

Design of an information system for vehicle
diagnostic trouble codes

Master of Science Thesis in the Master Degree Programme,
Computer Systems and Networks

Alexander Hentschel
Erik Nordlander

Department of Computer Science and Engineering
Division of Networks and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden, 2013

The Author grants to Chalmers University of Technology and University of Gothenburg the non-
exclusive right to publish the Work electronically and in a non-commercial purpose make it
accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not
contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the author has
signed a copyright agreement with a third party regarding the Work, the author warrants hereby
that he/she has obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work electronically and make
it accessible on the Internet.

Design of an information system for vehicle
diagnostic trouble codes

Alexander Hentschel

Erik Nordlander

Examiner: Peter Lundin

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
SE-412 96, Göteborg, Sweden
Telephone + 46 (0)31-772 1000

Cover:
A malfunction indicator light from a car's dashboard.

Department of Computer Science and Engineering
Division of Networks and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden, 2013

Design of an information system for vehicle
diagnostic trouble codes

ALEXANDER HENTSCHEL
ERIK NORDLANDER

Department of Computer Science and Engineering

Division of Networks and Systems

CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2013

Abstract

A system has been developed to communicate with the On Board Diagnostics system of a car
using the Controller Area Network communication protocol. The system requests the stored
trouble codes that might have been detected by the diagnostics system and sends them
together with a Vehicle Identification Number to a remote server.

The information is stored in a database on a remote server and can be accessed through a web
interface. The web interface allows the user to find his car in the database together with the
detected faults. The database also contains information about trouble codes, such as their
symptoms and how to fix them.

The system was developed on a development platform by Syntronic AB called Midrange and
the final prototype consists of Midrange, a GPRS module to communicate with the remote
server, and an LCD to display runtime information. The communication protocols and drivers
were developed using the low-level software libraries that was provided with the STM32
microcontroller mounted on the Midrange board.

Monitoring the communications while testing the prototype showed that the system works as
intended and can communicate with cars from different manufacturers and deliver the data
reliably to the database. The prototype system was compared with a commercial scan tool and
testing showed that they both produced the same results.

Sammanfattning

Ett system har utvecklats för att kommunicera med bilars inbyggda On Board Diagnostic system
genom kommunikationsprotokollet Controller Area Network. Systemet skickar en förfrågan till
bilen och ber om eventuella felkoder som kan ha upptäckts av diagnostiksystemet och skickar
dem, tillsammans med bilens unika Vehicle Identification Number, till en extern server.

Informationen lagras i en databas på den externa servern och är tillgänglig via ett
webbgränssnitt. Webbgränssnittet låter användaren hitta sin bil i databasen tillsammans med de
upptäckta felen. Databasen innehåller också information om felkoderna, till exempel felens
symptom och hur de kan korrigeras.

Systemet utvecklades på Midrange som är en utvecklingsplattform framtagen av Syntronic AB.
Den slutgiltiga prototypen består av ett Midrangekort, en GPRS modul för kommunikation med
den externa servern samt en LCD för att visa information för användaren.
Kommunikationsprotokollen och drivrutinerna utvecklades med hjälp av de existerande
mjukvarubibliotek som fanns tillgängliga till den modellen av en STM32 mikrokontroller som
används på Midrange.

Genom att testa systemet under tiden som kommunikationen övervakades visades det att
systemet fungerar som specificerat och kan kommunicera med bilar från olika tillverkare och
tillförlitligt leverera informationen till den externa databasen. Prototypsystemet jämfördes med
en kommersiell produkt och testning visade att de båda producerade samma resultat.

Table of contents
1 Introduction ..1

1.1 Background ...1
1.2 Problem Formulation ...1
1.3 Goals ...1
1.4 Delimitations ..2
1.5 Existing products ...2
1.6 Company Description ..2
1.7 Thesis structure ...3

2 Method and development ..4

2.1 Information gathering ...4
2.2 Development ...4

2.2.1 Development platform ...4
2.2.2 OBD Simulator ..5

2.2.3 Kvaser Leaf Light ..6

3 Technical descriptions ..7

3.1 Midrange ...7
3.2 On Board Diagnostics ..7

3.2.1 Connector ...8
3.2.2 Requests ...9
3.2.3 Trouble Codes ..10

3.3 OBD over CAN ..10
3.3.1 CAN messages ...11

3.3.1.1 11-bit addressing ..12
3.3.1.2 29-bit addressing ..13
3.3.1.3 CAN hardware filter ..13

3.3.2 ISO-TP ..13
3.3.3 Security ...14

3.4 Vehicle Identification Number ..14
3.5 Quick Response Code ...15

4 Hardware Implementation ...16

4.1 System overview ...16
4.2 Components ..16

4.2.1 Wireless module..16
4.2.2 Display ..17
4.2.3 OBD to CAN converter ..17

5 Firmware Implementation ..18

5.1 Program Structure ...18
5.2 CAN Communication ...20
5.3 OBD queries ..20

5.3.1 Trouble Code requests ..20
5.3.2 VIN request ...21

5.4 Serial Communication..22
5.5 GPRS ..22

5.5.1 Initialization ...22
5.5.2 Connect to server ..23
5.5.3 Transfer of data ...24

5.6 LCD ...24

6 Server..27

6.1 Database ...28
6.1.1 Structure ...28
6.1.2 Security ...29

6.2 Web Interface ..29
6.2.1 Machine Interface..29
6.2.2 Statistics ...29

7 Results and discussion ...31

7.1 System overview ...31
7.2 Testing the system ..33

7.2.1 Functionality ..33
7.2.2 Data usage..33

7.3 System limitations ..35
7.4 Security issues ..36

8 Further development ...37

8.1 Hardware ...37
8.2 Firmware ...37
8.3 Web interface and database ..38

References ..39

APPENDIX A: Flowcharts ...41

APPENDIX B: Web interface screenshots ...48

APPENDIX C: Component list ..53

List of figures

Figure 2-1: Olimex ARM-USB-OCD-H... 5
Figure 2-2: mOByDic 1610 OBD simulator .. 6
Figure 2-3: Kvaser Leaf Light .. 6
Figure 3-1: The Midrange development board... 7
Figure 3-2: The OBD2 female connector ... 8
Figure 3-3: The structure of a CAN data frame using 11-bit addressing 12
Figure 3-4: The structure of a CAN data frame using 29-bit addressing 12
Figure 4-1: System overview ... 16
Figure 4-2: OBD to CAN connectors ... 17
Figure 5-1: Flow chart of the main program ... 19
Figure 5-2: Splash screen ... 26
Figure 5-3: Runtime information example .. 26
Figure 5-4: Error screen example .. 26
Figure 5-5: Results screen .. 26
Figure 6-1: Structure of the server... 27
Figure 6-2: Table structure in the database ... 28
Figure 7-1: System overview block diagram .. 31
Figure 7-2: System overview ... 32
Figure 8-1: A mockup drawing of the final product .. 37

Figure A-1: OBD initialization flowchart ... 41
Figure A-2: Get OBD reply flowchart ... 42
Figure A-3: GPRS initialization flowchart ... 43
Figure A-4: VIN request flowchart ... 44
Figure A-5: Trouble code request flowchart ... 45
Figure A-6: Server connection flowchart.. 46
Figure A-7: GPRS data transfer flowchart ... 47

Figure B-1: Home page ... 48
Figure B-2: Information about a specific VIN ... 49
Figure B-3: Trouble code history for a specific VIN ... 50
Figure B-4: Information about a specific trouble code.. 51
Figure B-5: Global statistics about trouble codes .. 52

List of tables

Table 3-1: Communication protocols in OBD2... 8
Table 3-2: Pin-out of the OBD2 connector according to ISO 15031-3 ... 9
Table 3-3: The structure of a trouble code ... 10
Table 3-4: Trouble code encoding ... 10
Table 3-5: Standards for diagnostics on CAN.. 11
Table 3-6: The structure of the 29-bit arbitration ID ... 13
Table 3-7: Message format for ISO-TP.. 14
Table 3-8: The three parts of the Vehicle Identification Number .. 15
Table 5-1: Trouble code message types and their structure .. 21
Table 5-2: VIN request message types and their structure .. 21
Table 5-3: The AT command list for initialization of the GPRS module 23
Table 5-4: The AT command list for connecting to the server .. 24
Table 5-5: LCD initialization commands .. 25
Table 7-1: Test table ... 33
Table 7-2: Communication between Midrange and server without faults to report 34
Table 7-3: Communication between Midrange and server with seven faults to report 35

Abbreviations

APN Access Point Name
ASCII American Standard Code for Information Interchange
AT Attention (Hayes) commands
BCD Binary Coded Decimal
CAN Controller Area Network
CMSIS Cortex Microcontroller Software Interface Standard
COM Common Output Mode
CRC Cyclic Redundancy Check
CSS Cascading Style Sheet
DLC Data Length Code
DTC Diagnostic Trouble Codes
ECC Error Correcting Code
ECU Electrical Control Unit
EOBD European On Board Diagnostics
EOF End Of Frame
FIFO First In First Out
GPIO General Purpose Input/Output
GPRS Global Packet Radio Service
GUI Graphical User Interface
IDE Identifier Extension
ISO International Organization for Standardization
JTAG Joint Test Action Group
KPW2000 KeyWord Protocol 2000
MD5 Message Digest 5
OBD On-Board Diagnostics
OCD On-Chip Debugging
PHP PHP: Hypertext Preprocessor
PID Parameter ID
PNG Portable Network Graphics
PWM Pulse-Width Modulation
QR Code Quick Response Code
RTOS Real-Time Operating System
SAE Society of Automotive Engineers
SIM Subscriber Identity Module
SOF Start Of Frame
SPI Serial Peripheral Interface
SQL Structured Query Language
USART Universal Synchronous/Asynchronous Receiver/Transmitter
UTF-8 Unicode Transformation Format 8-bit
VDS Vehicle Descriptor Section
VIN Vehicle Identification Number
VIS Vehicle Identifier Section
VPW Variable Pulse Width
WMI World Manufacturer Index

Glossary

ARM A processor architecture based on the RISC (Reduced Instruction Set
Computing) for its instruction set.

DB9 Also known as DE9 is a D-subminiature electrical connector.

GET HTTP request type to retrieve data from the server

InnoDB A MySQL database engine

ISO-TP Another name for ISO 15765-2

Midrange A development platform made and used by Syntronic

MyISAM A MySQL database engine

MySQL An open source SQL database server.

OpenOCD An open source program for On-Chip Debugging using a computer.

POST HTTP request type to post data to the server

Reed-Solomon
algorithm

An algorithm to calculate ECCs.

UNIX time The UNIX timestamp. Number of seconds since 00:00:00 January 1st,
1970.

blowfish A fast, secure and open cipher algorithm created by Bruce Schneier in
1993.

header The HTTP header that specifies type of request and other information

salt A small string added to the password before hashing to differentiate
hashes from the same password

socket A Socket is used to create a connection between machines.

1

1 Introduction

1.1 Background

Today’s vehicles have many built in computer systems that control parts of the car such as fuel
injections, airbags or brakes. All of these systems are controlled by one of several Electronic
Control Units (ECU) which communicate with each other over the internal high speed Controller
Area Network (CAN) of the car. There is also a computer system called On-Board Diagnostics
(OBD) that can discover and diagnose problems with the data reported by the ECUs. If a
problem occurs, the OBD system generates a trouble code that which makes it possible for a
service engineer to identify and fix the problem. Trouble codes and other diagnostic information
can be accessed by plugging an OBD scan tool into the OBD interface in the car.

The main advantage with having an OBD system is that it makes it easier to diagnose faults that
occur in the vehicle. An advantage from a sustainability point of view is that vehicle emissions
can be reduced by discovering and fixing problems, that makes the vehicles emission levels
rise, that otherwise might not have shown any noticeable symptoms to the user or service
personnel.

Several communication protocols have been used in OBD throughout the years. Most
manufacturers have recently chosen to implement CAN and all cars sold in the U.S. after 2008
are required to implement CAN as the communication protocol for the external OBD interface.

There are numerous end-user products for extracting OBD trouble codes from cars but these
products are stand-alone with little to no user-based content around the faults. This means that
the information on certain faults is very generic and often times hard to grasp for the user. A
system that meets these criteria, to be a (semi-) open system where users can submit their own
thoughts and fixes to a central database for everyone to use, does not exist today.

1.2 Problem Formulation

There is no available implementation of an OBD software library that can freely be used on an
embedded system to communicate with the OBD system in a car and extract information. There
does not exist a complete system today to extract trouble codes from the car and have it
transferred to a server where the trouble codes are connected to information about the faults,
and their possible solutions.

1.3 Goals

The goal of this thesis report is to develop a system that can read trouble codes from an OBD
system and make the information accessible to the user. This is done by:

• Setting up a web server with a database containing OBD trouble code information.
• Setting up a web interface from which users can read and make changes to the

information in the database.
• Developing a working communication channel that enables the system to extract

relevant information from the car and send it to the database without the need of an
external device.

2

The project aims are to

• Decide a good and general development architecture for the system.
• Develop a proof of concept solution for the system.

The system must meet the following requirements:

• The prototype should be based on the Midrange platform by Syntronic.
• The system should give visual feedback with runtime information to the user when the

system is in use, including error messages if any errors should occur.
• The user should be able to find his car in the database after the scan has been

completed to see information about the vehicle and information about any OBD trouble
codes that was found.

• The code should be modular to make it easy for the company to re-use specific parts of
the code for other projects.

1.4 Delimitations

• Focus lies in developing a proof of concept system rather than a complete end-user
product.

• CAN is the only OBD communication protocol that is to be implemented.
• The OBD communication is limited to only extracting trouble codes and a unique

identifier for the vehicle.
• The database does not need to be fully populated with trouble code information.
• Development focus lies in functionality and not in performance, security or stability of the

implemented system.

1.5 Existing products

Products for reading information from the OBD interface are common and widely used, mainly
by vehicle service personnel, but also by car owners themselves. Many of these products are
based on the ELM327 microcontroller by ELM electronics [1] which supports all the different
OBD communication protocols. The microcontroller presents a simple serial interface to the
OBD with which an application can communicate using the standardized ELM327 command
protocol.

A company called Castel offers a product for real time vehicle diagnostics that uses a module
connected to the vehicles OBD connector. The module captures diagnostic information from the
vehicle and transmits it to a backend server. The information sent to the server can be viewed
via their Livetelematics software, which works for individuals as well as car dealers or for fleet
management solutions.

1.6 Company Description

Syntronic AB is a well known global design house specialized mainly in systems for IT and
embedded systems, but also within telecom, automotive and public sector. The company was
founded in 1983 in Stockholm, Sweden and has since 1985 had its headquarters in Gävle,
Sweden. Syntronic currently has offices in Sweden, China, Malaysia and Indonesia and

3

employs around 350 people in these countries. The turnover for the year 2012 was around 240
million SEK. Syntronic has also been awarded with a AAA-rating by Soliditet for their credit
rating since 1995. This means that Syntronic has been one of the top three percent companies
in Sweden from an economical point of view since 1995.

1.7 Thesis structure

The methods for solving the problem, the choice of tools, and the development environment is
described in chapter 2. The technical background information needed to understand the
underlying technologies and the implemented solutions is described in chapter 3. Chapter 4, 5,
and 6 describes the implementation of the solution where chapter 4 describes the hardware
needed and used for the system to work as specified. Chapter 5 describes the firmware
implementation developed for the Midrange platform. Chapter 6 describes the implementation of
the database and web interface on the web server.

Chapter 7 presents an overview over the solution, evaluates the system and discusses its
limitations. Chapter 8 discusses how the system could be developed further.

4

2 Method and development

2.1 Information gathering

Information gathering is mainly done by reading papers on related projects and International
Organization for Standardization (ISO) standard documents. The ISO documents are not
available for free, but contact with a company that develops OBD related software and
hardware, Opus Group AB, made it possible to obtain information about the relevant ISO
standards and access to the corresponding documents.

To be able to understand and implement the different communication protocols needed on the
development board, the specification and documentation for these protocols is studied in detail.
The development board itself, and the microcontroller used, has some documentation available
that is studied before development begins to gain some basic understanding about how to
design a working firmware for the platform and how to best implement the needed protocols and
features.

2.2 Development

The choices of development platform and development environment are made by Syntronic
since the thesis goal is to develop a system for the company's Midrange platform. The
development of the software for both the embedded system and the web server is made with a
basic agile approach where the requirements and solutions evolve throughout the process.

C is used as the programming language for the embedded system because it is the language
that is used when writing applications for the Midrange development board and the entire
existing development environment is based around C. Syntronic uses a development
environment for Midrange that uses Eclipse together with the OpenOCD plug-in that makes it
possible for debuggers that supports OCD to execute the code step by step and observe the
variables in memory.

Midrange has an available code library with low-level drivers and functions for the supported
hardware peripherals. Some relevant parts and functions can be used as a foundation to getting
the hardware to work as intended for the project. Midrange also works together with a real time
operating system called FreeRTOS which is used to enable parallel execution of tasks and real
time scheduling.

The code for the different peripherals used is developed in several independent modules that
enables the company to re-use specific parts of the code with little modification. This also
enables concurrent coding of modules during development since the modules are independent
files.

2.2.1 Development platform

Midrange is a development platform by Syntronic and is used as the development platform. It is
selected because of Syntronics experience with it and the built in peripherals such as CAN,
RS232, GPIO etc. Applications are transferred to the Midrange through a Universal Serial

5

Bus(USB) debugger connected to the Joint Test Action Group (JTAG) connector on the board.
The debugger Olimex ARM-USB-OCD-H is used and it supports On Chip Debugging (OCD) [2].

Figure 2-1: Olimex ARM-USB-OCD-H

2.2.2 OBD Simulator

To simplify development and eliminate the need for a real car during development and testing,
an OBD simulator is used. An OBD simulator simulates the Engine Control Units (ECU) in a car
and responds to certain OBD queries.

A number of simulators are available from different manufacturers but the manufacturer Özen
Elektronik was selected because of its reasonable prices and because of experience with the
manufacturer. Özen Elektronik provides simulators that use different OBD communication
protocols but since the project aim was to use CAN, mOByDic 1610 is selected. This specific
simulator was suitable mainly because it supports the CAN (ISO 15765-4) protocol, but also
because it responds to Diagnostic Trouble Code (DTC) and Vehicle Identification Number (VIN)
queries [3]. This simulator also simulates multiple ECUs which makes it more like a real car than
other simpler simulators than only simulates a single ECU. The simulator is shown in figure 2-2.

6

Figure 2-2: mOByDic 1610 OBD simulator

To connect the OBD simulator to the Midrange platform, a converter is needed to connect the
relevant pins from the OBD interface connector to the corresponding pins on the CAN port on
Midrange.

2.2.3 Kvaser Leaf Light

The CAN interface Leaf Light by Kvaser [4] is used to monitor the traffic on the CAN bus
between Midrange and the OBD simulator. This makes it easy to troubleshoot the
communication during firmware development. A CAN interface is an expensive product, too
expensive to purchase for this project, but this specific interface was be used since it could be
borrowed from Opus Group AB.

Figure 2-3: Kvaser Leaf Light

Leaf Light is able to monitor the CAN bus on both allowed speeds (250 kbps and 500 kbps), and
both addressing modes (11-bit and 29-bit). It can also be used to generate traffic to simulate a
car with a busy CAN bus, this is used during development of the firmware so that only relevant
messages are processed by Midrange even when other messages are present on the bus.

7

3 Technical descriptions

3.1 Midrange

Syntronic uses their own development platform for developing software to customers called
Midrange. The development board is shown in figure 3-1. The Midrange platform uses a
STM32F1 processor based on the ARM Cortex M3 32-bit architecture and is equipped with
several interfaces such as CAN, General Purpose Input/Output (GPIO) and several Universal
Synchronous/Asynchronous Receiver/Transmitter (USART) ports. The processor supports the
Cortex Microcontroller Software Interface Standard (CMSIS) which makes it easy to later
transfer the developed software from the development platform to the customer specific
hardware even if another processor is used since all microcontrollers in the Cortex-M family
supports CMSIS. [5]

Figure 3-1: The Midrange development board

Midrange works in conjunction with a royalty free Real Time Operating System (RTOS) called
FreeRTOS which is designed specifically for embedded systems. RTOS includes functionality
for semaphores, queue management, scheduling and fast switching of tasks. The fast switching
of tasks simulates parallel execution, and by allowing the user to set the priority of user created
tasks the system can respond fast to events that are important or have a strict deadline [6].

3.2 On Board Diagnostics

OBD is the computer system built into cars that monitors the performance of the engine
components. It consists of several ECUs that uses various sensors to collect data and evaluate
the performance of the car. The OBD system will detect problems with the cars performance or
functions before the problems become noticeable to the driver. A user can access the OBD on
the car by connecting a scan tool to the OBD connector which allows the user to see diagnostic
data such as detected faults or engine temperature.

8

OBD-I refers to the first generation of diagnostics that was developed during the 1980s where
every vehicle manufacturer used different connectors and communication protocols due to a
lack of standardization. OBD-II, or OBD2, is the successor to OBD-I and was defined in the
early 1990s by the American organization Society of Automotive Engineers (SAE) and required
all compliant vehicles to use a standardized connector, and one of several standardized
communication protocols. OBD2 became a requirement for all cars sold in the USA in 1996 [7].

European On Board Diagnostics (EOBD) is the European version of car diagnostics and is
technically equivalent to OBD2 but was not implemented until 2001 for petrol cars and 2004 for
diesel cars [8]. From here on, the term OBD2 will be used for OBD2 and EOBD specific
information and OBD will be used as a general term for on board diagnostics

Many OBD standards were first defined by SAE and later adapted by ISO. This means that
many OBD standards from SAE have a technically equivalent counterpart from ISO. Since ISO
is an international organization while SAE is American, definitions from ISO are used from here
on in cases where both of the SAE and ISO versions are technically equivalent.

OBD2 permits five different communication protocols, as listed in table 3-1, which can be used
to communicate with the OBD2 interface. Most vehicle manufacturers only implement one of
these protocols so it is often possible to identify the used communication protocol by looking at
which pins are present on the connector.

Table 3-1: communication protocols in OBD2

Standard Description

SAE J1850 Pulse-Width Modulation (PWM)

SAE J1850 Variable Pulse Width (VPW)

ISO 9141-2 Similar to RS232

ISO 14230 KeyWord Protocol 2000 (KWP2000)

ISO 15765 CAN (250kbps or 500kbps)

3.2.1 Connector

The OBD2 specification defines a standardized hardware interface to be used in OBD2
applications; the female ISO 15031-3 16-pin connector. This connector is required to be
reachable from the driver's seat and placed at most 2 feet (0.61 m) away from the steering
wheel [9]. The pin-out of the connector is shown in figure 3-2.

Figure 3-2: The OBD2 female connector

9

ISO 15031-3 defines the pin-out of the OBD2 connector according to table 3-2. Unspecified pins
are left for manufacturer specific use. The connector was first defined in SAE J1962.

Table 3-2: Pin-out of the OBD2 connector according to ISO 15031-3

2: Positive line. PWM and VPW (SAE J1850) 10: Negative line. PWM (SAE J1850)

4: Chassis ground 14: CAN low (ISO 15765-4)

5: Signal ground 15: L line (ISO 9141-2 and ISO 14230-4)

6: CAN high (ISO 15765-4) 16: Battery voltage

7: K line (ISO 9141-2 and ISO 14230-4)

3.2.2 Requests

To issue a request to the OBD, specific codes need to be sent depending on the request. These
codes are defined in ISO 15031-5 and consist of a mode of operation followed by a Parameter
ID (PID). As of 2013, ten standard modes of operation are defined as listed below but vehicle
manufacturers can define custom modes of operation outside of the ones defined in the
standard. All vehicle manufacturers are required to at least support the emission related modes
01 (PID 00 and 01) 03 and 07 [10].

Standard modes of operation:

01. Show current data
02. Show freeze frame data
03. Show stored DTCs
04. Clear DTCs and stored values
05. Test results, oxygen sensor monitoring (non CAN only)
06. Test results, other component/system monitoring (Test results, oxygen sensor monitoring: CAN only)
07. Show pending DTCs (detected during current or last driving cycle)
08. Control operation of on-board component/system
09. Request vehicle information
0A. Show permanent DTC's (Cleared DTC's)

For most modes there are several PIDs defined that specifies the request in more detail. For
example mode 01, PID 0D requests the current vehicle speed and mode 09 PID 02 requests the
VIN. Some modes do not require a PID, for example mode 03 requests the stored trouble codes
and mode 04 clears them from memory.

Every PID has a defined response that is expected from the request. The responses are defined
in ISO 15031-5 and describes in detail what the response should be, how many bytes the
response contains and how the data is encoded in those bytes.

10

3.2.3 Trouble Codes

Trouble codes are used to indicate the location of a malfunction in the car. When the OBD
system recognizes a problem in the car, a trouble code is generated and saved in the ECU
responsible for that subsystem. Many trouble codes are standardized and required but vehicle
manufacturers are allowed to define their own. The structure of trouble codes and the definition
of the standardized trouble codes are defined in ISO 15031-6 [4].

A trouble code consists of five characters as seen in table 3-3. The first digit is a character that
describes which of the four main systems the fault belongs to. The second digit describes if the
code is a generic code or a manufacturer specific code. The third digit describes the subsystem
from which the fault originates. The fourth and fifth digits indicate the specific fault number.

Table 3-3: The structure of a trouble code

Character Number 1 2 3 4 5

Description System Control Subsystem ID ID

Allowed values ‘P’ (Powertrain)
‘C’ (Chassis)
‘B’ (Body)
‘U’ (Network)

0 (ISO controlled)
1 (Manufacturer controlled)
2 (Reserved)
3 (Reserved)

0-F 0-F 0-F

When trouble codes are sent by the OBD system as a reply to a mode 03 request, the trouble
codes in the response are two bytes large and bitwise encoded according to table 3-4. The first
two bits describe the system character of the trouble code. The next two bits describe the
control character. The remaining 12 bits describes the last three fields with four bits each and
are on the form Binary Coded Decimal (BCD) [10].

Table 3-4: Trouble code encoding

bits 1-2 3-4 5-8 9-12 13-16

Values 00 = ‘P’
01 = ‘C’
10 = ‘B’
11 = ‘U’

00 = 0
01 = 1
10 = 2
11 = 3

0000 = 0
0001 = 1
⋮
1111 = F

0000 = 0
0001 = 1
⋮
1111 = F

0000 = 0
0001 = 1
⋮
1111 = F

3.3 OBD over CAN

All cars sold in the U.S. are since 2008 required to use CAN as the OBD2 communication
protocol [12]. When using CAN as the communication protocol there are three relevant standard
documents divided into several parts as listed in table 3-5.

11

Table 3-5: Standards for diagnostics on CAN

Standard Description Number of parts

ISO 11898 CAN 5 parts

ISO 15765 Diagnostics on CAN 4 parts

ISO 15031 Legislated OBD on
CAN

7 parts

ISO 15765 defines the requirements for vehicle diagnostic systems implemented on a CAN bus
[14]. This standard describes the layered services and defines the ISO standards that describe
the services. The standards can be mapped to the following layers of the Open Systems
Interconnection (OSI) model:

• Application Layer: ISO 15765-3
• Transport Layer: ISO 15765-2
• Network Layer: ISO 15765-2
• Data Link Layer: ISO 11898-1 and ISO 15765-4
• Physical Layer: ISO 11898-2 and ISO 15765-4

3.3.1 CAN messages

CAN bus is a protocol in the Data link layer of the OSI model described in ISO 11898-1.
Messages sent on a CAN bus are called frames and there are four different frame types: Data,
Error, Remote, and Overload frames.

A message carrying data on the CAN bus is of the type Data frame. The CAN data frame begins
with a Start Of Frame (SOF) bit followed by a header containing an 11- or 29-bit arbitration ID
and a number of control bits. Relevant control bits are the Identifier Extension (IDE) bit which
controls if the 11- or 29-bit addressing mode is used, and the Data Length Code (DLC) bit which
controls the length of the payload. The data payload is composed of a minimum of 0 to a
maximum of 8 bytes. The footer contains a Cyclic Redundancy Check (CRC) and an End Of
Frame (EOF) [13]. The entire structure of a CAN data frame using 11-bit and 29-bit addressing
is illustrated in figure 3-3 and figure 3-4.

12

Figure 3-3: The structure of a CAN data frame using 11-bit addressing

Figure 3-4: The structure of a CAN data frame using 29-bit addressing

The arbitration field is normally used as a unique identifier for the message. In OBD applications
this field is instead used as destination and source addresses where every ECU will have an
assigned ID that is used as a destination address to send messages to it. The ECU changes the
arbitration field when responding to messages to indicate the source address of the responding
ECU. A vehicle should never have more than eight ECUs that can be accessed through the
OBD2 interface [14].

In OBD applications the DLC byte should always be set to eight since all receiving ECUs will
ignore messages with the DLC set to anything else than eight. The unused data bytes of the
CAN frame are undefined [14].

3.3.1.1 11-bit addressing

The 11-bit addressing mode is used if the IDE control bit is set to zero. For 11-bit addressing,
the functional ID of 0x7DF can be used in the arbitration field by external diagnostic tools and
works as a broadcast address where every ECU will receive messages with that ID. An ECU will
respond to messages with its assigned ID plus eight in the arbitration field [14]. For example an
ECU with assigned ID 0x7E0 will receive messages sent with that ID (and broadcasts) but when
replying it will set the arbitration field to 0x7E8 to indicate that it is a reply.

13

3.3.1.2 29-bit addressing

If the IDE control bit is set to one, 29-bit addressing mode is used. When using 29-bit
addressing the arbitration field contains both the source and target address of the transmission
as specified in table 3-6, and is used to provide compatibility to other serial communication
protocols that might be used in the car. The 29-bit addressing mode is also called extended
addressing mode.

Table 3-6: The structure of the 29-bit arbitration ID

CAN id type bit 28-24 bit 23-16 bit 15-8 bit 7-0

Functional 0x18 0xDB Target Address Source Address

Physical 0x18 0xDA Target Address Source Address

In 29-bit mode the functional address of 0x33 is used as a broadcast address and 0xF1 as the
external diagnostic tools address [15]. This means that the functional ID of 0x18DB33F1 is used
as the broadcast ID.

To send messages to a specific ECU, physical IDs are used. Using physical IDs, ECUs will
receive messages with physical ID 0x18DAXXF1 and reply with the physical ID 0x18DAF1XX,
where F1 is the address of the external diagnostic equipment and XX represents the assigned
physical address of the ECU as defined in SAE J2178-1 [15].

3.3.1.3 CAN hardware filter

CAN modules supports hardware filters that can filter the incoming messages. The filter
compares the arbitration ID of the message to either a range of accepted IDs, or uses a mask
and acceptance register to identify accepted IDs. Any message that has an arbitration ID that is
not identified as accepted is discarded.

3.3.2 ISO-TP

The standard for how data packets are sent over a CAN network is described in ISO 15765-2
and is sometimes called ISO-TP. ISO-TP is a protocol that operates on the Network and
Transport layers of the OSI model [16]. Since normal CAN frames can only contain eight bytes
of data payload, ISO-TP divides longer messages into multiple frames, using some of the data
to add header information that makes it possible for the receiver to assemble the CAN frames
into the complete message.

The first bit of the ISO-TP header defines the type of frame; the rest of the header is dependent
on what type of frame being sent as seen in table 3-7. Single frames are frames where all data
fits in one CAN frame. Frames of type First are sent as the first frame when the message has
been divided into several CAN frames. The receiver must respond to a First frame within 100
ms with a Flow frame defining at which rate the sender should send the remaining frames,
which are sent as the type Consecutive [16].

14

Table 3-7: Message format for ISO-TP

Type bit 0-3 bit 4-7 Byte 2 Byte 3 Byte 4-8

Single 0 size (0 .. 7) Data A Data B Data C

First 1 size size (7 .. 4095) Data A Data B

Consecutive 2 Index (0 .. 15) Data A Data B Data C

Flow 3 Flow Control flag
(0, 1, 2)

Block size Separation
Time

The size fields in Single and First frames specify how many data bytes the entire message
contains. The index number in a Consecutive frame works as a sequence number that starts at
one and gets incremented for every new frame being sent. The index does however only go up
to 15 before wrapping around to 0.

The Flow Control flag in a Flow frame indicates what the receiver should do. A 0 means send as
many frames as are specified in Byte 2 with the frames separated with the time specified in Byte
3 (All remaining frames are sent if the block size is set to 0). A 1 in the flow control flag means
wait for new instructions and 2 means abort.

3.3.3 Security

CAN lacks several security measures available in other types of networks, which can pose
security problems in vehicular CAN networks [17]. There are a couple of distinct weaknesses
that are open for attacks:

Denial of Service: Because of how the arbitration field doubles as network priority control, CAN
is extremely vulnerable to Denial of Service (DoS) attacks. DoS attacks are possible since the
attacker can set their own arbitration ID and thus assume dominant status in the network which
causes the other nodes in the network back off indefinitely.

Broadcasting: CAN traffic can easily be monitored since all traffic is broadcasted to all other
nodes in the network. This makes it possible for an attacker to snoop on the network traffic or to
send packets to all other nodes.

No authentication: The CAN protocol does not use any authenticator or source identifier fields.
This means that any node in the network can send packets and make it indistinguishable from a
message sent from another node. This makes it possible to control the entire system if one
node is compromised.

3.4 Vehicle Identification Number

The VIN is an international standard defined in ISO 3779 [18] to uniquely distinguish vehicles.
The VIN is divided in three parts as described in table 3-8 and consists of 17 characters from
the VIN character pool A-Z and 0-9 (excluding the letters I, O and Q).

15

Table 3-8: The three parts of the Vehicle Identification Number

Characters 1-3 4-9 10-17

Description WMI VDS VIS

The first 3 characters in the VIN are used for the World Manufacturer Identifier (WMI) and holds
information on the manufacturer as well as country of origin as defined in ISO 3780 [12].

Character 4 through 9 are for Vehicle Descriptor Section (VDS) and describes some of the
general characteristics of the vehicle such as vehicle type according to ISO 3833 [20] and may
include other information such as model style or type of engine.

Characters 10 through 17 are used for Vehicle Identifier Section (VIS) which is used to identify
the individual vehicle. VIS holds additional information about the vehicle and, depending on
manufacturer, specific data about additional parts. The 10th character indicates model year and
is encoded using the VIN character pool, but without “U”, “Z” and “0”, starting with “A” at the
year 1980. Character number 11 is used to identify which plant from which the vehicle
originated within the country and manufacturer. The last six characters in the VIN are mostly
used just as an incrementing index per model but can also be used like the VDS to identify
certain options and choices in the car. These six characters and what they mean is vendor
specific.

3.5 Quick Response Code

A Quick Response Code (QR-code) is a two-dimensional barcode designed to be easy and fast
to read while taking up little physical space. It was invented 1994 in Japan by Denso Wave to
assist in tracking of parts for cars during manufacturing. Recently the QR-codes have had a
major upswing in popularity due to the effectiveness of storing information and the fact that most
smart devices such as smart phones or tablets can read and understand these codes. This
makes them valuable for advertising or informational purposes.

QR-codes have a powerful Error Correcting Code (ECC) in place to allow for loss of data while
still being able to read the code with a strength that depends on implementation but can be
anywhere from 7% (L) to 30% (H). This means that the QR code can be read correctly even if a
part of the QR code is damaged or invisible. The strength level of the ECC determines how
much of the QR code that can be missing before the code becomes unreadable. The ECC is
built using the Reed-Solomon algorithm which is a well-known and efficient algorithm for
creating ECCs.

The capacity of a QR-code depends on its level with 1 being the lowest and 40 the highest. This
means that the QR-code with the highest storage capacity is a 40L; this QR-code has a storage
capacity of 7,089 numbers (0-9), or 2,953 UTF-8 encoded bytes, and an error correction of 7%.
[21]

16

4 Hardware Implementation

4.1 System overview

The system consists of several key parts; the car, with an OBD interface, the Midrange platform,
a module for wireless communication to a database, the remote server hosting the database,
and a display. The Midrange card is connected to the car, the display and the wireless module.
The wireless module acts as an intermediary and forwards data to the remote server. This
scheme is depicted in figure 4-1.

Figure 4-1: System overview

4.2 Components

This section describes the components used in the system, how they work, and why they are
chosen.

4.2.1 Wireless module

To send data from Midrange to the database, a connection to the Internet is necessary. GRPS
was chosen as communication technology due to its high availability. The GPRS module GT-
864 from Telit was selected because of its features and Syntronics previous experience with this
module [22]. The module has an implemented TCP/IP stack and support for HTTP queries. The
module is available in two versions, as a terminal module and as an embedded chip. The
terminal version is more suitable for development since it is a standalone box and works with a
standard RS-232 serial interface, while the embedded chip is suitable for an end-user product.

The GPRS module is operated by sending commands to its serial port which is then interpreted
and processed by the module. The module supports the standard Attention (AT) commands
specified by 3GPP TS 07.07 [23] but also an extended command set defined by Telit which
includes support for HTTP, ping, Firewall and more[24].

17

4.2.2 Display

A Liquid Crystal Display (LCD) is used to display runtime information during the execution of the
program, error messages if errors in the program are detected, and a result screen containing
the VIN and a QR-code when the scan has been completed.

Midrange can communicate with LCD chipsets both via a parallel interface using digital data
pins, and through a Serial Peripheral Interface (SPI). SPI is a widely used serial data link bus
that allows a duplex, synchronous serial communication between the microcontroller and the
peripheral device [25]. SPI is used as the display interface in this application since it uses fewer
pins than the parallel counterpart and since the SPI driver when up and running, being a de
facto standard, can easily be reused for a number of peripheral devices that supports SPI.

The display TG12864H3-05A with the ST7565 chipset is used since the chipset supports SPI
and the screen is of a suitable size for this application (128x64 pixels). This specific LCD is also
suitable since it works with the 3.3 V logic that Midrange uses [26]. In addition to the SPI the
display uses two normal digital data pins, one reset pin for turning the display circuits on, and
one data/command to select between data and command mode. In command mode commands
can be sent to the display through the SPI that controls the operation of the display, for example
to set up hardware display modes or select draw area. In data mode the data delivered by the
SPI is drawn on the display at the predetermined draw area.

4.2.3 OBD to CAN converter

A converter is constructed to connect the CAN pins from the OBD connector to the
corresponding pins on the CAN DB9 connector on Midrange. The ground pins and the battery
power pin are used to power the entire system and eliminate the need for an external power
supply. The wiring diagram for the converter is shown in figure 4-2.

Figure 4-2: OBD to CAN connectors

18

5 Firmware Implementation

5.1 Program Structure

The main program is set up to run as a task in RTOS which means that the program is run in
parallel to other tasks started by RTOS, for example the RTOS task keeping track of the real
time clock. This makes it possible to use blocking commands that for example waits for a
message to arrive on CAN for a set amount of time.

The main task initializes the Midrange hardware such as peripheral clocks and vector tables.
The program then initializes the OBD communication and the GPRS module, requests
information from the connected car, connects to the remote server and transmits the data.
During every step Midrange checks if everything works as expected, otherwise it raises a
unique error code which is used by an error handler to identify the error and print a descriptive
error text on the LCD. If no error occurs the results is printed on the LCD and the program
stops. The structure of the program is outlined in figure 5-1. A blue square with rounded corners
indicates that a function is called that has its own flow chart in appendix A.

19

Figure 5-1: Flow chart of the main program

To keep the flow chart small and simple and not clutter the chart with non-relevant information,
the display of runtime information on the LCD is not included in the chart. During the execution
of the main program, appropriate information is shown on the LCD to indicate for example what
module is initializing or when communicating with the server.

20

5.2 CAN Communication

A basic data link layer CAN driver is available in the STM32 libraries for the Cortex M3
processor that is used as the foundation for the low-level CAN communication when developing
the firmware. To send a message, a message structure needs to be generated that contains the
header bytes as well as the payload data. The footer with CRC and EOF bits is generated
automatically with help from the STM32 CAN driver.

Using RTOS enables the use of semaphores and queues to eliminate collision when sending
and receiving messages. If the semaphore is free when trying to send, the semaphore is taken,
the message is sent, and the semaphore is released. If the semaphore is taken by another
process when trying to send, the transmission (TX) interrupt flag is set instead and the TX
interrupt handler is run which puts the message into a queue and then waits for the semaphore
to be free before taking it and sending the message.

The processor generates an interrupt when a message is received on the CAN bus, this
interrupt is used to start a custom interrupt handler that takes care of the received message and
moves it from the hardware mailbox to a First In First Out (FIFO) queue for later use. The CAN
filter is configured to stop messages that are not relevant by only letting through messages that
originate from an ECU responding to a request. Messages that are stopped by the filter do not
generate an interrupt. The messages that are let through have their IDs in the range from 0x7E8
to 0x7EF (11-bit addressing) or from 0x18DAF100 to 0x18DAF1DF (29-bit addressing).

Since car manufacturers are allowed to use different bit rates (500kbps or 250kbps) and
different addressing modes (11-bit or 29-bit) [14], the program needs to find the bit rate and
addressing mode used in the vehicle by sending test messages to the OBD using the four
possible combinations of bit rates and addressing modes, to see on what configuration the reply
is received. A test message is defined as mode 01 PID 00 and will generate a single frame reply
from every available ECU [14]. When a working configuration has been established, the CAN
peripheral will finish the initialization and use the established configuration until the program has
ended.

5.3 OBD queries

The network layer of OBD communication, ISO-TP, is implemented to enable the requesting of
trouble codes and VIN. The messages are encapsulated in the data bytes (payload) of the CAN
frames.

5.3.1 Trouble Code requests

Trouble codes are requested on the OBD by sending a message with mode 03 to the broadcast
address. Any ECUs that contain stored trouble codes will reply with a message specifying how
many trouble codes are present. The response will be a frame of the type Single if the trouble
code count is less than three or a frame of the type First if the trouble code count is three or
more. An ECU that does not contain any trouble codes will respond with a Single frame
containing zeros in byte 3-8. The different message types and their structure are listed in table
5-1.

21

Table 5-1: Trouble code message types and their structure

Type bit 0-3 bit 4-8 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Request type
(0)

size (1) mode
(03)

Single type
(0)

size mode
+ 40
(43)

of
DTCs

data data data data

First type
(1)

total size total
size

mode
+ 40
(43)

of
DTCs

data data data data

Consecutive type
(2)

sequence
number

data data data data data data data

When receiving a First frame, a flow control frame is sent back to that specific ECU to instruct it
to send the rest of the data. The flow control flag, separation time and block size is all set to
zero to instruct the ECU to send all remaining data as fast as possible [14]. The remaining data
will be sent in Consecutive frames until all trouble codes have been transmitted.

By looking at the arbitration ID of the response, the ECU number can be identified so all data
can be kept separated with respect to which ECU the data came from. The trouble codes are
decoded from the data according to ISO 15031-5 described in chapter 3.2.3, and the trouble
codes from all ECUs are put into a long, comma separated, string.

5.3.2 VIN request

The VIN is requested on the OBD by sending a message with Mode 09 and PID 02 to the
broadcast address. The ECU that contains the stored VIN will reply with a First frame and any
ECU that does not contain the stored VIN will not respond to the request. The different message
types and their structure are listed in table 5-2.

Table 5-2: VIN request message types and their structure

Type bit
0-3

bit 4-8 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Request type
(0)

size (2) mode
(09)

PID
(02)

First type
(1)

total size total
size

mode
+ 40
(49)

PID
(02)

of
VINs

data data data

Consecutive type
(2)

sequence
number

data data data data data data data

22

When receiving the First frame, a flow control frame is sent back to that specific ECU to tell the
ECU to send the rest of the message. The flow control flag, separation time and block size are
all set to zero to instruct the ECU to send all remaining data as fast as possible [14]. This will be
sent in Consecutive frames until the entire VIN has been transmitted.

The data bytes of the messages are hex encoded values that, using the American Standard
Code for Information Interchange (ASCII) table, maps to characters that are put into a string.

5.4 Serial Communication

The RS232 serial ports on the Midrange board are here used for debugging purposes and to
communicate with the GPRS module. The libraries for the STM32 processor come with a basic
low-level driver for the USART peripherals of which the RS232 ports are included. The driver
includes support for the required message structures and interrupts for receiving or sending
messages.

The ports are initialized with settings so that communication with the GPRS module is possible.
The default settings for the serial interface on the GPRS module is a baud rate of 115,200 bps,
eight bits per word, no parity bits and one stop bit. [27] To send messages on the serial port the
text is put into a buffer and an interrupt is generated. The interrupt handler sends and receives
all data in the buffer character by character through the USART send command. Receiving data
on the serial port generates an interrupt which makes the interrupt handler take care of the
received message and put it into a FIFO buffer that can be read later.

5.5 GPRS

Communication with the GPRS module is made via one of the RS-232 interfaces on the
Midrange board according to chapter 5.4. The AT commands (chapter 4.2.1) are sent character
by character, adding newline and carriage return characters in the end to indicate to the module
where a command ends. The module processes the commands after they have been received
by the module and responds in the same way.

Every time a command has been sent to the GPRS module, Midrange waits for the expected
reply to arrive from the module before a designated timeout value. If a reply is not received
before the timeout, a unique error is generated depending on which command that failed.

5.5.1 Initialization

To initialize the GPRS module and connect to the net, a series of steps are necessary described
in table 5-3. Each step corresponds to sending a specific AT command and waiting for the
expected response from the GPRS module. If the reply does not arrive before the timeout
threshold, an error is returned and the initialization is restarted. If the initialization has failed
three times, the latest error is returned for identification and to be printed on the LCD.

First, Midrange needs to check if the GPRS module is connected and accepting commands,
and then verify the Personal Identification Number (PIN) for the built in Subscriber Identity
Module (SIM) card. After the SIM card has been unlocked with the correct PIN, the module
starts connecting to the GPRS net. After verifying that the module is both registered and
attached to the net, the GPRS context is defined by supplying the carrier Access Point Name

23

(APN), and then activated. This is where an Internet Protocol (IP) address is obtained from the
carrier and entered as the IP address for the module. Lastly the module checks the signal
quality to draw the correct number of signal bars to the LCD.

Table 5-3 lists the AT commands sent to the GPRS module during initialization. The underlined
text means specific data that vary depending on the implementation or changes between runs.

Table 5-3: The AT command list for initialization of the GPRS module

Description AT command Expected response

Connected to module? AT OK

Test PIN AT+CPIN=pin OK

Registered to net? AT+CGREG? +CGREG: 0,1

Attached to net? AT+CGATT? +CGATT: 1

Define GPRS context AT+CGDCONT=1,"IP",”APN","0.0.0.0",0,0 OK

Activate GPRS context AT#GPRS=1 +IP: xxx.xxx.xxx.xxx

Check signal quality AT+CSQ +CSQ: quality

5.5.2 Connect to server

When connecting to the server, some configuration of the GPRS module is necessary before
opening a socket. The first two AT commands in table 5-4 is used for configuration, the third is
used for pinging the server, and the last command opens the socket.

Socket parameters are configured to set a socket timeout after 30 seconds of inactivity, after
this time the socket should close. The firewall on the GPRS module is configured to allow
connections to and from the remote server. A ping request is sent to the server, if the GPRS
module gets responses from the server then it is up and running.

To finally connect to the server, a Transmission Control Protocol (TCP) socket is opened on port
80. TCP is used over UDP because it can guarantee that the transferred data remains intact
and arrives in the same order it was sent. The socket is opened in online mode, which means
that from that moment, every byte written to the GPRS module will be sent directly through the
socket to the server instead of being interpreted as an AT command. If the socket is opened in
command mode instead, the GPRS module keeps accepting and interpreting AT commands as
normal. [24].

24

Table 5-4: The AT command list for connecting to the server

Description AT command Expected response

Configure socket AT#SCFG=1,1,packet
size,globaltimeout,sockettimeout,data
timeout

OK

Open firewall AT#FRWL=1,server adress,netmask OK

Send PING AT#PING=server_adress,port #PING: 01,server_adress,time,ttl

Open socket AT#SD=1,0,port,server adress,0,0,0 CONNECT

5.5.3 Transfer of data

Since the socket is opened in online mode, no AT commands are needed to transfer data, the
data that should be transferred is just sent to the GPRS module as plain text. A HyperText
Transport Protocol (HTTP) GET message is sent to the server to both deliver the VIN and
trouble codes, and to request an image pattern from the server and send its compressed data in
a reply. The HTTP message is shown below and contains of three lines with two empty lines in
the end. Every line ends with a carriage return and newline character.

GET /?page=machine&get&cmp=hex&vin=VIN&faults=DTC HTTP/1.1
Host: obd.syntronic.com
Connection: close

In the HTTP message shown above, VIN is the 17 character long VIN string and DTC is the
trouble codes separated with commas (in the case of no detected faults, the &faults=DTC part is
omitted from the message). The connection: close line is an extra option and tells the server to
immediately close the connection after the reply has been sent to preserve server resources.

If the message was delivered correctly the first line of the response from the server will contain
HTTP/1.1 200 [28]. The rest of the response contains a number of header lines that are ignored
by Midrange, and the payload that is expected to contain a compressed image pattern sent by
the server. The payload is decoded and turned into a bit pattern that can be printed on the
display.

5.6 LCD

To prepare Midrange for the LCD, the SPI and the two data pins are initialized and the LCD
circuits are turned on by setting the reset pin high. The LCD is then initialized by setting the
data/command pin low and sending commands through the SPI to define the hardware settings
according to table 5-5 [26].

25

Table 5-5: LCD initialization commands

Command Command (binary) Description

ADC select 10100000 Set segment driver direction select to NORMAL

Display ON/OFF 10101110 Turn display OFF

Common Output Mode
(COM) select

11000000 Set COM output scanning direction to
NORMAL

Select LCD bias 10100010 Set LCD voltage bias to 1/9

Power control 00101111 Turn on all power circuits

Regulator resistor select 00100110 Set voltage regulator internal resistor ratio to
6.0

Reference Voltage Select 10000001 Enable display contrast selection mode

Set Reference Voltage
Register

00101000 Select contrast value 40 (0-64)

Display ON/OFF 10101111 Turn display ON

In order to draw the company logo and other images, the LCD receives bit patterns for the
images that are stored in the code or supplied by the server in the case of the QR-code. An
image bit pattern is essentially an array of ones and zeroes where a zero represents a white
pixel and a one represents a black pixel. Numeric values are also supplied to keep track of the
height and width of the images.

Text is printed in essentially the same way as images but pointers to bit patterns for every
character are stored in an array. Other arrays keep track of the width and size of every
character. A wrapper function is made to print strings, that automatically takes care of printing
the characters to the screen and move the draw area after every character according to the size
of the character that was printed.

The Graphical User Interface (GUI) consists of a series of screens that displays runtime
information as well as the company logo and signal strength bars. The result screen shows the
current VIN, the number of faults found, and the QR-code containing a link to the VIN on the
webpage. An error screen contains a warning triangle with descriptive text about the error that
occurred. Example of the GUI is shown in figure 5-2, 5-3, 5-4 and 5-5.

26

Figure 5-2: Splash screen Figure 5-3: Runtime information example

Figure 5-4: Error screen example Figure 5-5: Results screen

27

6 Server
The server consists of a database which holds all information relevant for the system and a user
interface from which the user can access the information through a series of pages. External
systems can insert new entries into the database through the web interface. The basic layout of
the server is structured as displayed in figure 6-1, with the different pages being blue, external
systems being red and the dynamic parts (database) being green.

Figure 6-1: Structure of the server

The database is designed on a MySQL Structured Query Language (SQL) server (version
5.6.12) and accessed through PHP Hypertext Preprocessor (PHP) (version 5.4.12) from HTTP
on an Apache web server (version 2.4.4). Cascading Style Sheet (CSS) and HyperText Markup
Language (HTML) is used for design and formatting of the web pages. PHPMyAdmin (version
4.0.4) is also used to administrate the MySQL database.

28

6.1 Database

6.1.1 Structure

Two types of database engines are used; MyISAM and InnoDB. MyISAM is an engine well
suited for heavy read and low write access which is the case for the knowledge base type of
databases that houses the trouble codes or other semi-static data which in this case is all but
the car database. InnoDB is a well-rounded engine that is equally effective in both read and
write access which is useful for the car database where info will be both read and written [29].
There are five tables present to handle the data within the web interface and database; users,
car_db, faults, countries and brands as can be seen in figure 6-2.

• users holds information about the different users that have write access to the trouble
codes in order to update notes and descriptions. The table consists of columns uid (user
id), username, password (encrypted with salt and password using the blowfish cipher)
and salt (the UNIX time hashed using the MD5 algorithm).

• car_db holds information about the different cars that have been introduced to the
system either manually or via the Midrange platform. Columns in this table are vin, faults
(comma-separated list of trouble codes), wmi and a last_modified timestamp.

• faults holds information about all different trouble codes encountered and some notes
and small texts about them. faults consists of columns code (the trouble code),
manufacturer (to which manufacturer the code applies), description_short (a short
description of the fault [30]), description_long (a more descriptive text on the fault),
symptoms, cause, fix, notes and last_modified.

• countries holds information that maps the wmis to manufacturing countries. The
columns in this table are wmi (the first one or two characters in the WMI) and country.

• brands holds information about different manufacturers and maps the wmis to
manufacturers. Columns in this table are wmi, manufacturer (short name of the
manufacturer) and manufacturer_real (manufacturer’s full name).

Figure 6-2: Table structure in the database

29

6.1.2 Security

All external connections made to the database will be denied and thus the only way to access
the MySQL server is to either have physical access to the server or by using the web interface.
Every command sent to the MySQL server will pass through filters to avoid problems such as
SQL injection attacks or simply faulty requests. These filters consists of adding escape
sequences to special characters (NUL, ‘, , \, \n, \r, _, “, %, CTRL-Z) which otherwise could be
used to break or execute arbitrary code in the SQL database.

6.2 Web Interface

The web interface consists of a number of files and directories to make it modular. When there
is a request to a page on the server it will go through the index.php file with the GET argument
page to specify which page should be loaded next. A redirect header is in place to prevent
access through any other file than index.php which could yield unexpected results. Screenshots
of the relevant pages that the user can access can be found in appendix B.

Users are able to register and log in in order to access the edit option of the trouble codes. The
passwords are encrypted using blowfish and salted using a MD5 hash of the UNIX timestamp
during the registration.

6.2.1 Machine Interface

When the machine interface receives arguments using either GET or POST it will verify that the
VIN is 17 characters long and the trouble codes that follow are the correct length and comma
separated, and if everything looks okay, insert or update the correct row in the database. After
the data has been inserted, or updated, in the database the page creates a QR-code for a link
to the search for the VIN in question. To create the QR-code, a library called PHPQRcode
(version 1.1.4) is used. The QR code is sent back to Midrange to be printed on the LCD in the
result screen.

In order to limit the amount of data that is sent over GPRS, the QR-code is compressed before
sending it back to Midrange. The QR-code is converted into a bit pattern where every white
pixel is represented by a zero and every black pixel by a one. This bit pattern is converted into
the ASCII values of the bit patterns corresponding hex numbers and returned as a string to the
client if the cmp variable is set to hex in the request header. Raw and ASCII compression,
where each eight bits are represented directly by the ASCII equivalent, are also available but
not used in this implementation since sending ASCII characters causes the GPRS module to
interpret some values as newline characters which causes problems when Midrange receives
data from the GPRS module.

6.2.2 Statistics

Using the format of the OBD trouble codes as defined in ISO 15031-6 [11] statistics for the
frequency of faults overall, per system and per subsystem can be generated. Because each
entry in the car_db database has information about the car, when cross referenced with other
tables, such as brand, year data and a timestamp (last_modified) included statistics based on
time and brand can be calculated.

30

The statistics (as seen in appendix B, figure B-5) are dynamically calculated upon request of the
user and output as Portable Network Graphic (PNG) images. The image type PNG is used
because of its lossless, efficient compression algorithm [31]. These images, along with raw
data, are also saved into a Microsoft Excel (xlsx) document for easy presentation. Because
these calculations are computationally expensive the images are cached and can only be
refreshed once every 24 hours. The library pChart (version 2.1.3) is used to generate graphs for
the images and the library PHPExcel (version 1.7.9) is used to save images and data to an
excel document.

31

7 Results and discussion
The system consists of the Midrange platform which is connected to a GPRS module, a display
and to the OBD2 interface on a car. Midrange extracts data over CAN from the OBD system on
the car and processes the data. The GPRS module transfers the data from Midrange through
the internet via the web interface into the database. The user gets information from the display
and uses the internet to access the web interface which fetches data from the database and
shows it to the user.

7.1 System overview

A block diagram over the system components as well as the communication protocols and
programming language used are shown in figure 7-1. The text between the boxes indicate the
communication protocol or interface used between the components and the text in square
brackets next to some of the boxes indicate what language the component is implemented in.

Figure 7-1: System overview block diagram

A photograph of the implemented system (except for the server) is shown in figure 7-2 together
with numbers that indicate the different components. A list of the purchased components can be
found in appendix C.

32

Figure 7-2: System overview

Component list:

1. Midrange
2. GPRS module
3. GPRS external antenna
4. LCD
5. OBD2 cable
6. Power switch
7. Power regulator
8. Capacitors
9. OBD2 to CAN converter
10. Midrange power cable
11. LCD cable

To eliminate the need for an external power supply the system takes its power from the cars
battery via the power pin on the OBD connector. The car battery supplies around 12 V which
works for the GPRS module but needs to be transformed down to 5 V for Midrange via a voltage
regulator. The capacitors are placed according to the power regulator data sheet to protect the
system from resonance current and voltage spikes.

33

7.2 Testing the system

Testing of the product was conducted, both during and after development, on both the OBD
simulator and actual cars. The tests conducted were both on the functionality and the
performance of the product.

7.2.1 Functionality

The functionality of the system was tested by connecting it to several different cars that used
CAN as the OBD2 communication protocol and running the scan while monitoring the
communication with the Kvaser Leaf Light. A commercial scan tool based on the ELM327 circuit
was used to verify the results. The result of the testing is listed in table 7-1.

Table 7-1: Test table

Manufacturer Model Year CAN
addressing
mode

CAN bit rate ELM327
results

Midrange
results

Land Rover Range
Rover
Evoque

2012 11-bit 500 kbps Scan OK, no
faults

Scan OK, no
faults

BMW 320d 2010 11-bit 500 kbps Scan OK, no
faults

Scan OK, no
faults

Land Rover Discovery
4

2011 29-bit 500 kbps Scan OK, no
faults

Scan OK, no
faults

Volvo V50 2011 29-bit 500 kbps Scan OK, no
faults

Scan OK, no
faults

Ford Focus 2011 11-bit 500 kbps Scan OK, no
faults

Scan OK, no
faults

Renault Espace 4 2008 11-bit 250 kbps Scan OK, no
faults

Scan OK, no
faults

The testing showed that the system works as intended and produces the same OBD scan
results as the commercial products. The system also seems to work with both 11- and 29-bit
addressing mode as well as both 250 and 500 kbps as baud rate. The data is sent successfully
to the server and the QR-code on the result screen links to the correct page on the web server
when read with a QR reader app on a smart phone. Although testing several vehicles, there
were no cars available that had any trouble codes present, however this should theoretically not
be a problem since the system worked perfectly with the OBD simulator and was able to obtain
trouble codes and deliver them to the server without problems. A test was also conducted in
order to, within reasonable boundaries; verify that the system can handle a large number of fault
codes. The test was carried out with 30 concurrent trouble codes and worked without problems
on either side but a normal run should never find this many codes in a single scan.

34

7.2.2 Data usage

The network traffic to and from the server is monitored and recorded with the network packet
sniffer program Wireshark. The timestamps in the below tables are normalized with the
timestamp of the ping request as zero.

When the OBD scan returns with no faults and this is sent to the server, 1556 Bytes are
transmitted, according to table 7-2. If the scan has found faults the transmitted data is 1563 + 6
* N Bytes, where N is the number of faults (table 7-3). The overhead is quite large, out of the
1556 Bytes that are transmitted; the data that is relevant to the purpose of the transmission
takes up 162 + 780 Bytes. This means that the overhead is as high as 40%. However the Bytes
that are not directly needed by the server serve other purposes. 148 Bytes are used by the ping
from Midrange to make sure that the server is up and operational. 466 Bytes are used in order
to set up the TCP connection and make sure that the data has arrived correctly.

Table 7-2: Communication between Midrange and server without faults to report

Time (s) Source Destination Protocol Bytes Info

0.000000
0

MIDRANGE SERVER ICMP 74 Echo (ping) request id=0x04c0,
seq=24866/8801, ttl=111

0.000145
4

SERVER MIDRANGE ICMP 74 Echo (ping) reply id=0x04c0,
seq=24866/8801, ttl=128

0.662306
0

MIDRANGE SERVER TCP 62 hpss-ndapi> http [SYN]

0.662490
0

SERVER MIDRANGE TCP 62 http >hpss-ndapi [SYN, ACK]

0.980016
0

MIDRANGE SERVER TCP 60 hpss-ndapi> http [ACK]

6.619333 MIDRANGE SERVER HTTP 162 GET
/?page=machine&get&cmp=hex&vin
=OZENELEKTRO123456 HTTP/1.1
Continuation or non-HTTP traffic

6.818593 SERVER MIDRANGE TCP 54 http >hpss-ndapi [ACK]

7.903146 SERVER MIDRANGE HTTP 780 HTTP/1.1 200 OK (text/html)

7.903381 SERVER MIDRANGE TCP 54 http >hpss-ndapi [FIN, ACK]

8.398527 MIDRANGE SERVER TCP 60 hpss-ndapi> http [ACK]

9.359701 MIDRANGE SERVER TCP 60 hpss-ndapi> http [FIN, ACK]

9.359754 SERVER MIDRANGE TCP 54 http >hpss-ndapi [ACK]

35

Table 7-3: Communication between Midrange and server with 7 faults to report

Time (s) Source Destination Protocol Bytes Info

0.000000
0

MIDRANGE SERVER ICMP 74 Echo (ping) request id=0x05ec,
seq=24705/33120, ttl=111

0.000157
0

SERVER MIDRANGE ICMP 74 Echo (ping) reply id=0x05ec,
seq=24705/33120, ttl=128

0.635200
0

MIDRANGE SERVER TCP 62 vpac> http [SYN]

0.635360
0

SERVER MIDRANGE TCP 62 http >vpac [SYN, ACK]

0.962430
0

MIDRANGE SERVER TCP 60 vpac> http [ACK]

6.640370 MIDRANGE SERVER HTTP 211 GET
/?page=machine&get&cmp=hex&vin=
OZENELEKTRO123456&faults=P0100
,P0200,P0300,U0100,B0200,C0300,P
0101 HTTP/1.1 Continuation or non-
HTTP traffic

6.840390 SERVER MIDRANGE TCP 54 http >vpac [ACK]

7.696590 SERVER MIDRANGE HTTP 780 HTTP/1.1 200 OK (text/html)

7.696880 SERVER MIDRANGE TCP 54 http >vpac [FIN, ACK]

8.118180 MIDRANGE SERVER TCP 60 vpac> http [ACK]

8.138760 MIDRANGE SERVER TCP 60 vpac> http [FIN, ACK]

8.138810 SERVER MIDRANGE TCP 54 http >vpac [ACK]

The data in tables 7-3 and 7-2 is example data and does not contain any retransmissions
caused by a bad connection, which would increase the amount of transmitted data.

In addition to the transmitted data between Midrange and the server, there are extra bytes being
sent in order to set up a connection between the GPRS module and the carriers APN. The
amount of data used to do this could not be found in either the GPRS modules datasheet or
from the carrier.

7.3 System limitations

ISO 15031-6 only describes the generic trouble codes and leaves some room for manufacturers
to define their own codes. Not all manufacturers want to share this information so building a
database with information about all trouble codes for all manufacturers is not easy. In addition to
that, a trouble code specification is very generic and does not include more than a line of
descriptive text. There are databases available for sale that includes manufacturer specific

36

information as well as more in-depth information about causes, symptoms and fixes for trouble
codes, but this was too expensive for this project.

The VIS and VDS parts of the VIN are not easily decoded by the web server since they are
manufacturer specific and the data is not always publicly shared by the manufacturer. However
some companies offer paid services for decoding VINs in more detail than was useful for this
project.

Using CAN as the only OBD2 communication protocol significantly reduces the number of cars
that this system can communicate with as most cars on the market were manufactured prior to
the change to CAN as most common protocol. There is an embedded microcontroller called
ELM327 by ELM electronics that could be used to support all available OBD2 protocols [1]. The
circuit is used like the GPRS module with serial communication and AT commands. This was
however not an option for this project since Syntronic wanted to have the OBD communication
implemented from the ground up in their development platform

7.4 Security issues

Because there are no security features in place in either OBD or CAN, as mentioned in chapter
3.3.3, many issues can arise when combining the two systems. There have been numerous
successful attempts in which researchers have been able to gain access to or disrupt key
protected areas of a vehicle rendering it unsafe for normal operations. One example of this is
when researchers at the universities of Washington and California managed to gain full access
to the internal CAN through the OBD interface, using a computer and custom software designed
for attacking the system [17]. This allowed them not only to inject malicious or erroneous code
into the network but also to reflash both the ECM and the ECUs making it possible to disable (or
enable) key systems of the car, for example turning off the engine or disabling the brakes.

The user of the car relies on the ECUs to have working software, and notifying him in case of an
error, in order to deem the vehicle safe for usage. While these kinds of attacks are possible
using the OBD interface they can also be used from other entry points in the car, such as the
telematics system or the GPS, making it a problem of the internal car system rather than the
OBD interface.

There is certain personal information, such as location or identification data, available on the
internal CAN that can be monitored by an attacker. This information could in the wrong hands
compromise the privacy of the vehicle owner. But then again, this information is available either
using other tools, such as a GPS tracker put on the outside of the car or using the license plate
number to extract information about a car online, that can be both faster and easier to use.

37

8 Further development

8.1 Hardware

Since focus was to develop a working prototype, the system was developed on Midrange which
is a development platform that has more peripherals and is much larger than needed for a final
product. If this system were to be developed further into an end-user product it could be
reduced in size and encapsulated in a casing. The main reduction in size would come from
moving from the development platform and creating a custom chip with only the necessary
features and components. Some components can also be reduced in size, for example the
GPRS modules embedded counterpart is smaller than the terminal block used in development.
An example of how this product could look like is shown in figure 8-1.

Figure 8-1: A mockup drawing of the final product

8.2 Firmware

CAN is the only OBD2 communication protocol that was implemented due to time constraints
and the fact that most manufacturers have chosen to implement it as their choice of
communication protocol following the legislation in the U.S. that states that all cars sold in the
U.S. after 2008 must use CAN. However if this product were to be developed further, all
available OBD2 communication protocols could be implemented to provide compatibility with
older cars. The upper layers of the OBD communication such as the modes of operation, PIDs
and trouble codes still works in the same way independent on which protocol is used so much of
the present OBD related code would be usable or easily adapted when implementing more
protocols.

38

8.3 Web interface and database

There are numerous ways to increase the width of the community that is to be around this
service. One easy way is to add a bulletin board (forum) where users can discuss changes and
fixes as well as tips and advices. This would need to be structured in a way that makes it easy
for the user to find the correct trouble code and the discussions that apply. Another way of doing
this would be to create a wiki page and add information about each fault as well as cars and/or
manufacturers. This way, everyone (authorized) can add or change information while still
abiding the fixed structure. Using a wiki tool would also enable quick access to version history
as well as user information on changes made to the database.

A subscription to an external service for trouble code information to obtain manufacturer specific
tips and fixes would help to keep the information in the database up to date with the
manufacturer's specifications.

Further development of the web interface would benefit from extended user interaction and
feedback to increase usability as well as adding features that are not yet thought of. The
security that is present is not by any means all the security one would want but more of a
minimum requirement.

The database setup is not optimized for a larger user base and should be split into several
tables as well as servers. Caching could, and should, be used to offload the reading operations
of the tables. There should preferably also be a backup service, separated from the website files
that won’t be updated very frequently, in place to secure the data in case of malfunctions or user
errors.

39

References
[1] Elm Electronics - OBD ICs - ELM327. Elm Electronics, 2013 [viewed at 2013-11-22].
Available from http://www.elmelectronics.com/obdic.html#ELM327

[2] ARM-USB-OCD-H. Olimex, 2013 [viewed at 2013-08-20]. Available from
https://www.olimex.com/Products/ARM/JTAG/ARM-USB-OCD-H/

[3] EOBD & OBDII ECU simulators. Özen Elektronik, 2013 [viewed at 2013-08-20] Available
from http://www.ozenelektronik.com/?s=products2&group=eobd-obdii-ecu-simulators

[4] Kvaser Leaf Light HS OBDII. Kvaser AB, 2013 [viewed at 2013-11-22]. Available from
http://www.kvaser.com/datasheets/kvaser_datasheet.php?ean=73-30130-00402-3

[5] CMSIS - Cortex Microcontroller Software Interface Standard. ARM Ltd., 2013 [viewed at
2013-09-10]. Available from http://www.arm.com/products/processors/cortex-m/cortex-
microcontroller-software-interface-standard.php

[6] Why RTOS and What is RTOS?. Real Time Engineers Ltd., 2013 [viewed at 2013-08-27].
Available from http://www.freertos.org/about-RTOS.html

[7] On Board Diagnostics (OBD) | US EPA. U.S. Environmental Protection Agency, 2013
[viewed at 2013-11-22]. Available from http://www.epa.gov/obd/

[8] EUR-Lex - 31998L0069 - EN. European Parliament, 1998 [viewed at 2013-11-22]. Available
from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML

[9] Road vehicles -- Communication between vehicle and external equipment for emissions-
related diagnostics -- Part 3: Diagnostic connector and related electrical circuits, specification
and use. ISO 15031-3:2004. Geneva, Switzerland : ISO.

[10] Road vehicles -- Communication between vehicle and external equipment for emissions-
related diagnostics -- Part 5: Emissions-related diagnostic services. ISO 15031-5:2011. Geneva,
Switzerland : ISO.

[11] Road vehicles -- Communication between vehicle and external equipment for emissions-
related diagnostics -- Part 6: Diagnostic trouble code definitions. ISO 15031-6:2010. Geneva,
Switzerland : ISO.

[12] Environmental Protection Agency (EPA). Control of Air Pollution From New Motor Vehicles
and New Motor Vehicle Engines; Modification of Federal On-Board Diagnostic Regulations for:
Light-Duty Vehicles, Light-Duty Trucks, Medium Duty Passenger Vehicles, Complete Heavy
Duty Vehicles and Engines Intended for Use in Heavy Duty Vehicles Weighing 14,000 Pounds
GVWR or Less. Federal Register [online]. United States Environmental Protection Agency.
2005-12-20, 70 (243), 75403-75411 [viewed at 2013-11-22]. Available from: fr20de05-15.

[13] Road vehicles -- Controller area network (CAN) -- Part 1: Data link layer and physical
signaling. ISO 11898-1:2003. Geneva, Switzerland : ISO.

[14] Road vehicles -- Diagnostic communication over Controller Area Network (DoCAN) -- Part
4: Requirements for emissions-related systems. ISO 15765-4:2011. Geneva, Switzerland : ISO.

[15] Class B Data Communication Network Messages - Detailed Header Formats and Physical
Address Assignments. SAE J2178-1:2011. Pennsylvania, United States of America : SAE.

[16] Road vehicles -- Diagnostic communication over Controller Area Network (DoCAN) -- Part
2: Transport protocol and network layer services. ISO 15765-2:2011. Geneva, Switzerland :
ISO.

40

[17] Center for Automotive Embedded Systems Security. Experimental Security Analysis of a
Modern Automobile. In: The Institute of Electrical and Electronics Engineers, Inc. 2010 IEEE
Symposium on Security and Privacy (SP). 2010. Oakland, CA, USA: IEEE, 2010, 447-462.

[18] Road vehicles -- Vehicle identification number (VIN) -- Content and structure. ISO
3779:2009. Geneva, Switzerland : ISO.

[19] Road vehicles -- World manufacturer identifier (WMI) code. ISO 3780:2009. Geneva,
Switzerland : ISO.

[20] Road vehicles -- Types -- Terms and definitions. ISO 3833:1977. Geneva, Switzerland :
ISO.

[21] QR Code Essentials. DENSO ADC, 2011 [viewed at 2013-09-20]. Available from:
http://www.nacs.org/LinkClick.aspx?fileticket=D1FpVAvvJuo%3D&tabid=1426&mid=4802

[22] GSM/GPRS modules and terminals | Telit Wireless Solutions. Telit Communications, 2013
[viewed at 2013-09-23]. Available from: http://www.telit.com/en/products.php

[23] 3rd Generation Partnership Project; Technical Specification Group Terminals; AT command
set for GSM Mobile Equipment (ME). 3GPP TS 07.070:2003. Valbonne, France.

[24] Telit AT Commands Reference Guide. Telit Communications, 2011 [viewed at 2013-09-02].
Available from: www.telit.com/module/infopool/download.php?id=542

[25] SPI Block Guide. Motorola Inc, 2003 [viewed at 2013-08-27]. Available from:
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf

[26] LCM Specification. Shenzhen Vatronix Technology CO., LTD., 2010 [viewed at 2013-09-
02]. Available from: http://www.adafruit.com/datasheets/TG12864H3-05A%20EN_V1.0.pdf

[27] GT864-QUAD / PY Terminal Product Description. Telit Communications, 2011 [viewed at
2013-11-23]. Available from: http://www.telit.com/module/infopool/download.php?id=555

[28] Hypertext Transfer Protocol -- HTTP/1.1. RFC 2616:1999. Reston, United States of
America, The Internet Society.

[29] Chapter 14. Storage Engines. Oracle, 2013 [viewed at 2013-08-27]. Available from:
http://dev.mysql.com/doc/refman/5.6/en/storage-engines.html

[30] OBD-II (Check Engine Light) Trouble Codes. OBD-Codes.com, 2013 [viewed at 2013-08-
20]. Available from: http://www.obd-codes.com/trouble_codes/

[31] PNG: The Definitive Guide - Chapter 9. Compression and Filtering. Greg Roelofs, 2003
[viewed at 2013-10-29]. Available from: http://www.libpng.org/pub/png/book/chapter09.html

41

APPENDIX A: Flowcharts

Figure A-1: OBD initialization flowchart

42

Figure A-2: Get OBD reply flowchart

43

Figure A-3: GPRS initialization flowchart

44

Figure A-4: VIN request flowchart

45

Figure A-5: Fault code request flowchart

46

Figure A-6: Server connection flowchart

47

Figure A-7: GPRS data transfer flowchart

48

APPENDIX B: Web interface screenshots

Figure B-1: Home page

49

Figure B-2: Information about a specific VIN

50

Figure B-3: Trouble code history for a specific VIN

51

Figure B-4: Information about a specific fault code

52

Figure B-5: Global statistics about trouble codes

53

APPENDIX C: Component list

2x 33 µF Capacitors - https://www.elfa.se/elfa3~se_sv/elfa/init.do?item=65-445-89
1x RJ12 Plugs - https://www.elfa.se/elfa3~se_sv/elfa/init.do?item=42-695-51
1x Voltage Regulator - https://www.elfa.se/elfa3~se_sv/elfa/init.do?item=73-286-55
1x Power switch - https://www.elfa.se/elfa3~se_sv/elfa/init.do?item=35-222-08
1x FME Antenna - https://www.elfa.se/elfa3~se_sv/elfa/init.do?item=78-401-71
1x GSM Module - https://www.elfa.se/elfa3~se_sv/elfa/init.do?item=10-492-37
1x 100 Ohm Resistor - https://www.elfa.se/elfa3~se_sv/elfa/init.do?item=60-502-20
2x DB9 Connectors - http://www.kjell.com/sortiment/dator-
kringutrustning/datorkomponenter/kontakter/db9-hane-terminalblock-p68850
1x Graphic ST7565 Positive LCD (128x64) with RGB backlight -
http://www.adafruit.com/products/250
1x OBD Simulator (mOByDic 1610) -
http://www.ozenelektronik.com/?s=products2&group=eobd-obdii-ecu-simulators
1x OBD-to-CAN cable (mOByDic 2000) -
http://www.ozenelektronik.com/?s=products5&group=obd-accessories

