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Abstract

The random bipartite graph G(m,n; p) is the random graph obtained by taking the
complete bipartite graph Km,n and deleting each edge independently with probability
1− p. Using a branching process argument, the threshold function for a giant connected
component in G(m,n; p) is found to be 1/

√
mn, and the number of vertices in the giant

component is proportional to
√
mn. An attempt is made to reduce the study of G(m,n; p)

to the well-studied random graph G(m,p) using an original argument, and this is used
to show that a.a.s. the giant of G(m,n; p) is cyclic when m = o(n) and p

√
mn is large

enough. Using a colouring argument, similar results are shown for Fortuin-Kasteleyn’s
random-cluster model with parameter 1 ≤ q ≤ 2 when m = o(n). In particular, when
m = o(n) the critical inverse temperature for the Ising model on Km,n is found to be

−1
2 log

(
1− 2√

mn

)
, and the number of vertices in the giant is proportional to

√
mn.
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I would like to thank Olle Häggström for supervision throughout this project. I would
also like to primarily acknowledge Chalmers University of Technology, but also Gothen-
burg University and the University of Waterloo as the universities that I have attended
during my university years.

Tony Johansson
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1
Introduction

S
ince its initiation in the late 1950s by Erdős and Rényi, the field of random
graphs has become an important and largely independent part of combinatorics
and probability theory. There have been several books published in the field,
the most influential being Béla Bollobás’ 1985 monograph Random Graphs [2].

Inspired by that book, and Svante Janson, Tomasz  Luczak and Andrzej Ruciński’s 2001
book by the same name [10], this thesis extends classical results for the complete graph
Km to the complete bipartite graph Km,n. In particular, it focuses on results on the
so-called giant component, which is historically important as one of the first remarkable
results on random graphs.

The idea behind this thesis may be loosely described as starting with a certain set
of vertices, randomly adding edges and studying the properties of the resulting graph.
It is important to note that this may be done in any number of ways, and that random
graphs may be obtained in other ways, e.g. by assigning numerical values to the vertices
of the graph. For the most part, this thesis studies the independent Erdős-Rényi model,
named after its originators, in which each edge is included with equal probability in the
random graph, independently of all other edges. Other models include the closely related
fixed-edge number Erdős-Rényi model, in which a fixed number M of edges is included
in the graph and any graph with M edges is equiprobable.

This section sets the stage for the theorems of later sections, by introducing readers to
the field of random graphs, and fixing the notation used throughout the thesis. Readers
familiar with random graphs can skip Section 1 with no problem.

Section 2 presents proofs of the main theorems of the thesis, imitating the techniques
of [10, Theorem 5.4] closely. The argument carries well through the transition from
complete graphs to complete bipartite graph, with a slight alteration in which only one
part of the bipartite graph Km,n is considered.

Only considering part of the vertices in the branching process argument suggests a
method with which the study of random bipartite graph may be reduced to the already
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1.1. Basic graph theory 1. INTRODUCTION

established study of random complete graphs. Section 3 investigates this reduction
method, and discusses its applications and limitations.

Following a colouring argument from a 1996 paper by Bollobás, Grimmett and Jan-
son [3], Section 4 extends the results of previous sections to Fortuin-Kasteleyn’s random-
cluster model. In particular, the section shows the existence and size of a giant compo-
nent for the Ising model, important in statistical physics.

1.1 Basic graph theory

A graph is defined as a set (V,E) of labelled vertices V and edges E ⊆ V ×V . All graphs
will be undirected, so that (x,y) ∈ E if and only if (y,x) ∈ E. Throughout this thesis, V
will be a finite set consisting of indexed letters; typically V = (a1, a2, ..., am; b1, b2, ..., bn)
or V = (a1,...,am) for some positive integersm,n. An edge (x,y) between vertices x, y ∈ V
will be denoted by the shorthand notation xy.

For a given edge xy, the vertices x and y are called the endpoints of xy, and the
vertices x and y are neighbours. Similarly, two edges e,f ∈ E are adjacent if they share
an endpoint. A path from x to y is a set of edges e0,...,ek ∈ E such that ei−1 and ei
are adjacent for all 1 ≤ i ≤ k and x and y are endpoints of e0 and ek, respectively.
Equivalently, a path from x to y may be defined as a sequence of neighbours x =
x0, x1,...,xk = y.

Let x ∼ y if and only if there is a path from x to y. This is an equivalence relation
which partitions V into sets C1,...,Ck called the (connected) components of G. The
connected component of x is the unique Ci = C(x) such that x ∈ Ci.

a1

a2a3

a4

a5 a6

Figure 1.1: The complete graph K6, as defined in Section 1.1. While complete graphs will
not be studied in this thesis, the results for complete bipartite graphs are inspired by and
at some points derived from the corresponding results for complete graphs.

A complete graph with m vertices, denoted Km, is a graph with vertex set Vm =
(a1,...,am) and edge set Em = {(ai,aj) : i 6= j}. A complete bipartite graph is a graph
with Vm,n = (a1,...,am; b1,...,bn) and Em,n = Am × Bn, where Am = (a1,...,am) and
Bn = (b1,...,bn) make up a partition of Vm,n. A vertex ai ∈ Am will be called even and
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1.2. Asymptotics 1. INTRODUCTION

a1 a2 a3 a4

b1 b2 b3 b4 b5

Figure 1.2: The complete bipartite graph K4,5, as defined in Section 1.1. Graphs of this
type are the object of study in the current thesis. Complete bipartite graphs will always be
drawn with the even vertices a1,...,am in the top row, and the odd vertices b1,...,bn in the
bottom row.

a vertex bj ∈ Bn odd. Complete bipartite graphs are denoted Km,n. Throughout the
thesis, we make the assumption that m = O(n), i.e. that there is a constant a ≥ 1 such
that m ≤ an for all m,n. We regard n as a function of m, so that whenever n appears it
should be read as n = n(m). Theorems will be shown to hold for m = an, a > 0 and/or
m = o(n). We note that m→∞ implies n→∞.

A subgraph H = (V,F ) of G = (V,E) is defined as a graph with the same vertex set
as G, and with edge set F ⊆ E. In most cases it is convenient to call an edge e ∈ E
open if e ∈ F and closed otherwise. Each subgraph corresponds to an edge-configuration
ξ ∈ {0,1}E where ξ(e) = 1 if e is open and ξ(e) = 0 otherwise. We define a partial
ordering � on the space {0,1}E by ξ � η if and only if ξ(x) ≤ η(x) for all x ∈ E.

A property of a graph (V,E) is defined as a family of subgraphs Q ⊆ P(E). A
subgraph (V,F ) has property Q if F ∈ Q. An increasing property is a property Q such
that if F1 ∈ Q and F1 ⊆ F2, then F2 ∈ Q. In other words, a property is increasing if
adding edges to any graph with the property will produce a graph which also has that
property.

1.2 Asymptotics

Asymptotic notation is frequent in random graphs, since results are typically shown ”as
m→∞”. We define for any function f and any positive function g the following:

f(x) = O(g(x)) if lim sup
x→∞

|f(x)|
g(x)

<∞ (1.1)

f(x) = o(g(x)) if lim
x→∞

f(x)

g(x)
= 0 (1.2)

Most results in this thesis are shown to hold asymptotically almost surely, or a.a.s. A
sequence of random variables (Xk)

∞
k=1 has property Q a.a.s. if an only if P {Xm ∈ Q} →

1. Furthermore, for a sequence Xm of random variables we define

Xm = op(am) if |Xm| = o(am) a.a.s. (1.3)

The usage of op and a.a.s. is quite interchangable. Typically, asymptotic bounds are
stated a.a.s. and asymptotic values are stated using op terms.

3



1.3. Basic probability 1. INTRODUCTION

1.3 Basic probability

Many results will rely heavily on inequalities related to the Markov inequality. For any
non-negative random variable X with finite expectation, Markov’s inequality states

P {X ≥ a} ≤ E [X]

a
, a > 0 (1.4)

Supposing further that X has finite second moment, Markov’s inequality applied on the
random variable |X −E [X] |2 implies Chebyshev’s inequality:

P {|X −E [X] | ≥ a} = P
{
|X −E [X] |2 ≥ a2

}
≤ VarX

a2
, a > 0 (1.5)

This will frequently be applied when a sequence of random variables Xm is shown to
satisfy

√
Var X = op(E [Xm]). Chebyshev’s inequality implies

P {|Xm −E [Xm] | ≥ E [Xm]} ≤ Var Xm

E [Xm]2
= o(1) (1.6)

so that Xm = E [Xm] (1 + op(1)).
The following bounds hold for all a ∈ R, and are commonly called Chernoff bounds.

P {X ≥ a} = P
{
etX ≥ eta

}
≤

E
[
etX
]

eta
, t ≥ 0 (1.7)

P {X ≤ a} = P
{
etX ≥ eta

}
≤

E
[
etX
]

eta
, t < 0 (1.8)

For a random variableX, the probability-generating function GX is defined byGX(s) =
E
[
sX
]

when this expectation exists. The moment-generating function MX is defined,
when it exists, by MX(t) = E

[
etX
]

= GX(et). The property of these functions that
will be used most frequently is the following: Let N be a positive integer-valued random
variable, and let Y = X1 + ...+XN where the Xi are i.i.d. and independent of N . Then

MY (t) = MN (MX(t)) and GY (s) = GN (GX(s)) (1.9)

whenever the functions exist. See e.g. [7].
A random variable X is Bernoulli distributed with parameter p ∈ [0,1], denoted

X ∈ Bern(p), if P {X = 1} = p and P {X = 0} = 1− p. It is binomially distributed with
paramters n ∈ N and p ∈ [0,1], denoted X ∈ Bi(n,p), if for any integer 0 ≤ k ≤ n

P {X = k} =

(
n

k

)
pk(1− p)n−k (1.10)

The probability-generating function of X ∈ Bi(n,p) is given by GX(s) = (1− p+ ps)n.
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1.4. Random graph models 1. INTRODUCTION

1.3.1 Branching processes

A Galton-Watson process or branching process is a stochastic process (Zk)
∞
k=0, defined

as follows. We choose a non-negative integer-valued probability distribution A and call
it the offspring distribution. Given a deterministic starting value Z0 (usually taken to be

1), each Zk, k ≥ 1 is defined by Zk =
∑Zk−1

i=1 Xki , where the Xki ∈ A are independent.
The variables Zk are interpreted as the number of individuals in the k-th generation of
a population, and each Xki is the number of offsprings for an individual.

The extinction probability for a branching process is the probability of the event
{∃k > 1 : Zk = 0}. Let X ∈ A. A classical result states that if E [X] ≤ 1, the extinction
probability is 1, and if E [X] > 1 the extinction probability is given by the unique
solution in (0,1) to GX(s) = s. Here GX denotes the probability-generating function of
X.

1.3.2 Stochastic domination

In Section 3 we shall need the measure-theoretic concept of stochastic domination. Given
S ⊆ R, a partial ordering � on a space Ω and probability measures µ, ν on Ω, we say that
µ stochastically dominates ν, written ν �D µ, if ν(f) ≤ µ(f) for all increasing functions
f : Ω → S (with respect to �). Heuristically, this means that µ prefers larger elements
of Ω than ν. In particular, for any increasing event B ⊆ S we have ν(B) ≤ µ(B). See
[6].

The following powerful result is used to characterize stochastic domination in relation
to random graphs. It is a special case of a more general result called Holley’s Theorem,
see e.g. [6]. Suppose x ∈ E and let X(x) = 1 if x ∈ E is open and X(x) = 0
otherwise. We define the event {X = ξ off x} for ξ ∈ {0,1}E\{x} as the event {X(y) =
ξ(y) for all y ∈ E \ {x}}.

Holley’s Theorem. Let G = (V,E) be a graph and let µ1, µ2 be probability measures
on {0,1}E. If

µ1(X(x) = 1 | X = ξ off x) ≤ µ2(X(x) = 1 | X = ξ′ off x) (1.11)

for all x ∈ E and all ξ, ξ′ ∈ {0,1}E\{x} such that ξ � ξ′, then µ1 �D µ2.

1.4 Random graph models

Let G = (V,E) be a graph. A random graph model, in all instances of this thesis, is a
probability measure on either of the spaces SV and SE for some S ⊆ R. This section
presents the different models that will be used or mentioned in the thesis.

1.4.1 The Erdős-Rényi model

The model that Erdős and Rényi introduced, which has been subsequently named the
Erdős-Rényi model, comes in two closely linked forms. The one most suited for this
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1.4. Random graph models 1. INTRODUCTION

thesis is denoted G(m,p), which generates a subgraph of the complete graph Km =
(Vm, Em) in which each edge is included independently of all others with probability p.
Equivalently, it may be seen as starting with Km,n and removing each edge independently
with probability 1− p. In other words, for any subgraph H = (Vm, F ) where F ⊆ Em,

P {F} =

((m
2

)
|F |

)
p|F |(1− p)(

m
2 )−|F | (1.12)

For the complete bipartite graph Km,n = (Am ∪Bn, Am ×Bn) we denote the corre-
sponding model G(m,n; p). A subgraph H = (Am ∪Bn, F ) is assigned probability

P {F} =

(
mn

|F |

)
p|F |(1− p)mn−|F | (1.13)

1.4.2 Ising and Potts models

A physically important random graph model is the Ising model, invented by Wilhelm
Lenz [11] and his student Ernst Ising [9] to model ferromagnetisism. Mathematically, it
is quite different from the Erdős-Rényi model in that it assigns probability to vertices
and not to edges. Each vertex is assigned a spin, which here will be denoted by the values
1 or 2, and the model will prefer vertex configurations in which neighbours have equal
spin. Formally, the Ising model on a finite graph G = (V,E) consists of a probability
measure on {1,2}V which to each σ ∈ {1,2}V assigns probability

φβ(σ) =
1

Zβ
exp

(
−2β

∑
x∼y

I{σ(x)6=σ(y)}

)
(1.14)

where β ≥ 0, and x ∼ y if and only if x, y ∈ V are neighbours. Here Zβ is a normal-
izing constant. In ferromagnetic applications β bears the interpretation of reciprocal
temperature, i.e. β = 1/T where T is the temperature.

A natural generalization of the Ising model is the q-state Potts model [12], which
assigns spins in the set {1,...,q} for some integer q ≥ 2. The Potts probability measure
on {1,...,q}V is identical to (1.14) except for a new normalizing constant Zβ,q.

1.4.3 The random-cluster model

The random-cluster model, introduced by Cees Fortuin and Pieter Kasteleyn in a series
of papers around 1970, see e.g. [8], is a random graph model that unifies the Erdős-
Rényi, Ising and Potts models. For any q > 0 it assigns to any subgraph (V,F ) of a
graph (V,E) probability proportional to

P̃ (F ;E,p,q) = p|F |(1− p)|E|−|F |qc(V,F ) (1.15)

where c(V,F ) is the number of components of (V,F ). Swendsen and Wang [13], followed
by a simpler proof by Edwards and Sokal [4], showed that the random-cluster model at
probability p for any q ∈ N is equivalent to the q-state Potts model at inverse temperature
β = −1

2 log(1− p).

6



1.5. The giant component 1. INTRODUCTION

1.5 The giant component

Around 1960, Erdős and Renyi [5] proved the first result concerning the existence and
non-existence of a so-called giant component in G(m,p). Essentially, the result states
that the graph G(m,λ/m) a.a.s. contains one component which is much larger than all
other components when λ > 1, while no such component exists for λ < 1. The following
formulation of the result appears in [10]:

Theorem. Let mp = λ, where λ > 0 is a constant.
(i) If λ < 1, then a.a.s. the largest component of G(m,p) has at most 3

(1−λ)2
logm

vertices.
(ii) Let λ > 1 and let θ = θ(λ) ∈ (0,1) be the unique solution to θ + e−λθ = 1. Then

G(m,p) contains a giant component of θm(1 + op(1)) vertices. Furthermore, a.a.s. the
size of the second largest component of G(m,p) is at most 16λ

(λ−1)2
logm.

This thesis will mainly be concerned with proving a similar result for the bipartite
graph G(m,n;λ/

√
mn), using proof techniques similar to those in [10].

In a 1996 paper [3], Bollobás et al. derived conditions for the existence and size of a
giant component in the random-cluster model for any q > 0, by reducing to the q = 1
case and using known results. This thesis will partly emulate those methods on the
bipartite graphs to prove similar results.

7



2
The branching process

S
ince the results contained in this thesis are concerned with component sizes, a
method to measure the size of a component is needed. The following method
is inspired by the one used in [10], and the process it describes will be called a
even search process (or simply search process) and is closely related to a breadth-

first search, common in computer graph algorithms. The algorithm finds the vertices in
the connected component of an even vertex a, and counts the number of even and odd
vertices separately.

1. Let a0 = a and S = ∅, and mark a0 as saturated. All other vertices are initially
unsaturated. Set k = 0.

2. Find all unsaturated neighbours b1,...,br of ak, and mark them as saturated. Let
Rk+1 = {b1,...,br} and Yk+1 = |Rk+1|.

3. For each bi ∈ Rk+1, find all unsaturated neighbours ai1, ..., ais of bi, s = s(i).
Let Sk+1 = ∪ri=1{ai1,...,ais}. Thus, Sk+1 is the set of all unsaturated vertices at
distance 2 from ak. Let Xk+1 = |Sk+1|.

4. Assign S := S∪Sk+1. If S is empty, stop the algorithm. If S is nonempty, let ak+1

be an arbitrary element of S, remove ak+1 from S and mark ak+1 as saturated.
Return to step 2 with k + 1 in place of k.

Here the search for odd vertices bi should be considered an intermediate step: we
are only interested in finding the even vertices of the component containing a. So X1

is the number of ”2-neighbours”, i.e. vertices at distance 2 from a, and X2, X3,... are
the number of vertices at distance 2 from vertices that have already been found in the
process. The number of even vertices in the component is given by 1 +

∑K
k=1Xk, where

K is the total number of iterations of the algorithm.
This resembles a branching process, the difference being that a branching process

as defined in Section 1.3.1 requires each Xi to be identically distributed. However, the

8



2.1. Proportion of even and odd vertices 2. THE BRANCHING PROCESS

resemblance is in some sense close enough, in that we can find actual branching processes
bounding the search process from above and below.

It is clear that Y1 ∈ Bi(n,p), since at the start all vertices are unsaturated, and a
has n neighbours. After this the distributions are more complicated, but we may bound
X1 from above by X+

1 ∈ Bi(Y1m,p), since it is the sum of Y1 random variables, each
bounded from above by Bi(m,p). Continuing in this fashion, we may bound Yk from
above by Y +

k ∈ Bi(n,p) for all k, and Xk from above by X+
k ∈ Bi(Y +

k m,p). Using (1.9),
we have the following probability-generating function for X+

k :

GX+
k

(s) = (1− p+ p(1− p+ ps)m)n (2.1)

Given information about the maximal size of a component, we may bound the process
from below by similar methods, as will be seen below.

2.1 Proportion of even and odd vertices

The even search process described above finds the number of even vertices of a component
in the graph G(m,n; p). To be able to state results about the total size of the component,
we show a result that relates the number of even vertices in a component to the number
of odd vertices in the same component. Heuristically, this section shows that the number
of odd vertices in a component is pn times the number of even vertices, if the number
of even vertices in the component is small enough. Note that this proportion equals the
expected degree of any even vertex. For this, we need a purely probabilistic lemma.

Lemma 1. If X ∈ Bi(n,p) where n and p = p(n) are such that E [X] = np → ∞ as
n→∞, then X = np(1 + op(1))

Proof. We have E [X] = np and VarX = np(1 − p) = o(E [X]2) so that by (1.6),
X = np(1 + op(1)).

Lemma 1 is useful in proving the following.

Lemma 2. Let m0 = m0(m) be such that pm0n → ∞ and pm0 → 0 as m → ∞.
Let C be a component of G(m,n; p). Conditional on C having m0 even vertices, C has
pm0n(1 + op(1)) odd vertices.

Proof. In each step of the search process, a number Yk of odd vertices is identified. These
random variables are each bounded from above by a random variable Y +

k ∈ Bi(n,p). Since
the number of odd vertices in the component, conditional on the component having
m0 even vertices, is a sum of m0 such variables, it must be bounded from above by
Y + ∈ Bi(m0n,p). But by the assumption that pm0n → ∞, we have E [Y +] → ∞ and
by Lemma 1, Y + = pm0n(1 + op(1)).

Let n+ = pm0n(1 + op(1)). Then the random variables Yk must all be bounded
from below by Y −k ∈ Bi(n − n+,p), since throughout the process there are at least
n− n+ odd vertices that are not yet saturated, and Y is bounded from below by Y − ∈

9



2.2. Subcritical case 2. THE BRANCHING PROCESS

Bi(m0(n−n+),p). But pm0(n−n+) = pm0n(1+o(1)) since n+ = op(n), so E [Y −]→∞
and we have Y − = pm0n(1 + op(1)).

Thus, conditional on the component having m0 even vertices, we must have Y =
pm0n(1 + op(1)).

Corollary 3. Let λ > 0 and p = λ√
mn

. Suppose (a) m = o(n) or (b) m = an, a > 0,

and m0 = o(m). Let C be a component of G(m,n; p), and m0 be such that m0 → ∞
as m → ∞. Conditional on C having m0 even vertices, it has λm0

√
n
m(1 + op(1)) odd

vertices.

Proof. (a) We have pm0n = λm0

√
n
m →∞ and pm0 = λ m0√

mn
≤ λ

√
m
n → 0 as m→∞,

and the result follows from Lemma 2.
(b) We have pm0n = λ√

a
m0 → ∞ and pm0 ≤ λm0/m = o(1) so the result follows

from Lemma 2.

Corollary 3 leaves only the case m0 = θm, m = an for some θ ∈ (0,1] and a > 0. In
this case, the number of even and odd vertices will both need to be calculated explicitly.

2.2 Subcritical case

This section is concerned with proving the non-existence of a giant component when
λ < 1 using branching process arguments. It is assumed that m ≤ n, which is enough
by symmetry. We shall need two lemmas.

Lemma 4. Let λ < 1, m1 ≤ m2 ≤ n and p1 = λ/
√
m1n, p2 = λ/

√
m2n. Then(

1− p1 + p1

(
1− p1 +

p1

λ

)m1
)n
≤
(

1− p2 + p2

(
1− p2 +

p2

λ

)m2
)n

(2.2)

The proof of Lemma 4 is left to Appendix A.

Lemma 5. Let λ < 1. Given a random variable X with moment-generating function
MX(t) =

(
1− p+ p

(
1− p+ pet

)m)n
, where m ≤ n and p = λ/

√
mn, we have

λE
[
λ−X

]
≤ exp

(
−1

6
(1− λ)3

)
. (2.3)

Proof. First of all we note that

λE
[
λ−X

]
= λ

(
1− p+ p

(
1− p+

p

λ

)m)n
(2.4)

The proof is done in two steps. By Lemma 4 we can reduce this to showing

λ

(
1− λ

n
+
λ

n

(
1− λ

n
+

1

n

)n)n
≤ exp

(
−1

6
(1− λ)3

)
(2.5)

10



2.2. Subcritical case 2. THE BRANCHING PROCESS

This is done by noting that
(
1 + 1−λ

n

)n ≤ exp(1−λ), and
(

1 + λ(e1−λ−1)
n

)n
≤ exp(λe1−λ−

λ), so that

λ

(
1− λ

n
+
λ

n

(
1− λ

n
+

1

n

)n)n
≤ λ exp

(
λe1−λ − λ

)
(2.6)

The proof is finished by showing that this is no larger than exp(−(1− λ)3/6). This
is equivalent to g(λ) ≥ 0, where

g(λ) =
λ3

6
− λ2

2
+

3λ

2
− 1

6
− log λ− λe1−λ (2.7)

It is easy to show that g(1) = g′(1) = 0, and g′′(λ) > 0 for all λ ∈ (0,1). Thus, g′(λ) < 0
and g(λ) > 0 for all λ ∈ (0,1), and the result follows.

Theorem 6. If λ < 1 and m ≤ n, then there is a.a.s. no component in G(m,n; p) with
more than 7(1− λ)−3 logm even vertices.

Proof. We bound the search process by a branching process with offspring distribution
having moment-generating function MX(t) =

(
1− p+ p

(
1− p+ pet

)m)n
, as discussed

at the beginning of Section 2. Consider a search process initiated at the even vertex a.
The probability that the total number of even vertices found in the process is at least k
is bounded as follows:

P {a belongs to a component of size at least k} ≤ P

{
k∑
i=1

Xi ≥ k − 1

}
(2.8)

We can bound the quantity by the following Chernoff bound:

P

{
k∑
i=1

Xi ≥ k − 1

}
≤ E [exp(t(X1 + ...+Xk))]

exp(t(k − 1))
=

E
[
etX1

]k
et(k−1)

, t > 0 (2.9)

where we have used the fact that the Xi are i.i.d. to separate the expectation. The
inequality holds for any t > 0, and in particular we may choose t = log

(
1
λ

)
to obtain

P

{
k∑
i=1

Xi ≥ k − 1

}
≤ λk−1E

[
λ−X1

]k
=

1

λ

(
λE
[
λ−X1

])k
(2.10)

Using Lemma 5, and the m ≤ n assumption, we have λE
[
λ−X1

]
≤ exp

(
−1

6(1− λ)3
)
.

11



2.3. Supercritical case 2. THE BRANCHING PROCESS

So letting k = 7(1− λ)−3 logm, we have

P {∃ component with at least k even vertices}

≤
m∑
i=1

P {ai belongs to a component of size at least k}

≤ mP

{
k∑
i=1

Xi ≥ k − 1

}

≤ m

λ
exp

(
−k

6
(1− λ)3

)
=

m

λ
m−7/6

= o(1) (2.11)

2.3 Supercritical case

This section is concerned with proving the existence, uniqueness and size of a giant
component when λ > 1 using the even search process. Here we weaken the m ≤ n
assumption, since we will need to cover all cases in which m ∼ n. Instead we assume
there is an a ≥ 1 such that m ≤ an.

Lemma 7. Suppose there is an a ≥ 1 such that m ≤ an. Let k− = 3 log2m
λ(λ−1)2

and

k+ =
√

3m logm
λ(λ−1) . If λ > 1, then there is a.a.s. no component with k even vertices, where

k− ≤ k ≤ k+.

Remark. Note, in particular, that k+ > 2k− for large m. This means that two
components with less than k− even vertices can never be joined by a single edge to form
a component with at least k+ even vertices.

Proof. Starting at an even vertex a, we show that the search process either terminates
after fewer than k− steps, or at the k-th step there are at least (λ− 1)k vertices in the
component containing a that have been generated in the process but which are not yet
saturated, for any k satisfying k− ≤ k ≤ k+. Indeed, if (λ − 1)k unsaturated vertices
have been found, then the process continues since (λ− 1)k ≥ (λ− 1)k− ≥ 1 for m large
enough.

Since we consider only the part of the process where k ≤ k+, we need only identify
at most k+ + (λ− 1)k+ = λk+ even vertices in the process, and we may bound Xi from
below by X−i ∈ Bi(Y (m − λk+), p) where Y ∈ Bi(n,p). The probability that after k
steps there are fewer than (λ − 1)k not yet saturated vertices, or that the process dies
out after the first k steps, is smaller than

P

{
k∑
i=1

X−i ≤ k − 1 + (λ− 1)k

}
= P

{
k∑
i=1

X−i ≤ λk − 1

}
(2.12)

12



2.3. Supercritical case 2. THE BRANCHING PROCESS

As in the subcritical setting, we employ Chernoff bounds to bound this. First, we note
that for any Xi the moment-generating function is given by

M(t) =
(

1− p+ p
(
1− p+ pet

)m−λk+)n (2.13)

Putting t = 1
λk log

(
1
λ

)
< 0, we have the following Chernoff bound:

P

{
k∑
i=1

X−i ≤ λk − 1

}
≤

M
(

1
λk log

(
1
λ

))k
exp

(
1
λk log

(
1
λ

)
(λk − 1)

)
= λ1− 1

λk

[
M

(
1

λk
log

(
1

λ

))]k
(2.14)

Thus we wish to bound M(t), which explicitly reads(
1− p+ p

(
1− p+

p

λ
1
λk

)m−λk+)n
(2.15)

where p = λ/
√
mn. Using the inequality (1 + x/n)n ≤ ex, which holds for all x ∈ R and

all n > 0, we have

(
1− p+

p

λ
1
λk

)m−λk+
=

(
1− λ− λ1− 1

λk

√
mn

)√mn(√m
n
− λk+√

mn

)

≤ exp

{
−
(
λ− λ1− 1

λk

)(√m

n
− λk+√

mn

)}
≤ 1− 1√

aλ

(
λ− λ1− 1

λk

)(√m

n
− λk+√

mn

)
(2.16)

Where a ≥ 1 is such that m
n ≤ a for all m. The second inequality holds since e−x ≤

1− x/λ
√
a for x ≤ λ

√
a− 1. Indeed, we have(

λ− λ1− 1
λk

)(√m

n
− λk+√

mn

)
≤ λ
√
a− λ1− 1

λk
√
a ≤ λ

√
a− 1 (2.17)

so the inequality is applicable. Putting (2.16) into (2.15) yields(
1− p+ p

(
1− p+

p

λ
1
λk

)m−λk+)n
≤

(
1 +

λ√
mn

(
1− 1√

aλ

(
λ− λ1− 1

λk

)(√m

n
− λk+√

mn

)
− 1

))n
≤ exp

{
− 1√

a

(
λ− λ1− 1

λk

)(√m

n
− λk+√

mn

)√
n

m

}
= exp

{
− 1√

a

(
λ− λ1− 1

λk

)(
1− λk+

m

)}
(2.18)
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2.3. Supercritical case 2. THE BRANCHING PROCESS

So, (2.14) becomes

P

{
k∑
i=1

X−i ≤ λk − 1

}
≤ λ1− 1

λk exp

{
− k√

a

(
λ− λ1− 1

λk

)(
1− λk+

m

)}
(2.19)

≤ λ exp

{
1√
a

(
λ− λ1− 1

λk

) λkk+

m
− k√

a

(
λ− λ1− 1

λk

)}
Noting that k− = k2

+
λ logm
m , the probability that there is a component with k− ≤

k ≤ k+ even vertices is thus bounded as follows.

m

k+∑
k=k−

P

{
k∑
i=1

X−i ≤ k − 1 + (λ− 1)k

}

≤ mk+λ exp

{(
λ− λ1− 1

λk

) λk2
+

m
√
a
− k−√

a

(
λ− λ1− 1

λk

)}
= mk+λ exp

{(
λ− λ1− 1

λk

) λk2
+

m
√
a
− logm

λk2
+

m
√
a

(
λ− λ1− 1

λk

)}
= mk+λ exp

{
λk2

+

m
√
a

(1− logm)
(
λ− λ1− 1

λk

)}
= c0m

3/2
√

log(m3) exp

{
− log(m3)√

aλ(λ− 1)2
(logm− 1)

(
λ− λ1− 1

λk

)}
= c0

√
log(m3)m

3
2
−c1(logm−1)

= o(1) (2.20)

where c0, c1 are some positive constants that depend on a, λ only.

Lemma 8. If λ > 1, then a.a.s. there is at most one component with more than k+ =√
m log(m3)

λ(λ−1) even vertices.

Proof. We argue again as in [10]. Suppose there exists at least one component of size at
least k+ (call such a component ”large”), and let ai and aj , i 6= j be two even vertices
who each belong to large, possibly equal, components Ci and Cj , respectively. We run
two search processes starting at these two vertices. After k+ steps, each process must
have produced (λ − 1)k+ not yet saturated even vertices. The probability that there
does not exist an open path of length 2 between as yet unsaturated vertices of Ci and

14



2.3. Supercritical case 2. THE BRANCHING PROCESS

Cj is bounded from above by

P {∀l = 1,...,n : at least one of aibl, ajbl closed}[(λ−1)k+]2

=
(
1− p2

)n[(λ−1)k+]2

=

(
1− λ2

mn

)n[(λ−1)k+]2

≤ exp

{
−λ

2

m
[(λ− 1)k+]2

}

= exp

−λ2

m
(λ− 1)2

(√
m log(m3)

λ(λ− 1)

)2


= exp
{
− log(m3)

}
= o(m−2) (2.21)

Since there are less than m2 ways of choosing ai, aj , this implies that the probability
that any pair of ai and aj belong to different large components tends to 0 as m → ∞,
and there cannot be more than one component of size larger than k+.

This means that we may partition the even vertices of G(m,n; p) into ”large” and
”small” vertices, the former being the vertices that belong to the unique component of
size at least k+, if such a component exists. To see that the component indeed does exist
and find its size, we count the number of small vertices.

Theorem 9. If λ > 1, then there is a component with θmm(1 + op(1)) even vertices,
where θm = θm(λ) ∈ (0,1) is the unique solution to

θm + exp
{

λ√
a

(exp {−λθm
√
a} − 1)

}
= 1 if m = an, a > 0

θm + e−λ
2θm = 1 if m = o(n)

(2.22)

Furthermore, the second largest component a.a.s. has at most 3 log2m
λ(λ−1)2

even vertices.

Proof. The second statement follows directly from Lemmas 7 and 8.
For the first part, we calculate the probability that a given even vertex a is small.

Call this probability ρ(m,n,p). As in [10], the probability is bounded from above by ρ+ =
ρ+(m,n,p), the extinction probability for the branching process in which the offspring
distribution is given by Bi(Y (m − k−),p) = Bi(Y (m − o(m)),p), where Y ∈ Bi(n,p) as
usual. The probability ρ is also bounded from below by ρ− + o(1), where ρ− is the
extinction probability for the branching process with offspring distribution Bi(Y m,p).
The o(1) term bounds the probability that the process dies after more than k− steps.

The extinction probability ρ+ is the unique positive solution to GX(ρ+) = ρ+, where

15



2.3. Supercritical case 2. THE BRANCHING PROCESS

GX(x) =
(

1− p+ p (1− p+ px)m−o(m)
)n

. If m = o(n), we have

(1− p+ px)m−o(m) =

(
1 +

λ(x− 1)√
mn

)m−o(m)

=

m−o(m)∑
k=0

(
m− o(m)

k

)(
λ(x− 1)√

mn

)k
= 1 + λ(x− 1)

√
m− o(m)

n
+ o

(√
m

n

)
(2.23)

so that

(1− p+ p(1− p+ px)m−o(m))n

=

(
1 +

λ√
mn

(
−1 + 1 + λ(x− 1)

√
m− o(m)

n
+ o

(√
m

n

)))n
=

(
1 +

λ2(x− 1)(1 + o(1))

n

)n
= exp

{
λ2(x− 1)(1 + o(1))

}
(2.24)

so as m→∞, we have ρ+ = 1− θm, where e−λ
2θm = 1− θm, and replacing m− o(m) by

m we get ρ− = 1−θm+o(1). Thus ρ = 1−θm+o(1), and the expected number of small
even vertices is given by (1 − θm)m(1 + o(1)). In other words, the expected number of
even vertices in the largest component is θmm(1 + o(1)).

Similarly, if m = an, a > 0, then

lim
n→∞

(
1− λ√

an
+

λ√
an

(
1− λ√

an
+

λ√
an
x

)an−o(n)
)n

= exp

{
λ√
a

exp
{
λ(x− 1)

√
a(1 + o(1))

}
− λ√

a

}
(2.25)

and the expected number of even vertices in the giant component is again given by
θmm(1 + o(1)).

Lastly, we show that Y = E [Y ] (1 + op(1)), where Y is the number of small vertices.
From this follows that the giant component has size θmm(1+op(1)). Let ξi be 1 if vertex
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2.4. At criticality 2. THE BRANCHING PROCESS

ai is small and 0 otherwise. Then

E [ξiY ] = E [ξiY | ξi = 1]P {ξi = 1}+ E [ξiY | ξi = 0]P {ξi = 0}
= E [Y | ξi = 1] ρ(m,p)

=

k−∑
k=1

E [Y | |C(ai)| = k]P {|C(ai)| = k} ρ(m,p)

= ρ(m,p)

k−∑
k=1

(k + E [Y − k | Y ≥ k])P {|C(ai)| = k}

≤ ρ(m,p) (k− + (m−O(k−))ρ(m−O(k−),p))

≤ ρ(m,p)(k− +mρ(m−O(k−),p)) (2.26)

so we have

E
[
Y 2
]

=

m∑
i=1

E [ξiY ]

≤ mρ(m,p)(k− +mρ(m−O(k−),p))

= m2ρ(m,p)(o(1) + ρ(m−O(k−),p))

= m2ρ(m,p)2(1 + op(1))

= E [Y ]2 (1 + op(1)) (2.27)

Thus, Var Y = E
[
Y 2
]
−E [Y ]2 = op(E [Y ]2) and by (1.6), Y = E [Y ] (1 + op(1)).

Figure 2.1 shows θm as a function of λ ∈ [0,2] in the case m = o(n).

2.4 At criticality

We conclude this section with a quick look into the case λ = 1. Here, the theory
becomes much more involved and the tools we used above will not be enough to prove
any detailed results. We confine ourselves to showing that the largest component has
op(m) even vertices. This is done by showing that increasing properties are more likely
when p increases; see Section 1.3.2.

Lemma 10. Let 0 ≤ p1 ≤ p2 ≤ 1, and let µ1, µ2 be the measures on {0,1}Em,n in which
each edge in Km,n is open with probability p1,p2 respectively, independently of all other
edges. Then µ1 �D µ2.

Proof. The proof is a simple application of Holley’s theorem. Let x ∈ Em,n and let
ξ1, ξ2 ∈ {0,1}Em,n\{x} be such that ξ1 � ξ2. By the independence of edges under µ1, µ2,
we have

µi {X(x) = 1 | X = ξi off x} = µi {X(x) = 1} = pi, i = 1,2 (2.28)

so p1 ≤ p2 implies

µ1 {X(x) = 1 | X = ξ1 off x} ≤ µ2 {X(x) = 1 | X = ξ2 off x} (2.29)
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Figure 2.1: The proportion of even vertices belonging to the giant component for λ ∈ [0,2]
when m = o(n), n or 10n as m→∞. The values of θm are given by Theorem 9.

and by Holley’s theorem, µ1 �D µ2.

Theorem 11. Let ε > 0. When λ = 1, the graph G(m,n;λ/
√
mn) a.a.s. has no compo-

nent with more than εm even vertices. In other words, the largest component has op(m)
even vertices.

Proof. Let ε > 0, and let λ > 1 be such that θm = θm(λ) < ε with θm(λ) as in Theorem
9. When m = o(n), such a λ exists by the continuity of (λ, θm) 7−→ e−λ

2θm + θm − 1,
and since θm = 0 is the only solution of e−θm + θm − 1 = 0. When m ∼ n, a similar
argument is used to ensure the existence of λ.

Let Qε be the increasing property of G(m,n; p) having a component with at least
εm even vertices. With notation as in the proof of Lemma 10, let p1 = 1/

√
mn and

p2 = λ/
√
mn. Then µ1 �D µ2 and in particular µ1(Qε) ≤ µ2(Qε). But by Theorem 9,

we have µ2(Qε) = o(1). Thus,

P
{
G(m,n; 1/

√
mn) ∈ Qε

}
= µ1(Qε) = o(1) (2.30)

and the largest component of G(m,n; 1/
√
mn) has op(m) even vertices.

2.5 The number of odd vertices

Now that results have been shown for the even vertices of G(m,n; p), Section 2.1 is used
to deduce the total size of the largest component. The results can be summarized in the
following theorem.
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2.6. Concluding remarks 2. THE BRANCHING PROCESS

Theorem 12.
(a) (Subcriticality) If λ < 1, then there is a.a.s. no component with more than

7λ logm
(1−λ)3

√
n
m vertices.

(b) (Criticality) If λ = 1, then the largest component has op(m) even vertices and
op(
√
mn) vertices in total.

(c) (Supercriticality) If λ > 1, then there is a component with θmm(1 + op(1))
even vertices, where θm is given by (2.22). If m = o(n), the total number of ver-
tices is λθm

√
mn(1 + op(1)). If m = an, a > 0, the total number of vertices is

(θmm+θnn)(1+op(1)), where θm is given by (2.22) and θn is the unique positive solution

to θn + exp
{
λ
√
a
(

exp
{
−λθn√

a

}
− 1
)}

= 1. In each case, the second largest component

a.a.s. has at most 3 log2m
(λ−1)2

√
n
m vertices in total.

Proof. The statements about even vertices are Theorems 6, 9 and 11. Statements about
odd vertices in (a) and (b) follow from Corollary 3. The size of θn in the case m = an
is found by considering the even vertices for m = 1

an.

The following lemma about the relative number of even and odd vertices in the giant
shall be needed in Section 4. The proof is left to Appendix A.

Lemma 13. Suppose a > 0, λ > 1, and let θm, θn be the unique solutions in (0,1) to

θm + exp
{

λ√
a

(exp{−λ
√
aθm} − 1)

}
= 1 and θn + exp

{
λ
√
a
(

exp
{
− λ√

a
θn

}
− 1
)}

= 1

respectively. Then θn ≥ min(1,a)θm.

2.6 Concluding remarks

In the complete random graph setting, authors (e.g. [10]) frequently mention the follow-
ing heuristic: A giant component appears when the average vertex degree becomes greater
than one. Led by this heuristic, I initially looked for a threshold function of either of the
forms λ/min{m,n}, λ/(m+ n) or λ/max{m,n}, or similar. However, I could not make
any of the formulas fit into the branching process argument, so instead started to work
my way through the methods used in [2]. These combinatorial proofs quickly showed
that m and n tend to appear as a product, which suggested the somewhat surprising
use of a geometric mean. It is worth noting that the threshold function 1/

√
mn is not

consistent with the heuristic above as it stands, but instead we have seen in this section
that the following would be the corresponding heuristic: A giant component appears
when the average number of paths of length 2 from a vertex becomes greater than one.
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3
The even projection

T
he branching process argument of the previous section was accomplished by
considering only the even vertices of Km,n. The usual branching process was
replaced by a double-jump process which instead of searching for edges, con-
sidered paths of length 2 between even vertices. This suggests a method in

which a subgraph G ⊆ Km is obtained from a subgraph H ⊆ Km,n by removing the odd
vertices of H and assigning an edge to G if and only if the corresponding vertices in H
are connected by a path of length 2. See Figure 3.1. We will call G the even projection of
H. By using known results about random subgraphs on Km, one may draw conclusions
about properties of random subgraphs of Km,n.

There are two major problems with this method. Firstly, the edges of the even pro-
jection are highly dependent, limiting the compatibility with the usual random graph
theory which requires independent edges. Secondly, some properties of the even projec-
tion are difficult to translate back to the bipartite setting. We will see that this method
is good enough to prove the existence, but not uniqueness, of a giant component when
λ > 1, and with help of Section 2 it is shown that for λ large enough, the giant is cyclic.

It should also be mentioned that there are no significant results in this section for
the case m ∼ n, since Holley’s theorem, which the proofs rely heavily upon, cannot be
applied in this case to the author’s knowledge.

3.1 The even projection

Given a subgraph G = (Am ∪ Bn,E) of Km,n, we define the even projection of G to be
the graph with vertex set Am and in which any edge aiaj is included if and only if there
is a 1 ≤ k ≤ n such that aibk and ajbk are both in E. Further, define the random even
projection, denoted Gp

n(m), as the random graph obtained by taking the even projection
of G(m,n; p).

Equivalently, given η ∈ {0,1}Em,n , we define the even projection of η through a
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3.1. The even projection 3. THE EVEN PROJECTION

mapping φ : {0,1}Em,n −→ {0,1}Em by φ(η) = ξ, where for all i,j

φ(η)(aiaj) = ξ(aiaj) = max
1≤k≤n

η(aibk)η(ajbk). (3.1)

We define µpn to be the measure on {0,1}Em associated with even projections, i.e. the
measure which to any ξ ∈ {0,1}Em assigns probability µpn(ξ) = ν(φ−1(ξ)), where ν is the
i.i.d. measure on {0,1}Em,n which assigns probability p to each edge.

The p is moved out of its usual position in the notation to avoid misunderstanding:
as we shall see, Gp

n(m) does not have edge-probability p. The notation ν will be kept
for the i.i.d. measure on Km,n. We shall not need the following result, but it serves as
a warmup for what is to come, and motivates the comparison of µpn to an i.i.d. measure
with approximate edge-probability λ2/m ≈ 1− (1− p2)n.

Proposition 14. The probability that an edge in Gp
n(m) is open is given by

µpn {aiaj open} = 1− (1− p2)n (3.2)

for all 1 ≤ i,j ≤ m.

Proof. Here we introduce the event {a1b1a2 open} = {a1b1 open} ∩ {a2b1 open} and let
{a1b1a2 closed} be the complementary event {a1b1 closed} ∪ {a2b1 closed}

This and similar results will be proved by passing to the random bipartite graph
G(m,n; p). From the definition of Gp

n(m), we have

µpn {aiaj open} = ν {∃k : aibkaj open}
= 1− ν {∀k : aibkaj closed}
= 1− ν {aib1aj closed}n

= 1− (1− ν {aib1, ajb1 open})n

= 1− (1− p2)n (3.3)

We define µε as the measure on {0,1}Em for which each edge is open with probability
(λ2 − ε)/m, independently of all other edges. The goal of the following two lemmas is
to show that µε �D µpn for large m using Holley’s Theorem. See Section 1.3.2.

a1 a2 a3 a4

b1 b2 b3 b4 b5

a1a2

a3 a4

Figure 3.1: Left: Example subgraph H of K4,5. Right: The even projection of H.
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a1

a4

a2a3

a5

a6a7

a8

Figure 3.2: Example configuration ξ on K8. We set x = a1a2 so that d1 = 2, d2 = 3 and
d = 1.

Lemma 15. Let x ∈ Em. Denote the endpoints of x by a1, a2 and let ξ ∈ {0,1}Em\{x}
be an edge-configuration on the complete graph in which a1, a2 have d1,d2 neighbours
respectively, and there are d vertices which are neighbours to both a1 and a2. Then

µpn(X(x) = 1 | X = ξ off x) ≥ 1− (1− p)2d

(
1− p2

(1 + p)2m−d1−d2−4

)n−d1−d2
(3.4)

with equality if d = 0. In particular, we have

µpn(X(x) = 1 | X = 0 off x) ≤ µpn(X(x) = 1 | X = ξ off x) (3.5)

for all ξ ∈ {0,1}Em\{x} and all x ∈ Em.

Proof. Let x be the edge a1a2 and fix ξ ∈ {0,1}Em\{x}. For simplicity, we will make
the assumption that ξ(aiaj) = 0 whenever aiaj is not adjacent to a1a2. This can be
done without loss of generality, since aiaj is independent of a1a2 when the edges are not
adjacent.

Suppose η ∈ {0,1}Em,n is such that the even projection of η is ξ. Then η must contain
d1 − d odd vertices bk such that a1bkai is open for i = i1, i2, ..., id1−d, and d2 − d odd
vertices bk such that a2bkaj is open for j = j1,j2,...,jd2−d, where i1,...,id1−d,j1,...,jd2−d
are all distinct and greater than 2. The bk must all be distinct, since otherwise the
projection would contain an open edge aiaj which is not adjacent to a1a2.

Furthermore, for each vertex ai such that a1ai and a2ai are both open in ξ, there
must be odd vertices bk1 ,bk2 , possibly equal, such that a1bk1ai and a2bk2ai are both open.
Note that if k1 = k2, then a1bk1a2 will be open, and X(x) = 1 follows immediately. Thus
we assume that whenever a1ai and a2ai are both open in ξ, there are distinct bk1 ,bk2
defined as above. Since there are d vertices ai satisfying this, we require d pairs of
vertices bk1 , bk2 in η to be such that a1bk1ai and a2bk2ai are both open.

By the argument above, there is in some sense a minimal configuration η which has
even projection ξ and has a nontrivial probability of having X(x) = 1. Without loss of
generality, we can suppose that η has a canonical form obtained as follows.

1. Let a1bkak+2 be open for k = 1,...,d1.
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a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4 b5 b6 b7 b8 b9

Figure 3.3: Configuration η onK8,9 obtained from ξ in figure 3.2 by the algorithm described
in the proof of Lemma 15. The set of edges in this figure is denoted A. No edges can be added
to b1, b3 or b4 without changing the projection of η, whence R = {2,5,6,7,8,9}. Opening either
one of the 2d dashed edges will make a1a2 open in the projection without affecting other
edges. This can otherwise only be achieved by, for some k > 5, opening the two edges a1bk
and a2bk.

2. Let a2bkak+2 be open for k = d1 + 1,...,d1 + d2 − d.

3. Let a2bkak+2−d2 be open for k = d1 + d2 − d+ 1,...,d1 + d2.

Denote the set of edges opened in this process by A. Also, let B = {aibkaj : 1 ≤ k ≤
n, ξ(ij) = 0}. Then

µpn {X(x) = 1 | X = ξ off x} ≥ ν {∃r : a1bra2 open | A open, B closed} (3.6)

where ”A open” should be read as ”π open for all π ∈ A”, and ”B closed” means ”π closed
for all π ∈ B”. Here the inequality comes from how we assigned odd vertices to the d
common neighbours. If d = 0, there is no such freedom of choice and equality must hold.

Note that for r = 1,...,d1− d, we have a2br closed since a2brar+2 ∈ B but a1brar+2 ∈
A. Similarly, a1brar+2 ∈ B while a2brar+2 ∈ A for r = d1 + 1,...,d1 + d2 − d so a1br is
closed. Let R = {1,...,n} \ ({1,...,d1 − d} ∪ {d1 + 1,...,d1 + d2 − d}). Then

ν {∃r : a1bra2 open | A open, B closed}
= ν {∃r ∈ R : a1bra2 open | A open, B closed}
= 1− ν {∀r ∈ R : a1bra2 closed | A open, B closed} (3.7)

Let R′1 = {d1 − d+ 1,...,d1}, R′′1 = {d2 − d+ 1,...,d2}, and R2 = {d2 + 1,...,n}. Then
R = R′1 ∪R′′1 ∪R2, and the sets are distinct. In the first case, say r = r0 ∈ R′1, we have,
since a1br0a2 depends only on events in A and B containing a1br0 or a2br0 ,

ν {a1br0a2 closed | A open, B closed}
= ν {a1br0a2 closed | a1br0ar0+2 open, a1br0aj closed, j > d1 + 2}
= ν {a2br0 closed | ar0+2br0 open, ajbr0 closed, j > d1 + 2}
= 1− p (3.8)

The same will hold for r0 ∈ R′′1 . Now let r0 ∈ R2. We have

ν {a1br0a2 closed | A open, B closed}
= 1− ν {a1br0a2 open | A open, B closed}
= 1− ν {a1br0 open | A open, B closed} ν {a2br0 open | A open, B closed} (3.9)
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The two factors are similar. We have

ν {a1br0 open | A open, B closed}
= ν {a1br0 open | a1br0aj closed, j > d1 + 2}

=
ν {a1br0 open, a1br0aj closed, j > d1 + 2}

ν {a1br0aj closed, j > d1 + 2}

=
ν {a1br0 open, ajbr0 closed, j > d1 + 2}

ν {a1br0aj closed, j > d1 + 2}

=
p(1− p)m−d1−2

(1− p2)m−d1−2

=
p

(1 + p)m−d1−2
(3.10)

and the same formula with d2 holds for a2br0 . Thus

1− ν {a1br0 open | A open, B closed} ν {a2br0 open | A open, B closed}

= 1−
(

p

(1 + p)m−d1−2

)(
p

(1 + p)m−d2−2

)
= 1− p2

(1 + p)2m−d1−d2−4
(3.11)

Returning to (3.7), we obtain

µpn {X(x) = 1 | X = ξ off x}
≥ 1− ν {∀r ∈ R : a1bra2 closed | A open, B closed}
= 1− ν

{
∀r ∈ R′1 : a1bra2 closed | A open, B closed

}
×ν
{
∀r ∈ R′′1 : a1bra2 closed | A open, B closed

}
×ν {∀r ∈ R2 : a1bra2 closed | A open, B closed}

= 1− ν
{
a1br′1a2 closed | A open, B closed

}|R′1|
×ν
{
a1br′′1 a2 closed | A open, B closed

}|R′′1 |
×ν {a1br2a2 closed | A open, B closed}|R2|

= 1− (1− p)2d

(
1− p2

(1 + p)2m−d1−d2−4

)n−d1−d2
(3.12)

which is the desired result. In particular,

µpn {X(x) = 1 | X = 0 off x} = 1−
(

1− p2

(1 + p)2m−4

)n
(3.13)

and it is not hard to see that

µpn {X(x) = 1 | X = 0 off x} ≤ µpn {X(x) = 1 | X = ξ off x} (3.14)
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The following lemma is a consequence of Lemma 15.

Lemma 16. Let m = o(n) and ε > 0. Let µε be the measure on {0,1}Em which assigns

probability λ2−ε
m to each edge independently. Then for m large enough,

µε {X(x) = 1 | X = 0 off x} ≤ µpn {X(x) = 1 | X = 0 off x} , ∀x ∈ Em (3.15)

Proof. By Lemma 15 and the independence of edges under µε, this is equivalent to

λ2 − ε
m

≤ 1−

(
1−

[
p

(1 + p)m−2

]2
)n

(3.16)

We have (1 + p)m = 1 + λ
√

m
n (1 + o(1)), so

1−

(
1−

[
p

(1 + p)m−2

]2
)n

= 1−

1−

[
p(1 + p)2

1 + λ
√

m
n (1 + o(1))

]2
n

= 1−

1−

 λ√
mn

(
1 + 2 λ√

mn
+ λ2

mn

)
1 + λ

√
m
n (1 + o(1))

2

n

= 1−

(
1−

[
λ(mn+ 2λ

√
mn+ λ2)

mn
√
mn+ λm2n(1 + o(1))

]2
)n

= 1−

(
1−

[
λ√
mn

(1 + o(1))

]2
)n

= 1−
(

1− λ2

mn
(1 + o(1))

)n
=

λ2

m
+ o

(
1

m

)
(3.17)

and so for m large enough, the result follows.

Remark. The inequality (3.16) in fact does not hold for any sequence m,n such that
m > n. This is the reason that we study only the even vertices, just as in Section 2.

Theorem 17. Let m = o(n). For any ε > 0 we eventually have µε �D µpn.

Proof. Using the edge-independence of µε followed by Lemmas 16 and 15, we have for
large m

µε {X(x) = 1 | X = ξ off x} = µε {X(x) = 1 | X = 0 off x}
≤ µpn {X(x) = 1 | X = 0 off x}
≤ µpn

{
X(x) = 1 | X = ξ′ off x

}
(3.18)

for any ξ, ξ′ ∈ {0,1}Em\{x}. Thus, µε �D µpn follows from Holley’s theorem.
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3.2 Applications of even projection

Theorem 17 means that any increasing property of the i.i.d. graph with edge-probability
(λ2 − ε)/m will eventually be satisfied by the even projection. Properties of G(m,n; p)
may then be concluded from properties of its even projection. In this section we state
corollaries of Theorem 17. First, we reprove the existence of a giant component without
using any results from Section 2.

Corollary 18. Let m = o(n). If λ > 1, then there is a.a.s. a component in G(m,n; p)
with at least θm even vertices, where θm = θm(λ) ∈ (0,1) is the unique solution to
θm + e−λ

2θm = 1.

Proof. Let ε > 0 be constant and such that λ2 − ε > 1. For m,n large enough the even
projection measure satisfies µpn �D µε and it follows that if we define θε ∈ (0,1) to be
the unique solution to θ + e−(λ2−ε)θ = 1,

µpn {Component of size ≥ θεm(1 + o(1))}
≥ µε {Component of size ≥ θεm(1 + o(1))}
= 1− o(1) (3.19)

by Theorem 9. By the continuity of ε 7→ θε, we must have

µpn {Component of size ≥ θmm(1 + o(1))} → 1 (3.20)

Thus the even projection has a component with at least θmm(1+op(1)) even vertices,
which means that the random bipartite graph must have at least θmm(1 + op(1)) even
vertices which belong to the same component.

Note that without using results from Section 2, this corollary only shows the existence
of a large component, and it is possible that there is more than one component with Θ(m)
even vertices. However, results obtained from Theorem 17 typically show properties for
any large component, and using results from Section 2 will then imply that the result
holds for the unique giant component.

While reverting from the projected graph to G(m,n; p) without losing too much
information was possible in Corollary 18, the statement of the following theorem is
significantly weakened compared to the corresponding statement for complete graphs.
The reason for this is, loosely speaking, that the property of having a giant component
is a property relating to connectivity of vertices, while the property of containing a cycle
relates to adjacency of edges.

Theorem 19. Let m = o(n). Then there exists a λ0 such that if λ > λ0, then a.a.s. the
giant component in G(m,n; p) contains a cycle.

Proof. Let δ, ε > 0. According to [1], there is a λ0 > 1 such that the giant component of
G(m, (λ2 − ε)/m) contains a cycle of length at least δm for all λ > λ0. Since µε �D µpn
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for large m, there must be a large component with a cycle of length at least δm in the
even projection of G(m,n; p).

Suppose there is no cycle in the giant component of G(m,n; p). Then, since the
even projection has a cycle of length δm, there must be an odd vertex b0 such that
deg b0 ≥ δm, as this is the only way to obtain cycles in the even projection from an
acyclic coniguraftion. But we have deg b0 ∈ Bi(m,p), so

ν {∃k : deg bk ≥ δm} = 1− ν {∀k : deg bk < δm}
= 1− ν {deg b1 < δm}n

= 1−

1−
m∑

j=δm

(
m

j

)
pj(1− p)m−j

n

= 1− (1− o(1/n))n

= o(1) (3.21)

so there must a.a.s. be a cycle in the giant component of G(m,n; p), if we can show that
the sum is indeed o(1/n). But

n

m∑
j=δm

(
m

j

)
pj(1− p)m−j ≤ max

j≥δm
mn

(
m

j

)
pj(1− p)m−j

≤ max
j
mn

mjλj

j!
√
mn

j

≤ max
j

mj+1nλm

(δm)!
√
mn

j

≤ max
j

mj+1nλm

(δm)δme−δm
√
mn

j

≤ m3λmeδm

(δm)δm

= o(1) (3.22)

and the result follows.
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4
The random-cluster model

T
his section proves the existence of a giant component for the random-cluster
model G(m,n; p,q) with parameter q ≥ 1 and p = λ/

√
mn. When 1 ≤ q ≤ 2

and m = o(n), a sharp threshold value of λ is found for the existence, while
for other cases partial results are found. Most importantly, a sharp threshold

value is found for the Ising model when m = o(n). The proof techniques imitate those
of [3] closely, and this section shows that some of the reduction arguments used there
apply directly to the bipartite setting.

We recall from Section 1.4.3 that the random-cluster model with parameter q > 0
assigns probability proportional to

P̃ (F ;E,p,q) = p|F |(1− p)|E|−|F |qc(V,F ) (4.1)

to any subgraph (V,F ) of (V,E) which has c(V,F ) connected components.

4.1 Colouring argument

The proof techniques in [3] depend strongly on a colouring argument, which reduces the
study of G(m,n; p,q) to that of G(M,N ; p,1) for some random numbers M,N . Fix 0 ≤ r ≤
1. Given a random graph G(m,n; p,q), each component is coloured red with probability
r and green with probability 1− r. The components are coloured independently of each
other. Let the union of the red (green) components be the red (green) subgraph, and let
R denote the vertex set of the red subgraph. The following lemma relates G(m,n; p,q)
to a random-cluster graph with parameter rq.

Lemma 20. Let V1 be a subset of Vm,n with m1 even and n1 odd vertices. Conditional
on R = V1, the red subraph of G(m,n; p,q) is distributed as G(m1,n1; p,rq) and the green
subgraph as G(m−m1,n−n1; p,(1− r)q); furthermore, the red subgraph is conditionally
independent of the green subgraph.
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Proof. Set V2 = V \ V1, m2 = m−m1, n2 = n− n1, and let E1, E2 ⊆ Em,n be such that
edges in Ei have endpoints in Vi only, i = 1,2. Write c(V,E) for the number of components
of a graph with vertex set V and edge set E. Then c(V,E1 ∪E2) = c(V1,E1) + c(V2,E2)
since E1 and E2 define disjoint components, and the probability that the red subgraph
is (V1,E1) and the green subgraph is (V2,E2) satisfies

P {G(m,n; p,q) = (V,E1 ∪ E2) and R = (V1,E1)}

=

(
p|E1∪E2|(1− p)mn−|E1∪E2|qc(V,E1∪E2)

Z(m,n; p,q)

)
rc(V1,E1)(1− r)c(V2,E2)

= C(m,n,p,q,m1,n1)p|E1|(1− p)m1n1−|E1|(qr)c(V1,E1)

×p|E2|(1− p)m2n2−|E2|(q(1− r))c(V2,E2)

= C(m,n,p,q,m1,n1)P {E1;V1,p,rq}P {E2;V2,p,(1− r)q} (4.2)

for some positive real C(m,n,p,q,m1,n1) depending only on m,n,p,q,m1 and n1. Hence,
conditional on R = V1 and the green subgraph being (V2,E2), the probability that the
red subgraph is (V1,E1) is precisely P {E1;V1,p,rq}.

Writing (M,N) = (m1,n1) for the number of red vertices, R is thus distributed as
a random graph G(M,N ; p,rq) on a random number of vertices. In particular, it is
distributed as G(M,N,p,1) if q ≥ 1 and r = q−1. By using distributional properties of
M,N and using results from earlier sections, one may deduce properties of G(m,n; p,q).

4.2 Existence of a giant component

Imitating [3] further, we start the search for a giant component by proving the following
lemma. We assume throughout this section that there is an a > 0 such that m ≤ an.

Lemma 21. Let q ≥ 1. For any λ 6= 1, a.a.s. G(m,n;λ/
√
mn,q) has at most one

component such that at least one of the following happens:

• The component has at least (mn)1/3 vertices

• The component has at least m3/4 even vertices

• The component has at least n3/4 odd vertices

Proof. Let Lm,n,p,q be the number of components of G(m,n; p,q) having at least (mn)1/3

vertices, or at least m3/4 even vertices. Suppose Lm,n,p,q ≥ 2, and pick two of these in
some arbitrary way. With probability r2 both of these are coloured red. Setting r = q−1,
we find that

r2P {Lm,n,p,q ≥ 2} ≤
∑
k,l

kl≥(mn)1/3 or k≥m3/4

P {Lk,l,p,1 ≥ 2}P {|R| = (k,l)}

≤ max
k,l

kl≥(mn)1/3 or k≥m3/4

P {Lk,l,p,1 ≥ 2} → 0 as m→∞ (4.3)
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from which follows that a.a.s. Lm,n,p,q ≤ 1, using known results about Lk,l,p,1.
The last statement follows from (mn)1/3 ≤ n3/4 for large m,n, which follows from

the assumption that m ≤ an for some a > 0.

Let Θm ∈ (0,1] be the maximal number such that a component has Θmm even
vertices, and let Θn ∈ (0,1] be the maximal number such that a component has Θnn
odd vertices. Note that we need not (a priori) have a component with Θmm + Θnn
vertices, because two different components might define Θm,Θn. This issue is resolved
in Theorem 28.

Lemma 22. Let q ≥ 1 and r = q−1. With probability r, G(m,n; p,q) has Θmm+ r(1−
Θm)m+ op(m) even red vertices, of which Θmm belong to the component with the most
even vertices. With probability 1 − r, there are r(1 − Θm)m + op(m) even vertices and
no component with more than m3/4 even vertices.

The same statements with m replaced by n hold for the odd case.

Proof. Suppose G(m,n; p,q) has κ components, and suppose that the components have
Θmm, v2, v3,...,vκ even vertices. Call any even vertex not in the component with Θmm
even vertices ”small”. By the lemma above, we have max vi ≤ m3/4. Conditional on Θm,
the expected number of small even red vertices is

κ∑
i=2

vir = r(1−Θm)m (4.4)

and the variance is given by

κ∑
i=2

v2
i r(1− r) ≤

κ∑
i=2

v2
i ≤ mmax

i≥2
vi ≤ m7/4 (4.5)

Hence there are r(1 − Θm)m + op(m) small red even vertices by (1.6). The component
which has Θmm even vertices is red with probability r, and the result follows.

The same argument applies to the odd vertices, with max vi ≤ n3/4.

Lemma 23. If m = o(n), then a.a.s. there is no component with at least δn odd vertices

for any δ > 0. In other words, we have Θn
P−→ 0 and N = rn(1 + op(1)).

Proof. Let δ > 0 and let Km,n,p,q be the number of components in G(m,n; p,q) which
have at least δn odd vertices. Note that a.a.s. M = o(N) by Lemma 22, and we need
only consider G(k,l; p,1) for k,l such that k = o(l). Thus,

rP {Km,n,p,q ≥ 1} ≤
∑
k=o(l)

P {Kk,l,p,1 ≥ 1}P {|R| = (k,l)}

≤ max
k=o(l)

P {Kk,l,p,1 ≥ 1} → 0 (4.6)

which follows from earlier sections.
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Lemma 24.
(a) Let m = o(n). If λ > q ≥ 1, then there exists a θ0 > 0 such that a.a.s. Θm ≥ θ0

for G(m,n;λ/
√
mn,q).

(b) Let m = an, a > 0. If λ > q ≥ 1, then there exists a θ0 > 0 such that a.a.s.
Θm ≥ θ0 and Θn ≥ θ0 for G(m,n;λ/

√
mn,q).

Proof. (a) For q = 1, the assertion was shown in Theorem 9. Hence assume q > 1 and
thus r = q−1 < 1.

Let θ0 = 1−
(
λ+q
2λ

)2
, πm = P {Θm < θ0}, and ε > 0. By considering the event that

the component with Θmm even vertices is coloured green we see that, with probability at
least (1−r)πm+o(1), the number M of red even vertices satisfies M ≥ r(1−θ0)m−εm,
and there are no red components with at least m3/4 even vertices. When this happens,

√
MNp ≥

√
r(1− θ0)m− εm

√
rn+ op(n)

λ√
mn

= λ
√
r2(1− θ0)− rε+ op(1)

=

√(
λ

2q

)2

+

(
1

2

)2

+
λ

2q
− rε+ op(1)

> 1 (4.7)

for m large enough with an appropriate choice of ε > 0. Thus the red subgraph is
a supercritical Erdős-Rényi graph, and by Theorem 9 has a component with at least
δM ≥ δ(r(1− θ0)− ε)m even vertices for some δ > 0. But this is eventually larger that
m3/4, so we must have (1− r)πm → 0 as m→ 0, and in particular P {Θm < θ0} → 0.

(b) The case m = an is similarly handled, but more work needs to be done since
Lemma 23 cannot be applied. Let θ1 = 1− λ+q

2λ , πm = P {Θm < θ1}, πn = P {Θn < θ1}
and ε > 0. Arguing as in the previous proof, with probability (1 − r)2πmπn + o(1) we
have M ≥ r(1− θ1)m− εm and N ≥ r(1− θ1)n− εn and no red component with more
than m3/4 even vertices or more than n3/4 odd vertices. When this happens,

√
MNp ≥

√
r(1− θ1)m− εm

√
r(1− θ1)n− εn λ√

mn

= λ (r(1− θ1)− ε)

=
λ

2q
+

1

2
− ε

> 1 (4.8)

for m large enough. As above, it follows that πmπn → 0, i.e. πm, πn or both go to zero.
Suppose πm → 0. The other case is handled identically. We will show that Θn ≥

min(a, q−1)Θm. Define ΘM as the proportion of red even vertices that belong to the
red component with the most even vertices, and define ΘN similarly. These numbers
must satisfy ΘMM = Θmm and ΘNN = Θnn. By Lemma 13 we a.a.s. have ΘN ≥
min(A,1)ΘM , where A = M/N . We have
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Θn =
ΘNN

n
≥ N

n
min(A,1)Θm

m

M
(4.9)

but noting that N/M = 1/A and m/n = a, we get

Θn ≥ min
(
a,
a

A

)
Θm. (4.10)

We a.a.s. have M ≤ m and N ≥ rn = n/q, so A ≤ qa and

Θn ≥ min(a, q−1)Θm (4.11)

So letting θ0 = min(a,q−1)θ1, we a.a.s. have Θm ≥ θ0 and Θn ≥ θ0.

4.3 Size of the giant component

Given λ > 0 and a > 0, we define the functions ϕλ : R→ R and ψλ,a : R2 → R2 by

ϕλ(θ) = e
−λ

2

q
θ − 1− θ

1 + (q − 1)θ
(4.12)

and

ψλ,a(θ1,θ2) =

 exp
{
λ
√
a

q (1 + (q − 1)θ2)
(

exp
{
− λ√

a
θ1

}
− 1
)}
− 1−θ1

1+(q−1)θ1

exp
{

λ
q
√
a
(1 + (q − 1)θ1) (exp {−λ

√
aθ2} − 1)

}
− 1−θ2

1+(q−1)θ2

 (4.13)

Lemma 25.
(a) Let m = o(n). If q ≥ 1, then for any sequence λ = λm we have ϕλ(Θm)

P−→ 0.
(b) Let m = an, a > 0. If q ≥ 1, then for any sequence λ = λm we have

ψλ,a(Θm,Θn)
P−→ (0,0).

Proof. (a) For G(m,n; p,1), we have shown (Theorems 6, 9, 11) that for constant λ ∈
[0,∞)

e−λ
2Θm + Θm − 1

P−→ 0 (4.14)

Define Θm = 1 if λ =∞, so that the convergence holds for all sequences in the compact
set [0,∞]. Let λm be one such sequence. By looking down convergent subsequences of
λm, we have

e−λ
2
mΘm + Θm − 1

P−→ 0 (4.15)

If we apply this to the red subgraph, distributed as G(M,N ; p,1), conditional on the
component with Θmm even vertices being red we have for any sequence pM

e−p
2
MΘMMN + ΘM − 1

P−→ 0 (4.16)
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Since m = o(n), we have N = rn(1 + op(1)) by Lemma 23 and

exp

{
−λ

2
m

q
Θm

}
− 1−Θm

1 + (q − 1)Θm

= exp
{
−λ2

m

rn

n
Θm

}
+

qΘm

1 + (q − 1)Θm
− 1

= exp

{
−λ

2
mN(1 + op(1))

n
Θm

}
+

Θmm

(r + (1− r)Θm)m
− 1 (4.17)

Let pm be such that λm = pm
√
mn. Then this equals

exp
{
−p2

mΘmmN(1 + op(1))
}

+
Θmm

M
− 1

= exp
{
−p2

MΘMMN
}

+ ΘM − 1

P−→ 0 (4.18)

where pM = pm(1 + op(1)) is some sequence, and the result follows.
(b) Likewise, let m = an, a > 0. For q = 1, we have shown in Theorem 9 that for all

sequences λM = pM
√
MN , the red subgraph G(M,N ;λM/

√
MN,1) must satisfy

ΘM + exp

{
λM

√
N

M

(
exp

{
−λM

√
M

N
ΘM

}
− 1

)}
− 1

P−→ 0 (4.19)

Note thatN = 1
q (1+(q−1)Θn)n. For any sequence λm = pm

√
mn = pmm/

√
a = pmn

√
a,

we have

exp

{
λm
q
√
a

(1 + (q − 1)Θn)
(
exp

{
−λm

√
aΘm

}
− 1
)}
− 1−Θm

1 + (q − 1)Θm

= exp {pmN (exp {−pmΘmm} − 1)} − 1−Θm

1 + (q − 1)Θm

=
Θmm

(r + (1− r)Θm)m
+ exp {pmN (exp {−pmΘMM} − 1)} − 1

=
Θmm

M
+ exp

{
pm
√
MN

√
N

M

(
exp

{
−pm

√
MN

√
M

N
ΘM

}
− 1

)}
− 1

P−→ 0 (4.20)

which follows from (4.19) by letting λM = pm
√
MN . The other part of the statement is

proved similarly.

Because of the relative simplicity of ϕλ, we may make more detailed claims about
the giant component in the case m = o(n). For m = an however, the complexity of ψλ,a
prevents us from proving more results at this moment.

To study ϕλ, we define f(θ) =
( q
θ (log(1 + (q − 1)θ)− log(1− θ))

)1/2
for 0 < θ < 1,

and note that θ satisfies ϕλ(θ) = 0 if and only if f(θ) = λ. Analytical properties of f
are (indirectly) proved in [3], and we shall not reprove them here.
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Theorem 26. Let m = o(n).
(a) If 1 ≤ q ≤ 2 and λ < q, or if q > 2 and λ < λmin where λmin is the unique

minimum of f(θ), then Θm
P−→ 0 as m→∞.

(b) If q ≥ 1 and λ > q, then Θm
P−→ θ(λ) where θ(λ) is the unique positive solution

to e−λ
2θ/q = 1−θ

1+(q−1)θ .

Proof. The function ϕλ is continuous on [0,1]. Let Zλ denote the set of zeros of ϕλ for a
fixed λ. By Lemma 25, we have P {Θm ∈ Zλ + (−ε,ε)} → 1 as m→∞. By [3], we have

Zλ = {0} when 1 ≤ q ≤ 2 and λ < q or q > 2 and λ < λmin, which implies Θm
P−→ 0.

This is (a).
When λ > q we have, again by [3], Zλ = {0,θ(λ)}. By Lemma 24, P {Θm > δ} → 1

for some δ > 0. Thus, the only possibility is Θm
P−→ θ(λ). This is (b).

When m = o(n), Theorem 26 gives a sharp value of the threshold λc(q) for 1 ≤ q ≤ 2,
while for q > 2 all we know is λmin ≤ λc(q) ≤ q. Getting more detailed than this when
q > 2 is likely to be much more involved than the proofs presented here, judging by the
complexity of the proof in [3].

We have seen above that if m = o(n), then Θn
P−→ 0. The following results looks

closer at this convergence in the supercritical regime.

Theorem 27. Let m = o(n), and suppose q ≥ 1 and λ > q. Then Θn = λθ(λ)
q

√
m
n (1 +

op(1)) where θ(λ) is the unique positive solution to e−λ
2θ/q = 1−θ

1+(q−1)θ .

Proof. We have seen in Theorem 26 that there a.a.s. is a component with Θmm even

vertices, where Θm
P−→ θ. With probability r, this component is coloured red, and by

Lemma 22 the red subgraph is distributed as G((r+ (1− r)θ)m,rn,λ/
√
mn,1). To make

this fit into Corollary 3 we make a change of variables.
Put m′ = (r+(1−r)θ)m,n′ = rn. Then we have a component with (r+(1−r)θ)−1θm′

even verties in the graph G(m′,n′,λ
√
r + (1− r)θ

√
r/
√
m′n′,1). By Corollary 3, this

component has

λ
√
r + (1− r)θ

√
r√

m′n′
θm′

r + (1− r)θ
n′(1 + op(1))

= λrθ

√
m′

r + (1− r)θ

√
n′

r
(1 + op(1))

=
λθ

q

√
mn(1 + op(1)) (4.21)

odd vertices.

Using the proofs in this section, the following theorem resolves the issue described
before Lemma 22. We show that the unique component containing a positive fraction of
the even vertices must be the component with the most odd vertices.
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Theorem 28. Suppose Θm > 0. Then there is a.a.s. one unique component containing
Θmm even vertices and Θnn odd vertices.

Proof. Suppose m = o(n), and let C be any component but the one containing Θmm
even vertices. By Lemma 21, this component has op(m) even vertices. Going through
the proof of Theorem 27 for this component, it is seen that it has op(

√
mn) odd vertices,

which is clearly less than Θnn.
Suppose m = an, a > 0. By Lemma 25, there is a δ > 0 such that a.a.s., Θm > δ

and Θn > δ. Suppose C1 is a component with Θmm even vertices and C2 is a component
with Θnn odd vertices. Since m = an, both of these components a.a.s. have at least
(mn)1/3 vertices, and by Lemma 21 we must have C1 = C2.

4.4 Conclusion

We conclude this section by stating the collective results in a theorem.

Theorem 29. Suppose q ≥ 1.
(i) Let m = o(n).

(a) (Subcritical) If 1 ≤ q ≤ 2 and λ < q or if q > 2 and λ < λmin, then every
component of G(m,n;λ/

√
mn,q) has op(m) even vertices and op(n) odd vertices.

(b) (Supercritical) If q ≥ 1 and λ > q, then G(m,n;λ/
√
mn,q) has a giant compo-

nent with λθ
q

√
mn(1 + op(1)) vertices, of which θm are even, where θ is the unique

positive solution to e−λ
2θ/q = 1−θ

1+(q−1)θ .

(ii) Let m = an, a > 0. Then a.a.s. the largest component of G(m,n; p,q) has θmm+θnn
vertices, of which θmm are even and θnn odd, for some solution (θm, θn) to ψλ,a(θm, θn) =
0, with ψλ,a as in (4.13). If λ > q, then θm > 0 and θn > 0.

In particular, we have the following important corollary concerning the Ising model.
Note that no information is given in (b) for the case λ < 2.

Corollary 30. (a) If m = o(n), then under the Ising model at inverse temperature

β = −1
2 log

(
1− λ√

mn

)
there is a.a.s. a giant component if and only if λ > 2. The giant

component has λθ
2

√
mn(1 + op(1)) vertices, of which θm(1 + op(1)) are even, where θ is

the unique positive solution to e−λ
2θ/q = 1−θ

1+θ .

(b) If m = an, a > 0, the Ising model at inverse temperature β = −1
2 log

(
1− λ√

mn

)
a.a.s. has a giant component if λ > 2. The giant component has θm(1 + op(1)) even
vertices and θnn(1 + op(1)) odd vertices, where (θm,θn) is some pair of positive numbers
satisfying ψλ,a(θm, θn) = 0.

Proof. This follows immediately from Theorem 29 and the correspondence between the
random-cluster model and the Ising model explained in Section 1.4.3.

35



A
Technical proofs

T
his appendix is intended to spell out the full proofs of some technical lemmas,
which were left unproved so as to not clog up the main text. The lemmas will
be restated and proved.

Lemma 4. Let λ < 1, m1 ≤ m2 ≤ n and p1 = λ/
√
m1n, p2 = λ/

√
m2n. Then(

1− p1 + p1

(
1− p1 +

p1

λ

)m1
)n
≤
(

1− p2 + p2

(
1− p2 +

p2

λ

)m2
)n

(2.2)

Proof. Setting b =
√
n and x = m, the result follows if we show that

f(x) = − λ√
xb

+
λ√
xb

(
1 +

1− λ√
xb

)x
(A.1)

is increasing for integers x satisfying 1 ≤ x ≤ b2. Using the binomial expansion rule,
this equals

f(x) =
λ√
xb

[
x∑
k=1

(
1− λ√
xb

)k (x
k

)]
=

x∑
k=1

λ(1− λ)k

(
√
xb)k+1

(x)k
k!

(A.2)

Here (x)k = x(x − 1)...(x − k + 1). This is clearly increasing if each of the terms is

increasing, i.e. if (x)k/(
√
x
k+1

) is increasing. Since x ∈ N, this is equivalent to

(x)k
√
x
k+1
≤ (x+ 1)k
√
x+ 1

k+1
, for all x ≥ k ≥ 1 (A.3)

or in other words, using the definition of (x)k = x(x− 1)...(x− k + 1),

x− k + 1
√
x
k+1

≤ x+ 1
√
x+ 1

k+1
, x ≥ k ≥ 1 (A.4)
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The above is equivalent to(
1− k

2

)
log(x+ 1) +

(
k + 1

2

)
log(x)− log(x− k + 1) ≥ 0, x ≥ k ≥ 1 (A.5)

Denote the left-hand expression by gk(x). The result will follow by showing that gk(x)
is decreasing and has limit 0 as x→∞. We have

g′k(x) =
1

x+ 1

(
1− k

2

)
+

1

x

(
k + 1

2

)
− 1

x− k + 1

=
x(x− k + 1)(1− k) + (x+ 1)(x− k + 1)(k + 1)− 2x(x+ 1)

2x(x+ 1)(x− k + 1)

=
x− kx− k2 + 1

2x(x+ 1)(x− k + 1)

= − x(k − 1) + (k2 − 1)

2x(x+ 1)(x− k + 1)

≤ 0, ∀x ≥ k ≥ 1 (A.6)

We also have

gk(x) = log

[
x
k+1
2

(x+ 1)
k−1
2 (x− k + 1)

]

= log

[
1

(1 + x−1)
1−k
2 (1− (k − 1)x−1)

]
(A.7)

so that limx→∞ gk(x) = 0. The result follows.

Lemma 13. Suppose a > 0, λ > 1, and let θm, θn be the unique solutions in (0,1) to

θm + exp
{

λ√
a

(exp{−λ
√
aθm} − 1)

}
= 1 and θn + exp

{
λ
√
a
(

exp
{
− λ√

a
θn

}
− 1
)}

= 1

respectively. Then θn ≥ min(1,a)θm.

Proof. Suppose a ≥ 1, and let f(x) = x−1+exp
{

λ√
a

(exp {−λ
√
ax} − 1)

}
for 0 < x < 1.

This function is convex and satisfies f(0) = f(θm) = 0. Thus, we may show that θn ≥ θm
by showing that f(θn) ≥ 0. We have, by the definition of θn,

f(θn) = exp

{
λ√
a

(
exp

{
−λ
√
aθn
}
− 1
)}

+ θn − 1 (A.8)

= exp

{
λ√
a

(
exp

{
−λ
√
aθn
}
− 1
)}
− exp

{
λ
√
a

(
exp

{
− λ√

a
θn

}
− 1

)}
Since ex is a strictly increasing function, f(θn) ≥ 0 is equivalent to
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λ√
a

(
exp

{
−λ
√
aθn
}
− 1
)
− λ
√
a

(
exp

{
− λ√

a
θn

}
− 1

)
≥ 0 (A.9)

or

exp
{
−λ
√
aθn
}
− 1− a exp

{
− λ√

a
θn

}
+ a ≥ 0 (A.10)

To show that this indeed holds whenever a ≥ 1, set y = λθn and z =
√
a, and

consider the function g(z) = e−yz − 1− z2e−y/z + z2. This satisfies g(1) = 0 and

g′(z) = y
(
e−

y
z − e−yz

)
+ 2z

(
1− e−

y
z

)
≥ 0. (A.11)

Thus g(z) ≥ 0 and θn ≥ θm follows.
We argue similarly to show θn ≥ aθm when a ≤ 1. The convex function h(x) =

x
a − 1 + exp

{
λ√
a

(
exp

{
− λ√

a
x
}
− 1
)}

satisfies h(aθm) = 0, so we show that h(θn) ≥ 0.

By the definition of θn, we have λ
(

exp
{
− λ√

a
θn

}
− 1
)

= 1√
a

log(1− θn), so

h(θn) =
θn
a
− 1 + exp

{
1

a
log(1− θn)

}
=

θn
a
− 1 + (1− θn)1/a (A.12)

Letting k(x) = (1 − x)1/a + x/a − 1 for 0 ≤ x ≤ 1, we have k(0) = 0 and k′(x) =
a−1

(
1− (1− x)1/a−1

)
≥ 0. So h(θn) ≥ 0 and θn ≥ aθm.

From this follows that θn ≥ min(1,a)θm.
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