
Self-organizing multi-agent systems
for shared space operations
Using genetic algorithms and contract net protocols to solve
the pickup and delivery problem

Master’s thesis in the Master’s Programmes:
Complex Adaptive Systems and Computer Science - Algorithms, Languages and Logic

SVANTE KARLSSON
JACOB STEFFENBURG

Department of Mechanics and Maritime Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis 2018:84

Self-organizing multi-agent systems
for shared space operations

Using genetic algorithms and contract net protocols to solve the
pickup and delivery problem

Svante Karlsson
Jacob Steffenburg

Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems

Applied Artificial Intelligence Research Group
Chalmers University of Technology

Gothenburg, Sweden 2018

Self-organizing multi-agent systems for shared space operations
Using genetic algorithms and contract net protocols to solve the pickup and delivery
problem
SVANTE KARLSSON, JACOB STEFFENBURG

© SVANTE KARLSSON, JACOB STEFFENBURG, 2018.

Supervisor: Mauro Bellone, Applied Artificial Intelligence
Supervisor: Åsa Rogenfelt, CPAC Systems AB
Examiner: Peter Forsberg, Applied Artificial Intelligence

Master’s Thesis 2018:84
Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems
Applied Artificial Intelligence Research Group
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A pickup and delivery problem on a graph in which three agents have de-
tected conflicting routes.

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Self-organizing multi-agent systems for shared space operations
Using genetic algorithms and contract net protocols to solve the pickup and delivery
problem
SVANTE KARLSSON, JACOB STEFFENBURG
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
Automation of on-site scheduling and route planning of units in a mining operation
presents interesting challenges. The dynamic properties of real-life operations neces-
sitate AI-inspired decentralized methods, which tend to be more robust under real
conditions. Moreover, route planning in a mining environment, consisting of narrow
passageways, requires vehicles to communicate and cooperate for safe and efficient
transportation.

We model this as a dynamic multiple-agent pickup and delivery problem; a
problem in which multiple agents cooperate to complete transportation tasks that
are revealed continuously. Taking inspiration from novel solutions, using auction-like
bidding systems based on genetically optimized heuristics, we tackle the pickup and
delivery problem (PDP) from two different angles. Firstly, we show that existing
solutions to the planar variant of the PDP can be improved by giving agents the
ability to communicate. Secondly, we present a solution method to the PDP in
a shared space environment, applicable for real world scenarios such as a mining
operation. Apart from using the aforementioned bidding system to assign tasks to
agents, we also implement a method for solving decentralized multiple-agent path
finding.

Keywords: artificial intelligence, machine learning, reinforcement learning, multi-
agent system, pickup and delivery problem, genetic algorithm, multi-agent path
finding.

v

Acknowledgements
We would like to thank CPAC Systems AB for giving us this opportunity, it has
been a great project to work on. We would also like to thank our supervisors, Mauro
and Åsa, whose valuable insights have improved the thesis immensely. Finally we
want to thank our examiner Peter Forsberg who made this thesis possible.

Svante Karlsson & Jacob Steffenburg
Gothenburg, October 2018

Thesis supervisors: Mauro Bellone, Applied Artificial Intelligence
Åsa Rogenfelt, CPAC Systems AB

Thesis examiner: Peter Forsberg, Applied Artificial Intelligence

vii

Nomenclature

CNET Contract-Net Protocol
GP Genetic Programming
MAPF Multiple-Agent Path Finding
MAS Multiple-Agent System
PDP Pickup and Delivery Problem

ix

x

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Goals . 2
1.3 Assumptions . 2
1.4 Contribution . 2

2 Theory 3
2.1 The Pickup and Delivery Problem . 3

2.1.1 Problem definition . 3
2.1.2 Problem characteristics . 4

2.1.2.1 Dynamism . 4
2.1.2.2 Urgency . 5
2.1.2.3 Scale . 6

2.2 Contract-net protocol . 6
2.3 Genetic programming . 7

2.3.1 Encoding . 7
2.3.2 Selection . 8
2.3.3 Crossover . 8
2.3.4 Mutation . 9
2.3.5 Elitism . 9

2.4 Path finding . 10
2.4.1 Multi-agent path finding . 10

2.4.1.1 M-star . 13

3 Methods 15
3.1 Solving a planar PDP . 15

3.1.1 RinSim and ECJ . 15
3.1.2 Parcel assignment . 16
3.1.3 Introducing communication to multiple-agent systems 16
3.1.4 Reauctioning parcels . 17
3.1.5 Route planning . 18
3.1.6 Training data . 18

3.2 Industrial application . 20

xi

Contents

3.2.1 Problem redefinition . 20
3.2.1.1 Topology . 20
3.2.1.2 Limited communication range 21
3.2.1.3 Agent capacity . 21
3.2.1.4 Service queuing . 22

3.2.2 Shared space route planning 22
3.2.2.1 Local route planning 22
3.2.2.2 Unweighted edges and map resolution 24

3.2.3 Vehicle behaviour . 24
3.2.3.1 Communication . 25
3.2.3.2 Long term and short term memory 25
3.2.3.3 Collision detection and avoidance 26
3.2.3.4 State machine . 26

3.2.4 Optimization and system evaluation 27
3.2.4.1 Limiting evolution runtime 28
3.2.4.2 Training data . 28
3.2.4.3 Validation data . 28
3.2.4.4 M-star runtime analysis 29

4 Results 31
4.1 Introducing communication to the planar PDP 31

4.1.1 Training performance . 31
4.1.2 Comparison with previous results 31

4.2 Evolving solutions for graph based PDP 34
4.2.1 Training results . 34
4.2.2 Scalability . 37

5 Discussion 41
5.1 Extending the solution of the planar PDP 41

5.1.1 System evaluation . 41
5.1.2 Future work . 41

5.2 Solving a shared space PDP . 41
5.2.1 Objective value evaluation . 42
5.2.2 Cost correlation to urgency 42
5.2.3 System scalability . 43
5.2.4 Future work . 43

5.2.4.1 Communication nodes in shared space MAS 44
5.2.4.2 Modelling capacity 44
5.2.4.3 Supplement M-star with a suboptimal solver 44
5.2.4.4 Increase parallelization for conflict resolution 44
5.2.4.5 Post processing of emergency paths 45
5.2.4.6 Introduce additional classes of vehicles 45

6 Conclusion 47

Bibliography 49

xii

Contents

A Appendix 1 I

xiii

Contents

xiv

List of Figures

2.1 Two scenarios with different levels of dynamism. The top-most sce-
nario is less dynamic than the bottom-most one. 5

2.2 Two orders of different urgency. The top-most order is less urgent
than the bottom-most one. 6

2.3 The CNET protocol process. 7
2.4 Tree based encoding for a genetic program. Decoding the chromosome

gives the function f(x1, x2) = x1 · (x2 − 1) + max(x2, 1) 8
2.5 Example of how crossover is used for tree-based chromosomes. 9
2.6 Examples of two different mutation schemes for tree-based chromo-

somes. 10
2.7 Possible next states for one iteration in a single agent pathfinding

problem. 11
2.8 Possible next states for one iteration in a multi agent pathfinding

problem. 12

3.1 Visualization of the common target node used by bidding heuristics. . 18
3.2 System layout for the industrial application. 20
3.3 Layout of a real world mine and the model used for the thesis. 21
3.4 By relaying messages from the blue vehicle its communication range

is extended to include that of the red vehicle. 21
3.5 Routing conflict with two vehicles. 23
3.6 Graph expanded with local vertices 24
3.7 Route conflict with more than two vehicles. 26

4.1 System performance during training of planar PDP solution. 32
4.2 System performance on training and validation data sets during train-

ing. 35
4.3 Distribution of computation times in seconds for 1000 instances of

M∗ with differing numbers of agents. 38
4.4 The failure rate of the simulations with respect to number of agents. . 39

5.1 Histogram of maximum order durations for orders from different ur-
gency classes. 43

A.1 One of the highest performing heuristics from DGGP-mixed. II

xv

List of Figures

xvi

List of Tables

3.1 Possible internal nodes of a heuristic function. 16
3.2 The possible leaf node of a bidding heuristic 17
3.3 Leaf nodes that uses the states of other agents. 17
3.4 Data sets used to evolve bidding heuristics. 19
3.5 Long term memory variables. 25
3.6 Short term memory variables. 25
3.7 Transition table for the finite state machine in charge of vehicle logic. 27
3.8 Scenario and genetic programming parameters used to evolve solu-

tions for shared space PDPs. 28

4.1 Comparison between evolved heuristics with and without communi-
cation terminals . 33

4.2 Baseline heuristics and evolved heuristics performance for varying
levels of dynamism and urgency. 36

xvii

List of Tables

xviii

1
Introduction

Current trends within autonomous mining utilize Artificial Intelligence (AI) for nav-
igation and low level control of vehicles. In particular, Deep Learning has been found
useful for this purpose [1]. The high level control, such as scheduling and route plan-
ning of each unit, is however mostly still done manually. One possible way of raising
efficiency would be to automate the on-site detailed planning of transportation units.

The objective of these vehicles is to transport ore from deposits to centrally
located crushers, which pulverizes the ore into manageable size. This can be modeled
as a pickup and delivery problem (PDP), for which the objective is to service requests
while minimizing travel time or fuel costs. PDPs have been the focus of a lot of
recent research with the rise of taxi cab and peer-to-peer ridesharing services such
as Uber, as summarized by Cordeau in [2]. A solution to a PDP can either form a
centralized system, featuring a central decision-maker, or a decentralized multi-agent
system.

Centralized systems offer a complete overview of each truck’s current route.
However, there are some issues with a single system having to review the path
of each agent, such as loss of communication between agent and system. When
circumstances change, which is common in a real world setting, the planning will
need to be adjusted accordingly. This necessitates AI-inspired methods, which tend
to be more robust under real conditions, as argued by van Lon and Holvoet in [3].

A common solution to the PDP using decentralized multi-agent system is to use
a Contract Net protocol (CNET), in which agents bid on each new order according
to their current state. Using a CNET protocol, the goal is now to optimize the
heuristic used for bidding, representing how well-suited the agent is to service the
order. Recent work by van Lon et al. [4] uses genetic programming to perform this
optimization, providing a solution for a planar PDP, which shows promising results
compared to a centralized solution.

However, going from a planar PDP, where agents do not compete for access to
routes, to a shared space graph based PDP introduces a number of problems, chief
among them being routing conflicts.

1.1 Problem Statement
The purpose of the project is to examine how genetic programming and reinforce-
ment learning can be used to develop a self organizing multiple agent system (MAS)
for the pickup and delivery problem (PDP). The project will build upon existing re-
search and theory by introducing communication between agents to the MAS. Once

1

1. Introduction

this is successful an application will be developed for industrial vehicles in a mining
environment.

1.2 Goals
The two main goals of this thesis are:

• To study the effects of introducing communication support to a genetic pro-
gram in charge of optimizing solutions to the planar PDP.

• To develop a solution method for the shared space variant of the PDP, tackling
the issues of schedule optimization and multi-agent path finding.

1.3 Assumptions
For the first part of the thesis, we will limit ourselves to the solution developed by
van Lon et al. [4], with the only addition being communication support for bidding
heuristics. As for the industrial application, several assumptions will be applied,
namely:

• Vehicles are either stationary or travel at a constant speed. Partly since the
simulation environment used for the project does not support varying velocities
but also because the kinematic aspect is considered to be outside the scope of
this thesis.

• Communication devices are 100% reliable, i.e., all sent messages are received
as long as vehicles are within communication range.

• Vehicle cargo capacity is limited to one parcel, which is typical for a mining
operation. However, there might be fringe cases such as a vehicle depleting an
ore deposit only filling its cargo to half capacity.

• Pickup, delivery and depot locations have unlimited capacity for vehicles. This
is used to combat situations where a route planner might not be able to find
a solution for routing conflicts, causing invalid scenarios which would increase
the time needed for evolving bidding heuristics.

1.4 Contribution
In this thesis, we expand on the work of van Lon, Holvoet, and Branke [4, 5] by
introducing a way for agents in decentralized planar PDPs to communicate. Com-
munication is enabled by allowing agents to access information about the states and
intentions of other agents. This information is utilized when placing bids on parcels,
with results suggesting an overall cost reduction of solutions, leading to cheaper and
more efficient schedules.

Furthermore, we remodel the problem for graphs with the added constraint that
agents are not allowed to collide. By extending the planar PDP solution so that
agents are capable of detecting and avoiding collisions, we obtain a general solution
method for shared space PDPs.

2

2
Theory

In this chapter we present the theory behind the main problems addressed in this
thesis. We define the pickup and delivery problem in Section 2.1. Section 2.2
describes the contract net protocol, which is used as a building block for solving the
pickup and delivery problem. Continuing, the theory behind genetic programming
is presented in Section 2.3. Finally, in Section 2.4 we present theory behind multi-
agent path planning, which is used for resolving routing conflicts between agents.

2.1 The Pickup and Delivery Problem
The Pickup and Delivery Problem (PDP) is a logistics problem in which one or
several agents has to move one or several parcels between different locations. For
instance, the agents might represent taxi cabs and the parcels might represent pas-
sengers. The problem can either be static or dynamic; in static problems we are
given complete information from the start, whereas in dynamic problems the input
data and conditions may change over time. An example of a dynamic pickup and
delivery problem is the above mentioned taxi problem, where no fares are known a
priori and new fares are introduced as time goes by. Performance can be measured
in a number of ways, for example, total waiting time for each pickup, tardiness, total
distance travelled, and total pickups completed.

In general, there are two different approaches to choose from when solving the
PDP: using state-of-the-art optimization algorithms to solve a static problem every
time new input is revealed, or viewing the system as a decentralized multi-agent
system. In [3], van Lon and Holvoet argue that the second method provides certain
advantages, such as:

• Contrary to centralized systems, decentralized ones scale well with the problem
size.

• Decentralized systems are flexible and adaptable to changes and disruptions
to the environment.

2.1.1 Problem definition
An instance of a dynamic PDP is defined by the tuple

instance := 〈T ,O,A,M〉,

where T is the duration of the problem instance, O is a set of orders, A is a set of
agents andM is a map in which the agents reside. The interval [0, T) is the time

3

2. Theory

period in which agents may operate and process orders. Orders oi ∈ O represent
parcels to be picked up and delivered and are defined by:

ai - the announce time,
pi = [pL

i , p
R
i) - the time window for pickup,

di = [dL
i , d

R
i) - the time window for delivery,

ploci ∈M - the pickup location,
dloci ∈M - the delivery location.

The mapM can either be a subset of Rn or a graph G.

For the general PDP, some more assumptions are made:
• all agents are homogeneous,
• agents travel with constant speed v ∈ {0, V },
• agents have no limits on cargo capacity,
• agents use no fuel and can operate without rest,
• a central depot is used as a starting and finishing point,
• a scenario is completed when every task has been handled and all agents are

back at the depot,
• each location inM can be reached from any other location inM.

Agents are not allowed to pick up or deliver parcels before the corresponding time
window is open, i.e., spi ≥ pL

i and sdi ≥ dL
i , where spi is the time when parcel i

is picked up and sdi is the time when parcel i is delivered. The requirement that
the parcel is delivered before the time window closes is modeled as a soft constraint
which is put into the objective function:

f(T ,O,A) =
∑
j∈A

vttj +
∑
j∈A

T (τj, T) +
∑
i∈O

(
T (spi, p

R
i) + T (sdi, d

R
i)
)
. (2.1)

Here, vttj is the total travel of agent j, T (a, b) := max(0, a − b) is the so called
tardiness, and τj is the time when agent j is back at the depot. As can be seen in
Equation 2.1, the objective function consists of three different quantities that should
be minimized:

1. the total travel time of all agents vttj,
2. the total overtime of all agents T (τj, T),
3. the total tardiness of all pickups T (spi, p

R
i) and deliveries T (sdi, d

R
i).

2.1.2 Problem characteristics
A PDP scenario is characterized by three important parameters: dynamism, ur-
gency, and scale [6, 7].

2.1.2.1 Dynamism

The dynamism of a scenario is an indicator for how continuously the scenario will
change, where more continuous change means higher dynamism. In this context,
a change in the scenario corresponds to a new parcel being announced. Figure 2.1

4

2. Theory

a1 a2 a3 a4

a1 a2 a3 a4

Figure 2.1: Two scenarios with different levels of dynamism. The top-most scenario
is less dynamic than the bottom-most one.

shows two example scenarios with different dynamism levels.
A more formal definition of dynamism can be formulated by considering the inter-
arrival times:

∆ := {δi = ai+1 − ai|i = 0, 1, ..., |O| − 2},

which are the times between announcements of two consecutive parcels. The an-
nouncement times of parcels in a 100% dynamic scenario would be evenly spaced on
on [0, T). This perfect interarrival time is defined as θ := T

|O| . For each order in an
arbitrary scenario, we calculate the deviation from the perfect interarrival time as

σi :=

θ − δi if i = 0 and δi < θ

θ − δi + θ − δi

θ
σi−1 if i > 0 and δi < θ

0 else.

Further, the maximum possible deviation to the perfect interarrival time is com-
puted as

σ̄i := θ +

θ − δi

θ
σi−1 if i > 0 and δi < θ

0 else.

Finally, the dynamism of a scenario is calculated as:

dynamism := 1−

|∆|∑
i=0

σi

|∆|∑
i=0

σ̄i

. (2.2)

For a more thorough explanation of this formula, see [7].

2.1.2.2 Urgency

The urgency of an order is defined as the maximum reaction time agents have, i.e.,
the time from the announcement of the order until the closing of the pick up time
window. Two orders with different levels of urgency are illustrated in Figure 2.2.
For an entire scenario, the urgency is calculated as the mean of the urgency of all
orders.

5

2. Theory

ai
piL piR

aj
pjL pjR

Figure 2.2: Two orders of different urgency. The top-most order is less urgent than
the bottom-most one.

2.1.2.3 Scale

An algorithm for solving the PDP is called scalable if it can maintain a fixed cost
per parcel when the number of parcels is increased proportionally to the number
of agents. If a scenario 〈T ,O,A,M〉 is scaled by a factor α, a new scenario
〈T ,O′,A′,M〉 is obtained, where |O′| = α|O| and |A′| = α|A|. Note that this
definition is not very well suited for maps in which collisions have to be avoided.1

2.2 Contract-net protocol

To solve task assignment problems in a distributed fashion a contract-net protocol
(CNET) can be implemented, as described by Smith [8]. This type of protocol is
inspired by how companies use subcontracting to solve a larger problem. In CNET,
contractor agents compete for tasks in a list set up by a manager agent. The bidding
process is shown in Figure 2.3. For each task, each contractor calculate a bid using
a heuristic that is dependent on the contractor’s state. The manager then decides
which contractor gets to service the task by assigning it to the contractor with the
minimum bid value. This process is shown in Figure 2.3.

Subcontracting systems can be set up either competitively or cooperatively. In
a cooperative setting, we can assume that the contractors and the manager all work
for the same company and bids are calculated to promote the well-being of this
company, instead of bids reflecting personal gain of each contractor.

1Increasing the number of agents with a fixed map increases the number of possible collisions,
adding yet another dimension of complexity. For collision avoidance in a planar setting, the map
could be scaled up as well, but it is not clear how one would scale up a graph in a fair way. This
has been left out of the thesis.

6

2. Theory

Manager

Contractors

Call for bids

42

13

17

Manager

Contractors

Calculate bid value
using heuristic

Manager

Contractors

Assign contract
to the winner

Figure 2.3: The CNET protocol process.

By using a CNET, the problem becomes to optimize the heuristic calculating
these bids using the state of the contractor agent. In a dynamic problem where the
search space for this function is large and the function needs to be computed several
times during a simulation, the use of a genetic algorithm-based hyper-heuristic may
be beneficial.

2.3 Genetic programming
Genetic programming is an application of evolutionary algorithms, a set of optimiza-
tion techniques which, as the name implies, takes inspiration from the biological
process of evolution. Evolutionary algorithms, also known as genetic algorithms,
maintain a set of individuals which model candidate solutions to the optimization
problem. These individuals all contain a genome which, in the case of genetic
programming, encodes a program or a function, as explained by Koza [9]. The pro-
gram/function is encoded in some data structure, for instance a tree structure, and
consists of different operators and inputs. During optimization, the individuals are
combined and mutated to create offspring, as shown in Figures 2.5 and 2.6, thereby
creating new candidate solutions to the optimization problem.

Each individual is evaluated, using the objective function, and assigned a fitness
value corresponding to its performance. High-performing individuals will more likely
be selected as parents to the next generation, whereas individuals with low fitness
are unlikely to pass on their genetic material, ensuring convergence.

2.3.1 Encoding
Similar to how organisms encode data in their chromosomes using DNA, the chro-
mosomes in a genetic algorithm encodes a solution to a given optimization prob-
lem. Arrays are commonly used for this purpose, which can be used to encode real
numbers or weights of a neural network, as shown by Wahde [10]. The solution
provided by decoding a chromosome is evaluated, providing a fitness measure for
the corresponding individual. Using these fitness values, the individuals may then
be recombined using methods such as crossover and mutation, hopefully resulting
in better performing individuals and solutions. For encoding a heuristic, a tree data
structure can be used. An example of this is shown in Figure 2.4.

7

2. Theory

Algorithm 1 Genetic programming algorithm
Require: objective function to minimize/maximize
1: population ← initialize with random values
2: repeat
3: heuristics ← decode population
4: fitness ← evaluate objective function using heuristics
5: generation ← generation + 1
6: newpopulation ← perform selection on population
7: newpopulation ← perform crossover on newpopulation
8: newpopulation ← perform mutation on newpopulation
9: newpopulation ← add elite from population

10: population ← newpopulation
11: until generation=k
12: return heuristics, fitness

+

·
x1 -

max

x2 1

x2 1

Figure 2.4: Tree based encoding for a genetic program. Decoding the chromosome
gives the function f(x1, x2) = x1 · (x2 − 1) + max(x2, 1)

2.3.2 Selection
Selection is the process in which individuals are chosen to form the next genera-
tion. By favoring individuals with higher fitness, the selection process ensures the
evolution of the species. A common selection method is Tournament Selection. In
regular tournament, selection two individuals are chosen randomly from the pop-
ulation, with or without replacement. The individual with the highest fitness is
then selected with probability ptour, where ptour >

1
2 . Tournament selection can be

generalized to size n by choosing n individuals, drawing a random number r ∈ [0, 1]
and selecting the most fit individual if r < ptour. If not, the process is repeated with
the remaining n− 1 individuals.

2.3.3 Crossover
After two individuals have been selected, new individuals may be formed using the
genetics of the selected individuals. This is commonly done by randomly selecting a
crossover point, indicating where to split the individuals chromosomes in two parts.
These are then combined so that new individuals are formed. An illustration of this
process is shown in Figure 2.5.

Using crossover, the chromosomes of a well-behaving individual may spread

8

2. Theory

+

·
x1 x2

3

+

·

2 x2

-

x1 ÷

2 3

+

3

+

·

2 x2

-

x1 ÷

2 3

·
x1 x2

Crossover
Parent 2Parent 1

Offspring 1 Offspring 2

Figure 2.5: Example of how crossover is used for tree-based chromosomes.

rapidly among the population, similar to inbreeding. To counteract this, a crossover
probability pc is introduced. After two individuals have been selected, crossover is
performed with probability pc. If crossover was not performed, the new individuals
are simply generated as copies of the previous ones.

2.3.4 Mutation

As with biological mutation, this process aims to make small changes to offsprings’
chromosomes enabling new behaviour and providing genetic material for future evo-
lution. Mutations are rarely beneficial for the individual in which they first appear.
However, since fit individuals are selected for crossover and unfit individuals are
discarded, the mutation process will give rise to long-term evolution of the species.

For a tree-based genetic program, two common types of mutation processes are
point mutation and subtree mutation. In both processes a mutation point is chosen
randomly. A point mutation then switches the function or terminal stored at that
node with a different one of the same arity. In subtree mutation, the selected node
is replaced with an entirely new randomly generated subtree. Both process are
illustrated in Figure 2.6.

2.3.5 Elitism

The last addition to the genetic programming algorithm is elitism, where the most
fit individual in each generation is directly copied to the next generation. This is
done to ensure that the genetic program does not need to rediscover well-behaving
partial solutions, resulting in faster convergence. Elitism may be generalized to size
n, meaning the top n individuals are copied to the next generation. This may of
course also lead to the evolved functions converging to local optima. Therefore,
elitism is often chosen to be of size one.

9

2. Theory

+

·
x1 x2

3

After mutationBefore mutation

+

+

x1 2

3

Point mutation

+

·
x1 x2

3

+

·
x1

3
Subtree mutation

÷

x2 2

÷

x2 2

Figure 2.6: Examples of two different mutation schemes for tree-based chromo-
somes.

2.4 Path finding
A common problem within computer science is the shortest path problem. In this
problem, we want to find a path between two vertices (s, t) in a graph G = (V , E)
such that the sum of the weights of the edges in the path is minimized. If the graph
is unweighted, we consider the all edges to have unit weight, and therefore search
for the path with the least number of vertices.

There are a multitude of algorithms for calculating shortest paths in polyno-
mial time, such as Dijksta’s algorithm, the Bellman-Ford algorithm, the Floyd-
Warshall algorithm and the A*-algorithm, which all can be found in most text-
books on algorithms and data-structures, such as Algorithms by Sedgewick [11].
The A∗-algorithm is a popular choice for pathfinding, and has a runtime complexity
of O(|E|+ |V|log|V|). In short, the algorithm visits vertices one at a time, beginning
with the starting vertex, and always chooses to explore the best option available.
The next vertex v to explore is determined by a score

f(v) = g(v) + h(v) (2.3)

where g(v) is the distance from the starting vertex and h(v) is the expected distance
to the goal node (via a heuristic). One reason that keeps the runtime complexity
down is the fact that the state space is bounded by the number of vertices and edges.
As we can see in Figure 2.7, in a given state, we only need to consider the direct
neighbors of the current vertex.

2.4.1 Multi-agent path finding
Consider the problem of finding shortest paths for multiple agents in the same
graph. If these agents are allowed to share the same node, this problem is trivial:
just solve these problems separately using polynomial shortest path algorithms.
However, if collisions between agents have to be avoided, things get considerably
more complicated.

10

2. Theory

Starting
state

Goal
node

Figure 2.7: Possible next states for one iteration in a single agent pathfinding
problem.

By considering all possible moves of all agents, the multi-agent path finding
problem can be modelled as a shortest path problem on the coupled graph G ′ =
(V ′, E ′). Given that we want to solve the multi-agent path finding problem with n
agents, the vertices of G ′ represent state tuples on the form (v1, ..., vn), which encode
the location of all n agents. As can be seen in Figure 2.8, increasing the number of
agents from one to two results in an increase from two to eight neighboring states
(as in the single agent case in Figure 2.7).

The number of vertices in G ′ is

|V ′| = |V|!
(|V| − |A|)! , (2.4)

where V is the vertices in the original decoupled graph G, and A is the set of agents.
This number is derived from the number of possible permutations of |A| vertices
from the set of V .

In order to have a meaningful problem, the number of agents have to be in the
range [1, |V| − 1]. If we have |A| = 1, then |V ′| = |V| and the problem reduces to
the single agent path finding problem. On the other hand, if we have |A| = |V| − 1,
then |V ′| = |V|!. Hence, the number of vertices in G ′ is super-exponential in |V| with
respect to both |V| and |A|.

The number of edges in G ′ will potentially be even larger, with an upper bound
at

|E ′| ≤ |V|!
(|V| − |A|)! ∗ |Emax||A|, (2.5)

where Emax is the maximum number of neighbors any single vertex has in G. While it
is possible to run an ordinary shortest path algorithm on G ′, we observe by plugging
in Equations (2.4) and (2.5) in the runtime complexity of A∗ that this is computa-
tionally intractable.

11

2. Theory

Starting
state

Goal node
agent 1

1

1

1

22 2

1

1

1

1

1

1

2

2 22

22

Goal node
agent 2

Figure 2.8: Possible next states for one iteration in a multi agent pathfinding
problem.

12

2. Theory

2.4.1.1 M∗

An algorithm specifically tailored for the multi-agent path finding problem is M∗,
developed by Wagner in [12]. This algorithm finds an optimal solution to the MAPF
problem by letting agents optimistically follow their individually optimal paths un-
til collisions are registered. As collisions are detected, a more thorough search is
initiated for the involved agents.

Similarly to A∗, a priority queue open of states/vertices is used to store the
states not yet visited. The priority queue orders the states in the same way as in
A∗, i.e., using the score function f shown in Equation (2.3).

Each state (vertex in the coupled graph G ′) keeps track of the following variables:
• collision set - set of agents which will eventually collide in some successor

state,
• backpropagation set - set of states that have considered the current state

as a successor,
• cost - the cost of the current best path to the state, initialized to ∞,
• back pointer - a pointer to the previous state in the best path.

When a collision is registered in a state v, the collision information is propagated
backwards to all states in the backpropagation set of v via a backpropagation func-
tion. The backpropagation function is then recursively called on all states in the
backpropagation set, eventually propagating the information all the way to the start-
ing state. When adding neighboring states to the priority queue, agents that are not
in the collision set are forced to follow their individually optimal path, while agents
in the collision set try every possible movement.

Because of this, M∗ will in the worst case scenario have a superexponential
runtime- and space complexity. However, in the average case, M∗ should perform
much better than A∗ as significantly fewer states will be considered. Studies show
[12] that for a 32 × 32 grid based map with 10 agents, median solution times were
lower than 0.1 seconds for M∗, while A∗ was incapable of solving a single prob-
lem instance within 10 minutes. Pseudo code for this algorithm is presented in
Algorithm 2.

13

2. Theory

Algorithm 2 M∗

Require: Graph G
Require: Starting state vs

Require: Target state vt

1: vs.cost ← 0
2: open ← Priority queue comparing state costs
3: open.enqueue(vs)
4: while open not empty do
5: vcur ← open.poll()
6: if vcur == vt then
7: return backtrack(vcur)
8: end if
9: for neighbor in limitedNeighbors(vcur) do
10: add vcur to neighbor .backSet
11: add collisions to neighbor .collisionSet
12: backpropagate(vcur, neighbor .collisionSet, open)
13: if no collision and vcur.cost + f(ecur,neighbor) < neighbor .cost then
14: neighbor.cost ← vcur.cost + f(ecur,neighbor)
15: neighbor.backPointer ← vcur

16: open.enqueue(neighbor)
17: end if
18: end for
19: end while
20: return No path found

14

3
Methods

In section 3.1, we describe the main strategy for solving a planar PDP. Furthermore,
we introduce a way for the agents to communicate with each other, extending the
solution provided by van Lon, Branke and Holvoet in [4].

In section 3.2, we reformulate the problem for an industrial application. The
setting of the problem is changed from a plane to an undirected graph, in which col-
lisions between agents have to be avoided at all costs. The reformulation motivates
changes in the route planning, parcel assignment, and data-set generation, which
will be described in detail.

3.1 Solving a planar PDP
The theory items can be combined to create an auction system, where each agent
takes the roll of a subcontractor bidding for requests as they are announced. Bids
are calculated using a heuristic evolved by a genetic programming algorithm. This
heuristic combines information regarding the state of the vehicle, parcel, and other
agents using basic arithmetic and ternary operators.

As requests are auctioned and bids are won the respective vehicles update their
list of assigned tasks, as well as optimize their current route so that the current
tasks are handled efficiently. Fixing the route planner used by agents, the goal is to
optimize the heuristic calculating bids.

This section will show the specifics of the genetic program, how routes are
planned, and additional functionality added to the CNET protocol in the form
of agents being able to reauction requests. This will also provide the basis of the
multiple agent system used for the industrial application described later on in this
chapter.

3.1.1 RinSim and ECJ
RinSim is the simulation environment used for simulating the multiple-agent systems
described in this thesis. It is an open source, discrete time model simulator, built
in Java by van Lon and Holvoet [13]. It has been used for similar projects, most
notably Optimizing agents with genetic programming [4]. This project implements
genetic programming evolution and CNET protocol bidding, and provides a baseline
for our thesis.

The genetic programming evolution has been carried out through the use of
ECJ, a Java based research system for evolutionary computation developed by

15

3. Methods

Function Inputs xi Description
+,-,×,÷ 2 Basic arithmetic functions
if4 4 If statement using 4 inputs which calculates x1 < x2 ? x3 : x4
pow 2 Calculates the exponent xx2

1
neg 1 Negates the input, −x1
min, max 2 Calculates the minimum/maximum of inputs

Table 3.1: Possible internal nodes of a heuristic function.

Luke et al. [14]. ECJ allows for highly customizable genetic programming with
a plethora of different parameters to adjust. In this thesis, we have chosen a tour-
nament selection of size seven and limited the maximum depth of the heuristic trees
to 17.

3.1.2 Parcel assignment
Every time a new parcel is announced, an auction is initiated. Each agent places a
bid on the parcel using a heuristic that calculates how well suited the agent is for
completing the order. When all agents have placed bids on the parcel, the agent that
placed the lowest bid gets exclusive responsibility for completing the order. Because
of this, it is important that the heuristic produces low values for orders that suits
the agent, and high values for orders that would be impractical for the agent.

We employ the same approach as van Lon, Branke and Holvoet [4, 15], in which
the heuristic is optimized through genetic programming. As described in section 2.3,
the heuristic is represented as a tree. A leaf node either contains a constant value
or a value related to the state of the agent. An internal node takes the values of its
children as its input. To get the heuristic value for a given parcel, the root function
of the tree is evaluated. Evaluation is carried out in a way similar to a post order
traversal: evaluate all children before computing the function value at any node.

The functions that are available to the optimization algorithm are displayed in
table 3.1, and the set of possible leaf nodes used in [4] are shown in table 3.2.

3.1.3 Introducing communication to multiple-agent systems
Agents could benefit from having information about the intentions of other agents.
For instance, if some agents are heading to locations near a newly announced parcel,
it could be a good idea to let one of these agents win the auction. Similarly, an agent
that knows that all other agents are far away from a newly announced parcel could
be the best candidate for servicing this parcel. However, in previous work [3, 4] the
state variables used in the optimization were limited to values that are either local
to agents, such as insertion cost, or local to parcels, such as pickup urgency.

In order for the agents to learn how to utilize the states of other agents, we
introduce four leaf nodes to the genetic programming algorithm. The reason for not
adding more new node types is to not increase the complexity of the problem too
much; the search space of the genetic algorithm grows exponentially with respect

16

3. Methods

Function Description
Insertion cost Additional length of route
Insertion travel time Additional travel time
Insertion tardiness Expected increase in tardiness, i.e. delayed pickups and

deliveries
Insertion over time Expected increase in overtime, i.e. how long until the

vehicle drives back to the depot
Insertion flexibility Summation of the differences between earliest and last

possible arrival times for all pickups and deliveries in the
route.

Ado, Mido, Mado Average, minimum and maximum distance between lo-
cations in the current route and the parcel considered
for bidding

Pickup urgency Time until end of pickup time window
Delivery urgency Time until end of delivery time window
Time left Time left until end of scenario
Slack Expected idle time until end of day
Route length Number of orders in current route
Constants 0,1,2,10

Table 3.2: The possible leaf node of a bidding heuristic used in [4].

to the number of possible nodes [16]. The new leaf nodes, which are adaptions of
those presented by Vonolfen et al. [17], are presented in table 3.3, accompanied by
Figure 3.1 which illustrates how the node common target works.

Function Description
Common target The number of agents that are currently moving towards

a destination that is at most r length units away.
Aad, Miad, Maad Average, minimum and maximum distance from the par-

cel to all other agents.

Table 3.3: Leaf nodes that uses the states of other agents.

3.1.4 Reauctioning parcels
In a dynamic problem where requests are invisible up until their announce time
ai, decisions made previous to the announcement of an order may turn out to be
suboptimal as new information is revealed. Since the nature of the problem is
dynamic the solution also needs to be dynamic. This can be achieved by allowing
agents to reauction parcels if a better schedule exists.

Similarly to the procedure in [4], we define two situations in which an agent
considers reauctioning a parcel:

• the agent has not won an auction in the last five minutes,

17

3. Methods

Common target: 2

Newly
announced

parcel

Figure 3.1: Visualization of the common target node used by bidding heuristics.
The node calculates the number of agents that are heading towards points that are
close to the newly announced parcel. For the bottom most agent considering the
parcel in the top right, this value is evaluated to 2, as there are two other agents
that are moving towards destinations that are close to the parcel. The maximum
distance that is considered close is a hyper-parameter which is set before training.

• the agent has an updated schedule.
When a reauction is initiated, the agent has to decide on what parcel to put up for
auctioning. The bidding heuristic is evaluated for each parcel and the parcel that is
the least valuable to the agent at the given time is selected for reauction.

3.1.5 Route planning
The next problem to address is route planning: given a set of parcels, in what order
should the parcels be processed and how should the agents move to accomplish this?
Since agents are residing in the plane, movement is not an issue as all agents can
move in a straight line to any position. To determine the order in which parcels are
processed the Cheapest Insertion algorithm is utilized, where each time a parcel is
assigned to an agent, it is inserted in the schedule such that the expected cost of
the new schedule is as small as possible.

3.1.6 Training data
In order to evolve and optimize the bidding heuristic, several simulations have to be
evaluated. This requires a large amount of training data in the form of scenarios.
A scenario S(d, u, s) is characterized by a (dynamism, urgency, scale)-tuple and
contains vehicle information and parcel information. Vehicles are defined by their
starting time and position, whereas parcels are defined by their pickup- and delivery
locations together with corresponding time windows.

18

3. Methods

Name Dynamism Urgency [min] Scale Individuals Generations Evaluations

DCGP-20-35-1 20% 35 1 500 100 50
DCGP-50-20-1 50% 20 1 500 100 50
DCGP-80-5-1 80% 5 1 500 100 50

Table 3.4: The data sets used to evolve bidding heuristics. Evaluations correspond
to the number of evaluation for a single individual in a generation. DCGP is an
abbreviation for decentralized communication genetic program.

The data set that has been used for the optimization of the planar PDP system
is the same as the one that van Lon, Holvoet, and Branke used in [4–6]. This data
set consists of a training set and a validation set.

The training set Strain contains scenarios with three different combinations of
dynamism, urgency and scale, and was used to train three different systems. These
systems with their corresponding parameters are shown in table 3.4

The validation data set Sval contains 270 scenarios; 10 scenarios from 27 different
parameter configurations and is on the form

Sval = {S(d, u, s)i|(d, u, s) ∈ D × U × S, i ∈ [0, 10]},

where

D = {20, 50, 80} − set of dynamism levels,
U = {5, 20, 35} − set of urgency levels,
S = {1, 5, 10} − set of scale levels.

The best performing individual in the last generation of each evolution was
chosen as the representative heuristics. The validation data set was then used to
evaluate representative heuristics for different parameter settings.

19

3. Methods

3.2 Industrial application
This section will describe the industrial application part of the thesis, which has
been the primary focus of the work. The system layout is shown in Figure 3.2 and
the individual components will be discussed in the following sections.

Multiple-Agent System

MAPF Solver

Bidder

Route Planner

Communicator

Auctioneer

Vehicle

State Machine

RinSim
«Simulation Environment»

Figure 3.2: System layout for the industrial application.

3.2.1 Problem redefinition
Going from a planar map with no physical limitations to a real world mining oper-
ation drastically changes the problem and introduces new constraints and assump-
tions.

3.2.1.1 Topology

The most significant change from the planar setting is the introduction of a min-
ing environment. Mines typically span large underground spaces using a few long
corridors which branch off into mining areas and delivery points, as can be seen in
Figure 3.3a. The corridors are often narrow and do not support vehicles passing
each other. This means that trucks might not be able to follow their individually
optimal routes as this may set them on a collision course with other vehicles.

To account for the aforementioned changes, the map is modelled as an undirected
graph G = (V , E), where V is the set of vertices and E is the set of edges. The set
of vertices is itself split into V = (VC ,VU), where VC is a set containing constrained
vertices and VU is a non-empty set containing unconstrained vertices. Constrained
vertices are defined as vertices that can only be occupied by one vehicle at a time,
whereas any number of vehicles are allowed to be in the same unconstrained ver-
tex simultaneously. Unconstrained vertices represent in our case locations such as
mining areas, delivery points and central hubs, while constrained vertices represent
locations in narrow passageways.

A graph based map was created to model a typical mine, which is displayed in
Figure 3.3b. The graph contains one central depot, 13 pickup locations and three
dropoff locations, which are the vertices in the unconstrained set. All other vertices
(the red dots in Figure 3.3b) are constrained vertices.

20

3. Methods

(a) Layout of a typical mine. (b) The graph used for the simulations.

Figure 3.3: Layout of a real world mine and the model used for the thesis.

Figure 3.4: By relaying messages from the blue vehicle its communication range
is extended to include that of the red vehicle.

3.2.1.2 Limited communication range

Trucks were equipped with communication devices to able to communicate their
positions and intentions with each other. Since a mining environment features a lot
of obstacles for messages to travel through, the devices were modelled to have a lim-
ited range of a few hundred meters. To improve intention spreading, communication
devices were also set to relay known information to other vehicles. This process is
depicted in Figure 3.4.

3.2.1.3 Agent capacity

In a real world setting, it is not realistic that agents are able to carry an infinite
amount of parcels. Picking up a parcel is in our case analog to loading a truck with
ore, which motivates restricting the cargo capacity of agents. We have set the cargo
capacity to one, meaning agents have to complete an entire order before being able
to process another. Note that agents are still able modify their schedule with respect
to parcels that are not yet picked up.

21

3. Methods

3.2.1.4 Service queuing

In a mining operation, trucks typically travel from a central hub to an ore pickup
destination where a wheel loader is waiting, ready to fill the truck to capacity with
ore. The truck then travels back to the central hub, depositing the cargo in a
crusher, which reduces the ore into smaller chunks. Thus, both the pickup and
delivery locations may serve a limited amount of trucks at a time. This behaviour
can be modelled by placing first in first out queues at each service location, where
only vehicles in the front of the queue are serviced.

3.2.2 Shared space route planning

By introducing a shared space environment, routing conflicts become an issue. In a
centralized system, an optimized route could be calculated each time the problem
changes since we would then have access to complete information. However, with a
decentralized system, as well as limited visibility of other agents, route optimization
and conflict avoidance need to be handled separately as it is impossible to know at
which points during a route conflicts may emerge.

Thus, route planning is divided into two parts:
• Global route planning: Given a schedule of pickups and deliveries, find a route

that minimizes the objective function 2.1 assuming that shared space is not
an issue.

• Local route planning: Given a routing conflict, find routes for all involved
vehicles such that they are able to reach their respective destinations without
colliding.

Global route planning was solved using cheapest insertion cost, which inserts the
new request such that it minimizes the objective function in polynomial time. Local
route planning requires more thought.

3.2.2.1 Local route planning

When an upcoming collision is detected, as exemplified in Figure 3.5, a MAPF-
algorithm is executed with the current assignments of the agents in the vicinity of
the collision area as input. If an idle agent is involved in a collision, its goal will
be to remain at its current vertex. After a solution has been found, each involved
agent will receive an updated route to follow. The algorithm used in this project
was chosen to be M∗, which is described in Section 2.4.1.1.

Agents in conflict will either be moving towards an unconstrained vertex or
be idle at a constrained vertex. The only time an agent will have a constrained
vertex as its target is when the agent blocks the way for another agent heading
towards an unconstrained vertex. Therefore, there will never be any MAPF-problem
instances where two agents want to move to the same constrained vertex. As the
set of unconstrained vertices VU is guaranteed to be non-empty, any given problem
instance will be solvable.

22

3. Methods

Communication
Radius

Truck

Goal

(a) Truck travelling towards a pickup or
delivery destination.

Other truck detected.
Need to avoid deadlock

(b) Communication picks up another
truck travelling in the opposite direc-
tion.

Solve intermediate problem
using MAPF solver

(c) To avoid deadlock, a partial solution
is found.

(d) The routing conflict has been re-
solved.

Figure 3.5: Routing conflict with two vehicles.

23

3. Methods

3.2.2.2 Unweighted edges and map resolution

Examining the mining map 3.3a, we find that if the graph only includes vertices at
junctions and dead ends the length of edges will have widely different proportions.
Such edges could range from pockets, barely able to fit a vehicle, to tunnels hundreds
of meters long. This would incur three major problems:

1. Applying a MAPF solver on such an instance would give the algorithm little
room for maneuverability. Where in reality an edge between two vertices might
fit a large number of vehicles there is instead only room for one vehicle.

2. Solutions provided by M∗ show a set of state transitions, where all agents
move from one vertex to the next in unison. This means agents have to move
synchronously from vertex to vertex in order for no collisions to occur. Thus
vehicle travel times are limited by the longest edge travelled by a vehicle in
each iteration.

3. Without extensive modification to the simulator, vehicles in RinSim have to
strictly follow an edge once they have started traversing it. Since M∗ needs
unique starting positions for each vehicle, a collision has to be detected before
involved vehicles are travelling toward the same vertex, as this is the vertex
given to M∗.

As a solution, the graph was extended with local vertices, as shown in Figure 3.6.
These local vertices were added so that no edge is longer than half of the vehi-
cles communication range, meaning there will always be two vertices between vehi-
cles when they register a routing conflict. This also applies a limit to the longest
traversable edge. The additional vertices will not add much in the way of maneu-
verability however, as pocket edges already fulfill the criteria of being at most half
the range of the vehicles’ communication range. The reason for not increasing the
graph resolution further was due to the heavy penalty it would incur to the worst
case complexity of M∗, which is discussed in Section 2.4.1.

Global vertex

Local vertex

Figure 3.6: Graph expanded with local vertices, which is useful for multi-agent
path finding solution quality.

3.2.3 Vehicle behaviour
As with any decentralized MAS, the performance of the system relies heavily on
the perception and decision making of its agents. Vehicles have access to their own

24

3. Methods

Variable Description
Assignment Version Integer that is incremented each time the vehicles

changes state, i.e. whenever its assignment is updated.
Current Assignment Current position and destination. This, along with

nearby vehicles assignments gets passed to the MAPF
solver whenever a conflict emerges.

Time Map Mapping between vertices in the graph and time win-
dows for which the vehicle expects to occupy the vertex.

Collision Map Stored points of collision between current vehicle and
nearby vehicles. Look-ups use the involved vehicles cur-
rent assignment versions.

Table 3.5: Long term memory variables.

Variable Description
Vehicle positions Mapping between nearby vehicles’ identification number

and their respective positions
Vehicle destinations Mapping between nearby vehicles’ identification number

and their respective destinations

Table 3.6: Short term memory variables.

position as well as the position and intent of other nearby vehicles using vehicle-to-
vehicle communication. To modularize the behaviour of vehicles they were modeled
as state machines. To make informed decisions, based on the vehicle’s current as-
signment as well as the intent of other vehicles, each vehicle calculates the time
windows for which they expect to occupy each vertex in their path.

3.2.3.1 Communication

Vehicles share information by broadcasting and receiving asynchronous messages
within their communication range. These messages contain the vehicles’ current
position, assignment, time map, and state. Whenever a vehicle receives a message it
also broadcasts it to other nearby vehicles, allowing information sharing as described
in Section 3.2.1.2. To prevent an overflow of messages being passed around, only the
most recently created message from each vehicle is relayed during an update tick.

3.2.3.2 Long term and short term memory

To be able to detect and solve routing conflicts, vehicles need to store information
regarding their current state as well information pertaining to other nearby vehi-
cles. Some of this information needs to be updated continuously, such as vehicle
positions, while other information remains constant until a destination is reached
or the vehicles route is disrupted. Thus stored information is divided into long and
short term memory. The stored variables are shown in Tables 3.5 and Table 3.6.

25

3. Methods

Figure 3.7: Route conflict with more than two vehicles.
The blue and red vehicle will register that they are on a
collision course and enter the collision avoidance state.
Should the MAPF solver only consider the red and blue
vehicle and decide that the blue vehicle should enter the
pocket which only fits one vehicle, the subsequent col-
lision situation between the red and yellow vehicle will
either require an unnecessarily convoluted solution or be
unsolvable.

3.2.3.3 Collision detection and avoidance

When another vehicle is encountered a comparison of time maps is made. If the
trajectories of both vehicles overlap during some time interval we expect an imminent
collision, unless vehicles reroute, and the collision point is stored along with the
vehicle’s identification number in a collision map. If a vehicle is within collision
range, a check is made to see if its identification number is contained within the
collision map. If so, both vehicles will stop moving and enter a collision avoidance
state. Once a MAPF solution has been obtained the vehicles start moving again
and the situation is resolved.

When vehicles enter the collision state they also signal other nearby vehicles to
enter this state, ensuring that they will be part of the MAPF solution. This is done
to make sure the routes received from the MAPF solver does not interfere with routes
of nearby vehicles. A situation where this is necessary is presented in Figure 3.7.
Including as many vehicles as possible in a conflict resolution minimizes the travel
time in the system and the amount of unsolvable conflict scenarios. However, as the
worst case time complexity of M∗ is superexponentially increasing with the number
of agents involved, as shown in Equation (2.4), the execution time may be heavily
increased.

3.2.3.4 State machine

Vehicles were modelled as finite state machines with states and transition events as
described in Table 3.7. The different states contain the following logic:
Wait: Stand still until a parcel is assigned to the vehicle or a conflict emerges
nearby.
Goto: Move towards the destination provided by the global route planner. Should
a new parcel be assigned to the vehicle this may create a more beneficial route, or
assigned parcels might be reauctioned, leaving the vehicle with no assigned parcels.
If a conflict emerges nearby, then an intermediate path planning instance needs to
be solved.

26

3. Methods

State Event Next State
Wait GOTO Goto

CONFLICT CollisionAvoidance
Goto NOGO Wait

ARRIVED WaitAtService
REROUTE Goto
CONFLICT CollisionAvoidance

WaitAtService REROUTE Goto
NOGO Wait
READY_TO_SERVICE Service

Service DONE Wait
CollisionAvoidance RESOLVED_WAIT Wait

RESOLVED_GOTO Goto
CONFLICT CollisionAvoidance

Table 3.7: Transition table for the finite state machine in charge of vehicle logic.

WaitAtService: Wait at a service location until the pickup or delivery is available,
as specified by pL

i and dL
i , and the vehicle is first in queue. Should the assigned

parcel be reauctioned then wait for a new assignment. If the route planner finds a
more beneficial route then move towards the provided parcel.
Service: Stand still while cargo is picked up or delivered.
CollisionAvoidance: Solve a MAPF instance as described in Section 3.2.2.1. If
the vehicle reaches its destination then return to the previous state. If a new conflict
emerges nearby then solve the new MAPF instance.

Note that neither of the two states WaitAtService and Service contain a transi-
tion to collision avoidance. This is because a vehicle may only be in one of these
states if it is at a service location. Since service locations always belong to the
unconstrained set VU , no collision will occur on these vertices.

3.2.4 Optimization and system evaluation
The system described above, using collision detection and the M∗ algorithm for
solving MAPF instances, was evolved by having a genetic program optimize the
bidding heuristic. To generate training and validation data sets a scenario generator
was developed, based on the generator described in [6], with additional support for
graph maps. To create the graph used for training and evaluation a script was
written in Matlab with capabilities to draw vertices and edges, along with placement
of depot, pickup and delivery locations. The resulting graph used for both training
and validation is shown in Figure 3.3b.

For heuristic evolution to be successful large amounts of computational power
was needed. To this end, a computer cluster built on Intel 2650v3 CPUs consisting
of 5 vertices with 20 cores each was used for training.

27

3. Methods

Name Dynamism Urgency [min] Scale Individuals Generations Evaluations
DGGP-20-35-1 20% 35 1 400 50 50
DGGP-50-20-1 50% 20 1 400 50 50
DGGP-80-10-1 80% 10 1 400 50 50
DGGP-mixed 20/50/80 35/20/10 1 400 50 54

Table 3.8: Scenario and genetic programming parameters used to evolve solutions
for shared space PDPs. DGGP is an abbreviation for decentralized graph genetic
program.

3.2.4.1 Limiting evolution runtime

Since the running time of M∗ is superexponential in the number of agents, evalu-
ations requiring an extraordinary long time due to state space explosion is to be
expected. As genetic algorithm evolution requires large amounts of evaluations,
minute long runtimes are simply not feasible.

Therefore we had to find a way to limit the running time for each scenario eval-
uation. Tuning test showed that 99% of scenarios using five vehicles were evaluated
within two seconds. The remaining scenarios could potentially require up to several
minutes, and so evaluation runtime was limited by setting a cap on the number of
states explored by M∗ to 70 000. Any scenario evaluation exceeding this limit was
stopped prematurely and assigned minimum fitness.

3.2.4.2 Training data

Similar to the process described in Section 3.1.6, three different training data sets
Strain were generated for heuristic evolution. These data sets consist of scenarios
S(d,u,s), defined by parameters dynamism, urgency and scale. Three heuristic,
referred to as DGGP, was optimized for each of these data sets. A forth heuristic,
named DGGP-mixed, was evolved using a mixture of the three training data sets.

Scenario parameters along with genetic programming hyperparameters for each
training set are shown in Table 3.8. Scenario length was set to four hours, with
five vehicles and 40 orders per scale. Pickup and delivery locations for orders were
uniformly randomly distributed among the mining and dropoff areas shown in Fig-
ure 3.3b.

Training data sets contain 2500 scenarios each, enabling the genetic program to
evaluate its population on 50 new scenarios each generation for 50 generations. Using
new scenarios in each generation ensures the evolved heuristics are not overfitted for
a small data set.

3.2.4.3 Validation data

Since increasing the scale parameter slowed down scenario evaluation to unreason-
able runtimes, multiple validation sets were created. The first validation set was
used to measure the evolved heuristic performance for varying levels of dynamism
and urgency. The other validation data sets were used to measure the systems
failure rate for increasing levels of scale.

28

3. Methods

In a similar vein as the validation set used for the planar PDP heuristics, the
first validation data set Sval,1 was created containing 300 scenarios; 20 scenarios from
15 different parameter configurations of dynamism and urgency and is expressed by

Sval,1 = {S(d, u, s)i|(d, u, s) ∈ D × U × S, i ∈ [0, 20]}, (3.1)

where

D = {20, 50, 80} − set of dynamism levels,
U = {10, 20, 35} − set of urgency levels,
S = {1} − one scale level.

The second validation set Sval,2 consists of 10 000 scenarios; 1000 scenarios generated
from 10 different parameter configurations of varying scale, on the form

Sval,2 = {S(d, u, s)i|(d, u, s) ∈ D × U × S, i ∈ [0, 1000]}, (3.2)

where

D = {50} − one dynamism level,
U = {20} − one urgency level,
S = {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2, 0} − set of scale levels.

where the values s ∈ S translates to 5 · s vehicles and 40 · s orders.

3.2.4.4 M∗ runtime analysis

To measure the runtime of M∗, nine data sets of routing conflict instances were
generated. Each data set contains 1000 instances, with the number of agents ranging
from two to ten. Each instance was generated by first inserting an agent on a
randomly selected vertex. To get the desired number of agents, new agents were
inserted on randomly selected vertices within the visibility range of previously placed
agents. Agent destinations were then chosen among the vertices in the unconstrained
set VU . Problem instances were then solved by M∗ and runtimes up to one minute
were recorded.

29

3. Methods

30

4
Results

In this chapter we present the main results of the thesis. Section 4.1 covers the
results from adding communication nodes to the genetic programming algorithm
in the planar PDP. Section 4.2 presents training- and evaluation results from the
shared space PDP, as well as the results from the scalability test and M∗ runtime
measurements.

4.1 Introducing communication to the planar PDP
After implementing communication terminals to the planar PDP solution, bidding
heuristics were optimized using genetic programming, one for each of the three train-
ing sets containing scenarios of varying dynamism and urgency, shown in Table 3.4.
The training took approximately 88 hours for one parameter setting (500 individu-
als, 100 generations and 50 evaluations per individual in each generation) and was
carried out on a computer with an Intel Core i7-6950X hyper-threaded CPU with
10 cores at 3.00 GHz.

To get the desired heuristics for validation, the best performing individual in
the last generation of each training was chosen. The chosen heuristics were then
compared to those not using communication terminals. The validation data set and
genetic algorithm parameters were the same as those used by van Lon et al., [4].

4.1.1 Training performance
Figure 4.1 shows the objective value cost per parcel for the best individual in each
generation for all three heuristic evolutions. For each training set, the best perform-
ing individual of the last generation where chosen as the representative heuristic.
We can see a significant decrease in the cost function during the earlier generations,
after which the overall trend of cost function seems to start plateauing. Note that
the trend is still slowly decreasing, which indicates that the training may not have
fully converged.

4.1.2 Comparison with previous results
A comparison with the heuristics evolved in Optimizing agents with genetic program-
ming [4] are shown in Table 4.1. The results produced by van Lon et al., named
DGP, are average results for ten evolution runs of each configuration, while the
results presented for DCGP are only for one evolutionary run.

31

4. Results

0 20 40 60 80 100

generation

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

20.5

co
st

 p
er

 p
ar

ce
l

Training results for dynamism=0.2, urgency=35, scale=1

measured

exp fit

0 20 40 60 80 100

generation

15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

co
st

 p
er

 p
ar

ce
l

Training results for dynamism=0.5, urgency=20, scale=1

measured

exp fit

0 20 40 60 80 100

generation

21.5

22

22.5

23

23.5

24

24.5

25

co
st

 p
er

 p
ar

ce
l

Training results for dynamism=0.8, urgency=5, scale=1

measured

exp fit

Figure 4.1: System performance during training of planar PDP solution. Note
that the heuristic evolution uses new scenarios for each generation, meaning that a
well performing individual is not guaranteed to have the same success in the next
generation, resulting in the jaggedness of the graphs.

32

4.
R
esults

Class DGP-20-35-1 DCGP-20-35-1 DGP-50-20-1 DCGP-50-20-1 DGP-80-5-1 DCGP-80-5-1 Best

20-5-1 631.03± 13.87 225.48 526.48± 1.17 125.42 325.75± 0.58 425.98 DCGP-50-20-1
50-5-1 625.84± 8.49 121.31 522.90± 1.46 421.68 321.67± 0.37 221.59 DCGP-20-35-1
80-5-1 625.97± 10.07 121.27 522.66± 1.26 422.02 221.28± 0.38 321.50 DCGP-20-35-1
20-20-1 518.99± 0.36 218.70 318.71± 0.30 118.12 619.15± 0.33 418.88 DCGP-50-20-1
50-20-1 415.27± 0.38 215.17 315.22± 0.24 114.68 515.51± 0.68 615.77 DCGP-50-20-1
80-20-1 515.02± 0.34 214.73 314.80± 0.16 114.34 615.34± 0.49 414.97 DCGP-50-20-1
20-35-1 516.48± 0.34 115.68 316.37± 0.28 215.76 617.02± 0.82 416.45 DCGP-20-35-1
50-35-1 314.44± 0.45 214.41 414.54± 0.32 113.73 514.96± 0.46 615.07 DCGP-50-20-1
80-35-1 413.74± 0.24 213.27 313.61± 0.18 113.01 514.18± 0.55 614.49 DCGP-50-20-1
20-5-5 622.22± 9.25 117.14 519.10± 2.52 217.66 317.78± 0.23 417.80 DCGP-20-35-1
50-5-5 618.62± 6.24 114.35 516.01± 1.83 414.87 314.76± 0.18 214.74 DCGP-20-35-1
80-5-5 618.49± 6.16 114.39 515.91± 1.72 414.87 214.66± 0.16 314.68 DCGP-20-35-1
20-20-5 413.94± 0.30 313.84 213.83± 0.14 113.38 514.69± 0.73 614.71 DCGP-50-20-1
50-20-5 49.76± 0.19 29.34 39.50± 0.12 19.09 610.30± 0.73 510.07 DCGP-50-20-1
80-20-5 410.08± 0.24 29.52 39.82± 0.16 19.50 610.61± 0.73 510.47 DCGP-50-20-1
20-35-5 311.08± 0.18 210.96 411.29± 0.19 110.64 511.94± 0.66 612.54 DCGP-50-20-1
50-35-5 38.88± 0.20 28.71 48.97± 0.25 18.46 59.72± 0.67 610.16 DCGP-50-20-1
80-35-5 39.10± 0.25 28.97 49.25± 0.22 18.61 59.92± 0.61 610.22 DCGP-50-20-1
20-5-10 620.17± 7.78 115.49 517.16± 2.67 215.80 315.86± 0.14 415.99 DCGP-20-35-1
50-5-10 616.83± 6.56 112.44 513.92± 1.83 413.15 312.84± 0.18 212.75 DCGP-20-35-1
80-5-10 616.52± 5.57 112.74 514.10± 1.83 413.25 212.90± 0.16 313.00 DCGP-20-35-1
20-20-10 310.76± 0.22 210.66 410.78± 0.12 110.56 511.55± 0.72 611.77 DCGP-50-20-1
50-20-10 48.80± 0.25 28.51 38.59± 0.07 18.26 69.48± 0.81 59.38 DCGP-50-20-1
80-20-10 48.71± 0.25 28.42 38.49± 0.11 18.23 69.35± 0.76 59.21 DCGP-50-20-1
20-35-10 39.16± 0.19 29.13 49.44± 0.31 18.93 510.07± 0.64 610.62 DCGP-50-20-1
50-35-10 37.84± 0.20 27.77 48.06± 0.41 17.63 58.74± 0.70 69.53 DCGP-50-20-1
80-35-10 37.77± 0.19 27.61 47.98± 0.39 17.50 58.58± 0.68 69.38 DCGP-50-20-1

Table 4.1: Comparison between evolved heuristics with and without communication terminals. The listed values are mean cost
per parcel. Values for the heuristics named DGP are averages of 10 evolutionary runs, while values for those named DCGP, which
use communication terminals, are only for one evolutionary run. Since DGP values are taken from multiple runs deviations are also
reported for these results. Superscript values are the ranking for each different validation setting.

33

4. Results

4.2 Evolving solutions for graph based PDP
The results for the solution to the shared space PDP will primarily focus on how well
the evolved heuristics perform versus a basic heuristic. For this purpose Insertion
cost and Route size will be used as baseline heuristics to be compared with heuristics
evolved using different sets of training data.

Since the problem is considered safety critical, the success rate of simulations
will also be an important metric. The most important factor influencing the success
rate is the complexity of problems given toM∗. Since the algorithm has an superex-
ponential time bound, it may very well encounter problems which are not solvable
within a reasonable time. To this end, both success rate of simulations as well as
runtime evaluations of M∗ for different numbers of agents will be quantified.

4.2.1 Training results
To enable heuristic evolution three training data sets were generated. Each data set
contains scenarios of a specific configuration of dynamism and urgency as specified
in Table 3.8. A fourth heuristic was also evolved using a mix of the scenarios in the
training data sets.

The training was conducted on a computer cluster consisting of five nodes, each
equipped with 20 CPUs at 2.30 GHz, and took approximately 27 hours to complete
for each parameter setting (with 400 individuals, 50 generations and 50 evaluations
for each individual per generation).

For a fair comparison, evolutionary runs were repeated five times for each of the
four configurations. Uniqueness of evolutionary runs are guaranteed by initializing
the populations of the genetic algorithm using different seeds. Examples of how the
individuals perform on the training and validation data sets are shown in Figure 4.2.

To evaluate the heuristics created by the genetic program a validation data
set was created with 20 scenarios each of 15 different settings of dynamism and
urgency. These settings are shown by Equation 3.1. In each evolutionary run, the
best performing individual with respect to the validation data set was used as the
representative heuristic. Representative heuristic performance on the validation set
was then averaged across all five rollouts. The results of this process, along with the
performance of the baseline heuristics, are shown in Table 4.2

34

4. Results

0 10 20 30 40 50

generation

36

38

40

42

44

46

48

50

co
st

 p
er

 p
ar

ce
l

Training results for dynamism=0.2, urgency=35, scale=1

training

validation

0 10 20 30 40 50

generation

25

30

35

40

co
st

 p
er

 p
ar

ce
l

Training results for dynamism=0.5, urgency=20, scale=1

training

validation

0 10 20 30 40 50

generation

22.5

23

23.5

24

24.5

25

25.5

26

co
st

 p
er

 p
ar

ce
l

Training results for dynamism=0.8, urgency=10, scale=1

training

validation

0 10 20 30 40 50

generation

28

29

30

31

32

33

34

35

36

37

co
st

 p
er

 p
ar

ce
l

Training results for mixed D-U-S

training

validation

Figure 4.2: System performance on training and validation data sets during train-
ing. For each generation, the best performing individual is displayed along with its
performance on the validation set. Validation performance is only measured against
the configuration of dynamism, urgency, and scale for which they were trained.
Note that the heuristic evolution uses new scenarios for each generation, meaning
an elite individual is not guaranteed to be the elite of the next generation, causing
the jaggedness of the graphs.

35

4.
R
esults

DCI DRS DGGP-20-35-1 DGGP-50-20-1 DGGP-80-10-1 DGGP-mixed Best
20-10-1 646.01± 23.35 545.74± 10.51 237.51± 6.46 337.82± 7.20 439.90± 11.89 136.99± 7.13 DGGP-mixed
20-20-1 652.50± 28.58 549.02± 10.78 333.76± 6.49 233.10± 5.87 437.96± 16.59 132.99± 6.11 DGGP-mixed
20-35-1 670.81± 29.64 557.91± 7.30 237.69± 6.88 338.56± 8.62 457.82± 26.04 137.38± 7.44 DGGP-mixed
50-10-1 530.50± 7.64 639.82± 7.18 229.12± 4.26 429.51± 4.54 329.28± 5.01 128.67± 4.28 DGGP-mixed
50-20-1 646.01± 34.17 542.26± 6.91 329.61± 5.18 127.86± 4.02 431.37± 12.15 228.70± 4.96 DGGP-50-20-1
50-35-1 662.92± 31.86 553.02± 11.03 231.97± 6.63 332.27± 7.25 446.76± 25.53 131.35± 6.89 DGGP-mixed
70-10-1 636.21± 25.57 534.88± 7.63 426.56± 3.71 225.31± 3.11 325.45± 7.18 125.11± 3.13 DGGP-mixed
70-20-1 532.43± 23.59 638.75± 10.69 325.65± 3.84 224.78± 3.46 426.40± 9.32 124.48± 3.58 DGGP-mixed
70-35-1 659.59± 33.22 552.31± 11.90 329.30± 4.86 228.64± 5.49 435.69± 17.53 128.26± 5.10 DGGP-mixed
80-10-1 527.96± 18.19 631.92± 4.74 424.62± 3.13 324.06± 3.34 123.35± 2.95 223.85± 3.12 DGGP-80-10-1
80-20-1 640.80± 26.22 535.11± 11.44 324.24± 4.26 223.98± 4.43 426.25± 14.31 123.58± 4.54 DGGP-mixed
80-35-1 672.25± 35.53 552.36± 10.81 328.20± 4.82 227.69± 4.72 441.41± 26.31 126.87± 4.48 DGGP-mixed
90-10-1 526.02± 13.16 630.09± 6.23 423.83± 4.31 222.91± 3.99 322.91± 4.41 122.77± 4.22 DGGP-mixed
90-20-1 422.97± 4.56 631.08± 5.66 523.05± 3.40 222.11± 3.09 322.28± 3.17 121.39± 2.82 DGGP-mixed
90-35-1 667.61± 40.82 553.14± 9.20 328.30± 5.87 226.91± 5.25 441.10± 24.85 126.44± 5.09 DGGP-mixed

Table 4.2: Baseline heuristics and evolved heuristics performance for varying levels of dynamism and urgency. The listed values
are mean and standard deviation of cost per parcel. Superscript values are the ranking for each different validation setting.

36

4. Results

4.2.2 Scalability
By introducing more vehicles into the system, while keeping the size of the map
constant, the frequency and scale of possible collisions will increase. To evaluate how
the increasing runtime ofM∗ effects the solution, two different tests were conducted,
using data sets with varying numbers of agents. These tests were run on a computer
with an Intel i7-7700HQ CPU with eight cores at 2.80 GHz.

In the first test, we measured the running times of M∗ on a data set containing
randomly generated problem instances, as described in Section 3.2.4.4. This data set
consists of nine groups with differing number of agents (from two to ten), each with
1000 problem instances. The results are presented in Figure 4.3. M∗-evaluations
that took longer than 60 seconds were terminated prematurely and put in the right-
most bin of the histogram. We can see that the runtime of the algorithm increases
dramatically when the number of agents increase.

The second test was conducted with the goal of measuring the scalability of the
system. Ten different datasets with scale levels varying from 0.2 to 2.0 were used,
where the number of agents and parcels increase proportionally with the scale level,
ranging from (1, 8) to (10, 80). Each of the 1000 scenarios in each dataset were
evaluated using the DGGP-50-20-1 heuristic and the failure rate was logged.

In this test, we used the same failure condition for the simulations as we did
when training the system, i.e., a scenario fails if the search space of M∗ grows to
include more than 70 000 states. These results are presented in Figure 4.4. We
can see that a higher number of agents greatly increases the risk of encountering
problems that are too complicated for M∗ to solve, causing the simulations to fail.

37

4. Results

Figure 4.3: Distribution of computation times in seconds for 1000 instances of M∗

with differing numbers of agents.

38

4. Results

1 2 3 4 5 6 7 8 9 10

Agents

0

0.1

0.2

0.3

0.4

0.5

0.6

F
a
ile

d
 s

im
u
la

ti
o
n
s

Figure 4.4: The failure rate of the simulations with respect to number of agents.

39

4. Results

40

5
Discussion

In this chapter, we discuss and interpret the results presented in Chapter 4. We
also give our thoughts on how the solutions could be improved as well as areas we
consider interesting for further exploration.

5.1 Extending the solution of the planar PDP
Does adding communication terminals to the solution of the planar PDP provide
a qualitative improvement? As stated in Section 4.1.2, data for DGP heuristics
was generated based on 10 evolutionary runs, while values of the DCGP heuristics
are based on the results of one evolution run for each GP setting. This certainly
complicates comparison of the two systems.

5.1.1 System evaluation
Comparing each communication system with its counterpart from [4] in Table 4.1,
we note that the cost per parcel is lower for DCGP heuristics in all categories com-
pared to the mean values of DGP. This result may seem unsurprising, as providing
the optimization algorithm with more information should not worsen the result.
However, as the space of possible solutions grows exponentially with the number
of possible nodes, adding too many nodes can hinder convergence. Nevertheless,
our results indicate that valuable information indeed can be extracted from the
added communication nodes, resulting in better overall performance when solving
the planar PDP in a decentralized fashion.

5.1.2 Future work
The reason for the discrepancy in the amount of evolutions performed boils down to
time constraints and availability of computational power. Ideally, the same amount
of rollouts should be performed for each GP configuration, making a more fair
assessment possible.

5.2 Solving a shared space PDP
The results show both good news and bad news for the graph based PDP solution. In
this section, we will offer insight regarding both the results as well as the multitude
of extensions that did not make it into the thesis due to time constraints and scope.

41

5. Discussion

5.2.1 Objective value evaluation

As there are no benchmarking datasets available for the graph based dynamic PDP
with collision avoidance, we decided to compare the performance of the evolved
heuristics with the performance of two simple heuristics: Insertion cost and Route
size. We note that the simple heuristics are outperformed by the evolved heuristics
in almost every single problem class. This indicates that the GP is able to find some
valuable underlying structure regarding how to assign parcels. However, due to the
sheer size of the evolved heuristics, it is very difficult to analyze what they actually
do. Therefore, one can view them as black boxes that assigns parcels to agents in
an intelligent way.

From Table 4.2, we can see that the heuristicDGGP-mixed is the best heuristic
in 13 out of 15 problem classes, suggesting that training on multiple different problem
classes helps developing a more general purpose heuristic. This result is quite similar
to what van Lon, Branke and Holvoet present in [4], where the specialized systems
outperform the mixed system on the problem classes that the specialized systems
have been trained on, but the mixed system performs better overall. Yet, as the
graph based setting is considerably more complicated than the planar setting due
to the added problem of collision avoidance, it is not obvious that the results would
be similar.

In real problems, it might be difficult to know which problem class to use. For
instance, scenarios could contain multiple successive parts with different character-
istics. This further motivates the use of an all-purpose system that has been trained
on a mixed set of scenario classes.

5.2.2 Cost correlation to urgency

The urgency of a scenario tells us how much time in average agents have to pick up
announced parcels before the pickup time window closes. Urgency is measured in
time, and a higher urgency value means, somewhat counterintuitively, that agents
have more time to react to new parcels. Thus, one could expect that scenarios with
high urgency values should be easier than scenarios with low urgency values. This
is certainly the case in the planar PDP, as shown in Table 4.1: the cost per parcel is
consistently lower for scenarios with higher urgency, but with the same dynamism
and scale. However, inspecting the results in Table 4.2, we can clearly see that this
is not the case for the graph based PDP.

This could be explained in part by measuring the maximum allowed duration of
orders, i.e. dR

i − pL
i . Using the scenario generator, described in Section 3.2.4.2, we

find this quantity to increase with the urgency level. An example of this, comparing
maximum allowed order durations in scenarios generated using 10 and 35 minute
urgencies, is shown in Figure 5.1. Since vehicles have a binary capacity, a longer
order duration means the vehicle will be occupied by a single parcel for a longer
duration. Thus, order processing throughput decreases and the average cost per
parcel increases.

42

5. Discussion

Figure 5.1: Histogram of maximum order durations for orders from different ur-
gency classes.

5.2.3 System scalability
Evaluations for different levels of scale are notably missing from Table 4.2. When
increasing the scale parameter, both the number of vehicles and orders increase for
the scenario. As shown by Figure 4.4, the failure rate of scenarios rises quickly
as the number of agents increases. Thus, showing evaluations for increasing levels
of scale without taking into account the number of failed scenarios would be mis-
leading. Figures 4.3 and 4.4 also quantify the issue of solely relying on an optimal
MAPF solver. For an operation using more 5 agents in a similar graph structure,
an alternative to M∗, such as a suboptimal solver, is essential.

Another issue is that the definition of scale as described in Section 2.1.2.3 does
not map well to a shared space graph scenario. Increasing the number of vehicles
on a map of constant size will increase the rate of vehicle conflicts, which in turn
increases the cost per parcel. Having the size of the map increasing with scale could
be a solution, however the amount of intersections, pickup locations, and delivery
locations would have to increase as well for the scenario to correctly model reality.
Another solution could be to implement additional maps of varying size. These maps
could then also be used to test how the system adapts to different environments,
i.e., if the evolved heuristics can be used for general maps or if they are overfitted
to the map they have been trained on.

5.2.4 Future work
A number of ideas and implementations for the industrial application have been
left out of the thesis, largely due to time constraints and the limitations set for the
project. In this section we will discuss the necessity for these extensions and how
they could be implemented.

43

5. Discussion

5.2.4.1 Communication nodes in shared space MAS

As discussed in Section 4.1, adding communication nodes for the genetic program to
use may improve the overall performance for solutions to the planar PDP. Thus it
would be interesting to see how this could effect the performance of the decentralized
shared space PDP solver. Additionally, introducing more ways of communicating
may be specially important in a shared space environment, as this may improve
agents ability to avoid unnecessary routing conflicts.

The difficulty lies in implementing these nodes without while keeping within the
limitations of agents’ communication ranges. One naive solution is to let agents
store the last known route of other agents. Using this information along with the
agent velocities and the current time, agent positions could be extrapolated. With
a rough estimation of other agents position as well as their last known routes, all
communication nodes described in Table 3.3 can be evaluated.

5.2.4.2 Modelling capacity

As mentioned in Section 3.2.1.3, the capacity of the agents has been limited to a
single parcel at a time. This constraint means that vehicles always have to fill their
cargo entirely when picking up ore. However, in reality there may be situations
when a vehicle should/can only fill parts of its cargo at a single location. This could
be added to the model by associating a weight to each parcel and a capacity limit
to each vehicle. New nodes containing capacity information should then also be
supplied to the genetic programming algorithm.

5.2.4.3 Supplement M∗ with suboptimal solver

As discussed in Section 5.2.3, relying solely on an optimal, superexponential, MAPF
solver will eventually lead to state space explosions, even for a small number of
agents. Therefore M∗ is simply not sufficient for a real world implementation and
needs to be supplemented by a suboptimal solver. These solvers each have with
their own area of usage and limitatons, such as Bibox [18] which outperforms many
state of the art suboptimal solvers, but is applicable only on biconnected graphs.
Another issue with suboptimal solvers is the nature of the solutions provided, often
having agents move sequentially instead of synchronously. A number of algorithms
have been developed for more simultaneous movement, such as Parallel Push and
Swap [19]. Post processing algorithms to improve suboptimal solutions have also
been put forward, for example the condense function described by de Wilde et al.
[20].

5.2.4.4 Increase parallelization for conflict resolution

Whenever a route conflict emerges, all vehicles involved decelerate to a stand still
and one vehicle gets the responsibility of providing a MAPF solution. Thus, all
but one of the vehicles’ on-board computers are unutilized. One way to increase
parallelization would then be to let all passive vehicles instead use the suboptimal
solver. Thus, if the M∗ solver would time out, either by a limit on the number of

44

5. Discussion

states expored or a limit on computation time, the best suboptimal solution could
be used as a backup.

Another way to increase parallelization, as proposed by Cohen et al. [21], is to
use Rapid Randomized Restarts. They propose that MAPF solvers commonly exhibit
heavy-tailed distributions of runtime, reaffirmed by our results in Figure 4.3. By
introducing randomness to the solver, such as changing the order in how limited
neighbours are added in M∗, and restarting the solver whenever a time limit is
reached, the runtime may be shortened by avoiding the solution paths that cause
the heavy-tailed distribution. Provided that a suboptimal MAPF solver has also
been implemented, conflicts could be solved by having all but one vehicles run
Rapid Randomized Restarts on an optimal solver, such as M∗, and the last vehicle
using a suboptimal solver as a fail safe.

5.2.4.5 Post processing of emergency paths

As discussed in Section 3.2.2.2, MAPF solutions provided by M∗ require agents to
move synchronously from state to state, which introduces waiting times since agents
have to wait for the agent traveling the longest edge in each iteration. Increasing
the map resolution, thereby shortening the length of long edges, would then reduce
waiting times. However, this will not circumvent the problem of agents having
to stop and start since edges will still have different lengths, and in a real world
environment decelerating and accelerating a vehicle carrying several tons of cargo is
a gas-guzzling operation.

To handle this issue, MAPF solutions can be passed through a post-processing
step, where vehicle speeds are adjusted in order for all vehicles to arrive at the
next solution state in unison. This process is described in detail by Hönig et al.
[22], where a polynomial time post processing algorithm is described able to take
kinematic constraints into consideration.

5.2.4.6 Introduce additional classes of vehicles

A real world mining operation uses a number of different types of vehicles, each with
different assignments. Personnel needs to be moved around for extracting new ore
via blasting and wheel loaders need to be accessible at pickup destinations in order
to load vehicles with ore. Therefore, the system needs additional classes of vehicles.
The system could be optimized using the same heuristic in each class of vehicle,
with the difference being that these classes bid on different sets of assignments:

• The personnel transport problem is identical to that of a pickup and delivery
problem and assignments do not need to be modified except for only being
available to staff transportation vehicles.

• Wheel loaders on the other hand do not have a pickup or delivery destination,
instead they simply need to be available at pickup locations during certain
times. This behaviour could be modeled by letting wheel loader assignments
have the same locations for pickup and delivery, one for each vehicle assign-
ment.

Another optimization method that could be implemented in a system with sev-
eral classes of agents is co-evolution, as described by Koza [23]. During co-evolution,

45

5. Discussion

the genetic algorithm will consist of several populations. In each generation, the
individuals from one generation is evaluated using the individuals from other pop-
ulations as their environment. However, if each individual is evaluated against all
individuals from the other populations this will dramatically increase the required
computation time for optimization.

46

6
Conclusion

The results presented in this thesis suggest that genetically programmed solutions
to the planar pickup and delivery problem can be improved by supplementing agents
with abilities in communication. This result should also carry over to the shared
space variant of the pickup and delivery problem, where agent interaction is of even
greater importance.

As for the shared space PDP, a solution method has been presented which is
successful in solving instances with a few number of agents and adaptive for different
levels of dynamism and urgency. Using a genetically programmed heuristic improves
the solution quality compared to using naive bidding heuristics such as cheapest
insertion cost. Our results suggests that these heuristics should be evolved using
scenarios of varying difficulty in order to minimize travel time and tardiness for a
wide range of problem instances.

Moving forward, there is wide range of extensions that can be implemented to
further improve the quality of the shared space PDP solver. The largest bottleneck of
the system is the multi-agent path finderM∗, due to its superexponential worst case
time complexity. We propose the greatest benefit could be gained by supplementing
vehicle logic with a suboptimal multi-agent path finder, as this would increase the
scalability of the system.

47

6. Conclusion

48

Bibliography

[1] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[2] Jean-François Cordeau and Gilbert Laporte. The dial-a-ride problem: models
and algorithms. Annals of operations research, 153(1):29–46, 2007.

[3] Rinde RS van Lon and Tom Holvoet. Evolved multi-agent systems and thor-
ough evaluation are necessary for scalable logistics (position paper). In Compu-
tational Intelligence In Production And Logistics Systems (CIPLS), 2013 IEEE
Workshop on, pages 48–53. IEEE, 2013.

[4] Rinde RS van Lon, Juergen Branke, and Tom Holvoet. Optimizing agents with
genetic programming: an evaluation of hyper-heuristics in dynamic real-time
logistics. Genetic programming and evolvable machines, 19(1-2):93–120, 2018.

[5] Rinde RS van Lon and Tom Holvoet. When do agents outperform centralized
algorithms? Autonomous Agents and Multi-Agent Systems, 31(6):1578–1609,
2017.

[6] Rinde RS van Lon and Tom Holvoet. Towards systematic evaluation of multi-
agent systems in large scale and dynamic logistics. In International Conference
on Principles and Practice of Multi-Agent Systems, pages 248–264. Springer,
2015.

[7] Rinde RS van Lon, Eliseo Ferrante, Ali E Turgut, Tom Wenseleers, Greet Van-
den Berghe, and Tom Holvoet. Measures of dynamism and urgency in logistics.
European Journal of Operational Research, 253(3):614–624, 2016.

[8] Reid G Smith. The contract net protocol: High-level communication and con-
trol in a distributed problem solver. IEEE Transactions on computers, (12):
1104–1113, 1980.

[9] John R Koza. Genetic programming as a means for programming computers
by natural selection. Statistics and computing, 4(2):87–112, 1994.

[10] Mattias Wahde. Biologically inspired optimization methods: an introduction.
WIT press, 2008.

[11] Robert Sedgewick. Algorithms. Pearson Education India, 1988.

49

Bibliography

[12] Glenn Wagner. Subdimensional expansion: A framework for computationally
tractable multirobot path planning. 2015.

[13] Rinde RS van Lon and Tom Holvoet. Rinsim: A simulator for collective
adaptive systems in transportation and logistics. In Self-Adaptive and Self-
Organizing Systems (SASO), 2012 IEEE Sixth International Conference on,
pages 231–232. IEEE, 2012.

[14] Sean Luke, Liviu Panait, Gabriel Balan, Sean Paus, Zbigniew Skolicki, Jeff
Bassett, Robert Hubley, and A Chircop. Ecj: A java-based evolutionary com-
putation research system. Downloadable versions and documentation can be
found at the following url: https://cs.gmu.edu/~eclab/projects/ecj/, 2006.

[15] Rinde RS Van Lon, Tom Holvoet, Greet Vanden Berghe, Tom Wenseleers, and
Juergen Branke. Evolutionary synthesis of multi-agent systems for dynamic
dial-a-ride problems. In Proceedings of the 14th annual conference companion
on Genetic and evolutionary computation, pages 331–336. ACM, 2012.

[16] William B Langdon and Riccardo Poli. The genetic programming search space.
In Foundations of Genetic Programming, pages 113–132. Springer, 2002.

[17] Stefan Vonolfen, Andreas Beham, Michael Kommenda, and Michael Affenzeller.
Structural synthesis of dispatching rules for dynamic dial-a-ride problems. In
International Conference on Computer Aided Systems Theory, pages 276–283.
Springer, 2013.

[18] Pavel Surynek. A novel approach to path planning for multiple robots in bi-
connected graphs. In Robotics and Automation, 2009. ICRA’09. IEEE Inter-
national Conference on, pages 3613–3619. IEEE, 2009.

[19] Qandeel Sajid, Ryan Luna, and Kostas E Bekris. Multi-agent pathfinding with
simultaneous execution of single-agent primitives. In SoCS, 2012.

[20] Boris De Wilde, Adriaan W Ter Mors, and Cees Witteveen. Push and rotate:
a complete multi-agent pathfinding algorithm. Journal of Artificial Intelligence
Research, 51:443–492, 2014.

[21] Liron Cohen, Glenn Wagner, TK Kumar, Howie Choset, and Sven Koenig.
Rapid randomized restarts for multi-agent path finding solvers. arXiv preprint
arXiv:1706.02794, 2017.

[22] Wolfgang Hönig, TK Satish Kumar, Liron Cohen, Hang Ma, Hong Xu, Nora
Ayanian, and Sven Koenig. Multi-agent path finding with kinematic constraints.
In ICAPS, pages 477–485, 2016.

[23] John R Koza. Evolution and co-evolution of computer programs to control
independently-acting agents. In Proceedings of the First International Con-
ference on Simulation of Adaptive Behavior: From Animals to Animats. MIT
Press, Cambridge, MA, pages 366–375, 1991.

50

A
Appendix 1

The tree structure of one of the highest performing heuristics from DGGP-mixed
is presented in Figure A.1. This tree encodes a complicated function used for cal-
culating bid values for auctions. Note that this example is one of the smaller trees
produced by the genetic algorithm.

I

A
.A

ppendix
1

Figure A.1: One of the highest performing heuristics from DGGP-mixed.

II

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Goals
	Assumptions
	Contribution

	Theory
	The Pickup and Delivery Problem
	Problem definition
	Problem characteristics
	Dynamism
	Urgency
	Scale

	Contract-net protocol
	Genetic programming
	Encoding
	Selection
	Crossover
	Mutation
	Elitism

	Path finding
	Multi-agent path finding
	M-star

	Methods
	Solving a planar PDP
	RinSim and ECJ
	Parcel assignment
	Introducing communication to multiple-agent systems
	Reauctioning parcels
	Route planning
	Training data

	Industrial application
	Problem redefinition
	Topology
	Limited communication range
	Agent capacity
	Service queuing

	Shared space route planning
	Local route planning
	Unweighted edges and map resolution

	Vehicle behaviour
	Communication
	Long term and short term memory
	Collision detection and avoidance
	State machine

	Optimization and system evaluation
	Limiting evolution runtime
	Training data
	Validation data
	M-star runtime analysis

	Results
	Introducing communication to the planar PDP
	Training performance
	Comparison with previous results

	Evolving solutions for graph based PDP
	Training results
	Scalability

	Discussion
	Extending the solution of the planar PDP
	System evaluation
	Future work

	Solving a shared space PDP
	Objective value evaluation
	Cost correlation to urgency
	System scalability
	Future work
	Communication nodes in shared space MAS
	Modelling capacity
	Supplement M-star with a suboptimal solver
	Increase parallelization for conflict resolution
	Post processing of emergency paths
	Introduce additional classes of vehicles

	Conclusion
	Bibliography
	Appendix 1

