however, refer to this as spontaneous symmetry breaking.
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superconductor, i.e. the superconducting condensate does not carry any angular momen-
tum. s-wave superconductivity has been incorporated in a strongly coupled model of
cuprate superconductors [63]. However, theories of unconventional p-wave and d-wave
superconductors are also of importance for modeling experimentally observed high Tc su-
perconductors. For instance, d-wave superconductivity plays an important role in cuprate
high Tc superconductors [64]. Although many real life unconventional superconductors
are of d-wave type, the effective low energy dynamics is often s-wave [1]. p-wave super-
conductivity has previously been incorporated in holographic models by promoting the
U(1) gauge field to a non-Abelian SU(2) gauge field [65]–[67], but also by promoting
the complex scalar field to a complex vector field, keeping the Maxwell gauge field [68],
[69]. Holographic models of d-wave superconductors have been studied in [70]–[72]. For
an introduction to various models of holographic superconductors with different angular
momenta, see [73]. We will only study s-wave superconductivity here, though it would be
interesting to incorporate a dynamical photon and study charged collective excitations
in p-wave and d-wave holographic superconductors as well.

The outline of this chapter is as follows: First we introduce the minimal bottom-up
model of a holographic superconductor, originally introduced in [9], [10]. We proceed by
considering a stationary hairy black hole solution and associated boundary conditions.
This solution will act as a background, which we will then perturb in order to analyse the
plasmon modes in a linear response analysis. In particular, we will study the longitudinal
modes of perturbations to the metric, gauge, and scalar fields, and implement the mixed
boundary condition proposed in [13] to account for a Coulomb interaction in the dual
QFT. The equations of motion cannot be solved analytically, and so we must resort to
numerical methods. We will nevertheless outline how the numerical computations are
made.

7.1 A minimal toy model of holographic supercon-
ductivity

When attempting to write down a physical theory, it is generally a good idea to start of
by thinking about which symmetries are present. Superconducting quantum matter are
found in crystal structures and therefore any realistic theory of such systems should be
defined on a lattice. However, by defining the quantum theory on a lattice, the spatial
translational invariance is broken. The symmetry correspondence then implies that the
dual gravitational theory should not posses spatial translational invariance either. Solving
Einstein’s equations without translational symmetry is much more complicated due to
the nonlinear structure of the equations. Holography with broken translational invariance
has been an active research field under the last couple of years, and a lot of progress has
been made since the discovery of holographic superconductivity. A minimal bottom-up
model of a holographic superconductor has been studied under the presence of a periodic
lattice potential in [74]. However, here we will stick to the Galilean continuum limit
where translational symmetry and momentum conservation are present, which provides
an accurate effective description of the low energy dynamics. Hence, our boundary theory
will have a conserved energy-momentum tensor Tµν , which will be dual to the metric field
gMN in the bulk spacetime.

The boundary theories in AdS/CFT where originally relativistic. Recently, however,
non-relativistic holographic dualities have been developed [75], [76]. We will consider
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a relativistic boundary QFT and hence impose Lorentz invariance, in order to avoid
unnecessary complications. It would of course be interesting to generalize our analysis to
the non-relativistic case.

The superconductivity is the result of a spontaneously broken global U(1) symmetry.
Thus, there should exist a corresponding conserved Noether current J µ in the boundary
theory. The global current J µ should be dual to a U(1) gauge field AM in the bulk
according to the global/local symmetry correspondence. The U(1) symmetry, which is
associated with a conserved number of particles, is spontaneously broken by the conden-
sation of a charged scalar operator O at temperatures below a critical temperature Tc.
This charged condensate has an indefinite amount of particles and forms a ‘superfluid’.
The expectation value of this superfluid is an order parameter of the broken symmetry
and superconductivity. Now, the charged scalar operator is dual to a charged scalar field
φ in the bulk, i.e. a complex scalar field. When the global U(1) symmetry in the QFT is
spontaneously broken by the charged superfluid, the U(1) gauge symmetry in the grav-
itational theory should be broken as well. As a matter of fact, the only known way of
constantly breaking a U(1) gauge symmetry is through the Higgs mechanism, and this
is indeed the mechanism behind the broken gauge symmetry in the gravitational theory.
Thus, the superconducting phase transition in the D-dimensional quantum theory has a
dual description in terms of a Higgs mechanism in a dynamical spacetime of dimension
D + 1.

Having specified the field content in the bulk spacetime, the next step is to write down
an action. The obvious ingredients for a minimal action is an Einstein-Hilbert term with
a negative cosmological constant, kinetic terms for the gauge field and the complex scalar
field, and a potential for the scalar field. The action then takes the form

S =
∫
dd+2x

√
−g
[

1
2κ2

(
R + d(d+ 1)

L2

)
− 1

4g2
F

FMNFMN

− |∇Mφ− iqAMφ|2 − V (|φ|)
]
.

(7.1)

Here ∇M is the covariant derivative under spacetime diffeomorphisms. Note also that
DMφ = ∇Mφ − iqAMφ is a covariant derivative under U(1) gauge transformations. For
simplicity, we will set 2κ2 = g2

F = 1. Furthermore, we take the potential V (|φ|) to be
only a mass term,

V (|φ|) = m2|φ|2 , (7.2)
and we will in particular consider the case of m2 = −2/L2. The mechanism behind
the holographic superconductivity will be present despite neglecting any kind of self-
interactions of the scalar field.

Recall from 4.2.2 that a bulk scalar field with a negative mass squared is dual to a
relevant scalar operator. The value m2 = −2/L2 is above the BF bound in a boundary
theory with two or more spatial dimensions, i.e. d ≥ 2,

m2L2 ≥ −(d+ 1)2

4 = −9
4 . (7.3)

We will restrict ourselves to the case of d = 2, i.e. a 3 + 1 dimensional bulk spacetime
dual to a QFT in 2 + 1 dimensions. The theory should then be considered as a toy model
for a superconducting plane or surface. Since the negative mass squared of the scalar
field is above the BF bound, it does not introduce any tachyonic instability to the theory.
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Moreover, it is below the upper limit on the mass squared corresponding to the unitary
bound on the dual boundary theory operator,

m2L2 ≤ −(d+ 1)2

4 + 1 = −5
4 . (7.4)

We are then free to choose either the standard or the alternative quantization scheme,
i.e. either the leading or subleading behaviour of the bulk scalar field at the conformal
boundary may be identified with the source of the dual QFT operator, while the other is
identified with its expectation value. Note, however, that while our bottom-up approach
allows us to choose a convenient potential for the complex scalar field, a string theoretic
top-down model will specify the full potential completely.

In the case of d = 2 and with our choice of potential and dimensionful constants, the
action (7.1) takes the form

S =
∫
d4x
√
−g

[
R + 6

L2 −
1
4F

MNFMN − |∇Mφ− iqAMφ|2 −m2|φ|2)
]
. (7.5)

Varying the action with respect to the different fields gives the equations of motion. One
finds that the equation of motion for the scalar field is

(∇M − iqAM) (∇N − iqAN) gMNφ−m2φ = 0 . (7.6)

Maxwell’s equations are

∇MFMN = iq [φ∗ (∇N − iqAN)φ− φ (∇N + iqAN)φ∗] , (7.7)

and Einstein’s equations read

RMN −
1
2gMNR−

3
L2 gMN = 1

2F
K

M FNK −
1
8gMNF

2 − 1
2gMN |∇Kφ− iqAKφ|2

− 1
2gMNm

2|φ|2 + 1
2 [(∇Mφ− iqAMφ) (∇Nφ

∗ + iqANφ
∗) +M ←→ N ] .

(7.8)

Here M ←→ N denotes the previous term but with indices M and N interchanged.
Having found the equations of motion for the minimal holographic superconductor,

the next step is to find solutions to them. We will first look for a stationary black hole
solution describing the equilibrium phases of the superconductor. This solution will then
act as a background when we later proceed by analysing the linear response of the theory,
in 7.4.

7.2 A stationary black hole solution
In order for a phase transition to be able to occur at a finite critical temperature Tc,
the theory has to posses a scale. Thus, the conformal symmetry of the QFT in the
AdS/CFT duality has to be broken. A stationary black hole solution naturally introduce
a temperature scale to the theory; the Hawking temperature of the black hole is identified
with the boundary field theory temperature. However, in the absence of another scale
besides the temperature, all finite temperatures would be equivalent since there would
be no other scale to compare the temperature with. Then, to properly break the scale
invariance, an additional scale has to be introduced. By adding an electrical charge to
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the black hole we incorporate a finite charge density ρ, or equivalently, a finite chemical
potential µ, to the boundary QFT. Charged black holes are described by a Reissner-
Nordström solution.

We take the following ansatz for the metric:

ds2 = L2

z2

(
−f(z)e−χ(z)dt2 + dz2

f(z) + dx2 + dy2
)
. (7.9)

Here z is the radial coordinate, (identified with the QFT renormalization scale,) with
z = z+ being the location of the planar horizon, and z = 0 being the location of the
conformal boundary of AdS. The function χ(z) in the time component account for the
backreaction of the scalar field on the geometry. One can consider the theory in the
probe limit q →∞, where the U(1) gauge field and scalar field decouples from the metric
field. Then the matter fields does not backreact on the AdS geometry, which effectively
becomes a static background space. This simplifies the theory considerably. However,
we will consider the complete theory, including an interaction between the geometry and
matter fields. Then, neither χ(z) nor the emblackening factor f(z) can be determined
analytically in the superconducting phase, and will have to be solved for numerically. We
take the Maxwell gauge field to be a pure electrostatic potential, dependent only on the
radial coordinate,

A = A0(z)dt . (7.10)
The complex scalar field is also assumed to only depend on z,

φ = φ(z) . (7.11)

Moreover, the z-component of Maxwell’s equation (7.7) implies that the phase of φ is
constant. Hence, without loss of generality, we may take φ to be real valued.

7.2.1 An instability near the horizon
Looking at the action (7.5), we see that the coupling with the Maxwell field in the gauge
covariant derivative effectively shifts the mass of the complex scalar field,

m2
eff = m2 −

∣∣∣gtt∣∣∣q2A2
0 . (7.12)

The term |gtt|q2A2
0 will typically decay towards the conformal boundary of AdS, and

consequently, meff ≈ m2 in the far UV region. However, in the deep IR the effective
mass can fall below the BF bound for stability due to a negative contribution from the
second term in (7.12). Indeed, |gtt| → ∞ when approaching the horizon and therefore
the effective mass should be negative enough at some short distance from the horizon,
assuming A0 6= 0 there. It turns out, however, that one must choose a gauge where
A0 = 0 on the horizon in order for the gauge one-form to be well defined there3. It
is certainly plausible that a large enough q and A′0 slightly outside the horizon, and a
small enough value of m2, could be sufficient for shifting m2

eff below the stability bound.
Although a rigorous proof of the existence of an instability in the IR region at small
enough temperatures is still lacking, there are a lot of empirical evidence showing that

3The gauge one-form is defined as A = AMdx
M = A0dt. The infinite redshift at the horizon means

that the dt norm is infinite there, and therefore A0 must be zero at the horizon as to keep A from blowing
up there.
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it indeed occurs in holographic models. Hence, the charged scalar field can induce an
instability restricted to the IR region of the bulk spacetime. This kind of instability can
then regulate itself as unstable modes condensate and backreact on the IR geometry,
altering it in such a way that the theory is stabilized [1].

This is the mechanism behind the superconducting phase transition in the gravi-
tational language4. Below a critical temperature, the complex scalar field acquires an
effective mass squared below the BF bound in the deep interior, causing an instability
of the black hole. The scalar field then forms a tachyonic condensate around the hori-
zon, giving the black hole ’scalar hair’. This condensate backreacts on the near horizon
geometry in such a way that the instability is removed. Above the critical temperature,
the effective mass squared does not drop below the BF bound for stability in the deep
interior. Consequently, the scalar field does not condansate near the black hole which
remains ‘bald’ at these temperatures. In this high temperature phase, the amplitude of
the scalar field is zero and the bulk spacetime is described by a Reissner-Nordström black
hole solution in AdS space,

φ(z) = χ(z) = 0 ,

f(z) = 1−
(

1
z3

+
+ 1

2Q
2z+

)
z3 + 1

2Q
2z4 ,

A0(z) = LQ (z+ − z) ,

(7.13)

where Q is a free parameter of the solution, corresponding to the charge of the black hole
[77].

7.2.2 Equations of motion and boundary conditions
With the metric field, Maxwell field, and complex scalar field being given by (7.9), (7.10),
and (7.11), respectively, the equations of motion (7.6), (7.7), and (7.8) reduces to a set
of coupled ordinary differential equations in the variable z. The equation of motion for
the complex scalar field becomes

φ′′ +
(
f ′

f
− χ′

2 −
2
z

)
φ′ +

(
q2A2

0e
χ

f 2 − m2L2

z2f

)
φ = 0 , (7.14)

where the prime denotes a derivative with respect to z. Maxwell’s equations reduces to

A′′0 −
χ′

2 A
′
0 + 2L2q2φ2

z2f
A0 = 0 . (7.15)

From Einstein’s equations we get two independent equations,

f ′ − z

4

(
2q2A2

0φ
2eχ

f
+ 12L2(f − 1) + 2m2L4φ2 + z4A′0

2eχ + 2L2z2fφ′2

L2z2

)
= 0 ,

χ′ + z

4

(
12
z2 − 2φ′2 + 2m2L4φ2 + z4A′0

2eχ − 4L2(3 + zf ′)
L2z2f

− 2q2A2
0φ

2eχ

f 2

)
= 0 .

(7.16)

4A near extremal charged black hole is also unstable to perturbations by a neutral scalar field. An
explanation for this phenomenon accounts for the fact that the near horizon geometry of the extremal
solution is AdS2 × R2, rather than AdS4. The former geometry has a less negative BF bound than the
latter, and can therefore cause a tachyonic instability for neutral scalar fields near the extremal black
hole horizon, without causing any instability in the UV region. An instability in the UV would be
pathological.
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Together, (7.14)-(7.16) constitute a system of four coupled differential equations for the
four unknown functions f(z), χ(z), A0(z), and φ(z). The equations are first order in f
and χ, and second order in A0 and φ. Hence, six boundary conditions have to be supplied
in order to create a well-posed boundary value problem; two boundary conditions for A0,
two for φ, and one for f and χ each.

One boundary condition comes directly from the infinite redshift at the black hole
horizon, namely f(z+) = 0. In fact, this defines the horizon radius z+. We should
then look for solutions where f(z) 6= 0 for any z < z+. As mentioned earlier, we must
also impose the boundary condition A0(z+) = 0 in order for the gauge one-form to be
well-defined at the horizon.

The four coupled differential equations (7.14)-(7.16) are singular both at the horizon
z = z+ and on the conformal boundary at z = 0. We deal with the singular behaviour
at these boundaries in the most simple and robust way possible, by introducing cutoff
boundaries at z = z+ − ε and z = ε for some small parameter ε. The equations are then
solved numerically only in the region ε ≤ z ≤ z+− ε. Now, by expanding the equations of
motion around the horizon we can impose consistent boundary conditions on the cutoff
boundary at z = z+ − ε. To lowest order, one finds

f ′(z+) = −12L2 + 2m2L4φ2
+ + eχ+E2

+
4L2 ,

φ′(z+) = 4m2L4φ2
+

−12L2 + 2m2L4φ2
+ + eχ+E2

+
,

(7.17)

where φ+ = φ(z+), E+ = A′0(z+), and χ+ = χ(z+) are degrees of freedom on horizon.
Together with the horizon radius r+, these are the parameters on the horizon which are
free for us to specify, and different choices yield different solutions. Solving the expanded
equations around the horizon to higher orders gives successively higher order derivatives
of the fields, evaluated at the horizon. The boundary conditions at the horizon is related
to boundary conditions on the cutoff surface at z = z+ − ε by

f(z+ − ε) = f(z+)− εf ′(z+) +O(ε2) = −12L2 + 2m2L4φ2
+ + eχ+E2

+
4L2 ε+O(ε2) ,

χ(z+ − ε) = χ(z+)− εχ′(z+) +O(ε2) = χ+ +O(ε) ,
A0(z+ − ε) = A0(z+)− εA′0(z+) +O(ε2) = −εE+ +O(ε2) ,
A′0(z+ − ε) = A′0(z+)− A′′0(z+ − ε) +O(ε2) = E+ +O(ε) ,

φ(z+ − ε) = φ(z+)− εφ′(z+) +O(ε2) = φ+ −
4m2L4φ2

+
−12L2 + 2m2L4φ2

+ + eχ+E2
+
ε+O(ε2) ,

φ′(z+ − ε) = φ′(z+) +O(ε) = 4m2L4φ2
+

−12L2 + 2m2L4φ2
+ + eχ+E2

+
+O(ε) .

(7.18)

Here we have given explicit expressions for the boundary conditions only up to the zeroth
or first order in ε, and omitted higher order terms since they are quite lengthy. When
solving the equations numerically, however, we have included second order corrections as
well.

The six boundary conditions (7.18) are sufficient for uniquely solving the coupled set
of ODEs (7.14)-(7.16) numerically by integrating the equations from the near horizon
boundary at z = z+ − ε, to the cutoff surface at z = ε, near the conformal boundary.
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However, some conditions also has to be imposed on the asymptotic near boundary
behaviours of the fields.

The chemical potential µ and charge density ρ of the boundary QFT are identified
as the leading and subleadning asymptotic behaviour, respectively, of the electrostatic
potential A0 near the conformal boundary. More precisely,

A0(z) = µ− ρz + · · · as z → 0 . (7.19)

With our choice of mass, m2L2 = −2, the asymptotic behavior of the complex scalar field
is [10]

φ(z) = zφ(1) + z2φ(2) + · · · as z → 0 . (7.20)
As pointed out earlier, the mass falls within the range where both the standard and
alternative quantization schemes are admissible. In standard quantization, we identify
the leading behaviour φ(1) with the source of the dual charged scalar operator in the QFT,
and the subleading part φ(2) with its expectation value. In alternative quantization, the
roles of φ(1) and φ(2) are interchanged, i.e. φ(1) is identified with the expectation value
and φ(2) with the source. Here we will only consider the standard quantization theory.

In general, both the leading part, φ(1), and the subleading part, φ(2), are non-vanishing.
Characteristic for the symmetry breaking charged scalar condensate is a nonzero expec-
tation value in the absence of any external source. Indeed, an external source would
explicitly break the symmetry. Thus, we are looking for solutions with

φ(1) = 0 , 〈O2〉 =
√

2φ(2) , (7.21)

where the subscript two on the QFT charged scalar operator O denotes its mass di-
mension, (in the alternative quantization the operator would have mass dimension one,)
and the factor of

√
2 is a convenient normalization [9], [10]. Hence, we must impose

the boundary condition limz→0 φ
′(z) = 0. Here one could remove one of the boundary

conditions for φ or φ′ on the horizon (7.18) and add the zeroth order boundary condition
φ′(ε) = 0 on the cutoff surface near the conformal boundary. Then the system of ODEs
could be solved using a shooting method. However, we will take a different approach to
implementing this boundary condition.

By fixing χ+ and E+, and varying φ+, we can solve the system of coupled differential
equations (7.14)-(7.16), using the near horizon boundary conditions (7.18), to find out
how the source φ(1) depends on φ+. Plotting φ(1) versus φ+ allows us to read off which
values of φ+, given a fixed χ+ and E+, results in a vanishing source φ(1) = 0. Such a
plot is shown in Fig. 7.1. As seen in the figure, there will in general be several roots
of φ(1)(φ+) = 0. For one thing, φ+ = 0 is always a solution but this just results in
the Reissner-Nordström black hole solution (7.13) with a vanishing scalar field over the
whole bulk space. However, there will also be multiple nonzero roots. The root closest
to zero corresponds to the solution with a monotone scalar profile, while the larger roots
correspond to scalar profiles with a higher number of nodes. The monotonic scalar profile
is the configuration which minimizes the free energy, i.e. it is the thermodynamically
preferred solution and represents the ground state.

We are interested in solutions where the bulk spacetime is asymptotic to AdS4. This
is necessary in order for the Hawking temperature of the black hole to coincide with the
temperature of the boundary QFT. It is readily seen that the metric (7.9) is asymptotic
to a pure AdS4 metric, in Poincaré coordinates, if f(z)→ 1 and χ(z)→ 0 as z → 0. The
correct asymptotic value of f is automatically embedded in the solutions to the equations
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Figure 7.1: A plot of the source φ(1) versus the value of the scalar field at the horizon
φ+, with E+ = 0.75 and χ+ = −1 held fixed. The dotted points have been numerically
computed by solving the equations of motion. The solid line is a polynomial fit to these
points. Three nontrivial values of φ+ for which φ(1) = 0 are captured in the plotted
interval. Of these, the one at φ+ ≈ 0.714 corresponds to a solution with a monotonic
scalar field while the other two correspond to scalar fields with nodes. The monotonic
profile represents the ground state.

of motion. However, the asymptotic value of χ is generally not zero. In order to set it
to zero, we can utilize the following scaling symmetry of the metric, gauge field, and
equations of motion:

t→ at , eχ → a2eχ , A0 → A0/a . (7.22)
In practise, after solving the equations of motion (7.14)-(7.16) subject to the near horizon
boundary conditions (7.18), we rescale the solution by

χ(z)→ χ(z)− χ(ε) + εχ′(ε) , A0(z)→ A0(z) exp
(
χ(ε)− εχ′(ε)

2

)
. (7.23)

In addition to (7.22), there are two other scaling symmetries which allows us to set
L = z+ = 1 [2], [10].

7.2.3 Hawking temperature
The temperature in the boundary theory is identified as the Hawking temperature of
the black hole in the bulk theory. The standard procedure for calculating the Hawking
temperature is to perform a Wick rotation and compute the radius of the imaginary time
circle. This was done in Chapter 5 for the case of a diagonal black hole metric with a
radial component given by the inverse of the time component, grr(r) = 1/gtt(r). This is
not the case for our stationary black hole geometry (7.9), and so the derivation has to be
somewhat altered. Writing the Euclidean metric in the form

ds2 = u(z)dτ 2 + dz2

v(z) + L2

z2 dx
2 , (7.24)
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where dx2 = dx1 + · · · + dxd, and expanding to the lowest order around the horizon
z = z+, defined by u(z+) = v(z+) = 0, we get

ds2 = |u′(z+)|(z+ − z)dτ 2 + dz2

|v′(z+)|(z+ − z) + L2

z2
+
dx2 + · · · . (7.25)

Here we have assumed a non-zero u′(z+) and v′(z+). Accounting for the possibility of
negative u′(z+) and v′(z+), the absolute signs have to be included in order to guarantee
the Euclidean signature of the metric. Performing the coordinate transformation

z → ρ = 2
√
z+ − z
|v′(z+)| , τ → ϕ =

√
|u′(z+)v′(z+)|

2 τ , (7.26)

introduces polar coordinates on the plane spanned by τ and z, i.e. the metric takes the
form ds2 = ρ2dϕ2+dρ2+· · · . The origin in this coordinate system is at the horizon. Then,
in order to avoid a conical singularity at the horizon, ϕ must be periodic with period 2π,
implying that τ must have a period 4π/

√
u′(z+)v′(z+). The Hawking temperature of the

black hole is given by the inverse period of τ ,

T =

√
|u′(z+)v′(z+)|

4π . (7.27)

Now, with the geometry (7.9) for the stationary black hole solution, we have

u′(z+) = L2

z2
+
f ′(z+)e−χ+ , v′(z+) = z2

+f
′(z+)
L2 . (7.28)

The temperature of the black hole is then

T = e−χ+/2|f ′(z+)|
4π =

∣∣∣(−12L2 + 2m2L4φ2
+)e−χ+/2 + eχ+/2E2

+

∣∣∣
16πL2 , (7.29)

where we have used (7.17) to evaluate f ′(z+) in the last equality.

7.3 Charged collective excitations and mixed bound-
ary conditions

We will now derive a mixed boundary condition which introduces a dynamical photon in
the boundary QFT, following [13] closely. This allows one to study charged collective ex-
citations, e.g. plasmons, in a strongly interacting quantum theory from a holographically
dual gravitational theory. Later, by implementing this boundary condition on longitudi-
nal fluctuations of the Maxwell gauge field around the stationary black hole background,
we will investigate the dispersion relation for plasmon modes in our holographic super-
conductor. It turns out, however, that the obtained plasmon dispersion relation contains
an unphysical instability at large spatial momenta. The reason for this seems to be that
there is a mixing of the Maxwell field with the scalar condensate at nonzero momenta,
which alters the conductivity [10]. This is not accounted for in our derivation of the
mixed boundary condition for plasmon modes, but it needs to be in order to get reliable
results for nonzero momenta. How one should alter the derivation to incorporate the
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effects of a mixing with the condensate is still unclear. Nevertheless, we will present
the analysis, culminating in a flawed plasmon dispersion relation in 7.4.3, anyway. Our
analysis could perhaps be revisited in the future when the mixing with the condensate is
better understood.

The holographic dictionary identifies a global U(1) symmetry current J µ in the bound-
ary QFT with a local U(1) gauge field AM in the gravitational bulk theory, (as usual, the
greek indices range over the boundary coordinates µ = t, x1, x2, . . . , xd, while capital
latin indices range over the bulk coordinates M = t, z, x1, x2, . . . , xd. We are consider-
ing the general case of a d+ 2 dimensional bulk spacetime with a dual boundary QFT in
d+1 dimensions.) Since the U(1) symmetry is global on the boundary, J µ is a conserved
Noether current. Our starting point is to use the holographic dictionary to identify a
U(1) gauge theory for the boundary QFT from the U(1) gauge theory in the bulk. For
this purpose it is convenient to work in radial gauge in the bulk, defined by gMz = Az = 0.

An electromagnetic field strength two-form F and a conserved electric current one-
form J for the boundary QFT is identified with corresponding bulk quantities according
to

F = 1√
λ
F

∣∣∣∣
∂M

, J =
√
λlnW

∣∣∣∣
∂M

. (7.30)

Here F and W are the bulk electromagnetic field strength and induction tensor5, re-
spectively, and ln is a normal vector on the boundary ∂M . The parameter λ relates the
coupling strengths of the boundary and bulk U(1) gauge theories, which does not neces-
sarily have to be equal. The bulk quantities in (7.30) are evaluated on the boundary ∂M
of the bulk spacetime manifold M . For bulk spacetimes which are asymptotic to AdS,
the boundary ∂M is the AdS conformal boundary. The electric current has the form

J = Jµdxµ = −〈ρ〉 dt+ jmdx
m , (7.31)

where 〈ρ〉 is the expectation value of the internal charge density.
We now identify an induction tensorW for the boundary theory in the following way:

d ? (F −W) = ?J , (7.32)

where d is the exterior derivative and ? is the ‘Hodge star operator’. The reader unfamiliar
with the formalism of differential forms is referred to e.g. [78] for a brief introduction. In
tensor component notation, the above equation reads

∂µ (Fνµ −Wνµ) = J ν . (7.33)

This identification states that the symmetry current J on the boundary is an internal
one. Then (7.30) and (7.33) results in the standard macroscopic Maxwell’s equations for
the boundary theory, characteristic for a U(1) gauge theory,

dF = 0 , d ?W = ?Jext , (7.34)

or in tensor component notation,

∂[µFνρ] = 0 , ∂µWνµ = J ν
ext , (7.35)

5The induction tensor is the analogue of the field strength using the displacement field D and the
magnetic field strength H instead of the electric field E and magnetic field B.
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where the square bracket on the indices denotes anti-symmetrization and Jext is the exter-
nal current, i.e. the current probed by external sources. The field strength and induction
tensor for the boundary QFT can now be decomposed into electric and magnetic field
components, and displacement field and magnetic field strength components, respectively,

F = E ∧ dt+ ?−1 (B ∧ dt) , W = D ∧ dt+ ?−1 (H ∧ dt) . (7.36)
For instance, in the case of a three dimensional boundary QFT, which is the relevant case
for our superconductor model,

F ti = Ei , W ti = Di , (7.37)
1
2εijF

ij = B , 1
2εijW

ij = H , (7.38)

where εij is the Levi-Civita tensor and the indices {i, j} range over the spatial boundary
coordinates {x, y}. Note that the magnetic field is a (psudo) scalar in three spacetime
dimensions. Furthermore, (7.37) is the definition of the electric and displacement fields
in any dimension with d > 0.

The conductivity σ and dielectric function ε, which in general are tensorial quantities,
are defined by the response to the electric field Ei,

ji = σijEj , Di = εijEj . (7.39)

In general, both the conductivity and the dielectric function can have a complicated
dependence on the electric and magnetic fields. For weak enough electromagnetic fields,
the response of the medium to an applied electric field is linear. Then, in a linear
response analysis, the conductivity and dielectric function can be taken as independent
on the electromagnetic fields. Moreover, for an isotropic medium they are diagonal with
all elements equal [79].

In a Minkowski space, Maxwell’s equations (7.35) can be cast into the conventional
form,

divB = 0 , divD = ρext ,

curlE = −Ḃ , curlH = jext + Ḋ ,
(7.40)

By using the definitions of the conductivity and dielectric function (7.39) together with
Maxwell’s equations (7.40), and transforming to momentum space, one can derive the
following relation between σ and ε [13]:

ki

(
εij − δij + σij

iω

)
Ej = 0 . (7.41)

The conductivity can straightforwardly be obtained from the screened ‘density-density’
correlator, using the Kubo formula,

σ = iω

k2 〈ρρ〉 . (7.42)

Charge density fluctuations are characterized by having a vanishing displacement field
D = 0 despite having a nonzero electric field E 6= 0, in the absence of external sources,
Jext = 0. By (7.39), they must have a dispersion relation ω(k) satisfying

ε(ω, k) = 0 , (7.43)
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since otherwise a vanishing displacement field would imply a vanishing electric field as
well. Furthermore, only the longitudinal modes give rise to charge density fluctuations,
and therefore transverse modes do not need to be considered here. In particular, without
loss of generality, we will look at the longitudinal mode in the x direction, for which the
relation (7.41) between the conductivity and dielectric tensor reads

εxx = 1− σxx
iω

. (7.44)

For simplicity, we will also assume vanishing magnetic fields, i.e. B = H = 0 and
F ij =W ij = 0. From (7.31), (7.33), and (7.37), we then get

Ėx + jx = 0 , (7.45)

for the charge density fluctuation with momentum in the x direction. In a homogeneous
media, assuming the gauge choice At = 0, we have

Ėx = ∂tF tx = −∂tFtx = −∂2
tAx . (7.46)

Transforming to momentum space, the condition (7.45) for the charge density fluctuation
can then be written

ω2Ax + Jx = 0 . (7.47)

This condition can in fact be shown to be equivalent to (7.43) [13], [77].
A plasmon mode is a certain subset of the modes satisfying (7.43); they are the lowest

energy self-sourcing propagating oscillations. In order to calculate dispersion relations
for plasmon modes, we translate the conditions (7.43) and (7.47) for the boundary QFT
into a boundary condition for the bulk fields. Plasmons are generated by the response to
a perturbation in the electric field, and we therefore fix boundary conditions for bulk field
fluctuations at the conformal boundary ∂M such that the fluctuation δAx is nonzero. To
avoid any overlap with the response from other fluctuations to the extent possible, we
choose Dirichlet boundary conditions for the other components of metric and gauge field
fluctuations at the conformal boundary. Having non-vanishing metric fluctuations at the
conformal boundary could potentially even introduce an undesired dynamical graviton
to the boundary QFT, in complete analogy with how the nonzero Maxwell fluctuation
leads to a dynamical photon in the boundary theory. However, for the fluctuation of
the complex scalar field, the amplitude will automatically vanish at spatial infinity. We
should impose the same boundary condition for the scalar field fluctuation as for the
background solution, i.e. that the normal derivative at the conformal boundary vanish,
δφ′ = 0.

In general, the boundary condition for the plasmon modes would involve the bulk
induction tensor and be dependent on the particular bulk model under consideration. In
our minimal holographic superconductor model, the Maxwell kinetic term in the bulk
action is such that

δJx ∝ δA′x
∣∣∣
∂M

, (7.48)

where the prime again denotes a normal derivative at the conformal boundary ∂M . With
the identification (7.30) and the plasmon condition (7.47), it directly follows that the
plasmon boundary condition is of the form(

ω2 δAx + p(ω, k)λ δA′x
) ∣∣∣

∂M
= 0 , (7.49)
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where p(ω, k) is a function which depends on the specific form of the Maxwell kinetic
term in the bulk theory. It is a mixed boundary condition with a linear relation between
the source δAx and the expectation value δA′x. As such, it is equivalent to a double-
trace deformation of the boundary QFT, obtained by adding a potential, quadratic in
the corresponding QFT operator, to the QFT action, see 4.2.3.

The function p(ω, k) is often bounded or even completely independent of ω and k, at
least in the more common and simpler holographic models. In the case of the minimal
holographic superconductor model of relevance to us, we will assume it to be entirely
independent of ω and k, and absorb the constant into a redefinition of λ. In other words,
we effectively set p(ω, k) = 1. In general, however, a bounded p(ω, k) will imply that
for small ω, the second term in (7.49) will dominate and one has effectively a Neumann
boundary condition. On the other hand, for large ω, the first term dominates and one
has approximately a Dirichlet boundary condition. A large ω means that the fluctuation
is rapidly oscillating, and the dynamical polarization of the mode can then safely be
neglected. Thus, in this case a Dirichlet boundary condition is indeed the appropriate
choice, perfectly captured by (7.49). Conversely, the dynamical polarization is essential
for small ω, and it has been argued that a Neumann boundary condition in fact introduces
a dynamical photon to the boundary theory [80].

7.4 Linear response analysis and dispersion relations

After having found a stationary black hole solution to our toy model of holographic
superconductivity, we investigate its linear response. This describes how the system
responds to small fluctuations in the fields. In particular, we will look at infinitesimal
fluctuations in momentum space. The metric, gauge, and scalar fields is decomposed as
follows:

gMN = ḡMN(z) +
∫ dω dk

(2π)2 hMN(z)e−iωt+ikxx ,

AM = ĀM(z) +
∫ dω dk

(2π)2 aM(z)e−iωt+ikxx ,

φ = φ̄(z) +
∫ dω dk

(2π)2 δφ(z)e−iωt+ikxx ,

(7.50)

where ḡMN(z), ĀM(z), and φ̄(z) are the stationary black hole background fields, and
hMN(z), aM(z), and δφ(z) are infinitesimal fluctuations in momentum space. We have
used the rotational symmetry to choose a wave vector in the x-direction, i.e. kx =
k and ky = 0. When performing the numerical computations, we consider a single
fluctuation mode at a time. Furthermore, we factor out a z−2 divergence at the conformal
boundary from the metric fluctuations, and a factor of gFL/κ =

√
2 from the gauge

field fluctuations, and absorb the factors of 2π into a redefinition of the fields. The
decomposition for a single fluctuation mode is then written as

gMN = ḡMN(z) + 1
z2hMN(z)e−iωt+ikxx ,

AM = ĀM(z) +
√

2 aM(z)e−iωt+ikxx ,
φ = φ̄(z) + δφ(z)e−iωt+ikxx .

(7.51)
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We choose a radial gauge for the metric and gauge field fluctuations such that gMz =
az = 0. To account for attenuation of the fluctuation waves in the media, ω is allowed to
take on complex values.

Now, the fluctuations can be subdivided into two groups depending on their parity
under the inversion symmetry y → −y. The components {htt, htx, hxx, hyy, at, ax} have
even parity and constitutes the longitudinal modes, describing the response parallel to
the momentum flow. The odd parity fluctuations are {hty, hxy, ay} and constitute the
transverse modes, representing the response perpendicular to the momentum flow. Since
plasmons are longitudinal self-sourced charged excitations, we restrict ourselves to study
only longitudinal modes and set hty = hxy = ay = 0.

Substituting the decomposed fields (7.51) into the equations of motion (7.6)-(7.8) re-
sults in a system of seven linear coupled ordinary differential equations for the fluctuation
fields. These equations are quite cumbersome and we omit writing them down here. Simi-
lar to the stationary black hole field equations (7.14)-(7.16), they are singular at the black
hole horizon and at the conformal boundary at spatial infinity. The singular behaviour
at the horizon is factored out from the fluctuations and parametrized as follows:

hµν → (1− z)iαhµν ,
aµ → (1− z)iαaµ ,
δφ→ (1− z)iαδφ .

(7.52)

Here α is a parameter which has to be solved for. Since the equations for the fluctuations
are linear, a factor of (1− z)iα can be factored out from the equations as well.

Expanding the equations for the fluctuations around the horizon, one can solve for α,
the fluctuations and their derivatives, evaluated at the horizon, in terms of the stationary
black hole background parameters as well as three independent degrees of freedom hxx(1),
ax(1), and δφ(1). From the lowest order in the expansions, one finds

α = ± 4 eχ+/2 ω

−12 + 2m2φ2
+ + eχ+E2

+
, (7.53)

and htt(1) = h′tt(1) = htx(1) = at(1) = 0 and hyy(1) = −hxx(1). The two signs of
α correspond to fluctuations which are either falling into the black hole or emerging
out from it, respectively. Only the fluctuations which are falling into the horizon are
physically relevant, and these modes correspond to an α given by (7.53) with the plus sign.
The higher order terms in the expansion of the equations give successively higher order
derivatives in the fluctuation fields. From these one can construct boundary conditions
for the fluctuations at the near horizon cutoff surface z = 1− ε. The equations can then
be solved numerically by integrating from z = 1 − ε to z = ε. There are three linearly
independent solutions which can be found by setting one of hxx(1), ax(1), and δφ(1) to
unity and the remaining two to zero.

There are still four independent solutions for the fluctuation fields missing. It turns
out that these amounts to pure diffeomorphisms and U(1) transformations of the metric,
the U(1) gauge field, and the scalar field. We will refer to them as ‘pure gauge solutions’.

7.4.1 Pure gauge solutions
The radial gauge does not completely eliminate all the gauge degrees of freedom. One
also has to consider ‘large’ gauge transformations in the bulk, i.e. gauge transformations
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which are non-trivial on the boundary at spatial infinity. This will allow us to find pure
gauge solutions to the fluctuation equations. Since the quantum field theory lives on this
boundary, a large gauge transformation can indeed affect the physics of the field theory,
even though it does not affect the physics in the bulk.

The large gauge transformations to be considered are spacetime diffeomorphisms and
local U(1) transformations of the Maxwell field and complex scalar field. Under a diffeo-
morphism generated by the vector ξM , the bulk fields transform as

gMN → gMN + δξgMN ,

AM → AM + δξAM ,

φ→ φ+ δξφ ,

(7.54)

where the change δξ is given by the Lie derivative along the vector field ξM ,

δξgMN = LξgMN = ξK∂KgMN + gMK∂Nξ
K + gKN∂Mξ

K ,

δξAM = LξAM = ξN∂NAM + AN∂Mξ
N ,

δξφ = Lξφ = ξM∂Mφ .

(7.55)

The U(1) gauge transformations are given by

AM → AM + ∂MΛ ,
φ→ eiΛφ ,

(7.56)

for some arbitrary function Λ.
Since we are looking for pure gauge solutions to the fluctuation equations, we con-

sider the gauge parameters ξ and Λ to be infinitesimal and oscillating quantities. More
precisely, we write

ξM = ζM(z)e−iωt+ikxx , Λ = λ(z)e−iωt+ikxx . (7.57)

Then, to first order, only transformations of the background fields has to be considered.
Moreover, the pure gauge solutions should be consistent with our choice of radial gauge,
and therefore we must impose the constraint

δξgMz = 0 , δξAz + ∂zΛ = 0 . (7.58)

Note that in order not to rule out the possibility of a nonzero δξAz being canceled by ∂zΛ,
we only require that the z-component of a simultaneous diffeomorphism and U(1) trans-
formation vanish. The radial gauge constraint equations (7.58) specifies the functions
ζM(z) and λ(z) in (7.57) up to five integration constants. However, only four of these
integration constants will enter the longitudinal pure gauge modes. Hence, there will be
four independent pure gauge solutions to the equations for the fluctuations. A derivation
of the pure gauge modes are given in Appendix A, and the analytical expressions for
these are given in (A.25).

7.4.2 Boundary conditions and the determinant method
In total, we have found seven linearly independent solutions for the fluctuation fields,
three numerical solutions and four analytical pure gauge solutions. Any linear com-
bination of these will also solve the equations for the fluctuations. In order to get a
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well-posed boundary value problem, we also supply seven boundary conditions at the
conformal boundary, one for each field component. The type of boundary conditions
at the conformal boundary determines the type of mode described by the solution, e.g.
Dirichlet boundary conditions give rise to quasi-normal modes. Then one has to find
a particular linear combination of solutions which satisfy these boundary conditions at
spatial infinity. The solutions depend on ω and k, and to find a dispersion relation for
a given set of boundary conditions we iterate over ω and k, and look for values where
there exists a non-trivial linear combination which satisfies the boundary conditions. To
determine whether such a non-trivial linear combination exists, given a particular ω and
k, we calculate a determinant which is zero only if a non-trivial solution exists.

The longitudinal modes of interest to us are primarily the plasmon modes, but we
will also investigate the quasi-normal modes. To study the quasi-normal modes we must
impose Dirichlet boundary condtitions at the conformal boundary for all fluctuations
except δφ. Indeed, δφ will automatically vanish on the conformal boundary since the
fluctuation has the same asymptotic behavior (7.20) as the background scalar field. The
correct boundary condition on δφ should be that its leading part (the source) vanish,

δφ′(z)→ 0 as z → 0 . (7.59)

To investigate the plasmon modes we change the Dirichlet boundary condition for ax to
the plasmon boundary condition

ω2ax + λa′x → 0 as z → 0 , (7.60)

which was derived in the previous section. Furthermore, we choose λ = 1 for simplicity.
Assume we want to impose the plasmon boundary condition, i.e. (7.59) and (7.60),

and Dirichlet boundary conditions on the remaining field components. Given a complex
ω and real k, a non-trivial linear combination of the seven linearly independent solutions
for the fluctuations, satisfying the plasmon boundary condition, will exist if and only if∣∣∣∣∣∣∣∣∣∣

(htt)1 (htx)1 (hxx)1 (hyy)1 (at)1 (ω2ax + a′x)1 (δφ′)1
(htt)2 (htx)2 (hxx)2 (hyy)2 (at)2 (ω2ax + a′x)2 (δφ′)2

...
(htt)7 (htx)7 (hxx)7 (hyy)7 (at)7 (ω2ax + a′x)7 (δφ′)7

∣∣∣∣∣∣∣∣∣∣
= 0 . (7.61)

Iterating through a range of values for ω and k, we can determine a relation ω(k) for which
the determinant is zero. The relation ω(k) is then the sought after dispersion relation
for the plasmon mode. An analogous determinant with a Dirichlet boundary condition
on ax can also be computed, yielding a dispersion relation for a quasi-normal mode.
We will now present dispersion relations for quasi-normal modes and a plasmon mode,
numerically computed using this determinant method. However, it should be emphasised
again that the plasmon boundary condition (7.60) most likely has to be modified for our
holographic superconductor, due to a mixing of the gauge field with the scalar condensate
at nonzero momenta. This is a plausible explanation as to why we find an instability in
our plasmon dispersion relation for large k.

7.4.3 Dispersion relations for quasi-normal modes and plasmons
Using the determinant method explained in the previous section, we have computed
dispersion relations for three quasi-normal modes. These dispersion relations are plotted
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Figure 7.2: Dispersion relations for three quasi-normal modes. The solid lines shows the
real part of ω and the dashed lines shows the imaginary part. (Left): E+ = 0.25, φ+ =
0.998 . . . . (Right): E+ = 0.75, φ+ = 0.714 . . . . (Bottom): E+ = 1.2, φ+ = 0.545 . . . . In
all figures χ+ = −1 and q = 3.

in Fig. 7.2. The three quasi-normal modes correspond to three different choices for
the free parameters of our holographic superconductor model. Having made the choice
m2L2 = −2 for the mass of the scalar field, and having set various other parameters to
unity, we are left with four free parameters. One of these remaining parameters is the
charge of the scalar field q, which couples the scalar field to the U(1) gauge field via the
gauge covariant derivative term in the action (7.1). We have chosen the value q = 3 in
all our numerical computations. A natural extension of our analysis is therefore to study
how the dispersion relations depend on q.

The other three remaining free parameters are values of background fields, evaluated
at the black hole horizon. More precisely, they are φ+, E+, and χ+, i.e. the value
of the complex scalar field, the electric field E+ = A′0(z+), and the function χ in the
time component of the metric, all evaluated at the horizon, respectively. However, to
find a background solution having a vanishing source for the scalar operator in the dual
QFT, using our method described above in 7.2.2, we specify only two of these parameters
and solve for the third one such that the solution has a vanishing leading part of the
scalar field near the conformal boundary. In particular, we have specified E+ and χ+,
and then solved for φ+ using plots similar to 7.1. Moreover, we have chosen χ+ = −1
in all cases. The three dispersion relations for quasi-normal modes shown in Fig. 7.2
correspond to the specified values of E+ = 0.25, E+ = 0.75, and E+ = 1.2. This then
fixes the value of the scalar field at the horizon to φ+ = 0.998 . . . , φ+ = 0.714 . . . , and
φ+ = 0.545 . . . , respectively. The solid lines shows the real part of ω and the dashed
lines shows the imaginary part. These dispersion relations for quasi-normal modes look
physically reasonable. The negative imaginary part for nonzero momenta signals that
the modes are dispersive, attenuating in the media. The reason for this is that the
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Figure 7.3: A dispersion relation for a plasmon mode. The solid line is the real part
of ω and the dashed line is the imaginary part. For small k the dispersion relation is
approximately linear. The positive Im(ω) for large k indicates an instability. Such an
instability is not expected to occur. The parameter values used are q = 3, χ+ = −1,
E+ = 0.75 and φ+ = 0.714 . . . .

oscillating factor e−iωt+ikxx decreases in amplitude with increasing time when ω has a
negative imaginary part.

Fig. 7.3 shows a dispersion relation for a mode using the plasmon boundary condition
(7.60). Here we have used the parameter values q = 3, χ+ = −1, E+ = 0.75, and
φ+ = 0.714 . . . . Again, the solid line and dashed line shows the real part and imaginary
part of ω, respectively. At k ≈ 1.7 the imaginary part of ω obtains a positive value.
This signals an instability due to the oscillating factor e−iωt+ikxx = eIm(ω)te−iRe(ω)t+ikxx,
which blows up as t→∞ in the case of a positive imaginary part. The instability found
at large k is not expected to occur, and is most likely a consequence of not accounting
for a mixing between the gauge field and scalar condensate at nonzero momenta when
deriving the plasmon boundary condition. We note also that the dispersion relation is
approximately linear for small momenta. It would be interesting to see if this linearity
remains after having resolved the problem of the instability at large k.

7.5 Conclusions and outlook
In this chapter we have presented a minimal bottom-up model of a holographic super-
conductor, a model originally proposed in [9], [10]. This model was constructed by pos-
tulating a bulk theory action (7.1), describing a classical gravitational theory in anti-de
Sitter space, containing a U(1) gauge field as well as a complex scalar field. The bulk
theory is interpreted as the holographically dual description of a strongly interacting
large N quantum field theory, living on the boundary of the bulk spacetime. The low
energy processes in the QFT are described by the dynamics near the horizon of a charged
‘Reissner-Nordström’ black hole in the deep interior of the bulk spacetime. The scalar
field can become tachyonic near the horizon, resulting in the formation of a charged scalar
condansate around the horizon; the black hole aquires scalar ‘hair’. The scalar condensate
in the bulk is interpreted as a scalar ‘superfluid’ in the dual QFT, which is formed by the
condensation of the charged scalar operator, in dual correspondence with the complex
scalar field in the bulk, below a critical temperature Tc. The superfluid condensate is
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superconducting, and its formation below the critical temperature is then interpreted as
a superconducting phase transition.

In this work we have not verified that a superconducting phase transition indeed
occurs at some critical temperature Tc. However, this has been done in e.g. [10]. Indeed,
by imposing a nonzero amplitude for the scalar field on the horizon, any ground state
found by solving the equations of motion must be in the superconducting phase, since
the ground state in the normal phase is described by a pure Reissner-Nordström solution
with a vanishing scalar field profile. Another possibility is that the solution we found
is not a ground state in the superconducting phase, but an excited state in the normal
phase. However, a quick numerical calculation of the conductivity yields a similar result
as in [10], strongly suggesting that the system indeed is in the superconducting phase,
having an infinite DC conductivity. A plot of the conductivity with a somewhat low
numerical accuracy is given in Appendix B.

Ruling out the possibility of having found a solution describing an excited state in the
normal phase is also of importance for finding an explanation to the ‘large k’ instability
of the plasmon dispersion relation. If the system where in an excited normal state, then
it would be plausible that a high energetic fluctuation could knock the system back to
a stable ground state. It would then be reasonable to expect the system to be unstable
against fluctuations having large enough momenta. However, by confirming that the
stationary black hole solution describes a ground state in the superconducting phase,
this explanation for why the plasmon modes become unstable at large momenta can
safely be discarded.

As we have commented on above, the reason for the unstable plasmon modes probably
has to do with a mixing of the gauge field with the scalar condensate at nonzero momenta.
This mixing introduces additional terms to the conductivity which plays an essential role
in the derivation of the plasmon boundary condition. Determining the precise form
of these additional terms, and how they alter the plasmon boundary condition, is a
prerequisite for being able to compute reliable dispersion relations for plasmon modes in
the holographic superconductor model. This would be an interesting research project for
the future.

The bottom-up model of a holographic superconductor considered in this thesis is
of s-wave type, i.e. the superfluid condensate does not carry any angular momentum.
Although s-wave superconductivity are part of many experimentally studied supercon-
ductors, unconventional p- and d-wave superconductivity seems to be essential parts of
real life high Tc superconductors as well. Extending the analysis of charge density fluc-
tuations to holographic models of p- and d-wave superconductors, e.g. the models listed
in [73], is a natural next step. Moreover, the experimentally studied high Tc cuprate
superconductors consists of 2 + 1 dimensional layers stacked on top of each other, and
it has been argued in [11] that it is the Coulomb interaction (in 3 + 1 dimensions) be-
tween the layers that give rise to the high critical temperature observed. The holographic
superconductor toy model considered here is in fact a 2 + 1 dimensional system, and it
would therefore be interesting to stack up many layers of this model, coupled with a
3 + 1 dimensional Coulomb interaction. Hopefully, this would shed some light on why
the critical temperature is high in the cuprate superconductors.

Finally, holographic bottom-up models can provide a tractable description of the
emergent low energy phenomena of condensed matter systems, at least in principle. It
is, however, conceptually desired to also find top-down constructions for holographic
dualities describing condensed matter systems. This would guarantee that the theory is
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UV complete, although UV completion is of less relevance for applications to condensed
matter physics, where one is primarily interested in the emergent low energy dynamics.
A string theoretical top-down construction does, however, give some justification to the
bottom-up model obtained by consistently truncating the top-down model. Furthermore,
the bottom-up models are highly phenomenological, in the sense that they come with a
larger number of free parameters, which at best can be determined by experimental data.
Top-down models tend to be more constrained from the particular string theory they are
derived from. For instance, the potential for the complex scalar field in our bottom-up
superconductor model where free for us to specify, and we restricted our analysis to the
case of a simple mass term. In a top-down construction, the precise form of the potential
would be specified and not free for us to choose. For an introduction to the subject of
superconductivity in top-down holography, we refer the reader to some of the earlier work
done in [81]–[83], but see also [2].
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Derivation of longitudinal pure

gauge modes

Here we present the derivation of the longitudinal pure gauge modes of the holographic
superconductor model. The diffeomorphism and U(1) transformation parameters ξM and
Λ are first determined from the radial gauge constraint equations for the metric and gauge
fields. These are then used to calculate the longitudinal pure gauge modes for the metric,
gauge, and scalar field.

Consider first the constraint equation δξgzz = 0. Using (7.9) and (7.55), we get

0 = δξgzz = ξK∂Kgzz + gzz∂zξ
z + gzz∂zξ

z

= ξz∂zgzz + 2gzz∂zξz

= ξz∂z
L2

z2f
+ 2L2

z2f
∂zξ

z

= −L2
[(

2
z3f

+ f ′

z2f 2

)
ζz + L2 2

z2f
ζ ′z
]
e−iωt+ikxx .

(A.1)

This first order differential equation for ζz can be written as

ζ ′z −
(

1
z

+ f ′

2f

)
ζz = 0 . (A.2)

It is straightforward to solve this equation using an integrating factor,

d

dz

(
e
−
∫ z

dz′
(

1
z′+

f ′
2f

)
ζz
)

= d

dz

(
1

z
√
f
ζz
)

= 0 . (A.3)

Integrating this expression yields the following solution:

ζz = c1z
√
f , (A.4)

where c1 is an integration constant.
Next we consider the radial gauge constraint equations δξgµz = 0 where µ = t, x, y.

Using the fact that the background metric (7.9) is diagonal, as well as the expression for
the Lie derivative (7.55), we get

δξgµz = ξK∂Kgµz + gµK∂zξ
K + gKz∂µξ

K

= gµµ∂zξ
µ + gzz∂µξ

z .
(A.5)
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For µ = t, we have

0 = δξgtz = gtt∂zξ
t + gzz∂tξ

z

= −L
2fe−χ

z2 ∂z
(
ζte−iωt+ikxx

)
+ L2

z2f
∂t
(
ζze−iωt+ikxx

)
= −L

2

z2

(
fe−χζ ′t + iωc1z√

f

)
e−iωt+ikxx ,

(A.6)

where we have used (A.4) in the last step. Solving for ζ ′t, we find

ζ ′t = −iωc1ze
χ

f 3/2 , (A.7)

which can be directly integrated to yield a solution for ζt,

ζt = −iωc1

∫ z

dz′
z′eχ

f 3/2 + c2 . (A.8)

Here c2 is an another integration constant. Since the functions f(z) and χ(z) can only
be found numerically, the integral can only be evaluated numerically as well. The lower
integration limit can be chosen arbitrarily in the interval (0, 1). However, since we are
only interested in the behaviour of the pure gauge solutions near the boundary at spatial
infinity, z = 0, it is convenient to choose the lower limit close to this boundary.

Next, for µ = x, we have

0 = δξgxz = gxx∂zξ
x + gzz∂xξ

z

= L2

z2 ζ
′xe−iωt+ikxx + ikxL

2

z2f
ζze−iωt+ikxx

= L2

z2

(
ζ ′x + ikxc1z√

f

)
e−iωt+ikxx .

(A.9)

It is straightforward to solve this equation for ζ ′x and integrate to get the following
solution for ζx:

ζx = −ikxc1

∫ z

dz′
z′√
f

+ c3 , (A.10)

where c3 is a third integration constant. Lastly, for µ = y, we have

0 = δξgyz = gyy∂zξ
y + gzz∂yξ

z = L2

z2 ζ
′ye−iωt+ikxx . (A.11)

We must then have ζ ′y = 0, which implies that ζy is just an integration constant,

ζy = c4 . (A.12)

Consider now the radial gauge constraint equation for the gauge field, δξAz+∂zΛ = 0.
Using (7.10), (7.55), and (7.57), we get

0 = δξAz + ∂zΛ = ξN∂NAz + AN∂zξ
N + ∂zΛ

= A0∂zξ
t + ∂zΛ

=
(
A0ζ

′t + λ′
)
e−iωt+ikxx

=
(
−iωc1ze

χA0

f 3/2 + λ′
)
e−iωt+ikxx ,

(A.13)
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where (A.7) was used in the last equality. Solving for λ′ and integrating yields,

λ = iωc1

∫ z

dz′
z′eχA0

f 3/2 + c5 , (A.14)

where c5 is an integration constant.
In conclusion, (A.4), (A.8), (A.10), (A.12), and (A.14) determine the gauge parame-

ters (7.57) up to five integration constants:

ξz = c1z
√
fe−iωt+ikxx

ξt =
(
−iωc1

∫ z

dz′
z′eχ

f 3/2 + c2

)
e−iωt+ikxx

ξx =
(
−ikxc1

∫ z

dz′
z′√
f

+ c3

)
e−iωt+ikxx

ξy = c4e
−iωt+ikxx

Λ =
(
iωc1

∫ z

dz′
z′eχA0

f 3/2 + c5

)
e−iωt+ikxx .

(A.15)

However, we will find that only four of these constants will enter the longitudinal modes
of the pure gauge solutions. Using (7.55) and (A.15), we now compute these longitudinal
modes of the pure gauge solutions. First of, δξgµµ with µ = t, x, y, is given by

δξgµµ = ξK∂Kgµµ + gµK∂µξ
K + gKµ∂µξ

K = ξz∂zgµµ + 2gµµ∂µξµ . (A.16)

Using (7.9) for the background metric and (A.15) for ξ, the tt-component is given by

δξgtt = ξz∂zgtt + 2gtt∂tξt

= ξz∂z
−L2fe−χ

z2 + 2−L
2fe−χ

z2 (−iω)ξt

= ξzL2
(
fχ′ − f ′

z2 e−χ + 2fe−χ
z3

)
+ 2iωL2fe−χ

z2 ξt

= c1L
2z
√
f
zfχ′ − zf ′ + 2f

z3 e−χe−iωt+ikxx

+ 2iωL2fe−χ

z2

(
−iωc1

∫ z

dz′
z′eχ

f 3/2 + c2

)
e−iωt+ikxx

= L2
[
c1

(√
f
zfχ′ − zf ′ + 2f

z2 e−χ + 2ω2fe−χ

z2

∫ z

dz′
z′eχ

f 3/2

)
+ c2

2iωfe−χ
z2

]
e−iωt+ikxx .

(A.17)

Similarly, for the xx- and yy-components, we get

δξgxx = ξz∂zgxx + 2gxx∂xξx

= ξz∂z
L2

z2 + 2L
2

z2 ikxξ
x

= L2

z2

[
−2c1

√
f + 2ikx

(
−ikxc1

∫ z

dz′
z′√
f

+ c3

)]
e−iωt+ikxx

= 2L2

z2

[
c1

(
−
√
f + k2

x

∫ z

dz′
z′√
f

)
+ ikxc3

]
e−iωt+ikxx ,

(A.18)
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and

δξgyy = ξz∂zgyy + gyy∂yξ
y = ξz∂z

L2

z2 = −c1
2L2√f
z2 e−iωt+ikxx . (A.19)

The remaining longitudinal metric mode is given by

δξgtx = ξK∂Kgtx + gtK∂xξ
K + gKx∂tξ

K

= gtt∂xξ
t + gxx∂tξ

x

= −L
2fe−χ

z2 ikxξ
t + L2

z2 (−iω)ξx

= −L
2

z2

[
ikxfe

−χ
(
−iωc1

∫ z

dz′
z′eχ

f 3/2 + c2

)
+ iω

(
−ikxc1

∫ z

dz′
z′√
f

+ c3

)]
e−iωt+ikxx

= −L
2

z2

[
c1ωkx

(
fe−χ

∫ z

dz′
z′eχ

f 3/2 +
∫ z

dz′
z′√
f

)
+ ikxc2fe

−χ + iωc3

]
e−iωt+ikxx .

(A.20)

Now, the two longitudinal modes for the Maxwell gauge field is

δAt = δξAt + ∂tΛ = ξK∂KAt + AK∂tξ
K − iωΛ

= ξzA′0 − iωA0ξ
t − iωΛ

=
[
c1zfA

′
0 − iωA0

(
−iωc1

∫ z

dz′
z′eχ

f 3/2 + c2

)
− iω

(
iωc1

∫ z

dz′
z′eχA0

f 3/2 + c5

)]
e−iωt+ikxx

=
[
c1

(
zfA′0 − ω2A0

∫ z

dz′
z′eχ

f 3/2 + ω2
∫ z

dz′
z′eχA0

f 3/2

)
− iωc2A0 − iωc5

]
e−iωt+ikxx ,

(A.21)

and

δAx = δξAx + ∂xΛ = ξK∂KAx + AK∂xξ
K + ikxΛ

= ikxA0ξ
t + ikxΛ

=
[
ikxA0

(
−iωc1

∫ z

dz′
z′eχ

f 3/2 + c2

)
+ ikx

(
iωc1

∫ z

dz′
z′eχA0

f 3/2 + c5

)]
e−iωt+ikxx

=
[
c1ωkx

(
A0

∫ z

dz′
z′eχ

f 3/2 −
∫ z

dz′
z′eχA0

f 3/2

)
+ ikxc2A0 + ikxc5

]
e−iωt+ikxx ,

(A.22)

where we have used (7.10) for the background Maxwell field and (A.15) for ξ and Λ.
Lastly, the scalar field transforms both under diffeomorphisms and U(1) transformations.
Since the gauge parameters are infinitesimal quantities, the U(1) transformation of the
scalar field reduces to

φ→ eiΛφ = (1 + iΛ)φ = φ+ δΛφ , (A.23)
where Λ = λe−iωt+ikxx and λ is given by (A.14). The pure gauge mode for the scalar field
is then

δφ = δξφ+ δΛφ = ξM∂Mφ+ iΛφ

=
[
c1z
√
fφ′ +

(
−ωc1

∫ z

dz′
z′eχA0

f 3/2 + ic5

)
φ

]
e−iωt+ikxx .

(A.24)
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The modes (A.17)-(A.24) are determined only up to four integration constants c1, c2, c3,
and c5. The integration constant c4 only affect the transverse modes and is therefore
unimportant in our analysis. Then, for notational clarity, we simply relabel c5 by c4.

Finally, since we defined the fluctuations of the metric and gauge field with additional
factors of 1/z2 and gFL/κ = L

√
2 in (7.51), the pure gauge solutions has to be redefined

with the same factors. This can be accounted for by simply multiplying the pure gauge
solutions (A.17)-(A.20) by z2, and (A.21) and (A.22) by 1/(L

√
2). The sought after

longitudinal pure gauge modes are thus given by

δgtt = L2
[
c1

(√
f (zfχ′ − zf ′ + 2f) e−χ + 2ω2fe−χ

∫ z

dz′
z′eχ

f 3/2

)
+ 2ic2ωfe

−χ
]
e−iωt+ikxx ,

δgtx = −L2
[
c1ωkx

(
fe−χ

∫ z

dz′
z′eχ

f 3/2 +
∫ z

dz′
z′√
f

)
+ ikxc2fe

−χ + iωc3

]
e−iωt+ikxx ,

δgxx = 2L2
[
c1

(
−
√
f + k2

x

∫ z

dz′
z′√
f

)
+ ikxc3

]
e−iωt+ikxx ,

δgyy = −2c1L
2
√
fe−iωt+ikxx ,

δAt = 1
L
√

2

[
c1

(
zfA′0 − ω2A0

∫ z

dz′
z′eχ

f 3/2 + ω2
∫ z

dz′
z′eχA0

f 3/2

)
− iωc2A0 − iωc4

]
e−iωt+ikxx ,

δAx = 1
L
√

2

[
c1ωkx

(
A0

∫ z

dz′
z′eχ

f 3/2 −
∫ z

dz′
z′eχA0

f 3/2

)
+ ikxc2A0 + ikxc4

]
e−iωt+ikxx ,

δφ =
[
c1z
√
fφ′ +

(
−ωc1

∫ z

dz′
z′eχA0

f 3/2 + ic4

)
φ

]
e−iωt+ikxx .

(A.25)

Setting either one of the four integration constants to unity and the others to zero results
in four linearly independet solutions to the fluctuation equations.
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Figure B.1: A plot of the real part of the conductivity versus frequency, normalized by
the scalar condensate. Here we have chosen q = 3 for the charge of the complex scalar
field. There is a delta function at ω = 0, invisible in the plot. The small oscillation in
the curve indicates a numerical instability.

Fig. B.1 shows the result of a numerical computation of the conductivity. More
precisely, it shows the real part of the conductivity σ as a function of the frequency ω
normalized by the scalar condensate. We have chosen the particular value q = 3 for the
charge of the complex scalar field in the bulk. The expectation value of the scalar operator
is given by the subleading part of the complex scalar field near the conformal boundary,
according to our identification (7.21). The plot qualitatively agrees with the result in [10],
at least up to a factor of ∼ 2, which could be a consequence of the factor gFL/κ =

√
2

in our definition of the U(1) gauge field fluctuation. There is a delta function at ω = 0
which is invincible in the plot, meaning that the DC conductivity is formally infinite.
This is evidence in support of the solution describing a superconducting ground state.
The small oscillating behaviour of the curve is likely a sign of some numerical instability.
The numerical accuracy could be improved upon, but the qualitative behaviour is enough
to confirm that the solution found should be in the superconducting phase, which was
the main purpose of this calculation.
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