

MASTER'S THESIS 2010

IMPLEMENTATION OF A SOFTWARE TOOL

FOR DEVELOPMENT, SPECIFICATION AND VERIFICATION

OF LOGIC CONTROL PROGRAMS

Massoud Alahdini

Division of Control, Automation and Mechatronics

Department of Signal and Systems
Chalmers University of Technology

Göteborg, Sweden 2010

Master's Thesis 2010

Department of Signal and Systems

Division of Control, Automation and Mechatronics

Automation Research Group

Chalmers University of Technology

SE-41296 Göteborg, Sweden

Telephone: +46-(0)31 772 1000

www.chalmer.se

IMPLEMENTATION OF A SOFTWARE TOOL FOR DEVELOPMENT,

SPECIFICATION AND VERIFICATION OF LOGIC CONTROL PROGRAMS

© Massoud Alahdini, 2010.

Department of Signal and Systems

Göteborg, Sweden 2010

I

Abstract

This master thesis presents a practical work for implementing a software tool that is used for

automating formal verification tasks for PLC-programs.

PLC-programs being used in manufacturing industries are on the demand of new requirements
such as correct usage and behavior of the components. However, it is required to facilitate quick
and correct modification of the programs as much as possible. One possible solution is to reuse
the programs code.

The code that is structured into reusable components may speed up the development process.
Furthermore it may cause the control program to have fewer bugs. For this aim, the previous
research suggested to apply Reusable Automation Components (RACs). The RACs contain the
implementation and formal specification.

To enhance reusability, it is necessary to identify and specify the requirements for the RACs.
Additionally, the complete RAC including the specification must be translated into input to a tool
for formal verification, to determine whether the implementation of the components fulfils the
specification or not.

Performing all of these tasks manually is time consuming for developers, and even it is impossible
to test all different cases in which the components can be used. Therefore, building a software
tool to assist developers was a part of this project. The tool automatically generates inputs to
Cadence SMV tool for formal verification, and finally the result of formal verification is presented
as a feedback to developer.
To build the above mentioned tool, PLCOpenEditor that is an open source PLC programming
environment has been extended to support RAC and formal verification using Cadence SMV.

The tool has successfully been used for non-trivial case study; an industrial example of translating
the specification for a scan cycle based component is presented.

II

III

Acknowledgements

This work would not have been completed without help and support of many individuals. I would

like to thank everyone who has helped me along the way. Particularly: Dr. Knut Åkesson for

providing me an opportunity to conduct my master’s thesis with new research area and for his

guidance and support over the course of my thesis, Oscar Ljungkrantz for his supervision and for

helping me with various technical details, helpful comments on the text and his conversations

during the development of the ideas in this thesis, special thanks goes to my brother Ali and my

family without whose support none of this would have been possible.

IV

V

Contents
CHAPTER 1 - Theory ... 1

1.1 Introduction ... 1

1.2. Overview ... 3

1.2.1 Problem Description .. 3

1.2.2 Information Flow of Program ... 3

1.3. Background Theory ... 5

1.3.1 RAC/RAC Framework ... 5

1.3.2 Function Block ... 6

1.3.3 Scan Cycle.. 7

1.3.4 Formal Specification .. 7

1.3.5 Specification Text .. 8

1.3.6 Formal Verification .. 9

1.3.7 Symbolic Model Verification (SMV Model Checking) .. 9

1.4. Case Study ... 9

1.4.1 Introduction .. 9

1.4.2 Previous Work at University ... 10

1.4.3 Aims and Objectives of utilizing the tool .. 10

1.4.4 The Prepared Inputs of Example .. 10

1.4.5 The Output Result of Example ... 14

1.4.6 Benefits ... 18

CHAPTER 2 – Specification Tool .. 19

2.1 Building Graphical User Interface ... 19

2.1.1 Implementation and Integration of Specification Panel .. 20

2.1.2 Dividing Specification Panel ... 21

2.1.3 Resizing Specification Window ... 21

2.1.4 Switching Between Tabs .. 22

2.2 Saving and Loading Specification Data .. 23

2.2.1 Saving Specification to a XML file ... 23

2.2.2 Loading Information from XML-File to Editor ... 24

VI

2.3 Creating “Tools” Menu ... 25

CHAPTER 3- Java Implementation .. 26

3.1 Former Work at Department- (Translation of Control Logic into SMV) 26

3.2 Implement Translator (Translation of Specification Text into SMV Form) 27

3.2.1 Loading Original Specification for Converting into SMV .. 27

3.2.2 Parsing Original Specification String and Identifying Type of Words 27

3.2.3 Build a Parse Tree Structure for Keeping Specification Texts. 27

3.2.4 Build “_previous” for Each Variable ... 28

3.2.5 Converting Tree to SMV Expression ... 31

3.2.6 Call Methods ... 32

3.3 The Structure of Specification ... 32

3.3.1 Merging Strings Together .. 32

CHAPTER 4 – Integrating all programs in one tool .. 34

4.1 Calling Translator .. 34

4.2 Starting SMV .. 34

4.3 Applying Tool Feedback .. 34

4.4 Automating Tool ... 35

CHAPTER 5 – Conclusion .. 36

5.1 Conclusion ... 36

5.2 Future Work ... 37

References ... 38

Appendixes .. 39

Appendix A: (Concepts, Terms and Definitions) .. 39

Appendix B: (TABLES) ... 41

VII

List of abbreviations

FB: Function Block

FBD: Function Block Diagram

LD: Ladder Diagram.

PLC: Programmable Logic Controller.

RAC: Reusable Automation Components.

SMV: Symbol Model Verification.

XML: Extensible Markup Language

CTL: Computation Tree Logic

ST: Structured Text

LTL: Linear Temporal Logic

ST-LTL: Structured Text-LTL

1

CHAPTER 1 - Theory
This chapter gives a brief introduction, an overview and background theory to my master thesis

project. Furthermore, it describes a case study through an industrial example, which has been

applied to the implemented tool in this thesis work.

1.1 Introduction

This master thesis presents a practical work for implementing a software tool which is useful in

computer software development, in particular for automating the formal verification task for PLC-

programs. The software tool will be used for testing and formal verification, which are important

issues for developing and building Reusable Automation Components (RACs).

PLC (Programmable Logic controller) is a typical embedded system to instrument and control

systems. The PLC-programs that are generally referred to as logic control programs are used to

control and coordinate machines and robots in automated manufacturing system.

Traditional PLC-programs have been used successfully in industry so far, but they would be very

difficult to be modified, and to be extended to meet the new requirements. Moreover, PLC-

programs tend to be time consuming to change when the manufacturing systems have to be

changed (see [1]). Since, they often are tested to work first on the real equipments. Moreover, the

same equipments cannot be used for production if error should be solved. Furthermore, it will be

costly, since sometimes the traditional PLC-programs must first be tested to check if they work on

real equipment or not. Hence, fixing the errors before production line would be expensive.

Developing PLC program with reusable components is a possible solution to enable fast and

correct modification of the control logic. The code can be encapsulated and reused as Function

Blocks (FBs). However, just encapsulating the control code into FBs is not enough [1]. The FBs

should also be specified and be verified in order to work properly. For instance, it is required to

determine how the efficient FBs (The FBs that are reused) shall be used and what the components

guarantee.

The RACs mainly consist of two parts: implementation and specification. The implementation is

designed in Ladder Diagram (LD) which is the most common language in Programmable Logic

Controller (PLC) programs. The specification is written in Structured Text- Linear Temporal Logic

(STL-LTL) which is a text based specification language for PLC program components, see [1]. Both

the implementation and the specification are translated into inputs to a tool (SMV, Symbolic

Model Verification, see [1, 2]) for performing formal verification, in order to determine whether

the implementation fulfils the specification or not.

The SMV tool allows the developer to verify the behavior of the PLC program over all possible

operating conditions, and if the verification is not successful a counter example will be shown to

the user.

2

In order to enhance the development process, it is required to utilize an appropriate software tool

that can automate the mentioned tasks (translation and formal verification).

The tool is applied by the developers who require implementing, specifying and verifying the re-

usable software components of PLC programming. So a RAC can be implemented, specified and

verified in the developed software tool.

A former java based prototype at Chalmers University of Technology (CTH) has been implemented

based on PLCOpenEditor. PLCOpenEditor is a free and open source IEC 61131-3 automation IDE. In

this project, the PLCOpenEditor graphical user interface was extended for building the software

tool. The editor can be used for writing the specification data and saving the specification data in

XML file.

The java based prototype was extended for translating of the specification data into SMV format.

This part of software tool creates the automatic generation of inputs, which they will be input to

Cadence SMV tool. Some parts of the developed code launch the SMV tool properties for the

formal verification; in consequence, the results of the verification process are stored to different

output files. The output files can be observed by the user to see the faults, warnings and errors

which may exist.

This report starts by introducing the main issues and a general overview of thesis work, and a

background theory is described in the first Chapter, and then by presenting a case study shows an

application perspective of such a software tool, below is a short guide to the rest of the report.

In Chapter 2 developing the python code for building specification editor is explained. In Chapter

3, developing the java program for building translator is described. In Chapter 4, integration of

programs with SMV tool is described. Chapter 5 includes the conclusion, and the future work that

is suggested for the improvement of tool.

3

1.2. Overview

 This chapter will state the problem which is going to be solved, and describes the problem and

requirements on developing the program.

1.2.1 Problem Description

A main part of this master thesis work was dedicated to develop and implement a software

package. The aim has been to provide a tool for the developers in the automation group of signal

and system department who want to implement, specify and verify the RAC components.

To make such software tool, the following main tasks has been carried out:

• Developing a graphical tool for specifying the FBs

• Developing the automatic generating of inputs to Cadence SMV tool for formal

verification.

• Integrating the Editor, Translators, and SMV tool along with directing the information to

the paths, running and starting the program from command lines.

 1.2.2 Information Flow of Program

A general view of the whole process or the information flow of program has been depicted in

Fig.1, a developer builds the FB diagrams and writes the corresponding specification text into the

editor, the developer also is able to edit the previous information and FBs within this editor, and

after completion can store the information to a file with “.xml” extension.

Whenever developer clicks on verify button in the editor, the translation will be started first, the

translation of FBs or LDs into the SMV module along with Translation of ST-LTL specification into

the SMV form. The results of these two translation processes are stored in a file with “.smv”

extension. Other commands in the program launch the SMV and set this “.smv” file, this text file is

as an input to the SMV tool. After that, SMV is started to perform the verification process. In

consequence, the verification result is stored in a text file. A part of the program checks the

fulfilments of the verification, mainly it checks if the verification is true or false, if it is false means

that the requirements have not been met and it gives a message or show up the counter example

to the developer.

4

The later chapters describe the development of Translator program which has been used for

building the software tool, the overview of the processes with software tool is shown in Fig.1.

Fig.1 - An overview of the complete processes in this project.

5

1.3. Background Theory

This section attempts to give a background to the thesis work and argue why there is a need for

such a tool for specification and verification of PLC components.

In industrial application, there are number of manufacturing systems for mass production which

use machines and robots to automate tasks. Moreover, specific hardware and software

components are required for the automation of machines and robots.

PLC-programs are kind of programs, which coordinates the machines and the robots in industry.

However, the PLCs that have been used so far in industry shown to be successful, in order to meet

the new requirements in developing of the PLC-programs.

As in previous years, the challenge of shorter life-cycles of many mass-produced products has

been increased. This competition places new requirements on the PLC programs too. For instance,

it is required that the PLC programs to be easily modifiable or extendable. The modification or

extension is a difficult task, in which it needs to be tested on the real equipments, and it might be

difficult to be changed. Moreover, the cost of the production will be increased if any error is

detected. Since the error must be resolved in the previous equipment that caused an error, finding

a new solution becomes expensive when the equipment cannot be reused. Moreover, changing

the PLC-programs is time consuming task [1, 3, 4, and 5].

In some manufacturing companies, it is common to run the control logic against simulated

manufacturing systems. Moreover it has been possible to test and troubleshoot the control logic

in the earlier stages of development process. On the other hand, the control logic codes also can

be encapsulated and be reused as Function Blocks (FBs). Since, reusing components is known as a

beneficial design methodology in the development of embedded software products. One reason is

due to the fact that it alleviates the cost of designing new solutions. Other reason, the

development is faster if the designer can take the benefit of previous works and reduce the

repetitive testing or verification task, hence, creating the PLC-programs from reusable

components is also a way to expedite the correct modifications of the control logic [3, 4].

In order to create more effective software, a designer must be able to implement a new solution

and adapt that to fit the requirements of the design of PLC components. In the following sections a

RAC and its related issues are described, RACs are proposed for the components which are used

for developing the control programs. It is followed by an overview of formal specifications and

formal verification, the formal verification is to verify the reusability of software components.

1.3.1 RAC/RAC Framework

A Reusable Automation Component (RAC) is a component and specification structure that is useful

for building PLC-programs, the term “component” that often has been used in this project refers

to RAC too[1]. A RAC prototype development tool has been implemented in Chalmers University

6

of Technology within Automation group in the Department of Signals and Systems. In Fig.2, a

simple schema of a RAC is displayed.

The RAC (shown in Fig.2) consists of an interface and a body. The interface is the part which is

visible to the end users. However, the body of the RAC is only accessible to the developers of the

component [1].

The interface consists of three parts: Inputs, Outputs and Specification. The body includes the

implementation part of the components function along with the declaration of any internal

variables.

1.3.2 Function Block

The Function Block (FB) is the basic functional software unit that is the smallest element of a

distributed control system, which has its own data structure and a set of algorithms. These abilities

make it possible to access and modify the data. The models and the concepts introduced by the

PLC standards (such as: IEC 61131-3, see [7] and Appendix A) provide the possibility to define such

a distributed application to be hardware independent, the applications can be implemented by

modular components, and the components can be reused too [12]. The most PLC-programs are

implemented according to the IEC 61131-3 standard [7]. Hence in this project, only the IEC 61131-

3 standard is applied.

The RAC can be implemented as a FB; the FB concept is a kind of typical offered solution by

automation companies which was previously introduced in the PLC language IEC 61131-3

standard. FBs can be considered as small reusable pieces of software that prepare a software

solution in advance to a small problem. The RACs can be developed as IEC 61131-3 function blocks

7

which is extended with specification [2]. However, the FB might not be formally specified before, it

should be specified formally, even formal verification requires a formal specification. Hence, the

RAC is complemented with a formal specification [1, 3]. Moreover, the end-user will be able to

integrate the pre-made software block without further knowledge about the complex contents

such as internal components and functions etc. One advantage of using the IEC 61131-3 in

contrast to traditional PLC programming is the easy reusability of its software and easy integration

into the user program [8].

1.3.3 Scan Cycle

There is a scheduling function that is provided to ensure the correct execution sequence and

priority. Moreover, a PLC does not handle many tasks in the same time, but there is a parallel

computing that is simulated by an operation cycle. This operation cycle which will be run several

times per second is referred as the scan cycle of a PLC [12].The scan cycle is composed of four

basic stages:

1) Self-checking for finding the hardware and software faults

2) Input scan is the stage when all inputs are copied into the memory.

3) Logic scan is the stage which is using only the memory copy of the inputs while the

program is executed.

4) Output scan is the stages which are using the temporary values in memory while all the

outputs are updated. The output value can be changed only in the temporary memory.

Each FB may have a set of Input variables, outputs variables and enclosed algorithms in its

structure. This structure will be reviewed by an example that will be described in the later parts of

the case study.

1.3.4 Formal Specification

In this part, an overview and the description of the formal specification in the current project is

presented.

By convenient, “Formal specification in computer systems is defined as a mathematical description

of software or hardware”. The specification and implementation (or designs) are two mixed

processes. The specification describes what the system should do and how the system should

perform an action.

Informal descriptions of a RAC are not suitable for formal verification, since they might be

ambiguous and could be misinterpreted [3]. Nevertheless, formal specification is necessary and

suitable for formal verification. Formal specification handles with more effort in the early stages of

software development. With this way, the user will be able to specify the requirements of the

implementation.

8

Formal specification along with formal verification, reduce the requirements, errors and faults. In

consequence, any inconsistency or any unstable situation can be discovered and resolved in the

earliest phases of implementation. It is also expected to reduce any ambiguity or errors in the

requirements, which will result in saving the costs (time, expenses) of implementation and

validation in the developing of the system.

In this project, the formal specification must be expressed in a temporal logic notation with

precisely defined the grammar and syntax and semantics. Moreover, temporal logics are used to

describe Boolean logic and its relation over time. Two most common temporal logics are

Computation Tree Logic (CTL) and Linear Temporal Logic (LTL). They differ in how they handle

branching in the underlying computation tree. In CTL temporal operators it is possible to quantify

over the paths departing from a given state. In LTL operators are intended to describe properties

of all possible computation paths. [2, 15]

1.3.5 Specification Text

There is no former support of formal specification in developing and reusing FB’s, the ongoing

research in department[1,2] has proposed solution to use a text based specification language

instead of other existing language for PLC programming.

A text based specification language, is similar to the structured text (ST). Furthermore, it contains

some extensions. The aim of adding these extensions is to handle temporal/ time relations, since it

is mixed with simplified and clarified temporal logic[1,2], such that the specification apply the

temporal operators and functions.

The suggested specification language in [2] for PLC program components is based on the IEC

61131-3 language and LTL (Linear Temporal Logic). For instance, if “a rising edge of a Boolean

input � will always guarantee that at least one of the two outputs O1 and O2 will eventually be

true” be an example that should be specified (when the input transits from false to true), this in

LTL can be expressed as:

� �~� � �� �	
 �� �1 � 2��

This property can be specified using a text-based variant such as what written bellow.

Spec1: = ALWAYS (NOT I_previous & I -> EVETUALLY (O1 OR O2)); or

Spec1: = ALWAYS (I_risingEdge -> EVENTUALLY (O1 or O2));

The IEC 61131-3 standard contains Boolean and comparison functions such as AND (), NOT (), OR(),

GT() and EQ()[2]. These functions might be applied in both graphical languages (LD and FBD) and

text-based languages (Structured Text and Instruction List) of IEC 61131-3. Moreover, the logic

functions to be applied in text based languages have corresponding operators [2]. For example,

AND in IEC 61131-3 is both an operator and a function.

9

In structured Text the Boolean “and” relation between two variables p and q can be written such

as: p AND q, p & q, or AND (p,q). AND (p,q) is the function type of the other two forms. However,

there is a possibility for writing specifications graphically in Ladder Diagram (LD) or Function Block

Diagrams (FBD) as well. In this project, the specifications are written in the text based language.

1.3.6 Formal Verification

The implementation of PLC program has been designed in LD. The developer can write the

specification for this implementation. Then after writing the formal specification, it is possible to

apply formal verification techniques in order to demonstrate whether a system design is correct or

not. A developer is interested in testing if the implementation is correct with respect to the given

specification. Otherwise the result might be shown to the user and check what has been wrong

within implementation process.

1.3.7 Symbolic Model Verification (SMV Model Checking)

By definition, model checking (on a given model of system) refers to automatically testing whether

the model meets a given specification [9]. SMV (Symbolic Model Verifier) is a tool for checking the

finite-state systems to meet the requirements (or specifications), the specifications has given in

LTL. The model is required to be translated into the input language of a model checking tool. The

tool that has been used in this project is “Cadence SMV” tool [2, 11, and 14].

In the process of model checking, it checks if whether a given model satisfies the specification. The

most valuable feature of SMV tool is its counter example feedback. If a given model does not fulfil

the requirements of its specifications, then SMV presents a trace identifying why the specification

is false.

1.4. Case Study

This section provides a case study which briefly studies the usage of a software tool that has been

implemented in this project.

1.4.1 Introduction

The software tool has been applied for the purpose of the implementation, specification and

verification of Logic Control Programs. In this section, the case study represents an example

showing how this integrated program can be an appropriate tool for the developers who require

implementing, specifying and verifying the re-usable software components of PLC programming.

Fig.3 depicts a whole process of implementation, specification and translation of both into a SMV

tool for the purpose of verification.

10

As it is shown in Fig.3, the implementation (i.e. Implemented in a LD) is transformed into a set of

SMV modules; moreover the transformation retains the structure of block diagram model which

has been designed. The specification text also will be translated into the SMV language form. The

transformation and translation will be an input to SMV tool for the formal verification process.

In this case study, the design of PLC Ladder Diagram, the specification text and SMV approach to
PLC program verification is illustrated with an example. The design and implementation of this
software tool will be described in details in later chapters.

1.4.2 Previous Work at University

A RAC prototype development tool has been developed [3]. The Implementation part of designing

a model of PLC software components has been developed previously by Oscar Ljungkrantz in

automation group of the department of Signals and Systems in CTH, using Java programming

language to translate the control logic components into SMV. For the specification part, it was

suggested to be translated into the text format of Cadence SMV. PLC Open has defined an open

interface for PLC-programs, with an XML schema. Furthermore, The RACs should be saved to a

XML file according to that XML format [3].

1.4.3 Aims and Objectives of utilizing the tool

• To view the implementation of PLC software component, and to transform it into SMV

modules.

• To write a specification for the component, and translate it into SMV format

• To verify the result of SMV files, and convey a feedback to the developer

1.4.4 The Prepared Inputs of Example

This example, “BufferCounter” is presented to show how a RAC can be implemented, specified and

verified in the developed software tool. The “BufferCounter” is a RAC for collecting some

information from a buffer, the information that can be used while controlling the buffer. The

inputs and their types in this case study are depicted in Fig.4.

Fig.3. depicts the whole schema of Implementation, specification, translation and verification stages.

11

The RAC model has been proposed and provided by my supervisors (Oscar Ljungkrantz, Knut

Åkesson) at Chalmers University of Technology. This is an example of a FB that counts the number

of work pieces in a buffer (NbrWorkpieces). “Buffer Size” and “NbrWorkpieces” are defined as

integer, the other Inputs and Outputs are Boolean.

By conducting an inquiry on input and output sensors of the buffer, it will be possible to count the

NbrWorkpieces. Passing the respective sensor into the high or passing it out of the buffer is

considered for changing of the NbrWorkpieces. If the NbrWorkpieces is over the capacity of the

buffer size, it will give an error. Moreover, such information will be useful for controlling the buffer

on next steps.

The input file is a RAC example which should be opened in the editor. The user will be able to build

the LDs, FBs, and all the corresponding elements along with writing the specification, based on the

example stated in this study. The implementation will be transformed into the SMV module. The

files related to this case study along with software tool can be viewed in the attached CD to this

report, thus it is possible to build the RAC of this case study.

1.4.4.1 Implementation

The example demonstrates the development of a RAC BufferCounter, which has been

implemented as a FB in LD. LD is the most common language for developing PLC-programs (for

instance in car industries).

In the Fig.5, there are different panels in a PLCOpenEditor. Some of these panels are

implementation panel, specification panel and variables panel which have been highlighted in

Fig. 4- The variable declaration and code icon for a Buffer Counter

Output Sensor Input sensor

12

Fig.5. The developer can implement the FB example within the implementation panel (window) in

LD. For each FB might have an implementation window.

Fig. 5 - The input/output variables, implementation, and specification window are shown in this

figure.

The developer can choose a XML file from the menu “File/Open” on menu bar of the editor. It is

also possible to choose the FBs on the left side of the editor (in Project panel). The developer can

design and implement the LD and the elements which are the basis for reusing software. The

implementation later will be translated into inputs to the SMV tool for performing the formal

verification task.

1.4.4.2 Specification

The specification is written in specification windows within the separated text fields. The inputs

and outputs variables should be defined on the variables panel in advance whenever the user

implements the FBs.

As mentioned previously in the report, the specification “BufferCounter” example can be specified

in the specification language (ST-LTL), which is based on LTL and ST. Moreover, it is assumed that

the input sequences strings of specification be expressed in “prefix” form, which is one way of

writing expressions, these strings should not be in the form of “postfix” or “infix”, because the

13

program does not support the possibility of translating “postfix” and “infix”. This specification text

includes all five specification types which are stated in Table.

Specification type Specification texts(specified in ST-LTL)

O
p

e
ra

ti
o

n

 S
p

e
ci

fi
ca

ti
o

n

Operation

preconditions

OpPre := ALWAYS(GT(BufferSize,0));

O
p

e
ra

ti
o

n
 b

e
h

a
v

io
u

rs

CountUp :=

ALWAYS(IMPLIES(AND(SIn1_risingEdge,NOT(SOut_risingEdge)),(EQ(NbrWorkpieces,ADD(NbrWorkpiece

s_previous,1)))));

CountDown :=

ALWAYS(IMPLIES(AND(SOut_risingEdge,NOT(SIn1_risingEdge)),(EQ(NbrWorkpieces,SUB(NbrWorkpiece

s_previous,1)))));

UpNDown :=

ALWAYS(IMPLIES(AND(SIn1_risingEdge,SOut_risingEdge),(EQ(NbrWorkpieces,NbrWorkpieces_previous

))));

FullOrEmpty :=

ALWAYS(AND(IMPLIES(EQU(NbrWorkpieces,0),Empty),IMPLIES(GT(NbrWorkpieces,BufferSize),Full)));

E
x

ce
p

ti
o

n

S
p

e
ci

fi
ca

ti
o

n

Exception

conditions
ExcE:= AND(SOut_risingEdge,Empty_previous);

Exception

behaviours
ExcBhvr := ALWAYS(IMPLIES(ExcE,AND(EQ(NbrWorkpieces,0),Empty)));

Invariants

ErrorInv := ALWAYS(IMPLIES(GT(NbrWorkpieces,BufferSize),Error));

Besides the writing of these eight specifications that were described in Table1, the developer can

specify the minimum and maximum values of the integer variables within the editor, which is

required later for verification stage, these amounts should be written in the last text field of

specification window(within the editor). For instance, “BufferSize:(40, 50)” shows the initial value

of size that is dedicated to Buffer, these values are used in formal verification. In this example, the

minimum value of BufferSize is considered to be “40” and the maximum is given by “50”.

“NbrWorkpieces:(-1, 70)” shows the initial value for the number of work pieces, so the minimum

given value of the number of workpieces(i.e. NbrWorkpieces) is “-1” and the maximum given

value of this value is “70” in the first attempt of running the program.

After implementing FBs, designing in LDs language and writing the specification in the form of ST

language, the user can save both implementation and specification in an XML file by clicking on

“File/Save”.

Table1. Specification contents that are written within separated fields

14

 1.4.5 The Output Result of Example

All the specification and information should be edited in the PLCOpenEditor and be saved into the

BufferCounter.xml file. There is a program which has been developed in Java, and it acts as a

translator which automatically does the translation procedure. So the next step is the translation

from ST language to SMV code. The whole process of translation will be triggered when user Click

on “verify” on the sub-menu under the Tools menu of main editor in the software tool. (See in

Fig.6).

1.4.5.1 Translate to SMV Code

In translation process the implementation will be translated into SMV modules. The specification

will be translated to SMV language. Thus the translator first parses the specification text, and then

converts it to an SMV code. In consequence of the translation process, the result of translation as

input is fed to SMV tool for formal verification, the code will be verified in the SMV tool and the

output of the verification will be saved within different files. For instance, the SMV trace will be

placed in BufferCounter.smv.

The “BufferCounter.smv” file contains one record for each specification that has been checked. If

it is true, states that specifying the truth value of the specification. And if it is false, it presents a

Fig. 6- Launching the verification in the editor

Specification

panel

To launch

verification Implementation

panel

Variable

panel

15

counter example showing why the specification is false. The result of this checking is also stored in

the file “BufferCounter.out” , another output file is “BufferCounter.warn”, which contains the

errors and warning that has been made by verification process (i.e. running “verify all” within tool

bar menu of SMV). In the following sections the verification on the BufferCounter example will be

described.

1.4.5.2 Verification

This section takes a closer look at the process of formal verification of specification text that was

described in the previous sections, by going through an example.

As it has been explained in previous sections, the result of translation to SMV format and the

result of translating the implementation will be the inputs into SMV tool for performing formal

verification, to determine whether the implementation fulfills the specification or not. If the

Implementation does not fulfill the specification, then the result might be shown to user,

moreover the user can check what has been wrong within Implementation process. After

completing the verification process, a verification message will be pop up to developer as shown in

the Fig.7.

If “yes” option is chosen, a graphical user interface for “SMV” will be shown. Then the SMV result

can be viewed by the developer. However, the SMV graphical interface itself provides the ability of

source browsing, counter example browsing, abstraction editing, etc [2].

The SMV graphical interface is formed from a main menu bar, and a collection of "panes", each

one can be visible by clicking on its tab. These pans are depicted in Fig.8. The first pane that is

viewed is called “Source pane”, showing the currently loaded source-file (BufferCounter.smv)

Fig. 7- Informing message when requirements

not met

16

All of the properties in the file can be verified by selecting the "Verify all" option from the "Prop"

menu in the program (shown in Fig.9). One particular property (i.e. property name) can be verified

by choosing "Verify property" option from the “Prop" menu. This action is supposed to run the

SMV model checker in background, and to give a notification to the user whenever the verification

is completed.

To verify all of the properties, developer

must click on Verify all

The sources file contents: The

transformation in SMV module, and the

translation in SMV language

Fig. 8- The SMV graphical interface shows source file.

Fig. 9 – The SMV graphical interface for verifying the Source file

17

The results of the most recent verification run will be displayed in “Results” pane. The properties

that have been checked are listed in this pane. The results, either True or False, will also be shown.

It has been highlighted in Fig.10.

1.4.5.3 TRACE PANE

The counter examples and simulation traces can be displayed in the trace pane view. It is similar to

a spreadsheet (i.e. shown in Fig.10), where the rows represent the variables and the columns

represent time [2].

1.4.5.4 Viewing Log File

A log of the verification process will appear in another pane which is called log pane. This file is

created as SMV is progressing to complete the process of model checking.

a counter example

Counter example results in Trace pane

Fig. 10 – The SMV graphical interface for viewing the result in Trace pane

18

The verification process is launched by internal commands which save the results in different files.

For instance “log file” is one of those files that a user can observe the result of verification. There

are some other output files that will be created such as “BufferCounter.warn” showing the

warnings, and “BufferCounter.out” that shows the errors if any exists.

However, if verification failed after launching the verification process, the user is informed before

showing the contents of the output files. If any of specifications is false, the SMV model checker

tool will produce a counter example, the counter example contents can prove that the

specification is false [11].

1.4.6 Benefits

This case study presented an industrial example that contains a formal verification of a PLC

system, which shows how the specification can be automatically translated into Cadence SMV

input language, and how it is formally verified. It shows how the formal verification process can be

useful in real applications. The Software tool automatically verifies that the implementation fulfils

the specification. Otherwise, if the implementation does not fulfil the specification, it produces a

counter example to state the reason that the specification is not fulfilled. In consequence, the RAC

can be corrected and verified again until the complete specification is fulfilled [3]. In next chapters

will describe how the program has been implemented.

Log of the

verification process

Fig. 11 – The SMV graphical interface for observing the log file

19

CHAPTER 2 – Specification Tool
In this chapter, the implementation of the specification editor is described. This editor window is

integrated to PLCOpenEditor that was implemented by LOLITech group in Beremiz PLCOpen

project. The PLCOpen Editor is the one of Beremiz's sub-projects; Beremiz is an open source for

automation IDE that is based on IEC 61131-3, which is a multi-platform IDE for automation [6].

2.1 Building Graphical User Interface

A Graphical User Interface (GUI) is required to be used for creating the example components in it.

In this project, we decided to develop the same PLCOpenEditor GUI that was implemented in

python by LOLITech group; this PLCOpenEditor is shown in this Fig.11.

The PLCOpenEditor before integrating the specification window is similar to what is shown in

Fig.11, in this editor the developer can make Functions and Function Blocks, and set the input

and output variables, etc. After integrating another panel for specification, it looks like Fig.12

that is shown in next page.

Fig.11- PLCOpenEditor before integrating specification window

20

The aim of the first part of this chapter is to show how the specification editor has been developed

within framework of this project, the specification editor (shown in Fig.12) is one editor which has

been integrated to the previous editor (shown in Fig.11) that basically was made by Beremiz

group. In the following sections, this development has been described. It is not possible to

describe all details of programming and codes in this report; however the attempt was to give a

main view from what has been done.

2.1.1 Implementation and Integration of Specification Panel

To Implement and integrate the specification window into the PLCOpenEditor, the following lines

has been written in the PLCOpenEditor to build the specification panel.

self.panel = SpecificationPanelIndexer(self, self, self.Controler)
 self.AUIManager.AddPane(self.panel,
wx.aui.AuiPaneInfo().Caption("Specification").Center().Layer(0).BestSize(wx.Size(50,200)).CloseButton(False))

Table 2. Part of PLCOpenEditor code which implements the specification panel

The following Fig.13 shows the main files of editor that have been extended in this project. Those

classes that have been imported in “PLCOpenEditor.py” file have .py extension.

Fig.12- PLCOpenEditor after integrating specification panel

21

The “Specification.py”, “SpecificationMap”, and “TagToSpecificationMap” have been built, and the

other files just have been changed.

2.1.2 Dividing Specification Panel

A specification panel has been divided to six parts. Each part has a label and a text field (shown in

Fig.14), so it is more convenient for developer to enter the input texts into these text fields. The

specification text should be saved in and be loaded from the file with .xml extension.

2.1.3 Resizing Specification Window

At this stage, a specification panel (i.e. Fig.14)within PLCOpen Editor(i.e. main editor shown in

Fig.12) has been created. However, PLCOPen Editor has many panels such as variables panel,

library, project. Whenever the developer clicks on the maximize button(on the right corner of

window), all of these panels will be resized to the maximum. The specification panel should also

be maximized whenever the panels are maximized.

Fig.14- specification panel view that has been integrated to PLCOpenEditor

PLCController.py

PLCOpenEditor.py

PLCOpen.py

SpecificationMap.py

TagToSpecificationMap.py

Specification.py

Fig.13- The files that have been changed or built in this project

22

The code (i.e. shown in Table 3) was extended within “PLCOpenEditor.py” to provide a possibility

for automatically resizing of the specification window. When a new file is opening to the main

editor or clicking on maximize button that is available on the right corner of the main editor.

sizer = wx.FlexGridSizer(cols=2, hgap=6, vgap=6)
sizer.Hide(self)
sizer.AddMany([Ope_PreLbl, (Ope_PreTxt, 1, wx.EXPAND), Ope_BehLbl, (Ope_BehTxt, 1, wx.EXPAND), Exc_ConLbl,
(Exc_ConTxt, 1, wx.EXPAND),Exc_BehLbl, (Exc_BehTxt, 1, wx.EXPAND),InvariantsLbl, (InvariantsTxt, 1,
wx.EXPAND),VariablesLbl, (VariablesTxt, 1, wx.EXPAND)])
self.panel.SetSizer(sizer)
sizer.AddGrowableCol(1,0)

Table 3. Part of PLCOpenEditor code which extends the size of specification panel

The aim of the part of code that is shown in Table 3 is to solve the problem of resizing ability, to

resize the specification panel whenever the size of main editor changes. The panel has put in a

“sizer”, the proportion is set to “1”, and the wx.EXPAND style flag is used for each “widget” in

order to resize each of the text fields within the panel. Here, a widget is an element of editor such

as: text field, buttons, text area, etc [6]. The widget displays information arrangement changeable

by user. All eight rows and the second column have been made growable. By this way, the text

controls is allowed to be extended (i.e. growable), when the window is resized. The eight text

controls will grow in horizontal direction. “wx.EXPAND” has been applied to make the widgets

expandable.

2.1.4 Switching Between Tabs

Inside the PLCOpenEditor (shown in Fig.12), the user can open different FBs. Whenever the user

chooses a FB, one different tab is opened (for each FB). By clicking on tabs within editor different

implementation and specification are shown. Since each tab in the PLCOpenEditor has its specific

information, the user should visit different information regarding to different tabs when switches

between various tabs. So it is expected that information change when the user switch to another

tab. For instance, the information within each specification editor panel belongs to only one tab

that is opened; hence the corresponding information should be updated by switching to another

tab. hereafter this possibility of switching between different FB's is called Tab-Switching.

During the development of specification panel, there was a problem when user was switching to

the next tab (Tab-Switching). The contents of specification within the text editor were the same as

the information in the previous tab. while the contents should be changed over different tabs.

The quality of Tab-Switching for specification panel resembles from the previous implementation

of Tab-Switching for Variable panel. In this example, each “Tab” has a “tag name”, and each

“Variable Panel” instance is associated to a tag name.

23

The class “TagToSpecificationMap ()” has been created in “TagToSpecificationMap.py” to be used

for adding, updating the contents of specification panel to a hash map or removing those contents

from the hash map. The classes within this file will be imported into PLCOpenEditor.py file.

The hash map data structure that keeps all specification information over different tabs was

named: mySpecificationMap = {}, It is more efficient to find / search for items in a hash map than

in a list.

For instance, if there are three tabs which are opened, myspecificationMap has all three part of

information that loaded in the editor. Each one having the list of its own displayed specification.

Whenever the user switches to a different tab, the list corresponding to that tab will be filled.

The “storeSpecification(self, tabName)” method is implemented such that it has the ability of

storing data in the file when Tab-Switching will happen, the contents of each specification window

will be stored before Tab-Switching , when “self.storeSpecification(oldTab)” has been called. The

last information within the tab will be removed just after switching a “Tab”.

2.2 Saving and Loading Specification Data

It was important to know which part of previous code in PLCOpenEditor.py has been written for

opening and loading the data such as inputs to variable panel window. This learning from the

previous code hinted us to apply the similar implementation for loading the information from .xml

file to the specification window. Also the implementation must be extended for saving the

information to the .xml file. Two methods have been written in PLCControler.py file for this

purpose. “SetEditedElementSpecification()” and “GetEditedElementSpecification()”.

2.2.1 Saving Specification to a XML file

The entire project is saved when the developer clicks on the File/Save on the main menu of

PLCOpen Editor, then the contents will be saved in a XML file based on PLCOpen standard (See

[6]). In this standard, there is not such a pre-provided tag for storing the content of new window

editor, but it is required to store the contents only in this file. According to the PLCOpen standard,

each tag of the .xml file can have a ‘documentation’ tag. Within this tag, a user is allowed to write

any context. Hence, the only appropriate place for storing the specification data was suggested to

be in documentation tag within that “.xml file”, the method for set specification function is written

as follow:

24

 def SetEditedElementSpecification(self, tagname, specification, debug=False):

 words = tagname.split("::")
 if words[0] == "P":
 pou = self.GetEditedElement(tagname, debug)
 if pou is not None:
 if(pou.interface is None):
 pou.interface = plcopen.pou_interface()
 if (pou.interface.getdocumentation() is None):
 pou.interface.adddocumentation()

 pou.interface.getdocumentation().settext(specification)
 self.BufferProject()
 self.ProjectBuffer.CurrentSaved()

Table 4. Part of PLCOpenEditor code which implements storing from specification panel into XML file

It was needed to call “self.BufferProject() ” in “SetEditedElementSpecification” after setting

specification for POU. The calling was done from PLCOpenEditor code. It must also refresh

PLCOpenEditor title and EditMenu.

So by calling the method that is written in Table 4, the specification contents can be stored into

the “documentation” tag of the interface of each “POU” in the XML file.

2.2.2 Loading Information from XML-File to Editor

The method “GetEditedElementSpecification”is to get the specification data from .xml file, and

loading those data into text fields. Transferring data into the specification Editor of PLCOpenEditor

is done when the user opens the FB, one of the important classes for this task was “xmlClass” File.

 def GetEditedElementSpecification(self, tagname, debug=False):
 words = tagname.split("::") # words is a list of ['p','temp']
 if words[0] == "P":
 pou = self.GetEditedElement(tagname,debug)
 if (pou is not None):
 if(pou.interface is not None):
 if(pou.interface.getdocumentation() is not None):
 return pou.interface.getdocumentation().gettext()

 return ""

Table 5. Part of PLCOpenEditor code which implements the loading of information to the editor

Hence, when the GetEditedElementSpecification() is called, it is expected to load all of the

information and transfer them into the text fields of the editor screen , the information included

all the specification and initial variable inputs which have been saved within documentation tag

within XML file. The documentation is a single text element.

25

2.3 Creating “Tools” Menu

On the “PLCOpenEditor” menu bar, a “Tools” menu has been created for running the Java

program. Under this “Tools” menu, a sub menu named “Verify” has been provided too, the

“Verify” sub menu is created to launch the program. When developer clicks on the “Verify”, both

the specification and the implementation will be transferred into SMV format, the SMV tool will be

run and the result of verification process will be checked to see if the requirements are met. For

running this process, several commands have been run with in background on command line while

program is running. All of the commands has been called from “OnVerifyMenu(self, event)”

method within PLCOpenEditor.

The methods“ ShowVerificationFulfilledMessage(self,event)”,“ ShowWarningMessage(self,event) ”

and “ ShowVerificationFulfillmentFalseMessage(self,event)”, are those methods that have been

implemented to demonstrate the results messages to the developer.

26

CHAPTER 3- Java Implementation
This chapter emphasize on the implementation of translator program which has been developed

in Java.

3.1 Former Work at Department- (Translation of Control Logic into SMV)

The folder structure of “translator” implementation has been shown in Fig.15.

Fig.15 - the folder structure of Translator

27

3.2 Implement Translator (Translation of Specification Text into SMV

Form)

In Fig 15, under the “rac” folder, the name of the java files which have been developed is depicted.

The white boxes including names such as: “SMVSpecificationBuilder.java”, “SMVModule.java” and

“SMVModelBuilder.java”, are the files that have been developed or changed in this project.

The remaining java files, those files that are marked in gray colour boxes in Fig.15, have been

implemented previously to this work. Mainly, they belong to the Implementation part of designing

a model of PLC software components, which has been developed by Oscar Ljungkrantz.

Furthermore, the Translation of Control Logic to verification tool (SMV) has been described in

paper [3] p.8. On this Translation the body of the RAC (shown in chapter1-section3, and Fig.2) is

transformed into an input into Cadence SMV.

3.2.1 Loading Original Specification for Converting into SMV

The original specification string which has been saved in the documentation part of .xml file should

be read by translator program. The Translator will convert the specification string into the SMV

format.

The “Public boolean createSpecification(String originalSpec) ” is the the most important method

of the “SMVSpecificationBuilder” class, which translates the original specification (taken from the

editor) to the corresponding specification in SMV.

3.2.2 Parsing Original Specification String and Identifying Type of Words

The original specification (originalSpec), which has been stored in “.xml” file, should be separated

from tag elements. The tag element is the word inside “<” and “>”. The words that are tag

elements are considered as delimiters. And the method “specSeperator (String strSep, String

originalSpec)” separates the texts between tags(saved in “strSep” list). Then the texts are retuned

and are stored into “strSplited” string list.

3.2.3 Build a Parse Tree Structure for Keeping Specification Texts.

An ordered tree data structure in the prefix form is used to store the array of strings, where the

keys are the separated specification strings. The tree will be a general tree, none of nodes store

the key associated to that node, and while the position of node in the tree indicates what key a

node is associated with. All the descendants of a node have a common prefix of the associated

string to that node. Moreover, the root of tree is associated with an empty string. The values are

associated with leaves and some inner nodes.

In order to traverse this tree (tree T), the preorder traversal is applied. In a preorder traversal of

the tree T, the root of T is visited first, and consequently the subtrees of the root are traversed one

28

by one. However, if the tree has a specific order then the subtrees are traversed according to the

order of the children. The subtrees are traversed recursively.

The algorithm which is used for performing the preorder traversal of the subtrees of the tree T, is

useful to make a linear ordering of the nodes of the T such as string. by this way, the parent must

always come before their children in the ordering.

In this part, the string will initially be set in a tree structure by “generateTree(String input)”

method. By calling “generateTree” method, another method “evaluate (tree, tree.root (), tokens)”

is called to check if whether the tree structure string is correct or not! The methods traverse the

tree and the subtrees recursively until it reaches to the last nodes (the left and the right nodes of

subtrees) and then evaluate the nodes and translate the root of that subtree, the result will be

return to the one level before the current level. This process will be continued recursively until

the result of each level will be return to the one level before, in the root we will have the

evaluations from the left and right sides of root along with the translation of the node.

3.2.4 Build “_previous” for Each Variable

The “Boolean addPreviousVariableForSpecification(string variableName,int previousLevel) ” is a

method that creates the variable , it is used to add “_previous” suffix as many times as is required,

it depends to the level of variable, “_previous” is the value of variable for the last time execution

of RAC .

The method counts the level (i.e. number) of “_previous” suffix that is used and is stored as n. then

the method will add the “_previous” to the name of variable, the number of “_previous” that will

be added is equal to the number of variable level. For instance, if the “variableLevel” of “X” is

equal to n, then method will add n-1 X prefix’s around every specification, to avoid problems with

pre-initial values. For n=3, the format of variable will be X _previous_previous_previous. The

parentheses are added to the resulting SMV specification to preserve the order of precedence.

The static structure of translator program is described in following pages. Fig.17 and Fig.18 show

the form of class diagrams that is applied.

29

Fig.17- Part (I) of Class Diagram for Translator program

30

+TimeVariable(in name : string) : <unspecified>

+getVariableDeclaration() : string

+setMinValue(in minValue : string) : void

+setMaxValue(in maxValue : string) : void

-minValue : string

TimeVariable

+standardFBs()

standardFBs

+BooleanVariable() : <unspecified>

+getVariableDeclaration() : string

+getInitialValue() : string

BooleanVariable

+intVariable(in name : string) : string

+getVariableDeclaration() : string

+setMinValue(in minValue : string) : void

+setMaxValue(in maxValue : string) : string

+getMinValue() : string

+getMaxValue() : string

+getInitialValue() : string

-minValue : string

-maxValue : string

intVariable

+variable(in name : string) : string

+getVariableDeclaration() : string

+possibleValues(in posValues : void) : void

-possibleValues : object

stringVariable

+variable() : <unspecified>

+setInitialValue(in initialValue : string) : void

+getInitialValue() : string

+getVariableDeclaration() : string

+initialValue : string

#name : string

variable

HashMap

+SMVModel() : object

+addNewModule() : Boolean

+createFile(in fileName : string, in path : string) : void

-Modules : object

-standardModulesNameToCountMap : object

SMVModel

+verificationModel() : <unspecified>

+createFile(in fileName : string, in path : string) : void

verificationModel

Fig.18- Part (II) of Class Diagram for Translator program

31

3.2.5 Converting Tree to SMV Expression

In converting the tree into the SMV expression each operator acts as a parent and the operands as

children in tree in which each operand could be an expression by itself (i.e. represented as a sub

tree, containing operator and operands). Generally, the translation is done recursively; the

operator (the parent) will be translated and get the evaluated SMV expression of both children

(recursively) which results in two strings.

Each element of the string (i.e. a tree structure) will be translated to SMV by another methods

which are called “getSMVString(NodeTree tree, Position pos)”and “replaceSpecVariables(String

smvString)”. Moreover, in this project the translating process is done without considering the

grammar issues.

The translation is based on the table in appendix B (similar table exist in [3]). An example of

original specification string and its translation will be shown in following tables as well.

For simplicity, the input string made in the form of prefix; prefix is one way of writing expressions.

For instance, an expression such as “A * (B + C) / D” form will be changed to the form that

operands are written before their operators, then it looks like this form: / (* (A, + (B, C)), D).

<![CDATA[<OpPre>OpPre1:=ALWAYS((MaxMoveTime>0)& ((DesiredState=Forward) OR
(DesiredState=Backward)));</OpPre>
<OpPre>OpPre2:=ALWAYS(MoveIn & MoveIn_Previous->(DesiredState=
DesiredState_previous));</OpPre>
<OpBhvr>MoveOrAlarm:=ALWAYS((ALWAYS MoveIn)->EVENTUALLY((State = DesiredState) OR
TimeOutActFwds OR TimeOutActBwds));</OpBhvr>
<ExCond>Reset:= ResetAlarms;</ExCond>
<ExBhvr>ResetBhvr:= ALWAYS(ResetAlarms->(Not TimeOutActFwds & NOT TimeOutActBwds & NOT
AlarmUnauthMove)); </ExBhvr>
<Inv>NotIllegalMove:=NEVER(ActuatorFwds & ActuatorBwds);</Inv>
<Inv>Stop:= ALWAYS((NOT MoveIN)->(NOT ActuatorFwds & NOT ActuatorBwds));</Inv>]]>

Table 6: showing the specification string which has been loaded from the .xml file

The translated string is similar to following:

As it is shown in the above tables, for instance the string from Table 7 is:

OpPre1: assert G ((MaxMoveTime>0)& ((DesiredState=Forward) | (DesiredState=Backward)));
OpPre2 : assert G ((MoveIn & MoveIn_Previous)->(DesiredState= DesiredState_previous
MoveOrAlarm : assertG (((G MoveIn))-> F ((State = DesiredState) | TimeOutActFwds |
TimeOutActBwds));
Reset : assert ResetAlarms;ResetBhvr : assert G ((ResetAlarms)->(~ TimeOutActFwds & ~
TimeOutActBwds & ~ AlarmUnauthMove)); ~IllegalMove : assert G ~(ActuatorFwds &
ActuatorBwds);
Stop : assert G (((~ MoveIN))->(~ ActuatorFwds & ~ ActuatorBwds));

Table 7: showing the translation of the specification string

32

“OpPre1:=ALWAYS ((MaxMoveTime>0) & ((DesiredState=Forward) OR(DesiredState=Backward)));”

Is translated based on the Table (I) into following string:

“OpPre1: assert G ((MaxMoveTime>0) & ((DesiredState=Forward) | (DesiredState=Backward)));”

3.2.6 Call Methods

In order to check the validity of a string evaluate() method is called. This method checks if the

input string is valid word, if it is not valid then it prints warnings and it would return false. The

“smvModule.variableExists(varName) ” method is called to check if whether such a word is a

variable name. This method is called from isVariable(String name) method. This function is

implemented in another file which is called SMVModel.java.

If the word does not exist among the variables, then it will be checked if that is available in any of

other Hash maps. If it is available then the key word should be replaced with its equivalent value

that is available in hash map. Otherwise if that word doesn’t not exist inside any of the maps, it

will be considered as an unknown variable, operator or functions either suffix. However, the

program should warn the user for correcting the mistakes.

Inside the “isVariable” method, also “isInteger” method is called to check if the input is not

variable, then it would be a valid integer or not. There are different maps for boolean operators

and functions, for temporal operators and functions, and for suffix.

“isFunction(String name)” also will be called inside the evaluate method to check if the taken

name would be a name of the functions which has been defined previously.

getSuffixCount(String var), getAbsolutVarName(String var, String pattern) are the others methods

which will be called too. “setSpecification(String spec) ” method is used to set/add the finished

SMV- Specification to the SMV module.

Different words have been substituted with the dedicated words that are available in different

maps. The program has the ability to split the main string to tokenize the words and then

compare each word (i.e. token) with its pair which is available in the map (i.e. shown in below). If a

word is available in any map then swap that words with its equivalent, otherwise it must give a

warning to the user for correcting that word.

In order to translate this string we have put the different words in the separated ‘Hash Map’, the

schema of these Hash maps is shown in Appendix (B).

3.3 The Structure of Specification

Whenever the translation all of the specification strings is finished, it is required to merge the all of
the strings together to build one string.

3.3.1 Merging Strings Together

The formal specification is a structured approach which allows us to break a system into subparts

and rearrange them later by putting the subparts together again, hence this formal way is suitable

for describing the structure of reusable component system such as RAC, and moreover it should

also describe the main functionality of the component.

33

In paper [1], it has been proposed to apply a formal specification for complementing the

description of RAC. The structure of the proposed specification has been inspired from by the

concept and terminology of “Design by Contract”.

Applying “Design by Contract” has particular attention to reliability aspects of object-oriented

software, and discusses how to reduce bugs by building software components on the basis of

carefully designed contracts [13].

Model checking in SMV tool can be performed automatically and gives the possibility to produce

counter examples; the counter examples demonstrate the reason that specification was not

fulfilled.

The five part of specification structure for scan cycle based RACs have been described in [2]. The

RAC is consisted of interface, and implementation. Specification is an important part of the

interface and it consists of the following five parts:

• Operation Preconditions
• Operation Behaviors
• Exception Conditions
• Exception Behaviors
• Invariants

All invariants and all exception behaviors should hold after every update of the RAC. Each

exception behavior should include at least one exception condition (and each exception condition

must be included in at least one exception behavior). Each operation behavior must be fulfilled

after every update if all operation preconditions and no exception conditions were fulfilled at the

start of and during the update. Mathematically, this is expressed as:

���ℎ�� � � � � �������� ! ∈#�� ! $ � � % � �&'!() ∈*() + �1	

In formula (1), where F is the temporal "future" operator, should hold for each ���ℎ�� ∈��ℎ�� . If for instance the|����| = 0, then / �������� ! ∈#�� ! should be replaced by

“true”, however if |0&'| = 0 , then ��1 �&'!)(∈ *() 	 should be replaced by false [2].

The function of the RAC indicated by formula (1) has been implanted in “Translator” part of this

project. Inside the method “createSpecification(String originalSpec)” in Java program, the

“OpBhvr”, “opPre” and “exc” will be taken from “specStructure ” Hash map and will be combined

based on the formula(1) , with the “& ” either “|” operator to construct the final specification

structure.

34

CHAPTER 4 – Integrating all programs in one tool
This part describes how the integrating of the implemented programs is performed. The aim of

integrating the programs is to build a software tool, and the integrated software tool is a

combination of three programs: the implementation of translator, the implementation of GUI, and

SMV tool.

4.1 Calling Translator

The java program should be called from the editor, the “OnVerifyMenu(self, event)” method is

the method which has been developed in “PLCOPenEditor.py ”file for this purpose.

The translation is started with the following command line that will run the java program.

cmd_line1= 'java -cp build;lib/jdsl.jar -enableassertions org.supremica.external.rac.Main -SMV ' +

middle + ' . %5 %6 %7 %8 %9'

Table 8. Command line for running the translator program

4.2 Starting SMV

The command line (cmd_line2) run the SMV on the input file, and the result will be saved in

“output.txt” file.

cmd_line2="smv -all "+tagname+".smv > output.txt"

Table 9. Command line for starting the verification tool

The content of “output.txt” will be checked to see if any of model checking results is false or not,

in any condition it will give a feedback to the user.

4.3 Applying Tool Feedback

A single automated test is to assure either the implementation meet the specification or not. The

output of executing the software tool would be one of three results: success, failure, or error.

Success indicates that all specifications were true, which means that the implementation fulfills

the specification and no errors were triggered. That is, of course, the desirable outcome. Failure

and error indicates different problems with the implementation of completion of verification task.

A failure result, for instance, means that one of the specifications returns false; Indication that the

verification runs successfully, but it is not what the user expect. An error result means that an

error was triggered somewhere in the verification stage, showing that the user verification was

not running successfully. Since the errors will be saved in a log file, the user can review that text

file to see which errors have been detected. And this also shows which specification is false and

which one is true. So the developer is able to correct the mistakes and move forward on to the

next.

35

The feedback to the user will be presented by showing view messages, such that at the last stages

of running verification process, some messages windows will popup. These messages are based on

analysing the output files. For instance if the requirements are not met, a popup message as

shown in Fig.7 will be displayed to inform the user about the verification result. Following

methods have been developed for displaying different popup messages.

1- “ShowVerificationFulfilledMessage(self, event)” is the method that will be called for

showing a window to the user, the information in the window imply that the verification

has been fulfilled.

2- “ShowSpecFulfillmentFalseMessage(self, event)” is the method that will be called for

showing a window to the user if the verification has not been fulfilled. The user can also

view the SMV file to check the errors.

3- “ ShowWarningMessage(self,event)” is the method that will be called for showing the

warning messages to the user, if there is a warning inside of a file with “.warn”

extension, it will be shown to user.

4.4 Automating Tool

The possibility of automatic verification provided in this project, a user only click on verify within

the editor program, it calls the different programs in the background, the user will not be involved

to run one by one programs that has been developed. Even the programs that may exist inside of

different paths, they will be run automatically, moreover the output results also will be sent to

specific files and folders.

The tool which has been built should automatically do all the tasks and produce the results. The

result of verification process should be announced anyway to the user who has written the

specification into the PlcOpenEditor.

In this automated tool, it is expected that after entering and editing the specification into the

specification panel of the Editor, the developer clicks on Verify button under Tools menu of Editor.

This action runs both the conversion and the verification process automatically. First, the

translator is called for converting the specification to SMV format. Then after, the result of

conversion set as input to the SMV verification tool, for checking and verifying if the verification is

fulfilled or not. The result of verification is announced to the user. Moreover, if there is some error

it is showed to the user too.

36

CHAPTER 5 – Conclusion
The following two sections describe the conclusion and the future works that is foreseen from

doing this project.

5.1 Conclusion

The overall goal of this master thesis is to implement a software tool for specification and

automatic verification of Programmable Logic Controller (PLC) program components. The tool can

be used by control logic engineers who develop the implementation and write the corresponding

specification for PLC components. In this report the frame work, the related work for specifying

and verifying control logic component in industrial applications have been introduced. The

proposed solution which emphasizes on Reusable Automation Components (RACs) has been

described.

An industrial example showed how this implemented software tool can be applied on the

application of RAC framework. In this case study, the implementation and the specification of RAC

were stored in an .XML file. The RAC implementation and specification automatically translated

into inputs to cadence SMV tool. In consequence, the tool automatically verified whether

specification requirements are met or not. Finally, the notified test result was displayed.

The implementation of specification editor and implementation of translator part of tool have

been explained, the integration of three programs: editor, translator and SMV tool was described.

Utilizing a software tool for designing RAC components, formal specifications and formal

verification of PLC systems gives a possibility to analyze faster the problems that arise in such

systems.

As in many conditions it is too time-consuming to test or simulate all different scenarios in which

the components could be used [1]. Hence, the automated test and verification by utilizing the

mentioned tool will be a great importance in developing the software components. The software

tool assists the developers to find errors and inconsistencies within the components, making it

easier to do modifications of the code.

37

5.2 Future Work

The lack of time caused to not develop all the required functionality that may facilitate the usage

of software tool. Following describes those that have been left for future work.

There might be some errors when developer is writing specification. Checking spelling error and

checking grammar errors at the earlier stages of writing specification will help developer to have a

certain test. One example of spelling error would be a misspelled word like “Albays” instead of

word “Always”. If the grammar is incorrect, it will be more convenient if programme warns the

developer about the errors at the time of writing specification. Furthermore, developing the

specification assistance and guidelines for better PLC programming has been suggested in [3].

In this project work, the input strings sequence of specification was expressed in “prefix” form. We
think it will be a great potential to handle the complete specification language, including operators
and not only functions.

The order of precedence for operators should be preserved. For instance, operators of equal

precedence associate to the left, or parentheses might be applied for group expressions.

38

References
[1] O. Ljungkrantz, K. Åkesson, M. Fabian och C. Yuan. Formal Specification and Verification of

 Industrial Control Logic Components. IEEE Transactions on Automation Science and

 Engineering, 2010.

[2] K.L. McMillan. SMV Manual, Cadence Berkeley Labs, 25 April 2001.

[3] O. Ljungkrantz, K. Åkesson, M. Fabian. Formal Specification and Verification of components

 For Industrial Control Logic Programming. In Proceedings of the IEEE International

 Conference. On Automation Science and Engineering, Washington DC, USA, 2008, pp. 935-

 940.

[4] O. Ljungkrantz, and K. Åkesson. A study of industrial logic control programming using library

 Components. In proceeding of the 3
rd

 annual IEEE conference on automation science and

 Engineering, Scottsdale, AZ, USA, 2007.

[5] O.Ljungkrantz. On Industerial Automation Software Components. Reusable Software

 Componenets for Logic Control Program Development. Automation research group in CTH,

 Technical report number: R006/2008, ISSN 1403-266X, 2008.

[6] E.Tisserant, L.Bessard, and M.de Sousa. An Open Source IEC 61131-3 Integrated

 Development Environment. Industrial Informatics, 2007 5th IEEE International Conference,

 volume: 1, Digital Object Identifier: 10.1109/INDIN.2007.4384753. Publication Year: 2007,

 Page(s): 183 – 187.

[7] International Standard IEC 61131-3. Programmable controllers, Part 1: general information.

 International Electrotechnical Comission, 2003.

[8] IEC 61131-3. 1993 Retrieved Dec. 2009. Accessible at: www.plcopen.org.

[9] K.L.McMillan.Getting Started with SMV. Cadence Berkeley Labs. March 23, 1999.

[10] G.Dunning. Introduction to programmable Logic Controllers-Part I, EBook, 2002.

[11] LOLITECH, Beremiz User Manual, 2008.

[12] J. L. Martinez Lastra, L.Godinho, A.Lobov, and R. Tuokko. An IEC 61499 Application
 Generator for Scan-Based Industrial Controllers. Industrial Informatics, 2005. INDIN '05.

 2005-3rd IEEE International Conference on. 10/09/2005.

[13] Bertrand Meyer, Applying “Design by Contract”, IEEE October 2009.

[14] K.L. McMillan, The SMV system, for SMV version. 2.5.4 -November 6, 2000.

[15] B. Berard , M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P. Schnoebelen. System

 and software verification: Model checking techniques and tools Chapter 2. Springer-Verlag

 (2001).

[16] R.W.Lewis, Programming industrial control systems using IEC 1131-3, Book.

39

Appendixes

Appendix A: (Concepts, Terms and Definitions)

ST: stands for “structured text”. ST is a high level textual language, similar to Pascal and C,

designed for programming automation processes and industrial control application. This language

is mainly used to implement complex procedures that cannot be easily expressed with graphical

languages, for instance it can be used to express the behaviour of FBs and programs [15].

CTL: stands for “computation tree logic”, it is branching-time logic, such that its model of time is a

tree-like structure in which the future is not determined [14]. The logic CTL used by model

checking tools, it serves to formally state properties concerned with the executions of a system

[15]. For instance, it might be used in formal verification of software or hardware artifacts. [14]

LTL: stands for “Linear Temporal Logic”, it is one type of temporal logic, LTL is well known in the

area of formal verification.

POU: stands for Program Organization Unit; a POU consists of a header and a body. The header

declares the variables, the body contains the instructions. POU’s for instance can provide the

possibility for re-use of software from Program (Macro level) to FB and Functions.

Overview of IEC 61131

IEC 61131 is the only global standard for industrial control programming. It harmonizes the way

people design and operate industrial controls by standardizing the programming interface [8].

Such a standard programming interface, allows different people with different backgrounds and

skills be able to create different element of a program during the stages of software lifecycle

(specification, design, implementation, testing, installation and maintenance). The standard is

used to build the internal organization of a program, via decomposition into logical elements,

modularization and so on; each program is structured such a way to increase its re-Usability,

reducing errors, increasing programming and user efficiency. [6, 8]

IEC 61499 is a standard developed by the International Electro technical Commission (IEC) for
helping to achieve the requirements of present and future manufacturing world. [6]

PLC Open: PLC Open is the name of an organization in the field of Industrial Control, it was

founded in 1992 and it is headquartered in Germany and Netherlands. The aim was to support the

IEC 61131-3. The PLC Open activities are in creating a higher efficiency in application software

development and also in minimizing the life-cycle costs of software. However PLC Open is based

on standard available tools to which extensions are defined and later to which extensions will be

defined. Motion Control Library, Safety, XML specification, Reusability Level and Conformity Level

are sample result that the PLCopen made such solid contributions to the community, such that

extending the hardware to be independence from the software code.

In order to support the use of international standard in the control programming, PLCopen

association has developed a vendor independent format for resolving issues related to this field

[8]. For this purpose, this association has several technical and promotional committees; one of

40

the activities of these communities in PLCopen is focused around IEC 61131-3(explain in

following).

In order to have a valid xml document, the xml tag elements has been described in an external

Schema. This XML schema has been dedicated to the PLCOpenEditor by Beremiz developing group.

So each PLC program can be saved as an XML file.

PLCOPenEditor: is a Multi-platform automation IDE developed by Beremiz comany, LOLITech

group. The PLCOpenEditor saves and loads PLC projects accordingly to PLCOpen TC6-XML Schema

[11]. The view of PLCOpenEditor after opening a file (e.g. BufferCounter.xml) looks like to Fig. 6

(shown earlier in this report).

PLC Scan cycle: when a PLC is executing a ladder logic program, it tests the input modules first;

also it stores the status of the input devices (e.g. High or Low) of the input devices. Consequently,

the PLC scans the ladder logic program rung-by-rung from the top of the program to the bottom.

Through scanning process, the PLC updates the statues of the instructions in each rung. After

scanning the entire ladder logic program, the PLC copies the output instruction’s memory statues

(i.e. high or low) to update the output terminals. This period from the beginning of the input

terminal examination to the end of the output terminal updates is called a Scan Cycle [10].

XML and XML Schemas: XML stands for Extensible Markup Language which is a general-purpose

 Specification for creating custom markup languages, that specifies lexical grammar and parsing

requirements. An XML schema is a description of a type of XML document for the purpose of

defining the legal building blocks of an XML document, it describes how should be the structure of

an XML document. For instant, it defines elements and attributes that can appear in a document,

defining data types for the elements and the attributes, defining their default and fixed values for

the elements and the attributes, it defines how many child elements exist, which elements are the

child elements.

Temporal logic: It is a form of logic tailored for statement and reasoning which involved the
notation of order in time [15].

41

Appendix B: (TABLES)

The following table is taken from [ref.3, page5]. It is a Translation table that is used for expressing
Linear Temporal Logic (LTL) properties.

Type of Operators The specification term The Translated term

teop ALWAYS p G p
functions ALWAYS (p) G p

teop NEVER p G ~p (= ~F p)
functions NEVER (p) G ~p (= ~F p)

teop EVENTUALLY p F p
functions EVENTUALLY (p) F p

teop p WHILE_NOT q (p U q) ׀ G p
Functions WHILE_NOT (p,q) (p U q) ׀ G p

blop p -> q p -> q

blop P IMPLIES q p -> q

blop p ONLY_ IF q p -> q

functions IMPLIES(p,q) p -> q
blop p <-> q p <-> q

functions IF_AND_ONLY_IF(p,q) p <-> q
blop AND &
blop & &
blop OR |
blop NOT ~
blop XOR ^
reop >= >=
reop > >
reop <= <=
reop < <
reop < > ~ =
reop -> ->
reop = =

 AND D(A,B)
 GE(A,B)
 Variable suffixes SMV Expression

 v_previous v_previous: “same type as
v”; Next(v_previous):=v;

 V_risingEdge v&~v_previous
 V_fallingEdge ~v& v_previous
 Inoutvar_in Input inoutvar_in
 Inoutvar_out Output inoutvar_out

Boolean Operator(blop), Relational Operators(reop), Temporal Operator(teop)

