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Coupled Electro-Thermal Model for Submarine HVDC Power Cables 
 
MATTEWOS BERHANE TEFFERI 
 
Division of High Voltage Engineering 
Department of Materials and Manufacturing Technology 
Chalmers University of Technology 

 

Abstract 

HVDC cables have a significant role in linking power grids and therefore recent 
development of HVDC cables with polymeric insulation has received much 
attention. Unlike HVAC cables, the electric field across the insulation of extruded 
HVDC cables is affected by the conductivity of the material, which is a function of 
both the electric field and temperature. The focus of this thesis is on calculations of 
coupled electrical and thermal nonlinear transient processes in cable insulation and 
their effects on the internal electric stresses.  

A computer program has been developed in MATLAB for numerical study of the 
transient nonlinear coupled problem. The program uses finite volume space 
discretization and Crank-Nicolson time stepping scheme. The developed 
computational tool takes into account a coupling between the electric field 
distribution and the thermal effect across cable insulation.  

Index Terms: solid dielectrics, finite volume method (FVM), coupled problem, 
submarine cables, HVDC system, space charge, temperature gradient. 
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Chapter 1  

Introduction 

This chapter answers: “why this study has been made?” 

1.1 Background 

Electric power systems have a long and varied history beginning more than one 
hundred years ago. The first commercial electricity generated by Thomas Edison was 
a direct current (DC) power. Residential areas and neighboring establishments were 
supplied by short DC lines. However, DC power at low voltage could not be 
transmitted over long distances, thus stimulated a development of high voltage 
alternating current (AC) systems. At the end of the 19th century, an AC power 
transmission has been introduced to transmit power from power generation plants to 
customers. The development and expansion of AC systems over many decades 
resulted in a fast growth in power demand. However, the advantages of AC 
interconnection systems weakened due to technical co-ordination problems. In 
addition, development of high voltage valves enables DC power to be transmitted at 
high voltages and over long distances. Furthermore, the practical feasibility of HVDC 
system is their ability to interconnect bulk power transmissions under water. This 
makes submarine power cables to be the most significant element in HVDC 
transmissions [1]. 

The use of extruded polymers as insulation material in HVDC power cables has the 
advantage of relatively low cost and good environmental performance. However, the 
design of extruded power cables is complex, since the electric field distribution in a 
DC cable is mainly governed by the conductivity, which is dependent on both the 
electric field and temperature [2]. When HVDC cables are under load, a temperature 
gradient develops across the insulation, which results in a radial distribution of the 
insulation conductivity. A direct consequence is the accumulation of space charges 
within the insulation, which modifies the electric field across the insulation. The 
coupled problems due to electric field and temperature causes difficulties in 
identifying  the electric field distribution in HVDC cables, which therefore a poses 
threat to the reliability in operation of DC power cables. 
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1.2 Objective  

The main purpose of this master’s thesis is to create a model that represents an 
insulation system of a submarine power cable. There are two challenges to overcome 
within this project; the first is to understand the physics of DC systems and the 
second is to establish such a model using numerical methods.  

The model has to take into account both the electrical and thermal behavior in a 
HVDC cable. The specific objectives of the research are: 

 To carry out theoretical descriptions of electric and thermal field calculations. 
 To perform field calculations of the complex functions in the insulation.  
 To analyze and to model the behavior under DC voltage where the 

conductivity varies with temperature gradient and affects the field. 

1.3 Methods 

The study in this work is carried out using a numerical calculation and simulation 
procedure. The axisymmetric geometry of the cable is used and a one-dimensional 
model is developed to study the electrical and thermal distribution across the 
insulation layer. In this thesis work, a MATLAB computer program is used, which 
provides accurate and fast numerical solutions to study the behavior of the cable. 

In order to achieve the objectives, the following methods have been used:  

1. A literature review and study of previous work.  
2. Formulation of a theoretical description and coupled field calculation  
3. Development of a model that can accurately describe the thermal and 

electrical couplings in the insulation. 

1.4 Previous studies 

Nonlinearity of dielectric materials and couplings between thermal and electrical 
phenomena in XLPE insulation layers have been studied by many researchers. A 
great deal of research on XLPE conductivity function [3] [4] by Steven Boggs, 
Institute of Material science, University of Connecticut, USA, has particularly paved 
the way for the work of this thesis.  Further inspiration on numerical calculations has 
been found on the PhD thesis of Jinbo Kuang [5]. 
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1.5 Outline of the thesis 

Apart from this introduction, the report is structured into 6 chapters. A brief 
description of submarine power cable is given in Chapter 2 to provide a reader with 
basic information on physics of HVDC systems. 

After this, governing mathematical equations that describe the insulation layer are 
derived and presented in Chapter 3. The most important numerical calculations can 
be found in Appendix A. Chapter 4 presents the model implementation and 
discusses the model geometry, material parameters and the way they are 
implemented in MATLAB. Chapter 5 presents the simulation results and 
explanations. Finally, Chapter 6 presents the conclusions and possible future work. 
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Chapter 2                                       

Submarine High Voltage Direct Current 
Cables 

“Direct Current is an abstraction which exists only at infinite time”- Prof. A. Pedersen. In the real 
world, all systems exist in a state somewhere between capacitive graded and resistively graded [3]. 

2.1 Background 

Submarine power cables are the most significant elements in a HVDC power 
transmission between different zones. The reasons for the increased interest in using 
such systems in general and cable links in particular are [6] [7]: 

 HVDC systems have lower transmission losses compared with HVAC. This is 
because they typically comprise only active power flow and this causes ~20% 
lower losses than HVAC system, which comprises both active and reactive 
power. Furthermore, the absence of skin and proximity effects in conductors 
makes HVDC cables especially attractive.   

 When two neighboring AC systems operate at two different frequencies, for 
instance at 50 Hz and 60 Hz, HVDC is the only practical way for 
interconnection. This is because DC power is independent of the frequency 
and phase angle of the power systems and is free of reactive power. Therefore, 
power transmission with HVDC interconnection between two independent 
AC systems will not suffer from power swings.  

 For the same power ratings, HVDC cables are more economical than HVAC 
cables due to less conductor and insulation material required.  

 Since an HVDC cable draws negligible capacitive charging current, power can 
be transmitted through any length of it. The only limiting factors here are the 
cost and resistive losses. 

 An HVDC transmission system is environmentally friendly because it 
improves power transmission allowing for interconnecting the existing power 
plants rather than building new power ones. This saves land compensation for 
new projects. In addition to this the absence of alternative electromagnetic 
fields in HVDC cables provides less health concerns.  
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2.2 HVDC Cable Insulation Technology 

According to the type of insulation, HVDC cables can be categorized into two 
families: Cables with laminated insulation and with extruded insulation. There are 
different types of cables with laminated insulation, of which the mass impregnated 
(MI) cable is the most commonly used today. Crosslinked polyethylene (XLPE) is the 
most commonly used insulation material for extruded HVDC cables. 

2.2.1 HVDC cables with laminated insulation 

Among HVDC cables with laminated insulation, several technologies can be 
mentioned.  

Mass impregnated (MI) paper:  this insulation technology has been used for more 
than 100 years. The main advantages of MI cables are their long life time and long 
possible production length. The main drawback is that they are not suited for 
submarine installation due to high weight per length [8]. 

Mass impregnated paper polypropylene laminate (MI-PPL):  this is a new installation 
technology which utilizes paper polypropylene laminate (PPL) material in order to 
improve the electrical and thermal performance of the mass impregnated cables [8].  

Gas filled pre-impregnated paper insulation cables: this types of cable is no longer 
used today because it requires gas pressurization at the extremities and may 
experience uncontrolled water propagation in case of cable severance [8]. 

Self-contained fluid filled (SCFF) paper insulated cables: this type of cable can 
operate at both AC and DC voltages, with no change in cable design and 
manufacturing technology.  However, due to the need for adequate oil feeding 
systems, there is a technical limitation in using these cables for long distances [8].  

2.2.2 HVDC cables with extruded insulation 

XLPE as insulation for HVDC cables offers significant advantage over the traditional 
laminated materials. The properties that make XLPE suitable for HVDC insulation 
are [8]:  
 
 Low material and processing cost. 
 Cable joints of extruded cables are much simpler and require less installation 

skill. 
 The absence of oil leaks results in lower environmental hazards.  
 Excellent moisture resistance and lighter cable. 
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On the other hand, HVDC cables with extruded insulation have been only recently 
employed while HVDC mass-impregnated cables have been proven to be reliable 
over many years [8].  

 
Table 2.1 summarizes characteristics of MI and XLPE cables according to the existing 
installation and execution projects. 

Table 2.1 Maximum data for HVDC cables [8] 
 MI XLPE 
Maximum nominal operating voltage 600 kV MI-PPL (awarded) 

500 kV MI (installed) 
320 kV (awarded) 
200 kV (installed) 

Maximum continuous conductor 
temperature 

70-80 °C (MI-PPL) 
55-60 °C (MI) 

70 °C 

Conductor material  
 

Copper/ Aluminum  Copper/ Aluminum 

Maximum power (cable pair) 
 

2200 MW (awarded) 
1600 MW (installed) 

900 MW (awarded) 
400 MW (installed) 

Maximum water depth  Approx 1600 m Approx 400 m 
 

2.3 Geometry of HVDC Cable  

The design and configuration of HVDC submarine power cable is complex. For 
successful development of a HVDC submarine cables, several parameters must be 
carefully coordinated with the cable performance.  Major characteristics such as 
ampacity, DC breakdown strength and cost should be analysed. The thickness of the 
insulation is a primary design parameter which influences all the above mentioned 
parameters [9]. A typical arrangement of submarine DC power cable is shown in the 
Figure 2.1 [10]. 

 
Fig 2.1: Typical construction of a submarine DC cable 
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The following components can be recognized:  
 

1. Conductor: copper and aluminum are widely used for the conductor.  
2. Conductor shielding: a semi-conducting layer which maintains a uniform 

electric field and minimizes electrostatic stresses. 
3. Insulation: insulation material separates the current carrying conductor from 

the ground potential. 
4. Insulation shielding: it is a semi- conductive layer which maintains a uniform 

electric field and minimizes electrostatic stresses.  
5. Lead sheath: is used as a path for fault current during external cable damage 

and water barrier.  
6. Plastic jacket 
7. Tape armor bedding: it is used to provide a bedding for the armor wires. 
8. Optical fiber: it is inserted for cable monitoring and communication purpose. 
9. Wire armor: it is used with the lead sheath as a buried cable where moisture is 

a concern. 
10. Serving: it is the final propylene sheath used as outer protective layer against 

corrosion and mechanical damage. 

2.4 Difference between AC and DC Electric Field 

“As the late Prof. A. Pedersen of the Danish Technical University liked to point out, 
DC is an abstraction which exists only at infinite time. In the real world, all systems 
exist in a state somewhere between capacitively graded and resistively graded.” 
Cables designed for an AC system are designed to be only graded capacitively, since 
they are seldom subjected to a DC system. However cable for DC system are 
designed to be both capacitively and resistively graded [3].  

2.4.1 Meaning of AC and DC grading 

The difference of AC and DC grading can be realized by looking at the equations for 
the current density in the insulation. The total current density is the sum of the 
conduction current  density Jୡ and displacement current density Jୢ [3]. 

 J ൌ Jୡ൅Jୢ ൌ σE ൅ ε0εr
∂E

∂t
 (2.1)  

Here, E is the electric field strength, σ is the material conductivity, ε଴ is permitivity of 
free space, ε୰  is the dielectric constant and t stands for time. In frequency domain, the 

displacement current due to sinusodial voltage excitation is  Jୢ ൌ jωε0εr , where ω is the 

angular frequency and j stands for the imaginary unit. In any way, the resistive current is 
proportional to the DC conductivity while the capacitive current is proportional to 
“ac conductivity” ε଴ε୰ω . The nature of the field grading is determined by the 
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dominating component, i.e if ε଴ε୰ω  is greater than ߪ  the system is capacitively 
graded and vice versa [3].  

2.4.2 Electric Field in AC Cables 

Calculation of electric field in AC cables is much easier compared to DC cables. In 
AC cables the electric field distribution depends on the permittivity of the insulation 
which is normally independent of the external parameters like temperature and the 
applied voltage. The field distribution in the insulation is capacitive. Therefore, it can 
be calculated with the Laplace equation in the absence of space charge [11].  

 
Fig 2.2: Simplified illustration of a cable 

 

For a 1D axisymmetric domain (i.e a strait line connecting the centre of the cable and 
its external surface, Figure 2.2) Laplacian equation is expressed as: 

 
ଶU׏ ൌ

1
r
∂
∂r
൬r
∂U
∂r
൰ 

 

(2.2)  

Here U is the electric potential and r is the radial co-ordinate. After integrating and 
setting a proper boundary condition, the geometrical electric field can be written as:  

 
Eሺrሻ ൌ

U

r ln ቀ
R଴
R୧
ቁ
 

 

(2.3)  

Here, R୧ and	R଴ are the inner and outer radiuses of the insulation in m. Note that 
R୧ ൑ ݎ ൑ R୭ in Eq (2.3).  
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2.4.3 Electric Field in DC Cables 

The calculation of electric field in cables under DC voltage is more complex. This is 
because the field distribution is controlled by material conductivity, which in case of 
XLPE is dependent on both the electric field and the temperature. 

Different empirical formulas for conductivity of XLPE have been published, Thus in, 
[12], it is represented as a complex function of the two variables. 

 
σ	ሺE, Tሻ ൌ A exp ൬

െϕq
k୆T

൰
sinhሺB |E|ሻ

|E|
 

 

(2.4)  

where A and B are constants, ϕ is thermal activation energy in eV, q is the charge of 
electron in C, T is temperature in K, E is the electric field in V/m and k୆  is the 
Boltzmann constant. 
 
According to [11], σ	ሺE, Tሻ can be expressed as: 
 
 σ	ሺE, Tሻ ൌ ଴ߪ expሺαሺT െ 273ሻ ൅ γ|E|ሻ 

 
(2.5)  

where σ଴ is the conductivity at 0 Ԩ and 0 kV/mm, α and γ are the temperature and 
electric field dependent coefficients respectively. 
 
Even though Eq. (2.4) and Eq. (2.5) are different, they describe two important 
properties [12]: 
 
1. σ(r) of the insulation increases with increasing electric field at a specific radius r. 
2. σ(r) of the insulation increases with increasing temperature at a specific radius r 
 
Since the thermal conditions within a cable change with time, this leads to dynamic 
variations of the electric field. Thus when a DC voltage is initially applied to a DC 
cable, high electric field stress occurs at the conductor screen as shown by solid curve 
in Figure 2.3. This is exactly the same as in case of AC cable. When the cable is fully 
loaded, a temperature gradient is developed due to the current flow and ohmic loss 
in the conductor and the previous situation starts to change. Increasing temperature 
leads to increasing  conductivity at the conductor screen and decreasing conductivity 
at the insulating screen. This results in a high electric field stress at the insulation 
screen as shown by the dot curve in Figure 2.3 [13]. 
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Fig 2.3: Electric field stress under load and no load condition in DC cable 
 

Another important fact is that after voltage application, the field distribution is 
capacitive and it changes with time to a resistive type. In general, the behavior of the 
electric field distribution depends on the time variation of the applied stress and it 
linked to space charge build up in the insulation. An example is shown in Figure 2.4  
( borrowed from [11] [14] ) which indicates different stages in space charge dynamics 
in response to a time varying voltage.  

Fig 2.4: Different stages representing when a DC voltage is switched on/off. The 
dotted lines represent the development of space charges in the insulation. 

In the figure, 

stage 1: is the initial stage at which the cable is free of space charge and there is no 
temperature drop across the insulation. The field is controlled by the permittivity 
and geometry of the cable and has a purely capacitive distribution.  The electric field 
can be calculated using Eq. (2.3). 
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Stage 2: In this stage the applied voltage attains its final voltage level. The field is 
time dependent. This stage is an intermediate stage between capacitive and resistive 
field distribution. The field and space charge can be calculated with Eqs. (2.10-2.12) 
and (2.15) discussed below. 

Stage 3: The field in this stage is resistive and it is time independent. The load current 
is present resulting in a temperature gradient in the insulation. If such gradient in the 
insulation occurs, the effect of space charge exists which can be derived using 
Maxwell equation in Eq. (2.16). These  space charges induce their own electric field 
causing field inversion as shown in Fig. (2.3). 

Stage 4: The load current is turned off, the temperature drops and the cable cools 
down. For this reason, the field distribution changes to the initial case where highest 
field is found near the conductor. The theory described in stage 2 also holds in this 
stage. This stage is an intermediate and time dependent stage.  

Stage 5: Two cases can be considered in this stage. First case without polarity 
reversal, following the turning off of the load current the voltage is decreased to zero. 
Due to the presence of space charge, the field gradually reduces to zero. The electric 
field is purely charge induced field. Hence, the field immediately after the voltage is 
switched off is calculated by:- 

ݐሺܧ  ൌ 0ାሻ ൌ ݐሺܧ ൌ 0ିሻ െ  ஺஼ܧ
 

(2.6)  

Here Eሺt ൌ 0ାሻ is the field just after the voltage is switched off, Eሺt ൌ 0ିሻ is the field 
just before the voltage is switched off and E୅େ is the capacitive field distribution as 
calculated in Eq. (2. 3). 

The second case is considering polarity reversal of a loaded cable under a 
temperature gradient. Immediately after the polarity reversal of an external voltage 
source the space charge causes a high field stress to occur at the conductor. The field 
after polarity reversal is calculated similarly with Eq. (2. 6). However,		E୅େ in this case 

is twice the capacitive field distribution as the voltage changes from ൅U	to –U. 

 
E୅େ ൌ

2U

r ln ቀ
R୭
R୧
ቁ
 

 

(2.7)  

Stage 6: This stage is an intermediate time dependent. The field gradually changes 
from the field calculated under stage 5 to stage 7. The field calculation in this stage is 
the same as in stage 2. 

Stage 7: Finally the field at this stage becomes stable. The field is exactly the same but 
opposite in polarity to stage 3:  Eୱ୲ୟ୥ୣ_଻ ൌ െEୱ୲ୟ୥ୣ_ଷ 
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2.5 Electric Field with Field Dependent Conductivity 

The electric field distribution across the insulation material is calculated assuming 
that the insulation consist of a weakly conducting material. The calculations require 
using Gauss law, current continuity equation, Ohm’s law and gradient of the 
potential [2]. 

Gauss law:   

׏  ∙ E ൌ
ρ
ε୭ε୰

 (2.8)  

Current continuity equation in differential form:  

 
׏ ∙ J ൅

∂ρ
∂t

ൌ 0 
(2.9)  

Ohm’s law:  

 J ൌ σE (2.10)  
 

Gradient of potential:      

 E ൌ െ׏V (2.11)  
 

In the formulas, E is the electric field strength in V/m, ρ is the space charge in C/m3, σ 
is the field dependent conductivity in S/m, J is the current density in A/m2,  ε୭ is 
permitivity of free space and ε୰ is relative permitivity. 

Combining the above four equations yields: 

 ߲
ݐ߲
ሾ׏ ∙ ሺε଴ε୰׏Vሻሿ ൅ ׏ ∙ ሺσ׏Vሻ ൌ 0 

(2.12)  

Assuming  1D cylindrical coordinate, Eq. (2.12) becomes: 

 ߲
ݐ߲
൤
∂
∂r
ሺrε଴ε୰

∂V
∂r
ሻ൨ ൅

1
r
∂
∂r
൬rσ

∂V
∂r
൰ ൌ 0 

(2.13)  

Further the space charge can be calculated by substituting Eq. (2.10) into Eq. (2.11) 

 
ρ ൌ െ

ε୭ε୰
σ

∂ρ
∂t
൅ J ∙ ׏ ቀ

ε୭ε୰
σ
ቁ 

(2.14)  

2.5.1 General Expression for DC electrical conductivity 

The conductivity of XLPE is dependent of both electric field and thermal field. Hence 
to understand the conductivity of the polymeric material, both these factors have to 
be coupled. The coupling of electric field and thermal field occurs because the higher 
temperature of the insulation will result in increasing the electrical conductivity of 
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the insulation. In turn, the higher conductivity will also cause a higher leakage 
current which will heat the insulation more. This process repeats untill an 
equilibrium is reached [15]. 

To understand the effect of electric field and temperature on conductivity of XLPE, a 
mathematical derivation has been developed according to charge hopping theory 
that gave a relation between the current density and electric field as a hyperbolic sine 
function [4]. 

 JሺEሻ ൌ CsinhሺD|E|ሻ (2.15)  
where C and D are constants, E is the electric field in V/m. 

The dependency of the current density on temperature is given by; 

 
JሺTሻ ൌ Fexp ൬

െϕ. q
k୆T

൰ 

 

(2.16)  

where F is a constant, ϕ	is thermal activation energy in eV, q is elementary charge in 
C, k୆ is the Boltzmann constant and T is the temperature in K. 

Combining Eq.(2.15) with Eq.(2.16), one obtaines an expression for the the overall 
current density in the insulation:  

 
JሺE, Tሻ ൌ A exp ൬

െϕq
k୆T

൰ sinhሺB |E|ሻ 
(2.17)  

From ohm’s law,  

 
σሺE, Tሻ ൌ

JሺE, Tሻ
|E|

 
(2.18)  

Substituting Eq. (2.17)  in to Eq. (2.18) gives  

 
σ	ሺE, Tሻ ൌ A exp ൬

െϕq
K୆T

൰
sinhሺB |E|ሻ

|E|
 

(2.19)  

The expression  in Eq. (2.19) couples the electric and thermal effects in the material.  

2.6 Heat Transfer in HVDC Cables 

Heat is defined as “a form of energy that can be transfered from one system to 
another as a result of temperature difference”. Heat is transferred from high 
temperature medium to low temperature medium. There are three physical 
mechanisms of heat transfer: conduction, convection and radiation [16].  
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1. Conduction:  Fourier law describes the heat transfer by conduction, specifying that 
the heat flux is proportional to the rate of temperature change over space. Eq. 
(2.20) shows Fourier law in cylinderical coordinate with only one radial direction 
[16]. 

 Q ൌ െkA
dT
dr

 

 

(2.20)  

Here, Q is the heat flux in W, k is the thermal conductivity of the material in W/m·K, T 
is the temperature in K and r is the radial position in m. The negative sign in Eq. 
(2.20) indicates that heat always flow in the direction of decreasing temperature.  

For underground transmission cables, heat conduction occurs everywhere except in 
the air space in the conduit. For overhead transmission cables, heat conduction 
occurs only inside the cable, the heat transfer ahead of the outer serving is due to 
convection and radiation [10]. 

2. Convection: Newton’s law describes the heat transfer by convection. In simplest 
way, convection is defined as a transfer of heat from one place to another by the 
movement of a fluid (liquid or gases) [16].  The convective heat flux can be 
represented as: 

 Q ൌ hAሺTୱ െ Tஶሻ
 

(2.21)  

where Q is the heat flux in W,  h is the convection heat transfer coefficient in W/m2·K, 
A is the area in m2, Tୱ  is the surface temperature in K and Tஶ  is the ambient 
temperature in K from the surface. 

For not buried submarine cables, convection take place from the cable surface to sea 
water. If a submarine cable installation is buried, the mode of the heat transfer is 
conduction [10]. 

3. Radiation:  Radiation is the transfer of heat in the form of electromagnetic waves 
or photons. Unlike conduction and convection heat transfer by radiation doesn’t 
require a medium and its intensity strongly dependent on temperature. Stefan-
Boltzmann law describes the radiative heat transfer by radiation as being 
proportional to the difference of the temperatures at the power of four [16]. 

 Q ൌ εδA൫Tୱ
ସ െ Tஶ

ସ൯ 
 

(2.22)  

Here Q is the emitted heat flux in W,		ε  is the emissivity of the surface of the object, 
that measures of how closely a surface approximates a black  body and it is in the 
range 0 ൑ ߝ ൑ 1, δ  is the Stefen-Boltzmann constant 5.6703 ൈ 10ି଼ W/(m2·K4), A is the 
surface area in m2 ,Tୱ and Tஶ are surface and ambient temperature in K respectively. 
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2.7 Thermal field in DC cables 

The temperature distribution across cable insulation is governed by the heat 
conduction equation [2]. 

 
ρ୫∁୮

∂T
∂t

ൌ
1
r
∂
∂r
൬rk

∂T
∂r
൰ ൅ S୦ୣୟ୲ 

 

(2.23)  

where ρ୫is the mass density in kg/m3,  ∁୮ is the heat capacity in J/kg·K, T temperature 
in K, k is temperature dependent thermal conductivity in W/m·K and r is the radial 
position in m.  

At high electric conductivity and field level, heat source that represents resistive 
losses in the insulation due to the current that passes through the insulation become 
significant. This resistive loss is given by:  

 
ܵ௛௘௔௧ ൌ

ଶ|ܬ|

ߪ
ൌ  ଶ|ܧ|ߪ

 

(2.24)  

Here ܵ௛௘௔௧ represents the resistive loss in the insulation in W, 	ܬ  is the current density 
in A/m2 and ߪ is the conductivity in S/m. The second equality in Eq. (2.24) follows 
from Ohm’s law in Eq. (2.10). 
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Chapter 3  

Mathematical Modeling Equations 

To understand the nonlinearity of Dielectric Materials, one should read in the language it is written 
and that language is Numerical Mathematics!  

3.1 Introduction 

The analysis of power cables is based on the solution of coupled field equations. The 
electrostatic field is defined by Maxwell’s equation and the thermal field is defined 
by Fourier heat transfer equation. These equations are simple to formulate but 
difficult to solve due to the nonlinearity and time dependency.   

Traditional methods of solving coupled field problems are based on the analytical 
approach with different simplification and approximations and the accuracy may be 
improved by using experimental data. The traditional methods are not efficient when 
high accuracy is required. Today, numerical methods are increasingly used for 
solving nonlinear coupled field problems. The development of different numerical 
schemes and computer powers has made it possible to solve more complicated and 
difficult tasks [5]. 

3.2 Finite Volume Method (FVM)  

Classical finite difference methods approximates a solution of a differential equations 
using finite differences and it breaks down near discontinuities in the solution, where 
the equation does not hold. In this thesis, a finite volume method is utilized, which is 
based on an integral form of differential equation instead of the actual differential 
equation. Finite volume method discretizes domains into finite control volumes and 
approximates the total integral of the flux over each control volume rather than point 
wise approximations at mesh points. These values are modified on each time step by 
using the flux through the edges of the grid cells [17]. 

Finite volume methods are derived on the basis of the integral form of the 
conservation law. To understand how conservation laws arise from physical 
principles, let’s consider a flux Φ(x,t), which is a one-dimensional quantity that varies 
with space x and time t.  
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d
dt
න Φሺx, tሻdx
୶మ

୶భ

ൌ f൫Φሺxଵ, tሻ൯ െ f൫Φሺxଶ, tሻ൯ (3.1)  

 

Eq. (3.1) is the basic integral form of a conservation law for any two points x1 and x2. 
It is a very attractive feature of the finite volume method that the discretized 
equation has a clear physical interpretation. The above equation states that the rate of 
change of the total flux is due to only fluxes through the endpoints and it constitutes 
a balance equation for Φ over the control volume as shown in Fig 3.1 [17]. 

   
Fig3.1: Illustration of a finite volume method in x–t plane 

3.3 Mathematical Derivation 

As it was mentioned above, by combining Gauss’s law, Ohms law and the current 
continuity equation, we get the electrical governing equation. In addition, Fourier 
law describes the heat transfer rate in the cable: 

 

ە
۔

ۓ
߲
ݐ߲
ሾ׏ ∙ ሺε0εr׏Vሻሿ ൅ ׏ ∙ ሺσ׏Vሻ ൌ 0

ρmCp
߲ܶ
ݐ߲

ൌ ׏ ∙ ሺk׏Tሻ ൅ ଶ|ܧ|ߪ
 (3.2)  

To discretize Eq. (3.2), that is to convert a continuous differential equation to an 
algebraic discrete equations, it is integrated over a control volume in space and time. 

 න න
߲
ݐ߲
൤
1
r
∂
∂r
ሺrε଴ε୰

∂V
∂r
ሻ൨ ݐ݀ݎ݀

௘

௪

௧ା∆௧

௧
൅ න න

1
r
∂
∂r
൬rσ

∂V
∂r
൰ ݐ݀ݎ݀

௘

௪

௧ା∆௧

௧
ൌ 0 (3.3)  

 

 න න ρ୫C୮
߲ܶ
ݐ߲
ݐ݀ݎ݀

௘

௪

௧ା∆௧

௧
ൌ න න

1
r
∂
∂r
൬rk

∂T
∂r
൰ ݐ݀ݎ݀

௘

௪

௧ା∆௧

௧
൅ න න S୦ୣୟ୲	݀ݐ݀ݎ	

௘

௪

௧ା∆௧

௧
 (3.4)  

 ( for a detailed numerical calculation see Appendex A). 
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3.3.1 Discretization in space  

Unlike the finite difference, which discretizes solution at individual points, in the 
finite volume method one divides the spatial domain into cells of control volume. A 
"finite volume" refers to the small volume surrounding each node on a mesh and 
faces of a control volume are positioned midway between adjacent nodes [17].   

Figure 3.2 shows a single control volume of width ∆r = δrwe. The nodal point is 
defined as P whereas E and W are the two neighbor nodes to the east and west 
respectively. The west and east side faces of the control volume are identified by w 
and e, respectively [18]. 

 

 
Fig 3.2: Finite volume grid 

The gradients at the faces of the control volume are calculated using the values at the 
two negbour nodes using a central difference formula.  

 ൬
∂Φ
∂r
൰
୵
ൌ ൬

Φ୔ െ Φ୛

δr୛୔
൰ (3.5)  

 

 ൬
∂Φ
∂r
൰
ୣ
ൌ ൬

Φ୉ െ Φ୔

δr୔୉
൰ (3.6)  

Here,	Φ୔,	Φ୉ and Φ୛ are fluxes ( in the electrical equation the flux is the electric 
potential and in the thermal equation it is the temperature) at nodal points P, E and 
W, respectively;	δr୛୔ is the radial distance between the west node and the point 
node. Similarly, δr୔୉ is the radial distance between the point node and the east node. 

For a uniform grid, a linear interpolation can be used to evaluate the diffusion 
coefficients(i.e material characteristics in the electric and thermal equation). 

 Γ୵ ൌ
Γ୛ ൅ Γ୔

2
 (3.7)  

 



 

20 
 

 Γୣ ൌ
Γ୔ ൅ Γ୉
2

 (3.8)  

Here,	Γ୵ and	Γୣ   are the diffusion coefficients at the west and east faces of the control 
volume; Γ୛, Γ୔  and Γ୉  are diffusion coefficients at nodal points P, E and W 
respectively. In the coupled Eq. (3.2), the diffusion coefficient for the electrical 
equation is the electrical conductivity and for the thermal equation it is the thermal 
conductivity.  	 

3.3.2 Discretization in time (Time stepping)  

In order to solve nonlinear problems in time domain, the coupled partial differential 
equation must be discretized using some time stepping algorithm which allow for 
solving the differential equation at each time step.   

To evaluate the integrals of Eq. (3.3) and Eq. (3.4), an assumption is made about the 
variation of the flux with time. One may use a flux at time t or at time t ൅ ∆t to 
calculate the time integrals, or alternatively the combination of the fluxes at times t 
and t ൅ ∆t. One can generalize this approach by means of a weighting parameter θ 
with values between 0 and 1 and to write the integral with respect to time as [18]: 

 න Φ୔	dt

௧ା∆௧

௧

ൌ ߠൣ Φ୔
௧ା∆௧ ൅ ሺ1 െ θሻ Φ୔

௧൧∆(3.9) ݐ  

Here, 	Φ୔	
௧ା∆௧  is the new flux at time ݐ ൅ 	Φ୔	 and ݐ∆

௧  is the old calculated flux at 
time	ݐ. Depending on the parameter value, different schemes can be obtained. Thus if 
θ ൌ 0, the flux at the old time level t is used. If θ ൌ 1 the flux at new time level t ൅ ∆t 
is used; and finally if θ ൌ 1/2  the flux at t  and t ൅ ∆t  are equally weighted. The 
obtained approximations and their properties are summarizedin Table 3.1. As seen, 
the Crank Nicolson scheme has the advantage of being very stable and provides 
more accuate results than the Forward and Backward Euler method. Therefore for 
the dynamic problems defined in this thesis, the Crank-Nicloson method is 
implemented.  

Table 3.1 Time stepping schemes 
 1 1/2 0  ߠ
Name Forward Euler(FE) Crank Nicolson(CN) Backward Euler(BE) 
Result 	Φ୔	

௧∆1 ݐ
2
ቀ ΦP

ݐ∆൅ݐ ൅ ΦP
	Φ୔	 ݐ∆ቁݐ

௧ା∆௧∆ݐ 

Stability Conditionally stable Unconditionally stable Unconditionally stable 
Accuracy First order     Second order First order 
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3.4 Boundary Conditions 

For the electrical problem, boundary conditions are needed for the electric potential . 
Therefore, the conductor screen is assumed to be at 150 kV voltage level while the 
potential is assumed to be zero at the insulation screen.  

For the thermal problem, heat generation of a conductor is considered and the heat 
flux at the inner conductor is set to 52.5 W/m, which results in a steady state 
conductor temperature of 70 Ԩ.  A convection-radiation boundary condition is 
encountered on the outer surface of the cable as it is exposed to the temperature of 
the surrounding environment. The thermal boundary condition can be derived using 
the Cauer type ladder network. 

3.4.1 Cauer  RC ladder network 

The network represents various layers of the power cable by thermal resistances and 
thermal capacitances. The heat generated in the conductor travels thorough the 
thermal resistance and thermal capacitance and finally to the outer layer towards the 
ambient environment. The Cauer ladder network is modeled similarly to an  
analogous electrical circuit while electric potential are equivalent to temperatures 
and electric currents to heat fluxes [19].  

The thermal resistance characterizes material’s ability to impede heat flow [19]. Thus, 
the thermal resistance of the metalic conductor is small due to relatively high thermal 
conductivity and it is given as:   

 Rଵ ൌ
1
4πk

 (3.10)  

All insulating layers in the cable impede heat flow away from the conductor. The 
expressions for the thermal resistances of layers can be found by solving the steady 
state Fourier heat equation that yields:  

 ܴ ൌ
ln ቀrori

ቁ

2πk
 (3.11)  

 

In the equations, R is thermal resistance in mK/W, k is the thermal conductivity in 
W/mK, r୭ and r୧	 are the outer and inner raduis of the layer in m. 

The thermal resistance at the external boundary accounts for convection and 
radiation. Since the convective heat flux is given by Eq. (2.21), the thermal resistance 
for convection is then: 
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 ܴ௖௢௡௩ ൌ
Ts െ Tஶ

q
ൌ

1
hA

 (3.12)  

Radiation exchange between the cable surface and its surroundings is introduced by 
Eq. (2.22) and the corresponding thermal resistance can be defined as: 

 ܴோ௔ௗ ൌ
Ts െ Tஶ

q
ൌ

Ts െ Tஶ
εδAሺTୱ

ସ െ Tஶ
4ሻ

 (3.13)  

 

A thermal capacitance of a material characterises it’s ability to store heat and it is 
given by [19]: 

 C ൌ ρmCpπሺro
2 െ ri2ሻ (3.14)  

 

where ρ୫ is the mass density in Kg/m3 and C୮ is the heat capacity in J/KgK.  

The network used in present study is shown in Figure 3.2, where R1 upto R6 
represent the thermal resistances of each layer shown in Figure 4.1, R7 is the thermal 
resistance due to convection-radiation boundary condition and C1 upto C6 represent 
thermal capacitance of each layer. 

Fig 3.2: Cauer ladder network representing a cable 
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Chapter 4  

Model Implementation 

A model (from Latin modulus) is a representation of reality. The first task in modeling is to identify 
the system under study and approximate the real geometry to an ideal geometry and approximating 
material properties. 

4.1 Introduction 

A MATLAB program has been developed according to the finite volume method for 
solving coupled transient nonlinear field problems based on the numerical 
techniques pointed out on previous chapter.  

4.2 Model Description and Definition  

4.2.1 Cable Geometry 

This thesis focuses on a 150kV XLPE HVDC cable. Its simplified structure is shown in 
Figure 4.1 and the dimensions are provided in  table 4.1. The geometry has been 
implemented in cylindrical coordinates and the problem was reduced to 1D utilizing 
radial symmetry.  

 

 

Fig 4.1: Cable Geometry 
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Table 4.1 Cable dimensions [20] 

Material Radius [mm] 
Aluminum conductor 10  
Conductor screen 11  
Insulation layer 19  
Insulation screen 20  
Lead layer 23  
Polymer oversheath 25  

 

4.3 Material Parameters  

The parameters of the materials of the cable are summarized in Table 4.2.  

Table 4.2 Material data [20] 
Material ࣋[kg/m³] Cp[J/kgK] k[W/mK] 
Aluminum conductor 2700 890  200 
Conductor screen 1100 2050 0.47 
Insulation layer 920 2250 0.329 
Insulation screen 1100 2050 0.47 
Lead layer 11340 125 35 
Polymer oversheath 920 2250 0.329 
 

Note that in general, the heat capacity of the materials is dependent on both pressure 
and temperature, but this dependency is not imporatnt in the present study. The 
permittivity of the insulation can be considered as constant ሺε୰ ൌ 2.3ሻ within the 

relevant range of temperatures and fields. 

4.4 Numerical Solution of Nonlinear systems 

To solve the problem, the insulation is split into a number of radial control volumes 
with thickness ∆r. Each discretized control volume is characterized by the following 
quantities, which in general are functions of radius r and time t:  

 Electric potential V(r,t)  
 Temperature  T(r,t) 
 Electric field  E(r,t) 
 Conductivity  σ(T(r,t),E(r,t)) 
 Current density  J(r,t) 
 Space charge  ρ(r,t) 
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A computer code implementing the FVM approach for solving the transient 
axisymmetric coupled nonlinear field problem has been developed utilizing the 
techniques introduced in in section 3.2.1 and 3.2.2. Thus, finite volume discretization 
of Eq. (3.3) and Eq. (3.4) yields, the algebraic equations Eq. (4.1) and Eq. (4.2): 

 
V୔	 ൌ

a୉୚V୉	 ൅ a୛୚V୛ ൅ a୉୚଴V୉
଴ ൅ a୛୚଴V୛

଴ ൅ a୔୚଴	V୔	
଴

a୔୚
 

(4.1)  

Here, V୉	, V୛ and V୔	 are the potentials at the new time level	ݐ ൅ 	V୉	  ;ݐ∆
଴,		V୛	

଴ and 
	V୔	

଴ are the potentials at the preceeding instant t. Similarly for the thermal problem 

 
T୔	 ൌ

a୉୘T୉	 ൅ a୛୘T୛ ൅ a୉୘଴T୉
଴ ൅ a୛୘଴T୛

଴ ൅ a୔୘଴ T୔	
଴ ൅ S୦ୣୟ୲

a୔୘
 

(4.2)  

where, T୉	,  T୛  and T୔	  are the temperature levels at the new time level 	ݐ ൅ ݐ∆ ;  
	T୉	

଴,		T୛	
଴ and 	T୔	

଴ are the temperatures at the preceeding instant t.  

By extending the above equations over the entire insulation, the problem is reduced 
to a matrix form.  

The quantities mentioned above are calculated in each finite volume for each instant 
with a time interval ∆t. Solution of the matrix problem is obtained using Gauss Sediel 
iteration method until the solution is converged and a predefined time has been 
reached. 

The flow chart below shows the general flow of the FVM program. 
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     Fig. 4.2: Flow chart of field calculation 

     

Input: Material parameters, Cable geometry and 
Define constants: 

Start with initial distribution:  

Vሺr, tሻ - Electric Potential      Tሺr, tሻ- Temperature 

Calculation met 
convergence criteria? 

Calculate the initial distribution: 

Eሺr, tሻ- Electric field              σሺr, tሻ- Conductivity 

ρሺr, tሻ- Space charge              Jሺr, tሻ- Current density 

Calculate new: 

Eሺr, tሻ- Electric field              σሺr, tሻ- Conductivity 

ρሺr, tሻ- Space charge              Jሺr, tሻ- Current density 

Increase time step: t ൅ ∆t  

Calculate new: 

 Vሺr, tሻ - Electric Potential      Tሺr, tሻ- Temperature 
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4.4.1 Convergence Criteria 

The iterative algorithm used requires some stopping conditions. The convergence 
criteria in the present study were defined by considering the residuals for both 
electric (ܴா) and thermal (்ܴ) differential equations.  

 

ە
ۖ
۔

ۖ
ாܴۓ ൌ ෍ หa୉୘V୉ ൅ a୵୘ V୛൅ a୉୚଴V୉

଴ ൅ a୛୚଴V୛
଴ ൅ a୔୚଴	V୔	

଴ െ a୮୘V୔ห
஺௟௟	ே௢ௗ௘௦

்ܴ ൌ ෍ หa୉୘T୉ ൅ a୵୘ T୛ ൅a୉୚଴T୉
଴ ൅ a୛୚଴T୛

଴ ൅ a୔୚଴ T୔	
଴ െ a୮୘T୔ห

஺௟௟	ே௢ௗ௘௦

 

(4.3)

These were normalized to be able to judge whether the equation system has 
converged or not. The criterion for convergence was then [21]:  

ܧܴ 
ி
൑ ܴܶ and ߝ

ி
൑   (4.4) ߝ

where  

0.0001 ൑ ߝ ൑ 0.01 

Note that F in Eq. (4.4) represents the total flux of the dependent variable. In the case 
of the electrical equation it represents the total current, and in case of the thermal 
equation it represents the total heat transfer rate. 

4.5 Thermal boundary conditions  

As explained in section 3.4.1, the boundary conditions are time dependent and the 
outer thermal boundary condition accounts for radiation, which is represented by a 
nonlinear thermal resistance. To improve the accuracy of the Cauer RC ladder 
network, the thermal resistance of each layer is divided into two parts, and the 
capacitance is defined at the middle. This improves the accuracy of the 
approximation. The RC ladder thermal network was implementd in Simulink, as 
shown in the Figure 4.3 below. 
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Fig. 4.3: Simulink Cauer type RC ladder network diagram 
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Chapter 5  

Results and Discussion 

5.1 Introduction 

The simulation results are mainly discussed into two section, the steady state and 
transient studies. 

5.2 Steady state study 

In this study, the simulations are carried out under the assumption that the system is 
in a steady state and that the temperature on the surface of the conductor is constant. 
Temperature distributions in the insulation at different temperature gradient within 
the cable are shown in Figure 5.1. The temperature differences across the insulation 
has a significant influence on the electric field distribution as shown in Figure 5.2.   

As it is seen, the electric field strength is higher at the inner conductor than at the 
outer boundary of the insulator when the temperature gradient is small. With larger 
temperature gradients in the insulation, the electric field profile  reverses. 

Figure. 5.3 shows the effect of temperature gradient on the conductivity distribution 
in the insulation. It is clear from the figure that the conductivity is a strong nonlinear 
function of the temperature. 

Temperature gradient lead to presence of space charge across the insulation due to 
temperature and field dependency of the conductivity. The space charge density is 
calculated using Eq. (2.13),  which in a steady state becomes: 

 ρ ൌ J ∙ ׏ ቀ
ε୭ε୰
σ
ቁ (5.1)  

 

As follows from Eq.(5.1), conditions for space charge accumulation across the 
insulation are defined by the dielectric time constant: 

 ߬ ൌ
ε୭ε୰
σ

 (5.2)  
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Fig.5.1: Temperature distribution across the insulation at different ΔT with ϕ ൌ 0.56eV 

Fig.5.2: Electric field distribution across the insulation at different ΔT with ϕ ൌ 0.56eV 
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Fig.5.3: Conductivity across the insulation at different ΔT with ϕ ൌ 0.56eV 

If the conductivity of the material is constant, the ratio constant, ε୭ε୰ σൗ  is also 
constant and its gradient is zero that results in zero space charge according to Eq. 
(5.1). 

However, the situation changes when a temperature gradient occurs in the insulation 
due to the heating originating from the conductor. The conductivity varies with the 
electric field and temperature, a temperature gradient generates a conductivity 

gradient and thus the permittivity to conductivity ratio ε୭ε୰ σൗ   will vary. Therefore, 
space charge is accumulated across the insulator and the amount of space charge 
increases with the temperature drop across the insulator as shown in Figure 5.4.  

In addition to the dependency on electric field strength and temperature, the 
conductivity of XLPE is also thermally activated. Thermal activation energy is 
defined as the least amount of energy needed for chemical reactions enhancing rates 
of conduction processes to take place. The conductivity of most dielectric materials is 
thermally activated with an activation energy in the range of 0.5eV-1.5eV. As seen 
from Eq. (2.19) decreasing the activation energy weakens the temperature 
dependency of the conductivity across the insulation and as a result, the field 
becomes more uniform under DC stress, as shown in Fig 5.5. Therefore, a low 
activation energy is desirable for insulating materials, however, they should still 
provide low leakage current through the insulation. 
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Fig.5.4: Space Charge distribution across the insulation at different ΔT with ϕ ൌ 0.56eV 

Fig.5.5: Electric field distribution across the insulation at different ϕ with ΔT=15Ԩ 
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5.3 Transient study 

Solution of the coupled nonlinear equations Eq.(3.2) requires, a set of consistent 
boundary and initial conditions. In the present study, an exponentially decaying 
electric potential the analytical solution of Laplace equation Eq. (2.2) and a flat 
ambient temperature profile across the insulation layer are taken as intial 
distributions, see plots in the left column in Fugure 5.6.  

Fig. 5.6: Initial values for electric potential, electric field, temperature and conductivity 
distribution across the insulation  

5.3.1 Time dependent boundary condition 

The thermal boundary condition on the insulation layer is time dependent. To 
accommodate the time dependency, the conductor heating on the conductor screen 
and convection-radiation boundary condition on the outer surface of the cable are 
encountered. Based on the modelling with the RC ladder circuit, T3 and T4 
represents the temperatures on the inner and outer part of the insulation layer 
respectivly and their time variations are shown in Figure 5.7. An important point to 
notice concerning the equivalent thermal circuit model in Figure 3.2 is that the 
nonlinear temperature dependence of the radiation heat transfer on the outer surface 
of the cable was taken into account as well as conduction and convection heat  
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Fig.5.7: Time dependent boundary condition for temperature 

Fig.5.8: Non-linear thermal resistance 
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transfer. The latter are linear with assuming that h and k are temperature 
independent. Hence, the nonlinear thermal reistance R7 varies at the beginning of the 
simulation and it attined a steady state value with time as shown in Figure 5.8. 

5.3.2 Time dependency and field inversion  

As was mentioned in the steady state study, the temperature difference across the 
insulation layer has a considerable effect on the electric field distribution of the 
insulation layer. The solution of the dynamic problem, Figure 5.9, shows how the 
temperature gradient develops with increase of the temperature over time. The 
corresponding distribution of the electric field at different instants are presented in 
Figure 5.10. 

Fig.5.9: Temperature distribution across the insulation at different time 

As it is seen , at the beginning whena DC voltage is applied, the electric field profile 
is capacitivle type. With time, the temperature gradient builds up which results in a 
decrease of the electric field at the inner part of the insulaion and its increase in the 
outer part of the insulation layer. This is due to the fact that the inner part of the 
insulation is warmer than the outer region and the resulting electric conductivity of 
the inner part of the insulation is higher than that of the outer part. A pure resistive 
electric field can be achieved only at infinite time. 
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Fig.5.10: Electric field distribution across the insulation at different time 

 

5.3.3 Build up of space charge across insulation layer 

The nonlinear behaviour of the electric conductivity leads to space charge build in 
the insulation. The dynamics of the process is shown in Figure 5.11. One can observe 
that the amount of the charge is higher in warmer regions of the insulation due to 
higher conductivities. For the given conditions, accumulations of the charges in the 
insulation takes ~1hr, as shown in Figure 5.12, and after this time the total 
accumulated charge remains practically constant with time.This is also refelected in 
the dynamic beaviour of the electric field observed in Figure 5.10. 
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Fig.5.11: Space charge distribution across the insulation at different time 

Fig.5.12: Total space charges build up with time 
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Chapter 6  

Conclusion and Future Work 

6.1 Conclusion 

This thesis provides a report on the research done on the coupled electrical and 
thermal effects within the XLPE insulation of a HVDC power cable. An efficient 
computer program implementing finite volume method was developed in order to 
solve the steady state and transient nonlinear field problems. The MATLAB code was 
verified against a COMSOL model. 

The developed computer program was applied to study dynamics of the temperature 
and electric field inversion across the insulation as well as space charges builds up 
with time. 

6.2 Future work 

Based on the experience and lessons learnt in the present study, the following future 
activities are proposed. 

 The electrical conductivity presented in this thesis work is only a function of 
electric field and temperature. This is often not true in reality. The electrical 
conductivity is also dependent on the local composition. The composition of 
the insulation material is due to diffusion of various substances. Experimental 
measurements of a composition can be added to the developed model.  

 The temperature dependency of specific heat capacity and thermal 
conductivity is neglected in this study. This can be added according to 
laboratory measurements of different materials. 

 Dynamic behavior of space charge and space charge generation in polymers, 
which is associated with injection and trapping, is open for future works. 
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Appendix  

Multiplying both sides of Eq. (3.2) by r: 

 
∂
∂r
൬rσ

∂V
∂r
൰ ൅

߲
ݐ߲
൤
∂
∂r
ሺrε଴ε୰

∂V
∂r
ሻ൨ ൌ 0 (A.1)  

 

 rρ
୫
C୮
߲ܶ
ݐ߲

ൌ
∂
∂r
൬rk

∂T
∂r
൰ ൅ rS୦ୣୟ୲ (A.2)  

Integrating Eq. (A.1) and Eq.(A.2) from west to east: 

 න
∂
∂r
൬rσ

∂V
∂r
൰ dr

ୣ

୵

൅
߲
ݐ߲
൥න

∂
∂r
ሺrε଴ε୰

∂V
∂r
ሻdr

ୣ

୵

൩ ൌ 0 (A.3)  

 

 නrρ
୫
C୮
߲ܶ
ݐ߲
dr

ୣ

୵

ൌ න
∂
∂r
൬rk

∂T
∂r
൰ dr

ୣ

୵

൅ නrS୦ୣୟ୲dr

ୣ

୵

 (A.4)  

 

Simplifying Eq.(A.3) and Eq.(A.4): 

 ൬rσ
∂V
∂r
൰
ୣ
െ ൬rσ

∂V
∂r
൰
୵
൅
߲
ݐ߲
൤൬rε଴ε୰

∂V
∂r
൰
ୣ
െ ൬rε଴ε୰

∂V
∂r
൰
୵
൨ ൌ 0 (A.5)  

 

 
1
2
ሺrୣଶെr୵ଶሻρ୫C୮

߲ܶ
ݐ߲

ൌ ൬rk
∂T
∂r
൰
ୣ
െ ൬rk

∂T
∂r
൰
୵
൅
1
2
ሺrୣଶെr୵ଶሻS୦ୣୟ୲ (A.6)  

 

Applying central difference scheme: 

 ൬
∂V
∂r
൰
ୣ
ൌ ൬

V୉ െ V୔
δr୔୉

൰ (A.7)  

 

 ൬
∂V
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൰
୵
ൌ ൬

V୔ െ V୛
δr୛୔

൰ 

 
(A.8)  

 

 

 ൬
∂T
∂r
൰
ୣ
ൌ ൬

T୉ െ T୔
δr୔୉

൰ (A.9)  
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 ൬
∂T
∂r
൰
୵
ൌ ൬

T୔ െ T୛
δr୛୔

൰ (A.10)  

 

Substituting Eq (A.7) and  Eq (A.8)  in to Eq (A.5)  and substituing Eq (A.9) and  Eq 
(A.10)  in to Eq (A.6) gives: 

 

ሺrσሻୣ ൬
V୉ െ V୔
δr୔୉

൰ െ	ሺrσሻ୵ ൬
V୔ െ V୛
δr୛୔

൰

൅
߲
ݐ߲
ቈሺrε଴ε୰ሻୣ ൬

V୉ െ V୔
δr୔୉

൰
ୣ
െ ሺrε଴ε୰ሻ୵ ൬

V୔ െ V୛
δr୛୔

൰቉

ൌ 0 
 

(A.11)  
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൰
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1
2
S୦ୣୟ୲ሺrୣଶ െ r୵ଶሻ 

 

(A.12)  

Rearanging Eq (A.11) and  Eq (A.12) : 
 

൬
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(A.14)  

 

Eq (A.13) and  Eq (A.14) can be writen as:  

 
a୉୚ଵV୉		 ൅ a୵୚ଵV୛ െ a୔୚ଵV୔

൅
∂
∂t
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(A.15)  
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(A.16)  

 

Where the coefficients are discribed below: 

 
a୉୚ଵ ൌ

rୣσୣ
δr୔୉

 

 
(A.17)  

 

 a୉୚ଶ ൌ
rୣε଴ε୰
δr୔୉

 (A.18)  

 

 a୛୚ଵ ൌ
r୵σ୵
δr୛୔

 (A.19)  
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Taking the time integration of Eq (A.15) and  Eq (A.16) 
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(A.27)  

 

To evaluate the integrals of Eq. (A.26) and Eq. (A.27)  an assumption is made about 
the variation of VE ,VW , VP and TE ,TW , TP with time . One may use potential/ 
temperatures at time t or at time t ൅ ∆t to calculate the time integrals, or alternatively 
the combination of the potential /temperatures at times t  and t ൅ ∆t . We can 
generalize this approach by introducing of a weighting parameter θ ranging between 
0 and 1 and write the integral for voltage and temperature I୚ and I୘ with respect to 
time as: 

 I୚ ൌ න VP dt

ݐ∆൅ݐ

ݐ

ൌ ቂߠVP ൅ ሺ1 െ θሻ VP
0ቃ∆ݐ (A.28)  

 

 I୘ ൌ න TP dt
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ݐ
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Hence, 
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If θ ൌ 0  the potential/temperature at old time level t is used. If θ ൌ 1  the 
potential/temperature at new time level t is used t ൅ ∆t is used; and finally if θ ൌ 1/2 
the potential/temperature at t and t ൅ ∆t are equally weighted. 

Therefore, using Eq (A.28) for VE ,VW and substituting in to Eq (A.26)   
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଴൯ െ a୔୚ଶ൫V୔ െ V୔
଴൯ ൌ 0 

(A.30)  

 

Further, using Eq (A.29) for TE ,TW and substituting in to Eq (A.27)   
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(A.31)

 

Since, Crank- Nicolson scheme is used, θ ൌ 1/2. Therefore simplyfing Eq (A.30) and  Eq 
(A.31) : 

a୉୚ଵ ቆ
V୉	 ൅ 	V୉	

଴

2
ቇ∆ݐ ൅ a୵୚ଵ ቆ

V୛	 ൅ 	V୛
଴

2
ቇ∆ݐ െ a୔୚ଵ ቆ

V୔ ൅ V୔
଴

2
ቇ∆ݐ ൅ a୉୚ଶ൫V୉ െ 	V୉	

଴൯

൅	a୛୚ଶ൫V୛	 െ 	V୛	
଴൯ െ a୔୚ଶ൫V୔ െ V୔

଴൯ ൌ 0 
(A.32)  

 

1
2
ሺrୣଶ െ r୵ଶሻρ୫C୮൫T୔ െ 	T୔	

଴൯

ൌ a୉୘ଵ 	ቆ
T୉	 ൅ 	T୉	

଴

2
ቇ∆ݐ ൅ a୛୘ଵ 	ቆ

T୛	 ൅ 	T୛	
଴

2
ቇ∆ݐ െ a୔୘ଵ 	ቆ

T୔	 ൅ 	T୔	
଴

2
ቇ∆ݐ

൅
1
2
S୦ୣୟ୲ሺrୣଶ െ r୵ଶሻ∆ݐ 

 

(A.33)  

 

Rearanging Eq (A.32) and  Eq (A2.33) : 
 

൬
a୔୚ଵ∆ݐ
2

൅ a୔୚ଶ൰ V୔	

ൌ V୉	 ൬
a୉୚ଵ∆ݐ
2

൅ a୉୚ଶ൰ ൅ V୛	 ൬
a୛୚ଵ∆ݐ

2
൅ a୛୚ଶ൰ ൅ 	V୉	

଴ ൬
a୉୚ଵ∆ݐ
2

െ a୉୚ଶ൰ 	

൅ 	V୛	
଴ ൬
a୛୚ଵ∆ݐ

2
െ a୛୚ଶ൰ ൅ ൬a୔୚ଶ െ

a୔୚ଵ∆ݐ
2

൰ V୔
଴ 

(A.34)  

 

൬
1
2
ሺrୣଶ െ r୵ଶሻρ୫C୮ ൅

a୔୘ଵ∆ݐ
2

൰ T୔	

ൌ a୉୘ଵ 	൭
TE	 ൅ 	TE	

0

2
൱∆ݐ ൅ a୛୘ଵ 	൭

TW	 ൅ TW	
0

2
൱∆ݐ

൅ ൬
1
2
ሺrୣଶ െ r୵ଶሻρ୫C୮ െ

a୔୘ଵ∆ݐ
2

൰ T୔	
଴ ൅

1
2
S୦ୣୟ୲ሺrୣଶ െ r୵ଶሻ∆ݐ 

 

(A.35)  
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Eq (A.34) can be written as: 

 V୔	 ൌ
a୉୚V୉	 ൅ a୛୚V୛ ൅ a୉୚଴V୉

଴ ൅ a୛୚଴V୛
଴ ൅ a୔୚଴	V୔	

଴

a୔୚
 (A.36)  

 

Here: 

 a୔୚ ൌ
a୔୚ଵ∆ݐ
2

൅ a୔୚ଶ ൌ
ݐ∆
2
൬
rୣσୣ
δr୔୉

൅
r୵σ୵
δr୛୔

൰ ൅ ൬
rୣε଴ε୰
δr୔୉

൅
r୵ε଴ε୰
δr୛୔

	൰ (A.37)  

 

 a୉୚ ൌ
a୉୚ଵ∆ݐ
2

൅ a୉୚ଶ ൌ
ݐ∆
2
൬
rୣσୣ
δr୔୉

൰ ൅ ൬
rୣε଴ε୰
δr୔୉

൰ (A.38)  

 

 a୛୚ ൌ
a୛୚ଵ∆ݐ

2
൅ a୛୚ଶ ൌ

ݐ∆
2
൬
r୵σ୵
δr୛୔

൰ ൅ ൬
r୵ε଴ε୰
δr୛୔

	൰ (A.39)  

 

 a୉୚଴ ൌ
a୉୚ଵ∆ݐ
2

െ a୉୚ଶ ൌ
ݐ∆
2
൬
rୣσୣ
δr୔୉

൰ െ ൬
rୣε଴ε୰
δr୔୉

൰ (A.40)  

 

 a୛୚଴ ൌ
a୛୚ଵ∆ݐ

2
െ a୛୚ଶ ൌ

ݐ∆
2
൬
r୵σ୵
δr୛୔

൰ െ ൬
r୵ε଴ε୰
δr୛୔

	൰ (A.41)  

 

 a୔୚଴ ൌ a୔୚ଶ െ
a୔୚ଵ∆ݐ
2

ൌ ൬
rୣε଴ε୰
δr୔୉

൅
r୵ε଴ε୰
δr୛୔

൰ െ
ݐ∆
2
൬
rୣσୣ
δr୔୉

	൅
r୵σ୵
δr୛୔

൰ (A.42)  

 

 

Eq (A.35) can be writtten as: 

 

1
2
ቆ
ሺrୣଶ െ r୵ଶሻρ୫C୮

ݐ∆
൅ a୔୘ଵቇ T୔	

ൌ a୉୘ଵ 	൭
TE	 ൅ 	TE	

0

2
൱ ൅ a୛୘ଵ 	൭

TW	 ൅ 	TW	
0

2
൱ ൅

1
2
ቆ
ሺrୣଶ െ r୵ଶሻρ୫C୮

ݐ∆
െ a୔୘ଵቇ 	T୔	

଴

൅
1
2
S୦ୣୟ୲ሺrୣଶ െ r୵ଶሻ 

 

(A.43)  

 

Rearanging Eq (A.43): 
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ቆ
ሺrୣଶ െ r୵ଶሻρ୫C୮

ݐ∆
൅ a୔୘ଵቇ T୔	

ൌ a୉୘ଵTE	 ൅		a୛୘ଵTW	 	൅ a୉୘ଵ TE	
0 ൅ a୛୘ଵ TW	

0 ൅ ቆ
ሺrୣଶ െ r୵ଶሻρ୫C୮

ݐ∆
െ a୔୘ଵቇ 	T୔	

଴

൅ S୦ୣୟ୲ሺrୣଶ െ r୵ଶሻ 

(A.44)  

 

Eq (A.44) can be written as: 

 T୔	 ൌ
a୉୘T୉	 ൅ a୛୘T୛ ൅ a୉୘଴T୉

଴ ൅ a୛୘଴T୛
଴ ൅ a୔୘଴	T୔	

଴ ൅ S
a୔୘

 (A.45)  

 

Here: 

 
a୔୘ ൌ

ሺrୣଶ െ r୵ଶሻρ୫C୮
ݐ∆

൅ a୔୘ଵ

ൌ
ሺrୣଶ െ r୵ଶሻρ୫C୮

ݐ∆
൅
rୣkୣ
δr୔୉

൅
r୵k୵
δr୛୔

 
(A.46)  

 

 a୉୘ ൌ a୉୘ଵ ൌ
rୣkୣ
δr୔୉

 (A.47)  

 

 a୛୘ ൌ a୛୘ଵ ൌ
r୵k୵
δr୛୔

 (A.48)  

 

 a୉୘଴ ൌ a୉୘ଵ ൌ
rୣkୣ
δr୔୉

 (A.49)  

 

 a୛୘଴ ൌ a୛୘ଵ ൌ
r୵k୵
δr୛୔

 (A.50)  

 

 
a୔୘଴ ൌ

ሺrୣଶ െ r୵ଶሻρ୫C୮
ݐ∆

െ a୔୘ଵ

ൌ
ሺrୣଶ െ r୵ଶሻρ୫C୮

ݐ∆
െ ൬

rୣkୣ
δr୔୉

൅
r୵k୵
δr୛୔

൰ 
(A.51)  

 

 S ൌ S୦ୣୟ୲ሺrୣଶ െ r୵ଶሻ (A.52)  
 

Therefore Eq. (A.36) and Eq. (A.45) are iteratively solved using Gauss Sedial method. 


